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Abstract

Thompson sampling is one of oldest heuristic to address stpom’tion / ex-
ploitation trade-off, but it is surprisingly unpopular ihg literature. We present
here some empirical results using Thompson sampling onlatediand real data,
and show that it is highly competitive. And since this heliciss very easy to
implement, we argue that it should be part of the standardlin@s to compare
against.

1 Introduction

Various algorithms have been proposed to solve exploragsploitation or bandit problems. One
of the most popular i&Jpper Confidence Bounor UCB [7, 3], for which strong theoretical guar-
antees on the regret can be proved. Another representative Bayes-optimal approach of Gittins
[4] that directly maximizes expected cumulative payoffshwiespect to a given prior distribution.
A less known family of algorithms is the so-callpcbbability matching The idea of this heuristic
is old and dates back to [16]. This is the reason why this sehismalso referred to aBhompson
sampling

The idea of Thompson sampling is to randomly draw each armrdit to its probability of being
optimal. In contrast to a full Bayesian method like Gittindéx, one can often implement Thompson
sampling efficiently. Recent results using Thompson sarggeem promising [5, 6, 14, 12]. The
reason why it is not very popular might be because of its |dctheoretical analysis. Only two
papers have tried to provide such analysis, but they werealni¢ to prove asymptotic convergence
[6, 11].

In this work, we present some empirical results, first on auted problem and then on two real-

world ones: display advertisement selection and newdargcommendation. In all cases, despite
its simplicity, Thompson sampling achieves state-ofderesults, and in some cases significantly
outperforms other alternatives like UCB. The findings ssgjdiee necessity to include Thompson
sampling as part of the standard baselines to compare agaidgo develop finite-time regret bound

for this empirically successful algorithm.

2 Algorithm

The contextual bandit setting is as follows. At each roundchaee a context (optional) and a set
of actionsA. After choosing an action € A, we observe a reward The goal is to find a policy
that selects actions such that the cumulative reward isgs & possible.

Thompson sampling is best understood in a Bayesian settifadlaws. The set of past observations
D is made of tripletgx;, a;, ;) and are modeled using a parametric likelihood funcfign|a, x, 6)
depending on some parametérsGiven some prior distributio?(#) on these parameters, the pos-
terior distribution of these parameters is given by the Bayée,P(0|D) « [[ P(r;|ai, i, 0)P(0).



In the realizable case, the reward is a stochastic functigheoaction, context and the unknown,
true parametef*. ldeally, we would like to choose the action maximizing theected reward,
max, E(r|a,z,0%).

Of coursef* is unknown. If we are just interested in maximizing the immaéelreward (exploita-
tion), then one should choose the action that maxinides:, z) = [ E(r|a,z,0)P(0|D)d6.

But in an exploration / exploitation setting, the probakitnatching heuristic consists in randomly
selecting an action according to its probability of being optimal. That is, actiz is chosen with
probability

/JI [E(r|a,x,6‘) = max E(r|a',x,9)] P(0|D)de,
wherel is the indicator function. Note that the integral does nateht be computed explicitly: it

suffices to draw a random paramefiesit each round as explained in Algorithm 1. Implementation
of the algorithm is thus efficient and straightforward in mnaysplications.

Algorithm 1 Thompson sampling

D=1

fort=1,...,Tdo
Receive context;
Draw 6* according toP(6| D)
Selecta; = arg max, E,.(r|z¢, a,0")
Observe reward,
D=DuU ((Et, Qg, ’f‘t)

end for

In the standard<-armed Bernoulli bandjteach action corresponds to the choice of an arm. The
reward of the-th arm follows a Bernoulli distribution with meatj. Itis standard to model the mean
reward of each arm using a Beta distribution since it is thgwgate distribution of the binomial
distribution. The instantiation of Thompson sampling foe Bernoulli bandit is given in algorithm

2. ltis straightforward to adapt the algorithm to the casemshdifferent arms use different Beta
distributions as their priors.

