COHERENT ADEQUATE SETS AND FORCING SQUARE

JOHN KRUEGER

ABSTRACT. We introduce the idea of a coherent adequate set of models, which
can be used as side conditions in forcing. As an application we define a forcing
poset which adds a square sequence on wg using finite conditions.

In previous work [3] we introduced the idea of an adequate set of models and
showed how to use adequate sets as side conditions in forcing with finite conditions.
We gave several examples of forcing with adequate sets, including forcing posets
for adding a generic function on wy, adding a nonreflecting stationary subset of ws,
adding a Kurepa tree on wq, and in [4] adding a club to a fat stationary subset of
wo. The main result of the present paper is to define a forcing poset using adequate
sets which adds a U, -sequence.

The idea of using models as side conditions in forcing goes back to Todorcevi¢
[6], where the method was applied to add generic objects of size w; with finite
approximations. In the original context of applications of PFA, the preservation of
wo was not necessary. To preserve wo, Todorcevié¢ introduced the requirement of a
system of isomorphisms on the models in a condition.

In the present paper we introduce the idea of a coherent adequate set of models.
A coherent adequate set is essentially an adequate set in the sense of [3] which
also satisfies the existence of a system of isomorphisms in the sense of Todorc¢evié.
Combining these two ideas turns out to provide a powerful method for forcing with
side conditions. As an application we define a forcing poset which adds a square
sequence on wy with finite conditions.

We assume that the reader is familiar with the basic theory of adequate sets as
described in Sections 1-3 of [3]. Our treatment of coherent adequate sets owes a lot
to the presentation of nicely arranged families given by Abraham and Cummings
[1]. Forcing a square sequence with finite conditions was first achieved by Dolinar
and Dzamonja [2] using the Mitchell style of models as side conditions [5]. An
important difference is that the clubs which appear in the square sequence added
by their forcing poset belong to the ground model, whereas for us the clubs are
themselves generically approximated by finite fragments.

1. ADEQUATE SETS

In this section we review the material on adequate sets which we will use.
Throughout the paper we assume that 2* = w; and 2“! = ws.

Let m be a bijection of wy onto H(wsz). Fix a set of definable Skolem functions
for the structure (H(wz), €, 7). For any set a C ws, let Sk(a) denote the closure
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of a under these Skolem functions. Let C* be the club set of 3 < wy such that
Sk(B) Nwy = B. Let A := C* Ncof(wy). Note that any ordinal in A is also a limit
point of C*.

Let X be the set of countable M C wy such that Sk(M) Nws = M and for all
v € M, sup(C* N~) € M. Note that X is a club subset of P, (wq). If M € X
then Sk(M) = n[M]. It follows that if M and N are in X and N € Sk(M), then
Sk(N) € Sk(M). If a and b are in X U A, then Sk(a) N Sk(b) = Sk(aNb) (see
Lemma 1.4 of [3]). This implies that if M € X and § € A, then M NG € X.

If M € X and 8 € ANsup(M), then min(M \ §) is in A. Clearly min(M \ §)
has cofinality wy. If this ordinal is not in A, then it is not a limit point of C*. Also
B # min(M \ §), so sup(M N B) < f < min(M \ 8). Hence sup(C* Nmin(M \ B)) is
below min(M \ ) and is in M by the definition of X. In particular this supremum
is below 8. This is a contradiction since § is in C*.

Let M be in X. A set K is an initial segment of M if either K = M or there
exists § € M N A such that K = M N 3. So any initial segment of M is also in
X. If M and N are in X and N € Sk(M), then since N has only countably many
initial segments, they are all members of Sk(M).

Since 2¥ = wy, for all f € A, X N P(B) C Sk(B). For since cf(f) = wy, every
member of X N P(B) belongs to P, (y) for some v < 5. And since wy C Sk(fB),
P,, (v) € Sk(B). In particular, if M € X and 8 € A then M N 3 € Sk(B).

For a set M € X, let Aj; denote the set of 5 € A such that

B = min(A \ sup(M N B)).

In other words, 8 € Ay if B € A and there are no elements of A strictly between
sup(MNpB) and . For M and N in X', Apy NAy has a largest element (see Lemma
2.4 of [3]). We denote this largest element by Sas,n, which is called the comparison
point of M and N. An important property of the comparison point is the following;:

(M Ulm(M)) N (N Ulim(N)) C Bu.n
(see Proposition 2.6 of [3]).

Definition 1.1. A set A C X is adequate if for all M and N in A, either M N
ﬂ]\/LN € Sk(N), Nﬁﬂ]yLN € Sk(M), OT’MﬂﬂMVN = Nﬂﬂ]yﬂ]v.

Note that a set A C X is adequate iff for all M and N in A, {M, N} is adequate.
If {M, N} is adequate, then M NGy v € SE(N) iff MNwy < NNwq, and MNBy N =
NﬂﬁM,N iﬁ'mel :Nﬁwl.

Suppose that {M, N} is adequate. If M N Bynv = NN Bu,n, then M NN =
MﬂﬂMJv. And ifMﬁﬂM7N S Sk(N), then M NN = MﬂﬂMJv.

The next lemma records some important technical facts about comparison points
which are used frequently. The proofs of these facts can be found in Section 3 of

Lemma 1.2. The following statements hold:

(1) Let M € X, p € A, and suppose M C 3. Then for all N € X, Byn < 5.
(2) Let K,M,N € X, and suppose M C N. Then Bk n < Br,N-

(3) Let M and N bein X and 8 € A. If By.n < B, then By,n = Bumng,N-
(4) Let M and N bein X and § € A. If N C 3, then By,n = BMng,N-

Another important fact is that if {M, N} is adequate and 8 € A, then {M N
B, N N B} is adequate (see Lemma 3.3 of [3]).
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Lemma 1.3. If {M N Bu,n,N N Bum,n} is adequate, then so is {M,N}.

Proof. Let 8 := fy,n. Since f < (3, Lemma 1.2(3) implies that 5 = Byng,n-
And as M NS C B, Lemma 1.2(4) implies that Bayng,n = Bmng,nnp. Hence
B8 = Bumns,nng- In particular, (M N B) N Byng.nng = M N B and (NN G)N
Brmng.nng = NNB. Soif (MNB)NBuns.nng € SE(NNB), then M NJ e Sk(N),
and similarly if (NN 3) N Buyng nng € SE(M N B) then NN 3 € Sk(M). Also the
equality (M N B) N Barng.nng = (NN B) N Bung nng is equivalent to the equality
MnNB=Nng. 0

2. COHERENT ADEQUATE SETS

In the basic theory of adequate sets, we identify a set M in X with Sk(M),
and oftentimes with the structure (Sk(M), €, 7N Sk(M)), which is an elementary
substructure of (H(wsz),€,m). For any set P C H(ws) and M € X, let Py :=
P N Sk(M). In the context of coherent adequate sets we are interested in the
expanded structure

Mm = (Sk‘(M), S, M, ij, AM)
Note that 91 is not necessarily an elementary substructure of (H(w2), €, 7, X, A).
In general if a set in X is denoted with a particular letter, we use the Fractur version
of the letter to denote the above structure on its Skolem hull.

Let M and N be in X. We say that M and N are isomorphic if the structures
M and N are isomorphic. In other words, M and N are isomorphic if there exists
a bijection o : Sk(M) — Sk(N) such that for all z and y in Sk(M):

(1) z eyiff o(x) € o(y);

(2) n(@) = y iff w(o(x)) = o (y):

(3) ze X iff o(x) € X;

(4) zeAiff o(z) € A
In particular, such a map o is an isomorphism from (Sk(M),€) to (Sk(N),€).
Since these structures model the axiom of extensionality, such an isomorphism is
unique if it exists. In that case, let o,y denote the unique isomorphism from 9
to 91. Note that if M, IV, and K are isomorphic, then oy v = ox, N © oM K-

For M € X, let 9 denote the transitive collapse of the structure 9, and let
oa @ MM — M be the collapsing map. Note that M and N are isomorphic iff
M = N. In that case, by the uniqueness of isomorphisms we have that

OM,N = J;,l oon.

