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Chapter 11

Code Concatenation and Advanced
Codes

A transmission system’s use of the convolutional (or block) and trellis codes of Chapter 10 allows sig-
nificant improvement in performance with respect to uncoded transmission. The improvement occurs
because careful selection of sequences of transmitted symbols can increase codeword separation or mini-
mum distance for a given energy (or volume). Additional improvement through cascade of hard-coding
outside of soft-coding further reduces probability of error (perhaps at a small reduction in data rate
determined by the rate of the hard external code). This simple improvement is a special case of what is
known as Code Concatenation and was first seriously studied by Forney in his 1963 MIT dissertation.
Often p = 10−6 for a BSC model, and very high-rate b̄ ≈ 1 block codes (for instance Reed-Solomon
codes) then can reduce probability of error to essentially zero and assume the position of the outer-most
hard-decision codes.

There are many successful code-concatenation methods that are more sophisticated than simple
cascade of hard and soft coding systems. While coding gains may not add directly, improved probability
of bit error can occur from the concatenation, allowing essentially reliable transmission of data rates very
close to capacity. Section 11.1 introduces more formally serial and parallel concatenation of codes, while
Section 11.2 discusses the related concept of interleaving. Interleaving attempts to redistribute a burst
of errors or noise that may overwhelm one of the codes, but not all the codes in a concatenation. Section
11.2 describes three popular classes of interleaving methods: block, convolutional, and random
interleaving. The combination of two or more codes can be considered as one giant code of very long
block length with an interleaver, or essentially as “randomly generated” codewords. Surprisingly, the
combined code often does not have significantly larger free or minimum distance – however, the average
number of bit errors that correspond to error events with small distance is very low. This lower number
of bit errors is essentially reduced in proportion to the interleaver depth. Thus a maximum-likelihood
decoder for the giant combined code could have very low probability of bit error even when the distance-
to-noise ratio is poor, thus allowing reliable transmission (at some low but nonzero P̄b) at rates near
capacity. However, such a maximum-likelihood decoder would be hopelessly complex.

Iterative Decoding of Section 9.6 is instead a decidedly less complex decoding strategy for con-
catenated codes. Rather than make a “hard” decision on any of the individual codes, “soft” information
about the likelihood of different sequences and/or bits is instead computed for one code and then passed
to a decoder for another code, which then also computes its own soft information. The soft information
is iteratively passed between all decoders in a recursive cascade of decoders with the hope of converging
close to an ability to correctly detect the transmitted message, often lowering P̄b for data rates very close
to but less than capacity. As the AEP in Section 8.3 notes implicitly, any sufficiently long-block-length
code with codewords chosen at random has high probability of being a capacity-achieving code so there
are many interleaved code concatenations that can approach capacity levels.

Turbo Codes are addressed in Section 11.3 and are examples of interleaved concatenated codes that
presume use of iterative decoding and can approach rates of capacity with low P̄b. Section 11.4 directly
addresses the use of binary turbo codes in multi-level constellations. Section 11.5 investigates LDPC
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codes that essentially can achieve capacity as block length is increased. In LDPC codes, the generator
matrix of a block code G(D) = G(0) = G, or correspondingly the parity matrix H(D) = H(0) = H have
entries essentially chosen at random.

Section ?? discusses shaping methods. At b̄ ≥ .5, the individual symbols in a sequence need to
increasingly appear as if the code were created by drawing codewords from a Gaussian distribution.
This effect is separate from coding gain achieved by sequence separation or nearest-neighbor reduction
and is called shaping gain in Chapter 1. A final concatenation of shaping codes is necessary when c̄ ≥ .5
to gain up to an additional 1.53 dB of coding gain that cannot be achieved any other way. Shaping codes
are unusual in that most of the complexity is in the transmitter, while the receiver is trivial, and amount
to selecting sequences from a large set of extended codewords so that the shaping gain is maximized.
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Figure 11.1: Serial Concatenation

11.1 Code Concatenation

Concatenated coding attempts to combine the performance-improvement of two or more codes. Con-
catenation of codes can follow one of 3 architectures, serial, parallel, or multilevel, each of which are
introduced in the 3 following subsections.

11.1.1 Serial Concatenation

Figure 11.1 illustrates serial concatenation, which uses two codes called the inner and outer codes.
The inner code may be any of the types of codes studied in earlier chapters. The outer code attempts
to provide additional improvement. The interleaver rearranges the order of transmitted symbols, while
the corresponding de-interleaver restores the original order. De-interleaving thus can disperse a burst of
errors associated with an inner-decoder error event so that these individual errors may be more easily
corrected by the outer code’s decoder. De-interleaving thus allows the inner channel-code output to
appear independent from symbol to symbol.

Serial concatenation with interleaving traditionally uses an inner code that makes hard decisions on
its inner-code decoder output. Such hard decisions allow the inner code-and-channel to be modeled by
a BSC (or DMC more generally). The outer code then is designed to reduce Pe to negligible levels: The
probability of error for the binary outer code that acts on the BSC created by the inner code has

P̄e ≈ Ne(4p)ddfree/2e . (11.1)

Block or convolutional error-correction outer codes with high rates b̄ ≈ 1 can have dfree ≥ 8. Thus, the
inner code’s probability of error of perhaps 10−6 can be reduced through the use of the outer code to
below 10−20. Such low error probabilities essentially mean that the transmission layer is effectively error
free, a highly desirable result in many applications. This simple form of serial concatenation allows one
of the basic results of Shannon to be achieved, namely arbitrarily reliable transmission (albeit at some
small loss in data rate not required in basic capacity theorems of Chapter 8).

Serial concatenation can also use two codes that both are designed for BSC’s, meaning that the
channel itself is a BSC, as well as the model of the inner-coded-and-interleaved channel. Soft decoding
can be used by both decoders exploiting the equality and parity constraint viewpoints of Sections 9.5
and 9.6. Serial concatenation can be extended to cascade more than 2 codes by recursively considering
the system in Figure 11.1 to be representative of a new inner code, to which a new outer code and
interleaver can be applied.

11.1.2 Parallel Concatenation

Figure 11.2 illustrates parallel concatenation for two codes. The same information sequence is encoded by
two different encoders. However, one of the encoders acts on an interleaved version of the input sequence.
The two encoder outputs are multiplexed (and interleaved for one of the codes) for channel transport.
The naming of an “inner code” and an “outer code” is somewhat vague for parallel concatenation, so
the codes are often instead referred to as first and second codes. All the individual-code outputs may
be transmitted, or some subset of these outputs may instead be transmitted by regular deletion or
“puncturing” of the encoder outputs.

A simple form of parallel concatenation is known as a product code. Product codes re-encode the
same bits/symbols by adding parity bits with two systematic encoders to the same set of input bits.
Figure 11.3 illustrates product coding. One encoder determines horizontal parity bits while a second
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Figure 11.2: Parallel Concatenation.

Figure 11.3: Simple product code illustration.

encoder generates vertical parity bits.1 The ordering of the bits for the two encoders is not the same,
thus tacitly illustrating the interleaving. An incorrectly decoded codeword for the horizontal code would
leave up to a single bit error in each column, which could typically still be corrected by the vertical code.

In general for parallel concatenation again, de-interleaving again distributes bursts of errors caused
by the first decoder’s selection of an incorrect codeword, so that the second code can more reliably
decode (as long as error bursts don’t occur too often). Parallel concatenation can be extended to more
than two codes by adding additional interleavers and encoders in the obvious parallel way in Figure 11.2.
One could envision a 3-dimensional version of the product code as an example with additional parity
bits “coming out of the paper at the reader” in Figure 11.3 (20 of 27 positions in a 3 × 3 × 3 cube).

11.1.3 Multilevel Coding

Multilevel coding uses partition chains to encode different bits of the input stream with different codes.
Trivial forms of multilevel coding are the 4-dimensional Wei trellis codes of Chapter 10. Those codes
had a first (often rate 2/3) encoder that selected a sequence of 4-dimensional cosets to be transmitted.
These first two input bits were protected by the convolutional or trellis part of the code. The remaining
input bits were then used to select parallel transitions in a D4 lattice code for each branch of the trellis.
One of those latter bits is protected by the code that corresponds to selecting the upper or lower path
in the trivial trellis of a D4 lattice. The remaining bits could also be coded.

Multilevel coding will not be further pursued in this Chapter. Multilevel coding is typically applicable
only to systems with very large b.

1The 9th position at the lower right in Figure 11.3 would be present in the serial concatenation of Subsection 11.1.1.
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Figure 11.4: Basic Interleaver.

11.2 Interleaving

Interleaving is a periodic and reversible reordering of blocks of L transmitted symbols. Symbols (or
bits) are correspondingly reordered by de-interleaving in the receiver. Interleaving is used to disperse
error bursts that may occur because of nonstationary channel noise that may be localized to a few
dimensions such as an impulse noise burst in time or a loss of a narrow frequency band in OFDM. Error
bursts can also occur because of the incorrect decision of an inner/first decoder in Figures 11.1 or 11.2.
Errored symbols caused by inner-code detection errors will typically span the entire incorrect codeword,
leading to a burst of errored symbols. If these bursts are separated by an interval long with respect to the
interleaver period, then they can be distributed more evenly over time (or more generally dimensions)
by the de-interleaver in the receiver. The distribution of the errors effectively enables realistic modeling
for the inner-code-and-channel as memoryless, i.e., modeled by a BSC, DMC, or other channel for which
successive symbol outputs are independent.

Figure 11.4 generically depicts the interleaver as accepting symbols indexed in time by k or in
block/packet in m, where L symbols occur within one packet and L is the period of the interleaver.
Often L corresponds to a codeword size.

Definition 11.2.1 (Depth of an Interleaver) The depth J of an interleaver is defined
as the minimum separation in symbol periods at the output of the interleaver between any
two symbols that were adjacent at the input of the interleaver.

The depth of an interleaver has significant implication for a burst of errors entering a de-interleaver
at a receiver. If a burst of errors has duration less than the depth, then two symbols affected by the
burst cannot be adjacent after de-interleaving.

Definition 11.2.2 (Period of an Interleaver) The period L of an interleaver is the short-
est time interval for which the re-ordering algorithm used by the interleaver repeats.

Essentially, the period is established by the detailed description of the interleaver and measures the
length of a block of input symbols to which interleaving is applied. The interleaver repeatedly acts with
the same algorithm upon successive blocks of L symbols. Often the period of the interleaver is chosen
to be equal to the block length of an outer code when block codes are used in serial concatenation.

Theorem 11.2.1 (Minimum Distance Magnification in Interleaving (for serial concatenation))
For inner channels with an outer hard-decision code of block length equal to the period of in-
terleaving, and only one error burst occurs within (J − 1) · (L − 1) symbols, then the outer
code’s free distance in symbols is multiplied by the depth J for inner-channel error bursts.

proof: Since all adjacent de-interleaver output symbols within a burst on the input to the
de-interleaver are separated by at least J−1 symbols, the number of errors has been effectively
reduced by a factor of J as long as a subsequent or preceding burst does not introduce errored
symbols into the same codewords that have errors from the burst under investigation. The
minimum delay of any symbol through the process of interleaving and de-interleaving is (J −
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1) · (L − 1) symbols (and would occur when all adjacent symbols are always spaced by exactly
J −1 symbols after interleaving) if every one of L symbols is spaced by J −1 symbols from its
previous neighbors. Thus, the burst length must be in general no longer than this minimum
delay to prevent different error bursts from placing erorred symbols in the same de-interleaver-
output codewords.

Interleaving with a single code does not improve performance for stationary additive white Gaussian
noise, so it is used for channels that exhibit bursts of errors or nonstationary noise. A burst of errors
can occur when an “inner” decoder incorrectly decodes and thus interleaving can be of value in systems
with two codes as in section 11.3.

Generally, the interleaver follows a relationship from its input xk to its output x̃k of

x̃k = xπ(k) , (11.2)

where π(k) is a function that describes the mapping of interleaver output time indices to interleaver
input time indices. Necessarily π(k) is one-to-one over the integers modulo its period of L samples.
Because of the periodicity,

π(k) − L = π(k − L) . (11.3)

The depth can be more precisely defined mathematically using the function π as

J = min
k=0,...,L−1

| π−1(k) − π−1(k + 1) | . (11.4)

This section augments the traditional coding use of a delay variable D as corresponding to one
interleaver period by considering also a symbol delay variable Dsym such that

D = DL
sym . (11.5)

As far as the author knows, no other text uses the symbol delay notation, but we find it very useful in
simplifying the description of interleaving.

In traditional study of interleaving, a sequence of interleaver-input symbols can be represented by
the L-dimensional (row) vector sequence X(D) in Figure 11.4 where each element in the sequence spans
one period of the interleaver, with the time index k = m ·L + i i = 0, ..., L− 1, yielding to an interleaver
block index m,

Xm =
[
xm·L+(L−1) xm·L+(L−2) ... xm·L

]
, (11.6)

where m thus denotes a time index corresponding to a specific block of L successive interleaver-input
symbols, and

X(D) =
∑

m

XmDm . (11.7)

Similarly the interleaver output X̃(D) can be considered an L-symbol-element sequence of interleaver
outputs. Then, interleaving can be modeled as a “rate 1” convolutional/block code over the symbol
alphabet with generator and input/output relation

X̃(D) = X(D) · G(D) , (11.8)

where G(D) is an L × L nonsingular generator matrix with the following restrictions:

1. one and only 1 entry in each row/column can be nonzero, and

2. nonzero entries are of the form Dl where l is an integer.

The de-interleaver has generator G−1(D), so that X(D) = X̃(D) · G−1(D). Further, a causal inter-
leaver has the property that all nonzero elements have Dl with l ≥ 0, and elements above the diagonal
must have l ≥ 1 – the de-interleaver for a causal interleaver is necessarily noncausal, and thus must be
instead realized with delay because interleaving necessarily introduces delay from interleaver input to
de-interleaver output.
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The equivalent relationships in terms of symbol delay are expressed similarly

X̃(Dsym) = X(Dsym) · G(Dsym) , (11.9)

but the input and output vectors have each entry defined in terms of the symbol-period D-transform as

xi(Dsym) =
∞∑

k=0

xi,k · Dk
sym . (11.10)

The entries in the vector X(Dsym) are not simply found by substituting D = DL
sym into the entries in

the vector X(D). In fact,

X(Dsym) =
[
DL−1

sym · xL−1(D)
∣∣∣D=DL

sym
DL−2

sym · xL−2(D)
∣∣∣D=DL

sym
... x0(D)

∣∣∣D=DL
sym

]
. (11.11)

A similar relation to (11.11) holds for the output vector of the interleaver. The symbol-spaced generator

follows easily by replacing any nonzero power of D, say Dδ in G(D) by substituting D
L·δ+(column number−row number)

modL
sym

and circularly shifting the entry within the row to the left by (row number− column number) positions.

Rule 11.2.1 (Generator Conversion for Interleavers) Let any non-zero entry in G(Dsym)
be written as Dr

sym. A new column index i′ is formed by i′ = (r + i)mod L where i is the
column index of the original non-zero entry (counting from right to left, starting with 0).
Further let r′ = b r+i

L
c, then place Dr′

in the same row in the position of column i′. One can
think of this as circularly shifting by r + i positions and increasing the power of D for every
factor of L in the exponent of Dr+i

sym.

(An example use of Rule 11.2.1 will occur shortly.)
It is often easier to avoid the rule and simply directly write G(D) based on a description of the

interleaving rule (and to do the same for G(Dsym). A few examples will help illustrate the concepts.

EXAMPLE 11.2.1 (Simple Block Permutation) A simple period-3 HW example is

π(k) =





k + 1 if k = 0 mod 3
k − 1 if k = 1 mod 3
k if k = 2 mod 3

(11.12)

or in tabular form:

π(k): -1 1 0 2 4 3 5
k: -1 0 1 2 3 4 5

which has inverse de-interleaver easily expressed as

k′ = π(k): -1 0 1 2 3 4 5
π−1(k′) = k: -1 1 0 2 4 3 5

The depth is J = 1 and thus clearly this interleaver is not very useful.

The corresponding generator is:

G(D) = G(Dsym) = G(0) =




1 0 0
0 0 1
0 1 0


 (11.13)

with de-interleaving inverse

G−1(D) =




1 0 0
0 0 1
0 1 0


 . (11.14)

Note that the two interleaver descriptions are equivalent if there are only binary entries in the generator
matrix. Such interleavers are called “block interleavers” and studied in Section 11.2.1.
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EXAMPLE 11.2.2 (Simple Triangular Interleaving) A second period-3 HW-interleaver
example is

π(k) =





k if k = 0 mod 3
k − 3 if k = 1 mod 3
k − 6 if k = 2 mod 3

(11.15)

or in tabular form:

π(k): -7 0 -2 -4 3 1 -1
k: -1 0 1 2 3 4 5

with inverse

π(k): -1 0 1 2 3 4 5
k: 5 0 4 8 3 7 11

The depth of this interleaver is J = 4 symbol periods.

The generator for the second HW example is (recall a delay, D, corresponds to a delay of
one period of L = 3 time samples)

G(D) =




D2 0 0
0 D1 0
0 0 1


 and G(Dsym) =




D6
sym 0 0
0 D3

sym 0
0 0 1


 (11.16)

This interleaver is clearly a one-to-one (nonsingular) generator and has inverse

G−1(D) =




D−2 0 0
0 D−1 0
0 0 1


 . (11.17)

This block-level inverse requires a delay of 2 block periods or 6 symbol periods for causal
inversion.