Algorithm 2 Thompson sampling for the Bernoulli bandit

Require: «, § prior parameters of a Beta distribution
S; =0,F; =0, Vi. {Success and failure countérs
fort=1,...,Tdo

fori=1,...,Kdo
Draw6; according to BetgS; + a, F; + ().

end for
Draw armi = arg max; #; and observe rewarnd
if r=1then
S;=5;+1
else
F,=F+1
end if
end for

3 Simulations

We present some simulation results with Thompson samptinthe Bernoulli bandit problem and
compare them to the UCB algorithm. The reward probabiliteath of theK” arms is modeled
by a Beta distribution which is updated after an arm is setb¢see algorithm 2). The initial prior
distribution is Beta(1,1).

There are various variants of the UCB algorithm, but theyhaite in common that the confidence
parameter should increase over time. Specifically, we ctiwsarm for which the following upper



confidence bound [8, page 278] is maximum:
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wherem is the number of times the arm has been selectedkaitaltotal reward. This is a tight
upper confidence bound derived from Chernoff’s bound.

In this simulation, the best arm has a reward probability.6fand theK — 1 other arms have a
probability of0.5 — . In order to speed up the computations, the parameters dreptated after
every 100 iterations. The regret as a functiorifofor various settings is plotted in figure 1. An
asymptotic lower bound has been established in [7] for thesteof a bandit algorithm:

P —pi
— D(pi|lp*)

wherep; is the reward probability of thé-th arm,p* = maxp; and D is the Kullback-Leibler
divergence. This lower bound is logarithmicThwith a constant depending on thgvalues. The
plots in figure 1 show that the regrets are indeed logarithmric (the linear trend on the right hand
side) and it turns out that the observed constants (slopediftes) are close to the optimal constants
given by the lower bound (2). Note that the offset of the redieus irrelevant because of th€l)
term in the lower bound (2). In fact, the red curves were stiuch that they pass through the
lower left-hand corner of the plot.
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Figure 1: Cumulative regret fak € {10,100} ande € {0.02,0.1}. The plots are averaged over
100 repetitions. The red line is the lower bound (2) shiftechsthat it goes through the origin.

As with any Bayesian algorithm, one can wonder about thegiiass of Thompson sampling to
prior mismatch. The results in figure 1 include already son pnismatch because the Beta prior
with parameters (1,1) has a large variance while the trubgiitities were selected to be close to
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Figure 2: Regret of optimistic Thompson sampling [11] in sagne setting as the lower left plot of
figure 1.

0.5. We have also done some other simulations (not shownjewthere is a mismatch in the prior

mean. In particular, when the reward probability of the kast is 0.1 and the 9 others have a
probability of 0.08, Thompson sampling—with the same pastbefore—is still better than UCB

and is still asymptotically optimal.

We can thus conclude that in these simulations, Thompsoplsagris asymptotically optimal and
achieves a smaller regret than the popular UCB algorithnis ilhportant to note that for UCB,
the confidence bound (1) is tight; we have tried some othefidemce bounds, including the one
originally proposed in [3], but they resulted in larger refgt

Optimistic Thompson sampling The intuition behind UCB and Thompson sampling is that, for
the purpose of exploration, it is beneficial to boost the jmtézhs of actions for which we are uncer-
tain. But Thompson sampling modifies the predictions in laitections and there is apparently no
benefit in decreasing a prediction. This observation ledrexantly proposed algorithm call€zp-
timistic Bayesian samplingd.1] in which the modified score is never smaller than the méaore
precisely, in algorithm 1E, (r|z;, a, 6") is replaced bynax (I, (r|z;, a, 6"),E, g p(r|x:, a, 0)).

Simulations in [12] showed some gains using this optimigticsion of Thompson sampling. We
compared in figure 2 the two versions of Thompson samplingéncase/X = 10 ande = 0.02.
Optimistic Thompson sampling achieves a slightly bettgret but the gain is marginal. A pos-
sible explanation is that when the number of arms is largs,likely that, in standard Thompson
sampling, the selected arm has a already a boosted score.

