
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2014

A Deep Search Architecture for Capturing Product
Ontologies
Tejeshwar Sangameswaran
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd
Part of the Computer and Systems Architecture Commons, and the Databases and Information

Systems Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Sangameswaran, Tejeshwar, "A Deep Search Architecture for Capturing Product Ontologies" (2014). Theses and Dissertations. 2129.
http://scholarworks.uark.edu/etd/2129

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/2129?utm_source=scholarworks.uark.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


 

 

 

 

 

 

 

 

A DEEP SEARCH ARCHITECTURE FOR CAPTURING PRODUCT ONTOLOGIES 



 

A DEEP SEARCH ARCHITECTURE FOR CAPTURING PRODUCT ONTOLOGIES 

 
 
 

A thesis submitted in partial fulfillment 
 of the requirements for the degree of 

Master of Science in Computer Engineering  
 
 
 
 

by 
 
 
 
 

Tejeshwar Sangameswaran 
University of Arkansas 

Bachelor of Science in Computer Engineering, 2010 
 
 
 
 

December 2014 
University of Arkansas 

 
 
 
 
 
 
This thesis is approved for recommendation to the Graduate Council.   
 
 
 
_________________________________  
   Dr. Craig Thompson 
   Thesis Director 
 
 
 
_________________________________          ____________________________________ 
   Dr. Gordon Beavers                                            Dr. Bajendra Panda 
   Committee Member                                            Committee Member 
 



 

ABSTRACT 

 

This thesis describes a method to populate very large product ontologies quickly. We 

discuss a deep search architecture to text-mine online e-commerce market places and build a 

taxonomy of products and their corresponding descriptions and parent categories. The goal is to 

automatically construct an open database of products, which are aggregated from different online 

retailers. The database contains extensive metadata on each object, which can be queried and 

analyzed. Such a public database currently does not exist; instead the information currently 

resides siloed within various organizations. In this thesis, we describe the tools, data structures 

and software architectures that allowed aggregating, structuring, storing and searching through 

several gigabytes of product ontologies and their associated metadata.  We also describe 

solutions to some computational puzzles in trying to mine data on large scale.  We implemented 

the product capture architecture and, using this implementation, we built product ontologies 

corresponding to two major retailers:  Wal-Mart and Target. The ontology data is analyzed to 

explore structural complexity and similarities and differences between the retailers.  A broad 

product ontology has several uses, from comparison shopping applications that already exist to 

situation aware computing of tomorrow where computers are aware of the objects in their 

surroundings and these objects interact together to help humans in everyday tasks. 
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1.  INTRODUCTION 

1.1 Context 

Imagine walking up to a thermostat; you pull out your cell phone; and it automatically 

pairs with the thermostat. Communication interfaces are exchanged and you can instantaneously 

control the thermostat via your smartphone.  Imagine doing the same with every smart 

networked object in the world.  In that smart semantic world of the future, this will be the norm.  

With the advent of Internet of Things (IoT) and smart objects, the word around is 

becoming increasingly computationalized. Unfortunately, there is yet to be a standard set of 

communication protocols for smart objects. So, almost all smart objects have proprietary 

interfaces, and, at present, there is no common way for these devices to interoperate and 

communicate freely with each other. So, at present, humans have to learn several different query 

and command interfaces to talk to the few smart objects that so far exist. 

In the predicted future smart semantic world, all of the objects around us will be 

networked and will use common protocols to communicate freely with each other [1]. There will 

be a universal “soft controller” (e.g., near future generation smart phones or smart glasses) that 

will provide a common mobile interface to these objects. Common interfaces will expose a 

standardized API that will facilitate easy interoperability and extensibility. This would help 

create a world where all objects and humans can work in cooperation with each other. Building 

such a universal controller is no small task, but this thesis takes a few steps towards that grand 

goal.   
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1.2 Problem 

In the future smart world, for two objects to interoperate with each other, they must first 

share a common ontology, that is, a common way to represent attributes, interfaces, and a 

common category type system [2]. To build a common ontology requires a categorization  and 

classification of all objects around us. The process of creating of this organizational knowledge 

will give us insights into building abstraction and inheritance interfaces for these objects. 

Unfortunately, an open database containing a comprehensive hierarchical organization of items 

in our everyday world does not exist. This thesis is a half-step toward such an architecture that 

can automatically build such a common product ontology.  We will extract and analyze ontology 

data sets but we do not yet merge them into a “super ontology.” 

1.3 Thesis Statement 

The primary objective of this thesis is to describe a software architecture that can 

structure a large amount of existing real-world data. The scope of the ontology we will describe 

is everyday retail products, the universe of man-made things (not including at this time objects in 

nature or abstract objects).  This structured data will be represented in a very large, open graph of 

everyday objects, arranged in hierarchy of their ontological relationships. Each object in this 

collection will be augmented with relevant descriptive metadata. 

Making an exhaustive list of products around us seems like a daunting task, but in fact 

most of the man-made items around us can be purchased online through the websites of various 

retailers.  If we can aggregate products from all the retail stores, that will provide us a good first 

approximation of all products around us.  

This thesis addresses the following issues:  
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• Interfacing with various retailers:  Extraction and classification of their product 

catalog ontologies from various retailers 

• Storing and indexing of semantic data:  For ad-hoc querying of this large 

knowledge base. 

• Comparative analysis of ontological hierarchies of different retailers. 

Design criteria for the architecture include coverage and efficiency and will be used to 

judge the architecture in the Conclusion section 5.  Specifically, the criteria are: 

• Semantic Coverage – the ability of our representation formalism to adequately 

represent all of the metadata about entities, attributes, and relationships in the 

retailer website. 

• Coverage Completeness – the ability of  the ontology database to adequately 

represent all the instance metadata from the retailer website. 

• Traversal Efficiency – the efficiency of traversing the retailer website to build our 

product ontology. 

• Query Access Efficiency – the efficiency of queries to access product data from 

our ontology. 

1.4 Approach 

Retailers keep their product catalog online and available to humans but often do not 

provide a way for computers to access or search this information. As such, this data can be 

viewed as part of the “dark web” that is not directly available to search engines [3].  It is unlikely 

that computers would be able to get direct access to company inventories and ontologies. Some 

retailers do provide an API. Wal-Mart for example has a product API [4] that allows programs to 
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retrieve metadata about a product given its unique Wal-Mart specific ID.  But to use their API, a 

developer has to create an account on the Wal-Mart development platform and get a unique 

developer key. This key has to be appended to every API request for a resource. Wal-Mart 

effectively then cripples this service by enforcing a hard limit of fifteen queries per hour for a 

given developer key. These limits are so restrictive that to download metadata about every item 

on the Wal-Mart catalog of roughly 2M items would take 11.5 years. Clearly this is not feasible. 

The only guaranteed way to get a live feed from an online retail catalog from a major 

retailer is through their customer facing e-commerce portal using screen scraping.  It is hard for 

retailers to impose restrictions on automated bots crawling their site. We built a guided web 

crawler that can dig through the dynamically generated web pages of a retailer and build a 

taxonomy of products from the information. This process had to be parallelized because of the 

sheer amount of data that is to be processed.  

 We then created an in-memory inverted index of the products scrapped from these sites, 

so that we could perform ad-hoc search queries. We represented the ontological data as a 

directed graph structure, and applied graph algorithms to gain insights into the complexity of the 

organizational structure. 

1.5 Organization of this Thesis 

Chapter 2 of this thesis deals with some background information on the topics discussed 

in this thesis. We discuss existing work and how this thesis relates. 

Chapter 3 deals with the high level architecture of the retail web crawler and some 

specific implementation details including providing details about each service, their inputs, 

outputs, and service contracts.  We also discuss some of the technical challenges and solutions 
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Chapter 4 analyzes aggregated retail data compiled by the software system of Chapter 3.  

Chapter 5 provides a summary and identifies future work that can be done to further the 

project.  
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2. BACKGROUND 

2.1 Key Concepts 

This thesis is builds on interdisciplinary topics including knowledge representation, 

ontology, Internet of things, smart semantic world, virtual worlds and mirror worlds, and deep 

web. This section provides some background information on these topics. 

