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FUNCTIONAL ADDITIVE REGRESSION

BY YINGYING FAN1, GARETH M. JAMES AND PETER RADCHENKO2

University of Southern California

We suggest a new method, called Functional Additive Regression, or
FAR, for efficiently performing high-dimensional functional regression. FAR
extends the usual linear regression model involving a functional predictor,
X(t), and a scalar response, Y , in two key respects. First, FAR uses a pe-
nalized least squares optimization approach to efficiently deal with high-
dimensional problems involving a large number of functional predictors. Sec-
ond, FAR extends beyond the standard linear regression setting to fit general
nonlinear additive models. We demonstrate that FAR can be implemented
with a wide range of penalty functions using a highly efficient coordinate de-
scent algorithm. Theoretical results are developed which provide motivation
for the FAR optimization criterion. Finally, we show through simulations and
two real data sets that FAR can significantly outperform competing methods.

1. Introduction. The univariate functional regression situation, where one
models the relationship between a scalar response, Y , and a functional predictor,
X(t), has recently received a great deal of attention. A few examples include [2, 6,
7, 15, 16, 18–20, 22, 23, 30]. See Chapter 15 of [32] for a thorough discussion of
the issues involved with fitting such data.

Most work in this area involves different approaches for fitting the functional
linear regression model,

Yi =
∫

β(t)Xi(t) dt + εi, i = 1, . . . , n.(1)

For notational convenience, we assume throughout this paper that the response and
predictors have been centered so the intercept can be ignored. Model (1) provides
a natural extension of linear regression to the functional domain but it has two
significant limitations. First, it assumes a single predictor, while functional regres-
sion situations involving a large number of predictors, Xi1(t),Xi2(t), . . . ,Xip(t),
are becoming increasingly common. For example, [36] analyzes two gene expres-
sion data sets measured over time, which involve only a small number of patients
but tens of thousands of functional predictors. Second, (1) is relatively inflexible
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because it assumes a linear relationship between the predictor and response. Just
as in the standard regression setting more accurate fits can often be produced by
modeling a nonlinear relationship.

In this paper, we address both of these limitations using a functional additive
regression framework of the form

Yi =
p∑

j=1

fj (Xij ) + εi, i = 1, . . . , n,(2)

where the fj ’s are general nonlinear functions of Xij (t). There has been some pre-
vious work extending the classical functional regression model. James and Silver-
man [23] proposed an index model to implement a nonlinear functional regression,
and, more recently, both [14] and [7] extended this work to a fully nonparamet-
ric setting and provided further theoretical motivation. However, all of these ap-
proaches are primarily intended for the univariate setting, where p = 1. Lian [25]
did consider a multivariate setting involving both functional and scalar predictors,
but with only a single functional predictor, so the corresponding model does not
extend to (2). James and Silverman [23] proposed a kernel based method for fit-
ting (2), which works well in low-dimensional situations. However, they do not
attempt to perform any kind of variable selection. As a result, the method suffers
from computational and statistical issues when p is large, such as for the gene
expression data in [36]. Zhu et al. [40] proposed a Bayesian variable selection
approach for selecting and estimating important functional predictors in a classi-
fication setting. However, while their method can potentially be implemented on
a large number of functions, it still assumes a linear relationship between the re-
sponse and predictors. Finally, a recent paper [11] considers a more general form
of (2) where the response is also functional. Their approach appears to work well
but the paper does not provide any theoretical results. See also [13, 17, 28] for ad-
ditional recent developments on functional regression models with multiple func-
tional covariates under various model settings.

Fitting (2) in the high-dimensional setting poses a couple of significant compli-
cations. First, in order to make the problem feasible, we must assume sparsity in
the predictor space, that is, that most of the predictors are unrelated to the response.
Thus, we need an approach that can automatically perform high-dimensional vari-
able selection on nonlinear functions. Second, (2) involves estimating functions,
fj (x), of functional predictors, Xij (t). Even in the univariate situation, involv-
ing a single predictor, there has been little research on this problem and the best
approach is unclear. Most current methods involve using the first few functional
principal component scores of Xij (t) as a finite-dimensional predictor space [31].
However, the principal component scores are computed independently from the
response, in an unsupervised fashion, so there is no a priori reason to believe that
these scores will correspond to the best dimensions for the regression problem.
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In this paper, we suggest a new penalized least squares method called Func-
tional Additive Regression, or FAR, for fitting a nonlinear functional additive
model. FAR makes three important contributions. First, it efficiently fits high-
dimensional functional models while simultaneously performing variable selection
to identify the relevant predictors. This is an area that has historically received very
little attention in the functional domain, but the importance of the connections be-
tween functional and high-dimensional statistics are just starting to become clear.
See, for example, the recent conference on this topic [4].

Second, FAR extends beyond the standard linear regression setting to fit gen-
eral nonlinear additive models. FAR models fj (x) as a nonlinear function of a
one-dimensional linear projection of Xij (t); a functional version of the single in-
dex model approach. Our method uses a supervised fit to automatically project
the functional predictors into the best one-dimensional space. We believe this is
an important distinction because projecting into the unsupervised PCA space is
currently the dominant approach in functional regressions, even though it is well
known that this space need not be optimal for predicting the response.

Third, FAR can be implemented using a wide range of penalty functions and
a highly efficient coordinate descent algorithm. In the linear case, we establish
a number of theoretical results, which show that, under suitable conditions and
for an appropriately chosen penalty function, FAR is guaranteed to asymptotically
choose the correct model as n and p go to infinity. Theoretical investigation for the
nonlinear FAR approach presents some serious additional challenges, because the
regression functions, fj , are estimated rather than known. We allow the number
of functional predictors, p, to grow faster than the number of observations, n, and
establish asymptotic bounds on the �2 estimation error for each of the estimated re-
gression functions. The difficulties associated with the high-dimensional nature of
the functional data are exacerbated by the large number of estimated components
in the additive regression model for the response. Moreover, the functional aspect
of the data (infinite dimensional predictors) adds further complexity to the already
very challenging problem. Our method of proof uses ideas from the estimation
theory for high-dimensional additive models [5, 21, 29]. However, the proof itself
is new, rather than a compilation of existing results.

Our paper is set out as follows. In Section 2, we develop the FAR method for
performing high-dimensional functional regression. Section 2.1 uses functional in-
dex models to motivate the FAR model. Then Section 2.2 presents the optimization
criterion and an efficient coordinate descent algorithm for fitting FAR in the lin-
ear regression setting. Finally, Section 2.3 extends the algorithm to the nonlinear
regression framework. In Section 3, we provide a number of theoretical results.
We first prove that, under appropriate conditions, the linear version of FAR will
asymptotically include all the true signal variables and remove all the noise pre-
dictors from the model. In addition, we provide an asymptotic bound on the es-
timation error of the signal functions, fj (x), under the vector infinity norm, and
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show that the FAR estimator is asymptotically normal. In the nonlinear setting, we
establish the rate of convergence, with respect to the �2 distance, for the estimates
of the regression functions, fj (x), corresponding to each of the predictors. We
also investigate the variable selection properties of our estimator and show that,
under some conditions, it can recover the index set of the signal predictors. Ex-
tensive simulation results are presented in Section 4. We compare FAR to other
functional regression methods and demonstrate its superior performance in many
settings. Finally, we apply FAR to both medium and high-dimensional real data
sets in Section 5, and end with a discussion in Section 6.

2. Functional additive regression. Let fj = (fj (X1j ), . . . , fj (Xnj ))
T . Then

our general approach for fitting (2) is to minimize the following penalized regres-
sion criterion over f1, f2, . . . , fp:

1

2n

∥∥∥∥∥Y −
p∑

j=1

fj

∥∥∥∥∥
2

2

+
p∑

j=1

ρλn

(
1√
n
‖fj‖2

)
,(3)

where Y = (Y1, . . . , Yn)
T , ρλn(t) is a penalty function, λn is the regularization

parameter and ‖fj‖2 =
√

fTj fj . To aid the presentation, we drop the subscript and
use ‖ · ‖ to denote the �2 norm of a vector in the future. Although it may not be
immediately obvious from this formulation, we show that minimizing (3) will in
general automatically implement variable selection by shrinking a subset of the
fj ’s to exactly zero. In this article, we explore general concave functions for ρ,
with the �1 penalty ρλ(t) = λt considered as a special case. There is by now a
substantial literature demonstrating the advantages of concave penalty functions
for high-dimensional problems [8–10, 26, 27].

We assume that the trajectories of functional predictors, Xij (t), are fully ob-
served. Our methodology and theoretical results can be extended to the case of
densely observed predictors under additional smoothness and regularity assump-
tions. However, for the clarity of the exposition we do not investigate this case in
the paper.