Suppose that M and N are isomorphic and a € Sk(M) is countable. We claim
that op n(a) = oanlal. Since a and op n(a) are countable, a C Sk(M) and
omn(a) € Sk(N). Hence x € a implies oy n(z) € oarn(a), so that op y[a] C
oum,n(a). On the other hand, if z € o, n(a), then for some x € Sk(M), op n(x) =
z, which implies that x € a. So z € o n[a).

Lemma 2.1. Let M and N be isomorphic and K € Sk(M)NX. Let K* =
omn(K). Then oy n(Sk(K)) = Sk(K*), K and K* are isomorphic, and o n |
Sk‘(K) =O0K,K*-

Proof. Since K is countable, K* = op n[K]. For all « € K, we have that
omnN(m(a)) =7m(opm,n(e)). It follows that

UN]’N(Sk(K)) = UM’N[S]{?(K)] = UM,N[W[KH = 7T[(TM7N[K]] = W[K*] = Sk(K*)
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So oa,n | Sk(K) is a bijection from Sk(K) to Sk(K*), and it clearly preserves the
predicates €, m, X', and A. Hence oy n [ SE(K) is an isomorphism of £ to 8. So
K and K* are isomorphic and o g+ = oy n | Sk(K). O

Lemma 2.2. Let M and N be isomorphic, and let K be an initial segment of M.
Let K* := oy n[K]. Then K* is an initial segment of N, op n[SE(K)] = Sk(K*),
K and K* are isomorphic, and oy n | Sk(K) = ok k-

Proof. This is clear if M = K. Otherwise there is 8 € M N A such that K = M Ng.
Then oy, n(8) € NN A, and easily K* = N Noy n(B8). By the argument from
the previous lemma, oy n[SE(K)] = Sk(om,n[K]) = SE(K*), and op N | SE(K)
is an isomorphism of Sk(K) to Sk(K*). Hence K and K* are isomorphic and
OM,N [Sk(K):JKVK*. [l

Suppose that M N By, v = N N B,y and M and N are isomorphic. Applying
the previous lemma, oar,n | (M N Ba,nv) is an isomorphism of M N Bar,n to the
initial segment o n[M N Barn] of N. But the latter initial segment has the
same order type as the initial segment N N Bas N, so it is equal to it. Hence
om,N | Sk(M N Bu,n) is an isomorphism of Sk(M N Bar,n) to itself, and therefore
it is the identity map. But M N By, v = M N N. In particular, we have proven the
following lemma.

Lemma 2.3. Let {M,N} be adequate, where M and N are isomorphic and M N
Bun =NNBun. Then oy n | Sk(M N N) is the identity function.

We now introduce the most important idea of the paper.

Definition 2.4. Let A C X. Then A is a coherent adequate set if A is adequate
and for all M and N in A:

(1) if M N By,ny = NN By, then M and N are isomorphic;

(2) if M N Bu,n € Sk(N), then there exists N' in A such that M € Sk(N')
and N and N’ are isomorphic;

(3) ifMﬂB]y[’N = NﬁﬁMyN and K € AﬂSk(M), then JM’N(K) € A.

Recall that if A is adequate and M and N are in A, then M N By,n € Sk(N)
it MNwi < NNwy,and M N Byny = NN Py it MNw = NNw;. It follows
that a finite adequate set A is coherent iff the set {Sk(M) : M € A} is a nicely
arranged family in the sense of Definition 3.3 of [1].

Also note that if M and N are in X and are isomorphic, then M Nw; = N Nw;.
For in that case oar,n(w1) = wi, and therefore op N[M Nwi] = N Nw;. But
this implies that M Nw; and N Nw; have the same order type and thus are the
same ordinal. Consequently the following are equivalent for M and N in a coherent
adequate set: (1) M Nwy = NNwy; (2) MNBun =NNBun; (3) M and N are
isomorphic.

Lemma 2.5. Let A be a coherent adequate set. Let M and K be in A. If KN
Br,m € Sk(M), then there is K* in ANSk(M) such that K and K* are isomorphic
and KﬂﬂK,M = K* QBK,M-

Proof. Since A is coherent, there exists M’ in A such that K € Sk(M’) and M
and M’ are isomorphic. Let K* = opp ap(K). Since A is coherent, K* € A. By
Lemma 2.1, opr pr | Sk(K) is an isomorphism of Sk(K) to Sk(K™*) and is equal to
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oK. i+ And o is the identity on M/ N M = M’ 0 By = M N B . Since
K C M, Brym < Burw-

Since om .M | M' N ﬁM/,M is the identity, UM/’]W(K n ﬁK,M) = UM/’M[K N
Br.m] = K N Bra. Since opp o | Sk(K) = ok k-, Lemma 2.2 implies that
K N Bk, v is an initial segment of K*. If v is in K* \ K and v < Bk u, then
v < B, m implies that v = o () € K which is a contradiction. So KNPk v =
K*NBr - O

Lemma 2.6. Suppose that A is a finite coherent adequate set, N € X, and A €
Sk(N). Then AU{N} is a coherent adequate set.

Proof. If M € A then since M € Sk(N), M0y n = M, which is in SE(N). So AU
{N} is adequate, and the requirements of being coherent are trivially satisfied. O

Lemma 2.7. Let A be a coherent adequate set and N € A. Then ANSk(N) is a
coherent adequate set.

Proof. Clearly AN Sk(N) is adequate, and (1) of Definition 2.4 is obvious. (3)
is also straightforward. For (2), let M and K be in AN Sk(N) and suppose that
KNBg pm € Sk(M). Since A is coherent, there exists M’ in A such that K € Sk(M')
and M and M’ are isomorphic. As M € Sk(N), M'Nw; = M Nw; < NNuw.
Hence M’ N By n € Sk(N). By Lemma 2.5 there exists M* in AN Sk(N) such
that M’ and M™* are isomorphic and M*N By ny = MNBayr n. Now K € Sk(M')N
Sk(N) = Sk(M/ n N) = Sk(M' mﬁM/,N) = Sk(M* mﬂM’,N)- So K € Sk(M*),
M* € AN Sk(N), and M* and M are isomorphic. O

Lemma 2.8. Let A be a coherent adequate set. Suppose that N, N', and N* are
in A and are isomorphic, where N' # N*. Then on/,n | SE(N'NN*) = on+ N |
(N'NN™*), and for some B € NNA, this function is an isomorphism of Sk(N'NN*)
to Sk(N N ﬂ) Also ON,N’ I SI{?(N n ﬂ) = ON,N* [ Sk(N N ﬁ)

Proof. By Lemma 2.3, ons n+ [ SE(N'NN*) is the identity function. Also oy’ n =
on-.N 00N/ n+. So for any x € SK(N' N N*), on' n(x) = on+ N(on N+ (2)) =
on+,n(z). This proves that on/ n | SE(N' N N*) = oy« n | (N' N N*). Denote
this map by o.

Since N’ £ N*, N'N N* is a proper initial segment of N’ and of N*. By Lemma
2.2, [N’ N N*] is equal to N N S for some f € NN A, and o is an isomorphism of
Sk(N'NN*) to Sk(N N B). The last statement of the lemma follows from the fact
that on v/ [ SE(N N B) and on n+ [ SE(N N 3) are both the inverse of o. O

3. AMALGAMATING COHERENT ADEQUATE SETS

One of the main methods for preserving cardinals when forcing with models as
side conditions is amalgamating conditions over elementary substructures. Propo-
sition 3.5, which handles amalgamation over countable substructures, will be used
to prove that the forcing poset in the next section is strongly proper and hence
preserves wi. Proposition 3.6 covers amalgamation over models of size w; and will
be used to prove that the forcing poset in the next section is ws-c.c.

The next four technical lemmas will be used to prove Proposition 3.5.

