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Abstract. We show that various inverse problems in signal recovery can be formulated as the
generic problem of minimizing the sum of two convex functions with certain regularity properties.
This formulation makes it possible to derive existence, uniqueness, characterization, and stability
results in a unified and standardized fashion for a large class of apparently disparate problems.
Recent results on monotone operator splitting methods are applied to establish the convergence of a
forward-backward algorithm to solve the generic problem. In turn, we recover, extend, and provide
a simplified analysis for a variety of existing iterative methods. Applications to geometry/texture
image decomposition schemes are also discussed. A novelty of our framework is to use extensively
the notion of a proximity operator, which was introduced by Moreau in the 1960s.
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1. Introduction. Signal recovery encompasses the large body of inverse prob-
lems in which a multi-dimensional signal x is to be inferred from the observation of
data z consisting of signals physically or mathematically related to it [23, 66]. The
original signal x and the observation z are typically assumed to lie in some real Hilbert
spaces H and G, respectively. For instance, in image restoration [2], the objective is
to recover the original form of an image x from the observation of a blurred and noise-
corrupted version z, and therefore H = G. On the other hand, in signal reconstruction,
the data z are indirectly related to x and therefore H and G are often different spaces.
Thus, in tomography [39], a signal must be recovered from a collection of measure-
ments of lower dimensional signals; in phase retrieval, holography, or band-limited
extrapolation [44, 66], a signal must be recovered from partial measurements of its
Fourier transform.

Mathematically, signal recovery problems are most conveniently formulated as
variational problems, the ultimate goal of which is to incorporate various forms of a
priori information and impose some degree of consistency with the measured data z.
The objective of the present paper is to investigate in a unified fashion the properties
and the numerical solution of a variety of variational formulations which arise in the
following format.

Problem 1.1. Let f1 : H → ]−∞,+∞] and f2 : H → R be two proper lower semi-
continuous convex functions such that f2 is differentiable on H with a 1/β-Lipschitz
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continuous gradient for some β ∈ ]0,+∞[. The objective is to

(1.1) minimize
x∈H

f1(x) + f2(x).

The set of solutions to this problem is denoted by G.
Despite its simplicity, Problem 1.1 will be shown to cover a wide range of ap-

parently unrelated signal recovery formulations, including constrained least-squares
problems [35, 48, 63], multiresolution sparse regularization problems [10, 30, 31, 36],
Fourier regularization problems [46, 50], geometry/texture image decomposition prob-
lems [5, 6, 7, 57, 71], hard-constrained inconsistent feasibility problems [26], alternat-
ing projection signal synthesis problems [38, 60], least square-distance problems [22],
split feasibility problems [13, 15], total variation problems [19, 62], as well as certain
maximum a posteriori problems [68, 69]. Thus, our study of Problem 1.1 will not only
bring together these and other signal recovery approaches within a common simple
framework, but it will also capture and extend scattered results pertaining to their
properties (existence, uniqueness, characterization, and stability of solutions) and to
the convergence of associated numerical methods.

Our investigation relies to a large extent on convex analysis and, in particular,
on the notion of a proximity operator, which was introduced by Moreau in [53]. Sec-
tion 2 will provide an account of the main properties of these operators, together
with specific examples. In Section 3, we study the properties of Problem 1.1 and
analyze the convergence of a general forward-backward splitting algorithm to solve it.
The principle of this algorithm is to use at every iteration the functions f1 and f2
separately; more specifically the core of an iteration consists of a forward (explicit)
gradient step on f2, followed by a backward (implicit) step on f1. In the remaining
Sections 4–6, the general results of Section 3 are specialized to various settings and
the forward-backward splitting scheme is shown to reduce to familiar signal recovery
algorithms, which were obtained and analyzed by different means in the literature.
Section 4 is devoted to problems involving sums of Moreau envelopes, Section 5 to
problems with linear data formation models, and Section 6 to denoising problems.

1.1. Notation. Let X be a real Hilbert space. We denote by 〈· | ·〉 its scalar
product, by ‖ · ‖ the associated norm, and by d the associated distance; Id denotes
the identity operator on X and B(x; ρ) the closed ball of center x ∈ X and radius
ρ ∈ ]0,+∞[. The expressions xn ⇀ x and xn → x denote, respectively, the weak and
the strong convergence to x of a sequence (xn)n∈N in X .

Let ϕ : X → [−∞,+∞] be a function. The domain and the epigraph of ϕ are
domϕ =

{
x ∈ X | ϕ(x) < +∞

}
and epiϕ =

{
(x, η) ∈ X × R | ϕ(x) ≤ η

}
, respec-

tively; ϕ is lower semicontinuous if epiϕ is closed in X × R, and convex if epiϕ is
convex in X ×R. Γ0(X ) is the class of all lower semicontinuous convex functions from
X to ]−∞,+∞] that are not identically +∞.

Let C be a subset of X . The interior of C is denoted by intC and its closure by C.
If C is nonempty, the distance from a point x ∈ X to C is dC(x) = inf ‖x− C‖; if C
is also closed and convex then, for every x ∈ X , there exists a unique point PCx ∈ C
such that ‖x− PCx‖ = dC(x). The point PCx is the projection of x onto C and it is
characterized by the relations

(1.2) PCx ∈ C and (∀z ∈ C) 〈z − PCx | x− PCx〉 ≤ 0.

2. Proximity operators. This section is devoted to the notion of a proximity
operator, which was introduced by Moreau in 1962 [53] and further investigated in
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[54, 55] as a generalization of the notion of a convex projection operator. Though
convex projection operators have been used extensively in nonlinear signal recovery
(see [21, 23, 66, 67, 74] and the references therein), the use of proximity operators
seems to have been initiated in [24]. Throughout, X and Y are real Hilbert spaces.

2.1. Elements of convex analysis. We recall key facts in convex analysis.
Details and further results will be found in [76].

Let ϕ ∈ Γ0(X ). The conjugate of ϕ is the function ϕ∗ ∈ Γ0(X ) defined by

(2.1) (∀u ∈ X ) ϕ∗(u) = sup
x∈X

〈x | u〉 − ϕ(x).

Moreover, ϕ∗∗ = ϕ. For instance, the conjugate of the indicator function of a
nonempty closed convex set C, i.e.,

(2.2) ιC : x 7→

{
0, if x ∈ C;

+∞, if x /∈ C,

is the support function of C, i.e.,

(2.3) ι∗C = σC : u 7→ sup
x∈C

〈x | u〉.

Consequently,

(2.4) σ∗
C = ι∗∗C = ιC .

The subdifferential of ϕ is the set-valued operator ∂ϕ : X → 2X the value of which at
x ∈ X is

(2.5) ∂ϕ(x) =
{
u ∈ X | (∀y ∈ X ) 〈y − x | u〉 + ϕ(x) ≤ ϕ(y)

}

or, equivalently,

(2.6) ∂ϕ(x) =
{
u ∈ X | ϕ(x) + ϕ∗(u) = 〈x | u〉

}
.

Accordingly (Fermat’s rule),

(2.7) (∀x ∈ X ) ϕ(x) = inf ϕ(X ) ⇔ 0 ∈ ∂ϕ(x).

Moreover, if ϕ is (Gâteaux) differentiable at x with gradient ∇ϕ(x), then ∂ϕ(x) =
{∇ϕ(x)}. Now, let C be a nonempty closed convex subset of X . Then the normal
cone operator of C is

(2.8) NC = ∂ιC : x 7→

{{
u ∈ X | (∀y ∈ C) 〈y − x | u〉 ≤ 0

}
, if x ∈ C;

∅, otherwise.

Furthermore,

(2.9) (∀x ∈ X ) ∂dC(x) =





{
x− PCx

dC(x)

}
, if x /∈ C;

NC(x) ∩B(0; 1), if x ∈ C.

Lemma 2.1. [76, Corollary 2.4.5] Let (φk)1≤k≤m be functions in Γ0(X ), let Xm

be the standard Hilbert product space, and let ϕ : Xm → ]−∞,+∞] : (xk)1≤k≤m 7→∑m
k=1 φk(xk). Then ∂ϕ =×m

k=1∂φk.
Lemma 2.2. Let ϕ ∈ Γ0(Y), let ψ ∈ Γ0(X ), and let L : X → Y be a bounded

linear operator such that 0 ∈ int
(
domϕ− L(domψ)

)
. Then
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(i) ∂(ϕ ◦ L+ ψ) = L∗ ◦ (∂ϕ) ◦ L+ ∂ψ [76, Theorem 2.8.3].
(ii) infx∈X

(
ϕ(Lx)+ψ(x)

)
= −minv∈Y

(
ϕ∗(v)+ψ∗(−L∗v)

)
(Fenchel-Rockafellar

duality formula) [76, Corollary 2.8.5].

2.2. Firmly nonexpansive operators.

Definition 2.3. An operator T : X → X is firmly nonexpansive if it satisfies
one of the following equivalent conditions:

(i) (∀(x, y) ∈ X 2) ‖Tx− Ty‖2 ≤ 〈Tx− Ty | x− y〉.
(ii) (∀(x, y) ∈ X 2) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(Id −T )x− (Id −T )y‖2.
It follows immediately that a firmly nonexpansive operator T : X → X is nonex-

pansive, i.e.,

(2.10) (∀(x, y) ∈ X 2) ‖Tx− Ty‖ ≤ ‖x− y‖.

2.3. Proximity operators. The Moreau envelope of index γ ∈ ]0,+∞[ of a
function ϕ ∈ Γ0(X ) is the continuous convex function

(2.11) γϕ : X → R : x 7→ inf
y∈X

ϕ(y) +
1

2γ
‖x− y‖2.

For every x ∈ X , the infimum in (2.11) is achieved at a unique point proxγϕ x which
is characterized by the inclusion

(2.12) x− proxγϕ x ∈ γ∂ϕ
(
proxγϕ x

)
.

The operator

(2.13) proxϕ : X → X : x 7→ argmin
y∈X

ϕ(y) +
1

2
‖x− y‖2

thus defined is called the proximity operator of ϕ. Let us note that, if ϕ = ιC , then

(2.14) γϕ =
1

2γ
d2
C and proxγϕ = PC .

Proximity operators are therefore a generalization of projection operators.
Lemma 2.4. Let ϕ ∈ Γ0(X ). Then proxϕ and Id − proxϕ are firmly nonexpan-

sive.
Proof. The first assertion appears implicitly in [55], we detail the argument for

completeness. Take x and y in X . Then (2.12) and (2.5) yield

(2.15)

{〈
proxϕ y − proxϕ x | x− proxϕ x

〉
+ ϕ(proxϕ x) ≤ ϕ(proxϕ y)〈

proxϕ x− proxϕ y | y − proxϕ y
〉

+ ϕ(proxϕ y) ≤ ϕ(proxϕ x).

Adding these two inequalities, we obtain

(2.16) ‖ proxϕ x− proxϕ y‖
2 ≤

〈
proxϕ x− proxϕ y | x− y

〉
.

The second assertion follows at once from the symmetry between T and Id −T in
Definition 2.3(ii).

Lemma 2.5. Let ϕ ∈ Γ0(X ) and γ ∈ ]0,+∞[. Then γϕ is Fréchet-differentiable
on X and ∇( γϕ) = (Id − proxγϕ)/γ.

Proof. A routine extension of [55, Proposition 7.d], where γ = 1.

4



2.4. Proximal calculus.

Lemma 2.6. Let ϕ ∈ Γ0(X ) and x ∈ X . Then we have the following.
(i) Quadratic perturbation: Let ψ = ϕ + α‖ · ‖2/2 + 〈· | u〉 + β, where u ∈ X ,

α ∈ [0,+∞[, and β ∈ R. Then proxψ x = proxϕ/(α+1)

(
(x− u)/(α+ 1)

)
.

(ii) Translation: Let ψ = ϕ(·−z), where z ∈ X . Then proxψ x = z+proxϕ(x−z).
(iii) Scaling: Let ψ = ϕ(·/ρ), where ρ ∈ Rr{0}. Then proxψ x = ρ proxϕ/ρ2(x/ρ).
(iv) Reflection: Let ψ : y 7→ ϕ(−y). Then proxψ x = − proxϕ(−x).
(v) Moreau envelope: Let ψ = γϕ, where γ ∈ ]0,+∞[. Then

(2.17) proxψ x = x+
1

γ + 1

(
prox(γ+1)ϕ x− x

)
.