EXAMPLE 11.2.3 (A depth-3 Interleaver) An interleaver with period L = 5 and depth
J = 3 has generator

G(Dsym) =




D8
sym 0 0 0 0
0 D6

sym 0 0 0
0 0 D4

sym 0 0
0 0 0 D2

sym 0
0 0 0 0 1




(11.18)

and could be described as delaying each symbol within a period by its index times (J − 1)
symbol periods. The inverse is also easily described. Using the traditional notation with D
corresponding to a block period, then rule 11.2.1 provides

G(D) =




0 0 D2 0 0
D 0 0 0 0
0 0 0 D 0
0 1 0 0 0
0 0 0 0 1




. (11.19)

The second description often complicates easy insight into the implementation and the in-
verse. The interpretation that each symbol is delayed by its index times J−1 symbol periods
is not nearly as evident (although true if one examines much harder). This simplified in-
sight is the value of using the symbol-spaced interpretation, and the nice D

(J−1)i
sym diagonal

in (11.18)
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11.2.1 Block Interleaving

Block interleaving or permutation interleaving is the simplest type of interleaving and has G(D) =
G(Dsym) = G(0) = G. The de-interleaver is trivially G−1 = G∗ for the block interleaver. The permuta-
tion of inputs to outputs is contained within one period in a block interleaver. The first HW example
in (11.13) is a block interleaver. Block interleavers are never causal unless G = I (and G = I trivially
means no interleaving).

Figure 11.5 illustrates one of the most often encountered block interleavers, which is most often
associated with serial code concatenation and a block inner code. Each successive inner-code block of
symbols (often a codeword for a block code, but not necessarily the case) is written into a corresponding
register/row in the interleave memory. the block interleaver outputs instead successive columns. The
number of symbol blocks stored is the depth J of the interleaver. If a symbol group has K symbols and
the interleaver depth is J , then K · J symbols must be stored in each of two transmit memories of a
block interleaver as shown for J = 3 and K = 4. The period is L = K · J . As K = 4 symbols at a time
are written into each row of one of the transmit memory buffers, J = 3 symbols in each column are read
from the other. Symbols occur every T seconds, making the symbol rate 1/T . The interleaver input
clock is thus 1/K = 1/4 of the symbol clock rate. Thus, one symbol block of K = 4 symbols is written
into a each row of the write-memory buffer. After L = K · J = 12 symbol periods, the entire write
buffer will be full. The transmit-memory output clock is 1/J = 1/3 of that same symbol clock. The
read-memory buffer is read J = 3 symbols from each column for each period of the interleaver output
clock. The interleaver starts/completes writing of the write buffer at exactly the same two points in
time as it starts/completes reading the read buffer. Every L = KJ = 12 symbol-clock periods, the read
and write memories are interchanged.

Ignoring, the 12-symbol-period delay necessary for causal implementation, the generator for this
block interleaver (assuming entire rows/columns are read in sequence, i.e., there are no shift-registers)

G(D) = G =




1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1




. (11.20)

The de-interleaver is G′ (where prime means transpose) in the receiver and accepts symbols from a
decoder and writes them in terms of K symbols per column successively. After all L = KJ symbols
have been stored, the symbol blocks are read in horizontal or row order. Again, two memories are used
with one being written while the other is read. This type of interleaver is sometimes called a classical
block interleaver. For this classical form, the end-to-end delay is (no worse than) 2L symbol times and
correspondingly there is a total of 4L RAM locations necessary (at receiver and transmitter), half (2L)
of which are in the receiver and the other half (2L) in the transmitter.

For the classical block interleaver, a burst of B errored symbols is distributed roughly evenly over J
symbol blocks by the de-interleaving process in the receiver. If this is the only burst within the total L
receiver symbols and the symbol block length is equal to the length of a codeword for a block code, then
the outer code with hard decisions can correct approximately J times more errored symbols. Larger
depth J means more memory and more delay, but greater power of the outer code as long as a second
burst does not occur within the same KJ symbols. The minimum distance of the code is thus essentially
multiplied by J as long as errors are initially in bursts that do not occur very often. Thus interleaving
easily improves the performance of concatenation.
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Figure 11.5: Illustration of classical block interleaving and de-interleaving with L = 12 and J = 3.

11.2.2 Convolutional Interleaving

Convolutional interleavers have G(D) 6= G(0), meaning there is at least one delay element. While more
complex in concept, convolutional interleavers can allow a reduction in delay and in memory required
for implementation of a given depth J .

Coding theorists have often reserved the name triangular interleaver for the special case of a
convolutional interleaver where G(D) is a diagonal matrix of increasing or decreasing powers in D
proceeding down the diagonal. Example 11.2.2 illustrated such a triangular interleaver. The reason for
the names “multiplexed” or “triangular” interleaver follow from Figure 11.6, which illustrates the 3× 3
implementation. The delay elements (or the memory) are organized in a triangular structure in both
the interleaver and the de-interleaver. Symbols enter the triangular interleaver from the left and with
successive symbols cylically allocated to each of the 3 possible paths through the interleaver in periodic
succession. The input switch and output switch for the interleaver are synchronized so that when in the
upper position, the symbol simply passes immediately to the output, but when in the second (middle)
position the symbol is stored for release to the output the next time that the switch is in this same
position. Finally, the bottom row symbols undergo two interleaver periods of delay before reaching the
interleaver output switch. The deinterleaver operates in analogous fashion, except that the symbol that
was not delayed at the transmitter is now delayed by two periods in the receiver, while the middle symbol
that was delayed one period in transmitter sees one additional period of delay in receiver, and the symbol
that was delayed twice in transmitter is not delayed at all at receiver. Clearly all symbols then undergo
two interleaver periods of delay, somehow split between transmitter and receiver. Any symbols in the
same block of 3 on the input have at least 3 symbols from other blocks of inputs in between as illustrated
in Figure 11.6. The depth is thus J = 4.

To generalize what has been known as the triangular interleaver, the depth is restricted to be equal
to J = L + 1, and K = L. Then, K = L symbols within the mth symbol block are numbered from x0,m,
..., xi,m ,..., xL−1,m and the triangular interleaver delays each such symbol by i · L = i(J − 1) symbol
periods. The generator is

G(D) =




DL−1 0 0 0

0
.. . 0 0

0 0 D 0
0 0 ... 1


 . (11.21)
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Figure 11.6: Triangular interleaver illustrated for L = 3.

The diagonal increasing power of D (where again D corresponds to L symbol periods of delay) in G(D)
is that the ith symbol in a symbol block is delayed

∆i = i ·L = i · (J − 1) symbol periods i = 0, ..., L− 1 (11.22)

symbol clocks, assuming symbols arrive sequentially. The single block-of-symbols delay D in Figure 11.6
would be 3 symbol delays, so D = D3

sym and is realized as one storage element. The depth is clearly
J = L + 1 because the increment in delay between successive symbols is DJ−1

sym .
The straightforward deinterleaver inverse G−1(D) has negative powers of D in it, so must be realized

with delay of L(L − 1) = (J − 1)(L − 1) = L2 − L symbol periods to be causal. This is equivalent to
multiplying G−1(D) by DL−1 to obtain

G−1
causal(D) =




1 0 0 0

0
.. . 0 0

0 0 DL−2 0
0 0 ... DL−1


 . (11.23)

The total delay is L(L−1) = (J −1)(L−1) = L2 −L symbol periods, which is the theoretical minimum
possible. Clearly, the triangular interleaver requires only at most 1/4 the memory and exactly 1/2 the
delay of the classical block interleaver, but carries the restriction (so far) of J = L + 1 and K = L.

In triangular interleaving, the period L can be set equal to the codeword length. The period is no
longer the product of K and J as in the block interleaver. Because of the shorter period, synchronization
to boundaries of K · J blocks of symbols is no longer necessary (although clearly the de-interleaver in
the receiver still needs to know the L = J − 1 symbol boundaries of the interleaver). For this reason,
the triangular interleaver is often said to not require synchronization – this is somewhat of a misnomer,
in that it requires less synchronization than the block interleaver.

The triangular interleaver has an overly restrictive depth of J = L+1 only, but has an attractive and
simple triangular implementation. Generalized triangular interleaving releaves this depth constraint
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Figure 11.7: The Generalized Triangular Interleaver.

somewhat by essentially replacing each delay element in the triangular implementation by a FIFO (first-
in-first-out) queue of M symbol periods. The period remains L symbol periods, but the depth increases
to J = M · L + 1 symbol periods.

The generalized triangular interleaver appears in Figure 11.7 where the box with an M in it refers
to a FIFO containing M symbols and a delay of M · L symbol periods (or M interleaver periods of
L symbol periods each). The generalized triangular interleaver is designed for use with block codes of
length N = q ·L where q is a positive integer. Thus a codeword is divided into q interleaver-period-size
groups of size L symbols that are processed by the generalized triangular interleaver. If q = 1, one
codeword is processed per period, but otherwise (1/q)th of a codeword in general. Often, a symbol is a
byte (or “octet” of 8 bits as stated in International Telecommunications Union (ITU) standards).

Thus, the delays for this particular interleaver can be witten as DM ·L
sym . The ith symbol entering the

interleaver in Figure 11.7 is delayed by i · L · M block periods. The total delay of any byte is then
∆ = L · (L − 1) · M = (J − 1) · (L − 1)M symbol periods. As with all triangular interleavers, the delay
element has power J − 1 so J = M · K + 1 is again the depth.

The generalized triangular interleaver is typically used with a block code that can correct t symbols
in error (typically Reed Solomon block code where a symbol is a byte, then t is the number of parity
bytes if erasures are used and 1/2 the number of parity bytes if no erasures are used). The block-code
codewords may thus be subdivided into q blocks of symbols so that N = q · K. Then Table 11.1 lists
the various parameter relations for the generalized triangular interleaver.

EXAMPLE 11.2.4 (VDSL Generalized Triangular Interleaver) The ITU G.993.1 (G.993.2)
VDSL (VDSL2) standards use DMT with a Generalized Triangular Interleaver. Table 11.2
works some specific data rates, interleave depths, and consequent delays and memory sizes
for the VDSL generalized triangular interleaver. More delay can create application problems,
but also improves the correcting capability of the code by the depth parameter.

11.2.3 Enlarging the interpretation of triangular interleavers

Equation (11.22) suggests a more general form of triangular interleaving that follows when J ≤ L + 1,
which is common in use, as shown in Figure 11.8 for example for J = 2 and L = 5. The delay of each
symbol after it enters the interleaver is again ∆i = i · (J − 1) ∀ i = 0, ..., L− 1 symbol periods. In
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Table 11.1: Table of parameters for Generalized Triangular Interleaver.

Table 11.2: Some calculated delays and data rates for a symbol equal to a byte in the VDSL Interleaver.
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Figure 11.8: Triangular interleaver illustrated for K = 5 and J = 2.

Figure 11.8, this delay simply increments with each symbol because J − 1 = 1. The triangular structure
is maintained, but the interleaver-output clocking is irregular as also shown in Figure 11.8 and also
in Figure 11.9 for two different depths and a period of 5 symbols. Many authors call the interleavers
with J < L + 1 a “convolutional interleaver,” using the more general term because the triangular
implementation escaped notice. The triangular implementation follows by noting the generator in form
G(Dsym) remains diagonal with decreasing (increasing) powers of Dsym, while the generator G(D) has
a more complicated non-diagonal form. Thus, the first symbol (i = 0) in a symbol block is not delayed
at all, while the second symbol is delayed by J − 1 symbol periods, and the last symbol is delayed by
(L − 1)(J − 1) symbol periods. The generator matrix for the J = 3 example in Figure 11.9 appeared
in the third example earlier. It had a complicated G(D), but a simple G(Dsym). For the example with
J = 2 of Figure 11.8, the generator is

G(D) =




0 D 0 0 0
0 0 0 D 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1




(11.24)

or

G(Dsym) =




D4
sym 0 0 0 0
0 D3

sym 0 0 0
0 0 D2

sym 0 0
0 0 0 Dsym 0
0 0 0 0 1




(11.25)

The diagonal form again is simpler and corresponds directly to the implementation. The interior order
is different from the case when J = L + 1 and is shown as a “time-slot interchange” in Figures 11.8
and 11.9. The order is easily derived: The input switch position to the interleaver (and output of the
de-interleaver) cycles through the period in the normal manner with index k = 0, ..., L− 1. The total
delay of the kth symbol with respect to the beginning of the period on any line i is i + i(J − 1) = iJ
symbol periods. After this delay of iJ symbol periods, the symbol must leave the interleaver and thus
the interleaver output switch position (and also the de-interleaver input position) must be then be such
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Figure 11.9: Triangular interleaver illustrated for K = 5 and J = 3.

at time k that
(iJ)L = k , (11.26)

since k is also measured from the beginning of an interleaver period. That is, at time k, the output
switch position is a function of k, i(k), such that this equation is satisfied for some index i. When the
equation is solved for time k = 1, let us call that particular time-one solution i(1) = ∆, and (∆J)L = 1.
For all other times k, then the output position is

i = (k · ∆)L , (11.27)

which is easily proved by substituting (11.26) into (11.27) or ((J · i)L · ∆)L = ((J · ∆)L · i)L = (1·i)L = i.
The switch orders in Figure 11.8 both satisfy this equation for the particular depth. Any depth J ≤ L+1
is possible unless J and L have common factors. If J and L have common factors, then (11.26) does
not have a unique solution for each value of i, and the interleaver is no longer a 1-to-1 transformation.
The delay of this triangular interleaver and de-interleaver (with time-slot interchange) is then always
(J − 1)(L − 1) symbol periods. The astute reader may note, however, that the memory requirement
in the straightforward implementation shown is excessive. The memory can be easily reduced to the
theoretical minimum of (J −1)(L−1)/2 in each of the interleaver and de-interleaver by a memory-reuse
algorithm described momentarily.

The generalized triangular interleaver will follow exactly the same procedure for any depth J ≤
M ·L + 1. Since M can be any positive integer, then any interleave depth is thus possible (as long as L
and J are co-prime. The time-slot algorithm still follows (11.27). Again, memory in the straightforward
conceptual implementation is not minimum, but delay is again at the minimum of (J −1)(L−1) symbol
periods.

Memory reduction to the theoretical minimum

A couple of examples in Tables 11.3 and 11.4 illustrate, for the situations of Figure 11.8 and Figure
11.9, the situation in the triangular interleaver now generalized where RAM cells can be reused. For the
situation of Figure 11.8 with J = 2, the theoretical minimum number of memory cells for interleaving is
2, while the triangular illustration in Figure 11.8 uses 10 memory cells. Table 11.3 illustrates the storage
of symbols (which are bytes in this example). Time is indexed over 3 successive periods of interleaving,
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Table 11.3: Minimum-memory scheduling for the triangular interleaver of Figure 11.8 with L = 5 and
J = 2.

with no prime for first period, single prime for second period, and double prime for the two byte intervals
shown in the third period. A byte is indexed by the period in which it occurred as B0, B1, B2, B3,
or B4 with primes also used. Line 0’s bytes (B0) is always immediately passed at time 0 and therefore
never uses any memory, and thus does not appear in the table. Hyphens indicate “idle” memory. After
byte time 3 of the first interleaver period, the interleaver is in steady state and there are never more
than 2 bytes stored at any time (presuming the interleaver reads each memory location before writing
any memory location on each byte time slot). Thus in fact two memory cells could be used for this
triangular/convolutional interleaver. One half of the bytes in time 1 of the interleave period (called B1
with various primes) are in CELL1, while the other of those bytes are in CELL2. This is true for all
bytes, and in general, 1/J of the bytes in any symbol position within a period are in any particular cell.
Once steady state is reached, all cells are always full. The de-interleaver also only needs 2 CELLS of
memory and would be described by letting Bi=B(L-1-i) everywhere (so B4 passes immediately and then
bytes B3, B2, B1, and B0 undergo linearly increasing delay).

Table 11.4 shows a similar situation for J = 3. After time 1 of the third period, the interleaver is in
steady state and uses all the minimum of 4 = (J−1)(L−1)

2 memory cells. Each memory cell progressively
stores the symbols from line 1, then line 4, then line 3, and line 2 before rotating back to line 1 again.
The process is regular and repeats on the different memory CELLs offset in time by one period with
respect to one another.

An easy way to determine a schedule for the use of the minimum number of memory cells is to realize
that the same cell that is read on any byte period of any period must also be written with the next
available byte of input with minimum RAM. At design time for a particular specified depth and period,
a set of

minimum number of cells =
(J − 1)(L − 1)

2
(11.28)

“fake” RAM cells can be created in computer software, each with a time that is set to ”alarm” exactly
k(J −1) symbol periods later where k is the interleaver-input byte-clock index. At each subsequent time
period in steady state, one and only one cell’s timer will alarm, and that cell should be read and then
written and the timer reset to the value of k(J − 1). Schedules of “which byte when” will then occur
for each storage cell that can be stored and used in later operation. This schedule will repeat over an
interval for each cell no longer than

S = cell schedule length ≤
L−1∑

i=1

i · (J − 1) =
1
2
(J − 1) · L · (L − 1) =

∆
2

· L (11.29)
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Table 11.4: Minimum-memory scheduling for the triangular interleaver of Figure 11.8 with L = 5 and
J = 3.

symbol periods for each cell. Equality occurs in (11.29) when

m · L
J − 1

6∈ Z for any m <
∆
2

− 1 . (11.30)

When equality occurs then any integer number of periods less than S cannot be divided by the interleaver-
output spacing between formerly adjacent interleaver input symbols J − 1. In such a case, all cells go
through the same length S schedule, just delayed with respect to one another. When the condition
produces an integer, then different cells can have different schedulesThe number of schedules for different
mutually exclusive groups of cells with the same schedules within each group, but different from group
to group, is the number of values of m for which (11.30) is satisified that are not integer multiples of
previous values of m that solve the condition in (11.30). but if there are s such schedules of distinct
lenghts Si, then

s∑

i=1

Si =
∆
2

·L . (11.31)

See problem 11.6 for an interesting development of the above equations.
In the minimum-memory implementation described above, the relationship to the triangular structure

in the memory connection is still inherent, but it evolves in time to prevent essentially idle memory cells.

