

ASSISTIVE CONTEXT-AWARE
TOOLKIT (ACAT)

DEVELOPER’S GUIDE

VERSION 1.0.0

TABLE OF CONTENTS

1. INTRODUCTION ... 5

1.1 Overview .. 5

1.2 References ... 5

1.3 Organization ... 5

1.4 Glossary of terms .. 6

1.5 ACAT Components .. 12

1.6 Build Instructions (base English version) ... 13

1.7 Build Instructions (Language Pack) ... 14

2. ARCHITECTURE .. 16

2.1 Introduction .. 16

2.2 The ACAT Core Library ... 17

2.3 The ACAT Extension Library .. 26

2.4 ACAT Resources Library ... 27

2.5 Extensions .. 27

3. CODE STRUCTURE ... 30

3.1 Solution Layout .. 30

3.2 Coding Standards and Styles ... 31

3.3 Building the framework .. 32

3.4 Logging .. 32

4. EXTENSIONS .. 33

4.1 Extension Categories ... 33

4.2 Extension Folder Layout .. 34

4.3 Extension Discovery ... 35

4.4 Extension Descriptor ... 35

4.5 Extension Invoker ... 35

5. LOCALIZATION .. 37

5.1 Steps to localize ACAT for a new language. ... 38

6. ACTUATORS.. 42

6.1 Introduction .. 42

6.2 Enumeration ... 42

6.3 Actuator Configuration File ... 43

6.4 ACAT Actuator Extensions ... 46

6.5 Steps to create an Actuator extension ... 48

6.6 Handling Calibration .. 50

7. AGENTS .. 52

7.1 Introduction .. 52

7.2 Enumeration ... 52

7.3 Application Agents .. 52

7.4 Functional Agents ... 54

7.5 Agent Configuration Files ... 56

8. PANELS ... 57

8.1 Introduction .. 57

8.2 Enumeration ... 58

8.3 Steps to create a scanner .. 58

8.4 Setting preferred panel configurations .. 69

9. WORD PREDICTORS .. 72

9.1 Introduction .. 72

9.2 Enumeration ... 72

9.3 Steps to create a Presage Word Predictor extension .. 72

9.4 Steps to create a non-Presage Word Predictor extension 74

10. TEXT-TO-SPEECH (TTS) .. 75

10.1 Introduction .. 75

10.2 Enumeration ... 75

10.3 Alternate Pronunciations ... 75

10.4 Steps to create a TTS Extension ... 76

11. SPELL CHECKER ... 80

11.1 Introduction .. 80

11.2 Enumeration ... 80

11.3 ACAT Spell Checker .. 80

12. THEMES ... 82

12.1 Introduction .. 82

12.2 Enumeration ... 82

12.3 Theme Configuration ... 82

13. SCRIPTS .. 84

13.1 Introduction .. 84

13.2 Syntax .. 84

13.3 Functions .. 84

13.4 Macros ... 88

14. COMMAND PROCESSING ... 92

14.1 Introduction .. 92

14.2 Command Handlers .. 92

14.3 ACAT Commands ... 94

15. SETTINGS .. 106

15.1 Introduction .. 106

15.2 Settings .. 106

16. ACAT Installers .. 125

16.1 ACAT Setup (English) .. 125

16.2 Language Pack Installers .. 127

5 INTRODUCTION | ACAT Developer’s Guide

1. INTRODUCTION

1.1 Overview

ACAT is an open source platform developed by researchers at Intel Labs with the goal
to benefit people with motor neuron diseases and quadriplegia. Intel created this
platform for Prof. Stephen Hawking to replace his decade's old system. It is
developed for Windows and is meant to provide access to Windows applications and
capabilities through limited interfaces. It enables users to easily, accurately and
quickly communicate using keyboard simulation and text to speech capability. It also
enables users to perform common tasks such as editing, managing documents,
navigating the Web and accessing emails. The unique and highly configurable system
provides researchers with a modern standard software interface to create
customized solutions enabled by inputs such as touch, eye blinks and eyebrow
movements.

1.2 References

The ACAT User Guide for end-users. It has details on the ACAT Application.

1.3 Organization

This document is organized as follows.

Chapter 1 Introduction to ACAT, quick build instructions, glossary of
terms.

Chapter 2 Architecture. A high-level description of the building blocks of
ACAT.

Chapter 3 Code Structure. Coding standards, style, building the toolkit.

Chapter 4 Extensions. The plug-in’s for ACAT. Enumeration and
invocation

Chapter 5 Localization. Localize ACAT to different languages.

Chapter 6 Actuators. Enumeration, configuration and development of
Actuator extensions.

Chapter 7 Agents. Enumeration, configuration and development of
Application and Functional Agents.

Chapter 8 Panels. Enumeration, configuration and development of
Scanners, Dialogs and Menu extensions.

6 INTRODUCTION | ACAT Developer’s Guide

Chapter 9 Word Predictors. Enumeration, configuration and development of
word predictor extensions.

Chapter 10 Text-to-Speech (TTS). Enumeration, configuration and development
of TTS extensions.

Chapter 11 Spell Checker. Enumeration, configuration and development of Spell
Check extensions.

Chapter 12 Themes. Configuration of color schemes for the ACAT UI.

Chapter 13 Scripts. The ACAT scripting language.

Chapter 14 Commands. ACAT Command handling.

Chapter 15 Settings. User preference settings.

Chapter 16 ACAT Installers. ACAT installer and ACAT language packs.

1.4 Glossary of terms

A glossary of terms is presented here. Some descriptions here use words that are
defined in the glossary and these words are highlighted in in bold face.

Term Description

ACAT Assistive Context-Aware Toolkit.

Panel
A generic term for an ACAT window. There are three types
of Panels – Scanners, Dialogs and Menus

7 INTRODUCTION | ACAT Developer’s Guide

Term Description

Scanner

A Panel primarily used for text entry, cursor navigation etc.
The Alphabet scanner for instance, is used for text entry.
The Mouse scanner is used to move the cursor on the
desktop.
The Alphabet scanner is shown here.

Dialog

A Panel which is a dialog box. ACAT uses Dialogs to enable
the user to configure ACAT settings.
The General Settings dialog is shown here.

8 INTRODUCTION | ACAT Developer’s Guide

Term Description

Menu

A Panel consisting of selectable options presented as a
Menu. The menu options are displayed with text and/or
icons.
The Settings menu is shown here.

9 INTRODUCTION | ACAT Developer’s Guide

Term Description

Contextual Menu

A Menu that contains options which pertain to the current
context on the desktop. Context includes the foreground
application, the application window that currently has
focus, etc. For instance, if the user is interacting with a
Browser, the Contextual Menu would include options
relevant to browsing such as Back, Add to Favorites,
Search, etc.
The Contextual Menu for Internet Explorer is shown here.

10 INTRODUCTION | ACAT Developer’s Guide

Term Description

Scanning

The process of highlighting elements on a Panel on a timer.
In the scanner below, the rows of letters are highlighted in
succession on a timer. Scanning enables the user to make a
selection by using the switch trigger.

Animation
A specific scanning sequence where widgets are
highlighted in a pre-defined pattern.

Extension

ACAT plug-in’s. Extensions are deployed as DLL’s.
Extensions enable the extensibility and customization of
ACAT. There are various types of Extensions such as those
for Word Prediction, Text-to-Speech conversion, etc.

Widget
A generic term for an element on an ACAT Panel. A widget
could refer to a button, a row of buttons, a box of rows, or a
menu item.

Actuator

A hardware or software device that triggers an event when
activated. For instance, a mouse is an actuator which
triggers a click event when the button is pressed. Fingers
or facial muscles can also be used as actuators. Actuators
are input devices and drive the ACAT UI.

11 INTRODUCTION | ACAT Developer’s Guide

Term Description

Switch

Actuators are composed of switches, which when
triggered, raise events. The buttons on a mouse, the keys
on a keyboard are examples of switches. Specific hand
gestures or facial movements can also be recognized and
translated into switch events.

Switch Trigger
The process of activating a switch. A switch trigger
generates an event which is translated into action such as
activating a button or selecting a menu item.

Text-to-Speech The process of converting written text to audible speech.

TTS An acronym for Text-to-Speech.

Word Predictor
Software that predicts the next word based on the
previous words in a sentence.

Agent
A generic name for ACAT Extension that can refer to an
Application Agent or a Functional Agent.

Application
Agent

An ACAT Extension that interfaces ACAT with an
application such as Notepad, Microsoft Word, Internet
Explorer etc. Application Agents provide contextual
information about the applications to ACAT.

Functional Agent
An ACAT Extension that implements a specific function
such as File Browsing, Window Switching, Lecture
Manager, etc.

Theme A set of color schemes used to visually render the Panels.

Talk Window
The ACAT Talk window enables the user to converse. The
user enters text into the window and presses ENTER to
convert the text to speech.

12 INTRODUCTION | ACAT Developer’s Guide

Term Description

Configuration
File

Configuration files are XML files that are used to customize
ACAT.

1.5 ACAT Components

The components included in the Open Source ACAT solution are:

Scanners The scanners included are Alphabet, Cursor Navigation,
Punctuations, and Mouse Navigation.

Word Prediction ACAT’s Word Prediction is powered by Presage, the
intelligent predictive text engine created by Matteo Vescovi.
http://presage.sourceforge.net

Text-to-Speech Conversion from text to speech through the Microsoft
Speech Synthesizer which is a part of the Windows platform.

Spell Checker A rudimentary spell checker is included.

Actuators Actuator switches are supported are:

 Keyboard
 Facial gesture recognition through the ACAT Vision

software
 Off-the-shelf assistive USB switches

Application Agents Applications supported through the Application Agents are:

 Notepad
 Microsoft Word
 WordPad
 Acrobat Reader
 Internet Explorer
 Chrome Browser
 Firefox Browser
 Edge Browser
 Foxit PDF Reader
 Windows Media Player
 Windows Photo Viewer
 Microsoft Outlook
 Windows Calculator

http://presage.sourceforge.net/

13 INTRODUCTION | ACAT Developer’s Guide

Functional Agents Functional Agents included are:

 File Browser
 Launch Application
 Switch Applications
 Switch Windows
 Lecture Manager
 Volume Control
 New File
 Phrases
 Abbreviations Management

1.6 Build Instructions (base English version)

This section contains build instructions for the default English version of ACAT.

The requirements for building the solution are:

 Windows 7 or higher
 Visual Studio 2012 or higher.
 At least 1 GB of free disk space
 NET 4.5.
 Microsoft Office 2010 Primary Interop Assemblies (PIA). Download them

from https://www.microsoft.com/en-us/download/details.aspx?id=3508

There are no interdependencies between the any of the projects in the solution. All
projects link with the ACATCore.dll, ACATExtension.dll and ACATResources.dll.
The Post-Build action for these three libraries copies them to the $\Redistributable
folder. All the projects in the solution reference them from this folder.

Never build an individual project in the solution. Always do a Build or Rebuild at the
solution level as some of the projects have Post-Build scripts and they must execute
to ensure that the DLL’s are copied and deployed properly. If you build an individual
project, your changes may not take effect as your DLL may not get deployed to the
applications run directory.

1. Install the ACAT application from https://github.com/01org/acat/releases.
You need this because some of the large files like word prediction databases
and data files for the Vision actuator component are not bundled with the
source. You must copy these files from the installed application (instructions
included below).

2. Download the ACAT source from https://github.com/01org/acat.
3. Open the solution ACAT.sln.
4. Make $\Applications\ACATApp as the startup project.
5. Update the references to Office Interop DLL’s in the $\Lib\Extension project.

The two references are Microsoft.Office.Core and

https://www.microsoft.com/en-us/download/details.aspx?id=3508
https://github.com/01org/acat/releases
https://github.com/01org/acat

14 INTRODUCTION | ACAT Developer’s Guide

Microsoft.Office.Interop.Word.

6. Do a Rebuild All.
7. Go to the run folder of ACATApp depending on whether you are building the

Debug or the Release version. (e.g. $\....\ACATApp\bin\Debug or
$\....\ACATApp\bin\Release).

8. Copy shape_predictor_68_face_landmarks.dat from the folder where you
installed the ACAT application (e.g. C:\Intel\ACAT) in Step 1 to the run folder
of ACATApp in Step 6. Also copy this file to the Vision actuator folder (for e.g.,
$\....\ACATApp\bin\Debug\Extensions\Default\Actuators\VisionActuator).

9. If you wish, you may copy the full-fledged Presage word predictor database
files from the folder where you installed the ACAT application. For instance, if
you installed ACAT under C:\Intel\ACAT, the database files are under
C:\Intel\ACAT\en\WordPredictors\Presage. Copy these files to the
corresponding directory under the run folder of ACATApp (e.g.,
$\....\ACATApp\bin\Debug\en\WordPredictors\Presage). You may have to quit
the Presage app in the Systray before you copy the file as it may be in use.

10. Run ACATApp.exe.

1.7 Build Instructions (Language Pack)

The source for all the language packs are under $\LanguagePacks. Each language
pack is under its sub-folder and there is a solution for each language pack. The

15 INTRODUCTION | ACAT Developer’s Guide

Spanish language pack is used as an example here. You can use these steps to build
the other language packs as well.

1. First you must build the base English version of ACAT (see section 1.6).
Choose either Debug or Release configuration depending on your preference.

2. Install the ACAT application (English) from
https://github.com/01org/acat/releases.

3. Install the Spanish language pack from
https://github.com/01org/acat/releases. You need this because some of the
large files like word prediction databases and data files for the Vision actuator
component are not bundled with the source. You must copy these files from
the installed application (instructions included below).

4. Due to file size restrictions, the Presage word prediction database file bundled
with the source code is a small version of the English database. You must
overwrite this file with the Spanish database files. Copy the database files
from where you installed ACAT in Step 2. For the Spanish pack, if you installed
ACAT under C:\Intel\ACAT, the Spanish copy all the files from
C:\Intel\ACAT\es\WordPredictors\Presage to your source tree under
$\LanguagePacks\Spanish\Presage\Database.

5. Select Debug or Release as the configuration. This should match the
configuration you picked to build the English version in Step 1. Do a Rebuild
All in the Language pack solution.

6. The batch file $\LanguagePacks\Spanish\deploy.bat will copy all the files to
the run directory (bin\Debug or bin\Release) of ACAT App that you built in
Step 1.

7. Go to the run directory of ACATApp of the ACAT solution. There should be an
es folder there containing all the Spanish language-specific files.

8. Run ACATConfig, select Langauge and choose Spanish.
9. Run ACATApp. It will display the Spanish version.

https://github.com/01org/acat/releases
https://github.com/01org/acat/releases

16 ARCHITECTURE | ACAT Developer’s Guide

2. ARCHITECTURE

2.1 Introduction

ACAT is structured as a plug-in framework. This enables developers easily to extend
the capabilities by adding Extensions aka plug-ins (see section 2.5 and Chapter 4).
The extensions are dynamically discovered and loaded at runtime. They provide
services such as text-to-speech conversion, input switch trigger handling and word
prediction.

Figure 1 shows the high level architecture. The ACAT Core library (see section2.2)
and the ACAT Extension library (see section 2.3) provide all the core functionalities
of ACAT. They enumerate and load the various extensions at runtime. Applications
interact with extensions through well-defined interfaces. Extensions raise events to
notify subscribers when something interesting happens. The ACAT Resource library
(see section 2.4) handles localization of ACAT in different languages.

Figure 1: High-level Architecture

17 ARCHITECTURE | ACAT Developer’s Guide

2.2 The ACAT Core Library

The ACAT Core library is a single DLL that provides all the core services. Figure 2
shows the components that make up the Core library.

Figure 2: ACAT Core Library Components

The following set of figures describe where each of the components fit into the ACAT
framework and what their specific roles are. Some of the terms used here are
described in the glossary (see section 1.4).

Figure 3 shows the Alphabet scanner and the components of the ACAT framework
that are responsible for the display and scanning of widgets on the scanner.

18 ARCHITECTURE | ACAT Developer’s Guide

Figure 3: ACAT Core Components for Panel display and Scanning

The following table describes the components shown in Figure 3.

Component Description

Panel Management

All the scanners, dialogs and menus are also
extensions. The word Panel is used to denote a
scanner, a dialog or a menu. ACAT uses the Window
stacking model to display panels. The look and feel
of panels can be configured through Panel config
files (see section 8.3.2), and the preferred panels to
display can also be configured (see section 8.4). The
Panel Manager in this component is responsible for
enumerating panels, handling requests to display
them, maintaining the stack of active panels,
activating and deactivating them.

See Chapter 8 for details on Panels.

19 ARCHITECTURE | ACAT Developer’s Guide

Component Description

Animation
Management

The Animation Manager in this component is
responsible for loading animation files which contain
the scanning sequence for scanners, executing the
scanning process and handling transitions between
scanning sequences.

See section 8.3 for details on Animations.

Widget Management

A widget is a wrapper class around the controls in a
scanner. It contains additional attributes controlling
the appearance and behavior such as fonts, colors
and text. The Widget Manager in this component
reads the attributes for the active scanner,
instantiates the widget objects for the elements in
the scanner and also controls the appearance of the
scanner elements during scanning.