Proof. We observe that in all cases ψ ∈ Γ0(X ). Now set p = proxψ x. As seen in
(2.12), this is equivalent to x− p ∈ ∂ψ(p).

(i): It follows from Lemma 2.2(i) and (2.12) that x−p ∈ ∂ψ(p) ⇔ x−p ∈ ∂ϕ(p)+
αp+u⇔ (x−u)/(α+1)− p ∈ ∂

(
ϕ/(α+1)

)
(p) ⇔ p = proxϕ/(α+1)

(
(x−u)/(α+1)

)
.

(ii): It follows from (2.12) that x − p ∈ ∂ψ(p) ⇔ x− p ∈ ∂ϕ(p− z) ⇔ (x − z) −
(p− z) ∈ ∂ϕ(p− z) ⇔ p− z = proxϕ(x− z).

(iii): It follows from Lemma 2.2(i) and (2.12) that x − p ∈ ∂ψ(p) ⇔ x − p ∈
ρ−1∂ϕ(p/ρ) ⇔ x/ρ− p/ρ ∈ ∂

(
ϕ/ρ2

)
(p/ρ) ⇔ p = ρ proxϕ/ρ2(x/ρ).

(iv): Set ρ = −1 in (iii).
(v): See [27, Lemma 2.2].
Lemma 2.7. Let ψ = ‖ · ‖2/(2γ) − γϕ, where γ ∈ ]0,+∞[ and ϕ ∈ Γ0(X ), and

let x ∈ X . Then ψ ∈ Γ0(X ) and

(2.18) proxψ x = x−
1

γ
prox γ2

γ+1
ϕ

(
γx

γ + 1

)
.

Proof. Let ̺ = γϕ + ‖ · ‖2/2. Then clearly ̺ ∈ Γ0(X ) and hence ̺∗ ∈ Γ0(X ).
However, since (2.1) and (2.11) imply that ψ = ̺∗/γ, we obtain ψ ∈ Γ0(X ). Let us also
observe that Lemma 2.5 asserts that ψ is differentiable with gradient ∇ψ = proxγϕ /γ.
Consequently, it follows from (2.12) that

p = proxψ x⇔ x− p =
(
proxγϕ p

)
/γ

⇔ p− γ(x− p) ∈ γ∂ϕ
(
γ(x− p)

)

⇔
γx

γ + 1
− γ(x− p) ∈

γ2

γ + 1
∂ϕ
(
γ(x− p)

)

⇔ γ(x− p) = prox γ2

γ+1
ϕ

(
γx

γ + 1

)

⇔ p = x−
1

γ
prox γ2

γ+1
ϕ

(
γx

γ + 1

)
.(2.19)

Lemma 2.8. Let ψ = ϕ ◦L, where ϕ ∈ Γ0(Y) and where L : X → Y is a bijective
bounded linear operator such that L−1 = L∗. Then proxψ = L∗ ◦ proxϕ ◦L.

Proof. It follows from the assumptions that ψ ∈ Γ0(X ). Now let (x, p) ∈ X 2.
Since L is surjective, Lemma 2.2(i) asserts that ∂ψ = L∗ ◦ (∂ϕ) ◦ L. Therefore, it
follows from (2.12) that p = proxψ x ⇔ x− p ∈ L∗

(
∂ϕ(Lp)

)
⇔ Lx−Lp ∈ ∂ϕ(Lp) ⇔

Lp = proxϕ(Lx) ⇔ p = L∗
(
proxϕ(Lx)

)
.
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Lemma 2.9. Let (φk)1≤k≤m be functions in Γ0(X ), let Xm be the standard Hilbert
product space, and let ϕ : Xm → ]−∞,+∞] : (xk)1≤k≤m 7→

∑m
k=1 φk(xk). Then

proxϕ = (proxφk
)1≤k≤m.

Proof. It is clear that ϕ ∈ Γ0(X
m). Now take (xk)1≤k≤m and (pk)1≤k≤m in Xm.

Then it follows from (2.12) and Lemma 2.1 that (pk)1≤k≤m = proxϕ(xk)1≤k≤m ⇔

(xk−pk)1≤k≤m ∈ ∂ϕ(pk)1≤k≤m =×m
k=1∂φk(pk) ⇔ (pk)1≤k≤m =

(
proxφk

xk
)
1≤k≤m

.

2.5. Moreau’s decomposition. Let V be a closed vector subspace of X with
orthogonal complement V ⊥. The standard orthogonal projection theorem, which has
far reaching applications in signal theory, states that the energy of a signal x ∈ X
can be decomposed as ‖x‖2 = d2

V (x) + d2
V ⊥(x) and that x itself can be written as

x = PV x + PV ⊥x, where 〈PV x | PV ⊥x〉 = 0. If we set ϕ = ιV , then ϕ∗ = ιV ⊥ and
it follows from (2.14) that these identities become ‖x‖2 = 2

(
1ϕ(x) + 1(ϕ∗)(x)

)
and

x = proxϕ x + proxϕ∗ x. Moreau has shown that, remarkably, this decomposition
principle holds true for any ϕ ∈ Γ0(X ).

Lemma 2.10. Let ϕ ∈ Γ0(X ), γ ∈ ]0,+∞[, and x ∈ X . Then

(2.20) ‖x‖2 = 2γ
(
γϕ(x) + 1/γ(ϕ∗)(x/γ)

)

and

(2.21) x = x⊕γ + x⊖γ , where

{
x⊕γ = proxγϕ x

x⊖γ = γ proxϕ∗/γ(x/γ).

Moreover,

(2.22) ϕ(x⊕γ ) + ϕ∗(x⊖γ /γ) =
〈
x⊕γ | x⊖γ

〉
/γ.

Proof. Using (2.11) and applying Lemma 2.2(ii) with Y = X , L = Id , and
ψ : y 7→ ‖x− y‖2/(2γ) (hence ψ∗ : v 7→ γ‖v‖2/2 + 〈x | v〉 by (2.1)), we obtain

γϕ(x) = inf
y∈X

ϕ(y) + ψ(y)

= −min
v∈X

ϕ∗(v) + ψ∗(−v)

= −min
v∈X

ϕ∗(v) +
γ

2
‖v‖2 − 〈x | v〉

=
1

2γ
‖x‖2 − min

v∈X
ϕ∗(v) +

γ

2
‖(x/γ) − v‖2

=
1

2γ
‖x‖2 − 1/γ(ϕ∗)(x/γ),(2.23)

which establishes (2.20). Next, we obtain (2.21) by differentiating (2.20) using
Lemma 2.5. Finally, we observe that (2.12) and (2.6) yield

x⊕γ = proxγϕ x⇔ x− x⊕γ ∈ γ∂ϕ(x⊕γ )

⇔ x⊖γ /γ ∈ ∂ϕ(x⊕γ )

⇔ ϕ(x⊕γ ) + ϕ∗(x⊖γ /γ) =
〈
x⊕γ | x⊖γ /γ

〉
,(2.24)

which establishes (2.22).
Remark 2.11. Let us make a few remarks concerning Moreau’s decomposition.
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(i) For γ = 1, Lemma 2.10 provides the nicely symmetric formulas

(2.25)






‖x‖2 = 2
(

1ϕ(x) + 1(ϕ∗)(x)
)

x = proxϕ x+ proxϕ∗ x

ϕ
(
proxϕ x

)
+ ϕ∗

(
proxϕ∗ x

)
=
〈
proxϕ x | proxϕ∗ x

〉
,

which correspond to Moreau’s original setting; see [53, 55], where alternate
proofs are given.

(ii) Let ϕ = ιK , where K is a closed convex cone in X (recall that K ⊂ X is a
convex cone if K +K ⊂ K and (∀α ∈ ]0,+∞[) αK ⊂ K). Then ϕ∗ = ιK⊖ ,
where K⊖ =

{
u ∈ X | (∀x ∈ K) 〈x | u〉 ≤ 0

}
is the polar cone of K. In this

case (2.25) becomes

(2.26)






‖x‖2 = d2
K(x) + d2

K⊖(x)

x = PKx+ PK⊖x

〈PKx | PK⊖x〉 = 0.

We thus obtain a decomposition of x into two orthogonal signals PKx and
PK⊖x. In signal theory, such conical decompositions appear for instance in
[14, 66, 74]. They of course subsume the usual linear orthogonal decompo-
sitions discussed at the beginning of this section. Moreau established (2.26)
prior to (2.25) in [52].

(iii) We have derived (2.21) from the energy decomposition principle (2.20). An
alternate derivation can be made using the theory of maximal monotone
operators [24].

(iv) Using Lemma 2.6(iii), we can rewrite (2.21) as

(2.27) x = x⊕γ + x⊖γ , where x⊕γ = proxγϕ x and x⊖γ = proxγϕ∗(·/γ) x.

(v) Equation (2.21) describes a powerful (generally nonlinear) signal decomposi-
tion scheme parameterized by a function ϕ ∈ Γ0(X ) and a scalar γ ∈ ]0,+∞[.
Signal denoising applications of this result will be discussed in Section 6.

2.6. Examples of proximity operators. We provide a few examples of prox-
imity operators that are of interest in signal recovery.

Example 2.12. Suppose that ϕ = 0 in Lemma 2.6(i). Then taking α = 0 shows
that the translation x 7→ x−u is a proximity operator, while taking u = 0 shows that
the transformation x 7→ κx is also a proximity operator for κ ∈ ]0, 1].

More generally, linear proximity operators are characterized as follows.
Example 2.13. [55, Section 3] Let L : X → X be a bounded linear operator.

Then L is a proximity operator if and only if L = L∗, ‖L‖ ≤ 1, and (∀x ∈ X )
〈Lx | x〉 ≥ 0.

We have already seen in (2.14) that convex projection operators are proximity
operators. More generally, the following example states that underrelaxed convex
projection operators are proximity operators.

Example 2.14. Let C be a nonempty closed convex subset of X , let γ ∈ ]0,+∞[,
and let x ∈ X . Then proxd2

C
/(2γ) x = x+ 1

γ+1

(
PCx− x

)
.

Proof. The proof is a direct consequence of (2.14) and Lemma 2.6(v).
A hard-thresholding transformation with respect to set distance, i.e.,

(2.28) x 7→

{
x, if dC(x) > γ;

PCx, if dC(x) ≤ γ,
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is not continuous and can therefore not be performed via a proximity operator (see
Lemma 2.4). However, as our next example shows, soft-thresholding transformations
can.

Example 2.15. Let C be a nonempty closed convex subset of X , let γ ∈ ]0,+∞[,
and let x ∈ X . Then

(2.29) proxγdC
x =




x+

γ

dC(x)
(PCx− x), if dC(x) > γ;

PCx, if dC(x) ≤ γ.

Proof. Suppose that p = proxγdC
x or, equivalently, that x− p ∈ γ∂dC(p). Then,

in view of (1.2) and (2.8), it follows from (2.9) that

(2.30) p ∈ C ⇒ x− p ∈ NC(p) ∩B(0; γ) ⇒

{
p = PCx

dC(x) ≤ γ

and, on the other hand, that

p /∈ C ⇒ x− p = γ

(
p− PCp

dC(p)

)

⇒ x− PCp =

(
1 +

γ

dC(p)

)
(p− PCp) ∈ NC(PCp)(2.31)

⇒ PCx = PCp.(2.32)

Consequently, we rewrite (2.31) as

p /∈ C ⇒ x− PCx =

(
1 +

γ

dC(p)

)
(p− PCp)

⇒






dC(x) = dC(p) + γ

p = x+
γ

dC(x)
(PCx− x) .

(2.33)

Now suppose that dC(x) > γ. Then p /∈ C since otherwise (2.30) would yield dC(x) ≤
γ, which is absurd. The expression of p is then supplied by (2.33). Next, suppose
that dC(x) ≤ γ. Then p ∈ C since (2.33) yields p /∈ C ⇒ dC(p) = dC(x) − γ ≤ 0 ⇒
p ∈ C = C, which is absurd. The expression of p is then supplied by (2.30).