Lemma 3.1. Let M and N be in X and suppose that M and N are isomorphic.
Ifa <~ arein M and AN [a,y] =0, then AN [oa,n (), om,n(7)] = 0.
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Proof. Suppose for a contradiction that ¢ is in A N [oar n (), o0 n(7)]. Let ¢* =
min(N\(¢). Then ¢* € NNAN[owm,n(a), onr,n(7)]. Therefore on ar(¢*) € AN[a, 7],
which contradicts that A N[, 7] = 0. O

Lemma 3.2. Let M and N be in X. Let o < v be ordinals, where o € M Ulim (M)
and vy € NUlm(N). If AN{a,y] =0, then v < Bu,N-

Proof. Let 8 = min(A \ 7). Then v < sup(N N S), so § = min(A \ sup(N N 5)).
Also a < sup(M N B), and since AN[a,v] =0, 8 = min(A \sup(M N B)). Therefore
B € Ay N Ay, which implies that 8 < Bar,n. Since 7y is not in A, it follows that
v < Bum,N- O

Lemma 3.3. Let M, N, K, and P be in X, where M and N are isomorphic and
K and P are in Sk(M). Let 0 := oy n, K* := 0(K), and P* = o(P). Suppose
that 8 = min(M \ Bk.p). Then o(B) = min(N \ Bg+ p+).

Proof. Let a = sup(K N B) and v = sup(P N B). Without loss of generality assume
that o < 7. Since o and v have cofinality w, they are not in A. And as « and v
are in M and below S, a and «y are less than Sx p. Thus o = sup(K N Sk, p) and
v =sup(P N Bk,p).

Since B p € Ak NAp, Br.p = min(A \ @) = min(A\ 7). So AN [a,v] = 0.
By Lemma 3.1 it follows that A N [o(a),o(y)] = @. Since o(a) € lim(K*) and
o(y) € im(P*), Lemma 3.2 implies that Sx+ p- > o (7).

By the definition of 3, sup(M N B) < Bk, p. Since fx,p = min(A \ v), it follows
that for all v/ € M N [y,B8), AN[y,7] = 0. Hence by Lemma 3.1, for all v* €
NNo(y),0(8)), An[o(y),v*] = 0. Therefore B+ p+ > sup(N No(S)).

We will be done if we can show that Sk« p« < o(8). Suppose for a contradiction
that Sx« p- > 0(B). Let 7 = sup(K*N Bk« p+) and £ = sup(P* NPk~ p+~). Without
loss of generality assume that 7 < &, since the other case follows by a symmetric
argument. So SBg= p» = min(A \ 7) = min(A \ §). Since Bg~ p» > o(f) and
a(B) € A, 7 and £ are greater than o(8). Also clearly AN [7,&] = 0. By Lemma
3.1, AN[o=(7),071(&)] = 0. Since o~ 1(7) € lim(K) and o~1(¢) € lim(P), Lemma
3.2 implies that Bx p > o~1(£). But & > o(B3) implies that o~!(£) > 8. Hence
Bi,p > B, which is a contradiction. O

Lemma 3.4. Let M, N, K, and P be in X. Suppose that M and N are isomorphic
and K and P are in Sk(M). If {K, P} is adequate, then {op n(K),om n(P)} is
adequate.

Proof. Let 0 = oy n, K* := om n(K), and P* := op,n(P). By symmetry it
suffices to consider the cases when K N i p € Sk(P) and K N Bx p = PN Bk, p.
First assume that Sk p > sup(M). Then K N Bxp = K and PN B p = P. If
KN pk.p € Sk(P), then K € Sk(P). So o(K) € o(Sk(P)) = Sk(c(P)). Also if
K N Br,p=PNPk,p, then K = P, which implies that o(K) = o(P).

Now assume that Sx p < sup(M). Let 8 := min(M \ Bk,p). Then KNG =
KNPBk.pand PNG = PNk p. By Lemma 3.3, 0(5) = min(N \ Sk~ p~). Therefore
K*No(B) = K* N Bx- p- and P* N o() = P* N Bi.p-.

Suppose that K N Bx,p € Sk(P). Then KNG € Sk(P). So o(KNP) =
K*No(B) € o(Sk(P)) = Sk(P*). Therefore K* N B+ p- € Sk(P*). Now suppose
that K N Bxp = PNBrp. Then KNB=PNpE So K*No(f) =c(EKNP) =
J(Pﬂﬁ):P*QO'(ﬂ) HeHCGK*ﬂﬂK*7P*:P*mﬁ}(*yp*. [l
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The following proposition describes amalgamation of coherent adequate sets over
countable elementary substructures. It will be used to prove that the forcing poset
in the next section is strongly proper.

Proposition 3.5. Let A be a coherent adequate set and N € A. Suppose that B
is a coherent adequate set and AN Sk(N) C B C Sk(N). Let C be the set

{MeA:NNwi <MnNuw}U{onn(K): N €A, NNw, = N'Nw;, K € B}.
Then C' is a coherent adequate set which contains AU B.

Proof. First we prove that C is adequate. Obviously any two sets in {M € A :
NNw < M Nuw;} compare properly since A is adequate. Consider M € A with
NNwy < MNuwp, and L = oy n(K) for some N' € A with NNw; = N Nw;
and some K € B. Since N'Nw; = NNuw; < M Nwq, the set N' N B nv is
either in Sk(M) or is equal to M N Bas,ns. In either case, SE(N' N Sy nr) is a
subset of Sk(M). Since L C N’, Bz m < Bm,n'- As Lisin Sk(N'), LN B a is in
Sk(N') N Sk(Ba,n') = Sk(N' N Bpr nv). Hence LN B ps is a member of Sk(M).

Now consider M and L such that M = oy n/(K) for some N’ € A with NNw; =
N'Nw; and some K € B, and L = oy y+(P) for some N* € A with NNw; = N*Nw;
and some P € B. Since B is adequate, K and P compare properly. If N’ = N*|
then {M, L} is adequate by Lemma 3.4. Suppose N’ # N*. By symmetry it suffices
to consider the cases when K N Sk p is either in Sk(P) or is equal to P N Bk p.

The sets N’ and N* are isomorphic, and N’ N Bn/ n+ = N*NBnr n+ = N NN*.
By Lemma 2.8, onn | NNNN* = oy« n [ N N N* and there exists § € NN A
such that NN B = on/ n[N'NN*]. Let 0 := oy n' [ SE(N N B). By Lemma 2.8,
o =on,n+ | SE(NNS) and o is an isomorphism of Sk(NNSB) to SE(N'NN*). Now
J(Kﬂﬂ) = O’]w]w[Kﬁ(Nﬂﬂ)] = O’N,N/[K]QJN7N/[NF-15] = Mﬂ(NlﬂﬂN/,N*) =
M N Bnr N+, and similarly o(P N B) = LN By N+

Since {K, P} is adequate, so is {K N B, PN }. By Lemma 3.4, it follows that
{oc(K N B),oc(Pnp)}is adequate. In other words, {M N Bn/ n+,L N Bnr n+} is
adequate. Since M C N', Bp v < Br,nv, and since L C N*, B n+ < Bn/ N+
Hence 81 v < Bns,n+. Therefore {M N Sr.a, LN B a} is adequate. By Lemma
1.3 it follows that {M, L} is adequate.

Now we show that AU B C C and C is coherent. This statement follows
immediately from Lemmas 3.8 and 3.9 of [1]; we include a proof for completeness.
If K € B, then K = o n(K) isin C by definition. Let M € A. If NNwy < M Nwy,
then M € C by definition. Otherwise M Nw; < N Nw;. So there exists N’ € A
isomorphic to N such that M € Sk(N'). Let K := on/ v (M), which is in ANSk(N)
and hence in B. Then M = oy n/(K) is in C.