See Chapter 8 for details on Widgets.

Word Predictor
Management

Next-word prediction during text entry is one of the
key features of ACAT. The Word Prediction
Manager in this component enumerates installed
Word prediction extensions, and activates and
configures the preferred Word prediction extension.

See section 8.3 for details on Animations.

Theme Management

ACAT supports color schemes for the scanners,
dialogs and menus. The Theme Manager in this
component enumerates and manages installed
themes.

See Chapter 12 for details on Themes.

20 ARCHITECTURE | ACAT Developer’s Guide

Figure 4 shows the Talk window and the Alphabet scanner. The user types text into
the Talk window and then converts it to speech.

Figure 4: ACAT Core Components for Talk Window

21 ARCHITECTURE | ACAT Developer’s Guide

The following table describes the components shown in

Figure 4.

Component Description

Talk Window
Management

The Talk window feature is primarily used to
converse. The user types into the Talk window and
ACAT converts the text to speech. It also enables the
user to carry out web searches, and learns the user’s
writing style for better word prediction. The Talk
Window Manager in this component activates and
manages the Talk window.

Text-to-Speech (TTS)
Management

Text-to-Speech (TTS) extensions are used to convert
text to audible speech. This enables the user to
converse or deliver speeches. The TTS Manager in
this component enumerates installed TTS
extensions, activates and configures the preferred
TTS extension.

See Chapter 10 for details on Text-to-Speech
extensions.

22 ARCHITECTURE | ACAT Developer’s Guide

Figure 5 shows ACAT with the Notepad application as an example. The Alphabet
scanner is used to enter text into Notepad. The caret position and the text entered
are tracked by ACAT and this contextual information is used for word prediction.

Figure 5: ACAT Core Components for Application Management

23 ARCHITECTURE | ACAT Developer’s Guide

The following table describes the components shown in Figure 5.

Component Description

Agent Management

Application Agents are extensions that interact
with applications such as Notepad, Microsoft Word
ant Internet Explorer. They provide contextual
information about the application such as the control
that the user is interacting with, and if the user is
editing a document, the text from the document etc.
There are also Functional Agents which provide
specific functionalities such as file browsing. The
Agent Manager in this component is responsible for
functions such as enumerating Agents, monitoring
the foreground application, and activating agents.

See Chapter 7 for details on Agents.

Actuators are input switch triggers to drive ACAT. When triggered, they translated an
action on the ACAT UI such as selecting a widget. ACAT supports a number of input
switch mechanisms such as a camera using facial gestures as a switch, a keyboard or
off-the-shelf assistive switches.

24 ARCHITECTURE | ACAT Developer’s Guide

Figure 6: ACAT Core Components for Input Switches

The following table describes the components shown in Figure 6.

Component Description

Actuator Management

The Actuator Manager in the Actuator Management
component is responsible for functions such as
enumerating the available switches and raising
events to indicate switch triggers.

See Chapter 6 for details on Actuators.

25 ARCHITECTURE | ACAT Developer’s Guide

The following table describes the remaining components in the ACAT Core Library.

Component Description

Spellcheck
Management

ACAT supports rudimentary spell checking and auto-
correction. This is useful for applications such as
Notepad which do not have a native spell checker or
auto-corrector. The Spell Check Manager in this
component enumerates installed spell check
extensions, activates and configures the preferred
extension to use.

See Chapter 11 for details on Spell Checkers.

User Management

ACAT supports the notation of a ‘user’ and each user
can have multiple ‘profiles’. All ACAT settings such
as scanner timings, look-and-feel, preferred panel
configurations, preferred word predictors, preferred
actuators are associated with a user and a profile.
The User Manager in this component manages ACAT
users and profiles.

Command
Management

Some of the actions in ACAT are exposed through a
set of ‘commands’. The commands can be mapped to
widgets on a scanner or to input switch triggers. For
e.g., CmdUndoLastEditChange undoes the last edit
change. The Command Manager contains classes to
map commands to their actions.

Interpreter

Scanning sequences are controlled through scripts.
The Interpreter component interprets scripts into
intermediate code which is then executed during
scanning.

See Chapter 13 for details on Scripts.

Widgets
The Core library has a Widget library that contains
widgets for the various elements of the scanners,
dialogs and menus.

26 ARCHITECTURE | ACAT Developer’s Guide

Component Description

Utility
This component contains a host of utility functions
for audit logging, debug trace logging, window
management, timers, Win32 Interop etc.

2.3 The ACAT Extension Library

The ACAT Extension Library has helper classes and base classes for the development
of Panels and Agents. The following table describes the components in the ACAT
Extension library.

Figure 7: The ACAT Extension Library

Component Description

Application Agent Base
Classes

The base classes for Application agents do most of
the heavy lifting required to support applications
such as Notepad, Microsoft Word, and Internet
Explorer, etc. This makes it easier to derive and
extend the functionality provided by the base
classes.

See Chapter 7 for details on Agents.

27 ARCHITECTURE | ACAT Developer’s Guide

Component Description

Command Handlers

ACAT supports a host of ‘commands’, strings that
represent action verbs Examples of commands are
CmdTalkWindowToggle to toggle the visibility of
the Talk window, CmdMainMenu to display the
Main menu. These commands can be attached to
events such as actuating an element on a scanner or
to input switches. The Extension library has default
handlers for various commands.

See Chapter 14 for details on Command Handlers.

Utility Classes
The Extension library has a number of utility/helper
classes to display dialogs, load/store ACAT settings
etc.

2.4 ACAT Resources Library

ACAT can be extended to languages other than English through localization. All
strings that are visible to the user are contained in language-specific resource files.
The ACAT Resource Library contains helper functions to access localized strings. See
Chapter 5 for details on localization.

2.5 Extensions

Extensions are DLL’s or plug-in’s dynamically discovered and loaded at runtime.
They provide services such as Text-to-Speech, Word Prediction etc. Figure 8 shows
the six categories of Extensions.

Chapter 4 provides an introduction to Extensions.

28 ARCHITECTURE | ACAT Developer’s Guide

Figure 8: Extensions

The following table lists the categories with a brief description. The extensions are
deployed as individual DLL’s.

Extension Category Description

UI Extensions

Includes all the Panels – Scanners, Menus and
Dialogs.

See Chapter 8 for details on Panels.

Actuator Extensions
Interfaces with HW/SW Actuators.

See Chapter 6 for details on Actuators.

Word Predictor
Extensions

Provides next-word prediction.

See Chapter 9 for details on Word Predictors.

29 ARCHITECTURE | ACAT Developer’s Guide

Extension Category Description

Text-toSpeech
Extensions

Converts text to speech

See Chapter 10 for details on Text-to-Speech
extensions.

Agent Extensions

Includes Application and Functional Agents.
Application Agents interface with apps on the
desktop and Functional Agents provide services such
as File Browsing.

See Chapter 7 for details on Agents.

Spell Checker
Extensions

Performs spell checking for applications that don’t
have native spell checkers.

See Chapter 11 for details on Spell Checkers.

30 CODE STRUCTURE | ACAT Developer’s Guide

3. CODE STRUCTURE
The ACAT solution is completely self-contained and builds the ACAT libraries,
extensions and applications. The solution requires Visual Studio 2012 or above. All
ACAT applications are 32-bit.

3.1 Solution Layout

There are five top level solution folders in the solution: Applications, Assets,
Extensions, Lib and ACATResources.

Figure 9: Solution Layout

Project dependencies are setup to build the components in the following order:

1. Lib\Core (ACATCore.dll)
2. Lib\Extension (ACATExtension.dll)
3. ACATResources
4. Extensions
5. Applications

31 CODE STRUCTURE | ACAT Developer’s Guide

3.2 Coding Standards and Styles

The code for ACAT adheres to a uniform coding standard as enforced by StyleCop,
which is based on Microsoft’s .NET Framework Design Guidelines. The following rules
are followed:

1. One class per file.
2. Class members are defined in the following order

 Fields
 Constructors
 Destructors
 Delegates
 Events
 Enums
 Interfaces
 Properties
 Indexers
 Methods
 Structs
 Classes

3. Within each category, class members are laid out alphabetically.
4. Naming conventions

 All public members begin with an uppercase letter.
 All private fields begin with an underscore.
 All private and protected members begin with a lowercase.
 Hungarian notation is not used.

5. using statements are listed with the .NET imports first. They are listed
alphabetically.

6. Every function, field and property, whether public, private or protected, is
documented.

7. Local calls are not prefixed with the this operator.
8. Public properties have getters and setters.
9. Wherever applicable, classes are derived from IDisposable.
10. Most functions return void or a bool.
11. All errors are handled gracefully without escalating to the user. Only fatal

exceptions are displayed to the user.
12. Where ever possible, line lengths are restricted to around 80 characters.

3.2.1 Visual Studio Add-on’s

The following Visual Studio add-on’s make life easier:
1. StyleCop (free) which ensures the code follows .NET coding standards.
2. CodeMaid (free) which reorganizes and cleans up the code in accordance

with StyleCop rules
3. ReSharper (paid) which looks for unused variables, uninitialized variables

etc.

32 CODE STRUCTURE | ACAT Developer’s Guide

3.3 Building the framework

Refer to sections 1.6 and 1.7 for building the ACAT application and the Language
packs.

3.4 Logging

ACAT uses debug log traces liberally. Debug logs can be enabled through a preference
setting (see section 15.2.3) The DebugView utility
(https://download.sysinternals.com/files/DebugView.zip)can be used to view debug
messages. All debug messages are prefixed with the name of the class and the name
of the function that made the call. These prefixes can be used in DebugView as filters
to selectively view log messages.

https://download.sysinternals.com/files/DebugView.zip

33 EXTENSIONS | ACAT Developer’s Guide

4. EXTENSIONS
ACAT extensions are DLL’s which are discovered at runtime and loaded dynamically.
They are akin to plug-in’s.

4.1 Extension Categories

Extensions fall under one of the following categories.

Extension Category Description

Actuator Extensions

Extensions that interface with the switch input
trigger mechanism. The user makes a selection in
the UI by activating the switch. This is similar to
clicking a mouse button.

Application Agent
Extensions

Extensions that convey contextual information
about an application such as Notepad or Microsoft
Word. Typically, there is one Application Agent
per application.

Functional Agent
Extensions

Extensions that provide specific functions such as
a File Browser to open files, Application Launcher
to launch applications etc.

Spell Checker Extensions

Extensions that perform spell check and auto
correct during text entry for applications such as
Notepad which do not have native spell checkers
or auto-correctors

Text-to-Speech (TTS)
Extensions

Extensions that provide TTS services. For
instance, ACAT has an extension that uses the
Microsoft Speech Synthesizer to convert text to
speech.

UI Extensions
Extensions that contain scanners, dialogs and
menus.

34 EXTENSIONS | ACAT Developer’s Guide

Extension Category Description

Word Prediction
Extensions

Extensions that provide next-word prediction.
ACAT has a word predictor based the Presage
Intelligent Predictive Text Engine
(http://presage.sourceforge.net)

4.2 Extension Folder Layout

Extensions are stored in folders under the Extension in the ACATApp run directory.
Any number of extension folders can be specified. The ACAT setting ExtensionDirs
contains a semi-colon delimited list of names of extension folders. By default, ACAT
has one extension folder called Default under Extensions (see Figure 10)

Under the root folders, there is one top-level folder for each extension category.
Figure 10 shows the folder structure for extensions. The install directory for ACAT is
C:\Intel\ACAT. Below that is the Extensions root folder under which all the
extensions are stored. There is one top-level folder called Default under which there
is one sub-folder for each Extension category.

Figure 10: Extensions Folder Structure

http://presage.sourceforge.net/

35 EXTENSIONS | ACAT Developer’s Guide

4.3 Extension Discovery

Each extension category has an Interface which must be implemented by all
extensions that belong to the category. For instance, all Application Agents must
implement the IApplicationAgent interface. All Word Predictior extensions must
implement the IWordPredictor interface.

On startup, the manager for each Extension category traverses the depth of the top-
level folder for that category. It enumerates all DLL’s under the folder and for each
DLL, it caches the .NET types of classes that derive from the Interface for the category.
For instance, the Word Predictor Manager would recursively descend into the
WordPredictors folder, examine all the DLL’s there and look for classes that derive
from IWordPredictor. Similarly, the TTS Manager would recursively descend into
the TTSEngines folder. The Managers would then use .NET reflection to create an
instances of the objects for the Extensions.

4.4 Extension Descriptor

Every extension class has a Descriptor that uniquely identifies the class. The
Descriptor has three properties: a GUID which is a unique identifier for the
extension, a name and a friendly description. These properties are encapsulated in
the IDescriptor interface. Every extension classes must have a property that returns
the IDescriptor interface for that class.

To simplify this, extension classes can define a custom attribute called
DescriptorAttribute that defines the three properties –a GUID, name and
description. The ACAT library has a helper class called DescriptorAttribute that
reads the custom attributes and returns an IDescriptor object. As an example, the
Internet Explorer Agent has the following DescriptorAttribute with the GUID, name
and description:

Listing 1: Descriptor Attribute

4.5 Extension Invoker

Since all ACAT extensions are standalone DLL’s, they are not directly referenced in
other projects. An application may want set Properties or invoke Methods in the
extension. For instance, the File Browser functional agent returns the name of the file
the user selected through a property in the File Browser Agent class. The
YesNoScanner returns the Yes/No choice made by the user. So how does an

[DescriptorAttribute("0B183771-C3E7-4ED2-9886-741526343140",

 "Internet Explorer Agent",

 "Application Agent for Internet Explorer")]

internal class InternetExplorerAgent : InternetExplorerAgentBase

{

 …
}

36 EXTENSIONS | ACAT Developer’s Guide

application access properties or invoke methods in the extension? The
ExtensionInvoker class is a helper class that enables this. It uses .NET reflection to
access the Methods/Properties in the extension class.

Let’s say the application wants to access a String property called FooString in an
extension class FooBarClass (which could be an Application Agent, a WordPredictor
Agent etc.). Follow these steps:

Step What to do

1 Derive FooBarClass from IExtension

2
In the FooBarClass declare a private field of type ExtensionInvoker.

private readonly ExtensionInvoker _invoker;

3
In the FooBarClass constructor, allocate _invoke.

_invoker = new ExtensionInvoker(this);

4
In the FooBarClass, declare a public property FooString.

public String FooString {get; set;}

5

Implement IExtension. It has one method GetInvoker() which returns
an ExtensionInvoker object. This object enables access to the
Methods/Properties of FooBarClass through .NETreflection.

 public ExtensionInvoker GetInvoker()

 {

 return _invoker;

 }

6

To access the FooString property use ExtensionInvoker.

String value = fooBarObject.GetInvoker().GetStringValue("FooString");

fooBarObject.GetInvoker().SetValue("FooString", "Hello world");

37 LOCALIZATION | ACAT Developer’s Guide

5. LOCALIZATION
ACAT supports localization which allows for support in different languages. The
language versions are deployed through ACAT Language packs which includes the
Presage word prediction database for the target language. ACAT follows the standard
rules of .NET for localization.

Language resources are deployed in the ACAT install folder under language sub-
folders. The name of the sub-folder is the ISO language name.

The sub-folder contains the resource DLL containing localized strings and other
language specific ACAT assets such as ACAT extensions, forms, Word prediction
databases. The figure below shows the folder tree for the English language extension.

38 LOCALIZATION | ACAT Developer’s Guide

The ACAT solution contains resources for the English language. Language packs for
other languages, say Spanish or French, are contained in their respective language
pack solutions.

5.1 Steps to localize ACAT for a new language.

Language pack solutions can be found under $\LanguagePack folder. There is one
solution for each language. You can use them as examples for localization. You must
translate all the strings to the target language. You must also create panel
configuration files (see 8.3.2) for the Alphabet scanners in the target language. If
required, you may have to create Alphabet scanner forms for the target language if
the keyboard requires more buttons than the standard QWERTY keyboard.

Figure 11 shows the solution layout for the Spanish language pack. It contains the
following components:

 The Presage word predictor extension which handles string encoding for
French.

 Panel configuration files for the Alphabet scanners and Talk application
scanners for the Spanish keyboard. This also includes config files for entering
accented characters in Spanish.

 The resources file which contains strings localized in Spanish.
 User install files containing common phrases, abbreviations etc.

The language pack folder also has a Setup folder which contains the installer project
for the language pack (see section 16.2).

39 LOCALIZATION | ACAT Developer’s Guide

Figure 11: Solution layout for Language Pack

This section outlines the steps you should follow to localize ACAT for a new language.
Let’s use Italian as an example. The two-letter ISO name is “it”.

Step What to do

1 Create a solution called ACAT-Italian.sln under $\Languages\Italian.

2 To the solution, add a Class Library called Resources.

3
Set the default namespace for this project to ACATResources. This is
important. ACAT loads localized resources using this namespace.

4
Add a resources file to the project. Name the file
ACATResources.it.resx. The naming convention is
ACATResources.<language>.resx.

40 LOCALIZATION | ACAT Developer’s Guide

Step What to do

5
From the main ACAT (English) solution, copy the strings from the String
table in ACATResources.en.resx to the String table in
ACATResources.it.resx.