Time variation of depth accompanying a data rate change

This triangular-interleaver interpretation in Figures 11.6, 11.8, and 11.9 (with or without minimum
memory requirement) allows graceful change in operation of the interleaver depth between values that
maintain L and J co-prime and are both lower and or equal to the upper bound2of J ≤ M ·L + 1. The
overall delay must be held constant in time to do so. This description calls the new depth J ′ and the old
depth J ′. There will be a point in time, call it time 0 at the beginning of a period where all new bytes
entering the interleaver will observe depth J ′ while all bytes already in the interleaver (or de-interleaver)
will observe the old depth J ′. The corresponding symbol periods will similarly be denoted by T and T ′.

2The constraint can always be met with the generalized triangular interleaver by using a sufficiently large M and dummy
symbols to maintain the co-prime dpeth and period.
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(At a constant delay through interleaving and de-interleaver, the symbol rate necessarily must change,
which implies a data-rate change.) To maintain the same delay in absolute time, and noting that impulse
protection for such a delay remains the same, if the codeword length N = L and correction capability
remain the same (just the depth changes to accommodate the same length burst of noise/errors), then

T ′ =
J − 1
J ′ − 1

T , (11.32)

another advantage of using the symbol-clock (rather than interleaver period) notation and interpre-
tation. Since bytes through the interleaver/de-interleaver combination must undergo exact the same
delay whether before or after the depth change, a byte exiting the interleaver or de-interleaver will be
“clocked out” at exactly the same point in absolute time. The time-slot-interchange positions also are
at the same time. However, there are two symbol clocks in which to interpret absolute time. A master
implementation clock is determined by the greatest common multiple, GCM, of J − 1 and J ′ − 1 as

1
δT

=
GCM

J − 1
1
T

=
GCM

J ′ − 1
1
T ′ . (11.33)

Essentially the higher speed clock will always touch in absolute time all write/read instants of the
interleaver for either the old or the new depth. New bytes (symbols) enter the interleaver as shown (the
interleaver has the same isosceles triangle structure in concept at any depth) in terms of L clock cycles
of the new symbol clock with symbol period T = GCM

J ′−1
1

δT – and any memory element with a new byte
after time zero in it will pass symbols k · (J ′− 1)T ′ = k ·GCM · δT time slots later, where k is the index
within the constant period of the interleaver. Old bytes within the interleaver exit on the i(k) = k · ∆
line at time instants kT = k · GCM

J−1 δT , while new bytes within the interleaver exit on the i(k) = k · ∆′

line at time instants kT ′ = k · GCM
J ′−1 δT . All these time instants correspond to integer multiples of the

high-rate clock. If at any time, both clocks are active then a read operation must be executed before the
write operation on that clock cycle occurs (along with all the shifts in the proper order to not drop data
within the delay elements shown if indeed the implementation was directly in the isosceles-triangular
structure).

When no old bytes exist within the structure any longer (which is exactly the delay of the interleaver/de-
interleaver combination), then the higher rate clock can be dropped and the new clock and new depth
then used until any other depth change occurs in subsequent operation.

The time-variable structure uses the triangular structure to facilitate the explanation. This structure
uses the constant L(L − 1)/2 locations of memory independent of depth. However, the lower-memory
requirement of the cell structure image discussed earlier can again be used even in the depth-variation
case. The interleaver situation with larger depth will require a larger number of cells, so the number
of cells increases with an increase in depth and decreases with a decrease in depth. For an increase in
depth, (J ′ − J)L−1

2
more cells are needed in the interleaver (and the same number less for a decrease in

depth). These cells can be allocated (or removed) as they are first necessary (or unnecessary).
Just as in the constant-depth case, an off-line algorithm (software) can be executed to determine the

order for each new byte position of cell use by simply watching timers set according to the clock 1
δT as

they sound. Any timer sounding at a time that is only a read can be reserved for potential future use.
Any new byte to be written can use the cells reserved for use (either because it was vacated earlier by an
isolated read at the old clock instants or because it is an additional cell needed). After 1

2
(J −1)L(L−1)

seconds, the interleaver algorithm (and de-interleaver algorithms) will have completely switched to the
new depth. With such minimum-memory-cell use thus established, the depth change can then begin and
follow the consequent pattern.

11.2.4 Random Binary Interleaving

In random interleaving, the idea is to eliminate the regular patterns in G(D) or the associated interleaving
rule π(k) over a very long period. Random interleaving is often used in turbo coding, as in Section 11.3.
The uniform random interleaver is an abstraction that is really an average over many statistical
possibilities for an interleaver with large period L. The idea is that for any pattern of l positions (the
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positions may be viewed as the location of 1’s), it is equally likely to be interleaved into any of the

Ll =
(

L

l

)
(11.34)

possibile pattern of l positions. Clearly any interleaver will be deterministic and so could only ap-
proximate such an effect. However, over an ensemble of interleavers (essentially making the interleaver
cyclostationary), the uniform random interleaver can be hypothesized. Such an interleaver does not
necessarily guarantee a fixed depth and J −1 spaces between previously adjacent symbols. Those earlier
“with depth” interleavers address burst noises. The uniform random interleaver instead is a concept
used in trellis coding for AWGNs.

The main objective of random interleaving is to create a very long block length for the concatenated
code when viewed as a single code. Codes selected randomly, as long as the block length is very long,
often can achieve capacity (Section 8.3). Random interleaving tries to install this element of randomness
in the code design without increasing complexity, presuming the use of iterative decoding of the two
interleaved codes. The number of ways in which to make a specific type of error is essentially reduced
by the large codeword/interleaver length and the unlikely possibility that a pattern of errors for a low-
distance error event will just happen to touch the right places for both codes. Section 11.3 investigates
turbo codes where the uniform random interleaver is presumed in analysis.

A random uniform interleaver then would translate any pattern of l ones into one of those patterns
with probability, L−1

l . This subsection lists 2 types of random interleavers that attempt to approximate
uniform random interleaving:

Berrou- Glavieux Block Interleavers

The period L = K · J = 2i · 2j is a power of 2 and eight prime numbers are used:

m 1 2 3 4 5 6 7 8
pm 17 37 19 29 41 23 13 7

The time index within a block is k = 0, ..., L− 1. Recall that (·)M means the quantity in brackets
modulo M , i.e., the part left over after subtracting the largest contained integer multiple of M . Defining
r0 = (k)J , c0 = (k − r0)/J , and m = (r0 + c0)8 the interleaver order rule is

π(k) = c(k) + J · r(k) (11.35)

where
r(k) = (pm+1 · (c0 + 1) − 1)K (11.36)

and

c(k) =
(

(
K

2
+ 1) · (r0 + c0)

)

J

. (11.37)

This interleaver has a long period for reasonable values of K and J and causes a robust randomness
of the positions of error events in one code with respect to another. An event that results from exceeding
free/minimum distance in one constituent code is very unlikely to also be in just the right places after
interleaving to exceed the free/minimum distance of another code. Thus the number of free/minimum
distance events is greatly reduced, and at lower SNR when many error events in a first decoder are like
to occur, this redistribution of error events dominates P̄b. As SNR increases, the unlikely nature of
noise exceeding free/minimum distance begins to dominate. One could expect good performance/gain
at lower SNR, and then the usual constituent code performance at higher SNR. Such was the insight of
Berrou in developing turbo codes (see Section 11.3).

JPL (Jet Propulsion Laboratory) Block Interleaver

For any K and even J , define:
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ν P (D)
2 1 + D + D2

3 1 + D2 + D3

4 1 + D3 + D4

5 1 + D3 + D5

6 1 + D5 + D6

7 1 + D6 + D7

8 1 + D4 + D5 + D6 + D8

9 1 + D5 + D9

10 1 + D7 + D10

11 1 + D9 + D11

12 1 + D6 + D8 + D11 + D12

13 1 + D9 + D10 + D12 + D13

14 1 + D9 + D11 + D13 + D14

15 1 + D + D15

16 1 + D + D3 + D12 + D16

17 1 + D3 + D17

18 1 + D7 + D18

23 1 + D5 + D23

24 1 + D17 + D22 + D23 + D24

31 1 + D28 + D31

Table 11.5: A list of maximum-length (primitive) polynomials.

m 1 2 3 4 5 6 7 8
pm 31 37 43 47 53 59 61 67

Again the time index is k = 0, ..., L− 1. Defining r0 =
(

i−m
2 − c0

)
J
, c0 =

(
i−m

2

)
J
, and m = (r0)8

the interleaver order rule is
π(k) = 2 · r(k) · K · c(k) − (k)2 + 1 (11.38)

where
r(k) = (19 · r0)K

2
(11.39)

and
c(k) = (pm+1 · c0 + 21 · (k)2)J . (11.40)

Pseudorandom Interleavers

Pseudorandom interleavers make use of pseudorandom binary sequences (PRBS). Such sequences are
based on a theory of maximum-length polynomials. A PRBS circuit is a rate one convolutional code
with constant 0 input and with feedback based on a polynomial p(D) with implementation G(D) = 1

p(D)
.

The degree-ν polynomial is chosen so that with binary arithmetic, it has no nontrivial factors (i.e., it is
“prime”) and has other properties not discussed here.

Such circuits (if initialized with a nonzero initial condition) will generate a periodic sequence of period
2ν − 1 that thus necessarily must include every nonzero binary pattern of length ν bits. The period of
the interleaver can be no greater than the period of the PRBS. Table 11.2.4 lists such maximum-length
polynomials3:

The pseudorandom interleaver uses such a PRBS to specify the output position of each input symbol.
Thus, each successive output bit of the PRBS in combination with the last ν − 1 such bits specifies an
address π(k) for the interleaver. If an address exceeds the interleaver period (when L < 2ν−1), then it is

3These were taken from the book Error Control Systems by Wickert (used in EE387 at Stanford), which has a far more

complete listing of all the possible polynomials for each ν (there are many). See Chapter 12 of our text for implementations
of scramblers. Note that the polynomials in x in that reference (as well as most coding books) corresponds to an advance,
not a delay, which is why the reversal of the polynomials in Table 11.2.4
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Figure 11.10: S-random interleaver illustrated.

discarded before use, and the PRBS circuit is cycled again. The de-interleaver can regenerate the same
sequence and then successively extract the (π(k))th symbol and restore it to position k. Clearly, such
pseudorandom interleaving corresponds to block interleaving unless the period is exactly L = 2ν − 1, in
which case, the structure may have alternative implementations with less memory and delay.

S-Random Interleavers

An S-random interleaver tries to ensure that adjacent symbols are spaced further than S (and integer)
after interleaving and to approximate also the random re-distribution of the uniform random interleaver.

The S-random interleaver is designed by first chosing an S ≤
√

L
2

and running the algorithm in Figure
11.10. This algorithm will converger if the conditiion on S is met and the second integer S′ is ignored.
Usually designers run the algorithm several times increasing S′ until they find the largest such value
for which the algorithm converges. The correlation between intrinsic and extrinsic information for the
S-random interleaver decays exponentiall with the difference between interleaver indices (and has the
exception value zero for time difference of 0).
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11.3 Turbo Codes

Turbo Codes are parallel or serial concatenations of simple good convolutional codes with significant
interleaving first discovered by Claude Berrou in 1993. Interleaving is used with turbo codes and es-
sentially the additional gain accrues to a reduction in the nearest neighbor count by the depth of the
interleaver. Turbo Code design targets a data rate that is less than capacity, but perhaps just slightly
less. Subsection 11.3.1 investigates the rate of simple concatenations, while Subsection 11.3.2 introduces
the concept of code puncturing, which is very useful in implementing the desired b̄ for a turbo code.
Probability-of-error approximations appear in Subsections 11.3.3 and 11.3.4 for parallel and serial con-
catenations respectively. Subsections 11.3.5 and 11.3.6 enumerate various convolutional codes that have
been found to also be good for turbo-code use when b̄ < 1.

11.3.1 Turbo-Code rate definition

Definition 11.3.1 (Turbo Code) A Turbo Code is a parallel or serial concatenation of
two convolutional codes with uniform random interleaving (or an approximation to it) to
distribute the error events of the two codes with respect to one another. Turbo codes are
designed with the expectation of iterative (i.e., “turbo”) decoding’s use at the receiver.

parallel concatenations

The rate of a parallel concatenation of two systematic convolutional codes (where the information bits
are sent only once, along with the parity bits of both codes) is again

1
b̄

=
1
b̄1

+
1
b̄2

− 1 . (11.41)

The -1 term is eliminated if the codes are not systematic.4

A few examples illustrate the possibilities:

EXAMPLE 11.3.1 (basic rate 1/3) If two convolutional codes both have rate b̄1 = b̄2 =
.5, then b̄ = 1/3.

EXAMPLE 11.3.2 (rate 1/6) If two different convolutional codes both have rates b̄1 =
1/3 and b̄2 = 1/4, then b̄ = 1/6.

EXAMPLE 11.3.3 (higher rates) Higher rate turbo codes can be constructed from higher-
rate convolutional codes. If two convolutional codes both have rate b̄1 = b̄2 = 3/4, then
b̄ = 3/5. If two convolutional codes both have rate b̄1 = b̄2 = .8, then b̄ = 2/3.

It may be difficult to find a convolutional code with high b̄ and good distance properties without
a large number of states, so the puncturing of Subsection 11.3.2 becomes the preferred alternative to
implementation of the high-rate turbo codes enumerated in Subsection 11.3.5.

serial concatenations

Serial turbo codes have rate equal to the product of the constituent code rates

b̄ = b̄1 · b̄2 . (11.42)

A serial turbo code constructed from two rate 1/2 codes would have rate 1/4. Similarly a serial
turbo code from two rate 2/3 codes has rate 4/9 (or less than 1/2). Clearly serial concatenation requires
very high rates for the two used codes if the concatenation is to be high rate. The puncturing of the
Subsection 11.3.2 is helpful for reducing the rate loss in serial concatenation of binary codes.

4This formula only applies if all the codes have less than one bit per dimension.
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Figure 11.11: Puncturing of rate 1/3 turbo (or convolutional) code to rate 1/2.

Figure 11.12: Puncturing of rate 1/3 turbo (or convolutional) code to rate 2/3.

11.3.2 Puncturing

Before proceeding to Turbo Codes, this subsection first introduces puncturing of a convolutional code;
a concept often used in either or both of the convolutional codes in a concatenated Turbo Coding
system. Puncturing is the regular/periodic deletion of parity bits from a convolutional encoder output
to increase the rate of the code. Such deletion can reduce the free distance of the code. Puncturing
allows a single code to be used at different b̄, which may be useful in systems that transmit at different
data rates depending on conditions. Design or use of a different code for each data rate might complicate
implementation. With turbo codes, it is the interleaver that provides the additional gain and it may be
that the overall code sees little difference with puncturing from what might have been achieved using
a better constituent high-rate code. Thus, puncturing is often used with turbo codes to simplify the
implementation at several rates with the same encoder.

For instance, Figure 11.11 illustrates how the rate 1/3 turbo code that results from parallel concate-
nation of two rate-1/2 convolutional codes can be restored to rate-1/2 by alternately deleting one of the
two parity bits. Some performance loss with respect to rate-1/3 turbo coding might be expected, but of
course at an increase in data rate. Often, the resultant higher-rate code is still a very good code for the
new higher data rate.

A yet higher data rate can be achieved as in Figure 11.12: A frame of 12 bits, 4 information and
8 parity, retains only 2 of the parity bits to increase the data rate to 2/3. Similarly, a rate 2/3 turbo,
based on two rate 2/3 convolutional codes, could alternately delete 1 of the 2 parity bits generated at
each symbol period.

Generally, a systematic code with k information bits per symbol and n − k parity bits per symbol
can be punctured to a higher rate q/p by accepting kq input bits and deleting nq− kp of the parity bits,

kq

nq − (nq − kp)
=

q

p
. (11.43)

The deleted bits in turbo coding may not be the same for each successive symbol to “distribute” the
loss of parity, so j successive symbols may be used. In this most general case, the puncturing can be
described by the nqj × kpj singular permutation/generator matrix Gpunc. For the puncturing in Figure
11.11 with j = 2, k = 1, n = 3, q = 1 and p = 2

Gpunc =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1




, (11.44)

accepting 6 bits but outputing 4. The punctured code words are generated by multiplying the output
code sequence from the original code by the generator, or vpunc(D) = v(D) ·Gpunc where v(D) may be
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written in terms of “stacking” j successive symbols. Puncturing can be very useful to avoid excessive
constellation expansion when applying turbo codes to PAM/QAM transmission systems with b̄ ≥ .5.

11.3.3 Analysis of probability of bit error for parallel concatenation

The analysis of Turbo Code probability of error makes use of the presumption of the uniform random
interleaver in Section 11.2. This subsection begins with the example of the well-known 4-state rate-1/2
code.