2.1.1 Knowledge Representation 

Knowledge representation is a field as old as Greek philosophers Plato and Aristotle and 

is central to artificial intelligence. For Plato, a Platonic Form is an idealized concept of a real 

world thing – the chairness that defines all real world chairs.  Aristotle’s categories were an 

attempt to represent the world around him into discrete categories. He believed all objects across 

all domains could be generalized into categories. His categories are of predicates, which describe 

the world [5].    

Humans intuitively understand the nature of things. We can keep track of objects and 

their interfaces. For example: When we are referring to a piece of furniture in our living room, 

we say a chair or perhaps even a recliner; but we don't say SKU# 4412-321, even though we can 

distinguish between different kinds of recliners. Retailers similarly distinguish between kinds of 

chairs even if they do not use category names for each subtype.  Instead, they use Stock Keeping 

Units (SKUs) and can identify different descriptions (tech specs) with each as well as different 

prices.  Where humans intuitively reason that the recliner has a super class of chair, computers 

do not have this ability but instead they require explicit categories.  Knowledge representation 
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deals with the formalization of the vast amount of default knowledge that we as humans take for 

granted. 

Knowledge representation is in a way the bridge between artificial intelligence and 

ontologies, which allow computers to reason about the world around them [6].   

2.1.2 Ontologies 

Tractatus Logico-Philosophicus is a book by the famed 20th century linguistic 

philosopher Ludwig Wittgenstein which is considered to be a seminal work in the field of 

ontology and the nature of representation. In it, he defined the world ontology as a “formal, 

explicit specification of a shared conceptualization” [7].  Ontology deals with trying to 

understand the nature of things and the challenge of categorizing and representing them. 

Ontologies try to create a hierarchical representation of what exists in the world around us. There 

is no concept of “one true ontology”, instead hierarchy is usually domain specific and based on 

specific traits and the attributes of the object.  

Why go through the trouble of cataloging and categorizing all the objects around us? 

What are the benefits the ontology? Pichler and Weber provide a well-reasoned answer to his 

question in their paper  “Sharing and Debating Wittgenstein by using an Ontology” [7] 

(1) Limitations of free text search are overcome, as semantic labels allow for 
searching and browsing by concept rather than string-based only; (2) a grouping 
of these concepts, which relates them to each other and organizes them into 
classes and subclasses; and (3) drawing inferences and reasoning become 
possible, as both the human and the machine will be able to extract from the 
specific position of a concept information about its place in the overall 
conceptualization. 

 



8 

 

Having a formal representation of the relationships between objects will help us in 

building a computational model of the world around us.  This computational model can be 

queried and operated upon. We can apply object-oriented principles on these ontologies and 

design abstract classes and inheritance patterns for the objects around us. 

2.1.3 Internet of Things 

Internet of Things (IoT) primarily deals with trying to get devices in our homes and 

offices to interface to an interconnected network so that they can be operated and controlled 

remotely [8].  The majority of the value will arise not from just a single item being connected to 

the Internet, but the networked devices working in unison.   

These objects that are Internet-connected are referred to as “Smart Objects”. They often 

have some form of sensor attached to a microcontroller and can log an extensive amount of data 

and provide analytics and insights into our habits and our lifestyles.  

 

 

Figure 1: Some "Internet of Things" Smart Objects currently on market 
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2.1.4 Smart Semantic World 

Smart semantic world is a term coined in the 2011 Eguchi and Thompson paper titled 

“Towards A Semantic World: Smart Objects In A Virtual World” [1].  The term merges the 

terms smart world coined by IBM and semantic web coined by Tim Berners Lee. The Internet of 

Things revolution will eventually lead to a Smart Semantic World where objects are aware of 

themselves and other objects around them [1]. All smart objects will have well defined interfaces 

and follow a standardized communication protocol that facilitates interoperability. In this future 

world, objects will freely communicate with each other to make intelligent decisions to improve 

the quality of life.  

 An example, while at work, you make a status update on Twitter about how you think 

you are about to catch a cold. This information is processed and communicated to the objects 

around in your home. Your smart thermostat automatically warms up the house. Your smart light 

bulbs re-program to provide soothing dim lights. Your drink maker makes you cup of hot tea. 

Your car informs your house when you will be home so all of this waiting for you upon arrival. 

2.1.5 Virtual Worlds and Mirror Worlds 

Virtual worlds are immersive 3D graphical environments in which avatars controlled by 

humans can interact with the environment and each other. The most popular of these is Second 

Life developed at Linden Labs.  

Second Life provides a completely editable and programmable environment. Users can 

assemble building blocks graphical primitives called “prims” into more complex objects. 

Interaction logic can be programmed directly into each object.  
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Figure 2: A Hospital in Second Life1 

Mirror Worlds are when the real world objects, environments and workflows are modeled inside 

a virtual world to create a functioning replica of the real world. This allows complex simulations 

to be run to build models. These models can then be used to make decisions in the real world. 

Mirror worlds inside of virtual worlds are useful in the fields of logistics, supply chain 

management, and healthcare. 

Eno and Thompson’s 2011 paper titled “Virtual and Real-World Ontology Services” 

describes how virtual worlds can be used to build detailed ontologies of the real world.  

Leveraging virtual world data structures can create a model of the real world. Mirror worlds 

objects are highly detailed; they contain images, 3D models and labels. These can be translated 

to the real world and be used to define objects in the smart semantic world [9]. 

2.1.6 Deep Web 

Search engines like Google send their web crawlers (aka harvesters, spiders) out to 

harvest and index static web pages.  But it has long been recognized that there is a dark or deep 
                                                

1 Courtesy http://vw.ddns.uark.edu/index.php?page=overview 
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web that contains considerable information that is not accessible to traditional search engines.  In 

some cases, organizations publish application program interfaces (APIs) to data reservoirs 

enabling computers to access this kind of data.  Another approach is to build screen scrapers that 

dynamically visit pages that are themselves constructed from database data available and 

dynamically constructed upon request.   

An analogy can be drawn between virtual worlds and the deep web.  Second Life has a 

vast amount of information that is not indexed. This information includes ontological 

classifications and 3D models of objects in the virtual world. Once this knowledge is captured, it 

can be translated to the real world. However, this data cannot be crawled through conventional 

web crawlers. Specialized crawlers which are capable of exploring and traversing the 3D world 

need to be built [9]. These crawlers query each object they visit and build a queryable model of 

the world. 

2.2 Related Work 

2.2.1 DARPA Agent Markup Language (DAML) 

DARPA Agent Markup Language (DAML) was a US Department of Defense research 

program (1999-2002) to pave the road towards the semantic web. It aimed to use XML or RDF 

to provide “semantic grounding” for the web [10].  
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Figure 3: Sample DAML document 

This model contained agents, which performed units of work. The agents use a form of 

annotated XML called DAML to communicate amongst each other and to make queries. DAML 

(and later DAML+OWL) had special tags to denote relationships and other metadata.  These 

agents were made aware of each other and had excellent interoperability because they operated 

under a common ontology [10]. 

2.2.2 Everything is Alive 

Everything is alive (EIA) is an ongoing research program headed by Dr. Craig Thompson 

at the University of Arkansas. The project focuses on creating a set of networked world of smart 

objects that sense, act, think, feel and communicate [11].  Real world smart objects have sensors 

attached to a microcontroller. The project used 3D virtual worlds, e.g., Second Life, to model 

real world places and situations.  Second Life uses Linden Scripting Language (LSL) to enable 
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objects to have logic attached to them. This allows mimicking of real world behavior of smart 

objects in these virtual worlds. 

One goal of this project is to demonstrate how to create a 1:1 mirror world replica of 

portions of the real world inside Second Life. Objects in the real world are tagged with an RFID 

tag which is used to correlate data with its virtual counterpart inside of Second Life. 

 One of the projects under the EIA umbrella created a detailed virtual hospital inside of 

Second Life (dubbed a “Hogspital” in honor of the University of Arkansas razorback mascot). 