6
Translate all the strings inACATResources.it.resx to the target
language, (to Italian in this case).

7

Create scanner configuration files (see section 8.3) for the target
language. Add these files to a UI folder in the Resources project. Set
the Copy to Output Directory property for these files to Copy if
newer.

8

You may not need to create any UI scanner forms for the language. You
can re-use the Alphabet scanners from English if the number of buttons
on the Alphabet keyboard are the same. But you will need to add
scanner configuration files for accented characters or if the language
has its own alphabet keyboard layout. Add PanelConfigMap.xml from
the French or Spanish language pack solutions to the UI folder. Edit the
file and change the name of the configFile attribute to the names of the
scanner configuration files that you created. Look at the existing
language pack solutions for French or Spanish for examples. For each
of the entries, create a new GUID and change the configId attribute to
the GUID.

9

Create a Install\Users\DefaultUser\it folder in the Resources project.
Copy PanelClassConfig.xml from one of the other language pack
solutions and add it. Change the ConfigId value for each of the entries
with the GUID’s you created in the previous step. Optionally, add
abbreviations and phrases file to this folder. For all these files, set the
Copy to Output Directory property to Copy if newer.

10
If necessary, create a project for the ACAT WordPredictor extension
(see Chapter 9) for the target language. Look at the existing language
pack solutions for French or Spanish for examples.

41 LOCALIZATION | ACAT Developer’s Guide

Step What to do

11

Create a Presage word prediction database for the target language. The
ACAT Wiki (https://github.com/01org/acat/wiki/Changing-language-
and-creating-new-dictionnaries) details on creating language-specific
Presage databases. Make sure the source text for creating the database
is copyright-free. Name the database file database.db and add it to a
suitable folder in the solution.

12

Copy deploy.bat from the source tree under the French or Spanish
language pack source. Modify it so all the DLL’s, XML and word
prediction database files are deployed to the ACAT application run
directory under the it (for Italian) folder.

13
Build the solution make sure all the language resources are deployed to
the target folder under the run folder.

14 Create an installer for the Language pack (see section 16.2).

14
Run ACAT Config. Click on languages and choose the target language
(Italian in this case) as the default language.

15
Run any of the ACAT applications. They should be displayed in the
target language.

https://github.com/01org/acat/wiki/Changing-language-and-creating-new-dictionnaries
https://github.com/01org/acat/wiki/Changing-language-and-creating-new-dictionnaries

42 ACTUATORS | ACAT Developer’s Guide

6. ACTUATORS

6.1 Introduction

Actuators are input trigger mechanisms. Actuators contain one or more switches.
ACAT actions are mapped to each switch. Every time the switch is triggered, the
ACAT user interface will respond with the action that is associated with that switch.
For instance, if a button is highlighted in the scanner and user activates the switch, it
will translate into a click event.

ACAT Actuators are managed by the Actuator Manager in the Actuator Management
component.

The following switch mechanisms are supported by ACAT:

a. Keyboard: The function key F12 is the default key to trigger ACAT. Every
time the user hits F12, the scanner will respond by executing the action
associated with the highlighted element. You can change the default key
through the ACAT Config utility. Refer to the ACAT User Guide or to the
ACAT FAQ for details.

b. ACAT Vision: ACAT vision application uses a webcam to detect facial
gestures which are then translated into trigger events.

c. Off-the-shelf switches: ACAT supports a number of off-the-shelf switches
which plug into the USB interface of your computer. These switches can be
configured to send specific keystrokes whenever the switch is activated. To
work with ACAT, the switches should be configured to send a F12 key (or
whichever is the default key) press event every time the switch is activated.

Note: Out of the box, ACAT supports keyboard and ACAT vision as input switch
mechanisms. The mouse can also be used to activate the UI by pointing and clicking.
New hardware or software switches can be integrated with ACAT through Actuator
extensions. See section 6.5 for step-by-step instructions to develop Actuator
extensions.

6.2 Enumeration

All Actuator extension DLL’s must be installed under the Actuators root folder which
is [INSTALLDIR]\Extensions\[EXTENSION_DIR]\Actuators. Under this, each
actuator DLL should reside in its own sub-folder. For instance, the ACAT vision
actuator is installed under
C:\Intel\ACAT\Extensions\Default\Actuators\VisionActuator. During
initialization, the Actuator Manager walks recursively through the Actuators root
folder, loads all the DLL’s in there and creates instances of classes that derive from
ActuatorBase.

43 ACTUATORS | ACAT Developer’s Guide

6.3 Actuator Configuration File

Actuators and their switches are configured through the ActuatorSettings.xml config
in the ACAT user’s folder which is [INSTALLDIR]\Users\[USERNAME], for example,
C:\Intel\ACAT\Users\DefaultUser, where DefaultUser is the default user name.
This file also contains the mapping between the switches and the ACAT commands.
The ACAT Config utility has a user interface to edit this file, to enable/disable
actuators, switches, map commands etc.

Listing 2 is a sample file that shows two actuators – one for the keyboard and the
other for the ACAT vision module which uses a Webcam to track facial gestures. The
keyboard actuator has two switches (hotkeys) mapped to ACAT commands. The
vision actuator has two switches – one for cheek twitch and the other for eyebrow
raise (which is disabled).

<?xml version="1.0" encoding="utf-8"?>
<ActuatorConfig>
 <ActuatorSettings>
 <ActuatorSetting>
 <Enabled>true</Enabled>
 <Id>d91a1877-c92b-4d7e-9ab6-f01f30b12df9</Id>
 <Name>Keyboard Actuator</Name>
 <SwitchSettings>
 <SwitchSetting>
 <Actuate>true</Actuate>
 <BeepFiles>beep.wav</BeepFile>
 <Command>@Trigger</Command>
 <Description />
 <Enabled>true</Enabled>
 <MinHoldTime>@MinActuationHoldTime</MinHoldTime>
 <Name>Trigger</Name>
 <Source>F12</Source>
 </SwitchSetting>
 <SwitchSetting>
 <Actuate>true</Actuate>
 <BeepFile />
 <Command>@CmdTalkWindowToggle</Command>
 <Description />
 <Enabled>true</Enabled>
 <MinHoldTime />
 <Name>Shortcut1</Name>
 <Source>Ctrl+Alt+T</Source>
 </SwitchSetting>
 </SwitchSettings>
 </ActuatorSetting>
 <ActuatorSetting>
 <Enabled>false</Enabled>
 <Id>7da7f870-80dc-47b4-994c-5f46a4dfe538</Id>
 <Name>Vision Actuator</Name>
 <SwitchSettings>
 <SwitchSetting>
 <Actuate>true</Actuate>
 <BeepFile />
 <Command>@Trigger</Command>
 <Description>Cheek twitch gesture</Description>
 <Enabled>true</Enabled>

 <MinHoldTime>@MinActuationHoldTime</MinHoldTime>
 <Name>CT</Name>
 <Source>CT</Source>
 </SwitchSetting>

44 ACTUATORS | ACAT Developer’s Guide

 <SwitchSetting>
 <Actuate>true</Actuate>
 <BeepFile />
 <Command>@Trigger</Command>
 <Description>Eyebrow raise gesture</Description>
 <Enabled>false</Enabled>
 <MinHoldTime>@MinActuationHoldTime</MinHoldTime>
 <Name>ER</Name>
 <Source>ER</Source>
 </SwitchSetting>
 </SwitchSettings>
 </ActuatorSetting>
 </ActuatorSettings>
</ActuatorConfig>

Listing 2: ActuatorSettings.xml configuration file

Each <ActuatorSetting> element has a list of <SwitchSetting> elements. The
following table lists the attributes for the <ActuatorSetting> element.

<ActuatorSetting> Node

Attribute Description

Name A meaningful name of the Actuator.

Id

The GUID for the Actuator. This should be the same
as the GUID used in the DescriptorAttribute (section
4.4) of the C# class for the Actuator.

Enabled true to enable this Actuator and false to disable it.

The attributes for the <SwitchSetting> element are listed below.

<SwitchSetting> Node

Attribute Description

Name A meaningful name for the switch.

Description (Optional) A brief description.

45 ACTUATORS | ACAT Developer’s Guide

<SwitchSetting> Node

Attribute Description

Source

A string containing meta data about the switch. This
depends on the type of the switch and is opaque data.
The switch extension class can interpret this data any
which way it chooses. The Keyboard switch for instance
uses this to specify the hot key combination such as
Alt+T. When Alt+T is pressed on the physical keyboard,
the switch is triggered. For the Vision actuator, this is
set to CT (cheek twitch). In the Actuator code, when the
switch is triggered, the Actuator can inspect this field
and then take the appropriate action.

Command

The ACAT command to map to this switch (see Chapter
14 for a list of supported commands). When the switch
is triggered, the command will be executed. Set this to
@Trigger to use the switch as a selector. The currently
highlighted widget will be selected.

Enabled

true to enable the switch and false to disable it. If not
specified, default value is true. If set to false, this switch
will not be enumerated.

Actuate

true if the switch should actuate when triggered, false
otherwise. Note that Enabled should be set to true as
well. If you set Actuate to false, and Enabled to true,
the switch will be enumerated, but actuated.

BeepFile

Name of the WAV file that will be played whenever the
switch is triggered. Just the file, not the full path. If not
specified, no beep will be sounded. The WAV file should
reside in the ACAT [INSTALLDIR]\Assets\Sounds
folder.

46 ACTUATORS | ACAT Developer’s Guide

<SwitchSetting> Node

Attribute Description

MinHoldTime

This is the minimum length of time in milliseconds that
the switch should stay engaged in order for ACAT to
recognize it as a valid switch event. This eliminates false
positives in the detection algorithm. As an analogy, let’s
say this is set to 100ms for a keyboard switch. The key
would have to stay pressed for at least 100 ms to ACAT
to recognize it as a valid key press. Choose this value
carefully.

Set this to a numeric value in milliseconds. Or set it to
the macro @MinHoldTime to indicate that the ACAT
setting MinActuationHoldTime (see section 15.2.1)
should be used as the value (see section 13.4 on
Macros).

6.4 ACAT Actuator Extensions

The ACAT Core library has support for the Keyboard actuator, and provides base
classes for developing USB HID, Winsock client Winsock server actuators.

6.4.1 Keyboard Actuator

The Keyboard actuator is a part of the Actuator Management component of the
ACAT Core library. It uses Windows keyboard hooks to capture keystrokes no
matter which application is active. Each keystroke is compared with the key mapping
specified in the ActuatorSettings.xml file (see section 6.3). If an Actuator switch for
keystroke is found, that switch is triggered.

6.4.2 USB HID Actuators

If the switch hardware is a USB HID device, the ACAT Core library you can use the
USBDevice class which handles all the heavy lifting of opening the device, reading
data asynchronously, detecting device connect/disconnect etc. You need this only if
you want access to the raw data from the switch. If you are using an off-the-shelf
switch, you do not need an actuator for it. All off-the-shelf switches appear to
Windows as a keyboard HID device and the ACAT Keyboard actuator will handle
input from them.

6.4.3 Winsock Actuators

The base classes for Winsock actuators can be used to develop a server or client
based actuator. This is useful for software switches where the source of the switch
can be another application or DLL. Switch events are sent to ACAT over a socket

47 ACTUATORS | ACAT Developer’s Guide

interface. The Winsock server actuator listens for incoming connections whereas the
Winsock client actuator makes connections to a TCP/IP server.

The base classes also handle parsing of the switch event data received over the
socket. After parsing the data, they also trigger switch events based on information in
the data. The data for sending Actuator switch trigger events to ACAT is a semi-colon
delimited string in the format described below. To use a different format, derive from
the base class and override the functions that parse the data.

gesture=<gesture_type>;action=<gesture_event>;conf=<confidence>;

time=<timestamp>;actuate=<flag>;tag=<userdata>

Field Value

gesture

Should be the same as the Source field in
ActuatorSettings.xml (see section 6.3). ACAT
looks up the list of switches for the Actuator and
finds the one whose Source value matches this.

action

Specifies the switch action. Should be one of the
values of the SwitchAction enum type: Down to
indicate the switch has engaged, similar to a key-
down event on a keyboard), Up to indicate the
switch has been released (similar to a key-up event
on a keyboard) or Trigger to indicate the switch
has been triggered (similar to a key-press
keyboard event). Depending on the fidelity of the
switch mechanism, a Down followed by an Up can
be used, or the Trigger can be used instead. Note
that if Up/Down events are used, ACAT will
enforce the switch MinHoldTime (see section
15.2.1) to determine whether to raise a switch
trigger event or not. If only Trigger is used, then
MinHoldTime is ignored.

conf The confidence level (for future use)

time The timestamp of the event in Ticks.

actuate
Value should be true to denote whether to actually
carry out the action, false to denote otherwise.

48 ACTUATORS | ACAT Developer’s Guide

Field Value

tag Opaque data to pass meta-data to the Actuator.

6.5 Steps to create an Actuator extension

The ACAT solution has two examples of Actuators.

1. The Vision actuator interfaces with the Webcam to detect facial gestures and
interpret them.

2. A SampleAcutator which you can use as template to develop your own
actuator.

The following figure shows these two extensions in the ACAT solution:

The following steps outline the steps to create an Actuator extension. Let’s assume
the actuator we are creating is called FooActuator which interfaces with your switch
hardware.

1. Use ACAT SampleActuator or Vision actuator as the starting point. If your
hardware requires calibration, use the Vision actuator as a guide on how to
handle calibration events and notify the user. Section 6.6 shows the call-
sequence diagrams for calibration.

2. Add code for FooActuator in the ACAT solution.

Step What to do

1
In the ACAT solution, add a new Class Library FooActuator to the
Extensions\Default\Actuators solution folder.

2
Go to the Properties for this project and set the Platform target to Any
CPU.

49 ACTUATORS | ACAT Developer’s Guide

Step What to do

3
Add references to ACATCore.dll and ACATExtension.dll in the
$\Redistributable folder. In the Properties for these two DLL’s, set
Copy Local to false.

4

Update dependencies in the ACAT solution for the FooActuator project
to make sure it is built in the right order. Ensure that:

1. FooActuator has dependencies on ACATCore and
ACATExtension.

2. PostBuildSolution has a dependency on FooActuator.

5

FooActuator.dll must now be deployed to the run directory of the
application.

a. Edit $\deploy.bat.
b. Look for the section “Deploying Actuator DLLs” and add the

following lines there:

set SOURCEDIR=Extensions\Default\Actuators\FooActuator

set TARGETDIR=%INSTALLDIR%\%SOURCEDIR%

if not exist %TARGETDIR% mkdir %TARGETDIR%

copy .\%SOURCEDIR%\bin\%CONFIG%\FooActuator.dll %TARGETDIR%

6

Insert an entry for FooActuator and its switches in
ActuatorSettings.xml (see section 6.3). Override the
OnRegisterSwitches() function to programmatically insert the entry.
This function is called by the Actuator Manager during initialization
when it discovers your actuator and does not find a corresponding entry
in ActuatorSettings.xml.

6
Build the solution. Examine the output folder of ACATApp and verify
that FooActuator.dll file is deployed to
Extensions\Default\Actuators\FooActuator.

7
Run the application and verify that the switch events are being handled
properly.

50 ACTUATORS | ACAT Developer’s Guide

6.6 Handling Calibration

If your actuator needs calibration, there are additional functions and events. Refer to
the Vision actuator source code for details. The following figures show the call
sequence to implement calibration.

Figure 12: Actuator calibration call sequence diagram

Figure 13: Calibration error call-sequence diagram

51 ACTUATORS | ACAT Developer’s Guide

The Actuator extension can be developed as an independent project outside the ACAT
solution. All the steps outlined above still hold. In the Post-Build event for the
project, make sure the DLL is deployed into its proper location in the run folder of
ACATApp.

52 AGENTS | ACAT Developer’s Guide

7. AGENTS

7.1 Introduction

Agents are ACAT extensions managed by the Agent Manager in the Agent
Management component. There are two types of Agents – Application Agents and
Functional Agents.

Application Agents are extensions that interact with applications such as Notepad,
Microsoft Word ant Internet Explorer. They provide contextual information about
the application such as the control that the user is interacting with, and if the user is
editing a document, the text from the document etc.

The ACAT feature set is enhanced through Functional Agents such as the File
Browser agent which enables the user to manage files, the Launch Application agent
which enables the user to start instances of applications.

7.2 Enumeration

7.2.1 Application Agents

All Application Agents extension DLL’s must be installed under the top-level folder
[INSTALLDIR]\Extensions\[EXTENSION_DIR]\AppAgents. Under this, each agent
DLL should reside in its own sub-folder. For instance, the agent for Notepad is
installed under C:\Intel\ACAT\Extensions\Default\AppAgents\NotepadAgent.
During initialization, the Agent Manager walks recursively through the AppAgents
folder, loads all the DLL’s in there and creates instances of classes that derive from
IApplicationAgent.