2.1. Functional index models. Minimizing (3) requires specifying the form of
fj (x). A limitation of linear functional regression models is that they can perform
poorly when there is a nonlinear relationship between X(t) and Y . However, the
infinite-dimensional nature of X(t) makes it challenging to model a nonlinear re-
lationship between the predictor and response. As a result, relatively few papers
have investigated this extension. Most methods focus on approximating X(t) us-
ing its first few functional principal components and then implementing nonlinear
fits using the principal component scores as predictors [31]. However, this unsu-
pervised approach has the usual limitation; the directions which explain X(t) best
may not be the most appropriate for predicting the response.
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In the multivariate setting, index models are commonly used for providing non-
linear fits to high-dimensional data. For a centered response, the standard sin-
gle index model can be expressed in the form Y = g(βT X) + ε, where g(x)

is a general nonlinear function and β is a norm one vector representing the
best single direction to project the predictors into. A key advantage of the in-
dex model formulation is that β is chosen in a supervised fashion, incorporating
both the response and predictors, potentially providing more accurate fits. Index
models can be naturally extended to functional predictors using the formulation
fj (Xij ) = gj (

∫
βj (t)Xij (t) dt), where gj (x) and βj (t) are both nonparametric

smooth functions, and the integral is well-defined. Functional single index models
have been considered previously. For example, [1, 3, 7, 14, 23], all fit index mod-
els to functional data, but these previous approaches all concentrate on the p = 1
problem.

Using this nonlinear representation, the FAR model (2) can be expressed as

Yi =
p∑

j=1

gj

(∫
βj (t)Xij (t) dt

)
+ εi.(4)

For identifiability, in addition to centering the response, we also center the re-
gression functions:

∑n
i=1 gj (

∫
βj (t)Xij (t) dt) = 0 for all j . Note that index func-

tions βj are only identifiable up to multiplications by nonzero constants, however,
our focus is on estimating fj rather than βj . The general FAR optimization crite-
rion (3) becomes

1

2n

∥∥∥∥∥Y −
p∑

j=1

gj

(∫
βj (t)Xj (t) dt

)∥∥∥∥∥
2

+
p∑

j=1

ρλn

(
1√
n
‖fj‖

)
,(5)

where Xj (t) = (X1j (t), . . . ,Xnj (t))
T and gj (

∫
βj (t)Xj (t) dt) = (fj (X1j ), . . . ,

fj (Xnj ))
T .

2.2. Linear FAR. Our approach for minimizing (5) is easiest to understand
by first considering the situation where fj (x) is taken to be linear. Hence, in this
section we develop FAR in the setting where gj (x) is set to the identity function,
in which case FAR reduces to a multivariate functional linear regression model.

2.2.1. FAR criterion. We assume without loss of generality that each predictor
is observed over the range 0 ≤ t ≤ 1. Hence, in the linear setting,

fj (Xij ) =
∫ 1

0
βj (t)Xij (t) dt,(6)

where βj (t) is an unknown smooth coefficient function, and the FAR optimization
criterion becomes

1

2n

∥∥∥∥∥Y −
p∑

j=1

∫ 1

0
βj (t)Xj (t) dt

∥∥∥∥∥
2

+
p∑

j=1

ρλn

(
1√
n
‖fj‖

)
,(7)
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where Xj (t) = (X1j (t), . . . ,Xnj (t))
T .

Given an orthonormal basis {bl(t)}, the functional predictors and the corre-
sponding regression coefficients can be decomposed as

Xij (t) =
∞∑
l=1

θij lbl(t), βj (t) =
∞∑
l=1

η0,j lbl(t),(8)

where θij l and η0,j l are the coefficients of Xij (t) and βj (t) corresponding to the
lth basis function bl(t), respectively. Using (8), the j th additive component has the
following representation

fj (Xij ) =
∫ 1

0
Xij (t)βj (t) dt =

∞∑
l=1

θij lη0,j l .(9)

In order for the functions optimizing (7) to have nontrivial solutions, some
form of smoothness constraint must be imposed on the βj (t)’s. Two standard
approaches are to include a smoothness penalty in the optimization criterion or
alternatively to restrict the functions to some low-dimensional class. In this set-
ting, either approach could be adopted but we use the latter method. Specifically,
for a given sequence of integers qn = o(n) depending only on the sample size n,
write η0j = (η0,j1, . . . , η0,jqn)

T and θ ij = (θij1, . . . , θijqn)
T . Thus, the j th addi-

tive component fj (Xij ) can be approximately as θT
ijη0j . Denote by eij the approx-

imation error, that is,

eij = fj (Xij ) − θT
ijη0j =

∞∑
l=qn+1

θij lη0,j l .(10)

Then by the Cauchy–Schwarz inequality and Condition 1 in Appendix B, uni-
formly across all i = 1, . . . , n and j ∈ M0,

|eij |2 ≤
∞∑

l=qn+1

η2
0,j l l

−4
∞∑

l=qn+1

θ2
ij l l

4 ≤ C2q−4
n

∞∑
l=qn+1

η2
0,j l ≤ C̃C2q−4

n ,(11)

where C and C̃ are two positive constants defined in Condition 1. Thus, for large
enough qn, the approximation error is uniformly small.

Let 	j be an n×qn matrix whose rows are formed by {θ ij , i = 1, . . . , n}. Then,
if qn is large enough, fj (Xij ) ≈ θT

ijη0j and (7) can be approximated by

1

2n

∥∥∥∥∥Y −
p∑

j=1

	jηj

∥∥∥∥∥
2

+
p∑

j=1

ρλn

(
1√
n
‖	jηj‖

)
.(12)

Note that the ηj ’s must be estimated, but the 	j ’s are calculated from the fully
observed trajectories of the functional predictors, Xij (t). Hence, we fit FAR by
minimizing (12) over η1, . . . ,ηp .
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2.2.2. FAR algorithm. The criterion given by (12) is still p × qn dimensional,
so is potentially challenging to optimize over, even if p is only of moderate size.
However, in this form our FAR criterion is closely related to the standardized group
lasso [35] which allows us to develop an efficient algorithm to fit FAR. In particu-
lar, a distinct advantage of (12) is that, when using the Lasso penalty ρλn(t) = λnt ,
there is a simple closed form expression for computing its minimum over ηj .

PROPOSITION 1. If ρλn(t) = λnt , then the solution to (12) satisfies f̂j = 	j η̂j

where

η̂j =
(

1 −
√

nλn

‖Sj Rj‖
)

+
(
	T

j 	j

)−1
	T

j Rj ,

Sj = 	j(	
T
j 	j )

−1	T
j , Rj = Y−∑

k �=j 	kη̂k , and z+ = max(0, z) represents the
positive part of z.

The derivation of Proposition 1 involves simple algebra and similar results are
proved in [33] and [35] so we do not provide the proof here. Proposition 1 sug-
gests Algorithm 1, a simple but very efficient coordinate descent algorithm for
minimizing (12) when ρλn(t) = λnt .

We repeat this algorithm over a grid of values for λ, using the previous val-
ues for the η̂j ’s to initialize the parameters for the new λ. Since the parameters
change very little for a small change in λ, the algorithm generally converges very
rapidly. Note that the Sj ’s only need to be computed once for all values of λ so
the computation at each step of the algorithm is extremely fast. In addition, it is
clear from Proposition 1 that (12) will decrease at each step. This approach has
the advantage of decomposing the estimation of f̂j into two simple, and separate,
steps. First, compute the unshrunk estimate P̂j and second, apply the shrinkage
factor αj . When αj = 0 then the j th predictor is absent from the model. Our FAR
algorithm has similarities to the SpAM algorithm [33] but SpAM cannot model
functional data.

For a general penalty function, ρλn(t), we use the local linear approximation
method proposed in [42] to solve (12). The penalty function can be approximated

Algorithm 1 Linear FAR algorithm

0. Initialize η̂j = 0 and Sj = 	j(	
T
j 	j )

−1	T
j , for j ∈ {1, . . . , p}.

1. Fix all f̂k for k �= j . Compute the residual vector Rj = Y − ∑
k �=j f̂k .

2. Let P̂j = Sj Rj represent the unshrunk estimate for fj .

3. Let f̂j = αj P̂j where αj = (1 − λn

√
n/‖P̂j‖)+ is a shrinkage parameter.

4. Center f̂j ← f̂j − mean(f̂j ).
5. Repeat steps 1 through 4 for j = 1,2, . . . , p and iterate until convergence.
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as ρλn(‖f‖/√n) ≈ ρ′
λn

(‖f∗‖/√n)‖f‖/√n+C, where f∗ is some vector that is close
to f and C = ρλn(‖f∗‖/√n) − ρ′

λn
(‖f∗‖/√n)‖f∗‖/√n is a constant. Hence, the

only required change to the FAR algorithm for optimizing over general penalty
functions is to replace the calculation of αj in step 3 by

αj =
(

1 − ρ′
λn

(
1√
n
‖f̂j‖

)√
n/‖P̂j‖

)
+
,

where f̂j represents the most recent estimate for fj . The initial estimate of f̂j can
be obtained by using the Lasso penalty. This simple approximation allows the FAR
algorithm to be easily applied to a wide range of penalty functions.

