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Abstract 
 

The objective of this paper is to determine a simplified formula in reducing the powers of 
tangent and cotangent from exponent 4 to 1 with any value of n. The squares of tangent 
theorem will be used as the initial approach to attain the formula desired. The traditional way 
of reducing the powers of tangent and cotangent will be shown and compared to the empirical 
one. Results showed that using the new formula developed the simplification of Tan4n and 
Cot4n using squares of tangent theorem made the procedure fast and reliable. This formula 
offers a variety of use in the field of mathematics especially in Trigonometry. From the 
squares of tangent theorem the two new formulas will emerge. 
 

Keywords: Squares of Tangent Theorem, Half Angle identity, multiple angle formula, half 
angle formula, and trigonometric identities. 
 

 

1. INTRODUCTION 
 
The process of solving mathematical problems is a burden to some students especially if math 
is their waterloo. Dr. Euler a well- known mathematician discovered a formula that will cure 
mathematical illnesses. The process of reducing the powers of sine and cosine was earlier 
studied that lead to the development of some formula gearing to a simplified approach of 
integration techniques. Half angle formulas play a vital role in the development of 
mathematical formula in trigonometry and calculus. It is the initial step commonly used in 
evaluating multiple angle formulas. The other formulas used are the other multiple angle 
formulas like the double angle formula and the sum to product and product to sum formula. 
Tangent function usually used the identity involving sine and cosine to simplify the 
expression. Trigonometric identities are widely used also to simplify expressions (Fehribach, 
2006; Suello, 2015).  
 

The use of Half angle formula for sine and cosine functions is an initial guide on how to 
evaluate and simplify different functions. This is manifested in study of some mathematicians 
wherein they developed a simplified approach to teaching mathematics. With the continuous 
development of mathematical formula a complex equations becomes an easy one (Dampil, 
2014).  

  
The objective of this paper is to develop a new formula that will simplify the solution in 
expressing Tan4n and Cot4n in terms of cosine function with exponent 1. Some examples 
are given using the old method and the new one. The results of the new formula show that the 
new one saves time therefore easier to use. Square theorem for tangent is also known as half 
angle identity (Proof Week, 2014).  

 
Half angle identities for sine, cosine and tangent (Kuang & Kase, 2012, p. 101; Swokowski & 
Cole, 2012, p. 574; Bible, n.d.). 
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2. PROCEDURE OF THE OLD METHOD 
 
 To reduce the exponents of tangent function the square theorem or half angle identity for 
tangent is used.  The formula for tangent was derived using the formula of square of sine and 
cosine written above. Normally it is being factored to reduce the exponent.  All functions with 
equivalent identity are substituted before manipulating and simplifying the equation. 
 
If you are to express ݊ܽݐସu in terms of the cosine function with exponent 1 the procedure will 
be as follows: 
 
Factor   u4tan  

))(tan(tantan 224 uuu   
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Similarly, if you are to express ݊ܽݐସ2u in terms of the cosine function with exponent 1 the 
procedure will be: 
 
Factor   u2tan 4  

)2)(tan2(tan2tan 224 uuu   
 
Substitute 

u2tan 2  by )
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Another example is express ݊ܽݐସ3u in terms of cosine function with exponent 1. The same 
procedure will be followed: 
 
Factor   u3tan 4  

)3)(tan3(tan3tan 224 uuu   
 
Substitute 
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Generalizing the results for the three examples given 
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We can say that for every function		݊ܽݐସnu			the simplified expression in terms of cosine 
function with exponent 1 is: 
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In the case of cotangent function with exponent 4, the same method will be applied: 
If you are to express ܿݐ݋ସu in terms of the cosine function with exponent 1 the procedure 

will be as followed: 
 
Use reciprocal identity for   u4cot   then factor 

u
u

4
4

tan

1
cot   

cos2u 1

cos2u-1
1

cot 4



u  

 

cos2u- 1

cos2u1
cot4 

u  

 
))(cot(cotcot 224 uuu   



First Asia Pacific Conference on Contemporary Research (APCCR-2015) 
ISBN: 978 0 994365699 

www.apiar.org.au  
 

Asia Pacific Institute of Advanced Research (APIAR) 
 

Pa
ge
11
0	

 

Substitute u2cot  by )
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Similarly, if you are to express ܿݐ݋ସ2u in terms of the cosine function with exponent 1 the 
procedure will be: 
 
Use reciprocal identity for   u2cot 4   then factor 
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Another example is express ܿݐ݋ସ3u in terms of cosine function with exponent 1. The same 
procedure will be followed: 
 
Use reciprocal identity for   u3cot 4   then factor 
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Generalizing the results for the three examples given 
 

u4cot =
u

u

4coscos2u43

4cos4cos2u3


  

u2cot 4 =
u

u

8coscos4u43

8cos4cos4u3


  

 

u3cot 4 =
u

u

12coscos6u43

12cos4cos6u3


  

We can say that for every function		ܿݐ݋ସnu			the simplified expression in terms of cosine 
function with exponent 1 is: 

nu4cot =
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Therefore, instead of simplifying the function 	݊ܽݐସnu		and ܿݐ݋ସnu into a function with 

exponent 1 using the long method we can use the simplified formula which is: 
nu4tan =
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3. PROCEDURE OF THE NEW METHOD 
 
With the new formula we can solve the same problem with different values of n. This makes 
the procedure easy and solution shorter. 

 
EXAMPLE: 
 

Express the following example in terms of cosine function with exponent 1 using the formula 
written below 
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4. CONCLUSION 
 
The traditional way of reducing the powers of tangent and cotangent is usually done by 
factoring before applying trigonometric identities. The equivalent identities is substituted 
then simplified before the final answered is achieved. Simplifying this kind of form is a very 
long process. With the use of this new formula for tangent and cotangent coming from the 
squares of tangent theorem reducing the powers became easier. The process to solve this 
shorter which require only the formula itself. The formula presented is easy to since it is the 
generalized formula for tangent and cotangent with exponent 4 only. This concludes that 
reducing the exponents of the said function can be easily attained if the formula is sufficiently 
followed. This is very useful in trigonometry and in other areas of Mathematics. 
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