In the above example, C can be thought of as a set of signals possessing a certain
property (see [21, 23, 29, 67, 74] for examples of closed convex sets modeling pertinent
constraints in signal recovery). If the signal x is close enough to satisfying the property
in question, then proxγdC

x is simply the projection of x onto C; otherwise, proxγdC
x

is obtained through a nonstationary underrelaxation of this projection. Here is an
important special case.

Example 2.16. Suppose that C = {0} in Example 2.15. Then (2.29) becomes

(2.34) proxγ‖·‖ x =





(
1 −

γ

‖x‖

)
x, if ‖x‖ > γ;

0, if ‖x‖ ≤ γ.

In particular, if X = R, it reduces to the well-known scalar soft-thresholding (also
known as a shrinkage) operation

(2.35) proxγ|·| x = sign(x)max{|x| − γ, 0}.
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From a numerical standpoint, Moreau’s decomposition (2.21) provides an alter-
native means to compute x⊕γ = proxγϕ x. This is especially important in situations
when it may be difficult to obtain x⊕γ directly but when the dual problem of applying
proxϕ∗/γ is easier. We can then compute x⊕γ = x− γ proxϕ∗/γ(x/γ) or, using (2.27),

(2.36) x⊕γ = x− proxγϕ∗(·/γ) x.

The following example illustrates this point.
Example 2.17. Suppose that ϕ : X → ]−∞,+∞] is defined as

(2.37) ϕ : x 7→ sup
y∈D

〈x | Ly〉,

where L : Y → X is a bounded linear operator and where D is a nonempty subset
of Y. Then ϕ ∈ Γ0(X ). Now let C be the closed convex hull of L(D). Then, using
(2.3), we can write (more generally, any positively homogeneous function ϕ in Γ0(X )
assumes this form [4, Theorem 2.4.2])

(2.38) ϕ : x 7→ sup
u∈C

〈x | u〉 = σC(x).

In turn, (2.4) yields ϕ∗ = σ∗
C = ιC and (2.14) asserts that, for every x ∈ X , we can

calculate x⊕γ through a projection operation, since (2.36) becomes

(2.39) x⊕γ = x− proxγιC(·/γ) x = x− PγCx.

In the case when ϕ is the discrete total variation functional, this approach is used
implicitly in [17].

We now provide an application of the product space setting described in
Lemma 2.9.

Example 2.18. Let γ ∈ ]0,+∞[ and define a function φ ∈ Γ0(R) by

(2.40) φ : ξ 7→

{
− ln(ξ), if ξ > 0;

+∞, if ξ ≤ 0.

Then a straightforward calculation gives (∀ξ ∈ R) proxγφ ξ = (ξ +
√
ξ2 + 4γ)/2.

Now let ϕ be the Burg entropy function on the Euclidean space R
m, i.e., ϕ : x =

(ξk)1≤k≤m 7→
∑m
k=1 φ(ξk). Then it follows from Lemma 2.9 that

(2.41) (∀x ∈ R
m) proxγϕ x =

1

2

(
ξk +

√
ξ2k + 4γ

)

1≤k≤m

.

Our last two examples will play a central role in Section 5.4.
Example 2.19. Let (ek)k∈N be an orthonormal basis of X , let (φk)k∈N be func-

tions in Γ0(R) such that

(2.42) (∀k ∈ N) φk ≥ 0 and φk(0) = 0,

and let ψ : X → ]−∞,+∞] : x 7→
∑

k∈N
φk(〈x | ek〉). Then:

(i) ψ ∈ Γ0(X ).
(ii) (∀x ∈ X ) proxψ x =

∑
k∈N

(
proxφk

〈x | ek〉
)
ek.

9



Proof. Let us introduce an operator

(2.43) L : X → ℓ2(N) : x 7→ (〈x | ek〉)k∈N

and a function

(2.44) ϕ : ℓ2(N) → ]−∞,+∞] : (ξk)k∈N 7→
∑

k∈N

φk(ξk).

From standard Hilbertian analysis, L is an invertible bounded linear operator with

(2.45) L−1 = L∗ : ℓ2(N) → X : (ξk)k∈N 7→
∑

k∈N

ξkek.

(i): In view of the properties of L, since ψ = ϕ ◦L, it is enough to show that ϕ ∈

Γ0(ℓ
2(N)). To this end, define, for every K ∈ N, ϕK =

∑K
k=0 ̺k, where ̺k : (ξl)l∈N 7→

φk(ξk). Then it follows from the assumptions that ϕK is lower semicontinuous and
convex on ℓ2(N) as a finite sum of such functions. Consequently (see Section 1.1), the
sets (epiϕK)K∈N are closed and convex in ℓ2(N)×R. Therefore, since by assumption
(2.42) the functions (ϕK)K∈N are nonnegative, the set

(2.46) epiϕ = epi

(
sup
K∈N

ϕK

)
=
⋂

K∈N

epiϕK

is also closed and convex as an intersection of closed convex sets. This shows that ϕ
is lower semicontinuous and convex. Finally, since (2.42) implies that ϕ(0) = 0, we
conclude that ϕ ∈ Γ0(ℓ

2(N)).
(ii): Fix x = (ξk)k∈N ∈ ℓ2(N). Now set p = proxϕ x and q = (πk)k∈N, where

(∀k ∈ N) πk = proxφk
ξk. Then, in view of Lemma 2.8 and (2.45), it suffices to show

that p = q. Let us first observe that, for every k ∈ N, (2.42) implies that 0 minimizes
φk and therefore that proxφk

0 = 0. Consequently, it follows from the nonexpansivity
of the operators (proxφk

)k∈N (see Lemma 2.4) that

(2.47)
∑

k∈N

|πk|
2 =

∑

k∈N

| proxφk
ξk − proxφk

0|2 ≤
∑

k∈N

|ξk − 0|2 = ‖x‖2.

Hence q ∈ ℓ2(N). Now let y = (ηk)k∈N be an arbitrary point in ℓ2(N). It follows from
(2.12) and (2.5) that p is the unique point in ℓ2(N) that satisfies

(2.48) 〈y − p | x − p〉 + ϕ(p) ≤ ϕ(y).

On the other hand, the same characterization for each point in (πk)k∈N yields

(2.49) (∀k ∈ N) (ηk − πk)(ξk − πk) + φk(πk) ≤ φk(ηk).

Summing these last inequalities over k ∈ N, we obtain 〈y − q | x − q〉 + ϕ(q) ≤ ϕ(y).
In view of the characterization (2.48), we conclude that p = q.

The following special case is the widely used soft-thresholder that will be discussed
in Problem 5.18 and Example 6.3.

Example 2.20. Let (ek)k∈N be an orthonormal basis of X , let (ωk)k∈N be a
sequence in ]0,+∞[, let ψ : X → ]−∞,+∞] : x 7→

∑
k∈N

ωk|〈x | ek〉|, and let x ∈ X .
Then proxψ x =

∑
k∈N

πkek, where

(2.50) (∀k ∈ N) πk = sign(〈x | ek〉)max{|〈x | ek〉| − ωk, 0}.

Proof. Set φk = ωk| · | in Example 2.19 and use (2.35).
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3. Properties and numerical solution of Problem 1.1. We begin with some
basic properties of Problem 1.1. Recall that the set of solutions to this problem is
denoted by G.

Proposition 3.1.
(i) Existence: Problem 1.1 possesses at least one solution if f1 + f2 is coercive,

i.e.,

(3.1) lim
‖x‖→+∞

f1(x) + f2(x) = +∞.

(ii) Uniqueness: Problem 1.1 possesses at most one solution if f1 + f2 is strictly
convex. This occurs in particular when f1 or f2 is strictly convex.

(iii) Characterization: Let x ∈ H and γ ∈ ]0,+∞[. Then the following statements
are equivalent:
(a) x solves Problem 1.1.
(b) x = proxγf1

(
x− γ∇f2(x)

)
.

(c) (∀y ∈ H) 〈x− y | ∇f2(x)〉 + f1(x) ≤ f1(y).
Proof. (i): The assumptions on Problem 1.1 and (3.1) imply that f1 + f2 lies in

Γ0(H) and that it is coercive. Hence the claim follows from [76, Theorem 2.5.1(ii)].
(ii): See [76, Proposition 2.5.6].
(iii): It follows from Fermat’s rule (2.7), Lemma 2.2(i), and (2.12) that

x ∈ G⇔ 0 ∈ ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) = ∂f1(x) +
{
∇f2(x)

}
(3.2)

⇔ −∇f2(x) ∈ ∂f1(x)(3.3)

⇔
(
x− γ∇f2(x)

)
− x ∈ γ∂f1(x)

⇔ x = proxγf1
(
x− γ∇f2(x)

)
.(3.4)

Using (3.3) and (2.5), we see that x ∈ G ⇔ (∀y ∈ H) 〈y − x | −∇f2(x)〉 + f1(x) ≤
f1(y).

The fixed point characterization provided by Proposition 3.1(iii)(b) suggests
solving Problem 1.1 via the fixed point iteration xn+1 = proxγf1

(
xn − γ∇f2(xn)

)

for a suitable value of the parameter γ. This iteration, which is referred to as a
forward-backward splitting process in optimization, consists of two separate steps.
First one performs a forward (explicit) step involving only f2 to compute xn+ 1

2
=

xn − γ∇f2(xn); then one performs a backward (implicit) step involving only f1 to
compute xn+1 = proxγf1 xn+ 1

2
. Formally, this second step amounts to solving the

inclusion (2.12), hence its implicit nature. The following theorem is an adaption of
some results from [25], which provides a more general iteration in which the coefficient
γ is made iteration-dependent, errors are allowed in the evaluation of the operators
proxγf1 and ∇f2, and a relaxation sequence (λn)n∈N is introduced. The errors allow
for some tolerance in the numerical implementation of the algorithm, while the flex-
ibility introduced by the iteration-dependent parameters γn and λn can be used to
improve its convergence pattern.

First, we need to introduce the following condition.
Condition 3.2. Let X be a nonempty subset of a real Hilbert space X . We say

that a function ϕ ∈ Γ0(X ) satisfies this condition on X if for all sequences (yn)n∈N

and (vn)n∈N in X and points y ∈ X and v ∈ ∂ϕ(y), we have
(3.5)[
yn ⇀ y, vn → v, (∀n ∈ N) vn ∈ ∂ϕ(yn)

]
⇒ y is a strong cluster point of (yn)n∈N.
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Remark 3.3. In Condition 3.2, the inclusion v ∈ ∂ϕ(y) is redundant and stated
only for the sake of clarity. Indeed, since ϕ ∈ Γ0(X ), ∂ϕ is maximal monotone
[76, Theorem 3.1.11] and its graph is therefore sequentially weakly-strongly closed in
X × X [4, Proposition 3.5.6.2]. Accordingly, the statements yn ⇀ y, vn → v, and
(∀n ∈ N) vn ∈ ∂ϕ(yn) imply that v ∈ ∂ϕ(y).

Here is our main convergence result (recall that f1, f2, β, and G are defined in
Problem 1.1).

Theorem 3.4. Suppose that G 6= ∅. Let (γn)n∈N be a sequence in ]0,+∞[ such
that 0 < infn∈N γn ≤ supn∈N γn < 2β, let (λn)n∈N be a sequence in ]0, 1] such that
infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences in H such that

∑
n∈N

‖an‖ <
+∞ and

∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ H and, for every n ∈ N, set

(3.6) xn+1 = xn + λn

(
proxγnf1

(
xn − γn(∇f2(xn) + bn)

)
+ an − xn

)
.

Then the following hold.
(i) (xn)n∈N converges weakly to a point x ∈ G.
(ii)

∑
n∈N

∥∥∇f2(xn) −∇f2(x)‖
2 < +∞.

(iii)
∑

n∈N

∥∥proxγnf1

(
xn − γn∇f2(xn)

)
− xn

∥∥2
< +∞.

(iv) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0. In particular,
strong convergence occurs in each of the following cases:
(a) intG 6= ∅.
(b) f1 satisfies Condition 3.2 on G.
(c) f2 satisfies Condition 3.2 on G.

Proof. It follows from (3.2) that

(3.7) G =
{
x ∈ H | 0 ∈ ∂f1(x) + {∇f2(x)}

}
.