2.3. Nonlinear FAR. We now consider the more general nonlinear setting (4)
where gj (x) is estimated as part of the fitting process. Since βj (t) corresponds to
a direction that we project Xij (t) into we impose the constraint ‖βj‖2 = 1. Note
that βj are still not uniquely identifiable, however, our focus is on estimating the
regression functions, fj , rather than the index functions. We assume that gj (x) can
be well approximated by a dn-dimensional basis h(x) such that gj (x) ≈ h(x)T ξ j .
Using this basis, representation (5) can be expressed as

1

2n

∥∥∥∥∥Y −
p∑

j=1

Hj ξ j

∥∥∥∥∥
2

+
p∑

j=1

ρλn

(
1√
n
‖Hj ξ j‖

)
,(13)

where Hj is an n by dn matrix who’s ith row is given by h(θT
ijηj )

T .
We use an iterative algorithm to approximately minimize (13) over ξ j and ηj .

First, given current estimates for the ηj ’s we minimize (13) over ξ j . Second, given
current estimates for the ξ j ’s we minimize the sum of squares term

n∑
i=1

(
Yi −

p∑
j=1

h
(
θT

ijηj

)T
ξ̂ j

)2

(14)

over ηj . Note that we do not include the penalty ρλn when estimating ηj because
the ηj ’s are providing a direction in which to project Xij (t) so are constrained to
be norm one. Hence, applying a shrinkage term would be inappropriate.

Formally, the nonlinear FAR algorithm can be summarized as follows (Algo-
rithm 2).

One of the appealing aspects of this approach is that, for fixed Ĥj , (12) and
(13) are equivalent so estimation of the ξ j ’s in step 2 can be achieved using the
linear FAR algorithm from Section 2.2.2. Minimization of (14) in step 3 can be
approximately achieved using a first-order Taylor series approximation of gj (x).
We provide details on this minimization and on computing initial values for the
ηj ’s in Appendix A.
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Algorithm 2 Nonlinear FAR algorithm
0. Initialize η̂j for j ∈ {1, . . . , p} using the linear FAR algorithm.

1. Compute Ĥj using the current estimates for ηj .
2. Estimate ξ j for j ∈ {1, . . . , p} by minimizing (13) given the current values of

Ĥj .
3. Conditional on the ξ̂ j ’s from step 2, estimate the ηj ’s by minimizing (14).
4. Repeat steps 1 through 3 and iterate until convergence.

Potentially one could compute the nonlinear FAR algorithm for each possible λ.
However, we have found that a more efficient approach is to compute initial esti-
mates for ηj , minimize (13) over ξ j for each possible value of λ, choose the ξ j ’s
corresponding to the “best” value of λ, estimate the ηj ’s for only this one set of
parameters, and iterate. This approach means that, for each iteration, the minimiza-
tion of (14) only needs to be performed for a single value of λ. The choice of λ

can be made using a variety of methods, as discussed in the next section.

2.4. Selecting tuning parameters. Both the linear and nonlinear versions of
FAR require choosing the tuning parameter, λ. As with all penalized regression
methods, there are several possible methods one could adopt. Popular approaches
include, BIC, AIC or cross-validation. The BIC and AIC methods require the cal-
culation of the effective degrees of freedom. For the Lasso, it has been shown that
an unbiased estimate for this quantity is the number of nonzero coefficients [41].
One could potentially use the same value for FAR. However, given FAR’s more
complicated structure it is not clear that this is still an appropriate estimate. Com-
puting the effective degrees of freedom for FAR is a topic for future research. For
our simulations and one real data example, we selected λ using a separate vali-
dation data set. For the other real data example, we selected λ using the 20-fold
cross-validation method, since there were not enough data points to be used as
validation data.

3. Theory.

3.1. Linear theory. Denote by M0 = {j : βj (t) �= 0,1 ≤ j ≤ p} the set of true
functional predictors and let sn represent the cardinality of M0. By minimizing the
FAR criterion (12), we aim to identify the set M0 and accurately estimate functions
βj (t) for j ∈ M0. In this section, we discuss the theoretical properties of FAR in
the setting where the fj ’s are linear functions, that is, fj (Xij ) = ∫ 1

0 Xij (t)βj (t) dt .
In particular, we present two theorems, both of which are conditional on the ob-
served predictors, Xij (t), i = 1, . . . , n, j = 1, . . . , p. Theorem 1 concerns FAR’s
model selection properties. We show that, with probability tending to one, FAR
can remove all noise predictors from the fitted model. Theorem 1 also places an
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error bound on the estimated fj ’s under the vector infinity norm, where j ∈ M0.
Our second result, Theorem 2 shows the asymptotic normality of the estimator.

In order to prove these results, we make two sets of assumptions. The first set
of conditions relates to the level of accuracy in our basis approximations of Xij (t)

and βj (t). The second set of conditions concerns the shape of the penalty function,
the strength of the signal and the correlation structure of the predictors. Explicit
conditions can be found in Appendix B.

Let η0 = (η0,1, . . . ,η0,p) ∈ Rpqn with η0j representing the true coefficient
vector in the basis representation fj (Xij ) = θT

ijη0j + eij . For any index set
S ⊂ {1, . . . , p}, we use ηS to denote the vector formed by stacking vectors ηj ,
j ∈ S one underneath each other, and 	S to denote the matrix formed by stacking
the matrices 	j , j ∈ S one after another. Moreover, we standardize each column
of 	 such that they all have �2-norm

√
n. Theorem 1 below shows that FAR pos-

sesses the oracle property for model selection.

THEOREM 1. Assume that qn + logp = O(nλ2
n), λnn

αqn
√

sn → 0, and
log(pqn) = o(n1−2αs−1

n q−2
n ) with α defined in Condition 2(B). Further assume

that snq
−2
n = o(λn), then under Conditions 1 and 2, with probability tending to 1

as n → ∞, there exists a local minimizer η̂ of (12) such that:

(1) η̂Mc
0
= 0,

(2) ‖η̂M0
− η0M0

‖∞ ≤ c
1/2
0 n−αq

−1/2
n ,

where ‖ · ‖∞ stands for the infinity norm of a vector.

Although Theorem 1 is on a local minimizer of the linear FAR criterion (12),
it has been proved by [26] that any local minimizer will fall within statistical pre-
cision of the true parameter vector under appropriate conditions on the penalty
function. Part 2 of Theorem 1 concerns the approximation accuracy of the basis
coefficients rather than the functions themselves. However, the result extends nat-
urally. Denote by f̂j = 	j η̂j and f0j = (fj (Xj1), . . . , fj (Xjn))

T , respectively, the
estimated and true values of the j th functional component, both evaluated at the
n training data points. Then the corollary below follows immediately from Theo-
rem 1 and Condition 1.

COROLLARY 1. Suppose the conditions in Theorem 1 are satisfied. Then with
probability tending to 1 as n → ∞, there exists a FAR estimate such that f̂j = 0
for j /∈ M0, and

max
j∈M0

1√
n
‖f̂j − f0j‖2 ≤ C2n

−α,

where C2 is some positive constant.
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Theorem 2 shows the asymptotic normality of the FAR estimators that corre-
spond to signal variables. As with Theorem 1, we first provide the result for the
η̂j ’s and then extend to the functions.

THEOREM 2. Assume that the conditions in Theorem 1 hold and in addi-
tion, ρ′

λn
(an/2) = o(ann

α−1/2s
−1/2
n ), supt≥an/2 ρ′′

λn
(t) = O(n−1/2), sn = o(n2α)

and snq
−2
n = o(n−1/2). Then with probability tending to 1 as n → ∞, there exists

a strict local minimizer η̂ of (12) such that η̂Mc
0
= 0 and

cT [(
	T

M0
	M0

)1/2
(η̂M0

− η0,M0
) + n

(
	T

M0
	M0

)−1/2v0,M0

] D−→ N
(
0, σ 2)

,

where c ∈ Rqnsn satisfies cT c = 1 and v0,M0 is a vector formed by stacking the

vectors v0,k = ρ′
λn

( 1√
n
‖	kη0,k‖) 1√

n

	T
k 	kη0,k

‖	kη0,k‖ , k ∈ M0 underneath each other.

