
INSIDE
the

FFT BLACK
BOX

Serial and Parallel Fast
Fourier Transform

Algorithms

C O M P U T A T I O N A L M A T H E M A T I C S S E R I E S

© 2000 by CRC Press LLC

INSIDE
the

FFT BLACK
BOX

Serial and Parallel Fast
Fourier Transform

Algorithms

Eleanor Chu
University of Guelph

Ontario, Canada

Alan George
University of Waterloo

Ontario, Canada

Boca Raton London New York Washington, D.C.
CRC Press

C O M P U T A T I O N A L M A T H E M A T I C S S E R I E S

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, or visit our Web site at
www. crcpress . com

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

© 2000 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0270-6

Library of Congress Card Number 99-048017
Printed in the United States of America 2 3 4 5 6 7 8 9 0

Printed on acid-free Daoer

http://www.crcpress.com

Contents

I Preliminaries

1 An Elementary Introduction to the Discrete Fourier Transform
1.1 ComplexNumbers

1.3 Analyzing the Series

1.5 Filtering a Signal
1.6 How Often Does One Sample?
1.7 Notes and References

1.2 Trigonometric Interpolation

1.4 Fourier Frequency Versus Time Frequency

2 Some Mathematical and Computational Preliminaries
2.1 Computing the Twiddle Factors

2.2.1 Real floating-point operation (FLOP) count
2.2.2 Special considerations in computing the FFT

2.3 Expressing Complex Multiply-Adds in Terms of Real Multiply-Adds
2.4 Solving Recurrences to Determine an Unknown Function

2.2 Multiplying Two Complex Numbers

II Sequential FFT Algorithms

3 The Divide-and-Conquer Paradigm and Two Basic FFT Algorithms
3.1 Radix-2 Decimation-In-Time (DIT) FFT

3.1.1 Analyzing the arithmetic cost
3.2 Radix-2 Decimation-In-Frequency (DIF) FFT

3.2.1 Analyzing the arithmetic cost
3.3 Notes and References

4 Deciphering the Scrambled Output from In-Place FFT Computation
4.1 Iterative Form of the Radix-2 DIF FFT

© 2000 by CRC Press LLC

4.2 Applying the Iterative DIF FFT to a N = 32 Example
4.3 Storing and Accessing Pre-computed Twiddle Factors
4.4 A Binary Address Based Notation and the Bit-Reversed Output

4.4.1
4.4.2 Deciphering the scrambled output
Shorthand Notation for the Twiddle Factors

Binary representation of positive decimal integers

4.5

5 Bit-Reversed Input to the Radix-2 DIF FFT
5.1 The Effect of Bit-Reversed Input
5.2 A Taxonomy for Radix-2 FFT Algorithms
5.3 Shorthand Notation for the DIFRN Algorithm

5.3.1 Shorthand notation for the twiddle factors
5.3.2

5.5 Notes and References

Applying algorithm 5.2 to a N = 32 example
5.4 Using Scrambled Output for Input to the Inverse FFT

6 Performing Bit-Reversal by Repeated Permutation of Intermediate
Results
6.1 Combining Permutation with Butterfly Computation

6.1.1 The ordered radix-2 DIFNN FFT
6.1.2 The shorthand notation

6.2 Applying the Ordered DIF FFT to a N = 32 Example
6.3 In-Place Ordered (or Self-Sorting) Radix-2 FFT Algorithms

7 An In-Place Radix-2 DIT FFT for Input in Natural Order
7.1 Understanding the Recursive DIT FFT and its In-Place Implementation
7.2 Developing the Iterative In-Place DIT FFT

7.2.1 Identifying the twiddle factors in the DIT FFT
7.2.2 The pseudo-code program for the DITNR FFT algorithm
Shorthand Notation and a N = 32 Example 7.3

8 An In-Place Radix-2 DIT FFT for Input in Bit-Reversed Order
8.1 Developing the Iterative In-Place DITRN FFT

8.1.1 Identifying the twiddle factors in the D I TRN FFT
8.1.2 The pseudo-code program for the DITRN FFT
Shorthand Notation and a N = 32 Example 8.2

