
Deep Forest: Towards an Alternative to Deep Neural Networks∗

Zhi-Hua Zhou and Ji Feng
National Key Lab for Novel Software Technology, Nanjing University, Nanjing 210023, China

{zhouzh, fengj}@lamda.nju.edu.cn

Abstract
In this paper, we propose gcForest, a decision tree
ensemble approach with performance highly com-
petitive to deep neural networks in a broad range of
tasks. In contrast to deep neural networks which re-
quire great effort in hyper-parameter tuning, gcFor-
est is much easier to train; even when it is applied
to different data across different domains in our ex-
periments, excellent performance can be achieved
by almost same settings of hyper-parameters. The
training process of gcForest is efficient, and users
can control training cost according to computa-
tional resource available. The efficiency may be
further enhanced because gcForest is naturally apt
to parallel implementation. Furthermore, in con-
trast to deep neural networks which require large-
scale training data, gcForest can work well even
when there are only small-scale training data.

1 Introduction
In recent years, deep neural networks have achieved great
success in various applications, particularly in tasks involv-
ing visual and speech information [Krizhenvsky et al., 2012;
Hinton et al., 2012], leading to the hot wave of deep learning
[Goodfellow et al., 2016].

Though deep neural networks are powerful, they have ap-
parent deficiencies. First, it is well known that a huge amount
of training data are usually required for training, disabling
deep neural networks to be directly applied to tasks with
small-scale data. Note that even in the big data era, many
real tasks still lack sufficient amount of labeled data due to
high cost of labeling, leading to inferior performance of deep
neural networks in those tasks. Second, deep neural networks
are very complicated models and powerful computational fa-
cilities are usually required for the training process, encum-
bering individuals outside big companies to fully exploit the
learning ability. More importantly, deep neural networks are
with too many hyper-parameters, and the learning perfor-
mance depends seriously on careful tuning of them. For ex-

∗This research was supported by NSFC (61333014), 973 Pro-
gram (2014CB340501) and the Collaborative Innovation Center of
Novel Software Technology and Industrialization.

ample, even when several authors all use convolutional neu-
ral networks [LeCun et al., 1998; Krizhenvsky et al., 2012;
Simonyan and Zisserman, 2014], they are actually using dif-
ferent learning models due to the many different options such
as the convolutional layer structures. This fact makes not only
the training of deep neural networks very tricky, like an art
rather than science/engineering, but also theoretical analysis
of deep neural networks extremely difficult because of too
many interfering factors with almost infinite configurational
combinations.

It is widely recognized that the representation learning
ability is crucial for deep neural networks. It is also notewor-
thy that, to exploit large training data, the capacity of learning
models should be large; this partially explains why the deep
neural networks are very complicated, much more complex
than ordinary learning models such as support vector ma-
chines. We conjecture that if we can endow these properties
to some other suitable forms of learning models, we may be
able to achieve performance competitive to deep neural net-
works but with less aforementioned deficiencies.

In this paper, we propose gcForest (multi-Grained Cas-
cade Forest), a novel decision tree ensemble method. This
method generates a deep forest ensemble, with a cascade
structure which enables gcForest to do representation learn-
ing. Its representational learning ability can be further en-
hanced by multi-grained scanning when the inputs are with
high dimensionality, potentially enabling gcForest to be con-
textual or structural aware. The number of cascade levels can
be adaptively determined such that the model complexity can
be automatically set, enabling gcForest to perform excellently
even on small-scale data. Moreover, users can control train-
ing costs according to computational resources available. The
gcForest has much fewer hyper-parameters than deep neural
networks; even better news is that its performance is quite
robust to hyper-parameter settings, such that in most cases,
even across different data from different domains, it is able to
get excellent performance by using the default setting. This
makes not only the training of gcForest convenient, but also
theoretical analysis, although beyond the scope of this pa-
per, potentially easier than deep neural networks (needless to
say that tree learners are typically easier to analyze than neu-
ral networks). In our experiments, gcForest achieves highly
competitive performance to deep neural networks, whereas
the training time cost of gcForest is smaller than that of deep