A systematic encoder realization is

G1(D) =
[
1

1 + D + D2

1 + D2

]
. (11.45)

The two columns of the parity matrix (or effectively the two output bits of the encoder) have been
reversed in order with respect to nominal use of this well-known 4-state convolutional code. Clearly
such an output-bit-order reversal changes no property of the code itself (although the number of input
bit errors and encoder mappings are different). Any input bit stream with weight w = 1 (or only one
1 in the stream so u(D) = Dm where m is some integer) will lead to an infinite string of output 1’s
corresponding to infinite weight5, which means that for this encoder the likelihood of a single input bit
error occuring is essentially zero. In a parallel concatenated Turbo Code constructed from two uses of
this code, inputs with 2 bit errors are thus of more interest. A length-2 input sequence, however, of
1 + D2 produces an outputsequence of v(D) =

[
1 + D2 1 + D + D2

]
and thus produces the minimum-

distance (5) error-event code sequence. The parallel concatenation then would make an error if this
two-bit input error event were to occur on one of the codes and also after de-interleaving to correspond
to Dm · (1 + D2) for any of m = 0, ..., L − 1 within the period L of the interleaver. For the uniform
random interleaver, this simultaneous event has probability of occuring

(
L
2
)−1

=
2

L(L − 1)
, (11.46)

for a particular value of m and thus probability L · 2
L(L−1)

= 2
L−1

that it could occur for any of the
L values m = 0, ..., L − 1. Furthermore, the rate-1/3 concatenated code has a dfree = 8 = 2 + 3 + 3
(and corresponds to essentially vturbo(D) =

[
1 + D2 1 + D + D2 π(1 + D + D2)

]
where π has been

used loosely to denote that the ordering of the 3 parity bits from the second interleaved use of the code
occurs in 3 positions that are not the same times as the first 3 parity bits. The coding gain of the
overall concatenated code is 8/3 = 2.67 = 4.26 dB. The original “mother” code had gain 5/2 = 2/5 =
3.97 dB and thus differs only by .3 dB 6. However, the nearest neighbor coefficient for this minimum-
distance event in the Turbo-Code concatenation is smaller. Since two input bit errors occur when half
the minimum distance of the code has been exceeded by noise projection on the error event, then the
probability that the dfree = 8 error event occurs for this turbo code is then

P̄b(dfree) ≈ 2
L − 1

b · a(dfree, b) · Q(
√

dfree · SNR) (11.47)

≈ 4
L − 1

· 1 · Q(
√

8 · SNR) , (11.48)

and corresponds to 2 input bit errors. There are no error events for the convolutional code that cor-
respond to 3 (or any odd number greater than 3) of input bit errors (but there are error events corre-
sponding to 4 and higher even numbers of input bit errors). Table 11.6 lists the error event combinations
and shows the coefficent for interleaver depth L = 101. Table 11.7 repeats some measured results from
a popular author. the error coefficients are also listed for periods of 1,001 and 10,001. The simulation
results are very close, except that when the length of the error event becomes large relative to the pe-
riod, then some accurracy is lost (because Table 11.6 essentially ignored the finite period in enumerating
error-event pairs).

5An infinite number of channel errors must occur for only 1 input bit error.
6Assuming as is usual in convolutional codes that extra dimensions can be added as in method 1 of Section 10.1.
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distance in-ev code 1 in-ev code 2 2 · a(d, 2) dfree construct 4·a(d,2)
100

4·a(d,2)
1000

4·a(d,2)
10000

8 1 + D2 Dm · (1 + D2) 2 2+3+3 .04 .004 .004
9 1 + D2 Dm · (1 + D4) 4 2+3+4 .08 .08 .008

1 + D4 Dm · (1 + D2) 2+4+3
10 1 + D2 Dm · (1 + D6) 6 2+3+5 .12 .012 .0012

1 + D4 Dm · (1 + D4) 2+4+4
1 + D6 Dm · (1 + D2) 2+5+3

11 1 + D2 Dm · (1 + D8) 8 2+3+6 .16 .016 .0016
1 + D4 Dm · (1 + D6) 2+4+5
1 + D6 Dm · (1 + D4) 2+5+4
1 + D8 Dm · (1 + D2) 2+6+3

12 1 + D2 Dm · (1 + D10) 10 2+3+7 .20 .02 .002
1 + D4 Dm · (1 + D8) 2+4+6
1 + D6 Dm · (1 + D6) 2+5+5
1 + D8 Dm · (1 + D4) 2+6+4

1 + D10 Dm · (1 + D2) 2+7+3
t 1 + D2 Dm · (1 + D2(t−8)) 2(t-7) .04(t-7) .004(t-7) .0004(t-7)

...
...

...
1 + D2(t−8) Dm · (1 + D2)

Table 11.6: Enumeration of b = 2 input bit error events and corresponding codeword error event con-
struction for G1(D) = (1 + D + D2)/(1 + D2).

distance N̄b for L = 102 N̄b for L = 103 N̄b for L = 104

8 3.89× 10−2 3.99× 10−3 3.99× 10−4

9 7.66× 10−2 7.96× 10−3 7.99× 10−4

10 .1136 1.1918× 10−2 1.1991× 10−3

11 .1508 1.5861× 10−2 1.5985× 10−3

12 .1986 1.9887× 10−2 1.9987× 10−3

13 .2756 2.4188× 10−2 2.4017× 10−3

14 .4079 2.9048× 10−2 2.8102× 10−3

15 .6292 3.4846× 10−2 3.2281× 10−3

16 1.197 6.5768× 10−2 6.0575× 10−3

Table 11.7: 4-state convolutional code as turbo constituent
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distance in-ev code 1 in-ev code 2 2 · a(d, 2) dfree construct 4·a(d,2)
100

10 1 + D3 Dm · (1 + D3) 2 2+4+4 .04
12 1 + D3 Dm · (1 + D6) 4 2+4+6 .08

1 + D6 Dm · (1 + D3) 2+6+4
14 1 + D3 Dm · (1 + D9) 6 2+4+8 .12

1 + D6 Dm · (1 + D6) 2+6+6
1 + D9 Dm · (1 + D3) 2+8+4

16 1 + D3 Dm · (1 + D12) 8 2+4+10 .16
1 + D6 Dm · (1 + D9) 2+6+8
1 + D9 Dm · (1 + D6) 2+8+6

1 + D12 Dm · (1 + D3) 2+10+4
t 1 + D3 Dm · (1 + D1.5(t−8)) t-8 .02(t-8)

...
...

...
1 + D1.5(t−8) Dm · (1 + D3)

Table 11.8: Enumeration of b = 2 input bit error events and corresponding codeword error event con-
struction for G2(D) = (1 + D2)/(1 + D + D2).

It is interesting to view the same example with the output bit order reversed to the usual instance
of this code so that

G2(D) =
[
1

1 + D2

1 + D + D2

]
. (11.49)

This encoder maps a weight 5 codeword error event of
[
1 + D + D2 1 + D2

]
to 3 input bit errors. With

concatenation, then this error event corresponds to dfree = 7 = 3+2+2 indicating that the concatenated
code does not have the same codewords and indeed has a lower minimum distance. Nonetheless, this
minimum distance requires 3 input-bit positions of errors to coincide for the two codes, which has
probability (with uniform random interleaving) of

L ·
(

L
3
)−1

=
6

(L − 1)(L − 2)
. (11.50)

Thus, 3-bit error events have very small probability, even if they correspond to minimum-distance code-
word events (unless the SNR is very high so that dmin dominates all nearest-neighbor-like coefficients).
In fact, the weight two input error event with smallest codeword distance is 1 + D3 and corresponds to
an output distance of d = 10. Repeating Table 11.6 now in Table 11.8 yields (there are no odd-number
free distances for 2-input-bit-error events).

The second instance of the concatenated code with G2(D) is clearly better because the distances
are larger, and the error coefficients are the same. (The improvement is roughly 1 dB). However,
at high SNRs, the dominant free-distance-7 error event will eventually make asymptotic performance
worse. So, up to some SNR, the second code is better and then it is worse after that SNR. The
eventual dominance of minimum distance at high SNR causes the contribution of different error events
to dominate, leading to an unusual flattening of the P̄b curve known as the “error floor” in turbo coding.
In both concatenated codes, the larger free distance from the rate 1/3 code is only a slight improvement.
The main improvement is the reduction in bit-error probability caused by division by the interleaver
period. Such an improvement is often called interleaver gain. Over the range of normal use of codes,
a factor of 10 usually corresponds to 1 dB improvement, so the interleaver gain for this code would then
be

γinterleaver = log10((L − 1)/2) (11.51)

at least up to a few dB (at which point the approximation of 1 dB per factor of 10 is no longer valid).
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Figure 11.13: Generic depiction of basic error flooring in Turbo Codes.

In a more general situation of a rate 1/n code

Gsys(D) =
(

1
g1(D)
g0(D)

...
gn−1(D)
g0(D)

)
, (11.52)

and any weight-one input information sequence u(D) = Dm produces an infinite-weight output code-
word(or large finite weight if the code is terminated in a finite packet length). Thus, again only weight
2 (or higher) input errors are of interest since any g0(D) must divide 1 + Dj for some sufficiently large
j. Since input-bit weight 3 errors have a coefficient factor of 6

(L−1)(L−2)
, then they typically have much

lower contribution to P̄b unless the SNR is sufficiently high and the distance for these errors is smaller.

Error Flooring Error flooring occurs when the SNR is sufficiently high that the smaller nearest-
neighbor coefficient for error events with 2 errors (or more) is overwhelmed by the exponential decrease
with SNR of the Q-function at high SNR. At such high SNR, dmin error events will again dominate.
Figure 11.13 depicts this effect generically for two types of error events for which one has a d2 = 5
(output distance corresponding to 2-input bit errors), but has a larger coefficient of .01, while the second
has a smaller d3 = 3 (output distance corresponding to 3 input bit errors), but a coefficient of .001. At
smaller SNR, the low coefficient of the Q-function term with smaller distance causes this term to be
negiligible, but eventually the exponential decay of the Q-function term with larger distance causes it
instead to be negligible. In the middle of Figure 11.13 where the overall error probability (the upper
curve, which is sum of the two curves) deviates temporarily from a pure exponential decay and “curves
less or flattens” temporarily until resuming the exponential decay again for the lower distance portion.
Thus, the smaller error-coefficient term dominates at low SNR and provides lower total probability of
error. Thus, operation with a Turbo Code attempts to choose parameters so that this portion of the
curve corresponds to the range of interest. Over this P̄b range, if 2-input-bit error events dominate, then

P̄b,turbo ≈
2N̄b(d2)

L
Q

(
dmin
2σ

)
=

4
L

Q

(
d2,cat

2σ

)
, (11.53)
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Figure 11.14: Probability of error for the rate-1/2 4-state turbo code, with puncturing to rate 1/2.

where d2,cat is the 2-input-bit-error codeword distance for the concatenated code system. The probability
of bit error thus reduces by the factor L/2. More generally with rate k/n codes, the situation is more
complicated because a simple 2-bit error pattern “cancelling all the denominators” is more complicated
and the interleaver possibilities multiply. Aversion of this conceptual complexity uses puncturing of rate
1/n codes rather than direct design for k/n codes.

Figure 11.14 illustrates the probability of error for interleaver depths of L = 100, L = 1000, and
L = 10000 for the 4-state turbo rate 1/2 Turbo Code (with encoder G1) of Table 11.9 with puncturing.
From the code itself, one expects a gain of 4.7 dB plus another 3.7 dB for L = 10000, so then roughly 8.4
dB also. The actual plotted gain is slightly less at about 8 dB because of the effects and contributions
of higher-distance terms.

Figure 11.15 illustrates the convergence of the same code as in Figure 11.14 for the interleaver size of
1000. The probabilty of symbol error (and thus the probability also of bit error for this code) converges
within just a few iterations. Figure 11.16 compares the probability of error for SOVA and APP, while the
difference is larger at very low SNR, the difference becomes small in the range of operation of P̄b = 10−6.
Figure 11.17 illustrates the additional gain of not puncturing and using rate 1/3 instead, which is about
.7 dB at P̄b = 10−6 for this example. Actually, slightly larger because this rate 1/3 code also sees a
larger d distribution generally than the punctured rate 1/2 code. This gain is small for this code, as is
typical with puncturing in turbo codes that little is lost in terms of coding gain.

11.3.4 Analysis of probability of bit error for serial concatenation

Serial concatenation of codes has a somewhat different analysis than parallel concatenation. Analysis
of serial concatenation retains the basic concept that an error event with several bit errors is less likely
to fall with random interleaving into the exact positions that cause errors in two codes simultaneously.
However, the re-encoding into new additional parity bits of the parity (or all) bits of the inner code
causes some changes in the probability of error formulas. Often in serial turbo-code concatenation, the
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Figure 11.15: APP Convergence of Probability of error for the rate-1/2 4-state turbo code, with punc-
turing to rate 1/2.
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Figure 11.16: Comparison of probability of error for SOVA and APP on the rate 1/2 (punctured) turbo
code.

Figure 11.17: Comparison of rate 1/3 and rate 1/2 with puncturing for 4-state Turbo code.
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two codes are different and the ensuing analysis accommodates such difference.
First, the error coefficient simply reflects the fact that in serial concatenation the probability that⌈

dout
free

2

⌉
bits after uniform random interleaving of depth L again fall in “all the wrong placesin the outer

code (out)” is (
L⌈

dout
free

2

⌉
)

. (11.54)

This expression is often approximated in serial turbo-code analysis by

C · L
−
(⌈

dout
free
2

⌉)
, (11.55)

where the exponential dependence on the codeword (or encoder output) free distance rather than the
number of input bit errors, distinguishes serial concatenation from parallel concatenation in Equations
11.46 and 11.50. C is a constant. This coefficient mutiplies the error coefficent for the outer Turbo
Code, whatever that coefficient is, for both symbol-error and bit-error probability expressions. While
this factor follows parallel concatenation, the adjustment to the Q-function argument requires additional
scrutiny for serial concatenation. This text assumes that at least the inner encoder is always systematic
so that at least two-input-bit errors are necessary to cause it to have finite output distance and thus
to have non-zero probability of the error event. This inner distance for 2-bit errors is called din

2 and
similarly the 3-bit error distance is called din

3 . If the inner code’s decoder has had the error event occur,
then that inner decoder’s error probability has Q-function argument

√
din
2 · SNR. These 2 input bits

(which are also part of the output distance in a systematic realization) are “already guaranteed” to be
contributing to the output error event for the outer code so the outer decoder’s tolerance for errors is
reduced to7 ⌈

dout
free − 3

2

⌉
(11.56)

The overall effect on the Q-function argument for an overall decoder is
[⌈

dout
free − 3

2

⌉
· din

2 + din
w

]
· SNR (11.57)

where din
w = din

2 for situations in which the outer code has even dout
free and din

w = din
3 for odd dout

free. The
reader should recall that the SNR in (11.57) scales down as the product of the two code rates, which is
b̄ = b̄in · b̄out. Thus, the additional error-correcting power (or distance) of the outer code applies to all the
extra bits that must additionally be in error in the outer code and thus multiplies din

2 but does mutiply
the common bits. However those common bits do have to be in error and whence the last additive term
of din

w in (11.57). The total-bit-error-counting quanitity

Nb(d) =
∞∑

b=1

b · a(d, b) (11.58)

has special use in serial concatenation. With it, the overall probability of bit error expression is then

P̄b ≈ L

(
L⌈

dout
free

2

⌉
)−1

·
Nb(din

free) · Nb(dout
free)

b
· Q



√√√√
{⌈

dout
free − 3

2

⌉
· din

2 + din
w

}
· SNR


 (11.59)

= L

(
L⌈

dout
free

2

⌉
)−1

·
Nb(din

free) · Nb(dout
free)

b
· Q



√√√√2 ·

{⌈
dout

free − 3
2

⌉
· din

2 + din
w

}
· b̄ · Eb

N0


 ,(11.60)

7The use of the greatest integer function in (11.56) allows the argument to be reduced by 3 when outer free distance
is odd and by only 2 when outer free distance is 2 in agreement with the reality that codes with odd distances essentially
get one more position of possible error before experiencing an error event.
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where the second expression uses the “energy per bit” form. It is clear that an outer code with odd free
distance is preferable it terms of Q-function argument per complexity. However, the outer encoder need
not be systematic nor even use feedback. The interleaving gain thus is slightly altered with respect to
parallel concatenation to be

γserial = log10


 L!⌈

dout
free

2

⌉
!


 dB (11.61)

over the range of operation of 10−4 to 10−7. This factor can be large for dout
free > 2, but the product

of Nb(d) terms reduces the effect of the gain. Error flooring in serial concatenation follows the same
basic principle as in parallel concatenation, namely that eventually as SNR increase, minimum distance
dominates probability of error and thus an event with larger free distance than din

2 or din
w but also smaller

error coefficient could eventually be expected be the major contributer to probability of error.

11.3.5 Coding Tables for Parallel Concatenation with rate 1/n, or for rate
n − 1/n with no puncturing

The following tables are extracted from some papers by Divsalar at the course website. Some of the
data in the tables has been augmented by this text’s author to include more information pertinent to
code implementation and analysis. All the codes appear to be the best or among the best known for the
various complexities and parameters listed.

The 4-state rate-1/2 convolutional code that has been previously studied has a systematic realization
[1(1 + D2)/(1 + D + D2)]. The resultant rate-1/3 turbo code can punctured alternately on the parity
bits of the two encoders in each successive symbol with uniform random interleaving on the information
bits. The left-most values of d2, d3, and dfree are for the base or mother code itself. The right-most
values are for the turbo code or concatenated code and thus can be used directly in probability of error
analysis expressions like (11.53). The rule for adding the 3 right-most additional columns is to find the
difference between the dfree and di listed for the base code, subtract 2 or 3 for d2 or d3 respectively, and
then add that amount to the distance. dfree,cat is the new minimum of the two quantities d2,cat and
d3,cat. Thus, d2,cat = 2 ·d2−2 and d3,cat = 2 ·d3−3 and dfree,cat = min{d2,cat, d3,cat}. With puncturing,
the puncturing patter of 101010 was used for the rate 1/2 code in the worst position in terms of weight
for the base code.

Table 11.9 lists the distances for 2 and 3 input bit errors as well as dfree for the overall-rate 1/2
turbo code by Divsilar (the overall code values were determined by this author and omitted by Divsilar)”
Another more complete set of rate-1/2 punctured codes will appear shortly in Subsection 11.3.6.