9 An Ordered Radix-2 DIT FFT
9.1 Deriving the (Ordered) DITNN FFT From Its Recursive Definition
9.2 The Pseudo-code Program for the DITNN FFT
9.3 Applying the (Ordered) DITNN FFT to a N = 32 Example

© 2000 by CRC Press LLC

10 Ordering Algorithms and Computer Implementation of Radix-2 FFTs
10.1 Bit-Reversal and Ordered FFTs
10.2 Perfect Shuffle and In-Place FFTs

10.2.1 Combining a software implementation with the FFT
10.2.2 Data adjacency afforded by a hardware implementation

10.3 Reverse Perfect Shuffle and In-Place FFTs
10.4 Fictitious Block Perfect Shuffle and Ordered FFTs

10.4.1 Interpreting the ordered DIFNN FFT algorithm
10.4.2 Interpreting the ordered DITNN FFT algorithm

11 The Radix-4 and the Class o f R a d i x - 2s FFTs
11.1 The Radix-4 DIT FFTs

11.1.1 Analyzing the arithmetic cost
11.2 The Radix-4 DIF FFTs
11.3 The Class of Radix-2s DIT and DIF FFTs

12 The Mixed-Radix and Split-Radix FFTs
12.1 The Mixed-Radix FFTs
12.2 The Split-Radix DIT FFTs

12.2.1 Analyzing the arithmetic cost
12.3 The Split-Radix DIF FFTs
12.4 Notes and References

13 FFTs for Arbitrary N
13.1 The Main Ideas Behind Bluestein’s FFT

13.1.1 DFT and the symmetric Toeplitz matrix-vector product
13.1.2 Enlarging the Toeplitz matrix to a circulant matrix
13.1.3 Enlarging the dimension of a circulant matrix to M = 2s

13.1.4 Forming the M × M circulant matrix-vector product
13.1.5 Diagonalizing a circulant matrix by a DFT matrix

13.2 Bluestein’s Algorithm for Arbitrary N

14 FFTs for Real Input
14.1 Computing Two Real FFTs Simultaneously
14.2 Computing a Real FFT
14.3 Notes and References

15 FFTs for Composite N
15.1 Nested-Multiplication as a Computational Tool

15.1.1 Evaluating a polynomial by nested-multiplication
15.1.2 Computing a DFT by nested-multiplication
A 2D Array as a Basic Programming Tool 15.2

© 2000 by CRC Press LLC

15.2.1 Row-oriented and column-oriented code templates
15.3 A 2D Array as an Algorithmic Tool

15.3.1 Storing a vector in a 2D array
15.3.2 Use of 2D arrays in computing the DFT

15.4 An Efficient FFT for N = P × Q
15.5 Multi-Dimensional Array as an Algorithmic Tool

15.5.1 Storing a 1D array into a multi-dimensional array
15.5.2 Row-oriented interpretation of v-D arrays as 2D arrays
15.5.3 Column-oriented interpretation of v-D arrays as 2D arrays
15.5.4 Row-oriented interpretation of v-D arrays as 3D arrays
15.5.5 Column-oriented interpretation of v-D arrays as 3D arrays
Programming Different v-D Arrays From a Single Array
15.6.1 Support from the FORTRAN programming language
15.6.2 Further adaptation

15.7 An Efficient FFT for N = NO x N1 × ... × Nv-l

15.8 Notes and References

15.6

16 Selected FFT Applications
16.1 Fast Polynomial Multiplication
16.2 Fast Convolution and Deconvolution
16.3 Computing a Toeplitz Matrix-Vector Product
16.4 Computing a Circulant Matrix-Vector Product
16.5 Solving a Large Circulant Linear System
16.6 Fast Discrete Sine Transforms
16.7 Fast Discrete Cosine Transform
16.8 Fast Discrete Hartley Transform
16.9 Fast Chebyshev Approximation
16.10 Solving Difference Equations

III Parallel FFT Algorithms

17 Parallelizing the FFTs: Preliminaries on Data Mapping
17.1 Mapping Data to Processors
17.2 Properties of Cyclic Block Mappings
17.3 Examples of CBM Mappings and Parallel FFTs

18 Computing and Communications on Distributed-Memory Multipro-
cessors
18.1 Distributed-Memory Message-Passing Multiprocessors
18.2 The d-Dimensional Hypercube Multiprocessors