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3553



Figure 1: Illustration of the cascade forest structure. Sup-
pose each level of the cascade consists of two random forests
(black) and two completely-random tree forests (blue). Sup-
pose there are three classes to predict; thus, each forest will
output a three-dimensional class vector, which is then con-
catenated for re-representation of the original input.

neural networks.
We believe that in order to tackle complicated learning

tasks, it is likely that learning models have to go deep. Cur-
rent deep models, however, are always neural networks, mul-
tiple layers of parameterized differentiable nonlinear modules
that can be trained by backpropagation. It is interesting to
consider whether deep learning can be realized with other
modules, because they have their own advantages and may
exhibit great potentials if being able to go deep. This pa-
per devotes to addressing this fundamental question and il-
lustrates how to construct deep forest; this may open a door
towards alternative to deep neural networks for many tasks.

In the next sections we will introduce gcForest and report
on experiments, followed by related work and conclusion.

2 The Proposed Approach
In this section we will first introduce the cascade forest struc-
ture, and then the multi-grained scanning, followed by the
overall architecture and remarks on hyper-parameters.

2.1 Cascade Forest Structure
Representation learning in deep neural networks mostly re-
lies on the layer-by-layer processing of raw features. Inspired
by this recognition, gcForest employs a cascade structure, as
illustrated in Figure 1, where each level of cascade receives
feature information processed by its preceding level, and out-
puts its processing result to the next level.

Each level is an ensemble of decision tree forests, i.e., an
ensemble of ensembles. Here, we include different types
of forests to encourage the diversity, as it is well known
that diversity is crucial for ensemble construction [Zhou,
2012]. For simplicity, suppose that we use two completely-
random tree forests and two random forests [Breiman, 2001].
Each completely-random tree forest contains 500 completely-
random trees [Liu et al., 2008], generated by randomly select-
ing a feature for split at each node of the tree, and growing
tree until each leaf node contains only the same class of in-
stances. Similarly, each random forest contains 500 trees, by
randomly selecting

√
d number of features as candidate (d is

the number of input features) and choosing the one with the

Figure 2: Illustration of class vector generation. Different
marks in leaf nodes imply different classes.

best gini value for split. The number of trees in each forest is
a hyper-parameter, which will be discussed in Section 2.3.

Given an instance, each forest will produce an estimate
of class distribution, by counting the percentage of different
classes of training examples at the leaf node where the con-
cerned instance falls, and then averaging across all trees in the
same forest, as illustrated in Figure 2, where red color high-
lights paths along which the instance traverses to leaf nodes.

The estimated class distribution forms a class vector, which
is then concatenated with the original feature vector to be in-
put to the next level of cascade. For example, suppose there
are three classes, then each of the four forests will produce a
three-dimensional class vector; thus, the next level of cascade
will receive 12 (= 3× 4) augmented features.

To reduce the risk of overfitting, class vector produced by
each forest is generated by k-fold cross validation. In detail,
each instance will be used as training data for k − 1 times,
resulting in k − 1 class vectors, which are then averaged to
produce the final class vector as augmented features for the
next level of cascade. After expanding a new level, the perfor-
mance of the whole cascade will be estimated on validation
set, and the training procedure will terminate if there is no sig-
nificant performance gain; thus, the number of cascade levels
is automatically determined. In contrast to most deep neural
networks whose model complexity is fixed, gcForest adap-
tively decides its model complexity by terminating training
when adequate. This enables it to be applicable to different
scales of training data, not limited to large-scale ones.

2.2 Multi-Grained Scanning
Deep neural networks are powerful in handling feature rela-
tionships, e.g., convolutional neural networks are effective on
image data where spatial relationships among the raw pixels
are critical [LeCun et al., 1998; Krizhenvsky et al., 2012]; re-
current neural networks are effective on sequence data where
sequential relationships are critical [Graves et al., 2013;
Cho et al., 2014]. Inspired by this recognition, we enhance
cascade forest with a procedure of multi-grained scanning.