2ν g0(D) g1(D) d2 d3 dfree d2,cat d3,cat dfree,cat

4 7 5 4 3 3 6 5 5
8 13 15 5 4 4 8 6 6

16 23 37 7 4 4 10 8 8

Table 11.9: Rate 1/2 Constituent PUNCTURED convolutional codes for turbo codes

The best rate 1/3 codes found by Divsilar (again with overall turbo code values found by this author)
appear in Table 11.10:

The best rate 1/4 codes found by Divsilar (again with overall turbo code values found by this author)
appear in Table 11.11:

The best rate 2/3 codes found by Divsilar (again with overall turbo code values found by this author)
appear in Table 11.12:

The best rate 3/4 codes found by Divsilar (again with overall turbo code values found by this author)
appear in Table 11.13:

285



2ν g0(D) g1(D) g2(D) d2 d3 dfree d2,cat d3,cat dfree,cat

2 3 2 1 4 ∞ 4 6 ∞ 6
4 7 5 3 8 7 7 14 11 11
8 13 17 15 14 10 10 26 17 17

16 23 33 37 22 12 12 42 21 21

Table 11.10: Rate 1/3 Constituent convolutional codes for turbo codes

2ν g0(D) g1(D) g2(D) g3(D) d2 d3 dfree d2,cat d3,cat dfree,cat

8 13 17 15 11 20 12 12 38 21 21
16 23 35 27 37 32 16 14 62 31 31

Table 11.11: Rate 1/4 Constituent convolutional for turbo codes

11.3.6 Parallel and Serial Turbo Code Tables with puncturing for base rate
1/2

To enumerate best codes with puncturing, Deaneshgaran, Laddomada and Mondin (DLM) have searched
over all rate 1/2 codes and puncturing patterns for different rates to find best parallel and serial con-
catenations for up to 32 states. The mother codes used in the puncturing search are to create high rate
(n − 1)/n codes after puncturing. These codes are listed for 4 and 8 states in Table 11.14 and for 16
and 32 states in Table 11.15. An indication of SNR means among all encoders with the same d2, the
one with minimum SNR to get P̄b = 10−6 was selected. The entry d3 means instead that the code with
maximum d3 was selected. The entry d2 is a code with largest d2.

Parallel concatenations with the same code Table 11.16 lists the best parallel-concatenation
codes (pesuming the same code is used twice). The codes are rate (n − 1)/n after puncturing. The
puncturing pattern is octal and corresponds to the mother code rate-1/2 output bit pairs (info, parity)
are enumerated from left to right in increasing time and the pucturing pattern is pressed on top with
0 meaning puncture that parity bit. For instance 5352 means 101 011 101 010 so and corresponds to
(letting ik be an information bit and pk be the corresponding parity bit)

(i1, p1, i2, p2, i3, p3, i4, p4, i5, p5, i6, p6) → (i1, i2, i3, p3, i4, i5, i6) . (11.62)

Puncturing patterns need not always maintain a systematic code, although it is rare in parallel con-
catenation to see puncturing of information bits. The distances shown are for the mother code it-
self. As earlier, the overall dfree,cat for performance analysis of the concatenated system is found as
dfree,cat = mini=2,3 2 · di − i.

Serial concatenations - inner codes Table 11.17 lists best known inner codes with puncturing
patterns generated from rate 1/2 mother codes. Often the puncturing can delete information bits
(meaning the parity bit carries better information under puncturing than the information bit itself).
Puncturing is applied to the inner code output and the rate is for the resultant punctured inner code
and is (n − 1)/n.

Serial concatenations - outer codes Table 11.18 lists best known outer codes with puncturing
patterns generated from rate 1/2 mother codes. Often the puncturing can delete information bits
(meaning the parity bit carries better information under puncturing than the information bit itself).
Puncturing is applied to the outer code output and the rate is for the resultant punctured outer code
and is (n − 1)/n.
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2ν h0(D) h1(D) h2(D) d2 d3 dfree d2,cat d3,cat dfree,cat

4 7 3 5 4 3 3 6 3 3
8 13 15 17 5 4 4 8 5 5

16 23 35 27 8 5 5 14 7 7
16 45 43 61 12 6 6 22 9 9

Table 11.12: Rate 2/3 Constituent convolutional codes for turbo codes

2ν h0(D) h1(D) h2(D) h3(D) d2 d3 dfree dfree d2,cat d3,cat dfree,cat

4 7 5 3 1 3 3 3 4 3 3
8 13 15 17 11 4 4 4 6 5 5

16 23 35 33 25 5 4 4 8 5 5

Table 11.13: Rate 3/4 Constituent convolutional codes for turbo codes

A serial turbo-code design would choose one code from Table 11.17 and one from 11.18, using (11.60)
to evaluate the performance and the overall code rate is b̄ = b̄in · b̄out.

SubsectionCDMA 2000 Turbo Code
To be added at a later date. See document at web page for more information.
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2ν
[
1 g1

g0

]
d Ne Nb(d) d2 d3

4 [ 1 5
7 ] 5 1 3 6 5

(d2) 6 2 6
7 4 14
8 8 32
9 16 72

4 [ 1 7
5 ] 5 1 2 5 ∞

(SNR) 6 2 6
7 4 14
8 8 32
9 16 72

8 [ 1 15
13 ] 6 2 6 8 6

(d2) 8 10 40
10 49 245
12 241 1446
14 1185 8295

8 [ 1 17
13 ] 6 1 4 8 7

(d2) 7 3 9
8 5 20
9 11 51

10 25 124
8 [ 1 15

17 ] 6 1 2 6 ∞
(SNR) 7 3 12

8 5 20
9 11 48

10 25 126

Table 11.14: Best 4- and 8-sate Rate 1/2 Constituent (mother) convolutional codes for for use with
puncturing in turbo codes
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2ν
[
1 g1

g0

]
d Ne Nb(d) d2 d3

16 [ 1 33
31 ] 7 2 8 12 7

(d2) 8 4 16
9 6 26

10 15 76
11 37 201

16 [ 1 21
37 ] 6 1 2 6 ∞

7 1 5
8 3 10
9 5 25

10 12 56
16 [ 1 27

31 ] 7 2 8 12 7
(d2) 8 3 12

9 4 16
10 16 84
11 37 213

16 [ 1 37
23 ] 6 1 4 12 8

(d2) 8 6 23
10 34 171
12 174 1055
14 930 6570

16 [ 1 33
23 ] 7 2 8 12 7

(d2) 8 4 16
9 6 26

10 15 76
11 37 201

16 [ 1 35
23 ] 7 2 8 12 7

(d2) 8 3 12
9 4 16

10 16 84
11 37 213

16 [ 1 23
35 ] 7 2 6 7 ∞

(SNR) 8 3 12
9 4 20

10 16 76
11 137 194

32 [ 1 71
53 ] 8 3 12 12 ∞

(d3) 10 16 84
12 68 406
14 860 6516
16 3812 30620

32 [ 1 67
51 ] 8 2 7 20 8

(SNR d2) 10 20 110
12 68 406
14 469 3364
16 2560 20864

Table 11.15: Best 16- and 32-state Rate 1/2 Constituent (mother) convolutional codes for for use with
puncturing in turbo codes
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n − 1 4 states 8 states 16 states 32 states
2 [ 1 5

7
] [ 1 15

13
] [ 1 37

23
] [ 1 67

51
]

13 (3,1,3) 13 (4,3,10) 13 (4,2,6) 13 (5,2,7)
d2 = 4 , d3 = 3 d2 = 5 , d3 = 4 d2 = 7 , d3 = 4 d2 = 9 , d3 = 5

3 [ 1 5
7

] [ 1 15
13

] [ 1 37
23

] [ 1 67
51

]

56 (3,4,10) 53 (3,2,5) 53 (3,1,3) 53 (4,2,7)
d2 = 3 , d3 = 3 d2 = 3 , d3 = 3 d2 = 4 , d3 = 3 d2 = 7 , d3 = 4

4 [ 1 5
7

] [ 1 15
13

] [ 1 37
23

] [ 1 67
51

]

253 (2,1,2) 253 (3,9,24) 253 (3,3,9) 253 (3,1,3)
d2 = 2 , d3 = 3 d2 = 3 , d3 = 3 d2 = 4 , d3 = 3 d2 = 5 , d3 = 3

5 [ 1 5
7

] [ 1 17
13

] [ 1 27
31

] [ 1 71
53

]

1253 (2,2,4) 1253 (3,15,40) 1272 (3,2,6) 1272 (4,108,406)
d2 = 2 , d3 = 3 d2 = 3 , d3 = 3 d2 = 4 , d3 = 3 d2 = 4 , d3 = ∞

6 [ 1 5
7

] [ 1 17
13

] [ 1 27
31

] [ 1 71
53

]

5352 (2,22,44) 5253 (2,1,2) 5253 (3,12,33) 5253 (3,3,6)
d2 = 2 , d3 = 3 d2 = 2 , d3 = 3 d2 = 3 , d3 = 3 d2 = 3 , d3 = ∞

7 [ 1 5
7 ] [ 1 15

17 ] [ 1 33
23 ] [ 1 67

51 ]

25253 (2,7,14) 25253 (2,7,14) 25253 (2,1,2) 25253 (2,1,2)
d2 = 2 , d3 = 3 d2 = 2 , d3 = ∞ d2 = 2 , d3 = 3 d2 = 3 , d3 = 3

8 [ 1 5
7 ] [ 1 15

13 ] [ 1 37
23 ] [ 1 67

51 ]

125253 (2,9,18) 125253 (2,4,8) 125253 (2,1,2) 125253 (3,17,49)
d2 = 2 , d3 = 3 d2 = 2 , d3 = 3 d2 = 2 , d3 = 3 d2 = 3 , d3 = 3

Table 11.16: Best puncturing patterns for given high-rate parallel turbo codes
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n − 1 4 states 8 states 16 states 32 states
2 [ 1 5

7 ] [ 1 15
13 ] [ 1 27

31 ] [ 1 67
51 ]

7 (3,1,3) 7 (4,3,10) 7 (4,1,5) 7 (5,2,7)
d2 = 5 , d3 = 3 d2 = 7 , d3 = 4 d2 = 11 , d3 = 5 d2 = 19 , d3 = 6

3 [ 1 5
7 ] [ 1 15

13 ] [ 1 27
31 ] [ 1 67

51 ]

27 (2,1,4) 27 (3,2,9) 27 (3,1,5) 65 (4,7,51)
d2 = 4 , d3 = 3 d2 = 6 , d3 = 3 d2 = 10 , d3 = 4 d2 = 18 , d3 = 5

4 [ 1 5
7 ] [ 1 15

13 ] [ 1 27
31 ] [ 1 67

51 ]

67 (2,4,13) 127 (3,9,52) 351 (4,16,176) 325 (4,22,191)
d2 = 4 , d3 = 3 d2 = 6 , d3 = 3 d2 = 10 , d3 = 4 d2 = 18 , d3 = 5

5 [ 1 5
7 ] [ 1 15

13 ] [ 1 27
31 ] [ 1 67

51 ]

527 (2,6,26) 527 (2,1,6) 635 (3,8,43) 1525 (3,3,21)
d2 = 4 , d3 = 2 d2 = 6 , d3 = 3 d2 = 10 , d3 = 4 d2 = 18 , d3 = 5

6 [ 1 5
7 ] [ 1 17

13 ] [ 1 37
23 ] [ 1 67

51 ]

3525 (2,84,2693) 2527 (2,4,20) 6525 (2,4,22) 6525 (3,4,34)
d2 = 4 , d3 = 2 d2 = 6 , d3 = 4 d2 = 10 , d3 = 5 d2 = 18 , d3 = 5

7 [ 1 5
7

] [ 1 17
13

] [ 1 33
23

] [ 1 67
51

]

12527 (2,15,74) 12527 (2,7,42) 32525 (2,6,51) 32525 (3,14,135)
d2 = 4 , d3 = 2 d2 = 6 , d3 = 4 d2 = 10 , d3 = 4 d2 = 18 , d3 = 5

8 [ 1 5
7

] [ 1 15
13

] [ 1 33
23

] [ 1 67
51

]

72525 (2,153,5216) 52527 (2,4,32) 72525 (2,6,42) 152525 (3,23,299)
d2 = 4 , d3 = 2 d2 = 6 , d3 = 3 d2 = 10 , d3 = 4 d2 = 18 , d3 = 5

Table 11.17: Best puncturing patterns for given high-rate serial (inner code) turbo codes
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n − 1 4 states 8 states 16 states 32 states
2 [ 1 7

5 ] [ 1 15
13 ] [ 1 33

31 ] [ 1 71
53 ]

15 (3,1,2) 13 (4,3,10) 13 (5,7,25) 13 (6,15,60)
d2 = 3 , d3 = ∞ d2 = 5 , d3 = 4 d2 = 6 , d3 = 5 d2 = 6 , d3 = ∞

3 [ 1 5
7 ] [ 1 15

17 ] [ 1 23
35 ] [ 1 71

53 ]

56 (3,4,10) 33 (4,29,126) 17 (4,29,150) 36 (4,1,4)
d2 = 2 , d3 = 3 d2 = 4 , d3 = ∞ d2 = 4 , d3 = ∞ d2 = 8 , d3 = ∞

4 [ 1 5
7 ] [ 1 15

17 ] [ 1 27
31 ] [ 1 71

53 ]

253 (2,1,2) 136 (3,5,16) 351 (4,16,176) 133 (4,28,192)
d2 = 2 , d3 = 3 d2 = 3 , d3 = ∞ d2 = 10 , d3 = 4 d2 = 8 , d3 = ∞

5 [ 1 5
7 ] [ 1 17

13 ] [ 1 33
31 ] [ 1 71

53 ]

1253 (2,2,4) 1253 (3,15,40) 653 (4,98,436) 1272 (4,108,406)
d2 = 2 , d3 = 3 d2 = 3 , d3 = 3 d2 = 4 , d3 = 4 d2 = 4 , d3 = ∞

6 [ 1 7
5 ] [ 1 17

13 ] [ 1 27
31 ] [ 1 71

53 ]

3247 (2,4,8) 5253 (2,1,2) 3352 (3,7,24) 5253 (3,3,6)
d2 = 2 , d3 = ∞ d2 = 2 , d3 = 3 d2 = 4 , d3 = 3 d2 = 3 , d3 = ∞

7 [ 1 7
5

] [ 1 15
17

] [ 1 23
35

] [ 1 71
53

]

15247 (2,6,12) 15652 (2,2,4) 13632 (3,13,52) 13172 (3,4,18)
d2 = 2 , d3 = ∞ d2 = 2 , d3 = ∞ d2 = 3 , d3 = ∞ d2 = 5 , d3 = ∞

8 [ 1 7
5

] [ 1 15
17

] [ 1 33
31

] [ 1 67
51

]

65247 (2,9,18) 65256 (2,3,6) 123255 (3,21,75) 124672 (3,11,36)
d2 = 2 , d3 = ∞ d2 = 2 , d3 = ∞ d2 = 4 , d3 = 3 d2 = 5 , d3 = 3

Table 11.18: Best puncturing patterns for given high-rate serial (outer code) turbo codes
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code m1 m2 m3 m4

parity1 1 - 1 -
parity2 - 1 - 1

Table 11.19: b = 1 with 4QAM, or b̄ = .5

11.4 Turbo Codes for Higher-Level Constellations

The turbo codes of Section 11.3 can be used effectively with any constellation by simply using log likeli-
hood ratios to compute the initial information from the constellation and otherwise executing iterative
decoding between 2 (or more) instances of the code. However, while the codes are very good and have
high gain, the gain for multi-level constellations may not be consistent as the number of points in the
constellation M grows. Thus, researchers have investigated some codes to be used with S-random inter-
leavers that will provide a relatively constant gap for b̄ ≥ 0.5. This section presents two of those codes,
an 8-state code found by Sadjadpour, Sonalkar, and Calderbank (SSC) when working at ATT on DMT
DSL systems, where the constant gain is useful for loading algorithm implementation and a 16-state
code found by Pons, Sorbara, and Duvaut (PSD), who were also working on DSL. The SSC code has a
coding gain (with interleaver of a about 2000 bits) of 6.5 dB and thus a gap of 3 dB at 10−7 probability
of error. The 16-state PSD has about 6.8 dB coding gain alone with a similar length interleaver and
was observed when used with an outer hard-decoding that was not involved in interative decoding to
have a gain of about 7.1 dB, and thus a gap of only 2.4 dB. Given that shaping gain would contribute
another 1.53 dB, these codes are essentially within a 1-2 dB of capacity or absolute best performance
for multi-level transmission systems.

11.4.1 The 8-state SSC Code

The code has the already identified rate-1/2 encoder G(D) =
[
1 17

13

]
, which thus confirms that this

binary convolutional code is a good one to use. This code is used twice. The real innovations of SSC are
in the puncturing patterns and actually a few tenths of dB in a clever augmentation to the S-random
interleaver search. There are actually two interleavers specified on each of the input branches to the
use of this code. One of the interleavers acts on ONLY the systematic bits before they are transmitted,
while the other rearranges those bits on the input to the second parity-computing instance of the same
code.

Those extra steps over the algorithm in Figure 11.10 are compute the autocorrelation matrix between
extrinsic LLR’s and information bits, trying to drive these on average to as low of values as possible.
The procedure is in the 3rd ATT paper on the web site. The second information-bit-transmitted-only
interleaver is a deterministic design that is also described in the paper at the web site.

The length of the interleaverchosen for examples by SSC is L = 2176 bits, but the procedure for
interleaver design can be repeated for many situations and data rates, thus consequently different in-
terleaver lengths. Such an interleaver length is relatively small for the large gains evident, thus keep
interleaver delay in implementations to reasonable levels of a few thousand bits (typically a few ms or
less for modern data rates of a few Mbps or more).