Now let A = ∂f1 and B = ∇f2. Since f1 ∈ Γ0(H), [76, Theorem 3.1.11] asserts that A
is maximal monotone. On the other hand since, by assumption, ∇f2 is 1/β-Lipschitz
continuous, it follows from [8, Corollaire 10] that βB is firmly nonexpansive.

(i): Applying [25, Corollary 6.5], we obtain that (xn)n∈N converges weakly to a
point x ∈ (A+B)−1(0) = G.

(ii)&(iii): As in [25, Eq. (6.4)] set, for every n ∈ N, T1,n = proxγnf1 , α1,n = 1/2,
T2,n = Id −γn∇f2, and α2,n = γn/(2β). Then [25, Remark 3.4] with m = 2 yields

(3.8)

{∑
n∈N

‖(Id −T2,n)xn − (Id −T2,n)x‖
2 < +∞∑

n∈N
‖(T1,n ◦ T2,n)xn − xn‖

2 < +∞.

The assumptions on (γn)n∈N then provide the desired summability results.
(iv): The characterization of strong convergence follows from [25, Theorem 3.3].
(iv)(a): This is shown in [25, Remark 6.6].
(iv)(b): Set v = −∇f2(x) and

(3.9) (∀n ∈ N)

{
yn = proxγnf1

(
xn − γn∇f2(xn)

)

vn = (xn − yn)/γn −∇f2(xn).

Then (2.12) yields (∀n ∈ N) vn ∈ ∂f1(yn). On the other hand, we derive from (i) and
(iii) that yn ⇀ x ∈ G. Furthermore, since

(3.10) (∀n ∈ N) ‖vn − v‖ ≤
‖xn − yn‖

γn
+ ‖∇f2(xn) −∇f2(x)‖,
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it follows from (ii), (iii), and the condition infn∈N γn > 0 that vn → v. It then results
from Condition 3.2 that we can extract a subsequence (ykn

)n∈N such that ykn
→ x

and, in turn, from (iii) that xkn
→ x. Accordingly, since x ∈ G, we have dG(xkn

) → 0
and therefore lim dG(xn) = 0.

(iv)(c): Set v = ∇f2(x) and (∀n ∈ N) vn = ∇f2(xn) (so certainly vn ∈ ∂f2(xn) =
{∇f2(xn)}). Then (i) yields xn ⇀ x while (ii) yields vn → v. Therefore Condi-
tion 3.2 implies that x ∈ G is a strong cluster point of (xn)n∈N and we conclude that
lim dG(xn) = 0.

Remark 3.5. If f2 = 0, λn ≡ 1, and bn ≡ 0 in Theorem 3.4, we recover the
proximal point algorithm and item (i), which states that (xn)n∈N converges weakly to
a minimizer of f1, follows from [61, Theorem 1].

Further special cases of Theorem 3.4(iv)(b)&(iv)(c) can be constructed from the
following proposition.

Proposition 3.6. Let X be a real Hilbert space. Suppose that ϕ ∈ Γ0(X ) and
that ∅ 6= X ⊂ D, where D = domϕ. Let C be the set of all nondecreasing functions
from [0,+∞[ to [0,+∞] that vanish only at 0. Then ϕ satisfies Condition 3.2 on X
in each of the following cases:

(i) D is boundedly relatively compact (the closure of its intersection with any
closed ball is compact).

(ii) ϕ is differentiable on X and Id −∇ϕ is demicompact [77, Section 10.4]:
for every bounded sequence (yn)n∈N in X such that

(
∇ϕ(yn)

)
n∈N

converges

strongly, (yn)n∈N admits a strong cluster point.
(iii) For every y ∈ X and v ∈ ∂ϕ(y) there exists a function c ∈ C such that

(3.11) (∀x ∈ D) 〈x− y | v〉 + ϕ(y) + c(‖x− y‖) ≤ ϕ(x).

(iv) ϕ is uniformly convex at every point in X: for every y ∈ X there exists a
function c ∈ C such that, for every x ∈ D,
(3.12)
(∀α ∈ ]0, 1[) ϕ

(
αx+ (1 − α)y

)
+ α(1 − α)c(‖x− y‖) ≤ αϕ(x) + (1 − α)ϕ(y).

(v) ϕ is uniformly convex: there exists a function c ∈ C such that, for every x
and y in D, (3.12) holds.

(vi) ϕ is uniformly convex on bounded sets: for every bounded convex set C ⊂ X ,
ϕ + ιC is uniformly convex, i.e., there exists a function c ∈ C such that, for
every x and y in C ∩D, (3.12) holds.

(vii) ϕ is strongly convex.
Proof. Take sequences (yn)n∈N and (vn)n∈N in X and points y ∈ X and v ∈ ∂ϕ(y)

such that yn ⇀ y, vn → v, and (∀n ∈ N) vn ∈ ∂ϕ(yn).
(i): The sequence (yn)n∈N is bounded (since it converges weakly) and lies in

dom ∂ϕ ⊂ D. It therefore lies in a compact set and, as a result, y must be a strong
cluster point.

(ii): The sequence (yn)n∈N is bounded and, since ϕ is differentiable, (∀n ∈ N)
∇ϕ(yn) = vn → v. Hence the demicompactness assumption implies that we can
extract a subsequence (ykn

)n∈N that converges strongly. Since yn ⇀ y, we conclude
that ykn

→ y.
(iii): It follows from (3.11) that

(3.13) (∀n ∈ N) 〈yn − y | v〉 + ϕ(y) + c(‖yn − y‖) ≤ ϕ(yn).

On the other hand, it follows from (2.5) that

(3.14) (∀n ∈ N) 〈y − yn | vn〉 + ϕ(yn) ≤ ϕ(y).
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Adding these two inequalities, we obtain

(3.15) (∀n ∈ N) c(‖yn − y‖) ≤ 〈yn − y | vn − v〉.

However, since yn ⇀ y and vn → v, we have 〈yn − y | vn − v〉 → 0. Therefore the
assumptions on c and (3.15) yield ‖yn − y‖ → 0.

(iv): For every x in D, we have [76, Section 3.5]

(3.16) (3.12) ⇒ 〈x− y | v〉 + ϕ(y) + c(‖x− y‖) ≤ ϕ(x).

Hence (iv) is a special case of (iii).
(v): This is a special case of (iv).
(vi): Since yn ⇀ y, (yn)n∈N and y lie in some closed ball C. However since

f + ιC is uniformly convex, there exists c ∈ C such that (3.12) holds true for every
x ∈ C ∩D. Thus, we deduce from (3.16) that (3.13) is satisfied, and we conclude as
in (iii).

(vii): This is a special case of (v) with c : t 7→ ρt2/2 for some ρ ∈ ]0,+∞[ [76,
Section 3.5].

Examples of functions satisfying the various types of uniform convexity defined
above can be found in [12, 75].

4. Problems involving sums of Moreau envelopes.

4.1. Problem statement. We consider the following formulation, which is
based on the notion of a Moreau envelope defined in (2.11).

Problem 4.1. Let
(i) (Ki)1≤i≤m be real Hilbert spaces;
(ii) for every i ∈ {1, . . . ,m}, Li : H → Ki be a nonzero bounded linear operator,

ϕi ∈ Γ0(Ki), and ρi ∈ ]0,+∞[;
(iii) f1 ∈ Γ0(H).

The objective is to

(4.1) minimize
x∈H

f1(x) +

m∑

i=1

ρiϕi(Lix).

The set of solutions to this problem is denoted by G.
Proposition 4.2. Problem 4.1 is a special case of Problem 1.1 with f2 =∑m

i=1

(
ρiϕi) ◦ Li and β =

(∑m
i=1 ‖Li‖

2/ρi
)−1

.
Proof. Set

(4.2) f2 =

m∑

i=1

(
ρiϕi) ◦ Li and β =

(
m∑

i=1

‖Li‖
2/ρi

)−1

.

Since, for every i ∈ {1, . . . ,m}, the function ρiϕi is finite, continuous, and convex,
it belongs to Γ0(Ki) and therefore ( ρiϕi) ◦ Li ∈ Γ0(H). Consequently, f2 belongs to
Γ0(H). Now, set (∀i ∈ {1, . . . ,m}) Ti = Id − proxρiϕi

. As seen in Lemma 2.4, the
operators (Ti)1≤i≤m are (firmly) nonexpansive. Therefore, for every i ∈ {1, . . . ,m},
we obtain

(∀(x, y) ∈ H2) ‖(L∗
i ◦ Ti ◦ Li)x− (L∗

i ◦ Ti ◦ Li)y‖ ≤ ‖L∗
i ‖ · ‖Ti(Lix) − Ti(Liy)‖

≤ ‖L∗
i ‖ · ‖Lix− Liy‖

≤ ‖L∗
i ‖ · ‖Li‖ · ‖x− y‖

= ‖Li‖
2 · ‖x− y‖.(4.3)
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On the other hand, we derive from Lemma 2.5 that

(4.4) ∇f2 =
m∑

i=1

∇
(
( ρiϕi) ◦ Li

)
=

m∑

i=1

L∗
i ◦

(
Ti
ρi

)
◦ Li =

m∑

i=1

1

ρi
L∗
i ◦ Ti ◦ Li.

Since (4.3) states that each operator L∗
i ◦Ti ◦Li is Lipschitz continuous with constant

‖Li‖
2, it ensues that ∇f2 is Lipschitz continuous with constant

∑m
i=1 ‖Li‖

2/ρi. We
conclude that ∇f2 is 1/β-Lipschitz continuous.

4.2. Properties and numerical solution of Problem 4.1. The following is
a specialization of Theorem 3.4, in which we omit items (ii) and (iii) for the sake
of brevity (special cases of item (ii) below can be derived from Theorem 3.4 and
Proposition 3.6). The algorithm allows for the inexact computation of each proximity
operator.

Theorem 4.3. Suppose that G 6= ∅. Let (γn)n∈N be a sequence in ]0,+∞[ such

that 0 < infn∈N γn ≤ supn∈N
γn < 2

(∑m
i=1 ‖Li‖

2/ρi
)−1

, let (λn)n∈N be a sequence in

]0, 1] such that infn∈N λn > 0, and let (an)n∈N and
(
(bi,n)n∈N

)
1≤i≤m

be sequences in

H such that
∑

n∈N
‖an‖ < +∞ and max1≤i≤m

∑
n∈N

‖bi,n‖ < +∞. Fix x0 ∈ H and,
for every n ∈ N, set

(4.5) xn+1 = xn+

λn

(
proxγnf1

(
xn+ γn

( m∑

i=1

1

ρi

(
(L∗

i ◦ (proxρiϕi
− Id ) ◦Li)xn + bi,n

)))
+ an−xn

)
.

Then:
(i) (xn)n∈N converges weakly to a point x ∈ G.
(ii) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0.
Proof. The proof is a consequence of Proposition 4.2 and Theorem 3.4(i)&(iv)

with bn = −
∑m
i=1 bi,n/ρi and ∇f2 given by (4.4).

4.3. Proximal split feasibility problems. We shall call the special case of
Problem 4.1 when m = 1 a proximal split feasibility problem. In other words, we are
given a real Hilbert space K, a nonzero bounded linear operator L : H → K, a function
f1 ∈ Γ0(H), a function ϕ ∈ Γ0(K), and a real number ρ ∈ ]0,+∞[. The objective is
to

(4.6) minimize
x∈H

f1(x) + ρϕ(Lx).

We denote by G the set of solutions to this problem.
Applying Theorem 4.3 with m = 1, we obtain at once the following convergence

result.
Corollary 4.4. Suppose that G 6= ∅. Let (γn)n∈N be a sequence in ]0,+∞[

such that 0 < infn∈N γn ≤ supn∈N
γn < 2ρ/‖L‖2, let (λn)n∈N be a sequence in ]0, 1]

such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences in H such that∑
n∈N

‖an‖ < +∞ and
∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ H and, for every n ∈ N, set

(4.7) xn+1 = xn+λn

(
proxγnf1

(
xn+

γn
ρ

(
(L∗◦(proxρϕ− Id )◦L)xn+bn

))
+an−xn

)
.