Posterior reshaping Thompson sampling is a heuristic advocating to draw sanfplesthe pos-
terior, but one might consider changing that heuristic endsamples from a modified distribution.
In particular, sharpening the posterior would have thecefiéincreasing exploitation while widen-
ing it would favor exploration. In our simulations, the par$or is a Beta distribution with parame-
tersa andb, and we have tried to change it to parametefs, b/«. Doing so does not change the
posterior mean, but multiply its variance by a factor clasa?.

Figure 3 shows the average and distribution of regret fdedifit values ofv. Values ofa: smaller
than 1 decrease the amount of exploration and often reslatver regret. But the price to pay is a
higher variance: in some runs, the regret is very large. Tikeage regret is asymptotically not as
good as withne = 1, but tends to be better in the non-asymptotic regime.

Impact of delay In a real world system, the feedback is typically not proedssnmediately
because of various runtime constraints. Instead it usaatlyes in batches over a certain period of
time. We now try to quantify the impact of this delay by doirayree simulations that mimic the
problem of news articles recommendation [9] that will beadié®d in section 5.
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Figure 3: Thompson sampling where the parameters of the |Beggerior distribution have been
divided by«. The setting is the same as in the lower left plot of figure 10QLfepetitions). Left:
average regret as a functionBf Right: distribution of the regret & = 10”. Since the outliers can
take extreme values, those above 6000 are compressed ap thithe figure.

Table 1: Influence of the delay: regret when the feedbackagiged every steps.

0 | 1 3 10 32 100 316 1000
UCB | 24,145 24,695 25,662 28,148 37,141 77,687 226,220
TS 9,105 9,199 9,049 9,451 11,550 21,594 59,256
Ratio 2.65 2.68 2.84 2.98 3.22 3.60 3.82

We consider a dynamic set of 10 items. At a given time, wittbphility 10~2 one of the item retires
and is replaced by a new one. The true reward probability dfengtem is drawn according to a
Beta(4,4) distribution. The feedback is received only gv¥etime units. Table 1 shows the average
regret (over 100 repetitions) of Thompson sampling and UCB & 10°. An interesting quantity
in this simulation is the relative regret of UCB and Thompsampling. It appears that Thompson
sampling is more robust than UCB when the delay is long. Themmmsampling alleviates the
influence of delayed feedback by randomizing over actionshe other hand, UCB is deterministic
and suffers a larger regret in case of a sub-optimal choice.

4 Display Advertising

We now consider an online advertising application. Giversarwisiting a publisher page, the
problem is to select the best advertisement for that useey?element in this matching problem is
the click-through rate (CTR) estimation: what is the praligtthat a given ad will be clicked given
some context (user, page visited)? Indeed, in a cost-pE{€PC) campaign, the advertiser only
pays when his ad gets clicked. This is the reason why it is mapbto select ads with high CTRs.
There is of course a fundamental exploration / exploitatitémma here: in order to learn the CTR
of an ad, it needs to be displayed, leading to a potentialdbshort-term revenue. More details on
on display advertising and the data used for modeling canedin [1].

In this paper, we consider standard regularized logisticagsion for predicting CTR. There are
several features representing the user, page, ad, as waihfimctions of these features. Some
of the features include identifiers of the ad, advertiseblipher and visited page. These features
are hashed [17] and each training sample ends up being eepeelsas sparse binary vector of
dimensiorn2?4.

In our model, the posterior distribution on the weights ipragimated by a Gaussian distribution
with diagonal covariance matrix. As in the Laplace appration, the mean of this distribution is
the mode of the posterior and the inverse variance of eaayjhivisi given by the curvature. The use



of this convenient approximation of the posterior is twdfdk first serves as a prior on the weights
to update the model when a new batch of training data becovadalale, as described in algorithm
3. And it is also the distribution used in Thompson sampling.