Simulations run inside this hospital have been used to study “cost reduction, improved safety, 

better visibility, better performance, and more automation.” [12] in real world hospitals. 

2.2.3 DBPedia 

The DBPedia project is striving to make Tim Berners Lee’s dream of a semantic web into 

a reality using “linked data” which is data that can represent relationships among web objects. It 

is a community-driven effort to effort to build a clean and structured database of the vast amount 

of ontology information currently on Wikipedia.  The projects goal is to restructure Wikipedia 

information (which is designed to be consumed by human) into a format that is machine-

consumable [13].  This will allow the data to be queried by intelligent systems. Artificial 

intelligent system will be able to make connections, which were previously unknown. 

 The project has made considerable progress in the last few years, amassing gigabytes of 

structured data.  

4.0 million things, out of which 3.22 million are classified in a consistent 
ontology, including 832,000 persons, 639,000 places (including 427,000 
populated places), 372,000 creative works (including 116,000 music albums, 
78,000 films and 18,500 video games), 209,000 organizations (including 49,000 
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companies and 45,000 educational institutions), 226,000 species and 5,600 
diseases.  [13] 

2.2.4 Amazon Firefly 

Amazon released their own Smartphone dubbed ‘Fire’ in June 2014. What sets this phone 

apart from the already saturated Android market is the FireFly feature:  

Firefly works like this: you press the Firefly button on the phone’s left side, and 
when the app pops up, you can immediately start identifying things like printed 
text in posters, get information on movies and TV episodes, recognize music and 
over 70 million products in Amazon’s stores, including household items, books, 
DVDs and more. It pretty much turns your device into a scanner that can quickly 
direct you right to the product you identified on Amazon’s website.   [14] 
 
This project allows a person to a dedicated button that activates image understanding to 

lookup any item in their immediate surrounding on Amazon’s website. Amazon’s website has 

extensive details on the product; they price, description, product specific meta data and related 

products. We can see how the product is classified in Amazon’s detailed product ontology.  
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Figure 4: Amazon Fire running the FireFly app2 

2.2.5 Existing Ontology Work 

A few attempts in building product ontology have been made. Although none of work 

was done to advance towards the goal of a smart semantic future, they share a common 

methodology.  In the paper titled "Practical Issues for Building a Product Ontology System", Ig-

hoon Lee et al. explore a way to build product a product ontology by aggregating data from e-

procurement services, websites of distributors, and way for Customers to directly input the 

information [15].  The PCS2OWL project aims to build product classification systems as web 

ontologies [16]. They do not focus on actually building the product ontology, but instead focus 

on standardizing product ontologies  by converting different ontologies into a standard language 

such as the OWL semantic markup language. 

                                                

2 Courtesy http://www.amazon.com/Fire_Phone_13MP-Camera_32GB/dp/B00EOE0WKQ 
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3. ARCHITECTURE AND IMPLEMENTATION 

3.1 High Level Design 

A screen-scraping approach is used to collect the retail ontology information that is 

currently publically available but stored in the deep web as dynamic HTML pages.  This section 

describes the architecture and implementation of the system to access and build the product 

ontologies. 

The architecture of this software is based on the service-oriented architecture (SOA) 

guidelines:  “separation of tasks”, “loosely coupled services“ and “well-defined interfaces” [17]. 

The software is decomposed into several small services, each of which perform a single 

operation and have a strict service contract. This pattern forces separation of concerns and helps 

keep the size of codebase small. Scaling is straightforward with this type of architecture - simply 

instantiate more instances of the service.  

To fully reap the benefits of SOA, the principles dictate that services do not talk directly 

to each other, but rather communicate through a centralized service bus. This centralized bus is a 

robust piece of software that load balances messages between all the services. It enforces queue 

order, provides a durable message brokering service and provides several middleware integration 

patterns out of-the-box [17]. Most SOA busses are developed my multi-million dollar 

corporations with profitability in mind. So, these busses are expensive, often costing hundreds of 

thousands of dollars in licensing costs [18]. There are actively developed open source 

alternatives: Apache Service Mix [19] and Apache Synapse [20]. But they have proven to be too 

cumbersome and add too much complexity to the infrastructure. Deploying these services would 
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require a fleet of servers for redundancy and a technically skilled operations team to maintain 

them. So, the architecture was retooled to operate without a centralized bus.  

Instead of having a bus that actively routes messages between each service, there is a 

shared storage area between the services. Each service writes its output to a data store. The next 

service consumes from this data source, processes the information and writes its output to 

another data store which feeds another service and so on. This waterfall method of sharing data 

allows for high modularity and therefore scalability. It allows each service to function separately 

from the others.  This architecture is illustrated in Figure 5. 

 

Figure 5: Services Pipeline 
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This is a form of parallelism through message passing. The outputs of a service are 

written onto a shared data store with a timestamp. The next service consumes the message from 

the data store in order of time. The data store can be thought of as a job priority queue. 

This architecture has built-in concurrency and can be scaled up in an embarrassingly 

parallel way. Adding more instances of a service will allow the service to scale up linearly. This 

type of architecture where one service feeds the next is also known as collection pipelining [21]. 

It has been made popular by UNIX pipes and functional programming patterns like Map-Reduce. 

A significant advantage of this architecture is resilience. Failure in one service will not 

cause the whole application to fail. It will cause the downstream services to finish processing the 

existing jobs in the pipeline; and they will simply wait for the upstream service to come back 

online and fill the queue again. Services can be individually taken down, repaired and re-

deployed without complex orchestration.  

3.2 Services 

The process of retrieving and cleaning data is split into four services. Each service is 

capable of processing a single type of page. They have no knowledge of the other services and 

can all work independently of each other.  Each service is stateless. 

 Each service fetches a piece of data from a retailer, enriches it and passes it along to 

another service. Each service is agnostic to the retailer being scrapped. A middleware library acts 

as an adapter for the retailer being scrapped. This middleware handles parsing of the HTML code 

and converting it into a structured data the service can operate on.  That is, e.g., the webpage 

showing a particular product will vary drastically between Wal-Mart and Target. The scrapper in 



19 

 

charge of parsing that blob of HTML into a structured list of items is going to have to be aware 

of the HTML structure of each retailer.  

If the resulting structure data format were to be XML, the obvious solution to this 

problem is using a declarative transformation language like XSLT. There would exist an XSLT 

style sheet for each type of page for every retailer, which would result in an XML output.  

 

Figure 6: Adapter Middleware Analogy 

 For this thesis, we have opted to use JSON over XML because it's a superior structured 

data format. The era of XML-based SOAP is coming to an end and being replaced with JSON-

based message passing. JSON is computationally less intensive to parse than XML; it is more 

human readable and has higher information density while transferring over the wire. Because of 

these reasons, we have opted to use JSON as the data-interchange format. 

However, implementing a declarative language like XSLT specifically for transforming 

HTML to JSON is not easy. JSLT [22] was a project that was started with this goal, but was 

abandoned seven years ago because of the inherent complexity of the task. 
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However, we can implement an imperative middleware script to solve this issue with 

very minimal complexity. We can leverage existing frameworks that can easily parse through 

HTML, one such library is JQuery, which is implemented in JavaScript. JQuery has out of the 

box support for selecting and parsing through HTML. It can select elements via HTML IDs, CSS 

class hierarchies, field types and can even support regular expression matching [23]. And since 

its written in JavaScript, it has native JSON support. 

 So for every retailer, we can write a customized middleware adapter in JavaScript-

JQuery.  This helps these services to be agnostic to the retailer website they are scrapping.  An 

example script is illustrated in Figure 7. 

 

Figure 7: A Simple JQuery adapter to convert a HTML list into structured data 

3.2.1 Taxonomy Scrapper Service 

The Taxonomy scrapper service is the starting point of the whole system. It is responsible 

for responsible for building a directed graph of categories from the category page HTML of the 

retailer.  It then visits each leaf node the ontology tree and pushes it into the data store.  