As Figure 3 illustrates, sliding windows are used to scan
the raw features. Suppose there are 400 raw features and a
window size of 100 features is used. For sequence data, a
100-dimensional feature vector will be generated by sliding
the window for one feature; in total 301 feature vectors are
produced. If the raw features are with spacial relationships,
such as a 20 × 20 panel of 400 image pixels, then a 10 × 10
window will produce 121 feature vectors (i.e., 121 10 × 10

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3554



Figure 3: Illustration of feature re-representation using slid-
ing window scanning. Suppose there are three classes, raw
features are 400-dim, and sliding window is 100-dim.

panels). All feature vectors extracted from positive/negative
training examples are regarded as positive/negative instances,
which will then be used to generate class vectors like in Sec-
tion 2.1: the instances extracted from the same size of win-
dows will be used to train a completely-random tree forest
and a random forest, and then the class vectors are gen-
erated and concatenated as transformed features. As Fig-
ure 3 illustrates, suppose that there are 3 classes and a 100-
dimensional window is used; then, 301 three-dimensional
class vectors are produced by each forest, leading to a 1,806-
dimensional transformed feature vector corresponding to the
original 400-dimensional raw feature vector. Note that when
transformed feature vectors are too long to be accommo-
dated, feature sampling can be performed, e.g., by subsam-
pling the instances generated by sliding window scanning,
since completely-random trees do not rely on feature split se-
lection whereas random forests are quite insensitive to inac-

curate feature split selection.
Figure 3 shows only one size of sliding window. By using

multiple sizes of sliding windows, differently grained feature
vectors will be generated, as shown in Figure 4.

2.3 Overall Procedure and Hyper-Parameters
Figure 4 summarizes the overall procedure of gcForest. Sup-
pose that the original input is of 400 raw features, and three
window sizes are used for multi-grained scanning. For m
training examples, a window with size of 100 features will
generate a data set of 301 ×m 100-dimensional training ex-
amples. These data will be used to train a completely-random
tree forest and a random forest, each containing 500 trees. If
there are three classes to be predicted, a 1,806-dimensional
feature vector will be obtained as described in Section 2.1.
The transformed training set will then be used to train the
1st-grade of cascade forest.

Similarly, sliding windows with sizes of 200 and 300 fea-
tures will generate 1,206-dimensional and 606-dimensional
feature vector, respectively, for each original training exam-
ple. The transformed feature vectors, augmented with the
class vector generated by the previous grade, will then be
used to train the 2nd-grade and 3rd-grade of cascade forests,
respectively. This procedure will be repeated till convergence
of validation performance. In other words, the final model
is actually a cascade of cascade forests, where each level in
the cascade consists of multiple grades (of cascade forests),
each corresponding to a grain of scanning, as shown in Fig-
ure 4. Note that for difficult tasks, users can try more grains
if computational resource allows.

Given a test instance, it will go through the multi-grained
scanning procedure to get its corresponding transformed fea-
ture representation, and then go through the cascade till the
last level. The final prediction will be obtained by aggregat-
ing the four 3-dimensional class vectors at the last level, and
taking the class with the maximum aggregated value.

Figure 4: The overall procedure of gcForest. Suppose there are three classes to predict, raw features are 400-dim, and three
sizes of sliding windows are used.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3555



Table 1: Summary of hyper-parameters and default settings. Boldfont highlights hyper-parameters with relatively larger influ-
ence; “?” indicates default value unknown, or generally requiring different settings for different tasks.

Deep neural networks (e.g., convolutional neural networks) gcForest
Type of activation functions: Type of forests:

Sigmoid, ReLU, tanh, linear, etc. Completely-random tree forest, random forest, etc.
Architecture configurations: Forest in multi-grained scanning:

No. Hidden layers: ? No. Forests: {2}
No. Nodes in hidden layer: ? No. Trees in each forest: {500}
No. Feature maps: ? Tree growth: till pure leaf, or reach depth 100
Kernel size: ? Sliding window size: {bd/16c, bd/8c, bd/4c}

Optimization configurations: Forest in cascade:
Learning rate: ? No. Forests: {8}
Dropout: {0.25/0.50} No. Trees in each forest: {500}
Momentum: ? Tree growth: till pure leaf
L1/L2 weight regularization penalty: ?
Weight initialization: Uniform, glorot normal, glorot uni, etc.
Batch size: {32/64/128}

Table 1 summarizes the hyper-parameters of deep neural
networks and gcForest, where the default values used in our
experiments are given.