18.2.1 The subcube-doubling communication algorithm
18.2.2 Modeling the arithmetic and communication cost
18.2.3 Hardware characteristics and implications on algorithm design

© 2000 by CRC Press LLC

© 2000 by CRC Press LLC

18.3 Embedding a Ring by Reflected-Binary Gray-Code
18.4 A Further Twist-Performing Subcube-Doubling Communications on

a Ring Embedded in a Hypercube
18.5 Notes and References

18.5.1 Arithmetic time benchmarks
18.5.2 Unidirectional times on circuit-switched networks
18.5.3 Bidirectional times on full-duplex channels

19 Parallel FFTs without Inter-Processor Permutations
19.1 A Useful Equivalent Notation: I PID ILocal M

19.1.1 Representing data mappings for different orderings
19.2 Parallelizing In-Place FFTs Without Inter-Processor Permutations

19.2.1 Parallel DIFNR and DITNR algorithms
19.2.2 Interpreting the data mapping for bit-reversed output
19.2.3 Parallel DIFRN and DITRN algorithms

19.3 Analysis of Communication Cost
19.4 Uneven Distribution of Arithmetic Workload

19.2.4 Interpreting the data mapping for bit-reversed input

20 Parallel FFTs with Inter-Processor Permutations
Improved Parallel DIFNR and DITNR Algorithms
20.1.1 The idea and a modified shorthand notation

20.1

20.1.2 The complete algorithm and output interpretation
20.1.3 The use of other initial mappings

20.2 Improved Parallel DIFRN and DITRN Algorithms
20.3 Further Technical Details and a Generalization

21 A Potpourri of Variations on Parallel FFTs
21.1 Parallel FFTs without Inter-Processor Permutations

21.1.1 The PID in Gray code
21.1.2 Using an ordered FFT on local data
21.1.3 Using radix-4 and split-radix FFTs
21.1.4 FFTs for Connection Machines

21.2 Parallel FFTs with Inter-Processor Permutations
21.2.1 Restoring the initial map at every stage
21.2.2 Pivoting on the right-most bit in local M
21.2.3 All-to-all inter-processor communications
21.2.4 Maintaining specific maps for input and output

21.3 A Summary Table
21.4 Notes and References

22 Further Improvement and a Generalization of Parallel FFTs
22.1 Algorithms with Specific Mappings for Ordered Output

© 2000 by CRC Press LLC

22.1.1 Algorithm I
22.1.2 Algorithm II
A General Algorithm and Communication Complexity Results
22.2.1 Phase I of the general algorithm
22.2.2 Phase II of the general algorithm

22.2

23 Parallelizing Two-dimensional FFTs
23.1 The Computation of Multiple 1D FFTs
23.2 The Sequential 2D FFT Algorithm

23.2.1 Programming considerations
23.2.2 Computing a single 1D FFT stored in a 2D matrix
23.2.3 Sequential algorithms for matrix transposition

23.3 Three Parallel 2D FFT Algorithms for Hypercubes
23.3.1 The transpose split (TS) method

23.3.3 The 2D block distributed method

The Generalized 2D Block Distributed (GBLK) Method for Subcube-
grids and Meshes

Configuring an Optimal Physical Mesh for Running Hypercube (Subcube-
grid) Programs
23.5.1 Minimizing multi-hop penalty
23.5.2 Minimizing traffic congestion
23.5.3 Minimizing channel contention on a circuit-switched network

23.6 Pipelining Subcube-doubling Communications on All Hypercube
Channels

23.7 Changing Data Mappings During Parallel 2D FFT Computation
23.8 Parallel Matrix Transposition By Changing Data Mapping
23.9 Notes and References

23.3.2 The local distributed (LD) method

23.3.4 Transforming a rectangular signal matrix on hypercubes
23.4

23.4.1 Running hypercube (subcube-grid) programs on meshes
23.5

24 Computing and Distributing Twiddle Factors in the Parallel FFTs
Twiddle Factors for Parallel FFT Without Inter-Processor
Permutations
Twiddle Factors for Parallel FFT With Inter-Processor
Permutations

24.1

24.2

IV Appendices

A Fundamental Concepts of Efficient Scientific Computation
Time and Space Consumed by the DFT and FFT Algorithms
A.l.l Relating operation counts to execution times
A.1.2 Relating MFLOPS to execution times and operation counts