7.2.2 Functional Agents

All Functional Agents extension DLL’s must be installed under the top-level folder
[INSTALLDIR]\Extensions\[EXTENSION_DIR]\FunctionalAgents. Under this,
each agent DLL should reside in its own sub-folder. For instance, the File Browser
Functional agent is installed under
C:\Intel\ACAT\Extensions\Default\FunctionalAgents\FileBrowserAgent.
During initialization, the Agent Manager walks recursively through the
FunctionalAgents folder, loads all the DLL’s in there and creates instances of classes
that derive from IFunctionalAgent.

7.3 Application Agents

Application Agents are extension DLL’s associated with specific applications. The
Agent Manager tracks focus changes on the user’s desktop. Whenever a focus change
is detected, the Agent Manager checks the installed Application Agents to find the one

53 AGENTS | ACAT Developer’s Guide

is associated with the foreground process. If it finds one, it activates it and sends
focus change messages to it. The Application Agent can then act on these messages
by displaying a scanner that is appropriate for the application window or control that
currently has focus. If the focused control is an edit control for instance, the agent can
also track the caret position, extract the text where the cursor is and raise events to
trigger next-word prediction.

For example, if the user is editing a document in Notepad, the Agent Manager
automatically activates the Notepad Application Agent which tracks the caret position
and editing changes. If the user then switches to Internet Explorer, the Agent
Manager detects the focus shift and activates the Internet Explorer agent which then
displays a contextual menu for Internet Explorer to enable the user to navigate the
browser.

The following figure shows ACAT Application Agent extensions in the ACAT solution
tree:

Every Application Agent implements a ProcessSupported property which is a list of
processes the agent supports. The Agent Manager maintains a mapping of processes
and the Application Agents that are associated with them. Note that there may be
multiple Application Agents for a process. If there is a conflict, the preferred agent to
use can be specified through a configuration file (see section 7.5).

ACAT has base classes for Application Agents for the following applications.

 Acrobat Reader
 Chrome Browser
 Windows Photo Viewer

54 AGENTS | ACAT Developer’s Guide

 Eudora Email
 Firefox Browser
 Internet Explorer
 Microsoft Word
 Notepad
 WordPad

In addition to these, there is an Agent to handle dialogs and one to handle menus. If
the foreground window is either a dialog or a menu, the Agent Manager activates the
dialog or menu agent. These agents display scanners to enable the user to easily
navigate dialogs and menus.

7.4 Functional Agents

Functional Agents are different from Application Agents. While Application Agents
are associated with external applications, Functional Agents interact with
‘applications’ internal to ACAT, such as File Brower and Application Launcher.
Typically, Functional Agents display a dialog docked alongside a scanner. The user
interacts with the dialog and the result of the user action is conveyed to the caller.
For example, the File Browser agent displays a dialog with a list of files and a scanner
to allow the user to specify a search filter (see Figure 14). When the user selects a file
from the list, the dialog exits. The caller can query for the name of the selected file
and perform the necessary action.

Figure 14: File Browser Agent

55 AGENTS | ACAT Developer’s Guide

Functional Agents are activated by calling ActivateAgent() in the Agent Manager.
The name of the agent is passed as the parameter. The names of Functional Agents
are specified in the DescriptorAttribute custom attribute (see section 4.4). If there
are multiple Functional agents with the same name, the preferred agent can be
specified though a configuration file (see section 7.5)

The following figure shows the Functional Agent extensions in the ACAT solution tree.

ACAT has the following Functional Agents:

Agent Name Description

Abbreviations Agent Enables the user to add/modify/delete
abbreviations.

PhraseSpeak Agent Converts user-configurable canned
phrases to speech.

FileBrowser Agent Enables file management – open/delete
files.

Launch App Agent Displays a list of favorite applications and
enables the user to launch them.

Lecture Manager Agent Enables delivery of speeches/lectures by
converting text to speech. User can pace
the lecture.

56 AGENTS | ACAT Developer’s Guide

Agent Name Description

New File Agent Enables user to create new text/Word
documents.

Switch Windows Agent Displays a list of open windows and
enable the user to activate a window (the
Windows Alt+Tab equivalent)

Volume Settings Agent Enables the user to set the volume level of
text-to-speech

Phrase Speak Agent Displays a list of user-defined phrases
which can be converted to speech.

7.5 Agent Configuration Files

You may want to use your own application agent for Notepad instead of the default
one that is bundled with ACAT. If there is a conflict where there are multiple
Application Agents for the same process, or multiple Functional Agents with the same
name, the preferred agent can be specified through the configuration file
PreferredAgents.xml. This file resides in the ACAT user’s folder which is
[INSTALLDIR]\Users\[USERNAME], for example,
C:\Intel\ACAT\Users\DefaultUser, where DefaultUser is the default user name.

A sample PreferredAgents.xml is shown in the listing below.

Listing 3: PreferredAgents.xml

This file lists the GUID’s of the agents to use in case of a conflict. Each agent C# class
has a GUID associated through the DescriptorAttribute custom attribute (see
section 4.4).

<ACAT>

 <PreferredAgents>

 <PreferredAgent agentId="EC2EA972-934B-4EE0-A909-3EA0140AC738"/>

 <PreferredAgent agentId="E9B930AD-CB35-478C-BDA6-D7FC43349019"/>

 </PreferredAgents>

</ACAT>

57 PANELS | ACAT Developer’s Guide

8. PANELS

8.1 Introduction

A panel in ACAT can refer to a Scanner, Menu or a Dialog (see Figure 15). Panels
are essentially Forms with buttons and labels. The look and feel has been designed to
make the elements appear clean and seamless without borders. Colors are selected
to maximize contrast (see Chapter 12 on Themes). UI Elements such as buttons,
labels, text boxes, check boxes are called widgets. Widgets on the panel are scanned
(highlighted) on a timer. Every panel has a specific scanning sequence aka
animation sequence which enables the user to zero-in on the widget to activate. If
the user activates the switch mechanism while a widget is highlighted, an action or a
command for that widget is executed. For instance, if the widget ‘a’ in the Alphabet
scanner is actuated, it causes the letter ‘a’ to be sent to the active window. If the user
activates the switch when a box of letters is highlighted, animation transitions into
the next sequence in which the rows of letters in the box are successively highlighted.

Figure 15: Types of ACAT Panels

The attributes of the widgets such as colors, fonts, text and actions, animations,
transitions between animations are all configured in panel configuration files.
Every panel must have at least one associated configuration file. Multiple
configuration files may be associated with a single panel. This gives the flexibility to
reuse the panel Form and create panel variations by defining different widget layouts,
different animation sequences etc. The mapping between a panel and its
configuration file(s) is specified through a mapping file called PanelConfigMap.xml.
See section 8.3.2 for details on this.

The PanelManagement, WidgetManagement and AnimationManagement
components (see 2.2) of the ACAT Core library handle everything to do with panels –
instantiating them, parsing the configuration files, handling animations, converting
input triggers to actions, etc.

58 PANELS | ACAT Developer’s Guide

The rest of this section gives details on panel configurations and walks through the
process creating panels.

8.2 Enumeration

All panels are .NET Forms, and must implement the IPanel interface. All DLL’s with
panel forms must be installed under the top-level folder
[INSTALLDIR]\Extensions\[EXTENSION_DIR]\UI. The recommended directory
structure is to have Scanners, Dialogs and Menus DLL’s with their associated panel
configuration files in their own sub-folders under the top-level folder. On startup, the
Panel Manager descends recursively into the various sub-folders under the ACAT
install directory and caches the .NET class Types of all the classes that implement
IPanel and the names of the all configuration files.

The order in which the directories are descended into is:

1. [INSTALLDIR]\<languageName> where <languageName> is the ISO language
name of the currently selected language for ACAT. Example: pt-Br for
Brazilian Portuguese, es-MX for Spanish – Mexico

2. [INSTALLDIR]<twoLetterISOLanguageName> where
]<twoLetterISOLanguageName> is the two-letter ISO language name.
Example: pt for Portuguese, es for Spanish

3. [INSTALLDIR]\en
4. [INSTALLDIR]\Extensions\<ExtensionDir>\AppAgents
5. [INSTALLDIR]\Extensions\<ExtensionDir>\FunctionalAgents
6. [INSTALLDIR]UI

In addition to the UI folder, the Panel Manager also walks through the top level folder
for Agents (see section 7.2) as Agent DLL’s can also have Panels. For instance, the File
Browser Agent DLL has a panel that displays the names of files.

8.3 Steps to create a scanner

This section details the steps to follow to create a scanner. The following figure
shows the location of scanners in the ACAT solution tree.

59 PANELS | ACAT Developer’s Guide

The ACAT Number scanner is used as the example here. The form is located under
$\Extensions\UI\Scanners. It has three rows of buttons as shown in the figure
below. The buttons are named B1 through B15 in the Form. The buttons are laid
inside two TableLayout elements. The rows in the form are TableLayout elements
named Row1, Row2 and Row3.

Figure 16: The Numbers Scanner

8.3.1 Step 1: Create a form

You must first create a Form for the scanner. If your form is language neutral, in the
ACAT solution, create it under $\Extensions\UI\Scanners folder. If it is language
specific, create it under $\Extensions\UI\<language>\Scanners folder, where
<language> is the ISO name for the language. The ACAT solution has a number of
scanner forms which you can use as a guideline for laying out the elements in the
form. Implement the IScannerPanel interface in the form.

60 PANELS | ACAT Developer’s Guide

Specify the DescriptorAttribute (see section 4.4) with a GUID, a name and a friendly
description for the form. The Alphabet scanner for example has the following
DescriptorAttribute:

[[DescriptorAttribute("A2FAC295-9A8F-4214-B55C-BB611F09B252",

 "NumbersScanner",

 "Enter numbers 0-9")]

8.3.2 Step 2: Create a Panel Configuration File for the scanner

The panel configuration file is an XML file that defines the widget attributes in a
panel, the parent –child hierarchy of widgets in the Form and the set of animations
used for scanning. Create a NumbersScanner.xml file for the form. In the solution,
the default folder for the panel configuration file is $\ACATResources\en folder. If
you want to use a different panel config file for each localized language, you can
install it under $\ACATResources\<language> folder, where <language> is the two
or three letter ISO language name.

 The configuration file has three sections: WidgetAttributes, Layout and
Animations as shown in the listing below.

 <?xml version="1.0" ?>

 <ACAT>

WIDGETATTRIBUTES

SECTION

 <WidgetAttributes>

 <WidgetAttribute name="B1" label="u" value="@CmdGoBack"
 fontname="ACAT Icon" fontsize="16"

 bold="true" mouseClickActuate="true"/>

 <WidgetAttribute name="B2" label="1" value="1"

 fontname="Arial" fontsize="22" bold="true" />

 ...

 ...

 <WidgetAttribute name="B15" label="-" value="-"

 fontname="Arial" fontsize="22" bold="true" />

 </WidgetAttributes>

LAYOUT SECTION

 <Layout>

 <Widget class="RowWidget" name="Row1">

 <Widget class="ScannerButton" name="B1"/>

 <Widget class="ScannerButton" name="B2"
 colorScheme="ColorCodedRegion2"
 disabledButtonColorScheme="DisabledColorCodedRegion2"/>

 ...

 ...

 <Widget class="ScannerButton" name="B7"/>

 </Widget>

 <Widget class="RowWidget" name="Row2">

 <Widget class="ScannerButton" name="B8"/>

 <Widget class="ScannerButton" name="B9"/>

 ...

 ...

 <Widget class="ScannerButton" name="B15"/>

 </Widget>

 </Layout>

61 PANELS | ACAT Developer’s Guide

ANIMATIONS SECTION

 <Animations>

 <Animation name="TopLevelRotation"

 start="true"

 iterations="@HalfScanIterations">

 <Widget name="Row1"

 onSelect="transition(ButtonRotationRow1)"/>

 <Widget name="Row2"

 onSelect="transition(ButtonRotationRow2)"/>

 <Widget name="Row3"

 onSelect="transition(ButtonRotationRow3)"/>

 </Animation>

 <Animation name="ButtonRotationRow1"

 iterations="@ColumnScanIterations"

 onEnd="transition(TopLevelRotation)"

 hesitateTime="@HesitateTime"

 onSelect="actuate(@SelectedWidget);

 transition(TopLevelRotation);">

 <Widget name="B1"/>

 <Widget name="B2"/>

 ...

 <Widget name="B5"/>

 </Animation>

 ...

 ...

 <Animation name="ButtonRotationRow3"

 iterations="@ColumnScanIterations"

 onEnd="transition(TopLevelRotation)"

 hesitateTime="@HesitateTime"

 onSelect="actuate(@SelectedWidget);

 transition(TopLevelRotation);">

 <Widget name="B11"/>

 <Widget name="B12"/>

 ...

 <Widget name="B15"/>

 </Animation>

 </Animations>

 <ACAT>

Listing 4: The NumbersScanner.xml Panel Configuration File

8.3.2.1 Step 2a: WidgetAttributes section

This is a list of <WidgetAttribute> elements, each of which maps to one widget
element in the panel Form. In this case, since there are 15 buttons, there will be 15
WidgetAttribute entries. The following table lists the attributes for the
WidgetAttribute element.

Attribute Description

name Should be the same as the name of the UI control
(Button, TableLayout etc) in the Form

label The text to display on the widget

62 PANELS | ACAT Developer’s Guide

Attribute Description

value Represents a literal or a command. If it is a literal such
as ‘a’, ‘b’, ‘1’, the corresponding character is sent into
the keyboard buffer simulating a keypress. If it
represents a command, the string should begin with a
@ symbol, e.g. @CmdMainMenu.

fontsize Size of the font in points.

fontname Name of the font to use , e.g. Arial

bold Whether to use boldface or not. Set this to true or false

tooltip Optional tooltip string to display when the widget is
highlighted. Some scanners use this feature.

mouseClickActuate Allow the user to click on the widget with the mouse to
actuate the button. Set this to true to allow activation
with a mouse click, false otherwise.

onMouseClick (Optional) The script to execute if mouseClickActuate
is set to true. See Chapter 13 for details on scripts.

8.3.2.2 Step 2b: Layout section

The Layout section defines the hierarchy in the widget layout. For instance, the
Alphabet scanner is divided into boxes or grids at the top level, the next level down
is a set of rows in a box and then next level down is the individual widgets in each
row. The Layout section defines this hierarchy. In this case, it would define a Box
widget consisting of four Row widgets and each Row widget consisting of seven
Button widgets. Each level in the hierarchy contains a group of widgets. This is
important information for scanning. When a widget is highlighted, all its descendants
are highlighted as well.

63 PANELS | ACAT Developer’s Guide

Figure 17: Widget Layout Hierarchy

ACAT could have derived the hierarchical relationship by querying the controls in the
Form itself. But this would not give the flexibility of grouping controls in ways other
how they are defined in the form. The Layout section enables us to group elements
from different parents into a group.

The Layout section is a list of <Widget> nodes, each of which could have a list of
<Widget> nodes and so on. The attributes of a Widget node are listed in the table
below.

Attribute Description

name Should be the same as the name of the UI
control in the Form.

class The .NET class type of the widget. The
WidgetManager uses this to instantiate
the widget object through .NET reflection.
In the NumberScanner example, the class
type is ScannerButton which is a part of
the ACAT Core library.

colorScheme The color scheme to use for this widget.
Should be defined in the Theme (see
Chapter 12 on Themes)

disabledButtonColorScheme The color scheme to use for this widget if it
were to be disabled.

64 PANELS | ACAT Developer’s Guide

Attribute Description

panel The name of the Panel to use to interact
with this widget if the widget is a part of a
Dialog. For instance, if the Volume settings
dialog has a text box to enter the volume
level as a number, set the panel attribute to
Number. This will display the Number
scanner if the user select the box.

enabled Set to true to enable the widget, false to
disable it, contextual to indicate the
enabled state is determined at runtime
based on the current context.

defaultEnabled true or false. Applies only if the enabled
attribute (see above) is set to contextual.
If none of the handlers in ACAT can
determine the enabled state, the enabled
state is set to this attribute’s value.

8.3.2.3 Step 2c: Animations Section

The Animations section is a list of <Animation> nodes and lists all the scanning
sequences and the transitions between scanning sequences. Each Animation node
represents one scanning sequence. There are actions associated with each animation
sequence and these actions are specified using a script. See Chapter 13 for details on
scripting.

Each Animation element has a list of Widget nodes which represent the widgets that
will participate in the scanning sequence. For instance, in the XML snippet shown in
Listing 5, buttons B1 through B5 will be scanned one after another.

65 PANELS | ACAT Developer’s Guide

<Animation name="ButtonRotationRow1"

 iterations="@ColumnScanIterations"

 onEnd="transition(TopLevelRotation)"

 firstPauseTime="@FirstPauseTime"

 onSelect="actuate(@SelectedWidget); transition(TopLevelRotation);">

 <Widget name="B1"/>

 <Widget name="B2"/>

 <Widget name="B3"/>

 <Widget name="B4"/>

 <Widget name="B5"/>

</Animation>

Listing 5: The <Animation> Element

The Animation element has the following attributes:

Attribute Description

name Name of the animation sequence

start Set to true if this is the starting sequence. There can
only be one Animation node with this attribute set to
true. When the Panel is displayed, this will be the first
scanning sequence. If not specified, default value is
false.

autoStart Set this to true if the first scanning sequence should
start immediately when the panel is displayed, or
should it wait for the user to activate the switch trigger
mechanism to start the scanning sequence. Default
value is true.

onEnd The script to run when the scanning sequence ends.
Typically, the script will transition to the next scanning
sequence.

onSelect The script to execute when the user selects a widget for
activation. This script executes only if the Widget node
in this sequence does not have an onSelect attribute.

onEnter Script to execute before the scanning sequence starts.