21 

 

 

 



22 

 

 

 

 

Figure 8: Input of the Taxonomy Scrapper: The Wal-Mart Category Page3 

                                                

3 Courtesy http://www.walmart.com/cp/All-Departments/121828?povid=P1171-
C1110.2784+1455.2776+1115.2956-L437  
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Each retailer has a URL where they display a list of categories and subcategories. Wal-

Mart’s page is at http://www.walmart.com/cp/All-Departments/121828?povid=P1171-

C1110.2784+1455.2776+1115.2956-L437 and Target’s is at http://www.target.com/np/more/-

/N-5xsxf#?lnk=gnav_more_15_0. These pages are primarily designed as sitemaps, to give the 

customers a way to quickly navigate through their catalog. These pages are assumed to contain a 

comprehensive, hierarchized collection of categories under which the retailer has inventory.  We 

can crawl this page, scrape the contents and build a taxonomy tree of the categories. We can now 

do a breadth first traversal of tree and add every node to the work queue of the next service. The 

actual job contains the category name, category URL and a timestamp. A breadth first traversal 

is done instead of depth first is because it is better to have a sample of products from every 

category rather than an deep dataset from a small part of the graph.  

 

Figure 9: Sample subset of the output by the Taxonomy Scrapper 
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3.2.2 Category Scrapper Service 

 This service consumes from the job queue mentioned in the previous section. Each job 

contains a category name and URL. This service visits the category page and counts how many 

pages of products it has filed under it. It extracts this data from the pagination section of the 

page.  

 

Figure 10: Category Pages to be extracted 

 Our end goal is to return a list of all the products listed under a category. Each category 

might have several hundreds of products listed under it. To help the users wade through this list, 

these items are almost always “paginated.” According to Wikipedia, pagination is defined as “to 

divide returned data and display it on multiple pages” [24]. Each of these pages usually contains 

10-50 items. The task of this service is to disassociate a given category into its sub-pages and 

based on the number of pages, estimate how many products each category would contain.  Each 

page of each category is put on the next queue as a job. The meta data includes category URL, 

category page number and a timestamp. 
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Figure 11: Structured JSON of Items extracted from Category Page  
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3.2.3 Category Page Scrapper Service 

This service gets a category page URL from the job queue and extracts all the products in 

that particular page. This service takes in a category page URL as input. Every product listed on 

that page is extracted and pushed on to the next queue. It is augmented with some metadata such 

as the category and page number the product was extracted from.  

This page has summary details about a product, e.g., the title, description and price. This 

scrapper takes the item and puts it on the final scrapper for a detailer scrape. Refer Figure 11. 

3.2.4 Product Scrapper Service 

 This service is responsible for actually scrapping the product data from the individual 

product’s page. The scrapper will collect the product’s name, description and unique retailer id. 

Extra meta data is also collected. It is unique for every item. For example, for a TV, it might be 

“dimensions” and “contrast ratio,” while for books it might be “author name” and “ISBN”. This 

data is then put onto a processing to be indexed for quick searching in the future. A sample data 

structure is shown in Figure 12. This data is then passed on to be indexed as described in section 

3.3.7.  
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Figure 12: JSON Data Structure of a 2-way radio 

3.3 Implementation Details 

The previous section dealt with a high level architecture. The following deals with actual 

implementation patterns. We will use the example of scrapping Wal-Mart to illustrate the topics. 

3.3.1 Language Selection 

After evaluating the pros and cons of several languages, Node.js was selected as the 

implementation language. Node.js is a platform library that allows JavaScript execution outside 

of the web browser [25]. It is built on the highly optimized Google Chrome JavaScript engine 

dubbed V8. This allows us to use JavaScript, the same language powering the front-end, on the 

server side as well. 
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 Node.js met our needs because it has native support for JSON, which we had selected as 

the default data-interchange format (see section 3.2). Unlike procedural scripting languages like 

Python or Perl, Node.js is event-driven. Many of the operations in this project are network calls. 

Event driven programming allows the program to not be blocked when waiting on a request to 

complete. Several dozen requests can be made concurrently without halting execution of the 

whole program. When a request is complete, a callback is signaled [26, 27, 28]. This inherent 

asynchronous nature of Node.js makes it a good choice for high throughput and low latency 

applications like web crawlers.  

 The selection of Node.js (which uses JavaScript) to do large scale crawling might seem 

counter intuitive. JavaScript is after all an interpreted language, and a compiled language like 

Java or .NET should theoretically outperform JavaScript. This might be the case for 

computationally intensive problems, but for I/O and network heavy applications, Node.js is the 

clear winner. This can be seen in the results of the C10K problem. The C10K problem is: 

the problem of optimizing network sockets to handle a large number of clients at 
the same time. The name C10k is a numeronym for concurrently handling ten 
thousand connections” [29].  
 

Node.js was able to handle 10,000 concurrent network connections while a compiled .NET 

application running on Microsoft’s IIS server failed the test. On a similar test to compare it with 

Java, Node.js has better response times and was able to handle more connections [30].  

3.3.2 Scaling 

The sheer amount of data that has to be processed is staggering. Wal-Mart Supercenters 

average at 187,000 square feet and house 142,000 different items [31]. But, Walmart.com is not 

constrained by area. It contains around two million unique items.  Each category page only 
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paginates 50 items at a time. So, that's roughly 4,0000 category pages + 2M item pages + 3,000 

unique categories = a minimum of 2,043,000 unique pages to crawl. And this number could 

easily be much higher because a single item can be in multiple categories.  

 To accommodate this, the deep mining architecture will have to be able to scale both 

vertically and horizontally. Vertical scalability is the ability to use all the resources within one 

node if its specification increases. This is usually implemented using threads. Each thread can be 

run on a separate CPU for maximum utilization of resources. Horizontal scalability is being able 

to scale across several nodes, which might be geographically dispersed. This process involves 

running another instance of the software on another server and load balancing between the two 

instances.  

The service oriented pipelining architecture described in this thesis is inherently both 

horizontally and vertically scalable. The shared data store acts like a job queue. Each service can 

be thought of like a single autonomous worker. It pops the latest job from the queue, processes it 

and then pushes the results onto another queue. It is now apparent that this architecture is 

embarrassingly parallel. Simply adding a new instance of the application would double the 

workers and the jobs can be consumed at twice the speed. There is no complex load balancing or 

cluster management. 

 Node.js does not however support thread level parallelism. This was a conscious decision 

by the architects of the language to keep complexity to a minimum. It has a single event loop and 

achieves concurrency through callbacks [25]. So to scale it vertically, we have to resort to 

launching a new process. Each process is automatically scheduled by the operating system to run 

on different CPUs to maximize performance.  
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To test the optimal number of processes to use for best performance, we benchmarked 

running several processes on a 2.3Ghz Dual Core Sandy Bridge Intel i3. The results are below: 

 

 

Figure 13: Process level Parallelism: Category Scrapper Service 

 

 

Figure 14: Process level Parallelism: Product Scrapper Service 
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As we can see, increasing the number of processes increases the throughput, but only up 

to a point. Beyond a threshold, the performance stays the same, or even deteriorates. This can be 

attributed to a few things: fight for CPU cycles, local network connection throttling, or remote 

network throttling.  This finding is in line with the graph hypothesized in the Universal 

Scalability Law [32].  The throughput for the Product scrapper service is much higher than the 

category scrapper in terms of records processed per minute because the middleware 

transformation logic is much smaller and simpler. 

To study the horizontal scalability of this system, we needed to run it on several different 

machines. For this test, we ran our instances on disposable virtual servers in the cloud, 

specifically Amazon Web Services. These cloud servers save time and labor commitments of 

managing physical machines, especially since we are going to be deploying upwards of 12 

different virtual servers. For this particular benchmark, we used a ‘t2.micro’ Amazon EC2 node. 

This has the performance roughly of a single core 2.5Ghz Low to Moderate Intel Xeon family 

processor [33].  
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Figure 15: Node Level Parallelism: Product Scraper Service4 

 

We can see that the scalability increases linearly. Since they don't share CPU cycles or 

the same network interfaces, each node has more or less the same throughput. This allows us to 

scale up our operations linearly and predictably simply by adding more servers. 