A.l

A.2 Comparing Algorithms by Orders of Complexity
A.2.1 An informal introduction via motivating examples
A.2.2 Formal notations and terminologies
A.2.3 The big-Oh and big-Omega notations
A.2.4 Some common uses of the Θ-notation

B Solving Recurrence Equations by Substitution
B.l Deriving Recurrences From a Known Function
B.2 Solving Recurrences to Determine an Unknown Function
B.3 Mathematical Summation Formulas
B.4 Solving Generalized Recurrence Equations
B.5 Recurrences and the Fast Fourier Transforms

Bibliography

© 2000 by CRC Press LLC

Preface

The fast Fourier transform (FFT) algorithm, together with its many successful applica-
tions, represents one of the most important advancements in scientific and engineering
computing in this century. The wide usage of computers has been instrumental in
driving the study of the FFT, and a very large number of articles have been written
about the algorithm over the past thirty years. Some of these articles describe modi-
fications of the basic algorithm to make it more efficient or more applicable in various
circumstances. Other work has focused on implementation issues, in particular, the de-
velopment of parallel computers has spawned numerous articles about implementation
of the FFT on multiprocessors. However, to many computing and engineering profes-
sionals, the large collection of serial and parallel algorithms remain hidden inside the
FFT black box because: (1) coverage of the FFT in computing and engineering text-
books is usually brief, typically only a few pages are spent on the algorithmic aspects
of the FFT; (2) cryptic and highly variable mathematical and algorithmic notation; (3)
limited length of journal articles; and (4) important ideas and techniques in designing
efficient algorithms are sometimes buried in software or hardware-implemented FFT
programs, and not published in the open literature.

This book is intended to help rectify this situation. Our objective is to bring these
numerous and varied ideas together in a common notational framework, and make the
study of FFT an inviting and relatively painless task. In particular, the book employs
a unified and systematic approach in developing the multitude of ideas and computing
techniques employed by the FFT, and in so doing, it closes the gap between the often
brief introduction in textbooks and the equally often intimidating treatments in the
FFT literature. The unified notation and approach also facilitates the development of
new parallel FFT algorithms in the book.

This book is self-contained at several levels. First, because the fast Fourier trans-
form (FFT) is a fast “algorithm” for computing the discrete Fourier transform (DFT),
an “algorithmic approach” is adopted throughout the book. To make the material fully
accessible to readers who are not familiar with the design and analysis of computer al-
gorithms, two appendices are given to provide necessary background. Second, with the
help of examples and diagrams, the algorithms are explained in full. By exercising the
appropriate notation in a consistent manner, the algorithms are explicitly connected
to the mathematics underlying the FFT—this is often the “missing link” in the liter-
ature. The algorithms are presented in pseudo-code and a complexity analysis of each
is provided.

© 2000 by CRC Press LLC

Features of the book

• The book is written to bridge the gap between textbooks and literature. We believe
this book is unique in this respect. The majority of textbooks largely focus on the
underlying mathematical transform (DFT) and its applications, and only a small part
is devoted to the FFT, which is a fast algorithm for computing the DFT.
• The book teaches up-to-date computational techniques relevant to the FFT. The

book systematically and thoroughly reviews, explains, and unifies FFT ideas from
journals across the disciplines of engineering, mathematics, and computer science from
1960 to 1999. In addition, the book contains several parallel FFT algorithms that are
believed to be new.
• Only background found in standard undergraduate mathematical science, computer

science, or engineering curricula is required. The notations used in the book are fully
explained and demonstrated by examples. As a consequence, this book should make
FFT literature accessible to senior undergraduates, graduate students, and computing
professionals. The book should serve as a self-teaching guide for learning about the
FFT. Also, many of the ideas discussed are of general importance in algorithm design
and analysis, efficient numerical computation, and scientific programming for both
serial or parallel computers.

Use of the book

It is expected that this book will be of interest and of use to senior undergraduate
students, graduate students, computer scientists, numerical analysts, engineering pro-
fessionals, specialists in parallel and distributed computing, and researchers working in
computational mathematics in general.