66 PANELS | ACAT Developer’s Guide

Attribute Description

iterations Number of times to repeat this scanning sequence.
Default value is 1. Scanning will go on forever if the
value is set to -1. Set this attribute to the numeric value
or to one of the pre-defined variables for iterations. See
section13.4 for a list of variable names. The values for
these are read from the user preferences file.

steppingTime The number of milliseconds a widget stays highlighted
before moving on to the next widget. Set this value
carefully. Too low a value may result in more errors and
too high a value may slow down scanning. Arrive at the
ideal setting through trial and error.
Specify the value as a number in milliseconds or one of
the pre-defined macros for timings (see section 13.4).
The values for macros are substituted from the user
preferences.

firstPauseTime The number of additional milliseconds to keep the first
widget highlighted in the sequence. Usually the first
widget is hard to select, and this attribute gives the user
that extra bit of time to react and make a selection.
Specify the value as a number in milliseconds or one of
the pre-defined macros for timings (see section 13.4).
The values for macros are substituted from the user
preferences.

The Animation element has a list of Widget elements which point to the UI controls
on the Form that will participate in the scanning sequence. The attributes for the
Widget element are:

Attribute Description

onSelect Event handler script to execute if this widget is selected.

onHighlightOn Event handler script to execute when this widget is
highlighted

67 PANELS | ACAT Developer’s Guide

Attribute Description

onHighlightOff Event handler script to execute which this widget is un-
highlighted

onMouseClick Event handler script to execute when the user clicks on
this widget with the mouse.

firstPauseTime The number of extra milliseconds to keep this widget
highlighted.
Specify the value as a number in milliseconds or one of
the pre-defined macros for timings (see section 13.4).
The values for macros are substituted from the user
preferences.

8.3.3 Step 3: Create Panel Configuration Mapping (PanelConfigMap.xml)

As discussed in section 8.1, a panel can have one or more panel configuration files.
This gives the flexibility to customize multiple versions of scanning sequences, labels
on the scanner buttons etc., for a single panel. For instance, if you may want to reuse
the Number scanner form you just created with different animation sequences, so
there may be multiple panel configuration files associated with the same form. The
mapping between a panel and its configuration file(s) is done through a file called
PanelConfigMap.xml. A snippet of the mapping file for the Alphabet scanner and the
Talk application scanner is shown in Listing 6. This shows the Alphabet scanner with
two alternative layouts – one where the letters on the scanner are arranged
alphabetically and one where they are not. Both use the same scanner Form, only the
panel configuration files (the configFile attribute) are different.

Add the entry for the Number scanner to this file as shown in Listing 6.

68 PANELS | ACAT Developer’s Guide

<ACAT>

 <ConfigMapEntries>

 <ConfigMapEntry panelClass="Alphabet"

 configName="AlphabetQwerty"

 configId="90475F6A-BA27-4CFD-ABDE-BF00DE84D110"

 formId="3FA65CCE-EB23-461A-AEE1-70339446BEA9"

 configFile="AlphabetScannerQwerty.xml"/>

 <ConfigMapEntry panelClass="Alphabet"

 configName="AlphabetScannerAbc"

 configId="7C71627D-0A4F-4C49-8DB3-F412FC029596"

 formId="8AA9056F-84A8-4E7F-9704-061CB4FAB68D"

 configFile="AlphabetScannerAbc.xml"/>

 <ConfigMapEntry panelClass="TalkApplicationScanner"

 configName="TalkApplicationScannerQwerty"

 configId="F802386C-31CA-4A0D-BC6F-78E71C730D11"

 formId="D9A5B53F-7119-445B-BDEA-F76EC53077F1"

 configFile="TalkApplicationScannerQwerty.xml"/>

 <ConfigMapEntry panelClass="TalkApplicationScanner"

 configName="TalkApplicationScannerAbc"

 configId="8B323A2F-381B-4F86-9C38-5425426F329E"

 formId="86B57FA0-2EF3-4C07-81E7-6796AE9B7B59"

 configFile="TalkApplicationScannerAbc.xml"/>

 <ConfigMapEntry panelClass="Number"

 configName="NumberScanner"

 configId="8BE3F2BE-1A2B-4F7D-9E74-7A8180137D16"

 formId=" A2FAC295-9A8F-4214-B55C-BB611F09B252"
 configFile=" NumbersScanner.xml"/>
 ...

 ...

 </ConfigMapEntries>

</ACAT>

Listing 6: Sample PanelConfigMap.xml

The attributes for ConfigMapEntry are:

Attribute Description

panelClass Refers to the category or name of the scanner.
Examples are Alphabet, Mouse, Cursor,
NotepadContextMenu etc. A scanner is created by
specifying its name to the CreatePanel() method in the
PanelManager. If the Alphabet scanner needs to be
created, Alphabet is used as the name parameter.
Similarly, to create the contextual menu for Notepad,
NotepadContextMenu is used as the parameter. ACAT
checks the PanelConfigMap.xml for this name to
determine which configuration file to use with the
scanner.

69 PANELS | ACAT Developer’s Guide

Attribute Description

configName A unique user-friendly name for this entry.

configId A GUID that uniquely identifies this entry. In case there
are multiple configurations for the same panel, this field
will be used to specify which configuration is to be used
(see section 8.4).

configFile The filename (not the complete path) to the
configuration file for the panel.

PanelConfigMap.xml can be located anywhere under the top-level UI folder (see
section 8.2) or the top-level Agents folder (see section 7.2). ACAT recursively scans
these folders, looks for all PanelConfigMap.xml files under these folders, parses
them and creates a look-up table mapping the panel name (panelClass attribute)
with its one or more configurations.

Examine the source tree of the ACAT solution for possible locations. If there is
already a PanelConfigMap.xml file, make an entry for your form in the file.
Otherwise, create one with the entry in it.

See section 8.2 for the search order for discovery of panel config files.

8.4 Setting preferred panel configurations

As discussed in sections 8.1and 8.3.3, a panel can have multiple configurations or
variations. For instance, in the ACAT Application, there are four variations of the
Alphabet QWERTY layout, Alphabetical layout, Alternate layout and Alternate
Alphabetical layout. Contextual menus may have alternate variations as well – one
with just the icons for the menu items, and one with icons and the menu text. An
ACAT application may use panels in any number of combinations. For instance, ACAT
App may have multiple configurations:

ACAT App, Configuration 1:

Alphabet scanner with the QWERTY layout
Talk scanner with the QWERTY layout
Contextual menus with Icons and Text

ACAT App, Configuration 2:

Alphabet scanner with the Alphabetical layout
Talk scanner with the Alphabetical layout
Contextual menus with Icons only

70 PANELS | ACAT Developer’s Guide

The combination set of panels to use with an ACAT application is configured
through the PanelClassConfig.xml file. This can be configured independently for
each localized language. This file is located under the language folder below the
ACAT user folder:

[INSTALLDIR\Users\<username>\<language>.

For example, for English:

C:\Intel\ACAT\Users\DefaultUser\en

A snippet this file is shown in Listing 7.
<AppPanelClassConfig>

 <PanelClassConfigs>

 <PanelClassConfig>

 <AppDescription>The fully-featured ACAT Application</AppDescription>

 <AppId>ACATApp</AppId>

 <AppName>ACAT Application</AppName>

 <PanelClassConfigMaps>

 <PanelClassConfigMap>

 <Default>false</Default>

 <Description>AlphabetScanner with ABC layout</Description>

 <Name>AlphabetAbc</Name>

 <PanelClassConfigMapEntries>

 <PanelClassConfigMapEntry>

 <ConfigId>7c71627d-0a4f-4c49-8db3-f412fc029596</ConfigId>

 <PanelClass>Alphabet</PanelClass>

 </PanelClassConfigMapEntry>

 <PanelClassConfigMapEntry>

 <ConfigId>8b323a2f-381b-4f86-9c38-5425426f329e</ConfigId>

 <PanelClass>TalkApplicationScanner</PanelClass>

 </PanelClassConfigMapEntry>

 </PanelClassConfigMapEntries>

 </PanelClassConfigMap>

 <PanelClassConfigMap>

 <Default>true</Default>

 <Description>AlphabetScanner with Qwerty layout</Description>

 <Name>AlphabetQwerty</Name>

 <PanelClassConfigMapEntries>

 <PanelClassConfigMapEntry>

 <ConfigId>90475f6a-ba27-4cfd-abde-bf00de84d110</ConfigId>

 <PanelClass>Alphabet</PanelClass>

 </PanelClassConfigMapEntry>

 <PanelClassConfigMapEntry>

 <ConfigId>f802386c-31ca-4a0d-bc6f-78e71c730d11</ConfigId>

 <PanelClass>TalkApplicationScanner</PanelClass>

 </PanelClassConfigMapEntry>

 </PanelClassConfigMapEntries>

 </PanelClassConfigMap>

 </PanelClassConfigMaps>

 </PanelClassConfig>

 </PanelClassConfigs>

</AppPanelClassConfig>

Listing 7: Sample PreferredPanelConfigMap.xml

It is a list of PanelClassConfig nodes, one per application, and each
PanelClassConfig node contains a list of PanelClassConfigMap nodes which contain
a list of preferred panel configurations.

71 PANELS | ACAT Developer’s Guide

The following table describes the elements of the PanelClassConfig node.

Element Description

AppName User friendly name for the application.

AppDescription User friendly description of the application.

AppId A unique Id for the application.

The following table describes the elements of PanelClassConfigMap node.

Element Description

Name The name of the configuration.

Description User friendly description of the configuration.

Default true if this is the default configuration for the
application, false otherwise.

The following table describes the elements of the PanelClassConfigMapEntry node.

Element Description

ConfigId ID of the panel configuration. This should be the same
as the one in PanelConfigMap.xml (see section 8.3.3).

PanelClass Panel category (see section 8.3.3).

72 WORD PREDICTORS | ACAT Developer’s Guide

9. WORD PREDICTORS

9.1 Introduction

ACAT supports word auto-complete and next-word prediction during text entry.
While the user enters text into a text window, ACAT tracks the word being typed.
Depending on the application, ACAT can get the text in the window, the current
position of the caret, and using this information, read the previous words in the
sentence. It uses this as contextual information to make suggestions to for auto-
completion or next-word prediction. The ACAT Word Predictor extensions provide
prediction results based on the context. Prediction results are returned in the
language that is currently active. The results are obtained by looking up a word
prediction database that is created from source texts in that language.

9.2 Enumeration

During initialization, the Word Prediction Manager walks recursively through specific
folders under the ACAT install directory, loads all the DLL’s in there and caches C#
Types of classes derived from the IWordPredictor interface. All Word Predictor
extensions must implement this interface.

Language specific word predictor extensions take precedence over language-neutral
word predictor extensions. Extensions are loaded from these locations in this order:

1. [INSTALLDIR\<language>\Extensions\[EXTENSION_DIR]\WordPredictors\<WPDir>
where <language> is the language name or the two-letter ISO name. For example,
for the French Presage word predictor, this would be:
C:\Intel\ACAT\fr\Extensions\Default\WordPredictors\Presage

2. [INSTALLDIR]\Extensions\[EXTENSION_DIR]\WordPredictors\<WP>. For
the Presage word prediction extension for instance:
C:\Intel\ACAT\Extensions\Default\WordPredictors\Presage
Language neutral Word Predictor extensions should be installed here.

Only one Word Predictor can be active at any time. If there are multiple Word
Predictor extensions, the preferred one can be selected by using the ACAT Config
utility.

9.3 Steps to create a Presage Word Predictor extension

To create language-specific Presage Word Prediction extension in the ACAT Language
pack solution (see section 5.1), follow these steps. The name of the extension is
FooWordPredictor.

73 WORD PREDICTORS | ACAT Developer’s Guide

Step What to do

1
Open the solution for the language pack. Create a class library called
FooWordPredictor.

2
Go to the Properties for this project and set the Platform target to Any
CPU.

3
Add references to ACATCore.dll and ACATExtension.dll in the
$\Redistributable folder. In the Properties for these two DLL’s, set Copy
Local to false.

4 Derive FooWordPredictor from PresageWordPredictorBase.

5

Add the DescriptorAttribute custom attribute to the FooWordPredictor
class. Generate a GUID for the id field.

DescriptorAttribute(

 "439ADCA3-36AD-653F-9CD3-4594ADC71AF1",

 "Foo Word Predictor",

 "Word prediction based on Presage")]

6

Override the following functions. Refer to the source documentation on
details:

GetDefaultPreferences()
GetPreferences()
getDatabaseFilePath()
initDatabase()
learn()
predict()

7

Add a Service Reference to
net.pipe://localhost/PresageService/v1/mex. Look at the Language
pack solutions for French or Spanish for examples.

74 WORD PREDICTORS | ACAT Developer’s Guide

Step What to do

8

Edit deploy.bat for the Language and modify it to deploy the DLL to the
run directory for ACATApp. . It should be deployed to
<language>\Extensions\Default\WordPredictors\FooWordPredictor
under ACATApp\bin\Debug or ACATApp\bin\Release depending on
whether you are building the Debug or the Release version. Here,
<language> is the two or three-letter ISO name for the language, fr for
French for example.
Look at the Language pack solutions for French or Spanish for examples.

9
Build the Language pack solution. FooWordPredictor.dll must now be
deployed to the run directory of the ACAT application.

10 Run ACAT Config and set FooWordPredictor as the default.

11
Run the ACATApp application and type into the Talk window or into a
Notepad window. The Alphabet scanner should update the prediction
word list as you type or move the cursor around.

9.4 Steps to create a non-Presage Word Predictor extension

To create a non-Presage word predictor extension, follow the steps outlined in
section 9.3, except, instead of deriving your class from PresageWordPredictorBase,
you must implement IWordPredictor, ISupportsPreferences and IExtension
interfaces.

75 TEXT-TO-SPEECH (TTS) | ACAT Developer’s Guide

10. TEXT-TO-SPEECH (TTS)

10.1 Introduction

Text-to-Speech (TTS) extensions perform text to speech conversions.

10.2 Enumeration

During initialization, the TTS Manager walks recursively through specific folders
under the ACAT install directory, loads all the DLL’s in there and caches C# Types of
classes that implement the ITTSEngine interface.

Language specific TTS extensions take precedence over language-neutral TTS
extensions. Extensions are loaded from these locations in this order:

3. [INSTALLDIR\<language>\Extensions\[EXTENSION_DIR]\TTSEngines\<TTSDir>
where <language> is the language name or the two-letter ISO name. For example,
for the French TTS, this would be:
C:\Intel\ACAT\fr\Extensions\Default\WordPredictors\Presage

4. [INSTALLDIR]\Extensions\[EXTENSION_DIR]\TTSEngines\<TTSDir>.

Only one TTS extension can be active at any time. If there are multiple TTS Engines,
the preferred one can be selected by using the ACAT Config utility.

10.3 Alternate Pronunciations

Text-to-speech engines may have problems pronouncing certain words properly.
ACAT uses an XML configuration file containing a mapping between the actual
spelling and the phonetic spelling. The file should reside under the ACAT user’s
folder which is [INSTALLDIR]\Users\[USERNAME], for example,
C:\Intel\ACAT\Users\DefaultUser, where DefaultUser is the default user name.

The Text-to-speech Management component has a helper class called
Pronunciations which loads the pronunciations XML file and maintains the mapping
between the actual spelling and the phonetic spelling. It looks up the mapping table
and replaces words in an input string with their phonetic spellings. When the result
string is converted to speech, the all the words will be pronounced properly.

Listing 8 shows a sample pronunciations file with the actual spelling of words and
their corresponding phonetic spelling.

76 TEXT-TO-SPEECH (TTS) | ACAT Developer’s Guide

Listing 8: Sample Pronunciations File

10.4 Steps to create a TTS Extension

The SAPIEngine TTS extension under Extensions\Default\TTSEngines in the ACAT
solution is a good starting point for creating TTS extensions.

If your TTS extension is language specific, follow these steps.

Step What to do

1

Open the solution for the Language pack. See section 5.1 for creating
language pack solutions.

Create a Class library called FooTTS.

2
Go to the Properties for this project and set the Platform target to
Any CPU.

<ACAT>

 <Pronunciations>

 <Pronunciation word="aluminum" pronunciation="al loo mini yum"/>

 <Pronunciation word="xerox" pronunciation="zee rocks"/>

 <Pronunciation word="defense" pronunciation="dee fence"/>

 </Pronunciations>

</ACAT>

77 TEXT-TO-SPEECH (TTS) | ACAT Developer’s Guide

Step What to do

3
Add references to ACATCore.dll and ACATExtension.dll in the
$\Redistributable folder. In the Properties for these two DLL’s, set
Copy Local to false.