Then:
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(i) (xn)n∈N converges weakly to a point x ∈ G.
(ii) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0.
Now, let us specialize the above setting to the case when ρ = 1, f1 = ιC and

ϕ = ιQ, where C ⊂ H and Q ⊂ K are two nonempty closed convex sets. Then, in
view of (2.14), (4.6) becomes

(4.8) minimize
x∈C

dQ(Lx).

In other words, one seeks a signal x ∈ C such that the signal Lx is at minimal
distance from Q; in particular, when C ∩ L−1(Q) 6= ∅, one seeks a signal in x ∈ C
such that Lx ∈ Q. This is the so-called split feasibility problem introduced in [15]
and further discussed in [13]. Let us observe that one of the earliest occurrence of this
formulation is actually that provided by Youla in [73]. In that paper, the problem
was to find a signal x in a closed vector subspace C, knowing its projection p onto a
closed vector subspace V (hence L = PV and Q = {p}); it was also observed that the
standard signal extrapolation schemes of Gerchberg [37] and Papoulis [59] fitted this
framework.

In the present setting, Corollary 4.4(i) reduces to the following corollary.
Corollary 4.5. Suppose that the set G of solutions to (4.8) is nonempty. Let

(γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤ supn∈N γn < 2/‖L‖2, let
(λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N

be sequences in H such that
∑

n∈N
‖an‖ < +∞ and

∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ H
and, for every n ∈ N, set

(4.9) xn+1 = xn + λn

(
PC

(
xn + γn

(
(L∗ ◦ (PQ − Id ) ◦ L)xn + bn

))
+ an − xn

)
.

Then (xn)n∈N converges weakly to a point x ∈ G.
Remark 4.6. Corollary 4.5 improves upon [13, Theorem 2.1], where the ad-

ditional assumptions dimH < +∞, dimK < +∞, λn ≡ 1, γn ≡ γ ∈
]
0, 2/‖L‖2

[
,

an ≡ 0, and bn ≡ 0 were made.

4.4. The u+v signal decomposition model. Underlying many signal recovery
problems is the decomposition of a signal x ∈ H as x = u + v, where u captures the
geometric components of the signal (typically a function with bounded variations)
and v models texture (typically an oscillatory function), e.g., [5, 6, 7, 51, 57, 71, 72].
The variational formulations proposed in [5, 6, 7, 71, 72] to achieve this decomposition
based on a noisy observation z ∈ H of the signal of interest are of the general form

(4.10) minimize
(u,v)∈H×H

ψ(u) + φ(v) +
1

2ρ
‖u+ v − z‖2,

where ψ and φ are in Γ0(H) and ρ ∈ ]0,+∞[. In order to cast this problem in our
framework, let us introduce the function

(4.11) ϕ : H → ]−∞,+∞] : w 7→ φ(z − w).

Then ϕ ∈ Γ0(H) and the change of variable

(4.12) w = z − v

in (4.10) yields

(4.13) minimize
(u,w)∈H×H

ψ(u) + ϕ(w) +
1

2ρ
‖u− w‖2.
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In view of (2.11), this problem can be rewritten in terms of the variable u as

(4.14) minimize
u∈H

ψ(u) + ρϕ(u).

In other words, we obtain precisely the formulation (4.6) with f1 = ψ, K = H, and
L = Id .

We now derive from Corollary 4.4 and some facts from [9] the following result.
Corollary 4.7. Suppose that (4.10) has at least one solution. Let (γn)n∈N be

a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤ supn∈N γn < 2ρ, let (λn)n∈N be a
sequence in ]0, 1] such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences
in H such that

∑
n∈N

‖an‖ < +∞ and
∑

n∈N
‖bn‖ < +∞. Fix u0 ∈ H and, for every

n ∈ N, set

(4.15) un+1 = un+λn

(
proxγnψ

(
un+

γn
ρ

(
z−proxρφ(z−un)−un+bn

))
+an−un

)
.

Then (un)n∈N converges weakly to a solution u to (4.14) and
(
u, proxρφ(z − u)

)
is a

solution to (4.10).
Proof. By assumption, the set G of solutions to (4.14) is nonempty. As noted

above, (4.14) is a special case of (4.6) with f1 = ψ, K = H, and L = Id . Moreover,
in this case, (4.7) reduces to

(4.16) un+1 = un + λn

(
proxγnψ

(
un +

γn
ρ

(
proxρϕ un − un + bn

))
+ an − un

)
.

However, using (4.11) and Lemma 2.6(ii)&(iv), we obtain

(4.17) (∀x ∈ H) proxρϕ x = z − proxρφ(z − x).

Therefore, (4.16) coincides with (4.15). Hence, since ‖L‖ = 1, we derive from Corol-
lary 4.4 that the sequence (un)n∈N converges weakly to a point u ∈ G. It then follows
from [9, Propositions 3.2 and 4.1] that (u, proxρϕ u) is a solution to (4.13). In view
of (4.17), this means that (u,w) is a solution to (4.13), where w = z − proxρφ(z − u).
Upon invoking the change of variable (4.12), we conclude that (u, v) is a solution to
(4.10), where v = z − w = proxρφ(z − u).

Remark 4.8. Consider the particular case when λn ≡ 1, γn ≡ ρ, an ≡ 0, and
bn ≡ 0. Then (4.15) becomes

(4.18) un+1 = proxρψ
(
z − proxρφ(z − un)

)
.

Let us further assume, as in [5], that ψ is the support function of some nonempty closed
convex set K ⊂ H and that φ is the indicator function of µK for some µ ∈ ]0,+∞[.
Then, since ψ = σK , it follows from (2.39) that proxρψ = Id −PρK . On the other
hand, since φ = ιµK , (2.14) asserts that proxρφ = PµK . Altogether, (4.18) becomes

(4.19) un+1 = z − PµK(z − un) − PρK
(
z − PµK(z − un)

)
.

This is precisely the iteration proposed in [5].
Remark 4.9. Problem (4.13) was originally studied in [1] and recently revisited

in a broader context in [9]. The reader will find in the latter further properties, in
particular from the viewpoint of duality.
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4.5. Hard-constrained signal feasibility problems. Suppose that in Prob-
lem 4.1 we set Ki ≡ H, Li ≡ Id , f1 = ιC , and, for every i ∈ {1, . . . ,m}, ωi = 1/ρi and
fi = ιCi

, where C and (Ci)1≤i≤m are nonempty closed convex subsets of H. Then,
in view of (2.14), we obtain the so-called hard-constrained signal feasibility problem
proposed in [26] to deal with inconsistent signal feasibility problems, namely

(4.20) minimize
x∈C

1

2

m∑

i=1

ωid
2
Ci

(x).

We shall assume, without loss of generality, that
∑m

i=1 ωi = 1. In other words, (4.20)
aims at producing a signal that satisfies the hard constraint modeled by C and that
is closest, in a least-square distance sense, to satisfying the remaining constraints
modeled by (Ci)1≤i≤m. In particular, if C = H, one recovers the framework discussed
in [22], where x 7→

∑m
i=1 ωid

2
Ci

(x)/2 was called a proximity function. Another example
is when m = 1, i.e., when one seeks a signal x ∈ C at minimal distance from C1.
This setting is discussed in [38, 60]. Let us now specialize Theorem 4.3(i) (strong
convergence follows as in Theorem 4.3(ii)) to the current hypotheses.

Corollary 4.10. Suppose that the set G of solutions to (4.20) is nonempty.
Let (γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤ supn∈N

γn < 2,
let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0, and let (an)n∈N and(
(bi,n)n∈N

)
1≤i≤m

be sequences in H such that
∑
n∈N

‖an‖ < +∞ and max1≤i≤m∑
n∈N

‖bi,n‖ < +∞. Fix x0 ∈ H and, for every n ∈ N, set

(4.21) xn+1 = xn + λn

(
PC

(
xn + γn

( m∑

i=1

ωi(Pixn + bi,n
)
− xn

))
+ an − xn

)
.

Then (xn)n∈N converges weakly to a point x ∈ G.
Remark 4.11. When γn ≡ γ ∈ ]0, 2[, bi,n ≡ 0, and an ≡ 0, Corollary 4.10

captures the scenario of [26, Proposition 9], which itself contains [22, Theorem 4]
(where C = H), and the convergence result of [38] (where m = 1).

5. Linear inverse problems.

5.1. Problem statement. In Section 1, we have described the signal recovery
problem as that of inferring a signal x in a real Hilbert space H from the observation
of a signal z in a real Hilbert space G. In this section, we consider the standard linear
data formation model in which z is related to x via the model

(5.1) z = Tx+ w,

where T : H → G is a linear operator and where w ∈ G stands for an additive noise
perturbation. This model covers numerous signal and image restoration and recon-
struction prescriptions [2, 16, 23, 39, 66, 67]. The problem under consideration will
be the following.

Problem 5.1. Let
(i) K be a real Hilbert space;
(ii) T : H → G be a nonzero bounded linear operator;
(iii) L : H → K be a bijective bounded linear operator such that L−1 = L∗;
(iv) f ∈ Γ0(K).

The objective is to

(5.2) minimize
x∈H

f(Lx) +
1

2
‖Tx− z‖2.
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The set of solutions to this problem is denoted by G.
In Problem 5.1, the term ‖Tx − z‖2/2 is a so-called data fidelity term which

attempts to reflect the contribution of the data formation model (5.1), while the
term f(Lx) promotes prior knowledge about the original signal x. This formulation
covers various instances of linear inverse problems in signal recovery. Two specific
frameworks will be discussed in Sections 5.3 and 5.4; other important examples are
the following:

• In discrete models, the underlying Hilbert spaces are Euclidean spaces. If
K = H, L = Id , and w is a realization of a multivariate zero mean Gaussian
noise, then (5.2) with a suitable norm covers maximum a posteriori models
with an a priori Gibbs density p ∝ exp(−f). This setting is discussed in
[68, 69].

• Let K = H = H1(Ω), where Ω is an open domain of R
m, let L = Id , and let

f be an integral functional of the form

(5.3) f : x 7→ γ

∫

Ω

ϕ
(
ω, x(ω),∇x(ω)

)
dω,

where γ ∈ ]0,+∞[. Then (5.2) covers a variety of formulations, including
total variation, least-squares, Fisher information, and entropic methods, e.g.,
[3, 19, 32, 40, 45]. Let us add that this framework also corresponds to the
Lagrangian formulation of the problems of [2, 42, 43, 56, 62, 70], the original
form of which is

(5.4) minimize
‖Tx−z‖2≤η

∫

Ω

ϕ
(
ω, x(ω),∇x(ω)

)
dω,

where η ∈ ]0,+∞[. In this case, the parameter γ in (5.3) is the reciprocal of
the Lagrange multiplier.

• In the Fourier regularization methods of [46, 50], H = L2(R2), K = H ×H,
L is the Fourier transform, and f : y 7→ γ‖yh‖2, where h is the frequency
response of a filter and γ ∈ ]0,+∞[.

5.2. Properties and numerical solution of Problem 5.1. Our analysis will
be greatly simplified by the following observation.

Proposition 5.2. Problem 5.1 is a special case of Problem 1.1 with f1 = f ◦ L,
f2 : x 7→ ‖Tx− z‖2/2, and β = 1/‖T ‖2.

Proof. Set f1 = f ◦ L and f2 : x 7→ ‖Tx − z‖2/2. Then it follows from assump-
tions (i)–(iv) above that f1 and f2 are in Γ0(H), and that f2 is differentiable on H
with ∇f2 : x 7→ T ∗(Tx− z). Consequently,

(5.5) (∀(x, y) ∈ H2) ‖∇f2(x) −∇f2(y)‖ = ‖T ∗T (x− y)‖ ≤ ‖T ‖2 ‖x− y‖,

and ∇f2 is therefore Lipschitz continuous with constant ‖T ‖2.
Let us first provide existence and uniqueness conditions for Problem 5.1, as well

as characterizations for its solutions.
Proposition 5.3.
(i) Problem 5.1 possesses at least one solution if f is coercive.
(ii) Problem 5.1 possesses at most one solution if one of the following conditions

is satisfied:
(a) f is strictly convex.
(b) T is injective.

19



(iii) Problem 5.1 possesses exactly one solution if T is bounded below, i.e.,

(5.6) (∃κ ∈ ]0,+∞[)(∀x ∈ H) ‖Tx‖ ≥ κ‖x‖.