3 Experiments
3.1 Configuration
In this section we compare gcForest with deep neural net-
works and several other popular learning algorithms. The
goal is to validate that gcForest can achieve performance
highly competitive to deep neural networks, with easier pa-
rameter tuning even across a variety of tasks. Thus, in all ex-
periments gcForest is using the same cascade structure: each
level consists of 4 completely-random tree forests and 4 ran-
dom forests, each containing 500 trees, as described in Sec-
tion 2.1. Three-fold CV is used for class vector generation.
The number of cascade levels is automatically determined. In
detail, we split the training set into two parts, i.e., growing set
and estimating set1; then we use the growing set to grow the
cascade, and the estimating set to estimate the performance.
If growing a new level does not improve the performance, the
growth of the cascade terminates and the estimated number
of levels is obtained. Then, the cascade is retrained based on
merging the growing and estimating sets. For all experiments
we take 80% of the training data for growing set and 20%
for estimating set. For multi-grained scanning, three window
sizes are used. For d raw features, we use feature windows
with sizes of bd/16c, bd/8c, bd/4c; if the raw features are
with panel structure (such as images), the feature windows
are also with panel structure as shown in Figure 3. Note that
a careful task-specific tuning may bring better performance;
nevertheless, we find that even using the same parameter set-
ting without fine-tuning, gcForest has already been able to
achieve excellent performance across a broad range of tasks.

For deep neural network configurations, we use ReLU for
activation function, cross-entropy for loss function, adadelta

1Some experimental datasets are given with training/validation
sets. To avoid confusion, here we call the subsets generated from
training set as growing/estimating sets.

for optimization, dropout rate 0.25 or 0.5 for hidden layers
according to the scale of training data. The network struc-
ture hyper-parameters, however, could not be fixed across
tasks, otherwise the performance will be embarrassingly un-
satisfactory. For example, a network attained 80% accuracy
on ADULT dataset achieved only 30% accuracy on YEAST
with the same architecture (only the number of input/output
nodes changed to suit the data). Therefore, for deep neural
networks, we examine a variety of architectures on validation
set, and pick the one with the best performance, then re-train
the whole network on training set and report the test accuracy.

3.2 Results
Image Categorization
The MNIST dataset [LeCun et al., 1998] contains 60,000 im-
ages of size 28 by 28 for training (and validating), and 10,000
images for testing. We compare it with a re-implementation
of LeNet-5 (a modern version of LeNet with dropout and Re-
LUs), SVM with rbf kernel, and a standard Random Forest
with 2,000 trees. We also include the result of the Deep Be-
lief Nets reported in [Hinton et al., 2006]. The test results
show that gcForest, although simply using default settings in
Table 1, achieves highly competitive performance.

Table 2: Comparison of test accuracy on MNIST
gcForest 99.26%
LeNet-5 99.05%
Deep Belief Net 98.75% [Hinton et al., 2006]
SVM (rbf kernel) 98.60%
Random Forest 96.80%

Face Recognition
The ORL dataset [Samaria and Harter, 1994] contains 400
gray-scale facial images taken from 40 persons. We compare
it with a CNN consisting of 2 conv-layers with 32 feature
maps of 3 × 3 kernel, and each conv-layer has a 2 × 2 max-
pooling layer followed. A dense layer of 128 hidden units
is fully connected with the convolutional layers and finally

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3556



a fully connected soft-max layer with 40 hidden units is ap-
pended at the end. ReLU, cross-entropy loss, dropout rate
of 0.25 and adadelta are used for training. The batch size is
set to 10, and 50 epochs are used. We have also tried other
configurations of CNN, whereas this one gives the best per-
formance. We randomly choose 5/7/9 images per person for
training, and report the test performance on the remaining im-
ages. Note that a random guess will achieve 2.5% accuracy,
since there are 40 possible outcomes. The kNN method here
uses k = 3 for all cases. The test results show that gcFor-
est runs well across all three cases even by using the same
configurations as described in Table 1.