Suppose that L and M are in C and L Nw; = M Nw;. We will show that
L and M are isomorphic. If M Nw; > N Nwy, then L and M are in A and
hence are isomorphic. Otherwise M = oy n/(M*) and L = oy n»(L*), where
M* and L* are in B and N’ and N” are in A and are isomorphic to N. Then
M*Nw; = L* Nwy, which implies that M* and L* are isomorphic. It follows that
M and L are isomorphic.

Assume that L and M arein C' and L Nw; < M Nw;. We will show that there
is M’ in C isomorphic to M such that L € Sk(M'). If NNw; < LNwi, then L
and M are in A and we are done. Suppose that LNw; < N Nwy; < M Nwi. Then
L =onn/(L*) for some L* in B and N’ € A which is isomorphic to N. Fix M’ in
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A which is isomorphic to M such that N’ is either equal to M’ or is a member of
Sk(M'). Then L € Sk(M') and we are done.

Assume that M Nw; < NNwy. Then L = oy n/(L*) and M = oy y»(M*),
where L* and M* are in B and N’ and N” are in A and are both isomorphic to
N. Since L* Nwy < M* Nwy, there is M™** in B isomorphic to M™* such that
L* € Sk(M**). Then on n/(M**) is in C, is isomorphic to M** and hence to M,
and its Skolem hull contains L.

Now assume that M, K, and L are in C, M Nw; = KNwy, and L € CNSk(M).
We will show that op k(L) € C. First assume that N Nw; < M Nw;. Then M
and K are in A. If L € A then we are done. So assume that L = oy n/(L*) for
some L* € B and N’ in A isomorphic to N. Fix J in A isomorphic to M such
that N’ is either equal to J or a member of Sk(J). Let N” := o p(N') and let
N" :=op,x(N"). Then N” and N are in A. So oy n»(L*) € C. Since L is in
Sk(J) N Sk(M), U]’M(L) = L. Then ON,N"" (L*) = UN”,N”’(UN’,N”(UN,N/ (L*))) =
O‘NH,NW(O’N/’NH(L)) = O'M’K(O'J’M(L)) = O’M’K(L). So O'M,K(L) eC.

Finally, assume that M Nw; < NNw;y. Then M = oy n/ (M*), K = on nv (K*),
and L = oy ny»(L*), where M*, K*, and L* are in B, and N’, N”, and N"" are
in A and are isomorphic to N. Since L € Sk(M), L € Sk(N') N Sk(N""). So
JN/’N(L) = JN///’N(L) = L*. So JM,IM*(L) = O'N/’N(L) = L*. Then UM’K(L) =
JK*,K(JM*,K* (O'M’]\/[* (L))) = UK*,K(UM*,K* (L*)) = UN,N”(UM*J(* (L*)) Since
L* € B, oy g+ (L*) € B. Hence oy N (op x+(L*)) € C. So oy k(L) € C. O

The next result describes amalgamation of coherent adequate sets over models
of size wy. It will be used to show that the forcing poset in the next section is
wa-C.C.

Proposition 3.6. Let A be a coherent adequate set and 8 € A. Let AT :={M €
A:M\B#0} and A= :={M € A: M C 8}. Suppose that 8* € SN A and for all
M € A, sup(M N B) < B*. Assume that there exists a map M — M’ from AT into
X N Sk(B) satisfying that for all M and K in A :

(1) M and M' are isomorphic and M N * = M' N G*;

(2) K € SE(M) iff K' € Sk(M');

(3) ZfK S Sk(M) then O’M’M/(K) = K/,'

(4) A= U{M': M € A"} is a coherent adequate set.
Then C := AU{M' : M € A"} is a coherent adequate set.

Proof. Note that by assumption (1), oar,nr | S* is the identity function for all
M ¢ AT. Let us begin by proving that C is adequate. Note that if M € AT,
then M and M’ have the same order type, which is larger than the order type of
M N g* = M’ N B*; it follows that M’ \ §* is nonempty. Therefore C' is the union
of the three disjoint sets A=, AT, and {M’: M € A*}. By (4) and the fact that A
is adequate, it suffices to compare a set in A" with a set in {M': M € AT}

Let K and M be in AT, and let us compare K and M’. Since M’ C 8, Bx.m < 8
by Lemma 1.2(1). Hence Sk am = Brng,m by Lemma 1.2(3). But KNjg = KNpg*,
which implies by Lemma 1.2(1,4) that Sx v = Brng,mr = Brrgsmngs < B
Also KNp* = K'Nnp*and M'NB* = MNB. Now Bx m = Brnp*mng=, and
since K N * C K and M’ N B* C M, it follows that Sx v < Bk M-

We split into cases depending on the comparison of K and M. Suppose that
KN Bxgm € Sk(M). Since Bx. v < 8%, Br.m, it follows that KN Bx ar € Sk(M)N
Sk(B*) = Sk(M N p*) = Sk(M' N B*). Therefore K N Bx € Sk(M'). Now
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assume that MﬂﬂK,M S Sk(K) Since BK,M/ < BK,M; MﬂﬁK,M/ S Sk(K) But
Br, v < f* implies that M N Br yr = M' N Br s So M' N By € Sk(K). Now
assume that KﬂﬁKyM = MﬂﬁK,M~ Since BK,M’ < 5[{7@[7 KﬂﬁKyM/ = MﬂﬂKyM/.
But BK,M’ < B*, so MﬂﬂK’A =M ﬂﬁK,M’- Hence KﬂﬁK’M/ =M’ QBK,M’-

Now we show that C' is coherent. Recall that A is the union of the three disjoint
sets AT, A=, and {M': M € A"}. The union of the first and second set is equal to
A, which is coherent, and the union of the second and third set is coherent by (4).
Note that requirements (1) and (2) in the definition of coherence follow immediately
from these facts, except for the case of a pair of models where one is in AT and the
other is in {M': M € A™}.

Let K and M be in AT, and we verify requirements (1) and (2) for K and M’.
Suppose that KN Bk v = M'NBr . Then KNwy = MNw;. Since A is coherent,
K and M are isomorphic. Hence K and M’ are isomorphic.

Suppose that K N Br € Sk(M'). Then K Nw; < M Nwi, so KN Brm €
Sk(M). So there exists M* in A such that K € Sk(M*) and M and M* are
isomorphic. Hence M* and M’ are isomorphic. Now assume that M' N Bk p €
Sk(K). Then M'Nw; < K'Nwy, s0 M'NBrr ar € Sk(K'). Since ATU{L' : L € A*}
is coherent, there is K* in C such that M’ € Sk(K*) and K* and K’ are isomorphic.
Then K* and K are isomorphic.

Now we prove that requirement (3) holds of C. Let My and My be in C with
M1NBasy v, = MaNBa, i, and let K € CNSk(My). We will prove that oas, ar, (K)
is in C. Note that if M; and My are both in A, then so is K, and if M7 and M,
are both in A~U{M': M € A"}, then sois K. Since A and A~ U{M’': M € At}
are both coherent, we are done in these cases. So again it suffices to prove (3) in
the case of two sets, where one is in A" and the other is in {M': M € AT}

Assume that M; isin AT and My = M’ for some M € At. Then M; and M are
isomorphic. Since K € Sk(My), KNG C 5*, and hence K is in A. As A is coherent,
P :=opn m(K) € ANSK(M). If P € A, then since opar | B is the identity,
UM_’M/(P) = P. Hence O'Ml,JVI’(K) = UN[7M/(P) = P isin A. Otherwise P € A+,
and by assumption (3), JM’M/(P) = P/. So UMl,M’(K) = O'M,I\/I/(UMI,JV[(K)) =
O‘M,M/(P) =P eC.