(iv) Let x ∈ H and γ ∈ ]0,+∞[. Then the following statements are equivalent:
(a) x solves Problem 5.1.
(b) x =

(
L∗ ◦ proxγf ◦L

)(
x+ γT ∗(z − Tx)

)
.

(c) (∀y ∈ H) 〈Ty − Tx | z − Tx〉 + f(Lx) ≤ f(Ly).
Proof. Let f1 and f2 be as in Proposition 5.2.
(i): In view of Proposition 3.1(i), it is enough to show that f1 + f2 is coercive.

We have f1 + f2 ≥ f ◦ L. Moreover, since f is coercive, it follows from assumption
(iii) in Problem 5.1 that f ◦ L is likewise. This shows the coercivity of f1 + f2.

(ii): This follows from Proposition 3.1(ii) since, in item (ii)(a), f1 is strictly
convex by injectivity of L and, in item (ii)(b), f2 is strictly convex. To show the
latter, consider two distinct points x and y in H and let α ∈ ]0, 1[. Then, by (5.6),

f2
(
αx+ (1 − α)y

)
= ‖α(Tx− z) + (1 − α)(Ty − z)‖2/2

= α‖Tx− z‖2/2 + (1 − α)‖Ty − z‖2/2 − α(1 − α)‖T (x− y)‖2/2

≤ αf2(x) + (1 − α)f2(y) − κ2α(1 − α)‖x− y‖2/2(5.7)

< αf2(x) + (1 − α)f2(y).

(iii): It follows from (5.6) that T is injective. Therefore, by (ii)(b), there is at
most one solution. Regarding existence, Proposition 3.1(i) asserts that is suffices to
show that f1 + f2 is coercive. Since f ∈ Γ0(K), it is minorized by a continuous affine
functional [76, Theorem 2.2.6(iii)], say 〈· | u〉 + η/2 where u ∈ K r {0} and η ∈ R.
Hence, we derive from (5.6) that

(5.8) (∀x ∈ H) 2
(
f1(x) + f2(x)

)

≥ 2〈Lx | u〉 + η + ‖Tx− z‖2

= 2〈x | L∗u〉 + η + ‖Tx‖2 − 2〈x | T ∗z〉 + ‖z‖2

= ‖x+ L∗u− T ∗z‖2 +
(
‖Tx‖2 − ‖x‖2

)
− ‖L∗u− T ∗z‖2 + ‖z‖2 + η

≥
(
‖x‖ − ‖L∗u− T ∗z‖

)2
+ (κ2 − 1)‖x‖2 − ‖L∗u− T ∗z‖2 + ‖z‖2 + η

≥
(
κ‖x‖ − ‖L∗u− T ∗z‖/κ

)2
− ‖L∗u− T ∗z‖2/κ2 + ‖z‖2 + η,

and we obtain lim‖x‖→+∞ f1(x) + f2(x) = +∞.
(iv): This follows from Proposition 3.1(iii) and Lemma 2.8.
Next, we turn our attention to the stability of the solutions to Problem 5.1 with

respect to perturbations of the observed data z.
Proposition 5.4. Suppose that T satisfies (5.6). Let z̃ be a point in G, and let

x and x̃ be the unique solutions to Problem 5.1 associated with z and z̃, respectively.
Then

(5.9) ‖x− x̃‖ ≤ ‖z − z̃‖/κ.

Proof. The existence and uniqueness of x and x̃ follow from Proposition 5.3(iii).
Next, we derive from Proposition 5.3(iv)(c) that

(5.10)

{
〈T x̃− Tx | z − Tx〉 + f(Lx) ≤ f(Lx̃)

〈Tx− T x̃ | z̃ − T x̃〉 + f(Lx̃) ≤ f(Lx).

20



Adding these two inequalities, we obtain ‖T (x − x̃)‖2 ≤ 〈T (x− x̃) | z − z̃〉 and, by
the Cauchy-Schwarz inequality, ‖T (x− x̃)‖ ≤ ‖z − z̃‖. Using (5.6), we conclude that
κ‖x− x̃‖ ≤ ‖z − z̃‖.

In the context of Problem 5.1, the forward-backward splitting algorithm (3.6)
assumes the following form, which can be described as an inexact, relaxed proximal
Landweber method, as it alternates between an inexact Landweber step xn 7→ xn +
γn(T

∗(z − Txn) − bn) and a relaxed inexact proximal step.
Theorem 5.5 (Proximal Landweber method). Suppose that G 6= ∅. Let (γn)n∈N

be a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤ supn∈N γn < 2/‖T ‖2, let (λn)n∈N

be a sequence in ]0, 1] such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be se-
quences in H such that

∑
n∈N

‖an‖ < +∞ and
∑

n∈N
‖bn‖ < +∞. Fix x0 ∈ H and,

for every n ∈ N, set

(5.11) xn+1 = xn + λn

((
L∗ ◦ proxγnf ◦L

)(
xn + γn(T

∗(z − Txn)− bn)
)
+ an − xn

)
.

Then:
(i) (xn)n∈N converges weakly to a point x ∈ G.

(ii)
∑

n∈N

∥∥T ∗T (xn − x)
∥∥2
< +∞.

(iii)
∑

n∈N

∥∥(L∗ ◦ proxγnf ◦L
)(
xn + γnT

∗(z − Txn)
)
− xn

∥∥2
< +∞.

(iv) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0. In particular,
strong convergence occurs in each of the following cases:
(a) intG 6= ∅.
(b) f satisfies Condition 3.2 on L(G).
(c) T is bounded below.
(d) Id −T ∗T is demicompact.

Proof. Let f1, f2, and β be as in Proposition 5.2. Then, in view of Lemma 2.8,
(3.6) reduces to (5.11) in the present setting. Thus, items (i)–(iii), as well as the
main claim in item (iv) and item (iv)(a) are consequences of their counterparts in
Theorem 3.4.

(iv)(b): In view of Theorem 3.4(iv)(b), it suffices to show that f ◦ L satisfies
Condition 3.2 on G. To this end, take sequences (yn)n∈N and (vn)n∈N in H, and
points y ∈ G and v ∈ ∂(f ◦ L)(y) = L∗

(
∂f(Ly)

)
such that yn ⇀ y, vn → v, and

(∀n ∈ N) vn ∈ ∂(f ◦L)(yn) = L∗
(
∂f(Lyn)

)
(see Lemma 2.2(i)). Since L is linear and

bounded, it is weakly and strongly continuous. Therefore, we have Lyn ⇀ Ly ∈ L(G)
and Lvn → Lv ∈ ∂f(Ly). On the other hand, (∀n ∈ N) Lvn ∈ ∂f(Lyn). Hence, since
f satisfies Condition 3.2 on L(G), there exists a subsequence (ykn

)n∈N such that
Lykn

→ Ly. It follows from assumption (iii) in Problem 5.1 that ykn
→ y.

(iv)(c): It follows from (5.7) that f2 is strongly convex. Hence the claim follows
from Proposition 3.6(vii) and Theorem 3.4(iv)(c).

(iv)(d): In this case Id −∇f2 is demicompact. Hence the claim follows from
Proposition 3.6(ii) and Theorem 3.4(iv)(c).

5.3. Constrained least-squares problems. The least-squares problem asso-
ciated with (5.1) is

(5.12) minimize
x∈H

1

2
‖Tx− z‖2.

A natural way to regularize this problem is to force the solutions to lie in a given
closed convex set modeling a priori constraints [35, 48, 63]. This leads to the following
formulation.
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Problem 5.6. Let
(i) T : H → G be a nonzero bounded linear operator;
(ii) C be a nonempty closed convex subset of H.

The objective is to

(5.13) minimize
x∈C

1

2
‖Tx− z‖2.

The set of solutions to this problem is denoted by G.
Proposition 5.7. Problem 5.6 is a special case of Problem 5.1 with K = H,

L = Id , and f = ιC .
Proof. The proof is a direct consequence of (2.2).
Proposition 5.8.
(i) Problem 5.6 possesses at least one solution if one of the following conditions

is satisfied:
(a) C is bounded.
(b) T (C) is closed.

(ii) Problem 5.6 possesses at most one solution if one of the following conditions
is satisfied:
(a) Problem (5.12) has no solution in C, and C is strictly convex, i.e.,

(5.14) (∀(x, y) ∈ C2) (x + y)/2 ∈ intC.

(b) T is injective.
(iii) Problem 5.6 possesses exactly one solution if T is bounded below.
(iv) Let x ∈ H and γ ∈ ]0,+∞[. Then the following statements are equivalent:

(a) x solves Problem 5.6.
(b) x = PC

(
x+ γT ∗(z − Tx)

)
.

(c) x ∈ C and (∀y ∈ C) 〈Ty − Tx | z − Tx〉 ≤ 0.
Proof. (i)(a): This follows from Proposition 5.7 and Proposition 5.3(i) since ιC is

coercive.
(i)(b): Since T is linear and C is convex, T (C) is convex. Hence the assumptions

imply that T (C) is a nonempty closed convex subset of G. As a result, z admits a
projection p onto T (C) and, therefore, there exists a point x ∈ C such that p = Tx
and x solves (5.13).

(ii)(a): By Fermat’s rule (2.7), if (5.12) has no solution in C, then we have
(∀x ∈ C) 0 /∈ ∂‖Tx− z‖2/2 and the result therefore follows from [47, Theorem 1.3].

Finally, items (ii)(b), (iii), and (iv) follow from Proposition 5.7 and their coun-
terparts in Proposition 5.3, with the help of (2.14) in (iv)(b) and of (2.2) in (iv)(c).

Corollary 5.9. Suppose that G 6= ∅. Let (γn)n∈N be a sequence in ]0,+∞[
such that 0 < infn∈N γn ≤ supn∈N γn < 2/‖T ‖2, let (λn)n∈N be a sequence in ]0, 1]
such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences in H such that∑

n∈N
‖an‖ < +∞ and

∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ H and, for every n ∈ N, set

(5.15) xn+1 = xn + λn

(
PC
(
xn + γn(T

∗(z − Txn) − bn)
)

+ an − xn

)
.

Then:
(i) (xn)n∈N converges weakly to a point x ∈ G.
(ii) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0.
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Proof. Specialize Theorem 5.5(i)&(iv) to the setting described in Proposition 5.7
and use (2.2).

Remark 5.10. As in Theorem 5.5(iv), we obtain strong convergence in partic-
ular when intG 6= ∅, when T is bounded below, or when Id −T ∗T is demicompact.
Another example is when C is boundedly compact, since in this case ιC satisfies con-
dition (i) in Proposition 3.6 and we can therefore conclude with Theorem 5.5(iv)(b).

Remark 5.11 (Projected Landweber iteration). Corollary 5.9 improves upon
the results of [35, Section 3.1], which considered the special case when λ ≡ 1, γn ≡
γ ∈

]
0, 2/‖T ‖2

[
, an ≡ 0, and bn ≡ 0. In this particular scenario, (5.15) reduces to the

classical projected Landweber iteration

(5.16) xn+1 = PC
(
xn + γT ∗(z − Txn)

)
, where 0 < γ < 2/‖T ‖2,

item (i) can be found in [35, Theorem 3.2(v)], and item (ii) implies [35, Theo-
rem 3.2(vi)] and, in turn, [35, Theorem 3.3].

Remark 5.12 (Disproving a conjecture). In [35, Section 3.1], it was conjectured
that, for any C, G, T , and z in Problem 5.6 such that G 6= ∅, any sequence (xn)n∈N

generated by the projected Landweber iteration (5.16) converges strongly to a point
in G. This conjecture is not true, as we now show. Take G = R, z = 0, and
T : x 7→ 〈x | u〉, where u ∈ H r {0}. Furthermore set H = kerT and γ = 1/‖T ‖2.
Then (5.16) can be rewritten as

(5.17) xn+1 = PC

(
xn −

1

‖T ‖2
T ∗Txn

)
= PC

(
xn −

〈xn | u〉

‖u‖2
u

)
= (PC ◦ PH)xn.

However, it was shown in [41] that, for a particular choice of x0, u, and of a closed
convex cone C, the sequence (xn)n∈N produced by this alternating projection iteration
converges weakly but not strongly to a point in G.