To do the actual aggregation of data, a series of 3 separate nodes were used. Only one 

process was spawned on each machine. Each node was able to process on average about 120 

pages per minute (both category and product pages).  We were able to completely rebuild Wal-

Mart’s catalog of 1.92M unique items along with their ontology in 63.9 hours. Target’s product 

catalog is significantly smaller than Wal-Mart, this is because Wal-Mart has a “marketplace” 

which allow third party suppliers to sell through Walmart.com. Target’s catalog of 352,000 items 

and ontology were mined in approximately 5 hours. Targets website design is less bloated and 

                                                

4 The per node throughput is slightly less than Figure 14, because the virtual server used to run 
these tests are slower and have one fewer CPU core. 



33 

 

has significantly less resources that have to be downloaded. This accounts for the significantly 

reduced retrieval time.  This time can easy be cut down if more servers were purchased. It's a 

tradeoff between cost and speed. 

3.3.3 DDOS Blacklist 

The rapid fire requesting of resources on Wal-Mart.com triggered an automatic blocking 

of IP addresses of our servers by their system. This sudden influx of traffic from a small IP range 

set off flags in their system that detected us (falsely) as an attempted a distributed denial of 

service attack. They promptly shut us off completely and halted all mining operations. Wal-Mart 

has this protection in place because each request requires the page to be dynamically constructed 

from a database and is taxing on their backend servers.  

 Upon further investigation, we learned that Wal-Mart had a whitelist of search crawlers 

that they allow to crawl their site. This allows them to automatically block denial of service 

attempts without blocking search bots. It seemed very unlikely they would add us to their 

whitelist, so we had to come up with creative solution around the restriction. 

ProxyRack (http://www.proxyrack.com ) is a proxy as a service company that allows 

purchasing IP addresses in bulk at nominal fees. We were able to lease 100 different IP for a 

period of one week. We were then able to write middleware libraries to our scrappers, which 

switch between these IP addresses every 500 requests. There was a slight increase in latency and 

reduction in the scraping speed added by the proxy. 
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3.3.4 Job Queue 

The data store that exists between the services acts as a priority queue. The services 

consume from this queue. This data store has to be high concurrency and low latency. This piece 

of software is one of the cornerstones of the whole architecture. It has to be able to handle 

requests thousands of times per second from at least a dozen different consumers spread out 

geographically. Any lapse in durability of this queue will cause data loss and halt the data mining 

process. 

 We chose to use Redis (http://redis.io/) as the data store to back our priority queue. It is 

highly optimized open source software that can handle up to 5,000 connections and 1,000 storage 

operations per second [34]. It can achieve these speeds by doing all the processing and storing 

in-memory. Changes are persisted to disk at regular intervals for durability.  

 This means that the servers, which host the Redis, must have enough memory to hold the 

inputs, outputs and intermediary data for the whole scrapping process. This includes raw HTML 

blobs of each product and category page, structured data and search indices. In the first run, the 

server was hosted on an Amazon EC2 c3.2xlarge instance that offers 15 GB of ram. The entire 

ram was consumed within the first 24 hours. Once there is no free memory left, the mining 

process halted. We had to expand to a larger c3.4xlarge instance that offered 30 GB of memory 

to be able to finish the mining process. These instances are expensive, costing almost $ 58.25 for 

the 64 hours of usage. Similar to the topic discussed in Section 3.3.2, this was a tradeoff between 

cost and speed. 
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3.3.5 Handling Duplicates 

Wal-Mart’s ontology graph is cyclical and exhibits multiple-parenthood. One category or 

item can be referenced from multiple categories. Products are duplicated throughout the site. It is 

important that we do not waste precious CPU cycles and memory on duplicates. We needed a 

fast in-memory way to check if we had already scraped an item.  

We used a bloom filter to solve this issue. Bloom filters are probabilistic data structures, 

which can allow us to test with certainty if a product or category has not been scrapped yet. 

Bloom filters use one or a series of hash functions to determine if the element exists in a set. It 

returns false if the element is known 100% the element is not in the set, and returns true if the 

element is probably in the set [36].  

The complexity depends on the hash function being used. It has best case performance of 

O(1) and the worst case of O(N) [35]. We use the DaBlooms implementation of the bloom filter. 

It is written in pure C and is highly optimized. See https://github.com/bitly/dablooms. 

This is implemented as a network service, which returns a Boolean for every category or 

product ID. In our benchmarks, this service was very fast, with the network latency accounting 

for most of the time.  
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Figure 16: Bloom filter in action5 

3.3.6 Storage 

The final product data needs to be persisted onto disk for future querying and use. This 

was originally done with a MySQL database.  Unfortunately, there were several complications 

with this data store that caused us to switch to the NoSQL database MongoDB.  

Each product scrapped had different associated meta data.  For example, a TV might have 

meta data about the dimensions of the TV, pixel density and contrast levels, while a shirt might 

just have a single field for size “S/M/L/XL”.  This was accommodated for by having a separate 

“Products Metadata” table. It had a one-to-many relationship from the “Products” table.  This 

table grew several orders of magnitude faster than the products table.   

The tipping point of complexity happened when the SQL queries to store data were 

taking too long to complete. Each write and read operation required joining data between three 

                                                

5 Courtesy http://loveharbor.net/?tag=bloom-filter 
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separate tables. MySQL prevents race condition by using a blocking save approach. Only one 

operation is performed at a time. This was creating a bottleneck in the scrapping process.  

We switched to a NoSQL database, MongoDB. It sacrifices the ACID properties of 

MySQL for fast write speeds. It was able to achieve close to 2,000 writes/second on an EC2 

t2.micro instance, while MySQL was able to achieve about 550 writes/second. MongoDB 

achieves this by keeping all the data in memory (similar to the priority queue discussed in section 

3.3.2). It is optimized for write performance; all put requests are non-blocking and asynchronous. 

 MongoDB is a document-oriented store, which is completely schema-less [37]. This 

means that data  that needs to be stored does not need to be structured around a pre-determined 

format. Raw JSON data can be pushed onto it from the services without any preprocessing. This 

alleviates the complexities that were present in dealing with MySQL 

3.3.7 Search 

Initially we just used MySQL fuzzy queries for searching through the dataset. It was 

functional, but it was neither efficient nor fast. MongoDB does not have a fast and efficient 

search engine built in either. So we had to turn to other solutions.  

ElasticSearch is a “powerful open source search and analytics engine that makes data 

easy to explore.” [38]. It has power tokenizers and word stemmers (borrowed from the Apache 

Lucene library) which allow it to intelligently correct spelling errors and provide more accurate 

results. Similar to MongoDB, ElasticSearch is completely schema-less. Large JSON blobs can 

simply be dumped onto ElasticSearch, and it will build a reverse index of all the fields present. It 

also has fast faceting, which allows us to filter products by their metadata. Search queries similar 

to SQL can be written to search the dataset. A GUI query builder is bundled to make this easier. 
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Figure 17: ElasticSearch's Powerful Query Builder 

3. 4 Testing 

Testing distributed applications is not always an easy task. In the case of the proposed 

architecture, however, the system is fairly straightforward to test.  Since each service is discrete 

and has no dependencies, unit tests can be written to test and verify the functionality of each 

service.  In addition, queue statistics can be monitored to make sure queues are reasonable in size 

and when all queues are empty, the crawl is completed. 

Most of the problems in distributed systems similar to this usually arise at scale; unit 

testing would not able to catch those errors. We were able to catch and fix these errors by having 

a   special “error” queue for each service. When a job fails, the details of the failure along with a 
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full stack trace are pushed onto this queue for further analysis. The scrapper skips the failed jobs 

and proceeds with the next jobs in queue. 

3. 5 Results 

Measured results from the traversal and time taken are shown in the following table: 

 Wal-Mart Target 
Unique Items 1.92M 352,000 
Time Taken 63.9 hours 5 hours 
Product Categories 666 334 
Hierarchical Connections 786 324 

 

A frontend was built to explore the data aggregated. A full replica of the Wal-Mart and 

Target Product catalog was downloaded. The Wal-Mart data has been fully indexed can be 

explored that a GUI web interface at http://walmart.cmyk.io.   