4 Derive FooTTS from ITTSEngine.

5

Add the DescriptorAttribute custom attribute to the FooTTS class.
Generate a GUID for the id field.

DescriptorAttribute(

 "ACD342A3-34FD-AC3F-8CFD3-48384ACFF1",

 "Foo TTS",

 "Text to Speech Extension based on Foo technology ")]

6

Implement the method and properties in the ITTSEngine interface.
The documentation for ITTSEngine has all the details on what each of
the properties and methods do.

Perform initialization in the Init() function.

The core functions are Speak() and SpeakAsync() which convert text
to speech. The async version returns immediately and returns a
bookmark. When the conversion has completed, the
EvtBookmarkReached event must be raised passing the bookmark as
the parameter.

7

Edit deploy.bat for the Language and modify it to deploy the DLL to the
run directory for ACATApp. It should be deployed to
<language>\Extensions\Default\TTSEngines\FooTTS under
ACATApp\bin\Debug or ACATApp\bin\Release depending on
whether you are building the Debug or the Release version. Here,
<language> is the two or three-letter ISO name for the language, fr for
French for example.

9
Now build the solution. Examine the output folder of ACATApp and
verify that FooTTS.dll file is deployed to its destination folder.

10 Run ACAT Config and set FooTTS as the default TTS Engine.

78 TEXT-TO-SPEECH (TTS) | ACAT Developer’s Guide

Step What to do

11
Run the ACATApp application and type into the Talk window and press
ENTER. FooTTS should convert the text just entered into speech.

If your TTS extension is language neutral, follow these steps.

Step What to do

1

Open the ACAT solution and create a Class library called FooTTS under
$\Extensions\Default\TTSEngines.

2

Go to the Properties for this project and set the Platform target to Any
CPU.

3

Add references to ACATCore.dll and ACATExtension.dll in the
$\Redistributable folder. In the Properties for these two DLL’s, set Copy
Local to false.

4

Add the DescriptorAttribute custom attribute to the FooTTS class.
Generate a GUID for the id field.
DescriptorAttribute(

 "ACD342A3-34FD-AC3F-8CFD3-48384ACFF1",

 "Foo TTS",

 "Text to Speech Extension based on Foo technology ")]

5

Derive FooTTS from ITTSEngine.
Implement the method and properties in the ITTSEngine interface. The
documentation for ITTSEngine has all the details on what each of the
properties and methods do.
Perform initialization in the Init() function.
The core functions are Speak() and SpeakAsync() which convert text to
speech. The async version returns immediately and returns a ‘bookmark’.
When the conversion has completed, the EvtBookmarkReached event
must be raised passing the bookmark as the parameter.

79 TEXT-TO-SPEECH (TTS) | ACAT Developer’s Guide

Step What to do

6

Update dependencies in the ACAT solution for the FooTTS project to make
sure it is built in the right order. Ensure that
a. FooTTS has dependencies on ACATCore and ACATExtension projects.
b. The PostBuildSolution project has a dependency on FooTTS.

7

FooTTS.dll must now be deployed to the run directory of the application.
Edit $\deploy.bat Look for the section “Deploying TTSEngine DLLs” and
add the code to deploy the DLL. Look at the examples already there on how
to do this.

8

Now build the solution. Examine the output folder of ACATApp and verify
that FooTTS.dll file is deployed to its destination folder.

9

Run ACAT Config and set FooTTS as the default TTS Engine.

10

Run the ACATApp application and type into the Talk window and press
ENTER. FooTTS should convert the text just entered into speech.

80 SPELL CHECKER | ACAT Developer’s Guide

11. SPELL CHECKER

11.1 Introduction

Spell Checker extensions perform spell checks during text entry. Applications such as
MS Word have built-in support for spell checking, but not all applications do. If the
user were to use the auto-complete or next-word prediction through Word Prediction
to enter text, spell check is really not required. However the feature is made available
for developers to implement spell checking if they so desire.

During text entry, a call to the spell checker is made whenever a word is completed.
The completed word is passed to the spell checker extension. The spell checker
returns the correctly spelt word if it was misspelt. ACAT then does an in-place
replacement of the misspelt word with the one that is correctly spelt.

11.2 Enumeration

During initialization, the SpellCheck Manager walks recursively through specific
folders under the ACAT install directory, loads all the DLL’s in there and caches C#
Types of classes derived from the ISpellChecker interface. All Spell Checker
extensions must implement this interface.

Language specific spell check extensions take precedence over language-neutral spell
check extensions. Extensions are loaded from these locations in this order:

1. [INSTALLDIR\<language>\Extensions\[EXTENSION_DIR]\SpellCheckers\<SpellCheckDir>
where <language> is the language name or the two-letter ISO name. For example,
if there were a spell checker extension for French, this would be:
C:\Intel\ACAT\fr\Extensions\Default\SpellChecker\<SpellCheckDir>

2. [INSTALLDIR]\Extensions\[EXTENSION_DIR]\SpellCheckers\<SpellCheckDi
r>. Language neutral spell checker extensions should be installed here.

Only one Spell Checker can be active at any time. If there are multiple Spell Checker
extensions, the preferred one can be selected by using the ACAT Config utility.

11.3 ACAT Spell Checker

ACAT has a rudimentary spell checker extension called SpellCheck. The following
figure shows the ACAT spell checker extension in the ACAT solution tree.

81 SPELL CHECKER | ACAT Developer’s Guide

It uses an XML file to store a lookup table of misspelt words. The file is called
SpellCheck.xml and is stored in the ACAT user’s folder. Listing 9 shows a sample
listing of the file.

Listing 9: Sample SpellCheck.xml

<ACAT>

 <Spellings>

 <Spelling word="i" replaceWith="I"/>

 <Spelling word="cant" replaceWith="can't"/>

 <Spelling word="dont" replaceWith="don't"/>

 <Spelling word="shouldnt" replaceWith="shouldn't"/>

 <Spelling word="couldnt" replaceWith="couldn't"/>

 <Spelling word="wouldnt" replaceWith="wouldn't"/>

 <Spelling word="id" replaceWith="I'd"/>

 <Spelling word="ive" replaceWith="I've"/>

 <Spelling word="havent" replaceWith="haven't"/>

 <Spelling word="isnt" replaceWith="isn't"/>

 </Spellings>

</ACAT>

82 THEMES | ACAT Developer’s Guide

12. THEMES

12.1 Introduction

The color schemes and fonts for the ACAT scanners, menus and dialogs are
configured through Theme configuration files which can be accesses through the
Theme Manager.

12.2 Enumeration

All Theme files are stored under the top-level folder [INSTALLDIR]\Assets\Skins.
Under this, each Theme is stored in a separate sub-folder. The name of the Theme is
the same as the name of the folder. A Skin.xml file lists all the colors to use for the
various elements in the panels. If background bitmaps are used, the bitmaps are
stored under the theme folder as well.

12.3 Theme Configuration

Listing 10 shows a snippet of Skin.xml which has color settings for all the UI
elements in ACAT. It has a list of <ColorScheme> elements, each of which applies to
a UI element on a panel.

The following table has a description of the attributes for the <ColorScheme> node.
For each of the element, you have the choice of specifying the color or the name of an
image file that will be used as the background. If the background image is specified,
the color element is ignored. All image files are to be stored in the folder for the
theme. The colors can be specified either as a value of the .NET Colors enum (Black,
Red, White etc.) or as an RGB (#FFF20, #333745 etc.).

Attribute Description

name Refers to the UI widget to which this
color scheme applies.

Background Background color of the widget in its
normal state.

Foreground Foreground color of the widget in its
normal state.

83 THEMES | ACAT Developer’s Guide

Attribute Description

highlightBackground Background color of the widget in the
highlighted state.

highlightForeground Foreground color of the widget in the
highlighted state.

highlightSelectedBackground Background color of a selected widget
in the highlighted state

highlightSelectedForeground Foreground color of a selected widget
in the highlighted state

Listing 10: Snippet of Skins.xml

<ACAT>

 <Skin>

 <ColorSchemes>

 <ColorScheme name="Scanner"

 background="Black"

 foreground="#FFF200"

 highlightSelectedBackground="Blue"

 highlightSelectedForeground="White"

 highlightBackground="#FFF200"

 highlightForeground="Black"/>

 <ColorScheme name="ContextMenuIconButton"

 background="#21409A"

 backgroundImage="contextIconNormal.png"

 foreground="#FFF200"

 highlightSelectedBackground="Black"

 highlightSelectedForeground="White"

 highlightBackground="#FFF200"

 highlightBackgroundImage="contextIconHighlight.png"

 highlightSelectedBackgroundImage="contextIconHighlightSelected.png"

 highlightForeground="Black"/>

 </ColorSchemes>

 </Skin>

</ACAT>

84 SCRIPTS | ACAT Developer’s Guide

13. SCRIPTS

13.1 Introduction

Scripting is primarily used in Panel configuration files (see section 8.3.2) to handle
transition between scanning sequences, and to execute actions when widgets are
selected with the input switch trigger. The scripting language is very simple and the
Interpreter module in ACAT interprets the script.

13.2 Syntax

The syntax is simple. The script is a semi-colon delimited list of function calls. Here
is a snippet from the <Animations> section of a Panel configuration file.

<Widget name="B2

 onSelect="actuate(@SelectedWidget);transition(TopLevelRotation)"/>

The onSelect attribute has a script that is executed when the widget B2 is selected.
The script makes two function calls – actuate() and transition(). The call to
actuate() has one argument – @SelectedWidget which is an macro for the
selected widget. This call triggers the Actuate event in ACAT for widget B2. The
transition() call switches the scanning sequence to the one named
TopLevelRotation. Functions do not have any return values. All arguments are
passed by value.

13.3 Functions

This section describes the syntax and usages of all the pre-defined functions
supported by ACAT.

13.3.1 actuate

Syntax actuate(widgetNameOrMacro)

Parameters widgetNameOrAlias

Name or alias of the widget to actuate

Description Actuates the widget identified by the specified name or alias. Any
command associated with the widget is executed. The command is
specified in the WidgetAttribute section (see section 8.3.2.1) of the
Panel configuration file.
Use the @SelectedWidget macro (see section 13.4) as the alias for
the widget that is currently selected.

85 SCRIPTS | ACAT Developer’s Guide

Examples

To actuate a widget identified by the name B1:

actuate(B1)

To actuate the currently selected widget:

actuate(@SelectedWidget)

13.3.2 highlight

Syntax highlight(widgetNameOrAlias, onOff)

Parameters widgetNameOrAlias

Name or alias of the widget to actuate

onOff

Set to true to highlight the widget, false to un-highlight it.

Description Highlights or un-highlights the specified widget. If onOff is true,
highlights the widget using the highlightBackground and
highlightForeground attributes from the active theme (see Chapter
12). If onOff is false, the widget is displayed in normal colors using
the background and foreground attributes from the active theme.

If the parameter refers to an alias, it should be one of the following
macros (see section 13.4).

@SelectedWidget for the currently selected widget

@SelectedRow for the currently selected row

@SelectedBox for the currently selected box.

Examples

To highlight a widget identified by the name B1:

highlight(B1, true)

To highlight a Row identified by the name Row1:

highlight(Row1, true)

To un-highlight a widget identified by the name B1:

highlight(B1, false)

To highlight the currently selected widget:

highlight(@SelectedWidget, true)

86 SCRIPTS | ACAT Developer’s Guide

13.3.3 highlightSelected

Syntax highlightSelected(widgetNameOrAlias, onOff)

Parameters widgetNameOrAlias

Name or alias of the widget to actuate

onOff

Set to true to highlight the widget, false to un-highlight it.

Description Highlights or un-highlights the specified widget. If onOff is true,
highlights the widget using the highlightSelectedBackground and
highlightSelectedForeground attributes from the active theme (see
Chapter 12). If onOff is false, the widget is displayed in normal
colors using the background and foreground attributes from the
active theme.

If the parameter refers to an alias, it should be one of the following
macros (see section 13.4).

@SelectedWidget for the currently selected widget

@SelectedRow for the currently selected row

@SelectedBox for the currently selected box.

Examples

To highlight a widget identified by the name B1:

highlightSelected(B1, true)

To un-highlight a widget identified by the name B1:

highlightSelected (B1, false)

To highlight the currently selected widget:

highlightSelected (@SelectedWidget, true)

13.3.4 select

Syntax select(widgetName)

Parameters widgetName

Name of the widget to select

Description Marks the specified widget as selected. Note that there is no change
in the visual appearance of the widget. It merely sets the state of the
widget as selected. After making this call, the @SelectedWidget
macro will point to the widget selected.

Examples

To select a widget identified by the name B1:

select(B1)

87 SCRIPTS | ACAT Developer’s Guide

13.3.5 transition

Syntax transition(animationName)

Parameters animationName

Name of the animation to transition to

Description Transitions the scanning sequence to the specified
animationName. The name should be a valid animation sequence
in the <Animations> section of the Panel configuration file (see
section 8.3.2.3).

Examples

To transition to a scanning sequence called TopLevelRotation:

transition(TopLevelRotation)

13.3.6 showPopup

Syntax showPopup(scannerName, title)

Parameters scannerName

Name of the popup scanner (strip scanner) to display

title

Title to display in the scanner

Description Displays a popup scanner referenced by the scannerName
parameter. Typically used to display accented characters in
languages such as French, Spanish etc.

Examples

showPopup(LetterA, Letra A)

13.3.7 stop

Syntax stop()

Description Stops scanning that is currently in progress.

Examples

To stop scanning:

stop()

13.3.8 run

Syntax run(command)

88 SCRIPTS | ACAT Developer’s Guide

Parameters command

Name of the command to run.

Description Runs the specified command. For a list of commands and command
handling, see Chapter 14.

Examples

To toggle the TalkWindow:

run(@CmdTalkWindowToggle)

13.3.9 beep

Syntax beep()

Description Plays a beep.

Examples

To beep:

beep()

13.4 Macros

The following table lists the macros that can be used as values for the various timings
and iteration counts during scanning. These macros can be used in the panel
configuration files (see section 8.3.2) to control the speed, the number of scan
iterations and to reference selected widgets.

The values for each of the macros listed below are assigned from the user preference
settings (see section 15.2.1).

Macro Description

@ScanTime The length of time in milliseconds a widget
stays highlighted during scanning. The
value for this is assigned from the ScanTime
setting in user preferences (see section
15.2.1 for details).

@FirstPauseTime The additional length of time the first
element stays highlighted. The value is
added on to the ScanTime time. The value
for this is assigned from the
FirstPauseTime setting in user preferences
(see section 15.2.1 for details).

89 SCRIPTS | ACAT Developer’s Guide

Macro Description

@MenuDialogScanTime Length of time each element stays
highlighted in menus and dialogs. The value
for this is assigned from the
MenuDialogScanTime setting in user
preferences (see section 15.2.1 for details).

@WordPredictionFirstPauseTime The additional length of time the first word
in the word prediction list stays highlighted.
The value is added on to the ScanTime time.
The value for this is assigned from the
WordPredictionFirstPauseTime setting in
user preferences (see section 15.2.1 for
details).

@FirstRepeatTime Some buttons have a ‘repeat’ behavior. Even
after they are selected, they stay highlighted
for an additional length of time to enable the
user to select them again with the input
switch trigger. The value for this is assigned
from the FirstRepeatTime setting in user
preferences (see section 15.2.1 for details).

@TimedDialogTimeout The timeout for timed dialogs. The value for
this is assigned from the
TimedDialogTimeout setting in user
preferences (see section 15.2.1 for details).

@GridScanIterations The number of times to scan the top-level
widgets in a scanner. The value for this is
assigned from the GridScanIterations
setting in user preferences (see section
15.2.1 for details).

@RowScanIterations This setting controls the number of times to
scan the rows in a scanner. The value for
this is assigned from the
RowScanIterations setting in user
preferences (see section 15.2.1 for details).

90 SCRIPTS | ACAT Developer’s Guide

Macro Description

@ColumnScanIterations The number of times to scan the widgets in a
row in a scanner. The value for this is
assigned from the ColumnScanIterations
setting in user preferences (see section
15.2.1 for details).

@StripScannerColumnIterations

The number of times to scan the widgets in a
strip scanner. A strip scanner is typically
used to display accented characters in
languages such as French, Spanish etc. The
value for this is assigned from the
StripScannerColumnIterations setting in
user preferences (see section 15.2.1 for
details).

@WordPredictionScanIterations The number of times to scan the words in
the word prediction list. The value for this is
assigned from the
WordPredictionScanIterations setting in
user preferences (see section 15.2.1 for
details).

@ScreenLockScanIterations The number of times the numbers in the
screen unlock PIN scanner are scanned. The
value for this is assigned from the
ScreenLockScanIterations setting in user
preferences (see section 15.2.1 for details).

@SelectedWidget The widget that is currently selected. A
widget is tagged as ‘selected’ if the user
actuates the input trigger while the widget is
highlighted, or through a call to the select()
function (see section 13.3.4).

91 SCRIPTS | ACAT Developer’s Guide

Macro Description

@SelectedRow The row of widgets that is currently
selected. A row is tagged as ‘selected’ if the
user actuates the input trigger while the row
is highlighted, or through a call to the
select() function (see section 13.3.4).