5.4. Sparse regularization problems. In nonlinear approximation theory,
statistics, and signal processing, a powerful idea is to decompose a function into an
orthonormal basis and to transform the coefficients of the decomposition to construct
sparse approximations or estimators, e.g., [18, 20, 30, 31, 33, 34, 49]. In the context
of infinite-dimensional inverse problems, a variational formulation of this concept is
the following (the specialization to the finite dimensional setting is straightforward).

Problem 5.13. Let

(i) T : H → G be a nonzero bounded linear operator;
(ii) (ek)k∈N be an orthonormal basis of H;
(iii) (φk)k∈N be functions in Γ0(R) such that (∀k ∈ N) φk ≥ 0 and φk(0) = 0.

The objective is to

(5.18) minimize
x∈H

1

2
‖Tx− z‖2 +

∑

k∈N

φk(〈x | ek〉).

The set of solutions to this problem is denoted by G.

Proposition 5.14. Problem 5.13 is a special case of Problem 5.1 with K = ℓ2(N),
L : x 7→ (〈x | ek〉)k∈N, and f : (ξk)k∈N 7→

∑
k∈N

φk(ξk).

Proof. See proof of Example 2.19.

Proposition 5.15.
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(i) Problem 5.13 possesses at least one solution if there exists a function
c : [0,+∞[ → [0,+∞[ such that c(0) = 0, limt→+∞ c(t) = +∞, and

(5.19)
(
∀(ξk)k∈N ∈ ℓ2(N)

) ∑

k∈N

φk(ξk) ≥ c

(
∑

k∈N

|ξk|
2

)
.

(ii) Problem 5.13 possesses at most one solution if one of the following conditions
is satisfied:
(a) The functions (φk)k∈N are strictly convex.
(b) T is injective.

(iii) Problem 5.13 possesses exactly one solution if T is bounded below.
(iv) Let x ∈ H and γ ∈ ]0,+∞[. Then the following statements are equivalent:

(a) x solves Problem 5.13.
(b) (∀k ∈ N) 〈x | ek〉 = proxγφk

〈x+ γT ∗(z − Tx) | ek〉.

(c) (∀k ∈ N)(∀η ∈ R)
(
η − 〈x | ek〉

)
〈z − Tx | Tek〉 + φk(〈x | ek〉) ≤ φk(η).

Proof. In view of Proposition 5.14, we can invoke Proposition 5.3. Let f and L
be as in Proposition 5.14.

(i): By Proposition 5.3(i), it is enough to show that f is coercive. Let
x = (ξk)k∈N ∈ ℓ2(N). Then it follows from (5.19) that f(x) =

∑
k∈N

φk(ξk) ≥

c
(∑

k∈N
|ξk|

2
)

= c(‖x‖2). Therefore, ‖x‖ → +∞ ⇒ f(x) → +∞.
(ii)(a): In view of Proposition 5.3(ii)(a), it is enough to show that f is strictly

convex. Let x = (ξk)k∈N and y = (ηk)k∈N be two distinct points in dom f (if dom f is
a singleton, the conclusion is clear) and let α ∈ ]0, 1[. Then there exists an index l ∈ N

such that ξl 6= ηl, φl(ξl) < +∞, and φl(ηl) < +∞. Moreover, by strict convexity of
φl, φl

(
αξl + (1 − α)ηl

)
< αφl(ξl) + (1 − α)φl(ηl). Consequently, since the functions

(φk)k∈N are convex,

f
(
αx + (1 − α)y

)
=
∑

k∈N

φk
(
αξk + (1 − α)ηk

)

<
∑

k∈N

αφk(ξk) + (1 − α)φk(ηk)

= αf(x) + (1 − α)f(y),(5.20)

which proves the strict convexity of f .
Finally, items (ii)(b), (iii), and (iv) follow from their counterpart in Proposi-

tion 5.3, with the help of Example 2.19 in (iv).
We now turn our attention to the numerical solution of Problem 5.13.
Corollary 5.16. Suppose that G 6= ∅. Let (γn)n∈N be a sequence in ]0,+∞[

such that 0 < infn∈N γn ≤ supn∈N γn < 2/‖T ‖2, let (λn)n∈N be a sequence in ]0, 1] such
that infn∈N λn > 0, and let (bn)n∈N be a sequence in H such that

∑
n∈N

‖bn‖ < +∞.
Moreover, for every n ∈ N, let (αn,k)k∈N be a sequence in ℓ2(N) and suppose that∑

n∈N

√∑
k∈N

|αn,k|2 < +∞. Fix x0 ∈ H and, for every n ∈ N, set
(5.21)

xn+1 = xn + λn

(
∑

k∈N

(
αn,k + proxγnφk

〈xn + γn(T
∗(z − Txn) − bn) | ek〉

)
ek − xn

)
.

Then:
(i) (xn)n∈N converges weakly to a point x ∈ G.

(ii)
∑

n∈N

∥∥T ∗T (xn − x)
∥∥2
< +∞.
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(iii)
∑

n∈N

∥∥proxγnf1

(
xn + γnT

∗(z − Txn)
)
− xn

∥∥2
< +∞, where f1 : y 7→∑

k∈N
φk(〈y | ek〉).

(iv) (xn)n∈N converges strongly to x if and only if lim dG(xn) = 0.
Proof. It follows from Example 2.19 that (5.21) is a special case of (5.11) with

(∀n ∈ N) an =
∑

k∈N
αn,kek. In view of Proposition 5.14, the corollary is therefore

an application of Theorem 5.5.
Specific strong convergence conditions are given in Theorem 5.5(iv). Let us now

provide two illustrations of the above results.
Example 5.17. Suppose that T is bounded below. Then (without further as-

sumptions on the sequence (φk)k∈N), Problem 5.13 has a unique solution x (Propo-
sition 5.15(iii)) and we obtain the strong convergence of any sequence generated by
(5.21) to x (see Theorem 5.5(iv)(c)). Moreover, as the data z vary, the solutions are
stable in the sense of (5.9).

Problem 5.18. We revisit a problem investigated in [30] with different tools (see
also [10, 31, 36, 64, 65] for related frameworks and special cases). Let

(i) T : H → G be a nonzero bounded linear operator;
(ii) (ek)k∈N be an orthonormal basis of H;
(iii) p ∈ [1, 2] and (ωk)k∈N be a sequence in ]0,+∞[ such that ω = infk∈N ωk > 0.

The objective is to

(5.22) minimize
x∈H

1

2
‖Tx− z‖2 +

∑

k∈N

ωk|〈x | ek〉|
p.

Clearly, Problem 5.18 is a special case of Problem 5.13 with (∀k ∈ N) φk : ξ 7→

ωk|ξ|
p. Moreover, since p ∈ [1, 2], we have (∀(ξk)k∈N ∈ ℓ2(N))

(∑
k∈N

|ξk|
p
)1/p

≥
(∑

k∈N
|ξk|

2
)1/2

. Accordingly,

(∀(ξk)k∈N ∈ ℓ2(N))
∑

k∈N

φk(ξk) =
∑

k∈N

ωk|ξk|
p

≥ ω
∑

k∈N

|ξk|
p

≥ ω

(
∑

k∈N

|ξk|
2

)p/2
.(5.23)

Therefore (5.19) holds with c : t 7→ ωtp/2. Hence, as a result of Proposition 5.15(i),
Problem 5.18 admits at least one solution. Moreover, we deduce from Proposi-
tion 5.15(ii)(a) that it admits exactly one solution if 1 < p ≤ 2. Now, let the sequences
(γn)n∈N, (λn)n∈N, (bn)n∈N, and (αn,k)n∈N be as in Corollary 5.16 and define, for every
(k, n) ∈ N

2,

(5.24) πn,k = proxωn,k|·|p 〈xn + γn(T
∗(z − Txn) − bn) | ek〉, where ωn,k = γnωk.

Then we can rewrite (5.21) as

(5.25) xn+1 = xn + λn

(
∑

k∈N

(αn,k + πn,k)ek − xn

)
.

We deduce at once from Corollary 5.16(i) that

(5.26) (xn)n∈N converges weakly to a solution x to Problem 5.18.
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In [30], (5.26) was obtained with the additional assumptions λn ≡ 1, ‖T ‖ < 1, γn ≡ 1,
αn,k ≡ 0, and bn ≡ 0 (see [30, Proposition 3.11]). Furthermore, it was shown that,
in this particular case, strong convergence is achieved [30, Theorem 3.1]. Let us now
extend this result.

Corollary 5.19. Let (γn)n∈N be a sequence in ]0,+∞[ such that 0 <
infn∈N γn ≤ supn∈N γn < 2/‖T ‖2, let (λn)n∈N be a sequence in ]0, 1] such that
infn∈N λn > 0, and let (bn)n∈N be a sequence in H such that

∑
n∈N

‖bn‖ < +∞.
Moreover, for every n ∈ N, let (αn,k)k∈N be a sequence in ℓ2(N) and suppose that∑

n∈N

√∑
k∈N

|αn,k|2 < +∞. Fix x0 ∈ H and let (xn)n∈N be a sequence generated by
(5.24)–(5.25). Then (xn)n∈N converges strongly to a solution x to Problem 5.18.

Proof. As seen in (5.26), xn ⇀ x, where x solves Problem 5.18. Now set
f1 : y 7→

∑
k∈N

ωk|〈y | ek〉|
p, f2 : y 7→ ‖Ty − z‖2/2, and, for every n ∈ N, set hn =

x + γnT
∗(z − Tx) = x − γn∇f2(x) and vn = xn − x. Then we must show that

vn → 0. Proposition 3.1(iii) yields (∀n ∈ N) proxγnf1 hn = x. Hence, it follows from
Lemma 2.4 that

(5.27) (∀n ∈ N) ‖ proxγnf1(vn + hn) − vn − proxγnf1 hn‖

= ‖ proxγnf1

(
xn + γnT

∗(z − Tx)
)
− xn‖

≤ ‖ proxγnf1

(
xn + γnT

∗(z − Tx)
)
− proxγnf1

(
xn + γnT

∗(z − Txn)
)
‖

+ ‖ proxγnf1

(
xn + γnT

∗(z − Txn)
)
− xn‖

≤ γn‖T
∗T (xn − x)‖ + ‖ proxγnf1

(
xn + γnT

∗(z − Txn)
)
− xn‖.

Therefore, the boundedness of (γn)n∈N and Corollary 5.16(ii)&(iii) yield

(5.28) ‖vn − proxγnf1(vn + hn) + proxγnf1 hn‖ → 0.

On the other hand, (5.26) states that

(5.29) vn ⇀ 0.

The remainder of the proof is patterned after that of [30, Lemma 3.18]. There, it was
shown that, if ‖T ‖ < 1 and γn ≡ 1 (hence hn ≡ x + T ∗(z − Tx)), then (5.28) and
(5.29) imply that vn → 0. We shall show that this conclusion remains true in our
more general setting. Define, for every n and k in N, ηn,k = 〈hn | ek〉, νn,k = 〈vn | ek〉,
ξk = 〈x | ek〉, χk = 〈q | ek〉, and ρk = 〈r | ek〉, where q = T ∗(z−Tx) and r = 2q/‖T ‖2.
Since, for every n ∈ N, hn = x+ γnq and γn < 2/‖T ‖2, we have

(5.30) (∀k ∈ N)(∀n ∈ N) |ηn,k|
2/2 ≤ |ξk|

2 + γ2
n|χk|

2 ≤ |ξk|
2 + |ρk|

2.

Now let δ = inf(n,k)∈N2 ωn,k. Note that (5.24) and our assumptions yield

(5.31) δ > 0.

As in [30, Lemma 3.18], we treat the cases 1 < p ≤ 2 and p = 1 separately.
First, suppose that 1 < p ≤ 2. We derive from (5.29) that supn∈N

‖vn‖ ≤ B for
some B ∈ ]0,+∞[. Now define K =

{
k ∈ N | (∃n ∈ N) |ηn,k| ≥ B

}
. Then we derive

from (5.30) that

(5.32) (∀k ∈ K)(∃n ∈ N) |ξk|
2 + |ρk|

2 ≥ |ηn,k|
2/2 ≥ B2/2.