Table 3: Comparison of test accuracy on ORL
5 image 7 images 9 images

gcForest 91.00% 96.67% 97.50%
Random Forest 91.00% 93.33% 95.00%
CNN 86.50% 91.67% 95.00%
SVM (rbf kernel) 80.50% 82.50% 85.00%
kNN 76.00% 83.33% 92.50%

Music Classification
The GTZAN dataset [Tzanetakis and Cook, 2002] contains
10 genres of music clips, each represented by 100 tracks of 30
seconds long. We split the dataset into 700 clips for training
and 300 clips for testing. In addition, we use MFCC feature
to represent each 30 seconds music clip, which transforms the
original sound wave into a 1, 280 × 13 feature matrix. Each
frame is atomic according to its own nature; thus, CNN uses
a 13 × 8 kernel with 32 feature maps as the conv-layer, each
followed by a pooling layer. Two fully connected layers with
1,024 and 512 units, respectively, are appended, and finally a
soft-max layer is added in the last. We also compare it with
an MLP having two hidden layers, with 1,024 and 512 units,
respectively. Both networks use ReLU as activation function
and categorical cross-entropy as the loss function. For Ran-
dom Forest, Logistic Regression and SVM, each input is con-
catenated into an 1, 280× 13 feature vector.

Table 4: Comparison of test accuracy on GTZAN
gcForest 65.67%
CNN 59.20%
MLP 58.00%
Random Forest 50.33%
Logistic Regression 50.00%
SVM (rbf kernel) 18.33%

Hand Movement Recognition
The sEMG dataset [Sapsanis et al., 2013] consists of 1,800
records each belonging to one of six hand movements, i.e.,
spherical, tip, palmar, lateral, cylindrical and hook. This is a
time-series dataset, where EMG sensors capture 500 features
per second and each record associated with 3,000 features.
In addition to an MLP with input-1,024-512-output structure,
we also evaluate a recurrent neural network, LSTM [Gers et
al., 2001] with 128 hidden units and sequence length of 6
(500-dim input vector per second).

Table 5: Comparison of test accuracy on sEMG data
gcForest 71.30%
LSTM 45.37%
MLP 38.52%
Random Forest 29.62%
SVM (rbf kernel) 29.62%
Logistic Regression 23.33%

Sentiment Classification
The IMDB dataset [Maas et al., 2011] contains 25,000 movie
reviews for training and 25,000 for testing. The reviews are
represented by tf-idf features. This is not image data, and thus
CNNs are not directly applicable. So, we compare it with an
MLP with structure input-1,024-1,024-512-256-output. We
also include the result reported in [Kim, 2014], which uses
CNNs facilitated with word embeding. Considering that tf-
idf features do not convey spacial or sequential relationships,
we skip multi-grained scanning for gcForest.

Table 6: Comparison of test accuracy on IMDB
gcForest 89.16%
CNN 89.02% [Kim, 2014]
MLP 88.04%
Logistic Regression 88.62%
SVM (linear kernel) 87.56%
Random Forest 85.32%

Low-Dimensional Data
We also evaluate gcForest on UCI-datasets [Lichman, 2013]
with relatively small number of features: LETTER with 16
features and 16,000/4,000 training/test examples, ADULT
with 14 features and 32,561/16,281 training/test examples,
and YEAST with only 8 features and 1,038/446 training/test
examples. Fancy architectures like CNNs could not work on
such data as there are too few features without spatial re-
lationship. So, we compare it with MLPs. Unfortunately,
although MLPs have less configuration options than CNNs,
they are still very tricky to set up. For example, MLP with
input-16-8-8-output structure and ReLU activation achieve
76.37% accuracy on ADULT but just 33% on LETTER. We
conclude that there is no way to pick one MLP structure
which gives decent performance across all datasets. There-
fore, we report different MLP structures with the best per-
formance: for LETTER the structure is input-70-50-output,
for ADULT is input-30-20-output, and for YEAST is input-
50-30-output. In contrast, gcForest uses the same configura-
tion as before, except that the multi-grained scanning is aban-
doned considering that the features of these small-scale data
do not hold spacial or sequential relationships.