@SelectedBox The box (or grid) of rows that is currently
selected. A box is tagged as ‘selected’ if the
user actuates the input trigger while the row
is highlighted, or through a call to the
select() function (see section 13.3.4).

92 COMMAND PROCESSING | ACAT Developer’s Guide

14. COMMAND PROCESSING

14.1 Introduction

Commands are actions that are performed when the user actuates a widget through
the input trigger switch. Commands are assigned to widgets in one of two ways:

1. By setting the value attribute for a widget in the WidgetAttributes section of
the Panel configuration file (see section 8.3.2.1).

2. Through the run command (see section 13.3.8) in the Animations section of
the Panel configuration file (see section 8.3.2.3).

3. By mapping the command to input switches through the Actuator
configuration file. (see section 6.3). You can also use the ACAT Config utility
to map commands to input switches.

14.2 Command Handlers

Commands are first sent to the currently active Panel. If the Panel does not handle it,
the command is sent to the currently active Agent. Details on handling commands by
Panels and Agents follow.

14.2.1 Panel Command Handlers

Scanners and Menus must implement command dispatchers to intercept and execute
commands resulting from widget actuations by the user. Dialogs do not implement
command handlers.

The RunCommandDispatcher class in Panel Management component processes
commands. This class has a method called Execute() which is invoked to execute the
command. Scanners and Menus implement the IScannerPanel interface. One of the
properties of this interface is CommandDispatcher .

RunCommandDispatcher CommandDispatcher { get; }

ACAT invokes the Execute method in the returned object to execute a command.

14.2.1.1 DefaultCommandDispatcher

The DefaultCommandDispatcher class in the ACAT Extension library handles most
of the commands. See section 14.3 for a list of commands supported by this class. If
the Panel uses commands from the default list, it can return a
DefaultCommandDispatcher object as the return value of the
CommandDispatcher property.

14.2.1.2 Custom Commands

The following table lists steps to handle commands that are not in the default
command list (see section 14.3) or to override handling of the default commands.

93 COMMAND PROCESSING | ACAT Developer’s Guide

Step What to do

1
Define a class in the Panel class, say, CommandHandler. Derive this
class from RunCommandHandler.

2

Override the Execute method in CommandHandler and add code to
handle the custom commands. Example below handles custom
commands CmdFooBar1 and CmdFooBar2.

public override bool Execute(ref bool handled)

 {

 handled = true;

 switch (Command)

 {

 case "CmdFooBar1":

 // Add code to handle this command

 break;

 case "CmdFooBar2":

 // Add code to handle this command

 break;

 default:

 handled = false;

 break;

 }

 return true;

 }

3
Define a class in the Panel class, say, Dispatcher. Derive this class
from DefaultCommandDispatcher.

4

In the constructor of Dispatcher, add the custom commands as shown
below.

Commands.Add(new CommandHandler("CmdFooBar1"));

Commands.Add(new CommandHandler("CmdFooBar2"));

5
Instantiate the Dispatcher object in the Panel class constructor.

_dispatcher = new Dispatcher(this);

94 COMMAND PROCESSING | ACAT Developer’s Guide

Step What to do

6

Return it in the getter for the CommandDispatcher property.

public RunCommandDispatcher CommandDispatcher

{

 get { return _dispatcher; }

}

7

To override the handling of default commands, override the Execute
method in the Dispatcher class and add handlers for the default
command. For instance, to override the default handling of
CmdTalkWindowToggle which toggles the visibility of the Talk
window:

public override bool Execute(ref bool handled)

{

 bool retVal = true;

 switch (Command)

 {

 case "CmdTalkWindowToggle":

 // Add code to handle this command

 break;

 default:

 retVal = base.Execute(ref handled);

 break;

 }

 return retVal;

}

14.2.2 Agent Command Handlers

ACAT invokes the OnRunCommand function in the Agent class to execute
commands. All Agent classes derive from the AgentBase base class which has the
base class implementation of this function. Override OnRunCommand in the Agent
class implementation to handle the command, and call the base class implementation
if not handled.

14.3 ACAT Commands

This section lists the commands supported by the ACAT Extension library. Any
commands not listed here must be handled by the scanner (see section 14.2.1) or by
the agent (see section 14.2.2).

14.3.1 Functional Agents Activation Commands

The following commands activate Functional agents.

95 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdSwitchWindows

Activates the Functional agent that enables the
user to shift focus between windows of the
currently active foreground application.

CmdFileBrowserOpen
Activates the File Browser functional agent to
open files.

CmdFileBrowserDelete
Activates the File Browser functional agent to
delete files.

CmdCreateFile
Activates the Functional agent that enables the
user to create new text and Word documents.

CmdSwitchApps

Activates the Functional agent that enables the
user to shift focus between active windows on the
desktop.

CmdLockScreen Activates the screen lock scanner.

CmdLaunchApp
Activates the Functional agent that enables the
user to launch applications.

CmdShowAbbreviationSet

tings

Activates the Functional agent that manages
Abbreviations – edit/add/delete abbreviations.

CmdPhraseSpeak Activates the Phrase speak scanner.

CmdShowEditPhrasesSett

ings
Displays the phrases editor to
add/edit/delete/order phrases.

CmdLectureManager Activates the Lecture Manager to deliver lectures.

96 COMMAND PROCESSING | ACAT Developer’s Guide

14.3.2 Window Management Commands

The following commands manage the active application window.

Command Description

CmdCloseWindow Closes the active window.

CmdMoveWindow
Enables the user to reposition the active window
on the desktop.

CmdSizeWindow Enables the user to resize the active window.

CmdMinimizeWindow Minimizes the active window.

CmdMaxRestoreWindow
Toggles the active window between Maximize
and Restore.

CmdMaximizeWindow Maximizes the active window

CmdRestoreWindow Restores the active window.

CmdSnapWindowToggle

Partially maximizes the active window. The size
of the partially maximized window is controlled
by the user preference setting
WindowSnapSizePercent (see xxx).

CmdMaximizePartialMaxi

mizeToggle

Toggles the size of the active window between
Maximize and partial Maximize.

14.3.3 Talk Window Management Commands

The following commands manage the Talk window.

Command Description

97 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdTalkWindowToggle Toggles the visibility of the Talk window.

CmdTalkWindowShow Shows the Talk window.

CmdTalkWindowClear Clears the text in the Talk window.

CmdTalkWindowClose Closes the Talk window.

CmdTalkApp Displays the Talk application scanner.

14.3.4 Function Key Commands

The following commands activate Function keys.

Command Description

F1 The F1 key.

F2 The F2 key.

F3 The F3 key.

F4 The F4 key.

F5 The F5 key.

F6 The F6 key.

F7 The F7 key.

F8 The F8 key.

98 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

F9 The F9 key.

F10 The F10 key.

F11 The F11 key.

F12 The F12 key.

14.3.5 Key Commands

The following commands activate the modifier keys.

Command Description

CmdShiftKey Toggles the state of the Shift key.

CmdCtrlKey Toggles the state of the Ctrl key.

CmdAltKey Toggles the state of the Alt key.

CmdCapsLock Toggles the state of Caps Lock key.

CmdNumLock Toggles the state of the Num Lock key.

CmdScrollLock Toggles the state of the Scroll Lock key.

CmdEnterKey Stimulates an ENTER key press.

CmdCommaKey Stimulates a comma key press.

CmdPeriodKey Stimulates a period key press.

99 COMMAND PROCESSING | ACAT Developer’s Guide

14.3.6 Scanner Reposition/Resize Commands

The following commands reposition/resize the scanner.

Command Description

CmdAutoPositionScanner
Launches the auto-position scanner that enables
the user to select the Panel position.

CmdPositionScannerTopR

ight

Repositions the Panel to the top right corner of
the display.

CmdPositionScannerTopL

eft
Repositions the Panel to the top left corner of the
display.

CmdPositionScannerBott

omRight

Repositions the Panel to the bottom right corner
of the display.

CmdPositionScannerBott

omLeft
Repositions the Panel to the bottom left corner of
the display.

CmdScannerZoomIn Makes the scanner larger.

CmdScannerZoomOut Makes the scanner smaller.

CmdScannerZoomDefault Resets scanner to its default size.

14.3.7 Clipboard Commands

The following commands perform clipboard operations.

Command Description

CmdCut Cut to clipboard.

100 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdCopy Copy to clipboard.

CmdPaste Paste from clipboard.

14.3.8 Navigation Commands

The following commands perform navigation in the active window.

Command Description

CmdPrevChar Activates the Left arrow key.

CmdNextChar Activates the Right arrow key.

CmdPrevLine Activates the Up arrow key.

CmdNextLine Activates the Down arrow key.

CmdPrevWord Moves the caret to the previous word (Ctrl+Left).

CmdNextWord Moves the caret to the next word (Ctrl+Right).

CmdPrevPara
Moves the caret to the beginning of the previous
paragraph.

CmdNextPara
Moves the caret to the beginning of the next
paragraph.

CmdPrevPage Activates the Page Up key.

CmdNextPage Activates the Page Down key.

101 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdHome Activates the Home key.

CmdEnd Activates the End key.

CmdTopOfDoc Moves the caret to the top of the document.

CmdEndOfDoc Moves the caret to the bottom of the document.

14.3.9 Scanner Display Commands

The following commands display the various scanners.

Command Description

CmdPunctuationScanner Displays the Punctuations scanner.

CmdCursorScanner Displays the Cursor scanner.

CmdMouseScanner Displays the Mouse scanner.

CmdFunctionKeyScanner Displays the function key scanner.

CmdNumberScanner Displays the numbers scanner.

14.3.10 Menu Display Commands

The following commands display the various menus.

Command Description

CmdMainMenu Displays the Main menu.

102 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdSettingsMenu Displays the Settings menu.

CmdContextMenu Displays the Contextual menu.

CmdToolsMenu Displays the Tools menu.

14.3.11 Dialog Display Commands

The following commands display the various dialogs.

Command Description

CmdSwitchLanguage
Displays the dialog to change the current
language in ACAT.

CmdShowGeneralSettings Displays the General Settings dialog.

CmdShowScanSettings Displays the Scanner Settings dialog.

CmdShowWordPredictionS

ettings
Displays the Word Prediction Settings dialog.

CmdShowMouseGridSettin

gs
Displays the Mouse Grid Settings dialog.

CmdShowVoiceSettings Displays the Text-to-Speech Settings dialog.

CmdShowScreenLockScree

nSettings
Displays the Mute Screen Settings dialog.

CmdResizeRepositionSca

nner

Displays the dialog to reposition/resize the
scanner.

103 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdShowAboutBox Displays the About box.

14.3.12 Zoom Commands

The following commands perform zoom operations. Note that these are applicable
only if the active window supports it, e.g., Web Browsers, Acrobat Reader, and MS
Word etc.

Command Description

CmdZoomIn Zooms-in.

CmdZoomOut Zooms-out.

CmdZoomFit Zooms to fit in window.

14.3.13 Mouse Commands

The following commands control the mouse.

Command Description

CmdRightClick Clicks the mouse right button.

CmdLeftClick Clicks the mouse left button.

CmdLeftDoubleClick Double-clicks the mouse left button.

CmdLeftClickAndHold Clicks and holds the mouse left button.

CmdRightDoubleClick Double-clicks the mouse right button.

104 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdRightClickAndHold Clicks and holds the mouse right button.

CmdMoveCursorNW
Moves the mouse cursor one pixel in the
northwest direction.

CmdMoveCursorN Moves the mouse cursor one pixel up..

CmdMoveCursorNE
Moves the mouse cursor one pixel in the
northeast direction.

CmdMoveCursorW Moves the mouse cursor one pixel left.

CmdMoveCursorE Moves the mouse cursor one pixel right.

CmdMoveCursorSW
Moves the mouse cursor one pixel in the
southwest direction.

CmdMoveCursorS Moves the mouse cursor one pixel down.

CmdMoveCursorSE
Moves the mouse cursor one pixel in the
southeast direction.

14.3.14 Document Editing Commands

The following commands apply when editing a document.

Command Description

CmdUndoLastEditChange

Undoes the last editing change such as typing a
character, selecting a word from the word
prediction list, auto-completing a word.

105 COMMAND PROCESSING | ACAT Developer’s Guide

Command Description

CmdUndo Undoes the last operation (Ctrl-Z).

CmdRedo Redoes the last operation (Ctrl-Y).

CmdSelectModeToggle
Toggles the select mode. If select mode is ON,
using any of the navigation keys selects the text.

CmdFind Finds text (Ctrl-F).

CmdSelectAll Selects everything. (Ctrl-A).

CmdDeletePrevChar Deletes the previous character (Backspace).

CmdDeleteNextChar Deletes the next character (the Delete key)

CmdDeletePrevWord Deletes the previous word.

14.3.15 Miscellaneous Commands

Command Description

CmdGoBack
Closes the current scanner and displays the
parent scanner.

CmdRestartScanning Restarts the scanning sequence.

CmdExitAppWithConfirm
Displays a confirmation dialog and exits the
application.

CmdExitApp Exits the application.

106 SETTINGS | ACAT Developer’s Guide

15. SETTINGS

15.1 Introduction

ACAT user preferences are stored in a file called Settings.xml which is located in the
ACAT User folder [INSTALLDIR]\Users\[USERNAME]\Profiles\[PROFILENAME].
The name of the default user is “Default” and the default profile is also “Default”. For
the default user/profile, the settings file is located under
[INSTALLDIR]\Users\DefaultUser\Profiles\Default.

There are a number of settings to control the behavior of ACAT. Some of these
settings can be modified by the user through the ACAT Settings menu (refer to the
ACAT User Guide). All the settings can be modified by using the ACAT Config utility.

15.2 Settings

The remainder of this section lists all the ACAT settings. The ACATPreferences class
in the ACAT Extension Library holds all these settings. The class marked as
Serializable and the settings are serialized and de-serialized to Settings.xml.

The settings listed here are grouped by functionality.

15.2.1 Scanning Settings

The settings listed in this section are related to scanning – timings, number of
iterations etc.

Setting Description

ScanTime

The length of time each element stays highlighted
while scanning. This applies to scanners only.
Timings for menus and dialogs are controlled by
the MenuDialogScanTime setting.

Type: Integer
Units: Milliseconds
Default: 1000

107 SETTINGS | ACAT Developer’s Guide

Setting Description

FirstPauseTime

The additional length of time the first element
stays highlighted. The value is added on to the
ScanTime setting. Selecting the very first
element in a box, or a row can be a challenge as
the user may have to activate the input switch in
quick succession. FirstPauseTime tags on an
additional delay for the first element to give the
user enough time to select it. For instance, if the
scan time is set to 1000 milliseconds and
FirstPauseTime is set to 250 milliseconds, the
first element in a scanner will stay highlighted for
1250 milliseconds.

Type: Integer
Units: Milliseconds
Default: 250

WordPredictionFirstPau

seTime

The additional length of time the first word in the
word prediction list stays highlighted. The value
is added on to the ScanTime setting. Selecting
the first word in the prediction list can be
challenge as the user may have to activate the
input switch in quick succession.

Type: Integer
Units: Milliseconds
Default: 600

MenuDialogScanTime

Length of time each element stays highlighted in
menus and dialogs

Type: Integer
Units: Milliseconds
Default: 1000

108 SETTINGS | ACAT Developer’s Guide

Setting Description

FirstRepeatTime

Some buttons have a ‘repeat’ behavior. Even after
they are selected, they stay highlighted for an
additional length of time to enable the user to
select them again with the input switch trigger.
This is applicable to navigation keys for instance.
If the user selects a down arrow to go to the next
line, it is quite likely she want to keep the down
arrow pressed. The FirstRepeatTime setting
gives the user additional time to continue
selecting the same button. This is analogous to
keeping a key pressed on a physical keyboard.

Type: Integer
Units: Milliseconds
Default: 1000

MinActuationHoldTime

This is the length of time the user’s input switch
should be held down in order for ACAT to
recognize it as a valid trigger event. For instance,
if a button (such as a mouse button) is used as a
trigger, and this setting is set to 200, the user
must hold the button down for at least 200
milliseconds for a trigger event to activate.
Setting this to too low a value will result in a large
number of false positives.

Type: Integer
Units: Milliseconds
Default: 50

GridScanIterations

The number of times to scan the top-level widgets
in a scanner. For instance, the widgets in the
Alphabet scanner are divided into three grids.
This setting controls the number of times to scan
these grids.

Type: Integer
Default: 4

109 SETTINGS | ACAT Developer’s Guide

Setting Description

RowScanIterations

The widgets in a scanner are arranged in rows.
This setting controls the number of times to scan
the rows.

Type: Integer
Default: 1

ColumnScanIterations

The number of times to scan the widgets in a row
in a scanner.

Type: Integer
Default: 1

StripScannerColumnIter

ations

The number of times to scan the widgets in a strip
scanner. A strip scanner is typically used to
display accented characters in languages such as
French, Spanish etc.

Type: Integer
Default: 2

WordPredictionScanIter

ations

The number of times the words in the word
prediction list are scanned.

Type: Integer
Default: 1

ScreenLockScanIteratio

ns

The number of times the numbers in the screen
unlock PIN scanner are scanned.