Algorithm 3 Regularized logistic regression with batch updates
Require: Regularization parametar> 0.
m; =0, ¢; = \. {Each weightu, has an independent prigf (m;, ¢; ')}
fort=1,...,Tdo
Get a new batch of training data;,y;), j=1,...,n.

d n
. . 1
Find w as the minimizer of: 5 Z qi(w; —my)* + Z log(1 + exp(—y;w ' x;)).

i=1 j=1
m; = W;
¢ =q + Z ap;(1—p;), pj = (1+exp(—w'x;))"" {Laplace approximation
=1
end for

Evaluating an explore / exploit policy is difficult because typically do not know the reward of an
action that was not chosen. A possible solution, as we sealirssection 5, is to useraplayerin
which previous, randomized exploration data can be usedomuge arunbiasedoffline estimator

of the new policy [10]. Unfortunately, their approach canbe used in our case here because
it reduces the effective data size substantially when thrabmr of armsK is large, yielding too
high variance in the evaluation results. [15] studies amogiiomising approach using the idea of
importance weighting, but the method applies only when thleyis static, which is not the case
for online bandit algorithms that constantly adapt to itstdry.

For the sake of simplicity, therefore, we considered in $igistion a simulated environment. More
precisely, the context and the ads are real, but the clicksianulated using a weight vectar*.
This weight vector could have been chosen arbitrarily, twsss in fact a perturbed version of some
weight vector learned from real clicks. The input featuretoesx are thus as in the real world set-
ting, but the clicks are artificially generated with prodipiP(y = 1|x) = (1 + exp(—w*Tx)) L.

About 13,000 contexts, representing a small random suligbedotal traffic, are presented every
hour to the policy which has to choose an ad among a set obkdigds. The number of eligible ads
for each context depends on numerous constraints set byltleetiser and the publisher. It varies
between 5,910 and 1 with a mean of 1,364 and a median of 5144®et of 66,373 ads). Note that
in this experiment, the number of eligible ads is smallentivhat we would observe in live traffic
because we restricted the set of advertisers.

The model is updated every hour as described in algorithm 8akure vector is constructed for
every (context, ad) pair and the policy decides which ad tavst click for that ad is then generated
with probability (1 + exp(—w*x))~*. This labeled training sample is then used at the end of the
hour to update the model. The total number of clicks recetiaihg this one hour period is the
reward. But in order to eliminate unnecessary varianceearegtimation, we instead computed the
expectation of that number since the click probabilitieslarown.

Several explore / exploit strategies are compared; theydifier in the way the ads are selected; all
the rest, including the model updates, is identical as de=tin algorithm 3. These strategies are:

Thompson sampling This is algorithm 1 where each weight is drawn independeadbprding to
its Gaussian posterior approximatiaf(m,, q[l) (see algorithm 3). As in section 3, we

also consider a variant in which the standard devia’@cg_ﬁé2 are first multiplied by a factor
a € {0.25,0.5}. This favors exploitation over exploration.

LinUCB This is an extension of the UCB algorithm to the parametrigec®]. It selects the
ad based on mean and standard deviation. It also has a factorcontrol the ex-
ploration / exploitation trade-off. More precisely, LinBCselects the ad for which

Z?;l mx; + ay/ Zle q; '2? is maximum.

Exploit-only Select the ad with the highest mean.
Random Select the ad uniformly at random.



Table 2: CTR regrets on the display advertising data.
Method TS LinUCB e-greedy Exploit | Random
Parameter| 0.25 0.5 1] 05 1 2 | 0.005 0.01 0.02‘
Regret (%)| 445 3.72 381 499 422 414 505 498 522 500 | 31.95
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Figure 4: CTR regret over the 4 days test period for 3 algor#hThompson sampling withh = 0.5,

LinUCB with «« = 2, Exploit-only. The regret in the first hour is large, around,(ecause the
algorithms predict randomly (no initial model provided).

e-greedy Mix between exploitation and random: wittprobability, select a random ad; otherwise,
select the one with the highest mean.

Results A preliminary result is about the quality of the variancegiction. The diagonal Gaussian
approximation of the posterior does not seem to harm thewee predictions. In particular, they
are very well calibrated: when constructing a 95% confidentsval for CTR, the true CTR is in
this interval 95.1% of the time.

The regrets of the different explore / exploit strategiastoa found in table 2. Thompson sampling
achieves the best regret and interestingly the modifiedorersith o« = 0.5 gives slightly better
results than the standard versien- 1). This confirms the results of the previous section (figure 3)
wherea < 1 yielded better regrets in the non-asymptotic regime.