Let f ∗
0j = θ∗

j
T η0j and f̂ ∗

j = θ∗
j
T η̂j , with θ∗

j ∈ Rqn the coefficient vector when
projecting a given new observation, X∗

j (t), onto the basis function, b(t). Then as
qn increases, f ∗

0j better approximates fj (X
∗
j ) for each fixed j = 1, . . . , p. Define

f∗0 = (f ∗
01, . . . , f

∗
0p)T and f̂∗ = (f̂ ∗

1 , . . . , f̂ ∗
p )T . Taking c = (	T

M0
	M0)

−1/2	∗c̃0

with 	∗ = diag(θ∗
1, . . . , θ

∗
sn

) ∈ R(qnsn)×sn in Theorem 2 and c̃0 a vector in Rsn , we
have the following asymptotic normality of f∗0.

COROLLARY 2. Assume that the conditions in Theorem 2 hold. Then with
probability tending to 1 as n → ∞, there exists a FAR estimate such that f̂∗

Mc
0
= 0.

Moreover,

c̃T
0

[
f̂∗M0

− f∗0,M0
+ n

(
	∗)T (

	T
M0

	M0

)−1v0,M0

] D−→ N
(
0, σ 2)

,

where c̃0 is a vector in Rsn satisfying c̃T
0 (	∗)T (	T

M0
	M0)

−1	∗c̃0 = 1, and v0,M0

is defined in Theorem 2.

3.2. Nonlinear theory. Throughout this section, we focus on the minimizer
of the nonlinear FAR criterion with the �1 penalty function. We treat all the
predictors as deterministic. For identifiability purposes, we assume that the true
regression functions, f0j , as well as the response vector, are centered, that is,∑n

i=1 f0j (Xij ) = 0 and
∑n

i=1 Yi = 0. As a result, the corresponding estimates, f̂j ,
are automatically centered as well.

We use cubic B-splines to approximate the true “link” functions, g0j . Given
a candidate index vector ηj , the B-spline basis for representing a candidate
link function for the j th predictor is constructed using uniformly placed knots
on the interval [mini η

T
j θ ij ,maxi η

T
j θ ij ]. The corresponding row vector val-

ued basis function is denoted by hηj ,j . We denote by F0
j the class of candi-

date regression functions for the j th predictor. More specifically, F0
j = {f (·) =
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hηj ,j (η
T
j ·)ξ ,

∑n
i=1 f (θ ij ) = 0,ηj ∈ R

qn, ξ ∈ R
dn,‖ηj‖ = 1}. If f̃ and f̌ belong

to F0
j , we denote by ‖f̃ − f̌ ‖n the �2 distance between these two functions with

respect to the empirical probability measure corresponding to θ1j , . . . , θnj . More
specifically, ‖f̃ − f̌ ‖2

n = n−1 ∑n
i=1(f̃ (θ ij ) − f̌ (θ ij ))

2. We refer to the estimated

regression function for the j th predictor as f̂j (·) = ĝj (η̂
T
j ·). The corresponding

true regression functions are referred to as f0j . We slightly abuse the notation
and write ‖f̂j − f0j‖n for the �2 distance between f̂j and f0j with respect to the
empirical probability measure corresponding to the j th predictor:

‖f̂j − f0j‖2
n = 1

n

n∑
i=1

[
f̂j (θ ij ) − f0j (Xij )

]2

= 1

n

n∑
i=1

[
ĝj

(
η̂T

j θ ij

) − g0j

(∫ 1

0
βj (t)Xij (t) dt

)]2

.

As before, we write M0 for the index set of the signal predictors, that is,
M0 = {j : 1 ≤ j ≤ pn,f0j �= 0}. Note that this set depends on n, but we will re-
frain from using an additional subscript for simplicity of the notation. We use M̂n

to denote the corresponding estimated set, {j : 1 ≤ j ≤ pn, f̂j �= 0}. Let sn = |M0|.
A universal constant is interpreted as a constant that does not depend on n or any
of the other parameters that appear in the corresponding expression. Given expres-
sions E1 and E2, we use E1 �E2 to mean that there exists a positive universal con-
stant c, such that E1 ≥ cE2. We write E1 � E2 when both E1 � E2 and E2 � E1
are satisfied.

The results provided below establish the rate of convergence for the estimated
regression functions. To derive these results, we impose a number of regularity
conditions on the components of the FAR model. We also impose a version of
the compatibility condition, which is commonly used in high-dimensional additive
models [5, 29]. The proofs, as well as a more detailed discussion of the conditions,
are provided in Appendix C.

THEOREM 3. Suppose that Conditions 3 and 4 are satisfied. Let qn � dn �
log logn. Then there exists a universal constant c, such that for λn ≥ c(n−1/2q

1/2
n +

n−1/2√logpn), the following bound holds with probability tending to one, as n

tends to infinity:
pn∑

j=1

‖f̂j − f0j‖n = O
(
snλn + snd

−2
n + s2

nn1/2d−4
n q−1/2

n

)
.(15)

The following corollary focuses on the choice of qn and dn that yields the fastest
rate of convergence. Note that the case qn/dn = o(1) is not covered in the statement
of Theorem 3. However, it follows from the proof of the theorem that such settings
correspond to an error bound that is inferior to the one presented below.
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COROLLARY 3. Suppose that Conditions 3 and 4 are satisfied. Let qn �
dn � (snn)1/5. Then there exists a universal constant c, such that for λn ≥
c(s

1/10
n n−2/5 +n−1/2√logpn), the following bound holds with probability tending

to one, as n tends to infinity:

pn∑
j=1

‖f̂j − f0j‖n = O(snλn).

We now turn to the variable selection properties of the nonlinear FAR estima-
tor. Methods that use �2 regularization are known to typically produce models
containing a large number of noise predictors ([5], Chapter 7, e.g.). To alleviate
this problem, we follow the popular approach of thresholding the initial estima-
tor. We define the thresholded FAR estimator as follows: f̃j = f̂j I {‖f̂j‖n > λn},
j = 1, . . . , pn. Note that the threshold parameter is taken equal to the tuning pa-
rameter λn, which is used to compute the initial estimators, f̂j . Thus, we do
not introduce any new tuning parameters at the thresholding stage. Let M̃n de-
note the index set of the corresponding nonzero regression function estimates,
{j : 1 ≤ j ≤ pn, f̃j �= 0}. Recall that sn = |M0|. The next result provides bounds
for the estimation error of the thresholded FAR approach and for the corresponding
number of selected predictors.

THEOREM 4. Under the assumptions of Corollary 3, there exists a universal

constant c, such that for λn ≥ c(s
1/10
n n−2/5 +n−1/2√logpn), the following bounds

hold with probability tending to one, as n tends to infinity:

|M̃n| = O(sn) and
pn∑

j=1

‖f̃j − f0j‖n = O(snλn).

Now consider the case where the components of the FAR model do not depend
on n. More specifically, suppose that the number of signal predictors, |M0|, and
the signal regression functions, {f0k}k∈M0 , are fixed and do not change with n.
The estimation error bound in Theorem 4 implies that, with probability tending
to one, our estimator has zero false negatives, while the number of false positives
stays bounded. This variable selection result can be strengthened by increasing
the threshold from λn to τλn, for a sufficiently large τ . The next corollary demon-
strates that the corresponding thresholded estimator can correctly recover the index
set of the relevant predictors.

COROLLARY 4. Suppose that the components of the FAR model do not depend
on n. Suppose also that the assumptions of Corollary 3 are satisfied. Then there
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exist universal constants τ0 and c, such that, provided τ ≥ τ0, λn ≥ c(s
1/10
n n−2/5 +

n−1/2√logpn) and λn = o(1), we have

M̃n = M0,

with probability tending to one, as n goes to infinity.

4. Simulations. In this section, we compare the performance of FAR to sev-
eral alternative linear and nonlinear functional approaches in a series of simulation
studies. We consider the linear setting in Section 4.1, while Section 4.2 contains
our nonlinear results.

4.1. Linear additive models. We first generated the functional predictors,
Xij (t), from a 4-dimensional Fourier basis b(t) = (1,

√
2 sin(πt),

√
2 sin(2πt),√

2 sin(3πt))T , plus an error term:

Xij (tk) = b(tk)
T θ ij + wijk, wijk ∼ N

(
0, σ 2

x

)
, θ ij ∼ N(0, I ),

where σx = 0.5, and each predictor was observed at 200 equally spaced time
points, 0 = t1, t2, . . . , t200 = 1. The basis coefficients, θ ij , and the error terms,
wijk , were all sampled independently from each other. The first sn coefficient
functions, β1(t), . . . , βsn(t), were also generated, from the same basis function,
βj (t) = b(t)T ηj , while the remaining p − sn predictors were noise variables with
βj (t) = 0. For each j = 1, . . . , sn, the coefficient vector ηj were first indepen-
dently generated from a multivariate standard normal distribution and then rescaled
to have �2 norm equal to 1. The responses were then generated from (2) with fj (x)

computed using (6). We tested a total of six linear settings corresponding to differ-
ent numbers of observations, predictors and noise levels.