Because we are storing all search indices in memory, we need a fairly robust server.  

Wal-Mart’s search indices alone are approximately 30GB in size. This requires an expensive 

‘m3.xlarge’ Amazon EC2 node which costs a little over $200 USD/month. In the interest of 

reducing costs, only Wal-Mart’s indices were built for exploration.  

Both Target and Wal-Mart data is analyzed in Chapter 4. 
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4. ONTOLOGY ANALYSIS  

4.1 Selected Ontologies and Analysis Approach 

Once we have implemented the software based on the described architectural model, we 

can start gathering and analyzing ontological data. Since the product ontology involves 

representing hierarchy between different objects, it can be represented as a graph, and graph 

algorithms can be applied to learn more. The following section compares and contrasts various 

facets of these ontologies. 

Wal-Mart, Amazon, Target and Kroger were the retailers considered for this study. Since 

aggregating and storing data from all these retailers is computationally expensive, two of these 

retailers were selected.   

Of the four, Amazon is different from the others because of its absence of physical brick-

and-mortar stores. Their product catalog is several times bigger than the others and their 

ontology is also much deeper and intricate. This is because they have the advantage of not being 

limited by physical store space.   

Wal-Mart and Kroger are the top two retailers in America [39]. Although Wal-Mart’s 

revenue is roughly five times that of Kroger, their grocery-related ontologies are similar and not 

different enough for an interesting comparison. 

Wal-Mart and Target were the top finalists. They both have an online e-commerce 

website as well as brick and mortar stores, but their ontologies differ. The entire product catalog 

along with their ontological classifications and meta data were extracted and stored locally. As 

mentioned in Section 3.3.2, Wal-Mart’s catalog of 1.92M unique items was mined in 63.9 hours 

while Targets 352K catalog was mined in 5hrs. 
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To analyze these two product ontologies, we used a combination of scientific computing 

libraries including:  

• Matplotlib – 2D plotting library in Python  

• NumPy – Numerical and scientific computing library in Python 

• GraphViz – Graph visualization for small graphs 

• NetworkX – Graph visualization for very large graphs 

• Gephi – Graph metrics 

4.2 High Level Comparison 

The first aspect to compare is the overall structure. To get a 50,000-foot view of how 

these ontologies look like, we plotted their category structure as a graph using NetworkX.  

In Figure 18 and 19, we visualize Wal-Mart’s and Target’s categories in their entirety. 

Each node represents a product category and edges between each node represent hyperlinks 

between the categories. This plot gives us immediate insight into the relationships operating 

between the categories.  
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Figure 18:  Wal-Mart Ontology: 666 Nodes, 786 Edges 

 
Figure 19: Target's Ontology: 334 Nodes, 324 Edges 
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There is no “top category” in either the Wal-Mart of Target ontology.  It is evident from 

simply viewing these graphs that Wal-Mart’s ontology is larger, deeper and more intricate than 

Target’s. Target’s graph is a hierarchical tree, no more than 3 layers deep. Wal-Mart’s, on the 

other hand, has up to 6 layers of sub-graphs.  

The Wal-Mart ontology exhibits multiple-parenthood; each child node can have one or 

more parents. There are even cyclical relationships within the ontology. For example: ‘Home 

Theater’ has a hyperlink to ‘Televisions’ and vice versa. The Target graph, on the other hand, is 

a simple tree structure, with each child item having only one parent. 

We continue to explore these graphs in the upcoming sections. 

4.3 Structure 

From the graphs illustrated in the previous section, we can visually compare their 

structure and complexities. But, for a more formal measure of complexity of the graph, we can 

compute the connections per node to its neighbors (degree of the graph) and the average distance 

between nodes (closeness centrality).  

The following are histograms of degree of nodes (both X and Y are on a log scale).  
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Figure 20: Wal-Mart’s Degree Rank 

 

Figure 21: Target's Degree Rank 
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The histograms show the degree on the Y-Axis and the number of items matching that 

degree on the X-Axis. 

To reduce complexity, the entire graph is treated as undirected. (If it were treated as 

directed, we would have to deal with a 2-dimentsional degree distribution due to in and out 

degrees).  From the graphs, we can see that the Wal-Mart ontology has a maximum degree of 42 

while the Target ontology has a maximum degree of only 13. This is in line with our previous 

hypothesis of Wal-Mart’s ontology being larger and more intricate (more connections, higher 

ranks). 

An interesting observation about both ontologies is how the rank rapidly decays (this is a 

log scale graph) as the degree increases. Most of the nodes seem to have between 1-5 

connections. Only a small percentage of nodes have high degrees. 

We can also measure the distance of every node in the graph to every other node using 

the closeness centrality measure. This value is computed using Gephi’s implementation of a 

technique formulated in Brande’s 2001 paper titled “A Faster Algorithm between Centrality” 

[40].  

The results for this computation are graphed in Figure 22 and 23. The X-Axis has the 

length of the graphs, while the Y-Axis shows the number of nodes which have that length.  From 

these graphs, we can tell that: 

• Average path length in Wal-Mart graph:  5.4 

• Average path length in Target graph:  3.1 

This gives us a measure to compare the relative depths of the graphs. We made a 

hypothesis in Section 4.2, simply by intuitively studying the visual structure of the graphs. The 

computed depths confirm that hypothesis that Wal-Mart’s ontology is deeper.  
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Figure 22: Closeness Centrality Distribution of Target 

 

 

Figure 23: Closeness Centrality Distribution of Wal-Mart 
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4.4 Clusters 

From Figures 18 and 19, we can hypothesize that Wal-Mart’s ontology has a higher 

networked community than Target’s. A ‘community’ in a network refers to a cluster of nodes 

bunched together because of similarity. To get a clearer representation of the communities and 

clusters, we have to use a force-directed layout to space out the graph.  

We use Gephi’s implementation of the Force Atlas 2 engine [41] to help us spread out the 

nodes and visualize communities. 

Wal-Mart’s ontology (Figure 24) looks busy. There are more clusters and fewer isolated 

communities. We can clearly observe the multiple-parenthood in Figure 24. This means that each 

category or product can have multiple categories as parents. This is an attempt by Wal-Mart to 

duplicate items across their taxonomy so that people will have an easier time finding them. 

Target’s ontology (Figure 25) , on the other hand, imposes a strict taxonomy. Cycles do 

not occur in the graph. Most of the clusters are islanded. Each category or product can have at 

most one parent. 
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Figure 24: Wal-Mart’s Clustered Ontology  

 
Figure 25: Target's Clustered Ontology 



49 

 

5.  CONCLUSIONS 

5.1 Summary 

This thesis has covered several topics rapidly building large, real world ontologies that 

can pave the road to the smart semantic world of tomorrow.  

In section 1.3 we specified the goals of this thesis. The primary aim was to describe a 

scalable architecture to aggregate product data and automatically build the product ontology 

from retailer websites. This is an architecture that allows parallelism without needing to worry 

about deadlocks or race conditions. In section 3, we described in detail the architecture and 

implementation details. 

A second aim was to actually implement this architecture and have it aggregate data on a 

few retailers. This was also achieved. The software was implemented and was used to aggregate 

data from Wal-Mart and Target. Appendix A, B, C and D provide code fragments which are 

central to the implementation. A fully indexed and searchable replica of the Wal-Mart catalog 

can be found at http://walmart.cmyk.io. 

The third aim was to study how to aggregate product data. In section 4, we viewed the 

aggregated data, structured the taxonomy as a graph and applied graph theory algorithms to 

formally compare and contrast the ontological differences between the two retailers. 

We were able to meet the required criteria for coverage and efficiency.  Coverage can be 

broken down into Semantic Coverage and Completeness of Mapping.  In terms of Semantic 

Coverage, the crawlers were able to do a breath first discovery of all the products in the retailer’s 

catalog. We captured all of the meta-data regarding entities, attributes and relationships available 

on the retailer’s website.  In terms of Completeness, we captured all of the entity, attribute, and 
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relationship instance data and successfully created a 1:1 mapping of the entire dataset for each 

retailer.  Thus, our traversal of the retail sites was met the completeness criteria. 