Exploit-only does pretty well, at least compared to randetection. This seems at first a bit sur-
prising given that the system has no prior knowledge ab@€ffiRs. A possible explanation is that
the change in context induces some exploration, as notetBjn Also, the fact that exploit-only
is so much better than random might explain whgreedy does not beat it: whenever this strat-
egy chooses a random action, it suffers a large regret irageewhich is not compensated by its
exploration benefit.

Finally figure 4 shows the regret of three algorithms acrosge.t As expected, the regret has a
decreasing trend over time.

5 NewsArticle Recommendation

In this section, we consider another application of Thommsmpling in personalized news article
recommendation on Yahoo! front page [2, 9]. Each time a usiis\the portal, a news article out
of a small pool of hand-picked candidates is recommende@ cEimdidate pool is dynamic: old
articles may retire and new articles may be added in. Theageesize of the pool is arourad.
The goal is to choose the most interesting article to usefsymally, maximize the total number of
clicks on the recommended articles. In this case, we tréiater as arms, and define the payoff to
bel if the article is clicked on and otherwise. Therefore, the average per-trial payoff of acyas

its overall CTR.
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Figure 5: Normalized CTRs of various algorithm on the newtislarrecommendation data with dif-
ferent update delayg:10, 30, 60} minutes. The normalization is with respect to a random lrzesel

Each user was associated with a binary raw feature vectorasflo00 dimension, which indicates
information of the user like age, gender, geographicaltionabehavioral targeting, etc. These
features are typically sparse, so using them directly médasing more difficult and is compu-
tationally expensive. One can find lower dimension featutespace by, say, following previous
practice [9]. Here, we adopted the simpler principal congmranalysis (PCA), which did not ap-
pear to affect the bandit algorithms much in our experieficparticular, we performed a PCA and
projected the raw user feature onto the f2@principal components. Finally, a constant featuie
appended, so that the final user feature contzinsomponents. The constant feature serves as the
bias term in the CTR model described next.

We use logistic regression, as in Algorithm 3, to model &tliCTRs: given a user feature vector
x € R2L, the probability of click on an article is (1 + exp(—x"w,))~! for some weight vector
w, € 72! to be learned. The same parameter algorithm and explotiagioristics are applied as in
the previous section. Note that we have a different weigbtordor each article, which is affordable
as the numbers of articles and features are both small. érantire, given the size of data, we have
not found article features to be helpful. Indeed, it is shamvaur previous work [9, Figure 5] that
article features are helpful in this domain only when datahaghly sparse.

Given the small size of candidate pool, we adopt the unbiafftide evaluation method of [10]
to compare various bandit algorithms. In particular, wdeméd randomized serving events for
a random fraction of user visits; in other words, these ramdgers were recommended an article
chosen uniformly from the candidate pool. From 7 days in A0@%9, over 34M randomized serving
events were obtained.

As in section 3, we varied the update delay to study how varagorithms degrade. Three values
were tried: 10, 30, and 60 minutes. Figure 5 summarizes teeathVCTRs of four families of
algorithm together with the exploit-only baseline. As ie firevious section, (optimistic) Thompson
sampling appears competitive across all delays. While ¢terdhinistic UCB works well with short
delay, its performance drops significantly as the delayeiases. In contrast, randomized algorithms
are more robust to delay, and when there is a one-hour d@giim(stic) Thompson sampling is
significant better than others (given the size of our data).

6 Conclusion

The extensive experimental evaluation carried out in thfggp reveals that Thompson sampling is a
very effective heuristic for addressing the exploratiorpleitation trade-off. In its simplest form,

it does not have any parameter to tune, but our results shawwieaking the posterior to reduce
exploration can be beneficial. In any case, Thompson samiglirery easy to implement and should
thus be considered as a standard baseline. Also, sinceriiiglamized algorithm, it is robust in the
case of delayed feedback.

Future work includes of course, a theoretical analysisfiitite-time regret. The benefit of this

analysis would be twofold. First, it would hopefully comute to make Thompson sampling as
popular as other algorithms for which regret bounds exigtco8d, it could provide guidance on

tweaking the posterior in order to achieve a smaller regret.
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