To ensure a fair real world comparison, where the true functional form of βj (t)

would be unknown, we implemented the linear version of FAR using an orthogo-
nal cubic spline basis, rather than the true Fourier basis. We tested FAR using both
the SCAD [8] and the Lasso penalty functions but found that the former penalty
generally gave superior predictive ability so only report the SCAD results here.
We compared FAR to three competing methods. The first was a functional prin-
cipal components analysis (FPCA) based approach produced by decomposing the
predictors into functional principal components, selecting the first K components
and finally using the resulting PCA scores to fit linear regression models to the re-
sponse. Since only sn of the predictor functions were associated with the response,
we fit the linear regressions to the FPCA scores using the group SCAD penalty
function to produce sparse fits, where the K principal components for each predic-
tor were grouped together.

Our second approach involved implementing the additive modeling method
(ADD) of [16]. ADD fits an additive model with the same general form as (2).
A key difference relative to FAR is that ADD uses a kernel based fitting method
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and a forward selection procedure to iteratively add functional predictors to the
model. The final method, SIR, is described in [3]. This method first computes
the wavelet coefficients on a single predictor function, then applies the SIR [24]
dimension reduction method to the resulting coefficients, and finally a linear re-
gression is fit using the reduced dimensions as the predictors. This approach is
not designed for multiple predictor functions so we adapted it by computing the
reduced dimensions marginally for each predictor and then performing a multiple
linear regression on all the resulting dimensions.

The tuning parameters for the various methods were chosen by minimizing pre-
diction error on a separately generated validation data set with identical character-
istics to the training data. FAR had two tuning parameters; λ and the dimension
of the orthogonal cubic spline basis for fitting βj (t). We fitted FAR separately for
each possible basis dimension, and then selected the value (between 5 and 10)
which gave the smallest prediction error on the validation set. The FPCA method
had two tuning parameters; λ, the penalty level for the group SCAD fit, and K , the
number of principal components used for each predictor. We used the same value
of K for all predictors. To select K , we first identified a number Kmax such that
the first Kmax scores of each predictor express at least 99% of the total variation
of this predictor, and then selected K as the value (between 1 and Kmax) which
minimized prediction error on the validation data. The SIR method had one tun-
ing parameter; the number of directions into which each predictor was projected.
We considered up to 4 directions for each predictor, and selected the number of
directions as the one with the lowest prediction error on the validation set.

For each simulation setting, we fitted each method to 100 different training sets
and recorded the false positive rate (FPR), false negative rate (FNR), average pre-
diction error on a separate test data set (Mean PE) and the standard error of the
mean PE (SE PE). The FPR records the fraction of noise predictors incorrectly in-
cluded in the model while the FNR corresponds to the fraction of signal variables
incorrectly excluded. The simulation results are summarized in Table 1. Prediction
errors that were either the best or were not statistically worse than the best result
are shown in bold font. Note that because of the extremely computationally inten-
sive nature of the ADD and SIR methods it was not feasible to compute fits for p

larger than about 10. In fact, in the p = 600 and 2000 settings the FPCA, ADD
and SIR comparison methods were all too slow to implement, and thus we only
report the results for FAR. In terms of prediction error, FAR was superior to all
of the competing methods in most simulation settings. The FPCA method was the
best competitor followed by SIR and finally ADD. The only setting where FPCA
was superior was the situation where σy = 2 and p = 100, which had high noise
and high dimensionality. For the ultra-high dimensional setting of p = 2000, FAR
still does a reasonably good job in variable selection. Note that when fitting FAR,
since each functional predictor is approximated using a spline basis, the dimen-
sionality in the linear FAR criterion is in fact much higher than p. For example, if
a 5-dimensional spline basis is used, the dimensionality is in fact 5p = 10,000.
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TABLE 1
Comparison of FAR to three alternative methods in five linear simulation settings

FAR FPCA ADD SIR

n = 60 FN 0.0000 0.0000 NA NA
p = 10 FP 0.0250 0.1067 NA NA
sn = 4 Mean PE 1.4834 1.6558 2.6474 2.3318
σy = 1 SE PE 0.0285 0.0274 0.0298 0.0275

n = 60 FN 0.0225 0.005 NA NA
p = 10 FP 0.05 0.1633 NA NA
sn = 4 Mean PE 2.6805 2.7979 3.3462 6.2968
σy = 2 SE PE 0.0267 0.0264 0.0296 0.0857

n = 80 FN 0.0067 0.1917
p = 100 FP 0.0743 0.0454
sn = 6 Mean PE 2.0176 3.5502
σy = 1 SE PE 0.0548 0.0353

n = 80 FN 0.0483 0.0067
p = 100 FP 0.1896 0.1569
sn = 6 Mean PE 3.7051 3.3250
σy = 2 SE PE 0.0548 0.0353

n = 100 FN 0.0700
p = 600 FP 0.0432
sn = 8 Mean PE 3.6423
σy = 1 SE PE 0.0910

n = 100 FN 0.1925
p = 2000 FP 0.0171
sn = 8 Mean PE 4.6422
σy = 1 SE PE 0.0871

4.2. Nonlinear models. We examined three different simulation settings with
the responses generated from the nonlinear model (4). The standard deviation,
σx , the predictors, Xij (t), and coefficient curves, βj (t), were all produced in an
identical fashion to the linear setting. To produce a sparse relationship between the
predictors and the response, we set gj (x) = 0 for j = 3,4, . . . , p. The remaining
two curves were chosen as g1(x1) = x1 and g2(x2) = −x2 + sin(x2). Note that
these functions were not generated from a B-spline basis so the FAR fit contains
bias in the estimates for both βj (t) and gj (x); a real world situation where the data
is unlikely to exactly correspond to the FAR model. The sample size was fixed
at n = 100, and the model errors were independently generated from a Gaussian
distribution with mean zero and standard deviation σ = 0.5.

We compared the nonlinear version of FAR to the same three competing meth-
ods as in the linear setting. However, to account for the nonlinear relationships be-
tween the response and predictors, we implemented FPCA by applying the SpAM
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method [33] to the principal component scores. SpAM essentially fits a penal-
ized version of Generalized Additive Models (GAM), allowing for automatic vari-
able selection in a nonlinear but additive regression situation. We adapted SpAM
slightly to implement a group penalization where all K PCs for a given predictor
were penalized together. The SIR method was still implemented using the linear
regression approach from the previous section while the kernel approach of ADD
already produced a nonlinear fit so these last two methods did not require any
adaptations to the new setting. In each simulation, we again fit the methods to 100
separate data sets and used a separate validation data set, with identical charac-
teristics to the training data, to select the tuning parameters. The nonlinear setting
increased by one the number of tuning parameters for the FAR and FPCA meth-
ods; d , the basis dimension for gj (x). For both methods, we chose d by computing
the validation error rates for values between 5 and 10, selecting the optimal value
and then using this dimension to compute gj (x). To reduce the computational cost
for FAR, we selected q , the dimension of the spline basis for βj (t), as the value
(between 5 and 10) which gave the best hold out accuracy on the predictors in
the validation set. In particular, we held out 20% of each predictor’s time points,
computed the least squares fit to the remaining time points for each possible basis
dimension, and then selected the value of q which gave the lowest error rate on the
held-out points.

The simulation results are summarized in Table 2, with bold font indicating the
statistically best prediction errors. As with the linear setting it was not computa-
tionally feasible to implement ADD or SIR for dimensionality p larger than the
sample size n. In the low-dimensional setting of p = 5, SIR produced the lowest
mean prediction error with FAR the second best. For the higher-dimensional set-
ting of p = 50, the mean prediction error of SIR increased dramatically and was

TABLE 2
Comparison of FAR to three alternative methods in three nonlinear simulation settings

FAR FPCA ADD SIR

n = 100 FN 0.0000 0.0000
p = 5 FP 0.1833 0.1300
σy = 0.5 Mean PE 0.9792 1.3108 1.7408 0.8688

SE PE 0.0132 0.0174 0.0074 0.0049

n = 100 FN 0.0000 0.0000
p = 50 FP 0.0171 0.1138
σy = 0.5 PE 1.1068 1.3907 1.8965 3.5062

SE PE 0.0164 0.0156 0.0110 0.0309

n = 100 FN 0.0000 0.0000
p = 120 FP 0.0064 0.0697
σy = 0.5 Mean PE 1.2108 1.5164

SE PE 0.0157 0.0159
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the largest among all competitors. In the last two settings, FAR was significantly
superior to all three competing methods, with FPCA generally providing the next
best results. However, we remark that the FPCA method is significantly slower
than FAR in these nonlinear settings due to the extra tuning parameter.