Efficiency can be further divided into Traversal Efficiency and Query Access Efficiency. 

Traversal Efficiency is the time to traverse the retail websites to create the product database.  We 

were able to build an architecture that (although IO bound) can scale linearly. The discrepancy 

between the crawl times between Wal-Mart and Target (see table in section 3.5) might seem 

contrary to this statement, but the difference was not a caused as a result of our architecture. 

Rather, the difference can be attributed to Target’s mobile website, which is faster to access and 

simpler to access. Regarding Query Access Efficiency, which is the time to access products in 

the ontology we built, based on benchmarks, querying the product database that was re-built 

locally was significantly faster than the native implementations available at either of the retailers.  

5.2 Potential Impact 

This project is just one of the steps needed to build the infrastructure that will be needed 

for computers to become situation aware in a smart semantic world.  

At present, there does not exist a publically available product ontology containing 

information from major retailers. We believe we have crossed the “structure chasm” [42] by 

providing an automated way to build such large structured ontologies of products quickly. 

Each product in this database has extensive metadata of descriptive attributes. This will 

allow future applications to query information in the database based on hierarchy and 

characteristics rather than just text. We are hoping the results of this thesis have broad-reaching 

implications in building the smart semantic world of tomorrow. 
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5.3 Future Work 

The results of this thesis provide foundational data to build complex applications in the 

fields discussed in Chapter 2:  ontologies and knowledge representation, Internet of things, and 

smart semantic worlds. Future work can be classified into short-term goals within the next year 

and long-term goals within the next 2-5 years. 

5.3.1 Short Term Goals 

5.3.1.1 Super Ontology 

 This thesis maps out the product catalogs of different retailers. But, to make this data 

usable in building smart objects, these retailer-specific ontologies would have to exist inside a 

common ontology. We are now faced with the challenge of analyzing different ontologies of 

different retailers and merging them into a super ontology.  

 There may be some parts of the ontologies that could never be correlated because of an 

ontological mismatch.  But, we believe that by associating these ontologies with the WordNet6 

hierarchy, we can come up with a more useful ontology that encompasses not just the word 

concepts that WordNet provides but also reaches down below the level of English worlds to 

identify product classes that humans recognize and use in their everyday lives. 

                                                

6 WordNet is an open lexical database developed at Princeton University – see  
http://wordnet.princeton.edu/ 
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5.3.1.2 Price Comparison and Product recommendation 

 The thesis provides a completely indexed catalog of all products. This can be used to 

build a comparative shopping application that suggests the cheapest retailer to buy a particular 

item.   

Since we have extensive metadata on each product, similar products could be clustered 

with an algorithm like k-nearest neighbor. Product recommendations system have also been built 

that use the semantics embedded within relationships and Bayesian networks to make accurate 

product recommendations [43].  

This mined data is very volatile. Prices fluctuate, new items are added and old items are 

removed on a daily basis. To remain current, this data has to be refreshed often. This volatile 

data would require constant monitoring to prevent the dataset from going stale. Some 

architectural changes would have to be made to make the scrape process real-time.  

5.3.1.2 Data Donation and Ontology-as-a-service 

We could create a web service that provides ontology-as-a-service over HTTP. A server, 

which responds to requests on product catalog and taxonomical relations, would be a boon to 

future developers. As far as the developer is concerned, this server would be a black box; they 

can start utilizing the data without having to be aware of implementation details, architectural 

choices or big data issues dealt with in this thesis. This data could also be provided in different 

formats:  JSON, XML and big data query languages like SPARQL. 

 This data could be donated to DBpedia. It would add to an already impressive amount of 

structured data they have already amassed. Copyright ramifications would have to be considered 
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before disseminating this information. The data in question contains material that may be 

copyrighted, and the retailers might not want their data to be openly available on the Internet.  

5.3.2 Long Term Goals 

5.3.2.1 Object Recognition 

This thesis provides us with a labeled, structured, and categorized database of product 

types along with their pictures. If we want computers to become situation-aware, so that they 

recognize and react to the world around them, then one next step would be to correlate object 

instances in the world around us with this database.  Recognizing objects around us in 3D space 

is a difficult problem as it involves image recognition. Attempts have made to recognize small 

numbers of simple objects with the Xbox Kinect with good accuracy [44] and large numbers of 

common objects with poorer accuracy via the Kindle/Amazon Fire Phone [14]. Large scale, 

accurate implementations are yet to be available.   

Virtual Worlds like Second Life we can represent the world around us. The can be used 

to build queryable mirror worlds in which the objects may be tagged with type and provide easy 

to use 3D representations.  One way to improve accuracy would be to learn the 3D object 

representation of an object inside a virtual world and correlate that knowledge with items in the 

real world.  This would be a fast way to a way to acquire a large collection 3D data. This brings 

up questions of representational adequacy – do these virtual world models have the ability to 

represent real world items accurately? 
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Advancements in this area would have significant implications in augmented reality. If 

objects around us could be recognized quickly, they can be overlaid with useful information. 

This goal is being made a reality by the Kindle/Amazon smart phone discussed in Chapter 2. 

5.3.2.2 Situational Awareness 

Once computers can accurately detect and tag all the objects around them, in addition to 

having a detailed ontology of products, they would need to become aware of their 3D positions 

in space. This knowledge would enable some interesting applications.  

Computers these days are GPS-enabled and can easily know where there are (or about 

where they are), but they cannot yet reason about their environment. Having this environmental 

data will allow computers to become situationally aware.  They would be able to reason and 

make assertions:  for example, I’m in a place that is surrounded by items, which are listed under 

kitchen appliances; ergo, I am probably in a kitchen. Product ontologies are a step toward this 

situation awareness ability.  When computers can use this kind of ontological data to deduce 

facts about their environment, they will be able to interact with humans and the world around 

them as first class citizens.  
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APPENDIX A – TAXONOMY SCRAPPER 

This code fragment is from the middleware data transformer. It traverses through the 

taxonomy graph and adds each category onto the category queue.  

 

/*jslint vars: true */ 

/*jslint browser: true, node: true*/ 

/*global angular, $, jQuery, google, alert*/ 

 

'use strict'; 

 

var winston = require('winston'), 

    taxonomy = require('./taxonomy.json'), 

    walmartCategories = taxonomy.categories, 

    traverse = require('traverse'), 

    kue = require('kue'), 

    redis = require('redis'); 

 

kue.redis.createClient = function() { 

    //var client = redis.createClient(6379, '130.184.104.66'); 

    var client = redis.createClient(6379, '127.0.0.1'); 

    client.auth('Typewriter39'); 

    return client; 
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}; 

 

Array.prototype.contains = function (obj) { 

    var i = this.length; 

    while (i--) { 

        if (this[i] === obj) { 

            return true; 

        } 

    } 

    return false; 

}; 

 

winston.loggers.add('walmart-crawler-stage1', { 

    console: { 

        level: 'info', 

        colorize: 'true', 

        label: 'walmart-crawler-stage1', 

        prettyPrint: true, 

        timestamp: true 

    } 

}); 

 

var print = winston.loggers.get('walmart-crawler-stage1'); 
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var getCategories = function () { 

    // Recursively traverse the walmart taxonomy json and return a list of categories 

    var categories = []; 

    walmartCategories.forEach(function (item) { 

        traverse(item).forEach(function (x) { 

            if (this.notLeaf && Object.keys(x).contains('id')) { 

                categories.push({ 

                    id: x.id.split("_").pop(), 

                    name: x.name, 

                    path: x.path 

                }); 

            } 

        }); 

    }); 

    return categories; 

}; 

 

var jobs = kue.createQueue(); 

 

var gracefulShutdown = function() { 

    print.info("Kill Detected, Waiting for jobs to finish"); 

    jobs.shutdown(function(err) { 
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        print.info("All jobs finished. Ending."); 

        process.exit(0); 

    }, 10000); 

}; 

 

process.on('SIGINT', gracefulShutdown); 

process.on('SIGTERM', gracefulShutdown); 

 

var stage1 = function () { 

    // For each category, push into [QUEUE - CATEGORY] 

    var categories = getCategories(); 

 

    categories.forEach(function(category) { 

        print.info("Pushing to Walmart Category Queue: " + category.name); 

        jobs.create('walmart-category', { 

             title: category.name, 

             id: category.id, 

             name: category.name, 

             path: category.path 

         }).priority('normal').attempts(1).save(); 

    }); 

 

    print.info("Finished pushing " + categories.length +  
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               " items into Walmart Category Queue"); 

} 

 

if (require.main === module) { 

    stage1(); 

} 
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APPENDIX B – CATEGORY SCRAPPER 

This code fragment is from the middleware data transformer. It traverses through each 

category and deduces  how many pages there are. Each page is then added onto the category 

page queue.  