The code uses different puncturing patterns for different b̄. Tables 11.19-11.26 list the value of b̄; the
constellation used with coding, with each dimension mapped with gray code (no two adjacent points
differ by more than 1 bit in label in a single dimension, see Figure 11.18 for an example); and up to 15
bits per 2-dimensional symbol, along with parity bits if used. A 1 indicates the parity bit is transmitted,
while a - indicates the parity bit is punctured for the rate 1/2 code. Vertical lines in the table indicate
symbol boundaries with respect to the information bits. Thus, the code in Table 11.19 could be viewed as
8-dimensional, while the codes in Tables 11.20, 11.21, 11.23, and 11.25 could be viewed as 4-dimensional.
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code m1 m2 m3 m4

parity1 1 - 1 -
parity2 - 1 - 1

Table 11.20: b = 2 with 16QAM, or b̄ = 1

code m1 m2 m3 m4 m5 m6

parity1 1 - - - - -
parity2 - - - 1 - -

Table 11.21: b = 3 with 16QAM, or b̄ = 1.5

code m1 m2 m3 m4

parity1 1 - - -
parity2 - - 1 -

Table 11.22: b = 4 with 64QAM, or b̄ = 2

code m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

parity1 1 - - - 1 - - 1 - -
parity2 - - 1 - - 1 - - - 1

Table 11.23: b = 5 with 256QAM, or b̄ = 2.5

code m1 m2 m3 m4 m5 m6

parity1 1 - - - - -
parity2 - - - 1 - -

Table 11.24: b = 6 with 256QAM, or b̄ = 3

code m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

parity1 1 - - - - - 1 - - - 1 - - -
parity2 - - - 1 - - - 1 - - - - - 1

Table 11.25: b = 7 with 1024QAM, or b̄ = 3.5

code m1 m2 m3 m4 m5 m6 m7 m8

parity1 1 - - - - - - -
parity2 - - - - 1 - - -

Table 11.26: b = 8 with 1024QAM, or b̄ = 4
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code m1 m2 through m4 m5 m6 through m8 m9

parity1 1 - - - 1
parity2 - - 1 - -

Table 11.27: b = 9 with 4096QAM, or b̄ = 4.5 - flip parity 1 and 2 on alternate symbols

code m1 m2 through m9 m10

parity1 1 - -
parity2 - - 1

Table 11.28: b = 10 with 4096QAM, or b̄ = 5

code m1 m2 through m5 m6 m7 through m10 m11

parity1 1 - - - 1
parity2 - - 1 - -

Table 11.29: b = 11 with 16384QAM, or b̄ = 5.5- flip parity 1 and 2 on alternate symbols

code m1 m2 through m11 m12

parity1 1 - -
parity2 - - 1

Table 11.30: b = 12 with 16384QAM, or b̄ = 6

code m1 m2 through m6 m7 m8 through m12 m13

parity1 1 - - - 1
parity2 - - 1 - -

Table 11.31: b = 13 with 65536QAM, or b̄ = 6.5 - flip parity 1 and 2 on alternate symbols

code m1 m2 through m11 m12

parity1 1 - -
parity2 - - 1

Table 11.32: b = 14 with 655536QAM, or b̄ = 7

code m1 m2 through m7 m8 m9 through m14 m15

parity1 1 - - - 1
parity2 - - 1 - -

Table 11.33: b = 15 with 262144QAM, or b̄ = 7.5 - flip parity 1 and 2 on alternate symbols
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Figure 11.18: Example for feeding decoder.

Feeding the Decoder

EXAMPLE 11.4.1 (Decoder Feeding from one dimension of constellation) An ex-
ample for one dimension of a 64 QAM constellation and rate 2/3 code illustrates decoding
with the AT&T code. Figure 11.18 shows one dimension of the constellation, labelings, and
a hypothesized received value of y = −6.5. The received value of -6.5 in the first dimension
corresponds to the 3 bits (m1, p

(1)
1 , m2). The second parity bit is removed via puncturing. A

trellis branch of interest in computation/input of γk in the APP of Section 9.3 would have the
label (m1, p

(1)
1 ) = (1, 1) in the encoder. There are two constellation points that correspond

to this combination, at +1 and at +3. Thus, gamma for this first code on this branch is

γk(1, 1) =
1√

2πσ2

(
e−

1
2σ2 (7.5)2 + e−

1
2σ2 (9.5)2

)
(11.63)

The second γk+1 affected by the same received symbol has a branch in the code trellis with
label (0,1), but the second bit was punctured and not transmitted. Thus any point that has
m2 = 0 is a possible point for the sum and there are four such points for the first code

γk+1(0, 1) =
1√

2πσ2

(
e−

1
2σ2 (.5)2 + e−

1
2σ2 (3.5)2 + e−

1
2σ2 (9.5)2 + e−

1
2σ2 (13.5)2

)
. (11.64)

For the second code, both parity bits are punctured. Thus, γk+1(0, 1) remains the same as
for the first code on the same branch, but now

γk(1, 1)(code2) =
1√

2πσ2

(
e−

1
2σ2 (7.5)2 + e−

1
2σ2 (9.5)2 + e−

1
2σ2 (11.5)2 + e−

1
2σ2 (13.5)2

)
.

(11.65)

11.4.2 The 16-state PSD Code

This code uses an S-random interleaver, which can be augmented by the same search as for the SSC
code. The generator is G(D) =

[
1 35

23

]
, which is again among those found in the previous section as

good for turbo codes with puncturing. This code adds a few tenths of a dB in coding gain for the
doubling of decoder complexity and can otherwise use the same constellations and punturing patterns
as the SSC code. Most productive use would require searches of interleaving rules that corresponding to
specific data rates to reduce correlation between extrinsic information and intrinsic information between
decoders. In this case, the code appears to have coding gain of about 6.8 dB. An outer hard-decoder
was found by PSD to add an additional .3 dB (with no additional interleaving), meaning a coding gain
of 7.1 dB.

11.4.3 The Third Generation Wireless Turbo Code

Third Generation Wireless, specifically CDMA-2000 3GPP2, use a turbo code that is typically mapped
into various forms of BPSK or QPSK signaling on the output bits of the encoder. Figure 11.20 illustrates
the base encoder, which typically has punctured outputs. The encoder for both encoders is G(D) =[
1 1+D+D3

1+D2+D3
1+D+D2+D3

1+D2+D3

]
, which is one of the codes in the earlier tables. The encoder outputs are
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Figure 11.19: 3GPP Turbo encoder base (often punctured).

punc 1/2 1/3 1/4 1/5
u 11 11 11 11
v0 10 11 11 11
v1 00 00 10 11
v′0 01 11 01 11
v′1 00 00 11 11

Table 11.34: Puncturing patterns for various rates of the 3GPP Turbo Encoders

punctured to create a rate b̄ encoder according to Table 11.34 over two successive input bits (or symbol
periods). This code is not intended for multi-level constellations and instead is an example of a good
one used at low b̄.

Various packet lengths are used for the code with tail biting that causes the switch to go to the
lower position (the delay is all zeros at the beginning of each packet) with encoder 1’s output bits first
transmitted for each symbol followed by encoder 2’s output bits. When the switch is in the lower position
the feedback bit is transmitted. Since this bit is different for the 1st encoder than for the 2nd encoder,
both are transmitted and thus the puncturing patterns are changed for the tail biting. Basically 6

b̄
bits

from the tail are transmitted after puncturing of the tail, or 3
b̄

from each of the encoder outputs. The
puncturing patterns for the tail biting appear in Table 11.35. The entries 2 and 3 mean to repeat the
bit twice or three times respectively.

The interleaver for the 3GPP code approximates a random interleaver, but with a simplified imple-
mentation shown in Figure ??. This interleaver is characterized by an integer n = 4, 5, ...10 and the
packet sizes (without including tail-biting bits) in Table ??. A counter is initialized to zero at the begin-
ning of the packet and its output is the input to the circuit in Figure ??. When a successful address (the
packet length is listed as Nturbo in Figure ??), then the counter is incremented. This process is continued
until all Nturbo input addresses have an interleave output address. The de-interleave process basically
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punc 1/2 1/3 1/4 1/5
u 111 000 222 000 222 000 333 000
v0 111 000 111 000 111 000 111 000
v1 000 000 000 000 111 000 111 000
u′ 000 111 000 222 000 222 000 333
v′0 000 111 000 111 000 1111 000 111
v′1 000 000 000 000 000 111 000 111

Table 11.35: Puncturing patterns for tail biting of the 3GPP Turbo Encoders

n packet length
378 4
570 5
762 5
1146 6
1530 6
2298 7
3066 7
4602 8
6138 8
9210 9
12282 9
20730 10

Table 11.36: Packet lengths and n for 3GPP turbo code.

reverses the diagram (and requires the solution of the least-significant-bit division problem, which is
essentially a set of linear binary equations). The interleaver can also be stored in a large look-up table,
but this 3GPP implementation is much simpler. The small look-up table is summarized in Table 11.21.
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Figure 11.20: 3GPP Turbo encoder interleaver circuit.
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Figure 11.21: 3GPP Turbo interleaver look-up table.
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(tc, tr) b̄ deviation from capacity
(3,6) .5 1.1 dB
(4,8) .5 1.6 dB
(5,10) .5 2.0 dB
(3,5) .4 1.3 dB
(4,6) 1/3 1.4 dB

Table 11.37: Regular Low-Density Parity Code Average Performance.

11.5 Low-Density Parity Check Codes

Low-Density Parity Check (LDPC) codes were first studied by Gallager of MIT in the early 1960’s. They
essentially are an implementation of the concept of random coding, which is known from Chapter 8 to
lead to code designs that can approach capacity. These block codes have very long block length N and a
parity matrix H(D) = H(0) = H that is essentially chosen randomly to have a number of 1’s that grows
linearly with block length (rather than as the square of the block length as might be expected if 0’s and
1’s were selected with equal probability for the H matrix entries). Also, from the expertise gained in
Section 9.6, “cycles of 4” are avoided so that iterative decoding using the constraint-based structure of
Section 9.6 can be used effectively.

Definition 11.5.1 (cycle of 4) A cycle of 4 occurs in a code when for any 1’s in the (i, j)
and (i, k) positions in any row i of H, there is at least one other row i′ 6= i that also has 1’s
in the jth and kth positions.

Definition 11.5.2 (Regular Parity Matrix) A regular code with a regular parity ma-
trix has exactly tr 1’s in every row and exactly tc 1’s in every column.

The (n − k) × n parity matrix H is chosen in regular LDPC codes to have exactly tc 1’s in each
column and exactly tr 1’s in each row, from which one notes

(n − k) · tr = n · tc (11.66)

or equivalently

b̄ = 1 − tc
tr

. (11.67)

Essentially, if uniformly distributed integers from 1 to n were selected, tr at a time, they would represent
the positions of the 1’s in a row of H. Successive rows could be generated by selecting successively
groups of tr integers. If a row is obtained that is either linearly dependent on previous rows, or forms a
4-cycle (which one can determine is simply a rectangle of 4 1′s in the corners somewhere in the stacked
rows of H generated), then the row is discarded and the process continued. While large n is desired, to
ensure a low-density of 1’s as described, the parameters tc, n, and k must be chosen to satisfy

(n − k)(n − k − 1)
tc(tc − 1)

≥ n . (11.68)

This relation basically forces long n to be used for high-rate codes. On average, codes having such a
parity matrix can have very high coding gain. For instance, Richardson and Urbanke have recently noted
the average LDPC code parameters (we made adjustments to their deviation from capacity numbers to
reflect capacity for an ensemble average of large-n LDPC codes rather than the restricted capacity they
studied) in Table 11.37. This table assumes that the codes are used on the AWGN with b̄ < 1 – that is,
transmitted signals are simple ±1 and there is no issue of shaping gain at such low b̄.

In a paper in IEEE Communication Letters, Chung, Forney, Richardson and Urbanke show that
for the binary-input AWGN channel, a rate 1/2 code can be constructed that is within 0.0045 dB of
the Shannon capacity. This code did not have a constant number of 1’s per row or column (i.e., was
not regular), and it appears such non-uniform distribution of 1’s is necessary to get extremely close to
capacity.
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Clearly any specific random construction for an H matrix needs to be explicitly tested to determine
its gain and parameters. However, with the results in Table 11.37 to guide design, one could generate
codes with confidence that a code with approximately the gains illustrated would be found. Additional
coding gain to capacity can be achieved if the inner LDPC system operates at a P̄b of approximately
10−6 or 10−7 and an external hard-decoded block code (like a Reed Solomon code of rate .9 or greater) is
applied, and will often gain the remaining 1-2 dB of coding gain as well as reduce the probability of error
to essentially error-free levels. LDPC codes are based on good distance properties for very complicated
codes and do not exhibit the error-flooring effect of turbo codes.

There are various approaches to generation of the H matrix. Gallager originally used a recursive
procedure in which smaller LDPC matrices are inserted into larger H matrices. However, this text-
book considers codes that appear to be well suited for multilevel transmission, as well as for low-rate
transmission, for which the construction follows the random procedure.

Since the error-floor problem associated with interleaving gain in Turbo codes is not evident in
good LDPC codes, LDPC codes more uniformly address the issue of increasing minimum distance and
simultaneously controlling the growth in nearest neighbors at all small distances. Decoding of LDPC
codes follows according to the constraint-decoding methods discussed in Chapter 9.

11.5.1 IBM Array LDPC Codes

IBM researchers E. Eleftheriou, S. Olcer, G. Cherubini, B. Marcus, and M. Blaum recently reported a
construction of some LDPC codes that is easy to reproduce and also essentially performs within 1-2 dB
of capacity at all b̄. Again, the remaining 1-2 dB can be obtained by serial outer concatenation of a
long-length Reed Solomon block code with appropriate longer-length interleaving than the block length
of the LDPC code. Shaping gain of 1.53 dB at large b̄ (and less at smaller b̄ > 1) is independent, see
Section ??.

The IBM LDPC codes use a Vandermonde matrix structure for H that depends on a p × p (p is a
prime integer) circular shift matrix

α =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0




. (11.69)

The consequent parity matrix is ALMOST

H =




I I ... I I
I α α2 ... αtr−1

...
...

. . . . . .
...

I αt̃c−1 α2(t̃c−1) ... α(tr−1)(t̃c−1)


 . (11.70)

The word ALMOST us capitalized because linearly dependent rows of H (going from top to bottom) are
eliminated as they occur, so while the codeword length remains tr · p, the number of rows n− k < tc · p.
Table 11.38 lists how many (m) rows of the parity matrix in (11.70) are actually linearly dependent
and thus removed. This number is always m = tc − 1. In removing some rows, the number of ones per
column reduces in some columns, so that tc value now represents the maximum number of ones in any
column. Some columns have instead t̃c − 1 ones in them.

The H construction above is known to guarantee aversion of any 4-cycles. The notation t̃c is used
because the deletion of linearly dependent rows actually reduces tc in m of the columns and so the codes
are not uniform (that is, tc is not quite constant).

Longer block length typically means higher gain with this construction. Table 11.38 illustrates the
codes and parameters when used for b̄ ≥ .5. Both the gap to capacity when the code is used at b̄ < 1
on the AWGN and when used (as to be shown later in this section) for b̄ > 1 are enumerated, with the
latter being 1.5 dB higher because LDPC codes do not address shaping gain. The gap to capacity varies
only slightly with b̄ for these codes as illustrated in Figure 11.22.
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(n, k) m p tc tr b̄ Γ at 10−7 high-b Γ γf

(276,207) 2 23 3 12 .7572 3.8 dB 5.3 dB 4.2 dB
(529,462) 2 23 3 23 .8733 3.0 dB 4.5 dB 5.0 dB
(1369,1260) 2 37 3 37 .9204 2.3 dB 3.8 dB 5.7 dB
(2209,2024) 3 47 4 47 .9163 1.8 dB 3.3 dB 6.2 dB
(4489,4158) 4 67 5 67 .9263 1.5 dB 3.0 dB 6.5 dB
(7921,7392) 5 89 6 89 .9332 1.3 dB 2.8 dB 6.9 dB

Table 11.38: IBM Array-Code LDPC parameters.

Figure 11.22: Illustration of nearly constant gap to capacity for integer b̄.
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bit label value subset number
(0,0,0) -7 0
(0,0,1) -5 1
(0,1,1) -3 3
(0,1,0) -1 2
(1,0,0) +1 0
(1,0,1) +3 1
(1,1,1) +5 3
(1,1,0) +7 2

LDPC codes are iteratively decoded using the parity and equality constraint processing of Section
9.6. The IBM researchers noticed that there can be a very large number of processors and this large
number is not necessary for constellations with large b̄ > 2. For such large-constellation applications,
the IBM LDPC code is mapped into SQ QAM constellations by directly mapping the encoder output
into 1-dimensional constituent components. The modulator takes up to 4 bits at a time from the LDPC
encoder output. A useful quantity b̄o is defined as the number of bits per dimension at the encoder
output (so b̄o = (n/k) · b̄. When b̄o = .5, then BPSK is transmitted using each successive LDPC encoder
output bit to modulate the polarity, positive or negative (for 1 or 0 respectively). When b̄o = 1, two
successive LDPC encoder output bits are mapped into QPSK. When b̄o = 1.5, 3 successive output bits
map into 8 SQ QAM, and when b̄o = 2, 4 successive encoder output bits map into 16 QAM. For b̄o > 2
and an integer, only 4 output bits from the LDPC encoder are used: 2 of these bits are used to encode
one of 4 subsets in a one-dimensional partitioning, and the other 2 bits are used identically for the other
dimension in SQ QAM. The remaining “uncoded” bits are used to select points with the sets - points
within a set have an intra-coset distance of nearly 12 dB better than uncoded and thus exceed the gain of
the code. An example appears in Table 11.5.1 for the encoding of one of the dimensions of 64 QAM. The
first bit or msb is thus not coded by the LDPC encoder. This procedure simplifies decoding (because
the additional “uncoded” bits are determined by simple slicing in the receiver), and also reduces the
redundancy in the use of the code because there are fewer redundant bits per symbol. Furthermore, the
gain is not reduced.