The book also has potential as a supplementary text for undergraduate and graduate
courses offered in mathematical science, computer science, and engineering programs.
Specifically, it could be used for courses in scientific computation, numerical analysis,
digital signal processing, the design and analysis of computer algorithms, parallel algo-
rithms and architectures, parallel and distributed computing, and engineering courses
treating the discrete Fourier transform and its applications.

Scope of the book

The book is organized into 24 chapters and 2 appendices. It contains 97 figures and 38
tables, as well as 25 algorithms presented in pseudo-code, along with numerous code
segments. The bibliography contains more than 100 references dated from 1960 to
1999. The chapters are organized into three parts.

I. Preliminaries Part I presents a brief introduction to the discrete Fourier trans-
form through a simple example involving trigonometric interpolation. This part is
included to make the book self-contained. Some details about floating point arithmetic
as it relates to FFT computation is also included in Part I.

II. Sequential FFT Algorithms This part contains fourteen relatively short
chapters (3 through 16). Although the FFT, like binary search and quicksort, is com-
monly used in textbooks to illustrate the divide and conquer paradigm and recursive
algorithms, the FFT has a unique feature: the application of the basic FFT algorithm

© 2000 by CRC Press LLC

to “naturally ordered” input, if performed “in place,” yields output in “bit-reversed”
order. While this feature may be taken for granted by FFT insiders, it is often not
addressed in detail in textbooks. Again, partly because of the lack of notation linking
the underlying mathematics to the algorithm, and because it is understood by FFT
professionals, this aspect of the FFT is either left unexplained or explained very briefly
in the literature. This phenomenon, its consequences, and how to deal with it, is one
of the topics of Part II.

Similarly, the basic FFT algorithm is generally introduced as most efficient when
applied to vectors whose length N is a power of two, although it can be made even
more efficient if N is a power of four, and even more so if it is a power of eight, and so
on. These situations, as well as the case when N is arbitrary, are considered in Part
II. Other special situations, such as when the input is real rather than complex, and
various programming “tricks,” are also considered in Part II, which concludes with a
chapter on selected applications of FFT algorithms.

III. Parallel FFT Algorithms The last part deals with the many and varied
issues that arise in implementing FFT algorithms on multiprocessor computers. Part
III begins with a chapter that discusses the mapping of data to processors, because the
designs of the parallel FFTs are mainly driven by data distribution, rather than by the
way the processors are physically connected (through shared memory or by way of a
communication network.) This is a feature not shared by parallel numerical algorithms
in general.

Distributed-memory multiprocessors are discussed next, because implementing the
algorithms on shared-memory architecture is straightforward. The hypercube multi-
processor architecture is particularly considered because it is so naturally compatible
with the FFT algorithm. However, the material discussed later does not specifically
depend on the hypercube architecture.

Following that, a series of chapters contains a large collection of parallel algorithms,
including some that are believed to be new. All of the algorithms are described using
a common notation that has been derived from one introduced in the literature. As in
part II, dealing with the bit-reversal phenomenon is considered, along with balancing
the computational load and avoiding communication congestion. The last two chapters
deal with two-dimensional FFTs and the task of distributing the “twiddle factors”
among the individual processors.

Appendix A contains basic information about efficient computation, together with
some fundamentals on complexity notions and notation. Appendix B contains tech-
niques that are helpful in solving recurrence equations. Since FFT algorithms are
recursive, analysis of their complexity leads naturally to such equations.

Acknowledgments

This book resulted from our teaching and research activities at the University of Guelph
and the University of Waterloo. We are grateful to both Universities for providing
the environment in which to pursue these activities, and to the Natural Sciences and
Engineering Research Council of Canada for our research support. At a personal level,
Eleanor Chu owes a special debt of gratitude to her husband, Robert Hiscott, for his
understanding, encouragement, and unwavering support.

© 2000 by CRC Press LLC

We thank the reviewers of our book proposal and draft manuscript for their helpful
suggestions and insightful comments which led to many improvements.

Our sincere thanks also go to Robert Stern (Publisher) and his staff at CRC Press
for their enthusiastic support of this project.