 

var getCategoryPages = function (categoryID) { 

    var deferred = Q.defer(); 

    var categoryURL = "http://www.walmart.com/cp/" + categoryID + "?showAll=true"; 

    print.info(categoryID + " - Requesting: " + categoryURL); 

 

    request(categoryURL, function(error, response, body) { 

 

        if (error || response.statusCode !== 200) { 

            print.error(categoryID + " - Request Error : " + error); 

            deferred.reject(new Error(categoryID + " - Request Error")); 

 

        } else { 

            print.info(categoryID + " - Response From: " + response.request.uri.href); 

            var $ = cheerio.load(body); 

            var recordCount = $(".SPRecordCount").first().text().replace(/(\r\n|\n|\r)/gm," "); 

 

            //regex to match page and item count 
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            var recordCountRegex = /(\d+)-\s?(\d+)/; // number-<0 to N spaces>number 

            var productCountRegex = /(\d+)\stotal/; // number<space>total 

 

            //match those regex 

            var rcMatches = recordCountRegex.exec(recordCount); 

            var pcMatches = productCountRegex.exec(recordCount); 

 

            //if there are matches 

            if ((rcMatches !== null) && 

                (rcMatches.length === 3) && 

                (pcMatches !== null)) { 

                var productsPerPage = (rcMatches[2] - rcMatches[1]) + 1; 

                var totalProducts = pcMatches[1]; 

                var totalPages = Math.ceil(totalProducts / productsPerPage); 

                var meta = { 

                    categoryID: categoryID, 

                    productsPerPage: productsPerPage, 

                    totalProducts: totalProducts, 

                    totalPages: totalPages, 

                    isModern: false, //special key for category pages with modern faceting and filtering, 

                    pages: [] 

                }; 
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                // the new walmart category pages have a special 'Refine by' drop down missing in 

                // old ones. So detect that and process page accordingly. 

 

                if($(".dropHeader").text().indexOf("Refine by") !== -1) { 

                    meta.isModern = true; 

                    var redirURL = url.parse(response.request.uri.href); 

                    redirURL = redirURL.protocol + "//" + redirURL.host + redirURL.pathname; 

                    for (var i = 0; i < totalPages; i += 1) { 

                        var pageNumber = i * productsPerPage; 

                        var pageURL = redirURL + "?ic=" + productsPerPage +  "_" + pageNumber; 

                        meta.pages.push(pageURL); 

                    } 

                    deferred.resolve(meta); 

 

                } else { 

                    for (var i = 0; i < totalPages; i += 1) { 

                        var pageURL = "http://www.walmart.com/cp/" + categoryID + 

"?showAll=true&bti=" + i; 

                        meta.pages.push(pageURL); 

                    } 

                    deferred.resolve(meta); 

                } 
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                print.info(meta); 

            } else { 

                print.error(categoryID + " - Error getting page count from: ->" + recordCount + "<-"); 

                deferred.reject(new Error(categoryID + " - Error getting Page Count")); 

            } 

        } 

 

    }); 

    return deferred.promise; 

} 



67 

 

APPENDIX C – CATEGORY PAGE SCRAPPER 

This code fragment is from the middleware data transformer. It traverses through each 

category page and extracts all the items on the page. Each item is then added onto the product 

queue.  

 

var getProductsInPage = function (categoryPage) { 

    var deferred = Q.defer(); 

    var categoryID = categoryPage.category.id + "_" + categoryPage.pageNumber; 

    var categoryURL = categoryPage.url; 

    print.info(categoryID + " - Requesting: " + categoryURL); 

 

    request(categoryURL, function(error, response, body) { 

 

        if (error || response.statusCode !== 200) { 

            print.error(categoryID + " - Request Error : " + error); 

            deferred.reject(new Error(categoryID + " - Request Error")); 

        } else { 

            print.info(categoryID + " - Response From: " + response.request.uri.href); 

            var $ = cheerio.load(body); 

            var products = $(".ListItemLink"); 

 

            if (products.length < 1) { 
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                deferred.reject(new Error(categoryID + " - No Products found on page")); 

            } else { 

                var meta = { 

                    categoryID: categoryID, 

                    products: [], 

                }; 

                products.each(function(i, elem) { 

                    var productName = $(this).text(); 

                    var productID = $(this).attr("href").split("/").pop(); 

                    meta.products.push({ 

                        name: productName, 

                        id: productID 

                    }); 

                }); 

                // print.info(meta); 

                print.info(categoryID + " - Found " + meta.products.length + " products "); 

                deferred.resolve(meta); 

            } 

        } 

    }); 

    return deferred.promise; 

} 
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APPENDIX D – PRODUCT SCRAPPER 

This code fragment is from the middleware data transformer. It traverses through each 

product page and extracts all available item metadata. This structured information is then sent to 

a search indexer where an inverse document frequency table is built. 

 

var getProductMeta = function (product) { 

    var deferred = Q.defer(); 

    var productURL = "http://www.walmart.com/ip/" + product.id; 

 

    print.info(product.id + " - Requesting: " + productURL); 

 

    request(productURL, function(error, response, body) { 

        if (error || response.statusCode !== 200) { 

            print.error(product.id + " - Request Error : " + error); 

            deferred.reject(new Error(product.id + " - Request Error")); 

        } else { 

            print.info(product.id + " - Response From: " + response.request.uri.href); 

            var $ = cheerio.load(body); 

            var productName = $("h1.productTitle").text(); 

 

            var price = $(".bigPriceText1").first().text() + $(".smallPriceText1 ").first().text(); 

            if (price) { 
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                price = price.replace("$","").toNumber(); 

            } else { 

                price = null; 

            } 

 

            var rating = $("#BVRRSourceID [itemprop=ratingValue]").html(); 

            if (rating) { 

                rating = rating.toNumber(); 

            } 

 

            var reviews = $("#BVRRSourceID [itemprop=reviewCount]").html(); 

            if (reviews) { 

                reviews = reviews.toNumber(); 

            } 

 

            var image = $("#mainImage").attr("src"); 

            var description = $("#prodInfoSpaceBottom").text().replace(/(\r\n|\n|\r)/gm," 

").replace(/\s+/g," ").trim(); 

 

            var relatedItems = $("#irs_bottom a"); 

 

            var specs = {}; 

            $(".SpecTable tr").each(function(i, elem) { 
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                var tds = $(this).find('td'); 

                var key = tds.first().text().trim().replace(":", ""); 

                var value = tds.last().text().trim(); 

                specs[key] = value; 

            }); 

 

            var meta = { 

                name: productName, 

                id: product.id, 

                price: price, 

                reviews: reviews, 

                rating: rating, 

                image: image, 

                specs: specs, 

                description: description 

            } 

 

            print.info(meta); 

            deferred.resolve(meta); 

        } 

    }); 

    return deferred.promise; 

} 
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APPENDIX E – ADDITIONAL ONTOLOGY DIAGRAMS  

Following are additional supplementary diagrams of the Wal-Mart and Target ontologies. 

Unlike the ontology diagrams illustrated earlier, the nodes in these graphs have been labeled. 

Some close ups shots are also included. 

 

 

Figure 26: Labeled Target Ontology 
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Figure 27: Labeled Wal-Mart Ontology 
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Figure 28: Target - Women's Apparel 

 

Figure 29: Wal-Mart - Women's Apparel 
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