5. Real data.

5.1. Hollywood stock exchange data. The goal for this analysis was to com-
pare the accuracy of FAR and FPCA in predicting the total box office revenue
(over the first ten weeks after release) for 262 movies. We use pre-release trad-
ing histories from the Hollywood Stock Exchange (HSX), one of the best known
online virtual stock markets, as our functional predictors. The Hollywood stock ex-
change has nearly 2 million active participants worldwide. Each trader is initially
endowed with $2 million virtual currency and can increase his or her net worth
by strategically selecting and trading movie stocks (i.e., buying low and selling
high). Figure 1 shows the HSX trading histories, between 52 and 10 weeks prior
to a movie’s release, for a sample of 15 out of the 262 movies in our data set.
Each curve represents the traders’ collective daily average predictions of the box

FIG. 1. Trading histories for a sample of movies from the HSX data set.
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office revenue that the movie will generate after it is released. In addition to the
Daily Average curves, we also observed four additional predictors for each movie:
Accounts Trading; Accounts Trading Short; Shares Held Short; Shares Traded Sell.

We only consider HSX curves from 10 weeks prior to release date because
the goal is to form accurate revenue predictions early enough to affect strategic
decisions, such as, advertising budget, locations of theater release, etc. We imple-
mented the nonlinear versions of both FAR and FPCA on the log revenues as this
appeared to give superior results for both methods. For FAR, we needed to select
3 tuning parameters, λ, q and d , and for FPCA we also had 3 tuning parameter,
λ, K and d . Hence, we randomly divided the 262 movies into three approximately
equal partitions. The methods were trained on the first group over grids of the tun-
ing parameters, the second group was used to select the final tuning parameters
and out of sample error rates were computed on the final group.

The mean hold out (log) prediction error, averaged over 50 random partitions,
was 2.45 for FAR, while the FPCA error rate was higher at 2.66. The standard
error in the difference between the FAR and FPCA methods over the 50 random
partitions was 0.10. Both FAR and FPCA chose Daily Average in all 50 partitions,
with the average model size of FAR being 1.92 and the average model size of
FPCA being 1.86. The mean hold out (log) prediction error on the test movies
using the null model is 4.75, indicating that using these functional predictors from
the trading histories indeed improves the prediction results.

Figure 2 plots the 50 estimated β(t) and g(x) functions corresponding to the
Daily Average variable with the solid red lines representing the average effect.
Most of the curves show remarkably consistent patterns; g(x) is estimated as a
strictly increasing, but nonlinear function, and β(t) places approximately zero
weight on the earlier trading history and a larger positive weight on roughly the
final month under consideration. These curves conform to our intuition that the
trading history closest to release date provides the strongest prediction accuracy
and that there is a positive correlation between HSX curves and movie revenues.

FIG. 2. The β(t) and g(x) curves corresponding to the Daily Average variable in the HSX data.
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The nonlinear shape of g(x) also suggests that a linear model would not provide
accurate results for this data.

5.2. MEG data. Our second data set consisted of Magnetoencephalography
(MEG) recordings for 20 subjects conducted at the Center for Clinical Neuro-
sciences, University of Texas Health Science Center at Houston. The MEG read-
ings for each subject were recorded over 248 “channels” at 356 equally spaced
time points. Each channel measured the intensity level of the magnetic field at
a particular point on the brain. Multiple trials, consisting of reading a patient a
word and measuring the MEG over time, were recorded for each patient. We aver-
aged the trials for each patient to produce 248 functional predictors, one for each
channel. The response of interest was whether the patient was left (14 subjects)
or right (6 subjects) brain dominated. We coded Y = 1 and Y = −1, respectively,
for left- and right-brained subjects. Some channels were missing for some patients
and were removed from the study, leaving a total of p = 199 predictors.

This was a very challenging data set because the ratio of predictors to observa-
tions was 10:1. We first fit the linear version of FAR to the full data set using a
five-dimensional basis for βj (t). The tuning parameter, λ, was chosen as the point
which minimized the classification error using 20-fold cross-validation. In this set-
ting, FAR selected only a five variable model (Channels 3,138,139,167 and 220),
which corresponded to a 20% cross-validated error rate. Figure 3 displays the β(t)

curves for each selected channel. All five channels put the bulk of their weight on
the early time points. Channel 3 appears to provide the majority of the predictive
power with smaller contributions from Channels 138 and 167. In particular β3(t)
represents a contrast between early and late time points. Hence, people who start
low in Channel 3 and end high are predicted to be left-brained while the opposite
is true for right-brained patients.

We also fit the nonlinear version of FAR. Given the small number of obser-
vations and the extra demands of fitting a nonlinear regression method we felt it

FIG. 3. Plots of β(t) for linear FAR on the MEG data.



2316 Y. FAN, G. M. JAMES AND P. RADCHENKO

was prudent to first perform a marginal pre-screening to select a smaller subset of
predictors for the final analysis. The marginal screening was performed by running
nonlinear FAR, using a 7-dimensional basis function, separately on each of the 194
predictors that linear FAR did not choose and selecting the 45 best predictors in
terms of marginal prediction accuracy. Nonlinear FAR was then run on the 50 pre-
dictors, including the 5 selected by linear FAR. 20-fold cross validation was again
used to select the tuning parameter, resulting in five channels being selected. The
channels were not the same as those selected by linear FAR. The cross-validated
error rate was 25%, suggesting that linear FAR may have a slight advantage on this
data.

6. Discussion. FAR extends the recent linear penalized regression literature
by incorporating functional predictors and modeling general nonlinear relation-
ships. It has several advantages over current functional regression methods. First,
the penalized approach automatically deals with high-dimensional data using an
efficient coordinate descent algorithm. Second, the single index formulation pro-
vides a nonlinear supervised method for projecting the predictors into a lower-
dimensional space, providing more accurate results than the traditional linear un-
supervised PCA approach. Third, our theoretical results suggest that FAR should
provide accurate variable selection and prediction results and the simulation results
show that FAR outperforms traditional approaches.

There are three obvious possible extensions for FAR. The first is to incorpo-
rate FAR into the generalized linear models setting. Conceptually, such an ex-
tension could be achieved by replacing the sum of squares term in (5) with the
log likelihood and then using a modified version of the coordinate descent algo-
rithm to maximize the criterion. The second possible extension would be to re-
place the single index model with a multiple index model of the form, fj (Xij ) =∑K

k=1 gjk(
∫

βjk(t)Xij (t) dt). This would increase the flexibility of FAR to model
more general nonlinear relationships. Finally, FAR could be extended to model
functional responses in addition to functional predictors.

APPENDIX A: DETAILS OF THE NONLINEAR FAR ALGORITHM

In the initialization step (step 0) of this algorithm, some of the ηj ’s will likely be
set to zero. This suggests that the corresponding predictors do not appear related
to the response. However, the initialization assumes a linear model. It is conceiv-
able that a response that appears unimportant using a linear model will become
statistically significant using a nonlinear model. Hence, if ηj is estimated to be
zero in step 0 we instead set ηj equal to the loading vector of the first principal
component of 	j . This estimate is the direction that explains the most variability
in Xij (t) so is the most natural unsupervised projection and allows for potential
nonlinear relationships to be detected in step 2.
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To implement step 3 of the FAR algorithm, we minimize (14) with respect to the
ηj ’s. Directly minimizing (14) is difficult due to the nonlinearity of the functions
gj (t) ≈ h(t)T ξ j . To overcome this difficulty, we observe that, with the estimate

ξ̂ j from step 2 and the current value ηj,old of ηj , the first-order approximation of

g(θT
ijηj ) ≈ h(θT

ijηj )
T ξ̂ j is

h
(
θT

ijηj

)T
ξ̂ j ≈ h

(
θT

ijηj,old
)T

ξ̂ j + h′(θT
ijηj,old

)T
ξ̂ j · θT

ij (ηj − ηj,old).(16)

Thus, we can approximate (14) as

n∑
i=1

(
Ri −

p∑
j=1

h′(θT
ijηj,old

)T
ξ̂ j · θT

ij (ηj − ηj,old)

)2

,(17)

where Ri = Yi −∑p
j=1 h(θT

ijηj,old)
T ξ̂ j , that is, the residual for the ith observation

from step 2 of the algorithm in the current iteration. The above approximation (17)
is a quadratic function of ηj and can be minimized easily. Hence, the new value of

ηj is updated as the minimizer of (17). We also note that if the estimate ξ̂ j from
step 2 is 0, then the corresponding value of ηj will not be updated.

APPENDIX B: TECHNICAL CONDITIONS OF THEOREMS 1–2

We make the following assumption on the functional predictors Xij (t) and the
corresponding regression coefficients βj (t).