In the last case assume that M; = M’ for some M € At and My € AT. Since
K € Sk(M"), K C 3,50 K isnot in A*. Suppose that K isin A~. Then K is a sub-
set of 8*, so opp v (K) = K. Hence K is in Sk(M)N A, and therefore opr ar, (K) €
A since A is coherent. But o, (K) = on(om m(K)) = op, (K) € C.
Otherwise K is equal to P’ for some P € A*. So P’ € Sk(M’). By assumptions
(3) and (4), P € Sk(M) and op p(P) = P’. Since P is in A and A is coherent,
omm, (P) € Ao So oy, (K) = one ar, (P') = onr v, (om0 (P)) = ona, (P) €
C. O

4. FORCING SQUARE WITH FINITE CONDITIONS

We define a forcing poset which adds a square sequence with finite conditions,
using coherent adequate sets as side conditions.

By a triple we mean a sequence («,7, ), where a € A and v < 8 < «a. Given
distinct triples (a,~, 8) and (o/,~', '), we say that the triples are nonoverlapping
if either @ # o, or « = @’ and [y, 8) N[/, B') = 0; otherwise they are overlapping.
Given a triple (a, v, 8) and M € X, we say that («,~, 5) and M are nonoverlapping
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if « € M implies that either v and § are in M or sup(M N a) < ~; otherwise they
are overlapping.

Clearly if M and N are isomorphic and a and b are nonoverlapping triples
in Sk(M), then opr,n(a) and oy n(b) are nonoverlapping triples. And if K €
Sk(M)N X and a and K are nonoverlapping, then oy n(a) and op n(K) are
nonoverlapping.

Definition 4.1. Let P be the forcing poset whose conditions are pairs (x, A) satis-

fying:
(1) z is a finite pairwise nonoverlapping set of triples;
(2) A is a finite coherent adequate set;

(3) forall M € A and {a,v,B) € x, M and {(a,7, ) are nonoverlapping;

(4) if M and M’ are in A and M N By .y = M’ N Basaar, then for any triple
(a,7,B) € SE(M) Nz, op v ({7, B)) € x.

Let (y,B) < (z,A) ifx Cy and A C B.

If p=(z,A), we write z, := z and A4, := A.
We will prove that P preserves all cardinals. For each o € A, let ¢, be a P-name
for the set

{y:3pe G 38 (e, v, B) € )}

We will show that each ¢, is a cofinal subset of a with order type w;, and whenever
¢ is a common limit point of ¢, and ¢/, ¢ NE = éor NE.

Lemma 4.2. Let A be a coherent adequate set and x a set of triples. Let y be the
set
zU{opmm(a): MM € A, MNw; =M Nwy, a €xNSk(M)}.

Then for all N and N' in A which are isomorphic and any a € y, on n'(a) € y.

Proof. Let N and N’ be isomorphic setsin Aand a € y. If a € z, then oy n/(a) €y
by definition. Otherwise there are M and M’ in A which are isomorphic and b in
x such that a = om0 (). So aisin Sk(M') N SK(N) = Sk(M'NN).

First assume that M’ N Bap v € Sk(N). By Lemma 2.5 there is M* in Sk(N)
which is isomorphic to M’ such that M’ N By y = M* N By v. In particular,
a € Sk(M'NN) = Sk(M'NBr+ . N) = Sk(M*NBar ar). By Lemma 2.8, opr+ pr(a) =
O'MI)]\/[(G) =b. So O'M)M*(b) = O'M7M’(b) =a. Let P := O'NyN/(M*). Then ON,N' F
Sk(M*) = op+,p. By Lemma 2.8, oy p | SE(M' N M*) = op+p | SE(M' N
M*) Hence O’M/7p(a) = O'M*,p(a) = ON,N/(CL). So O’]V17p(b) = O'M*,P(UM,I\/I* (b)) =
om=.p(a) =on n(a). Since b € x, opr,p(b) € y by definition. So oy ni(a) € y.

Now suppose that M’ N By ny = N N By n. Then by Lemma 2.8, op no |
Sk(M'NN) = onn | Sk(M' N N). Since a is in SE(M' N N), onn/(a) =
om N (a) = one v (0a,m7 (b)) = o, v/ (D), which is in y since b € x.

Finally assume that NNSyy v € Sk(M'). Fix N* € Sk(M') which is isomorphic
to N such that NﬂﬂMlyN = N*mﬂ]\/[/JV. Let L := (TM/7M(N*). Then a € Sk(M’ﬂ
N) = Sk(N mﬁM’,N) = Sk(N* ﬂﬁszNL SO a € Sk(N*) Also oMM | N* =
on+,r. Hence on« 1(a) = opr m(a) = b. By Lemma 2.8, oy n/ | SE(NNN*) =
on=.n | SE(NNN*). Therefore oy n/(a) = on+ nr(a). Soon N (a) = on+ ni(a) =
one N (onar (b)) = on« ni (o, n+ (b)) = op n/(b), which is in y since b € x. O

Recall that a forcing poset Q is strongly proper if for all sufficiently large regular
cardinals 6 with Q € H(6), there are club many sets N in P,,, (H(6)) such that for
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all p € N NQ there exists ¢ < p which is strongly N-generic, which means that for
any dense subset D of the forcing poset Q N N, D is predense below ¢ in Q ([5]).
Strong properness implies properness, which in turn implies that w; is preserved.

Proposition 4.3. The forcing poset P is strongly proper.

Proof. Fix a regular cardinal 6§ > ws, and let N* be a countable elementary sub-
structure of H () satisfying that P and 7 are in N* and N := N*Nwy € X. Clearly
there are club many such sets N*. Note that since # € N*, SE(N) = #[N] =
N*N H(ws). In particular, PN N* C Sk(N).

Let p be a condition in N*NP. Define ¢ = (z,, A, U{N}). Then ¢ is a condition
and g < p. We will prove that q is strongly N*-generic. So let D be a dense subset
of N* NP, and we will show that D is predense below q.

Fix r < ¢, and we will find a condition w in D which is compatible with 7.
Since N € A,, A, N Sk(N) is a coherent adequate set by Lemma 2.7. Let v =
(xr NSKk(N), A, NSk(N)). Then v is a condition in P. Since D is dense in N* NP,
we can fix w which is an extension of v in D. Then A4, N Sk(N) C A, C Sk(N).

Let C be the set

{MeA, :Nnw < MNw }U{onn(K): N € A, NNwy = N'Nwy, K € Ay}

By Proposition 3.5, C' is a coherent adequate set which contains A, U A,,. Let y be
the set

(2. \ SE(N))U{onn(a): N € A, NNwy =N Nwy, a € xy}.

Let s:= (y,C).

We claim that s is a condition and s < r,w, which completes the proof since w
isin D. If a is in z,,, then oy n(a) = a is in y. And if a is in ., then either a is
in z, \ Sk(INV), and hence is in y by definition, or else a is in x,,, and hence is in
y as just noted. So x, and x,, are subsets of y. Also A, and A,, are subsets of C.
Thus if s is a condition then s < r,w.

(1) We show that y is a set of nonoverlapping triples. So let ag and a1 be in
y. Let ag = (ao,70,00) and a1 = {(a1,71,01). If ag # a1 then ag and a; are
nonoverlapping, so assume that ag = ;. If ag and ay are both in z, \ Sk(N) then
they are nonoverlapping since r is a condition.

Suppose that ap € z, \ Sk(N) and a; = oy n/(a) for some a € z, and N’
in A, which is isomorphic to N. Since ag € N’, either 7y and Sy are in N’
or sup(N' N ag) < - In the latter case, 81 < 7o and hence a¢ and a; are
nonoverlapping. In the former case, a¢ is in Sk(N') N z,. Hence a¢* := on/ n(ao)
is in Sk(N)Nx, C x,. So a* and a are nonoverlapping. Therefore their images
under oy v, namely ag and aq, are nonoverlapping.

Now suppose that ag = on n/(af) and a1 = oy n+(a]), where af and a} are in
2y and N’ and N* are isomorphic in A,,. If N' = N*, then since af and a} are
nonoverlapping, so are their images under oy, n+, namely ao and a;. Suppose N #
N’. By Lemma 2.8, fix 8 € NNA such that on n/ [ SE(NNB) = on n+ | SE(NNS)
is an isomorphism of N N3 to N' N N*. But oy = «; implies that Sn/ n+ > ap.
Hence ag and ay are in Sk(N’ N N*). Since af and a} are nonoverlapping, their
images under oy, n/ | Sk(IN N 3), namely ag and aq, are also nonoverlapping.