Type: Integer
Default: -1 (scan forever)

110 SETTINGS | ACAT Developer’s Guide

Setting Description

SelectClick

Set this to true to play an audio beep every time
the input switch is triggered. The sound file
played is beep.wav located in the Assets\Sounds
folder.

Type: String
Values: true, false
Default: false

15.2.2 Scanner Appearance

The settings listed here are related to the visual appearance of the panels.

Setting Description

FontName

The default font to use for displaying text in the
panels. The WidgetAttribute element (see
section 0) in panel configuration files has the font
name has one of the attributes. If the font name is
not specified in the panel configuration file, this
setting is used.

Type: String
Default: Arial

FontSize

The default font size to use for displaying text in
the panels. The WidgetAttribute element (see
section 0) in panel configuration files has the font
size has one of the attributes. If the size is not
specified in the panel configuration file, this
setting is used.

Type: Integer
Default: 18

111 SETTINGS | ACAT Developer’s Guide

Setting Description

ScannerScaleFactor

Used to scale the size of the scanner up or down.
Higher the value, larger the scanner. The default
value of 10.0 displays the scanner unscaled.

Type: Float
Default: 10.0

AutoSaveScannerLastPos

ition

When the user repositions the scanner to one of
the corners of the display, the position is saved
permanently if this is set to true. Otherwise, the
positon is reset when the application restarted.

Type: String
Values: true, false
Default: false

AutoSaveScannerScaleFa

ctor

If the scanner is resized, save its size permanently
if this is set to true.

Type: String
Values: true, false
Default: true

ScanDisabledElements

Widgets on panels can be enabled/disabled
depending on the current context. For instance, if
the Talk window is empty, the button that clears
the Talk window is disabled.
If this setting is set to true, disabled widgets are
scanned. Otherwise they are skipped over and
only widgets that are enabled are scanned.

Type: String
Values: true, false
Default: true

112 SETTINGS | ACAT Developer’s Guide

Setting Description

ScannerPosition

The default position of the panels on the screen.
The panels can be positioned in one of the four
corners.

Type: String
Values: TopRight, TopLeft, BottomLeft,
 BottomRight
Default: MiddleRight

HideScannerOnIdle

If set to true, the active panel will auto-hide after
a period of inactivity, i.e., when no input switch
trigger is detected. The time span for the period
of inactivity is controlled by HideOnIdleTimeout
setting. The panel is shown when an input switch
trigger is detected.

Type: String
Values: true, false
Default: false

HideOnIdleTimeout

The idle time period of inactivity in milliseconds.
If no input switch trigger is detected for this time
interval, ACAT will auto-hide the active panel.
The panel is shown when an input switch trigger
is detected.

Type: Integer
Default: 5000

PreferredPanelConfigNa

mes

The names of the preferred scanner
configurations to use. See section 8.4 for a
detailed description of scanner configurations

Type: String
Default: MenusWithText

15.2.3 Log Settings

The settings listed here are related to logging ACAT activity.

113 SETTINGS | ACAT Developer’s Guide

Setting Description

DebugMessagesEnable

Setting this to true enables debug trace logging.
This should be always be turned off, and enabled
only for troubleshooting. Turning it on may affect
performance. To view the debug messages, a
utility such as DebugView
(https://download.sysinternals.com/files/DebugView.zip)
may be used.

Type: String
Values: true, false
Default: false

DebugLogMessagesToFile

This setting applies only if
DebugMessagesEnable is set to true. Setting this
to true enables all logging all debug trace
messages to a file. The log files are stored in the
Logs folder under the ACAT install directory.
This should enabled only for troubleshooting as it
can affect performance and also consume disk
space.

Type: String
Values: true, false
Default: false

AuditLogEnable

Setting this true enables logging of Audit log
messages. Auditing ACAT logs events such as
switch activation, activating contextual menus,
activating windows etc. This logs user activity
and should be used only for troubleshooting or
user study. With each audit event, time stamps
and meta-data are also logged. All audit log file
are stored in the AuditLogs folder under the
ACAT install directory. The AuditLogFilter
setting controls which type of events are audited.

Type: String
Values: true, false
Default: false

https://download.sysinternals.com/files/DebugView.zip

114 SETTINGS | ACAT Developer’s Guide

Setting Description

AuditLogFilter

Applies only if AuditLogEnable is set to true.
This is a semi-colon delimited names of events to
be logged. A value of * logs all events. The names
of events are:

Abbreviation: When the user expands an
abbreviation.
ActiveWindowChange: Whenever active focus
changes on the desktop.
AnimationEnd: When scanning sequence ends
on a panel.
AutoComplete: When the user auto-completes a
word by selecting one from the word prediction
list.
FocusChanged: When focus changes from one
control to another in the active application
window.
MouseMover: When the user activates the mouse
mover in the Mouse scanner to move the mouse
on the desktop.
MuteScreen: When the Mute screen is activated.
ScannerActivity: Logs events related to a panel
such as panel display, panel close etc.
TalkWindow: When the talk window is shown
or closed.
TextToSpeech: When text is converted to speech.
SwitchActuate: When a switch trigger is
detected.
UISwitchDetect: When the scanner receives the
switch trigger event and a widget is activated as a
result.

Type: String
Default: *

115 SETTINGS | ACAT Developer’s Guide

15.2.4 Talk Window Settings

These are settings related to the Talk window.

Setting Description

RetainTalkWindowContent

sOnHide

Setting this to true retains the text in the Talk
window when it is closed and restores the text
when the Talk window is displayed.

Type: String
Values: true, false
Default: true

TalkWindowFontSize

Size of the font in the Talk window. A value of
0.0 uses the default font size.

Type: Float
Default: 0.0

ShowTalkWindowOnStartup

Settings this to true displays the Talk window
when the ACAT application is launched.

Type: String
Values: true, false
Default: true

SnapTalkWindow

Set this to true to vertically stretch the Talk
window from the top of the display to the
bottom.

TalkWindowDisplayDateTi

meEnable

Setting this to true displays the current date
and time in the Talk window.

Type: String
Values: true, false
Default: true

116 SETTINGS | ACAT Developer’s Guide

Setting Description

TalkWindowDisplayDateFo

rmat

If TalkWindowDisplayDateTimeEnable is set
to true, this setting controls the format of the
date field in the date/time stamp. See
https://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.110%29.aspx
for details on the format string.

Type: String
Default: ddd, MMM d, yyyy

TalkWindowDisplayTimeFo

rmat

If TalkWindowDisplayDateTimeEnable is set
to true, this setting controls the format of the
time field in the date/time stamp. See
https://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.110%29.aspx
for details on the format string.

Type: String
Default: h:mm tt

15.2.5 Word Prediction Settings

These are settings related to the Word prediction.

Setting Description

WordPredictionCount

The number of words to display in the word
prediction list in the Alphabet scanner.

Type: Integer
Default: 10

https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx

117 SETTINGS | ACAT Developer’s Guide

Setting Description

EnableWordPredictionDy

namicModel

This setting is valid only if the Word Prediction
extension supports learning. ACAT adds text to
the word prediction model during text entry.
This improves the accuracy and relevancy of next-
word prediction. Set this to true to enable
learning.

Type: String
Values: true, false
Default: true

WordPredictionNGram

Word predictors are usually based on N-Gram
algorithms where the previous N words in the
current sentence are used to predict the next
word. This settings controls N. The allowable
values depend on the capabilities of the Word
Predictor.

Type: Integer
Default: 4

WordPredictionFilterPu

nctuations

Some Word Prediction return punctuations such
as periods and commas as punctuations
depending on the words typed so far. Setting this
to true filters these out.

Type: String
Values: true, false
Default: true

WordPredictionFilterMa

tchPrefix

Display words in the prediction list that match the
prefix of the word entered so far. The number of
letters in the prefix to match is controlled by the
WordPredictionFilterMatchPrefixLengthAdjus
t setting.

Type: String
Values: true, false
Default: false

118 SETTINGS | ACAT Developer’s Guide

Setting Description

WordPredictionFilterMa

tchPrefixLengthAdjust

Length of the prefix to match when filtering
words (valid only if
WordPredictionFilterMatchPrefix is set to
true).

Type: Integer
Default: 1

PrefixNumbersInWordPredic

tionList

Setting this to true prefixes index numbers to the
words in the word prediction list in the Alphabet
scanner.

Type: String
Values: true, false
Default: true

SeedWordPredictionOnNewSe

ntence

On the start of a new sentence, ignore context
from previous sentence.

Type: String
Values: true, false
Default: true

15.2.6 Mouse Grid Scanning Settings

These settings control the movement of the mouse in the grid scanning mode. Refer
to the ACAT User Guide for details on this.

Setting Description

MouseGridRectangleSpeed

Speed of the rectangle in Mouse scanning.

Type: Integer
Range: 1, 500
Default: 40

119 SETTINGS | ACAT Developer’s Guide

Setting Description

MouseGridRectangleCycle

s

Number of Mouse rectangle scans.

Type: Integer
Range: 1, 5
Default: 2

MouseGridLineSpeed

Speed of the line in Mouse scanning.

Type: Integer
Range: 1, 500
Default: 20

MouseGridLineCycles

Number of Mouse line scans.

Type: Integer
Range: 1, 5
Default: 1

MouseGridLineWidth

Width of the grid line.

Type: Integer
Range: 1, 5
Default: 2

15.2.7 Text-to-Speech Settings

These settings control text-to-speech.

Setting Description

EnableTextToSpeech

Setting this to true enables the text to speech
feature.

Type: String
Values: true, false
Default: true

120 SETTINGS | ACAT Developer’s Guide

Setting Description

PreferredTTSEngines

Name of the extension to use for text-to-speech
conversion. See Chapter 10 for details on Text-
to-Speech extensions.

Type: String
Default: SAPI TTS Engine

UserVoiceTestString

The string to use to test text-to-speech settings.
This string is used in the Settings dialog for TTS.

Type: String
Default: "The boundary condition of the
universe is that it has no boundary. "

TTSUseBookmarks

Text-to-speech is usually an asynchronous
operation. The ‘bookmarks’ feature enables the
application to get notifications when an
asynchronous call to convert text to speech has
completed. Setting this to true enables this
feature.

Type: String
Values: true, false
Default: true

15.2.8 Screen Lock Settings

These settings control the parameters for the Mute screen (refer to the ACAT User
Guide for details on the Mute screen).

Setting Description

121 SETTINGS | ACAT Developer’s Guide

Setting Description

ScreenLockScanIteration

s

Number of scan iterations in the Screen Lock
scanner. The default value of -1 indicates that it
scans forever until the user unlocks the Screen
Lock screen by entering the correct pin.

Type: Integer
Default: -1

MutePin

The pin code that the user has to enter to unlock
the Mute screen.

Type: Integer
Default: 2589

MutePinDigitMax

The highest digit to use in the pin. If this is set
to say, 5, only 0 through 5 can be used in the
pin.

Type: Integer
Default: 9

MuteScreenDisplayDateFo

rmat

The Mute screen displays the current date/time.
This setting controls the format of the date field.
See https://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.110%29.aspx
for details on the format string.

Type: String
Default: dddd, MMMM d, yyyy

MuteScreenDisplayTimeFo

rmat

The Mute screen displays the current date/time.
This setting controls the format of the time field.
See https://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.110%29.aspx
for details on the format string.

Type: String
Default: h:mm:ss tt

https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.110%29.aspx

122 SETTINGS | ACAT Developer’s Guide

15.2.9 Miscellaneous Settings

These are settings not covered in the previous sections.

SpacesAfterPunctuation

The number of spaces to insert after a
punctuation from the ACAT scanner. The set of
punctuations includes [. ? ! , : ;’] brackets
excluded.

Type: Integer
Default: 1

ExpandAbbreviationsOnS

eparator

If this is set to true, the user has to type a space, a
Tab or one of the punctuations . ? ! , : ;’ after
typing an abbreviation. Only then is the
abbreviation expanded to its full form. If set to
false, ACAT expands immediately after the last
letter in the abbreviation is entered.

Type: String
Values: true, false
Default: false

Extensions

Semi-colon delimited names of top level folders
from which ACAT extensions are to be loaded.
The extension folders are located under the ACAT
install directory. See Chapter 4 for details on
extensions. Only the names of folders and not the
complete path should be specified.

Type: String
Default: Default

123 SETTINGS | ACAT Developer’s Guide

EnableContextualMenusF

orMenus

Setting this to true will auto-display a contextual
menu in ACAT if the user activates a menu in the
active application. The contextual menu has
options such as arrow keys, ENTER and ESCAPE
to navigate menus.

Type: String
Values: true, false
Default: true

EnableContextualMenusF

orDialogs

Setting this to true will auto-display a contextual
menu in ACAT if the user activates a dialog in the
active application. The contextual menu has
options such as Tab, Shift-Tab, ENTER and
ESCAPE to navigate dialogs.

Type: String
Values: true, false
Default: true

TimedDialogTimeout

Timeout for timed dialogs. The dialog is
dismissed automatically after this timeout
expires.

Type: Integer
Default: 3000 (msecs)

PreferredBrowser

Preferred browser to use for Google searches,
Wiki searches etc. Set this to the name of the EXE
of the browser. IExplore.exe for Internet Explorer,
Chrome.exe for Chrome, Firefox.exe for Firefox,
ApplicationFrameHost.exe for Microsoft Edge.
Leave this setting empty to use the default
browser.

Type: String
Values: IExpore.exe, Chrome.exe,
Firefox.exe, ApplicationFrameHost.exe
Default: IExplore.exe

124 SETTINGS | ACAT Developer’s Guide

NewTextFileCreateFolde

r

Full path to the folder in which new text files will
be created (This must be a valid folder).

Type: String
Default: The user’s MyDocuments folder.

NewWordDocCreateFolder

Full path to the folder in which Word documents
will be created (This must be a valid folder).

Type: String
Default: The user’s MyDocuments folder.

WindowSnapSizePercent

Horizontal size of a Snapped window as a
percentage of the width of the display.

Type: Integer
Default: 66

125 ACAT Installers | ACAT Developer’s Guide

16. ACAT INSTALLERS
This chapter covers building the installer for the ACAT applications and the ACAT
Language packs. The default version is English which must be installed. Language
packs are incremental installs over the English version.

To build the ACAT installers, the free version of InstallShield LE extensions for Visual
Studio must be installed. The Visual Studio solutions for all the installers can be
found under the $\Setup folder in the source tree.

16.1 ACAT Setup (English)

The default is the English version of ACAT. The setup project for ACAT applications
can be found under $\Setup\ACATSetup. To build the installer, follow these steps:

1. Build the release version of ACAT solution. This will create the EXE’s and
ACAT extensions under $\...\ACATApp\bin\Release.

2. Go to the $\Applications folder.
3. Run setPrepare.bat. This will copy the relevant files from the Release folder

to the $\Applications\SetupFiles folder.
4. In Visual Studio, open the solution $\Setup\ACATSetup\ACATSetup.sln.
5. Make sure SingleImage build is set as the configuration.

6. Double-click on Files in the solution explorer.

7. In the main window, remove all the files from under the Intel folder. Drag and

drop the files from $\Applications\SetupFiles folder (see Step 2) to the
Intel\ACAT folder (see figure below).

126 ACAT Installers | ACAT Developer’s Guide

Remove all the non-English folders from the tree. Only the en folders should
remain.

8. In the solution explorer, double click on Shortcuts/Folders.

9. In the main pane, remove any existing shortcuts.
10. Click on Desktop, and press the Insert key to insert a short cut. Navigate to the

Intel\ACAT folder and select the executables to which you want shortcuts.
Name them appropriately.

127 ACAT Installers | ACAT Developer’s Guide

If you are creating shortcuts to ACAT Dashboard, make sure you set the
working folder to [INSTALLDIR] as shown in the figure below.

11. Build the solution.
12. To access the installer (setup.exe), select InstallShield LE from the menu bar

and then select Open Release Folder.

16.2 Language Pack Installers

Each language pack solution folder (see section 5.1) has a Setup folder which contains
the installer for the language pack. The French language pack installer is used as an
example here. Building other language packs are similar.

1. Build the release version of ACAT. This will create the EXE’s and ACAT
extensions under $\...\ACATApp\bin\Release.

2. Open the French language pack solution from $\LanguagePacks\French.
Build the release version of the language pack solution. This will deploy the
language-specific DLL’s and XML files to $\...\ACATApp\bin\Release.

3. Run $\Applications\setPrepare.bat. This will copy the relevant files from
the Release folder to the $\Applications\SetupFiles folder.

4. In Visual Studio, open the setup project for the Language pack solution
$\LanguagePacks\French\Setup\Setup.sln.

5. Make sure SingleImage build is set as the configuration.

128 ACAT Installers | ACAT Developer’s Guide

6. Double-click on Files in the solution explorer.

7. In the main window, drag and drop the language-specific folders (French in

this case) from $\Applications\SetupFiles folder (see Step 2) to the
Intel\ACAT folder (see figure below).

8. Build the solution.
9. To access the installer (setup.exe), select InstallShield LE from the menu bar

and then select Open Release Folder.