CONDITION 1. (A) Functional predictors, {Xij : [0,1] → R, i = 1, . . . , n, j =
1, . . . , pn}, belong to a Sobolev ellipsoid of order two: there exists a universal con-
stant C, such that

∑∞
k=1 θ2

ijkk
4 ≤ C2 for all i = 1, . . . , n, j = 1, . . . , pn.

(B) The true coefficient functions satisfy maxj∈M0

∫ 1
0 β2

j (t) dt ≤ C̃ with C̃ some
positive constant.

Note that the linear FAR model can be written as

Yi =
p∑

j=1

	jηj + ε∗
i ,(18)

where ε∗
i = εi + ∑p

j=1 eij with eij defined in (10). When j ∈ Mc
0, βj (t) = 0 and

thus the approximation error eij in (9) disappears. Thus, in view of (11), the ap-
proximation error satisfies that∣∣∣∣∣

p∑
j=1

eij

∣∣∣∣∣ ≤ ∑
j∈M0

|eij | ≤ Csnq
−2
n ,

uniformly over all i = 1, . . . , n.
Our second set of conditions concern the shape of the penalty function, the

strength of the signal and the correlation structure of the predictors.
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CONDITION 2. (A) For any fixed λ > 0, ρλ(t) is concave and nondecreasing
in [0,∞), and has nonincreasing first derivative ρ′

λ(t). Further, ρ ′
λ(0+) > 0.

(B) Let an = minj∈M0 ‖	jη0,j‖/
√

n. It holds that nαan → ∞ with α ∈ (0, 1
2).

(C) It holds that ρ′
λn

(an/2) = o(n−αq−1
n s

−1/2
n ) and supt≥an/2 ρ′′

λn
(t) = o(1).

(D) There exists a positive constant c0 such that

c0 ≤ min
j∈M0

�min

(
1

n
	T

j 	j

)
< �max

(
1

n
	T

M0
	M0

)
≤ c−1

0 ,(19)

where �min and �max are the smallest and largest eigenvalues of a matrix, respec-
tively. Further, we have

max
j∈Mc

0

∥∥	j

(
	T

j 	j

)−1
	T

j 	M0

(
	T

M0
	M0

)−1∥∥∞,2 <

√
c0

2
√

n

ρ′
λn

(0+)

ρ′
λn

(an/2)
,(20)

where for a matrix B , ‖B‖∞,2 = sup‖x‖∞=1 ‖Bx‖2 with x a vector.
(E) The model errors εi , i = 1, . . . , n are independent and identically distributed

as N(0, σ 2).

Condition 2(A) requires that the penalty functional, ρλ(t), is concave and singu-
lar at 0. Many penalty functions proposed in the literature such as the hard thresh-
olding penalty, SCAD [8] and SICA [27] all satisfy this condition. From (9), we
see that Condition 2(B) places a lower bound on the signal strength of the true
predictors j ∈ M0. In particular, it assumes that the weakest signal, an, can decay
with sample size but the decay rate cannot be faster than n−α . Condition 2(C) is a
mild condition which can be easily satisfied by penalty functions with flat tails. For
instance, if λn = o(an/2), then for SCAD penalty, it can be verified from the defi-
nition that ρ′

λn
(an/2) = 0 and ρ′′

λn
(t) = 0 for all t ≥ an/2, and thus Condition 2(C)

is satisfied. Although Condition 2(C) assumes the existence of the second-order
derivative for ρλn(t), it can be relaxed to the existence of the first-order derivative
by using the local concavity definition in [27]. Condition 2(D) relates to the design
matrix for the signal predictors, 	M0 . We assume that the eigenvalues for the de-
sign matrix corresponding to true predictors are bounded from below and above.
If 	M0 is orthogonal, then (19) is satisfied with c0 = 1. The upper bound in con-
dition (20) depends on the penalty function through the ratio ρ′

λn
(0+)/ρ′

λn
(an/2),

which is larger than 1 for concave penalties and equal to 1 for the group Lasso
penalty, ρλn(t) = λnt . For instance, if λn = o(an), then ρ′

λn
(0+)/ρ′

λn
(an/2) = ∞

for SCAD penalty and thus (20) is satisfied automatically. The detailed proofs of
Theorems 1 and 2 are in the supplementary materials [12].

APPENDIX C: TECHNICAL CONDITIONS AND PROOF OF
THEOREMS 3–4

C.1. Conditions. Given an orthonormal basis expansion for βj (t), that is,
βj (t) = ∑∞

l=1 η∗
j lbl(t), we will define η∗

j = (η∗
j1, . . . , η

∗
jqn

)T . We will also define
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f ∗
j (θ ij ) = hη∗

j ,j (θ
T
ijη

∗
j )ξ

∗, where ξ∗
j is chosen to minimize

∑n
i=1[hη∗

j ,j (θ
T
ijη

∗
j )ξ −

g0j (θ
T
ijη

∗
j )]2 over ξ ∈ R

dn with the constraint
∑

i f
∗
j (θ ij ) = 0. Note that f ∗

j , ξ∗
j ,

η∗
j and θ ij depend on n, but we omit the corresponding subscripts for the sim-

plicity of the notation. The following are the technical conditions for the theory in
Section 3.2. A discussion of the conditions is given below.

CONDITION 3. (A) Functional predictors, {Xij : [0,1] → R, i = 1, . . . , n, j =
1, . . . , pn}, belong to a Sobolev ellipsoid of order two: there exists a universal con-
stant C, such that

∑∞
k=1 θ2

ijkk
4 ≤ C2 for all i = 1, . . . , n, j = 1, . . . , pn.

(B) The true index functions, {βj (t), j ∈ M0}, satisfy
∫ 1

0 β2
j (t) dt = 1.

(C) Errors εi are independent and uniformly sub-Gaussian.
(D) The true link functions, g0j , are twice continuously differentiable and are

bounded, together with their first and second derivatives, uniformly over j ∈ M0
and n.

(E) For each η with ‖η‖ = 1 and each j ≤ pn let Qη,j,n denote the empirical
distribution associated with the index values ηT θ1j , . . . ,η

T θnj . Assume that there
exist corresponding probability distributions Pη,j,n, each with bounded support
and a positive continuous density, such that the densities are bounded both above
and away from zero uniformly over j and n, and

sup
u∈R,‖η‖=1,1≤j≤pn

∣∣Qη,j,n(−∞, u] − Pη,j,n(−∞, u]∣∣ = o
(
d−1
n

)
.(21)

Condition 3(A) is identical to Condition 1(A), imposed for the linear FAR the-
ory. It is a common smoothness requirement in nonparametric regression, when the
orthogonal basis approach is used, as discussed, for example, in Chapter 8 in [37].
Condition 3(B) is imposed for identifiability. Conditions 3(C) and (D) are typical in
high-dimensional regression and nonparametric regression problems, respectively.
The reason we require uniformity is to handle the situation where the number of
signal predictors grows with n. Again, uniformity is needed to handle the growing
number of signal predictors. Condition 3(E) ensures that the candidate index val-
ues, ηT θ1j , . . . ,η

T θnj , have sufficiently regular distributions. Assumptions of this
form are typical in spline estimation [39], for example.

We impose two more assumptions below. Condition 4(A) is a natural general-
ization of the compatibility condition used in high-dimensional additive models,
for example, in [29] and Section 8.4. in [5]. Note that because we do not use a
smoothness penalty in our estimation approach, the smoothness penalty does not
appear in the compatibility condition. Condition 4(B) is a version of the standard
regularity condition on the behavior of the sum of squares function near its min-
imum. Assumptions of this form have been imposed in the single index model
literature, for example, [38]. We again require uniformity over j ∈ M0 to handle
the growing number of signal predictors.
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CONDITION 4. (A) There exists a positive universal constant φ2 for which
the following holds. If functions {hj , j = 1, . . . , pn} are such that each hj is a
difference of two functions in F0

j , and inequality
∑

j∈Mc
0
‖hj‖n ≤ 3

∑
j∈M0

‖hj‖n

is satisfied, then the following inequality holds:
∑

j∈M0
‖hj‖2

n ≤ ‖∑pn

j=1 hj‖2
n/φ

2.
(B) There exist positive universal constants τ , c1 and c2, such that for all suf-

ficiently large n and each fηj ,j (·) = hηj ,j (η
T
j ·)ξ with ‖ηj‖ = ‖η∗

j‖ and j ∈ M0,
inequalities ‖fηj ,j − f ∗

j ‖n ≤ τ and ‖ηj − η∗
j‖ < ‖ηj + η∗

j‖ imply ‖ηj − η∗
j‖ ≤

c1‖fηj ,j − f ∗
j ‖n and ‖fη∗

j ,j − f ∗
j ‖n ≤ c2‖fηj ,j − f ∗

j ‖n.