Such a procedure does need to match data rates and redundancies. This development will assume that
SQ QAM constellations (or two-dimensional constellations) are used. these constellations can always be
viewed as 2 successive PAM constellations as above. The number of bits per 2D symbol is defined as

b2 =
R

2D symbol rate
=

q

p
; . (11.71)

The integers q and p may be chosen to approximately arbitrarily closely any data rate and number of
bits per QAM symbol. Two situations are of interest: (1) the number of bits is relatively low so that
no parallel transitions are used and (2) parallel transitions will be used because the number of bits per
QAM symbol is sufficiently large. Figure 11.23 illustrates the first case: In this case, q successive uses
of the code produce n · q output bits in response to k · q input bits. This also corresponds to k · p
two-dimensional symbols since kq/b2 = kp. A larger number of bits per two-dimensional symbol

b̃2 = dn

k
· b2e (11.72)

represents the redundancy introduced by the LDPC code. The quantity b̃2 ≤ 4 for the first case, and
if b̃2 > 4, then the second case is considered (as later in this subsection). For the first case, some l̃ 2D
symbols will need to carry b̃2 bits while l other 2D symbols will carry only b̃2 − 1 bits. The following
equations are solved with l̃, b̃2, l all integers:

l̃ · b̃2 + l · (b̃2 − 1) = nq (11.73)
l̃ + l = kp . (11.74)

An integer solution is

l = kp · b̃2 − nq (11.75)
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Figure 11.23: Multi-level use of LDPC code with b̃2 ≤ 4.

l̃ = kp − l . (11.76)

It is possible that among the q blocks of bits or code uses that up to q − 1 individual two-dimensional
symbols have bits from two adjacent codewords. The LLR’s for the bits of interest are computed as if
the other bits are either (1) unknown or (2) the previous decoder’s decisions for the earlier block are
correct (in which latter case there is a small chance for error propagation).

The second case appears in Figure 11.24. In this case n · b2 input bits are grouped for 4 successive
LDPC encoder uses. This number of bits is also equal to 4k+bparallel so that, if (n, k) are known/chosen
for a particular LDPC (or more generally binary block) code, then

bparallel = n · b2 − 4 · k . (11.77)

The symbols are then split between the l of n symbols that carry b2 + i bits each and the l̃ that carry
b2 + i + 1 bits each, where

n = l + l̃ (11.78)
bparallel = l(b2 − 4 + i) + l̃(b2 − 3 + i) . (11.79)

Then i is chosen as the smallest integer i = 4, 5, 6, ... that produces l ≥ 0 in satisfying

l = n · (b2 − 3 + i) − bparallel . (11.80)

Then,
l̃ = 4n − l . (11.81)

An example occurs in Figure 11.25 for the use of the (2209,2024) IBM code and a data rate of 20
Mbps and a two-dimensional symbol rate of 4 MHz.

Multi-carrier transmission is somewhat easier because it naturally spreads bits over a long symbol
interval and many two-dimensional symbols. If B bits per N carriers are used with an (n, k) block code,
then

B̃ = dB · n

k
e (11.82)

are loaded. If all carriers have less than 4 bits, then Figure 11.26 illustrates the straightforward imple-
mentation. If some carriers have a number of bits exceeding 4, then the loading algorithm is re-run with
a FM (or MA) loading algorithm until

B′ +
∑

i:bi>4

(bi − 4) = B (11.83)
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Figure 11.24: Multi-level use of LDPC code with b̃2 > 4.

Figure 11.25: Specific 20 Mbps example of LDPC code with b2 = 5.
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Figure 11.26: Use of LDPC with multi-carrier loading.

where B′ solves
dn

k
· Be = 4 · N>4

∑

i:bi≤4

bi . (11.84)

The number of parallel bits is
bparallel =

∑

i:bi>4

(bi − 4) . (11.85)

11.5.2 Feeding the Decoder

To obtain the initial intrinsic probability from an AWGN received channel output value, the mapping
allows each bit’s value of the encoder output to be identified with one or more points in the constellation.
This set of points is called either Xvm=1 or Xvm=0 The probability is obtained by the following sum

p(vk = 1) =
∑

x∈Xvk=1

1√
2πσ2

e−
1

2σ2 (y−x)2 · px . (11.86)

A similar sum is computed for vk = 0. Then, LDPC decoding is initialized with the prior given by

LLRk = ln
p(vk = 1)
p(vk = 0)

. (11.87)

11.5.3 Lee’s LDPC Routines

2006 EE379B student Chien-Hsin Lee has graciously provide the software routines to construct various
LDPC codes, both parity and systematic generator matrices as well as an encoder and decoder function.
The matlab software is at the web site:

To generate the LDPC H matrix for any IBM code, the function get h matrix is useful. This function
called by H = get h matrix(prime,tr,tc,m) has 4 inputs

1. prime = the prime number

2. tr = the number of ones per row

3. tc = the maximum number of ones per column

4. m = the number of dependent rows removed (from Tables earlier m = tc − 1)

The sole output is the parity matrix.
A second routine provides the systematic encoder and is ¿¿ [H G] = systematic(H). The inputs and

outputs are obvious.
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A third routine provides the encoder output and also the AWGN channel outputs when noise of
a specified SNR is added: [rx bit, coded bit, message bit] = encoder(SNR dB,G,random,message bit).
The inputs and outputs are again obvious.

And, finally a decoder routine specified by [decoded bits,llr bits, iter ] = ldpc decoder spa(H,bits,max iter,var,fast).
var is the variance of the noise, and fast=1 stops the decoder if the parity check equations are all satisfied,
while fast=0 means execute max iter iterations of decoding.

The program listings appear to end this subsection:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [H_no_dep H] = get_h_matrix(p,rw,cw,first_1_start);
%% Generate LDPC H Matrix Uses IBM’s Method As Per Cioffi’s Class Note
%% Example: to Generate (529,462) code, p=23, rw=23, cw=3, first_1=2
%% H = get_h_matrix(23,23,3,2),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% p : Prime number of the size of base matrix of size p-by-p
%% rw : Row weight equals to number of base matrix per row, eq to K
%% cw : Column weight equals to number of base matrix per column,eq to J
%% first_1: Set to 2 per IBM’s Method right shift 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of output variables
%% H_no_dep : the parity check matrix with no dependent rows
%% H : without removing the dependent rows
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% To Do :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379B, Chien-Hsin Lee, 06/2006
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [H_no_dep] = get_h_matrix(p,rw,cw,first_1_start);
% generate base matrix
a = eye(p,p);
a = [a(first_1_start:p,:);a(1:first_1_start-1,:)];

% generate H matrix
H = [];
for row = 1:cw

current_row = [];
for cl = 1:rw

current_row = [current_row,a^((row-1)*(cl-1))];
end
H = [H;current_row];

end

% remove dependent rows
% this need to be update with mod2 operation
[Q R] = qr(H);
H_no_dep = [];
for i = 1:p*cw

if( abs(R(i,i)) > 1E-9)
H_no_dep = [H_no_dep;H(i,:)];

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [H_sys, G_sys] = get_g_matrix(H);
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%% This routine remove the dependent row from original H matrix.
%% Find the systematic G matrix and the H matrix work with this G matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% H : parity check matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of output variables
%% H : H to work with systematic G matrix
%% G : Systematic G matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% To Do :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379B, 06/2006, Chien-Hsin Lee
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [H_final, G_sys] = systematic(H);
[row col] = size(H);
H_in = H;
offset = 0;
r = 1; c = 1;
num_dep_row = 0;
%% Gaussion Elimination PART1
%% This find the leading 1 in each column
%% and eliminate the 1s in the row below
for i = 1:row

row_order(i) = i;
end
while( r <= row && c <= col)

row_lst = find(H(r:row,c));
if( isempty(row_lst))

c = c + 1;
else

if( length(row_lst) > 1)
for i = 2:length(row_lst)

H(row_lst(i)+r-1,:) = mod(H(row_lst(1)+r-1,:) + H(row_lst(i)+r-1,:),2);
end

end
H_temp = H;
H_temp(r,:) = H(row_lst(1)+r-1,:);
H_temp(row_lst(1)+r-1,:) = H(r,:);
H = H_temp;
row_temp = row_order;
row_temp(r) = row_order(row_lst(1)+r-1);
row_temp(row_lst(1)+r-1) = row_order(r);
row_order = row_temp;
r = r + 1;
c = c + 1;

end
end
r = row;
while( H(r,:) == 0 & r ~= 0)

H(r,:) = [];
r = r-1;

end
num_dep_row = row-r;
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%flg = sprintf(’Report: %d dependent rows are removed;\n Old matrix is %d by %d;\n New matrix is %d
%disp(flg);
row = r;

%% Column Permutation To Put Diaginal In All 1’s
for c = 1:col

column(c) = c;
end
r = 1; c = 1;
while( r <= row && c <= col)

if( H(r,c) ~= 1)
H(:,c:col) = [H(:,c+1:col),H(:,c)];
column(c:col) = [column(c+1:col),column(c)];
r = r-1; c= c-1;

end
r = r+1; c=c+1;

end

%% Gaussian Elimination Part II To Get The Systematic H
for i = 0:row-1

%% find backward leading cols and eliminate the upper trangle 1s
col_lst = find(H(:,row-i));
if( length(col_lst) > 1)

for j = 1:length(col_lst)-1
H(col_lst(j),:)=mod(H(col_lst(j),:)+H(row-i,:),2);

end
end

end

%% Get G And H Matrix
G_sys = [H(:,row+1:col)’,eye(col-row)];
H_no_dep = [];
if(num_dep_row > 0)

x = row_order(row+1:row+num_dep_row);
x = sort(x);
j = 1;

for i = 1:row+num_dep_row
if(i~=x(j))

H_no_dep = [H_no_dep;H_in(i,:)];
else

j=j+1;
end

end
else

H_no_dep = H_in;
end

for i = 1:col
H_final(:,i)=H_no_dep(:,column(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [encoded_bit message_bit] = encoder(SNR,G,random,message_bit)
%% LDPC Encoder
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% SNR_dB : Receiver SNR in dB
%% G : Generator matrix
%% random : encoder generate random bit streams
%% message_bit : message_bit to be encoded.
%% : if random is 1, message_bit is ignored
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of output variables
%% rx_bit : coded_bit + AWGN
%% coded_bit : encoded bit
%% message_bit : message bit to be encoded
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% To Do :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379B, 06/2006, Chien-Hsin Lee
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [rx_bit, coded_bit, message_bit] = encoder(SNR_dB,G,random,message_bit)

[k,n] = size(G);
if(random == 1)

message_bit = round(rand(1,k));
end

noise = randn(1,n)/sqrt(10^(SNR_dB/10));
coded_bit = mod(message_bit*G,2);
modulated_bit= coded_bit*2-1;
rx_bit = modulated_bit + noise; %% sending -1 only

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [decoded_bits llr_bits iter]=ldpc_decoder_spa(H,bits,max_iter,var,fast)
%% SPA LDPC Decoder
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% H : parity check matrix
%% bits : Received bits
%% max_iter : maximun number of iteration
%% var : variace of the noise
%% fast : 1: stop at good parity, 0: run till maximum iteration.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of output variables
%% decoded_bit : decoded bits
%% llr_bit : llr of each input bits
%% iter : number of iteration used
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% To Do :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379B, 06/2006, Chien-Hsin Lee
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [decoded_bits,llr_bits, iter ] = ldpc_decoder_spa(H,bits,max_iter,var,fast)
[row col] = size(H);
iter = 0;
pass = 0;
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llr_int = zeros(1,col); % intrinsic
llr_b2c = zeros(row,col); % bit node to check node
llr_c2b = zeros(row,col); % check node to bit node
tr = (-1).^mod(sum(H’)’,2);

%% intrinsic bit probobility
for i = 1:col

llr_int(i) = ((bits(i)+1)^2 - (bits(i)-1)^2)/2/var;
end
llr_bits = llr_int;
decoded_bits(i) = (sign(llr_bits(i))+1)/2;

while(iter < max_iter && (pass ~= 1 || fast == 0) )
iter = iter + 1;
%% update bit note to check node LLR
for j = 1:col

row_ptr = find(H(:,j));
for i = 1:length(row_ptr)

llr_temp =llr_int(j);
for k = 1:length(row_ptr)

if( k ~= i)
llr_temp = llr_temp + llr_c2b(row_ptr(k),j);

end
end
llr_b2c(row_ptr(i),j) = llr_temp;

end
end

%% update probibilty of check equation
for i = 1:row

col_ptr = find(H(i,:));
for j = 1:length(col_ptr);

X = 1;
for k = 1:length(col_ptr);

if( k ~= j)
X = X*tanh(llr_b2c(i,col_ptr(k))/2);

end
end
llr_c2b(i,col_ptr(j)) = tr(i)*2*atanh(X);

end
end

%% check result
for i=1:col

llr_bits(i) = llr_int(i)+sum(llr_c2b(:,i));
decoded_bits(i) = (sign(llr_bits(i))+1)/2;

end
pass = 1-sum(mod(decoded_bits*H’,2));

end %% while()
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Exercises - Chapter 11

11.1 Interleaver
Assume a generalized triangular interleaver throughout this problem:

a. (3 pts) Find G(D) and G−1(D) for a generalized triangular interleaver with J = 4 and K = 7.

b. (1 pt) compute delay (end to end)

c. (1 pt) How much does the gain (for bursty error) of hard convolutional code appear multiplied if
error bursts are infrequent.

11.2 Serial Code Concatenation
Assume two convolutional codes are concatenated serially with rates b̄1 for the inner code and b̄2 for

the outer code.

a. (1 pts) Find the overall b̄ for the concatenated system.

b. (1 pt) Suppose the inner code is a trellis code and repeat part a.

c. (2 pts) How does interleaving affect the rates of the two systems in parts a and b?

d. (1 pt) Suppose the parity bits added by a systematic encoder in part a are not re-encoded by the
outer code - then what is the rate of the concatenated system?

11.3 Convolutional Interleaving - Final 2003 (24 pts)
A generalized triangular interleaver designed for bytes (symbols) has period L = 7 and depth J = 5.

a. Find the Generator Matrix for the interleaver. (2 pts)

b. Find the inverse generator matrix for the de-interleaver. (2 pts)

c. Draw the interleaver and de-interleaver and show use of byte-wide registers as D and provide the
clock rate at which these registers pass information. A cascade of m D registers can be abbreviated
Dm. How many bytes of memory are used? ( 2 pts)

d. What is the delay through the interleaver and de-interleaver. ( 1 pt)

e. Assuming the byte-level code associated with this interleaver corrects dfree bytes in error - what
is the number of bytes that can be corrected from burst disturbances with the interleaver (if the
burst is 35 samples or less). ( 1 pt)

11.4 Interleaving and Wireless – 10 pts
A wireless channel uses a 16 QAM modulator to transmit data. The symbol clock is 4 MHz. In

addition to the channel being an AWGN, there is a gain on each channel that can vary with symbol
period. When in a nominal state, the channel has SNR=18 dB. In a fading state, the SNR is either 21
dB with probability 0.999 or -9 dB with probability .001. Each of the gains is independent of the others.

a. What is the data rate? (1 pt)

b. What is the probability of symbol error in the nominal state? (1 pt)

c. What is the probability of a symbol error in the fading state? (2 pts)

d. Suppose that a 50and that the channel is always in the fading state. Use the best 4-state d = 5
convolutional code as an outer code with hard decoding and design an interleaving scheme of
minimal end-to-end delay for this code that ensures that the probability of symbol error that is
less than 10−6. (6 pts)
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11.5 Zero Stuffing and block iterative decoding
Two convolutional codes are concatenated in parallel with rates b̄1 for the inner code and b̄2 for the

outer code. The first code has constraint length ν1 and the second code has ν2. A few bits are placed
at the end of a length-L packet to force the first encoder’s state to zero. For parts c through f, assume
b̄1 = 1/n1 and b̄2 = 1/n2, and that the two codes are systematic.

a. (2 pts) How many bits are wasted to force the first encoder’s state to zero? When is this number
insignificant?

b. (2 pts) Do these bits also force the second code to state zero in general? What might we do to
also force this code to state zero?

c. (2 pts) Suppose instead of separately computing the likelihood or probability densities for input
zero and one bits independently, could we instead propagate the log of the likelihood ratio? (the
likelihood ratio is the ratio of the probability density of a “1” to a “0”). What would be the
resultant eventual detection rule using some set of Likelihood ratios at some stage in decoding?

d. (3 pts) Find an iterative expression for the alternative of propagating the log likelihood ratio
of part c in iterative decoding, instead of propagating the Likelihood function itself. Explicitly
enumerate the values of the intrinsic log likelihood ratio for the assumption of a uniform input and
transmission over a BSC with parameter p.

e. (5 pts) Find an iterative expression for the alternative of propagating the log likelihood ratio
of part c in iterative decoding, instead of propagating the Likelihood function itself. Explicitly
enumerate the values of the intrinsic log likelihood ratio for the assumption of a uniform input and
transmission over an AWGN with noise σ2 and bipolar transmission levels ±1 on the code outputs.

f. (1 pt) Comment on propagation of the likelihood ratio as an alternative to propagation the distri-
butions themselves.