Table 7: Comparison of test accuracy on low-dim data
LETTER ADULT YEAST

gcForest 97.40% 86.40% 63.45%
Random Forest 96.50% 85.49% 61.66%
MLP 95.70% 85.25% 55.60%

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3557



3.3 Influence of Multi-Grained Scanning
To study the separate contribution of the cascade forest struc-
ture and multi-grained scanning, Table 8 compares gcForest
with cascade forest on MNIST, GTZAN and sEMG datasets.
It is evident that when there are spacial or sequential feature
relationships, the multi-grained scanning process helps im-
prove performance apparently.

Table 8: Results of gcForest w/wo multi-grained scanning
MNIST GTZAN sEMG

gcForest 99.26% 65.67% 71.30%
CascadeForest 98.02% 52.33% 48.15%

3.4 Running time
Our experiments use a PC with 2 Intel E5 2695 v4 CPUs (18
cores), and the running efficiency of gcForest is good. For
example, for IMDB dataset (25,000 examples with 5,000 fea-
tures), it takes 267.1 seconds per cascade level, and automat-
ically terminates with 9 cascade levels, amounting to 2,404
seconds or 40 minutes. In contrast, MLP compared on the
same dataset requires 50 epochs for convergence and 93 sec-
onds per epoch, amounting to 4,650 seconds or 77.5 minutes
for training; 14 seconds per epoch (with batch size of 32) if
using GPU (Nvidia Titan X pascal), amounting to 700 sec-
onds or 11.6 minutes. Multi-grained scanning will increase
the cost of gcForest; however, the different grains of scan-
ning are inherently parallel. Also, both completely-random
tree forests and random forests are parallel ensemble meth-
ods [Zhou, 2012]. Thus, the efficiency of gcForest can be im-
proved further with optimized parallel implementation. Note
that the training cost is controllable because users can set the
number of grains, forests, trees by considering computational
cost available. It is also noteworthy that the above comparison
is somewhat unfair to gcForest, because many different ar-
chitectures have been tried for neural networks to achieve the
reported performance but these time costs are not included.

4 Related Work
The gcForest is a decision tree ensemble approach. Ensemble
methods [Zhou, 2012] are a kind of powerful machine learn-
ing techniques which combine multiple learners for the same
task. Actually there are some studies showing that by using
ensemble methods such as random forest facilitated with deep
neural network features, the performance can be even better
than simply using deep neural networks [Kontschieder et al.,
2015]. Our purpose of using ensemble, however, is quite dif-
ferent. We are aiming at an alternative to deep neural net-
works rather than a combination with deep neural networks.
In particular, by using the cascade forest structure, we hope
not only to do representation learning, but also to decide a
suitable model complexity automatically.

The multi-grained scanning procedure uses different sizes
of sliding windows to examine the data; this is somewhat re-
lated to wavelet and other multi-resolution examination pro-
cedures [Mallat, 1999]. For each window size, a set of
instances are generated from one training example; this is
related to bag generators [Wei and Zhou, 2016] of multi-
instance learning [Dietterich et al., 1997]. In particular, the

bottom part of Figure 3, if applied to images, can be regarded
as the SB image bag generator [Maron and Lozano-Pérez,
1998; Wei and Zhou, 2016].