(2) We already noted that C' is a finite coherent adequate set.

(3) Let M be in C and a in y, and we will show that M and a are nonoverlapping.
If MNwi; > NNuw; and a is in z, \ Sk(N), then we are done since r is a condition.
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Let a = (a,7,8). If a ¢ M, then a and M are nonoverlapping, so assume that
a € M. We will show that either v and 8 are in M or sup(M Na) < 7.

Suppose that M Nwy > NNwy and a = oy n(a*) for some N’ in A, isomorphic
to N and some a* in z,. Since M Nwy > N’ Nwy, either N' N Bn/ pr € Sk(M)
or NN BN = MNPy . But o € MNN', so By > . So «y and S are in
N N By, and hence in M.

Assume that M = oy n/(K), where N’ € A, is isomorphic to N and K € A,,
and a € x, \ Sk(N). Since M C N’, a € N'. So either v and § are in N’ or
sup(N' N a) < 7. In the latter case, clearly sup(M N «a) < v and we are done.
Otherwise @ is a member of SE(N'). So b:=on/ n(a) € 2, N SE(N) C x,. So K
and b are nonoverlapping. Hence their images under oy, n/, namely M and a, are
nonoverlapping.

In the final case, suppose that M = oy n/(K), where N’ € A, is isomorphic to
N and K € Ay, and a = oy n~(b) for some N* in A, isomorphic to N and some
bin z,. So K and b are nonoverlapping. If N’ = N*, then the images of K and
b under ox, N/, namely M and a, are nonoverlapping. Otherwise by Lemma 2.8
we can fix B € NN A such that oxy n/ [ SE(NNS) = onn+ | SE(N N B) is an
isomorphism of NN B to NNNN*. Asa € M, aisin N'NN*. Since N'NN* is an
initial segment of N and N*, a € Sk(N'NN*). Hence b is in Sk(N N G). Therefore
a=onn+(b) =onn(b). Thus a and M are the images of b and K under oy n-,
and b and K are nonoverlapping. So a and M are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that y is equal to the set

Uz U{opmm(a): MM € C;, MNwy =M Nwiy, a € (z,Uxzy,) N Sk(M)}.

Clearly y is a subset of this set. It was noted above that x, Uz, Cy. Suppose that
M and M’ are isomorphic sets in C and a € (z, Uz, ) NSk(M). We will show that
a* = O'M,M/(a) €.

Suppose that M Nw; > N Nw;. Then also M’ Nw; > NNw;. If a is in z,, then
we are done since r is a condition. Suppose that a is in z,,. Fix N* in Sk(M) which
is isomorphic to N such that NN By n = N* N By n. Then a € SE(N N By n) =
Sk‘(N* N ﬁM,N)- Let P .= O'M,M/(N*). So OM,M’ F Sk‘(N*) = ON*,P- By Lemma
2.8, om,mv(a) = on- p(a) = on,p(a), which is in y by definition.

Now assume that M Nw; = N Nw;. Then M, M’, and N are all isomorphic.
If a € z, then we are done since r is a condition. Suppose that a € x,,. Since
a € Sk(M)NSk(N) =Sk(MNN), by Lemma 2.8, o, v (a) = on,av(a), which is
in y by definition.

Finally, suppose that M Nwy < N Nw;. By the definition of C, M = on n/(K)
for some N’ in A, which is isomorphic to N and some K € A,. Then also M’ =
on,n=(P) for some N* in A, which is isomorphic to N and some P € A,,. Since a
is in Sk(M), a is in Sk(N'). We claim that b := oy’ ny(a) is in 2. If @ € z,, then
since r is a condition, b is in z, N Sk(N) and hence in x,,. Otherwise a is in z,, and
hence in Sk(N') N Sk(N) = SkE(N'NN). But o/ n | SE(N' N N) is the identity,
so b=a.

We have that ON’ N [ Sk(M) = OM,K and ON* N [ Sk(M/) = OM',P- And
oMM = Op M OO0K,pOOMEK =O0NN+O0K,pO(on N [ SE(M)). So o m(a) =
on.n+(ox p(on n(a))) = on N+ (0K p(b)). Since b € z,, and K and P are in A,,
ok, p(b) is in z,,. Hence op v (a) = on N+ (0K, p(b)) is in y by definition. |

Proposition 4.4. The forcing poset P is wy-c.c.
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Proof. Fix 6 > ws regular and let N* be an elementary substructure of H(6) of
size wy such that 7, X, A, and P are in N* and 8 := N*Nwy € A. Since 7 € N*,
N*N H(wg) = 7[N* Nws] = 78] = Sk(B). In particular, N* NP C Sk(B). Note
that since X N P(B) C Sk(B), N*NX =P(B)NX =Sk(B)NX.

We will prove that the empty condition is N*-generic. This implies that P is ws-
c.c. by the following argument. Suppose for a contradiction that P has a maximal
antichain S of size at least wy. By elementarity we may assume that S is in N*.
Since N* has size wy, we can fix a condition s € S\ N*. Let D be the set of
conditions which are below some member of S. Then D is dense and D is in
N*. Since the empty condition is N*-generic, N* N D is predense in P. So s is
compatible with some member of N* N D. By elementarity and the definition of
D, s is compatible with some member of N* N S, which contradicts that S is an
antichain.

Note that since 2* = w; and w; C N*, H(w;) € N*. Fix a dense open set D in
N*, and we will show that D N N* is predense in P. Let p be a given condition.
Extend p to ¢ which is in D.

Let A= := {M € A, : M C B}. Let At := {M € A, : M\ B # 0} =
{My,...,My}. Since A € N*, AN S is cofinal in 5. Fix 8* in A N 8 such that for
all M € Ay, sup(M NB) < B*, and for all (a7, () in x, N Sk(B), a < B*. Let R be
the set of pairs (i,j) in k + 1 such that M; € Sk(M;). Note that the objects A,
Mynpg,....,M,NgB, 5% and R are in N*.

For each i = 0,...,k, let 9M; denote the transitive collapse of the structure
m; = (Sk(MZ), E,?TMi,XMi,A]wi). And for each <’L,]> in R, let J(i,j) = oMy (Mz)
Note that each M; is in H(w;) and hence in N*, and therefore each Ji,jy isin N*.

Let ag, ..., an, enumerate the triples in x, whose first component is larger than
B. Let S be the set of pairs (i, j) where i < m, j <k, and a; € Sk(M;). For each
(i,7) in S, let by; jy = o, (aq).

As noted above, the following parameters all belong to N*: z, N Sk(8), A~, D,
MoNB,..., M0 B, m, X, A, Mo,..., My, R, Jyj for each (i,j) € R, B*, S, and
b,y for each (i,j) € S. Let ¢z .. 21.50.....y D€ the formula in the language of set
theory with constants for these parameters which expresses the following:

(1) the pair
((xg N SEB)) U{yo,---ym}, A U{zo,...,2x})
isin D;
(2) foreach i =0,...,k, ;N G*=M;NG;
(3) for each i = 0,...,k, the transitive collapse of (Sk(x;), €, 7y, Xu,, Az,) is

equal to 9

(4) for each i,j < k+1, z; € Sk(x;) iff (i,7) € R, and in that case, 0., (7;) =
Ji.3)3

(5) for each ¢ =0, ..., m, the first component of y; is above 5*;

(6) for each i < m and j < k, y; € Sk(xz;) iff (i,5) € S, and in that case,
Oz; (yz) = b(i,j>~

Note that H(0) = ¢[Mo, ..., My, ag, ..., an]. By elementarity we can find M, ..., M,

and qg, . ..,a,, in N* such that H(0) = p[My,..., M, ag, ... al,].