11.6 Schedules – 11 pts
A given triangular interleaver has depth J = 3 and period L = 4.

a. What is the minimum number of memory cells? (1 pt)

b. Create a scheduling diagram similar to those in Tables 11.3 and 11.4 for this triangular interleaver?
(5 pts)

c. How many different length schedules are there in your answer for part a? (1 pt)

d. Compute S and compare to the sum of the lengths of the different-length schedules. (1 pt)

e. Explain the condition in Section 11.2 that mL
J−1 should not be an integer if the number of periods

is smaller than half the delay minus one. (3 pts)

11.7 Puncturing and Generators – 10 pts
The same rate 2/3 convolutional code is used twice in a parallel concatenation system.

a. What is code rate of the concatenated system with no puncturing? (1 pts)

b. Find a puncturing scheme to make each of the convolutional codes rate 3/4 and what is the new
rate of the concatenated system? (3 pts)

c. What is the size of the generator matrix that describes the puncturing? (1 pt)

d. Show the G matrix for your scheme. (3 pts)

e. Repeat part b for a new convolutional code rate of 4/5? (2 pts)
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11.8 Puncturing and Generators – 10 pts
The same rate 2/3 code is used twice in a serial concatenation system.

a. What is code rate of the concatenated system with no puncturing? (1 pts)

b. Find a puncturing scheme to make each of the convolutional codes rate 3/4 and what is the new
rate of the concatenated system? (3 pts)

c. What is the size of the generator matrix that describes the puncturing? (1 pt)

d. Show the G matrix for your scheme. (3 pts)

e. Repeat part b for a new convolutional code rate of 4/5? (2 pts)

11.9 Turbo-Coded Trits (Final 2001): (12 pts)
Prof. Bo Zhoe of the University of California at Bear has again escaped trans-bay security and is

loose on Sand Hill Road in Menlo Park. He has invented 3-level logic for integration on circuits, thus
allowing the use of trits, which measure the data content of a constellation according to

t = log3(M ) . (11.88)

The levels that can be processed are 0,1, and 2, which translated in logic into voltages -1, 0, and +1.
An earlier success with 3-way trellis code partitioning has encouraged him to investigate turbo codes
and what he calls LDTC (low density trinity codes). He starts with the design of a linear convolutional
code based on 1 trit in and two trits out.

a. Compute the code rate t̄ in trits per dimension. (1 pt)

b. Using up to 9 states, design a trellis that provides maximum distance between codeword sequences?
(3 pts)

c. Find the coding gain in a manner analogous to binary convolutional codes. (1 pt)

d. Find a systematic G(D) and corresponding “trinity” matrix for your code in part b). (2 pts)

e. The same code with systematic realization is used in two parallel-concatenated codes with a uniform
random interleaver between them. Find an approximate expression for the probability of bit error
assuming iterative decoding with the APP algorithm on each decoder. (Hint, you may have to
investigate the error event corresponding to dmin and use some approximation to determine how
likely it is to affect a second decoder) (2 pts)

f. (Zhoe also claims it is possible to use 3-level logic for the trinity matrix of any ternary linear code.
Find relations for the extrinsic probability of an equality constraint and for a “trinity” constraint.
Can you say something about the use of LLR here and whether it makes sense? (2 pts)

g. Do you see any advantage for the 3-level codes with respect to binary codes when used in the turbo
or LDTC context? What would you do to Zhoe if you were a venture capitalist working on Sand
Hill Road? (1 pt)

11.10 High-performance Turbo Coding - 9 pts - Final 2003
An AWGN channel uses QAM with symbol rate fixed at 1 MHz and 21 dB of SNR.

a. What is the highest data rate that can be achieved with the 16-state 4D Wei code (ok to use gap
approximation here) at P̄e = 10−6? (1 pt)

b. Using the AT&T Turbo code, repeat part a. (1 pt)

c. For the AT&T Turbo code, show the encoder with an PRBS-based approximation to a uniform
random interleaver, constellation with bit labels.
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d. For the receiver using the APP-based iterative-decoding (you may assume a very long block length
so that essentially one block is decoded and complexity per symbol time is constant):(4 pts)

(i) How many states are in the trellises for each of the APP decoders used? (1 pt)

(ii) Assuming one multiply-and-add is an operation, how many operations are used in each of the
APP decodings per symbol? (1 pt)

(iii) If iterative decoding coverges after 5 cycles (of both decoders), what is the total number of
operations per second for the iterative decoding? (1 pt)

(iv) How many operations are necessary to compute input prior probabilities from the constellation
(you can assume table look of a probability density evaluation or of a log function is one
operation)? (1 pt)

(v) Using your answer in part d, compare the complexity in operations per second to the com-
plexity in operations per second for the 4D 16-state Wei code. What might be done to reduce
the complexity without compromising performance too much? ( 2 pts)

11.11 SBS detection with and without LDPC coding on EPR4 channel: (20 pts)
In this problem you are asked to use matlab to compare uncoded SBS detection and SBS detection

with LDPC coding at the output of an EPR4 channel with AWGN. The matlab files that you need for
this problem are available on the class web page.

Assume the input is binary and is equally likely. A single frame of the input sequence of length 1088
bits that you need to use for this exercise is given in the file m.mat. We would like to pass this frame
through the channel EPR4channel.m 16 times and find the average BER. The function EPR4channel.m
takes d, the distance between constellation points, and the frame number i (i = 1, 2, ...,16) as arguments,
in addition to input frame xFramei(D), and returns output frame yFramei(D). Assume Eb/N0=5 dB,
unless mentioned otherwise. Adjust Ex appropriately to get the required value of Eb/N0.

a. (2 pts) What is the number of training symbols required to estimate the variance of the AWG
noise of the channel to within 0.05 dB and with 90% confidence?

b. (2 pts) Use a training sequence of the length found in part a to estimate noise variance of the
channel EPR4channel.m.

c. (1 pt) Use precoding and 2-level PAM modulation. After going through the channel, use uncoded
SBS detection to detect the information bits. Find the number of bit errors in the detected sequence
over the 16 transmitted frames.

d. (1 pt) Now let us add LDPC coding. Use the LDPC code given in the file ldpc code.mat, which
has a 136 × 1224 parity check matrix that has tc = 3 ones in each column. Pass the input data
frame through encoder.m to get the LDPC codeword of length N = 1224. This codeword will be
transmitted through the channel 16 times for BER calculations. (1 pt)

e. (1 pt) Pass the codeword through a binary precoder and 2-level PAM modulator, and then go
through the EPR4channel.m.

f. (1 pt) For each received symbol yk, k = 1, ..., N , where N is the codeword length, calculate the
channel probabilitie densities pyk/ỹk

for each possible value of ỹk, where ytk is the noiseless channel
output. Normalize these conditional probabilities so that they add up to 1.

g. (2 pts) Calculate the a priori probabilities pk(0) and pk(1), k = 1, ..., N , by adding the correspond-
ing channel probabilities found in part (f) based on the mapping of SBS detection.

h. (1 pt) Calculate the log likelihood ratio LLRk, k = 1, ..., N . To avoid dividing by zero use:
LLRk = log

(
max(pk(1),ε)
max(pk(0),ε)

)
, where ε = 10−5.
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i. (4 pts) Use the function ldpc iteration, which performs a single LDPC decoding iteration, to decode
the received codeword. Initialize the messages from checks to bits to all zeros, and use the a priori
LLR sequence found in part h. The vector message bit locations in ldpc code.mat indicates the
locations of message bits in the LDPC codeword. Find the number of bit errors in the detected
information sequence over the 16 transmitted frames, for the cases of 1, 3, and 10 LDPC decoding
iterations.

j. (3 pts) Plot the BER versus Eb/N0 for uncoded SBS detection and LDPC coded SBS detection
with 1, 3, and 10 decoding iterations over the Eb/N0 range 3 to 8 dB. Use a step of 0.2 dB in your
final plots.

k. (2 pts) What is the LDPC coding gain with 1, 3, and 10 decoding iterations at BER=10−3 relative
to uncoded SBS detection.

11.12 Multilevel LDPC decoding on AWGN channel (22 pts)
This problem uses matlab to compare the performance of uncoded transmission and symbol-by-

symbol detection with the performance of an LDPC code and iterative decoding at the output of the
same AWGN channel. The information rate is with 8-level PAM transmission. The matlab files that
you need for this problem are available on the class web page. The uncoded 8-level PAM constellation
uses the following “Gray-code” bit mapping:

mk , mk+1 , mk+2 000 001 011 010 110 111 101 100
constellation point: −7d/2 −5d/2 −3d/2 −d/2 d/2 3d/2 5d/2 7d/2 Each binary in-

put message is equally likely. A single frame of the binary input sequence of length 1089 bits for this
exercise is given in the file m.mat. This exercise passes this frame through the channel AWGNchannel.m
16 times and finds the corresponding average BER. The function AWGNchannel.m takes the frame num-
ber i (i=1, 2, 16) as an argument, in addition to input frame xFrame i(D), and returns output frame
yFrame i(D). Assume Eb

N0
= SNR

2b̄
= 16dB, unless mentioned otherwise and adjust Eb appropriately to

get the required value of Eb

N0
.

a. What is the number of training symbols required to estimate the variance of the AWG noise of the
channel to within 0.075dB of its true value with 98% confidence? (2 pts)

b. Use a training sequence of the length found in part a to estimate noise variance of the channel
AWGNchannel.m. (2 pts)

c. Use uncoded 8-level PAM modulation given above. Use SBS detection to detect the information
bits from the output of the AWGN. Find the number of bit errors in the detected sequence over
the 16 transmitted frames. (2 pts)

d. Use uncoded 8-level PAM modulation given above. Use SBS detection to detect the information
bits from the output of the AWGN.

e. Find the number of bit errors in the detected sequence over the 16 transmitted frames. (2 pts)

f. Pass the codeword through the 8-level PAM modulator, and then go through the AWGNchannel.m.
Calculate the loss in dB caused by the any bandwidth expansion that would be necessary to
accommodate the rate loss in part d. (1 pt)

g. For each received symbol yk, k = 1, ..., N/3. where N is the codeword length, calculate the
channel probabilities pyk/ỹk

for each possible value of ỹk, where ỹk is the noiseless channel output.
Normalize these conditional probabilities so that they add up to 1. (3 pts)

h. Calculate the intrinsic probabilities pk(0), pk(1), pk+1(0), pk+1(1), pk+2(0), pk+2(1), k = 1, ..., N/3,
by adding the corresponding channel probabilities found in part f based on the symbol to bit
demapping shown above. (3 pts)
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i. Calculate the log likelihood ratio LLRk, k = 1, ..., N . To avoid dividing by zero use:

LLR(k) = log
(

max(pk(1), ε)
max(pk(0), ε)

)
, (11.89)

where ε = 10−5. (1 pt)

j. Use the function ldpc iteration, which performs a single LDPC decoding iteration, to decode the
received codeword. Initialize the LLR messages/extrinsic-probabilities from parity check nodes
to equality nodes to all be zero, and use the á priori LLR sequence found in part h to initialize
the decoding process. The vector message bit locations in ldpc code.mat indicate the locations of
message bits in the LDPC codeword. Find the number of bit errors in the detected information
sequence over the 16 transmitted frames, for the cases of 1, 3, and 10 LDPC decoding iterations.
(2 pts)

k. Plot the BER versus Eb

N0
for uncoded SBS detection and LDPC coded SBS detection with 1, 3,

and 10 decoding iterations over the Eb

N0
range 14 to 21 dB. Use a step of 0.2dB in your final plots.

Comment on the slight loss in part e and how it affects the result here. (3 pts)

11.13 Combined APP and LDPC decoding on EPR4 channel - Al-Rawi’s Triathalon: (24 pts)
This problem uses matlab to compare uncoded SBS detection and combined APP soft detection with

LDPC soft decoding at the output of an EPR4 channel with 2-level PAM transmission. The matlab files
that are necessary for this problem are available on the class web page.

In this iterative scheme, extrinsic soft information is passed back and forth between the APP soft-
channel detector and the soft LDPC decoder. Number of iterations is expressed as (Nchannel, Nldpc),
where Nchannel is the number of passes through the APP detector and LDPC decoder. Each pass through
the LDPC decoder uses Nldpc decoding iterations. Extrinsic output of the APP soft-channel detector
is used as à priori input to the LDPC decoder, and if Nchannel > 1, the extrinsic output of the LDPC
decoder is used as à priori input to the APP detector. The final output is always taken from the LDPC
decoder. Notice that the APP detector uses raw probabilities and the LDPC decoder uses probabilities
in LLR domain, so you need to do the necessary conversions when passing information back and forth
between the two. When converting from LLR to probability, you need to truncate your LLR values so
as to keep them within the range from 100 to +100, to avoid getting infinite values in matlab.

Assume the binary input is equally likely. A single frame of the binary input sequence of length 1088
bits that you need to use for this exercise is given in the file m.mat. We would like to pass this frame
through the channel EPR4channel.m 16 times and find the average BER. The function EPR4channel.m
takes d, the distance between constellation points, and the frame number i (i=1, 2, 16) as arguments,
in addition to input frame xFrame i(D), and returns output frame yFrame i(D). Assume Eb

N0
= 0.4dB,

unless mentioned otherwise. Adjust Eb appropriately to get the required value of Eb

N0
.

a. What is the number of training symbols required to estimate the variance of the AWG noise of the
channel to within 0.15dB and with 99.9% confidence? (2 pts).

b. Use a training sequence of the length found in part a to estimate noise variance of the channel
EPR4channel.m. (2 pts)

c. Use precoding and 2-level PAM modulation. After going through the channel, use uncoded SBS
detection to detect the information bits. Find the number of bit errors in the detected sequence
over the 16 transmitted frames. (1pt)

d. Plot the BER versus Eb

N0
for uncoded SBS detection over the Eb range 0 to 8 dB. Use a step of

0.2dB. (1 pt)

e. Use the LDPC code given in the file ldpc code.mat, which has a 136 × 1224 parity check matrix
that has tc = 3 ones in each column. Pass the input data frame through encoder.m to get the
LDPC codeword of length N = 1224. This codeword will be transmitted through the channel 16
times for BER calculations. (1 pt)
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f. Pass the codeword through a binary precoder and 2-level PAM modulator, and then go through the
EPR4channel.m. What is the rate loss? How many additional bits would need to be augmentted
to the end of the channel input sequence to force a return to state zero in the EPR4 trellis? Are
these bits necessary here? (1 pt)

g. For each received symbol yk, k = 1, ..., N , where N is the codeword length, calculate the chan-
nel probabilities pyk/ỹk

for each possible value of ỹk, where ỹk is the noiseless channel output.
Normalize these conditional probabilities so that they sum to 1. (1 pt)

h. Use the APP algorithm for soft detection, followed by LDPC soft decoding in the iterative scheme
explained above. Assume that each APP detection iteration requires 22N · 2ν computational
operations, and each LDPC decoding iteration requires (8tc−1)N computational operations, where
N is the codeword length, and 2ν is the number of states in the trellis. What is the minimum
complexity to get zero bit errors in the 16 received frames. (5 pts)

i. Assuming we are transmitting at 1Mb/s rate, express this complexity of part h in number of
operations per second (ops/sec). (2 pts)

j. Find the number of bit errors in the detected sequence over the 16 frames for the following iterative
schemes (Nchannel, Nldpc) = (1, 1), (1, 3), and (3, 1). (3 pts)

k. Plot the BER versus Eb

N0
for combined soft APP detection and LDPC decoding with the schemes

in part j over the Eb range 0 to 2 dB. Use a step of 0.1dB in your final plots. (3 pts)

l. What is the coding gain of iterative schemes in part j over SBS detection at P̄b = 10−3. (2 pts)

11.14 Are you a Jedi Knight yet? - Final 2003 – 12 pts
You are a young Stanford graduate in the year 2134 and have just joined the Alliance for Intergalactic

Liberty as a transmission engineer. An evil empire is jamming transmissions that are crucial to the
Alliance survival, leaving an AWGN channel with SNR=15 dB for wireless transmission with a fixed
symbol rate of 1/T = 10 MHz. Your Alliance friends need the highest possible data rate you can provide
them on this link.

a. What is the maximum data rate with the fixed symbol rate? (1 pts)

b. Design code and transmission system that achieves 90% of this highest rate at low probability of
bit error. (10 pts - better designs will earn more points)

(i) show or describe your constellation

(ii) describe or illustrate your encoder(s) and any significant parts

(iii) describe the receiver

c. Suppose a very large look-up table is allowed in both the transmitter and the receiver, and a delay
of 100 milliseconds is not of concern and you can somehow then get 1 dB of additional shaping
gain. How much higher might you transmit? (1 pt)

11.15 Puncturing and Generators – 10 pts
An AWGN has an SNR of 14.2 dB at some given symbol rate. The probability of error goal for QAM

transmission with b = 4 is P̄b ≤ 10−6. (For parts b and c, use Turbo Codes, for parts d,e, and f, use
LDPC codes, and for part g use either.)

a. What is the capacity c in bits/symbol of this channel? (1 pt)

b. Design a turbo code at this same symbol rate that meets the data rate and probability of error
goal. Show the encoders, interleavers, and constellation. (5 pts)

c. For the code in part b, what is a reasonable size for the interleaver period? W hat is a good value
for S if this interleaver is an S-random interleaver? (2 pts)
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d. Repeat part b using an IBM LDPC code and show exact numbers of bits, dummy bits, etc in the
encoder. (6 pts)

e. How many parity checks are there in your code and how many bits contribute to each? (2 pts)

f. In the decoder, how many equality nodes are used? (2 pts)

g. What could you do to double the data rate achieved in parts b or d at the same probability of
error? (2 pts)
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