Eleanor Chu
Guelph, Ontario

Alan George
Waterloo, Ontario

© 2000 by CRC Press LLC

Part I

Preliminaries

© 2000 by CRC Press LLC

Chapter 1

An Elementary Introduction

to the Discrete Fourier

Transform

This chapter is intended to provide a brief introduction to the discrete Fourier transform
(DFT). It is not intended to be comprehensive; instead, through a simple example, it
provides an illustration of how the computation that is the subject of this book arises,
and how its results can be used. The DFT arises in a multitude of other contexts
as well, and a dozen more DFT-related applications, together with information on a
number of excellent references, are presented in Chapter 16 in Part II of this book.
Readers familiar with the DFT may safely skip this chapter.

A major application of Fourier transforms is the analysis of a series of observations:
x�, � = 0, . . . , N−1. Typically, N will be quite large: 10000 would not be unusual. The
sources of such observations are many: ocean tidal records over many years, commu-
nication signals over many microseconds, stock prices over a few months, sonar signals
over a few minutes, and so on. The assumption is that there are repeating patterns
in the data that form part of the x�. However, usually there will be other phenomena
which may not repeat, or repeat in a way that is not discernably cyclic. This is called
“noise.” The DFT helps to identify and quantify the cyclic phenomena. If a pattern
repeats itself m times in the N observations, it is said to have Fourier frequency m.

To make this more specific, suppose one measures a signal from time t = 0 to
t = 680 in steps of 2.5 seconds, giving 273 observations. The measurements might
appear as shown in Figure 1.1. How does one make any sense out of it? As shown
later, the DFT can help.

1.1 Complex Numbers

Effective computation of the DFT relies heavily on the use of complex numbers, so it is
useful to review their basic properties. This material is elementary and probably well-
known to most readers of this book, but it is included for completeness. Historically,
complex numbers were introduced to deal with polynomial equations, such as x2 +1 =

© 2000 by CRC Press LLC

Figure 1.1 Example of a noisy signal.

0 50 100 150 200 250 300
15

10

5

0

5

10

0, which have no real solutions. Informally, they can be defined as the set C of all
“numbers” of the form a + jb where a and b are real numbers and j2 = −1.

Addition, subtraction, and multiplication are performed among complex numbers
by treating them as binomials in the unknown j and using j2 = −1 to simplify the
result. Thus

(a + jb) + (c + jd) = (a + c) + j(b + d)

and
(a + jb) × (c + jd) = (ac− bd) + j(ad + bc).

For the complex number z = a+jb, a is the real part of z and b is the imaginary part of
z. The zero element of C is 0 + 0i, and the additive inverse of z = a+ jb is −a+ i(−b).
The multiplicative inverse z−1 is

z−1 =
a− jb

a2 + b2
.

The complex conjugate of z = a + jb is denoted by z̄ and is equal to a − jb. The
modulus of z, denoted by |z |, is

√
zz̄ =

√
a2 + b2.

Some additional facts that will be used later are

ez = e(a+jb) = eaejb and ejb = cos b + j sin b.

Thus, Re(ez) = ea cos b and Im(z) = ea sin b.

© 2000 by CRC Press LLC

Just as a real number can be pictured as a point lying on a line, a complex number
can be pictured as a point lying in a plane. With each complex number a+ jb one can
associate a vector beginning at the origin and terminating at the point (a, b). These
notions are depicted in Figure 1.2.

Figure 1.2 Visualizing complex numbers.

Instead of the pair (a, b), one can use the “length” (modulus) together with the
angle the number makes with the real axis. Thus, a+jb can be represented as r cos θ+
jr sin θ = rejθ, where r =|z |=

√
a2 + b2 and θ = arctan(b/a). This representation of a

complex number is depicted in Figure 1.3.

Figure 1.3 Polar representation of a complex number.

Multiplication of complex numbers in polar form is straightforward: if z1 = a+jb =
r1e

jθ1 and z2 = c + jd = r2e
jθ2 , then

z1z2 = r1r2e
j(θ1+θ2).

The moduli are multiplied together, and the angles are added. Note that if z = ejθ,
then |z |= 1 for all values of θ.

1.2 Trigonometric Interpolation

Suppose a function f(θ) is defined on the interval (0, 2π), with f assumed to be periodic
on the interval; thus, f(θ) = f(θ ± 2π).