The cascade procedure is related to Boosting [Freund and
Schapire, 1997], which is able to automatically decide the
number of learners in ensemble, and particularly, a cascade
boosting procedure [Viola and Jones, 2001] has achieved
great success in object detection tasks. Note that when multi-
ple grains are used, each cascade level of gcForest consists
of multiple grades; this is actually a cascade of cascades.
Each grade can be regarded as an ensemble of ensembles;
in contrast to previous studies such as using Bagging as base
learners for Boosting [Webb, 2000], gcForest uses the ensem-
bles in the same grade together for feature re-representation.
Passing the output of one grade of learners as input to an-
other grade of learners is related to stacking [Wolpert, 1992;
Breiman, 1996]. Based on suggestions from studies about
stacking [Ting and Witten, 1999; Zhou, 2012], we use cross-
validation procedure to generate inputs from one grade for the
next. Note that stacking is easy to overfit with more than two
grades, and could not enable a deep model by itself.

To construct a good ensemble, it is well known that in-
dividual learners should be accurate and diverse, yet there is
no well accepted formal definition of diversity [Kuncheva and
Whitaker, 2003; Zhou, 2012]. Thus, researchers usually try to
enhance diversity heuristically, such as what we have done by
using different types of forests in each grade. Actually, gcFor-
est exploits all the four major categories of diversity enhance-
ment strategies [Zhou, 2012]. In particular, when assigning
the label of the original instance to all instances generated by
sliding windows, as shown in Figure 3, some label assign-
ments are inherently incorrect; this is related to the Flipping
Output method [Breiman, 2000], a representative of output
representation manipulation for diversity enhancement.

As a tree-based approach, gcForest could be potentially
easier for theoretical analysis than deep neural networks, al-
though this is beyond the scope of this paper. Indeed, some
recent theoretical studies about deep learning, e.g., [Mhaskar
et al., 2017], seem more intimate with tree-based models.

5 Conclusion
By recognizing that the key of deep learning lies in the rep-
resentation learning and large model capacity, in this paper
we attempt to endow such properties to tree ensembles and
propose the gcForest method. Comparing with deep neural
networks, gcForest achieves highly competitive performance
in experiments. More importantly, gcForest has much fewer
hyper-parameters, and in our experiments excellent perfor-
mance is obtained across various domains by using the same
parameter setting. The code of gcForest is available 2.

There are other possibilities to construct deep forest. As a
seminal study, we have only explored a little in this direction.
In order to tackle complicated tasks, it is likely that learning
models have to go deep. Current deep models, however, are
always neural networks. This paper illustrates how to con-
struct deep forest, and we believe it may open a door towards
alternative to deep neural networks for many tasks.

2http://lamda.nju.edu.cn/code gcForest.ashx

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3558



References
[Breiman, 1996] L. Breiman. Stacked regressions. Machine

Learning, 24(1):49–64, 1996.
[Breiman, 2000] L. Breiman. Randomizing outputs to in-

crease prediction accuracy. Machine Learning, 40(3):113–
120, 2000.

[Breiman, 2001] L. Breiman. Random forests. Machine
Learning, 45(1):5–32, 2001.

[Cho et al., 2014] K. Cho, B. van Meriënboer, C. Gulcehre,
D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In EMNLP,
pages 1724–1734, 2014.

[Dietterich et al., 1997] T. G. Dietterich, R. H. Lathrop, and
T. Lozano-Pérez. Solving the multiple-instance problem
with axis-parallel rectangles. Artificial Intelligence, 89(1-
2):31–71, 1997.

[Freund and Schapire, 1997] Y. Freund and R. E. Schapire.
A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and Sys-
tem Sciences, 55(1):119–139, 1997.

[Gers et al., 2001] F. A. Gers, D. Eck, and J. Schmidhuber.
Applying LSTM to time series predictable through time-
window approaches. In ICANN, pages 669–676, 2001.

[Goodfellow et al., 2016] I. Goodfellow, Y. Bengio, and
A. Courville. Deep Learning. MIT Press, Cambridge,
MA, 2016.

[Graves et al., 2013] A. Graves, A. R. Mohamed, and
G. Hinton. Speech recognition with deep recurrent neu-
ral networks. In ICASSP, pages 6645–6649, 2013.