26



Consequently, since x and r lie in H, we have

(5.33) +∞ >
∑

k∈N

(
|ξk|

2 + |ρk|
2
)
≥
∑

k∈K

(
|ξk|

2 + |ρk|
2
)
≥ (cardK)B2/2,

and K is therefore a finite set. Consequently, it results from (5.29) that
∑

k∈K
|νn,k|

2 →
0. To show that ‖vn‖

2 → 0, it remains to show that
∑

k∈NrK
|νn,k|

2 → 0. The defi-
nition of K yields

(5.34) (∀k ∈ N r K)(∀n ∈ N) |ηn,k| < B.

Using (5.31), (5.34) and proceeding as in [30, Lemma 3.18], we obtain a constant
µ ∈ ]0,+∞[ depending only on p, δ, and B such that

∑

k∈NrK

|νn,k|
2 ≤ µ

∑

k∈NrK

|νn,k − proxωn,k|·|p(νn,k + ηn,k) + proxωn,k|·|p ηn,k|
2

≤ µ‖vn − proxγnf1(vn + hn) + proxγnf1 hn‖
2.(5.35)

Hence it follows from (5.28) that
∑

k∈NrK
|νn,k|

2 → 0, as desired.
Finally, suppose that p = 1. Since x and r lie in H, (5.30) yields

(5.36)
∑

k∈N

sup
n∈N

|ηn,k|
2/2 ≤

∑

k∈N

(
|ξk|

2 + |ρk|
2
)
< +∞.

Hence, by (5.31), there exists an integer K ∈ N such that (∀n ∈ N)
∑

k>K |ηn,k|
2 ≤

(δ/2)2, and it follows from (5.29) that
∑K

k=0 |νn,k|
2 → 0. It now remains to show that∑

k>K |νn,k|
2 → 0. Invoking the same arguments as in [30, Lemma 3.18], this follows

from (2.35) and (5.28).
Remark 5.20. Let us make a few of comments about Corollary 5.19.
(i) In [30, Remark 3.14], the assumption p ≤ 2 in Problem 5.18 was made to en-

sure that the sequence (xn)n∈N is bounded, whereas here it is made to ensure
that Problem 5.18 has solutions. These two conditions are perfectly consis-
tent. Indeed, the algorithm of [30] iterates xn+1 = Rxn = Rn+1x0, where
R = proxf1 ◦(Id +T ∗(z − T )) is nonexpansive (actually averaged nonexpan-
sive [25]) and its fixed point set FixR is the set of solutions to Problem 5.18
(Proposition 3.1(iii) or Proposition 5.15(iv)). Hence, (Rnx0)n∈N is bounded
if and only if FixR 6= ∅; actually, FixR = ∅ ⇒ ‖Rnx0‖ → +∞ [11, Corol-
lary 9(b)].

(ii) Let f : (ξk)k∈N 7→
∑

k∈N
ωk|ξk|

p. Then, since infk∈N ωk > 0, f is strongly
convex on ℓp(N) for p = 2, and strong convergence can be deduced directly
from Theorem 5.5(iv)(b) and Proposition 3.6(vii). However, for 1 < p < 2, we
cannot conclude via Theorem 5.5(iv)(b) and Proposition 3.6(vi) since, even
for (ωk)k∈N constant, f is known to be uniformly convex on bounded sets
only in ℓp(N) [75].

(iii) For p = 1, it follows from Corollary 5.19 and Example 2.20 that (5.24)–
(5.25) is a strongly convergent iterative soft-thresholding method. This result
extends the theoretical foundations of the multiresolution schemes proposed
in [10, 31, 36, 64, 65].

6. Denoising problems.

6.1. Problem statement and basic properties. In denoising problems, G =
H and T = Id in (5.1), which leads to the data formation equation
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(6.1) z = x+ w.

In other words, z is a noisy observation of x. We derive from Problem 5.1 the following
formulation.

Problem 6.1. Let
(i) K be a real Hilbert space;
(ii) L : H → K be a bijective bounded linear operator such that L−1 = L∗;
(iii) f ∈ Γ0(K).

The objective is to

(6.2) minimize
x∈H

f(Lx) +
1

2
‖x− z‖2.

Proposition 6.2. Problem 6.1 possesses exactly one solution z⊕, which is char-
acterized by one of the following equivalent conditions:

(i) z⊕ = proxf◦L z = (L∗ ◦ proxf ◦L)z.
(ii) (∀y ∈ H) 〈y − z⊕ | z − z⊕〉 + f(Lz⊕) ≤ f(Ly).
Proof. Since T = Id , the existence and uniqueness of a solution follow from Propo-

sition 5.3(iii). The characterizations are obtained by applying Proposition 5.3(iv) with
T = Id and γ = 1.

Example 6.3 (Wavelet soft-thresholding). Suppose that, in Problem 6.1, (ek)k∈N

is an orthonormal wavelet basis of H, K = ℓ2(N), L : x 7→ (〈x | ek〉)k∈N, (ωk)k∈N

is a sequence in ]0,+∞[, and f : (ξk)k∈N 7→
∑

k∈N
ωk|ξk|. Then, it follows from

Example 2.20 that z⊕ is the wavelet soft-thresholded transformation of z [33, 34].
Proposition 6.2 states that Problem 6.1 admits a unique solution z⊕ = proxf◦L z.

According to Moreau’s decomposition principle (2.25), the signal z can be decomposed
as

(6.3) z = z⊕ + z⊖,

where z⊖ = prox(f◦L)∗ z = proxf∗◦L z is by definition the solution to the dual problem

(6.4) minimize
x∈H

f∗(Lx) +
1

2
‖x− z‖2.

Moreover, f(Lz⊕)+f∗(Lz⊖) = 〈z⊕ | z⊖〉. Schematically, the action of the dual filters
proxf◦L and proxf∗◦L can be represented as in Figure 1.

proxf◦L

proxf∗◦L

z⊕ (denoised signal)

z⊖ = z − z⊕ (residual signal)

z

Fig. 1: Proximal signal denoising.

28



Moreau’s decomposition principle tells us that the component of the signal that is
filtered out, namely z⊖, is actually dually related to the denoised component z⊕ since
it is obtained by applying the same type of proximal operation to z, except that the
function f is now replaced by its conjugate f∗. In practice, deeper insights into the
properties of the denoising procedure can be gained from the availability of the two
components z⊕ and z⊖ in the decomposition of z. This is particularly important
in standard linear hierarchical signal analysis [49], as well as in certain nonlinear
extensions thereof [24, 28].

As a classical illustration of this denoising decomposition, consider the case when
H = L2(R), K = H×H, and the Fourier transform x̂ of the original signal in (6.1) lies
mostly in some low frequency band B, whereas the Fourier transform ŵ of the noise
lies mostly in a higher frequency range. Then it is natural to obtain the denoised
signal z⊕ by low-pass filtering z [58]. Now let L : H → K be the Fourier transform
operator, let V be the closed vector subspace of K of signals with support B, and set
f = ιV . Then, as is well-known [23, 66], the above low-pass filtering operation can be
written as z⊕ = PV (Lz) which, in light of (2.14), we can rewrite as z⊕ = proxf◦L z.
Since f∗ = ι∗V = ιV ⊥ , the signal that is filtered out is indeed the high-pass component
z⊖ = PV ⊥(Lz) = proxf∗◦L z.

As a second example, take H = L2(Ω), where Ω is a bounded open domain in R
2,

and let f be the total variation, i.e.,

(6.5) f : x 7→

{
γ
∫
Ω |∇x(ω)|dω, if x ∈ H1(Ω);

+∞, otherwise,

where γ ∈ ]0,+∞[. Then the denoising problem (6.2) was initially proposed in [62].
In this case, the proximal decomposition (6.3) appears implicitly in [51], where z⊕

was described as a bounded variation component of the image z carrying most of its
structure, while z⊖ was described as a texture/noise component. One will find in [51]
a detailed and insightful analysis of this decomposition model.

We conclude this section with a stability result. Let z̃ ∈ H be a perturbation of
the data z and, as above, let z̃⊕ and z⊕ be the associated solutions produced by (6.2).
Then it follows at once from Proposition 5.4 with T = Id that ‖z⊕ − z̃⊕‖ ≤ ‖z − z̃‖.
Here is a sharpening of this result.

Proposition 6.4. Let z̃ ∈ H. Then ‖z⊕− z̃⊕‖2 +‖z⊖− z̃⊖‖2 ≤ ‖z− z̃‖2, where
we have used the same notation as in (6.3).

Proof. Using Lemma 2.4 and (6.3), we obtain

‖z⊕ − z̃⊕‖2 = ‖ proxf◦L z − proxf◦L z̃ ‖
2

≤ ‖z − z̃‖2 − ‖(Id − proxf◦L)z − (Id − proxf◦L)z̃ ‖2

= ‖z − z̃‖2 − ‖(z − z⊕) − (z̃ − z̃⊕)‖2

= ‖z − z̃‖2 − ‖z⊖ − z̃⊖‖2.(6.6)

6.2. A split denoising problem. As seen in Proposition 6.2, the solution to
Problem 6.1 is z⊕ = L∗

(
proxf (Lx)

)
. In Section 2.6 we have provided examples of

proximity operators that could be computed in closed form. In some problems, how-
ever, it may be more difficult to evaluate proxf directly and some iterative procedure
may be required. We address this question in the case when f can be split into the
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sum of two functions, say

(6.7) f = ϕ+ ψ,

where
(i) ϕ ∈ Γ0(K) and the operator proxϕ is relatively easy to implement;
(ii) ψ ∈ Γ0(K) is differentiable and ∇ψ is α-Lipschitz continuous on K for some

α ∈ ]0,+∞[.
Problem 6.1 then becomes

(6.8) minimize
x∈H

ϕ(Lx) + ψ(Lx) +
1

2
‖x− z‖2.

We now provide a strongly convergent algorithm to construct the solution z⊕ to (6.8).
Theorem 6.5. Let (γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤

supn∈N γn < 2/(α + 1), let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0,
and let (an)n∈N and (bn)n∈N be sequences in K such that

∑
n∈N

‖an‖ < +∞ and∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ K and, for every n ∈ N, set

(6.9) xn+1 = xn + λn

(
proxγnϕ

(
(1 − γn)xn + γn(Lz −∇ψ(xn) − bn)

)
+ an − xn

)
.

Then (xn)n∈N converges strongly to x = proxf (Lz) and z⊕ = L∗x.
Proof. In view of assumption (ii) in Problem 6.1, (6.8) is equivalent to

(6.10) minimize
x∈K

ϕ(x) + ψ(x) +
1

2
‖x− Lz‖2.

Now set f1 = ϕ and f2 = ψ + ‖ · −Lz‖2/2. Then ∇f2 is Lipschitz continuous with
constant 1/β = α + 1 and (6.10) is a special case of Problem 1.1 transposed in K.
Moreover, (6.9) is a special case of (3.6). We also observe that, since ‖ · −Lz‖2/2
is strongly convex, f2 is likewise. It therefore follows from Proposition 3.6(vii) that
f2 satisfies Condition 3.2. Hence, we derive from Theorem 3.4(iv)(c) that (xn)n∈N

converges strongly to the solution x = Lz⊕ to (6.10).
Remark 6.6. The continuity of L∗ yields L∗xn → z⊕ in Theorem 6.5.
A noteworthy special case of (6.8) is when ϕ = ιC , for some nonempty closed

convex set C ⊂ K. In this case, we seek the optimal solution to the denoising problem
relative to ψ ◦ L over the feasibility set L−1(C), i.e.,

(6.11) minimize
Lx∈C

ψ(Lx) +
1

2
‖x− z‖2.

This formulation makes it possible to incorporate more a priori information in terms
of constraints on Lz⊕. As a direct corollary to Theorem 6.5 we obtain the following
corollary.

Corollary 6.7. Let (γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn ≤
supn∈N

γn < 2/(α + 1), let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0,
and let (an)n∈N and (bn)n∈N be sequences in K such that

∑
n∈N

‖an‖ < +∞ and∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ K and, for every n ∈ N, set

(6.12) xn+1 = xn + λn

(
PC
(
(1 − γn)xn + γn(Lz −∇ψ(xn) − bn)

)
+ an − xn

)
.

Then (xn)n∈N converges strongly to x = proxf (Lz) and z⊕ = L∗x.
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