© 2000 by CRC Press LLC

Now consider constructing a trigonometric polynomial p(θ) to interpolate f(θ) of
the form

p(θ) = a0 +
n∑
k=1

ak cos kθ + bk sin kθ.(1.1)

This function has 2n+1 coefficients, so it should be possible to interpolate f at 2n+1
points. In the applications considered in this book, the points at which to interpolate
are always equally spaced on the interval:

θ� =
2�π

2n + 1
, � = 0, 1, . . . , 2n.(1.2)

Let x� = f(θ�), and consider an example with n = 2. Then the interpolation conditions
are x� = p(θ�), or

x� = a0 + a1 cos θ� + b1 sin θ� + a2 cos 2θ� + b2 sin 2θ�, � = 0, 1, . . . , 4.

This leads to the system of equations
1 cos θ0 sin θ0 cos 2θ0 sin 2θ0

1 cos θ1 sin θ1 cos 2θ1 sin 2θ1

1 cos θ2 sin θ2 cos 2θ2 sin 2θ2

1 cos θ3 sin θ3 cos 2θ3 sin 2θ3

1 cos θ4 sin θ4 cos 2θ4 sin 2θ4




a0

a1

b1
a2

b2

 =


x0

x1

x2

x3

x4

 .

Recall that ejθ = cos θ + j sin θ, which implies that

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j
.

Using these in (1.1) with n = 2 yields

p(θ) = a0 +
(a1

2

)
ejθ +

(a1

2

)
e−jθ +

(
b1
2j

)
ejθ −

(
b1
2j

)
e−jθ

+
(a2

2

)
e2jθ +

(a2

2

)
e−2jθ +

(
b2
2j

)
e2jθ −

(
b2
2j

)
e−2jθ

=
(
a2 + j b2

2

)
e−2jθ +

(
a1 + j b1

2

)
e−jθ

+a0 +
(
a1 − j b1

2

)
ejθ +

(
a2 − j b2

2

)
e2jθ.

Giving the coefficients names corresponding to the powers of ejθ yields

p(θ) = X−2e
−2jθ + X−1e

−jθ + X0 + X1e
jθ + X2e

2jθ.(1.3)

Note that the coefficients appear in complex conjugate pairs. When the x� are real, it
is straightforward to show that this is true in general. (See the next section.)

Recall (see (1.2)) that the points at which interpolation occurs are evenly spaced;
that is, θ� = �θ1. Let ω = ejθ1 = e

2jπ
2n+1 . Then all ejθ� can be expressed in terms of ω:

ejθ� = ej�θ1 = ω�, � = 0, 1, . . . , 2n.

© 2000 by CRC Press LLC

Also, note that ω� = ω�±(2n+1) and ω−� = ω−�±(2n+1). For the example with n = 2,
ω = e

2jπ
5 , and the interpolation condition at θ� in (1.3) is

f(θ�) = x� = p(θ�) = X−2ω
−2� + X−1ω

−� + X0ω
0 + X1ω

� + X2ω
2�.

Using the fact that ω−� = ω(2n+1−�), and renaming the coefficients similarly (X−� →
X2n+1−�), the interpolation condition at x� becomes

x� = X0 + X1ω
� + X2ω

2� + X3ω
3� + X4ω

4�,

which has to be satisfied for � = 0, 1, . . . , 4 :
1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16




X0

X1

X2

X3

X4

 =


x0

x1

x2

x3

x4

 .(1.4)

This can be written as a matrix equation

MX = x.

It will be useful to have some additional properties of ω. First note that

1 + ω + ω2 + . . . + ω2n = 0.

This can be established by observing that the expression on the left side is a geometric
sum equal to

1 − ω2n+1

1 − ω
,

and this quantity is zero because ω2n+1 = 1. For integers r and s one can show in a
similar way that

2n∑
k=0

ω(kr−ks) =
{

0 if r �= s

2n + 1 if r = s.
(1.5)

These simple results make solving MX = x easy. To begin, let

M =


1 1 1 1 1
1 ω̄ ω̄2 ω̄3 ω̄4

1 ω̄2 ω̄4 ω̄6 ω̄8

1 ω̄3 ω̄6 ω̄9 ω̄12

1 ω̄4 ω̄8 ω̄12 ω̄16

 .

Then using (1.5) above, together with the fact that ω̄� = ω−�, shows that MM is
5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .

© 2000 by CRC Press LLC