[Hinton et al., 2006] G. E. Hinton, S. Osindero, and Y.-W.
Simon. A fast learning algorithm for deep belief nets. Neu-
ral Computation, 18(7):1527–1554, 2006.

[Hinton et al., 2012] G. Hinton, L. Deng, D. Yu, G. Dahl,
A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingbury. Deep neural net-
works for acoustic modeling in speech recognition. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[Kim, 2014] Y. Kim. Convolutional neural networks for sen-
tence classification. arXiv:1408.5882, 2014.

[Kontschieder et al., 2015] P. Kontschieder, M. Fiterau,
A. Criminisi, and S. R. Bulò. Deep neural decision forests.
In ICCV, pages 1467–1475, 2015.

[Krizhenvsky et al., 2012] A. Krizhenvsky, I. Sutskever, and
G. Hinton. ImageNet classification with deep convolu-
tional neural networks. In NIPS, pages 1097–1105. 2012.

[Kuncheva and Whitaker, 2003] L. I. Kuncheva and C. J.
Whitaker. Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy. Ma-
chine Learning, 51(2):181–207, 2003.

[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[Lichman, 2013] M. Lichman. UCI machine learning repos-
itory, 2013.

[Liu et al., 2008] F. T. Liu, K. M. Ting, Y. Yu, and Z.-H.
Zhou. Spectrum of variable-random trees. Journal of Ar-
tificial Intelligence Research, 32:355–384, 2008.

[Maas et al., 2011] A. L. Maas, R. E. Daly, P. T. Pham,
D. Huang, A. Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis. In ACL, pages 142–150, 2011.

[Mallat, 1999] S. Mallat. A Wavelet Tour of Signal Process-
ing. Academic Press, London, UK, 2nd edition, 1999.

[Maron and Lozano-Pérez, 1998] O. Maron and T. Lozano-
Pérez. A framework for multiple-instance learning. In
NIPS, pages 570–576. 1998.

[Mhaskar et al., 2017] H. Mhaskar, Q. Liao, and T. A. Pog-
gio. When and why are deep networks better than shallow
ones? In AAAI, pages 2343–2349, 2017.

[Samaria and Harter, 1994] F. Samaria and A. C. Harter. Pa-
rameterisation of a stochastic model for human face iden-
tification. In 2nd IEEE Workshop on Applications of Com-
puter Vision, pages 138–142, 1994.

[Sapsanis et al., 2013] C. Sapsanis, G. Georgoulas, A. Tzes,
and D. Lymberopoulos. Improving EMG based classifi-
cation of basic hand movements using EMD. In 35th An-
nual International Conference on the IEEE Engineering in
Medicine and Biology Society, pages 5754–5757, 2013.

[Simonyan and Zisserman, 2014] K. Simonyan and A. Zis-
serman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, 2014.

[Ting and Witten, 1999] K. M. Ting and I. H. Witten. Issues
in stacked generalization. Journal of Artificial Intelligence
Research, 10:271–289, 1999.

[Tzanetakis and Cook, 2002] G. Tzanetakis and P. R. Cook.
Musical genre classification of audio signals. IEEE Trans.
Speech and Audio Processing, 10(5):293–302, 2002.

[Viola and Jones, 2001] P. Viola and M. Jones. Rapid object
detection using a boosted cascade of simple features. In
CVPR, pages 511–518, 2001.

[Webb, 2000] G. I. Webb. MultiBoosting: A technique for
combining boosting and wagging. Machine Learning,
40(2):159–196, 2000.

[Wei and Zhou, 2016] X.-S. Wei and Z.-H. Zhou. An em-
pirical study on image bag generators for multi-instance
learning. Machine Learning, 105(2):155–198, 2016.

[Wolpert, 1992] D. H. Wolpert. Stacked generalization. Neu-
ral Networks, 5(2):241–260, 1992.

[Zhou, 2012] Z.-H. Zhou. Ensemble Methods: Foundations
and Algorithms. CRC, Boca Raton, FL, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3559