»'m r'm

Let w denote the pair
((zg N SK(B)) U{ag,...,an}, A~ U{M],...,M.}).
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Then w is in D by (1).

Let us verify that the assumptions of Proposition 3.6 hold for the map which
sends M to M’ for each M € At. Let M and K be in AT. (3) implies that
M and M’ have the same transitive collapse and hence are isomorphic, and (2)
implies that M'NB* =M NG =MNpG* Let M = M; and K = M, for i,5 < k.
By (4), K € Sk(M) iff (i,j) € R iff K’ € Sk(M’), and in that case, oy (K) =
Jyi,jy by definition and om (K') = Jiijy by (4). But oy = a]_wl/ ooy. So
o (K) = oy (om(K)) = oy (Jajy) = K. Finally, A~ U{M{,...,M}} is a
coherent adequate set by (1). It follows by Proposition 3.6 that the set

Ci=A,U{M' : M e AT}

is a coherent adequate set.

By (6), for each i < m and j < k, a; € Sk(M;) iff (i,7) € J iff aj € Sk(Mj).
Also if a; € Sk(M;), then oMy, M (a;) = O'Mjfl(O'Mj (a;)) = O'Myfl(b<7;,j>) = aj. So
UMi,M{(aj) = CL;—. Let

y:=xqU{a):j=0,...,m}.
By (5) the first component of each a; is above *. Hence any element of y is
in x, N Sk(B), {a} : j =0,...,m}, or x5\ Sk(B) depending on whether its first
component is in [0, %), [8*, 5), or [5*,w2).

We claim that s = (y,C) is a condition. Then clearly s < r,w, and since w is in
D, we are done.

(1) Let {a,7,¢) and (o’,7,¢’) be in y, and we will show that they are nonover-
lapping. If these triples are either both in z, or both in z,,, then we are done.
Otherwise we may assume that (a,7,() is equal to a; for some ¢ = 0,...,m and
(o,9', (") is equal to aj for some j =0,...,m. Then o’ < 8 < a, so these triples
are nonoverlapping.

(2) The set C is a finite coherent adequate set as previously noted.

(3) Let M be in C and («, 7, () in y, and we will show that they are nonoverlap-
ping. If « is not in M, then we are done, so assume that o € M. If these objects
are either both in ¢ or both in w, then we are done. Assume that M € C\ Sk(5)
and (@, 7,¢) € yNSk(B). Since « € M NS, a is in M’ N G*. But the triple and M’
are nonoverlapping, and since « < 3* this clearly implies that the triple and M are
nonoverlapping. Next assume that M € C N Sk(S) and (a,v,¢) € y\ Sk(B). Then
«a > 3. But this is impossible since M C .

(4) Let M and K be isomorphic sets in C' and a € y N Sk(M). We will show
that oy k(a) € y. Let a = (a,7, ().

Suppose that M € A;. Then a ¢ [5*, ), hence a € z,. If K isin A, we are done;
otherwise K = P’ for some P € A". Then op,p(a) € x4 N Sk(P). Assume that
om,p(a) > B. Then opr p(a) = a; for some ¢ < m. So op p/(a) =a;. Soopy k(a)=
opp(om p(a)) = a; € y. Now assume that oy p(a) < 8*. Then op pr(on,p(a)) =
O'M,p(a) since op,pr | B* is the identity. So O’M7K(a) =0opp (UM,p(a)) = 0'M7p(a),
which is in y.

Now suppose that M = L’ for some L € A*. Then M € A,. So a is in
(xqg N SK(B)) U{ap,...,al,} = zy. If K € A, then we are done since w is a
condition. Otherwise K € C \ Sk(8). Then K' € Ay, so oamr/(a) € Ty. If
om,kx(a) < B*, then ox/ k(onm K/ (a)) = op kr(a) since ok x [ B* is the identity.
Hence oar,x(a) = ok k(0m, k' (a)) = o,k (a), which is in y. Otherwise o,k (a)
is equal to a for some i = 0,...,m. So a, € Sk(K'), which implies that a; € Sk(K)
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and o k' (a;) = a}. Hence oy k(a) = ox/ k(om,k(a)) = ok k(a}) = a;, which
is in y. ([

This completes the proof that P preserves cardinals.

Recall that for each o € A, ¢é, is a P-name such that P forces

ba=1{7:I€G I (a,7,B) €z}
We will show that P forces that ¢, is a cofinal subset of a. Property (3) in the
definition of P will imply that ¢, is forced to have order type w;. Property (4) will
imply that P forces that whenever ¢ is a common limit point of ¢, and ¢/, then
CaNE = ¢y NE.

Lemma 4.5. For each a € A, P forces that ¢, is a cofinal subset of a with order
type wy.

Proof. First we show that ¢, is forced to be a cofinal subset of . Let p be a
condition and § < «. Choose an ordinal v with § < v < « such that for all
M € A,, sup(M Na) < v, and for all triples in z, of the form («a, 7, 8), 7 and 3
are less than . Define ¢ = (z, U {{a, 7,7+ 1)}, 4,). It is easy to check that g is a
condition, and clearly ¢ < p. Also ¢ forces that ¢, \ 0 is nonempty. Thus P forces
that ¢, is a cofinal subset of «.

Suppose for a contradiction that a condition p forces that ¢, has order type
greater than wy. Extending p if necessary, assume that for some § < «, p forces
that ¢, N0 has size wy. Fix M in X such that p, «, and § are in Sk(M). Then
easily ¢ = (2, Ap U{M}) is a condition. Since ¢ forces that ¢, N6 is uncountable,
we can extend ¢ to r such that for some triple («,~, 8) in z,, v is 6 \ M. Since
M e A, and « € M, sup(M Na) < v, which contradicts that 6 € M. O

Now we prove that the sequence of ¢,’s is coherent. Namely, we will show that P
forces that whenever £ is a common limit point of ¢, and ¢4/, then ¢, NE = ¢4 NE.

Lemma 4.6. Let o be in A, £ < «, and suppose that p is a condition which
forces that & is a limit point of ¢o. Then there is M € A, such that « € M and
sup(M Na) =¢&.

Proof. Note that for all ¢ < p, since ¢ forces that £ is a limit point of ¢, if
(a,7,8) € ®g and v < &, then B < £. Suppose for a contradiction that for all
M e A,, if o € M then sup(M Na) # &.

We claim that if M € Ay, o € M, and sup(M N¢&) < &, then sup(M Na) < §.
Otherwise fix a counterexample M. Then o € M, sup(MNE) < &, and sup(MNa) >
&. Since £ is forced to be a limit point of ¢é,, we can find ¢ < p and v,8 < &
such that («a,~,8) € z, and sup(M N§) < 7. Then v and B are not in M, but
sup(M Na) > & > v, which contradicts that ¢ is a condition.

It follows from the claim that A is the union of the sets Ag, A1, and Ay defined
by

AO:{MEAPZOZ¢M},
A ={MecA,:ae M, sup(MNa) <},
Ay={MeAy:ae M, sup(MNE) =&}
Since we are assuming that there is no M in A, with o € M and sup(M Na) =&,
any every set in As meets the interval [, o). Observe that if N € A; and M € As,
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then since « € M NN, Bum,n > a; hence sup(N Na) < § < sup(M N «) implies
that N N By, n € Sk(M).

Fix M in Ag such that M Nw; is minimal. Let 7 = min(M \ §). Then & <
T < a. Since sup(M N¢) = &, we can fix v < £ in M such that for all N € Ay,
sup(N Na) < v, and for all (o, ¢, B) € xp, if { < & then (, 5 < 7.

Let y be the set of triples of the form oy n/({c,7, 7)), where N and N’ are
isomorphic sets in A, and («,v,7) € SkE(N). Let ¢ = (z, Uy, Ap). We claim that
q is a condition. Then clearly ¢ < p and ¢ forces that £ is not a limit point of ¢,,
which is a contradiction.