C.2. Preliminaries. We start by deriving a bound on the error due to our ap-
proximation of index functions βj and link functions g0j . Observe that

∣∣∣∣∫ 1

0
βj (t)Xij (t) dt − θT

ijη
∗
j

∣∣∣∣2 =
∣∣∣∣∣

∞∑
k=qn+1

η∗
jkk

−2k2θijk

∣∣∣∣∣
2

≤
∞∑

k=qn+1

(
η∗

jk

)2
k−4

∞∑
k=qn+1

θ2
ijkk

−4.

Condition 3(A) implies that the right-most sum is bounded by a universal con-
stant C2. Also note that

∑∞
l=qn+1(η

∗
j l)

2k−4 ≤ q−4
n

∑∞
k=qn+1(η

∗
jk)

2 ≤ q−4
n , by Con-

dition 3(B). Thus, if we set Iij = ∫ 1
0 βj (t)Xij (t) dt , then the bound |Iij − θT

ijη
∗
j | ≤

Cq−2
n holds for all n, i, and j ∈ M0. Hence, if we let C̃ be the uniform bound over

the first derivatives in Condition 3(D), then∣∣g0j (Iij ) − g0j

(
θT

ijη
∗
j

)∣∣ ≤ C̃
∣∣Iij − θT

ijη
∗
j

∣∣ = O
(
q−2
n

)
,(22)

uniformly over i and j ∈ M0. Set Mj = supt |g′′
0j (t)| for j ∈ M0, and note that

constants Mj are uniformly bounded by Condition 3(D). Taking advantage of the
approximation bounds for the cubic B-splines (e.g., Corollary 6.21 in [34]), we
then have

n−1
n∑

i=1

(
g0j

(
θT

ijη
∗
j

) − f ∗
j (θ ij )

)2 = O
(
d−4
n M2

j

) = O
(
d−4
n

)
,(23)

uniformly over j ∈ M0. Combining inequalities (22) and (23), we deduce ‖f0j −
f ∗

j ‖n = O(q−2
n + d−2

n ) = O(d−2
n ), uniformly over j . Note that for j ∈ Mc

0, both
f0j and f ∗

j are zero. Consequently,

pn∑
j=1

∥∥f ∗
j − f0j

∥∥
n = O

(
snd

−2
n

)
.(24)

This gives us a useful bound on the approximation error.
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We will write f0(Xi) for
∑pn

j=1 f0j (Xij ); we also write f̂ (θ i ) for
∑pn

j=1 f̂j (θ ij )

and define f ∗ by analogy. To be consistent with the standard least-squares esti-
mation notation, we will write (ε, f )n for n−1 ∑n

i=1 εif (θ i ). We will need the
following result, which is proved in the supplementary material [12].

LEMMA 1. Define rn = n−1/2q
1/2
n + n−1/2√logpn. There exists a positive

universal constant C1, such that

(
ε, f̂ − f ∗)

n ≤ C1snr
2
n + C1rn

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
n,(25)

with probability tending to one.

C.3. Main body of the proof. Let ‖y − f ‖2
n denote n−1 ∑n

i=1(Yi − f (θ i ))
2

and let ‖f ‖2
n denote n−1 ∑n

i=1 f (θ i )
2. Consider the following simple identity:

‖y − f̂ ‖2
n − ∥∥y − f ∗∥∥2

n = ‖f̂ − f0‖2
n − ∥∥f ∗ − f0

∥∥2
n − 2

(
ε, f̂ − f ∗)

n.(26)

Note that ‖y − f̂ ‖2
n + λn

∑pn

j=1 ‖f̂j‖n − ‖y − f ∗‖2
n − λn

∑pn

j=1 ‖f ∗
j ‖n ≤ 0 by the

definition of f̂ . Let en denote the approximation error, ‖f ∗ −f0‖n. Inequality (26)
then implies

‖f̂ − f0‖2
n + λn

pn∑
j=1

‖f̂j‖n ≤ e2
n + 2

(
ε, f̂ − f ∗)

n + λn

pn∑
j=1

∥∥f ∗
j

∥∥
n.

By Lemma 1, the above inequality yields

‖f̂ − f0‖2
n + λn

pn∑
j=1

‖f̂j‖n

(27)

≤ e2
n + 2C1snr

2
n + 2C1rn

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
n + λn

pn∑
j=1

∥∥f ∗
j

∥∥
n,

with probability tending to one.

Case (i). Consider the event e2
n + C1snr

2
n ≥ rn

∑pn

j=1 ‖f̂j − f ∗
j ‖n.

Note that e2
n = O(s2

nd−4
n ) by (24). Thus,

∑pn

j=1 ‖f̂j − f ∗
j ‖n = O(s2

nn1/2d−4
n ×

q
−1/2
n + snrn). Consequently,

∑pn

j=1 ‖f̂j − f0j‖n = O(d−4
n q

−1/2
n + snrn + snd

−2
n ),

which implies the stochastic bound in display (15).
Case (ii). Consider the event e2

n + C1snr
2
n < rn

∑pn

j=1 ‖f̂j − f ∗
j ‖n.
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Using inequality ‖f̂ − f ∗‖2
n ≤ 2‖f̂ − f0‖2

n + 2e2
n together with (27), we get

∥∥f̂ − f ∗∥∥2
n + 2λn

pn∑
j=1

‖f̂j‖n

≤ 4e2
n + 4C1snr

2
n + 4C1rn

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
n + 2λn

pn∑
j=1

∥∥f ∗
j

∥∥
n.

On the event e2
n + C1snr

2
n < rn

∑pn

j=1 ‖f̂j − f ∗
j ‖n the above inequality simplifies

to ∥∥f̂ − f ∗∥∥2
n + 2λn

pn∑
j=1

‖f̂j‖n

(28)

≤ 4(C1 + 1)rn

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
n + 2λn

pn∑
j=1

∥∥f ∗
j

∥∥
n.

Because we assume rn = O(λn), we can rewrite inequality (28) as

∥∥f̂ − f ∗∥∥2
n =

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
nO(λn).(29)

Inequality (28) also gives∑
j∈Mc

0

‖f̂j‖n ≤ 2λ−1
n (C1 + 1)rn

pn∑
j=1

∥∥f̂j − f ∗
j

∥∥
n + ∑

j∈M0

∥∥f̂j − f ∗
j

∥∥
n.

Consequently,∑
j∈Mc

0

∥∥f̂j − f ∗
j

∥∥
n ≤ 2λ−1

n (C1 + 1)rn
∑

j∈Mc
0

∥∥f̂j − f ∗
j

∥∥
n

+ [
2λ−1

n (C1 + 1)rn + 1
] ∑
j∈M0

∥∥f̂j − f ∗
j

∥∥
n,

which, provided λn ≥ 4(C1 + 1)rn, implies∑
j∈Mc

0

∥∥f̂j − f ∗
j

∥∥
n ≤ 3

∑
j∈M0

∥∥f̂j − f ∗
j

∥∥
n.(30)

This allows us to apply the compatibility condition, 4(A), to f̂ − f ∗. It fol-
lows that s−1

n (
∑

j∈M0
‖f̂j − f ∗

j ‖n)
2 ≤ ‖f̂ − f ∗‖2

n/φ
2, which, by (30), yields

s−1
n (

∑pn

j=1 ‖f̂j − f ∗
j ‖n)

2 ≤ 16‖f̂ − f ∗‖2
n/φ

2. Stochastic bound (29) then gives∑pn

j=1 ‖f̂j − f ∗
j ‖n = O(snλn), and hence

∑pn

j=1 ‖f̂j − f0j‖n = O(snλn + snd
−2
n ),

which again implies the bound in display (15). This completes the proof of Theo-
rem 3.
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Under the assumptions of Theorem 4, the error bound in the statement of The-
orem 3 simplifies to

∑pn

j=1 ‖f̂j − f0j‖n = O(snλn). Consequently, on the sets of
probability tending to one,∑

j∈Mc
0

‖f̃j‖n ≤ ∑
j∈Mc

0

‖f̂j − f0j‖n = O(snλn).(31)

Using bound (31) and the fact that ‖f̃j‖n > λn for j ∈ M̃n, we can deduce |Mc
0 ∩

M̃n| = O(sn). This implies |M̃n| ≤ |M0| + |Mc
0 ∩ M̃n| = O(sn). Also note that∑

j∈M0

‖f̃j − f0j‖n ≤ ∑
j∈M0

(
λn + ‖f̂j − f0j‖n

) = O(snλn).

The above bound, together with (31), yields the error bound in Theorem 4.
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SUPPLEMENTARY MATERIAL

Supplementary material for: Functional additive regression (DOI: 10.1214/
15-AOS1346SUPP; .pdf). Due to space constraints, the proofs of Theorems 1 and 2
and Lemma 1 are relegated to the supplement [12].
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