Let us note that (o, v, 7) is nonoverlapping with every triple in z,. Let (o, v, 8)
bein z,. If 4/ < £ then 4" and 8’ are below v, so we are done. Suppose that 4" > .
Since M € A,, either " and 8’ are in M or sup(M Na) < 7. In the former case,
7 =min(M \ §) <. In the latter case, 7 < sup(M Na) < 7. In either case,
7 </, which implies that [y,7) N[y, 5") = 0.

Next we claim that if K € A, then K and («,~,7) are nonoverlapping. If «
is not in K then we are done, so assume that o« € K. Then either K € Ay or
K € As. If K € Ay, then sup(K Na) <« by the choice of 7. If K € A,, then since
M nNwi < KNuwi, either M N Br v € SE(K) or M N Br,m = K N Bx . In either
case, M N Br.pm C K. But since « € KNM, B, > a. So v and 7 are in K.

Now we prove that ¢ is a condition.

(1) Consider a triple (¢/,+,8’) in z, and a triple oy n/({,7, 7)), where N
and N’ are isomorphic in A4, and (o,7,7) € SE(N). If o/ # on n(a) then we
are done, so assume that o’ = oy n/(a). If 4/ and §’ are not in Sk(N’), then
sup(N' N a’) <+, so clearly the triples are nonoverlapping. Otherwise 7’ and S’
are both in Sk(N'). Then («/,+, 8" € x, N Sk(N'), so on' n({¢/, 7', 8)) is in xp.
By the comments above, o+ n({c/,%', 5)) and (a,~, T) are nonoverlapping. Hence
the images of these triples under o, n+ are nonoverlapping and we are done.

Now consider o, N ({o,7, 7)) and on, n+({a,,T)), where Ny and N’ are iso-
morphic in A, and (a,v,7) € Sk(Ny), and N1 and N* are isomorphic in A, and
(a,v,7) € Sk(Ny). If oy, N/ () # on, n+(a) then the triples are nonoverlapping,
so assume that a* := oy, v/ (@) = on, n+(@). Then By, N, > o and By/ v+ > a*.

We will show that on, n/({a,v, 7)) = on, n+ ({7, T)). By symmetry it suffices
to consider the cases when Ny N By, n, € Sk(N1) and No N By, vy = N10 By, v, -
Suppose the former case. Then also N'NBy/ v+ € SE(N*). Fix N§ in SE(N1)N A4,
which is isomorphic to Ny such that No N Sn,.n, = N§ N B, N, - Then (a,v,7) €
Sk(Ng). Also fix P € Sk(N*) N A, which is isomorphic to N’ such that N’ N
BNQN* = PmﬁN’,N*- Since BNQN* >a*, a* € P.

Since oy, N+ (@) = o*, a* € PNon, N+ (N§). As P and on, v+ (NF) are isomor-
phic and are in the adequate set A,, it follows that P Na* = oy, n+(Ng) N a*.
Now on,,n’ | o is the unique order preserving map from No Na = Nj N«
onto N'Na* = PNa* = on, n+(N§) Na*. But also oy, v+ [ (N Na) is
an order preserving map from N§ N« onto oy, n+(NF) N a*. It follows that
ONo,N' | @ =0n, N+ | (NgNa). In particular, on, v/ ({a, 7, 7)) = on, n+ ({0, 7, T)).

Now suppose that No N Bn,,n, = N1 N Bny,n,- Then also N' N By v+ = N*N
Bns v+ In particular, NoNa = NiNa and N'Na* = N*Na*. But on, v | v is the
unique order preserving map from NyoNa onto N'Na*, and oy, n+ | a is the unique
order preserving map from N; N« onto N* Na. Hence on, v [ @ = ony N+ |
So UNO,N'(<a7 Y5 T>) = ON;y,N* (<a7 7 T>)
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(2) is immediate.

(3) Let K be in A, and consider (o*,v*,7*) := on n/({a,, 7)), where N and
N’ are isomorphic sets in A, and («,~,7) is in Sk(N). We will prove that K and
(a*,v*, 7*) are nonoverlapping. If a* is not in K, then we are done, so assume that
a* € K. Then BK,N’ > o,

If N' N B, N is either in Sk(K) or equal to K N Bk, s then 4" and 7 are in
K and we are done. So assume that K N gy € Sk(N'). Then there is K* in
Sk(N') N A, which is isomorphic to K such that K* N g n = K N Br, n. Since
o* < Bk.Nv, it suffices to show that K* and (a*,v*,7*) are nonoverlapping. But
L := oy ny(K*) is in A, and we showed above that L is nonoverlapping with
(a,y, 7). Therefore the images of L and (w,7,7) under oy n/, namely K* and
(a*,~*,7*), are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that z, Uy is equal to

zyU{oyni(a): NN € Ap, NNwy = N'Nwy, a€x;,NSk(N)},

[

where z;, = x,U{(c, v, 7)}. Clearly z,,Uy is included in the second set by definition,
and zy C x, Uy. Consider a € z, U {({a,v,7)} and isomorphic N and N’ in 4,
with @ € Sk(N). If a € z, then oy n/(a) € z, since p is a condition. Otherwise
a = (a,7, ), and oy n'(a) € y by the definition of y. O

Proposition 4.7. Let a and o' be distinct ordinals in A. Then P forces that
whenever £ is a common limit point of ¢, and ¢or, ¢ NE = ¢ NE.

Proof. Let p be a condition which forces that £ is a common limit point of ¢, and
¢os. Then by the previous lemma, there are M and M’ in A, such that o € M and
sup(M Na) =&, and o € M’ and sup(M’' Na’) = €. Since € is a common limit
point of M and M’, & < Bpr - It is not possible that M N Bara € Sk(M'), since
in that case &, which is a limit point of M N Bas v, would be in M’. Similarly,
M’ N B is not in SE(M). So M N Bar,vr = M’ N Basaar- Tt follows that M and
M’ are isomorphic. Also oazar | M N Bar,ne is the identity and oprn (o) = .
Suppose that ¢ < p and ¢ forces that v is in ¢, N &. Extending ¢ if necessary,
assume that (a,7, ) € z, for some 8. Since v < { = sup(M N ), v and B are
in M. So oam,m({o,7,8)) = (&,7,8) is in z,. Hence ¢ forces that 7 is in ¢qr.
This proves that p forces that ¢, N C é,.. The other inclusion is proved using a
symmetric argument. (]

Let us show that [, holds in any generic extension by PP. This follows from
well-known arguments which we review for completeness. First note that it suffices
to find a sequence (d, : o € wa N cof(wy)) such that each d, is a club subset of
« with order type wi, and for any o < o' and £ a common limit point of d, and
dory do NE = dy NE. For then we can extend this sequence to a square sequence
by defining d, for v € wy N cof(w) by letting d, = do N~y for some (any) o in
wa Ncof(wy) such that 7 is a limit point of d,, and if no such « exist, letting d, be
a cofinal subset of v of order type w.

Recall that each a in A is in C* N cof(w;) and is a limit point of C*. For each
a € Alet dy, = lim(cy) N C* N . Then by Lemma 4.5 and Proposition 4.7, the
sequence (d, : a € A) satisfies that each d,, is a club subset of o with order type
w1, and for all £ in d, Ndyr, do NE =dy NE.

One can easily prove by induction that for any £ < ws, there exists a sequence
(e : B € £Ncof(wn)) such that each eg is a club subset of 8 of order type w; and any
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eg and eg: share no common limit points. Consider 8y < 1 which are consecutive
elements of C* U {0}. Using the fact just mentioned, we can transfer a sequence of
clubs defined on ot(8; \ fo) N cof(wy) to a sequence (dy : @ € (Bo, f1) N cof(wy))
so that each d, is a club subset of o with minimum element greater than Sy and
order type wi, such that any d, and d,s share no common limit points. But any
ordinal in we N cof(wy) which is not in C* belongs to such an interval. So we have
defined d,, for all o € wy Ncof(wy). It is straightforward to check that the extended
sequence is as required.
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