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Abstract 
In a new theory called Dynamic Theory of Gravity, the gravitational potential is is 
derived from gauge relations and has a different form than the classical Newtonian 
potential.  In the same theory an analytical expression for the pressure is derived from the 
equation of the hydronamic equilibrium which is solved for a star of constant density and 
the results are compared with those of Newtonian gravity.  Changes then in the central 
pressure and radius are also calculated and finally a redshift calculation is performed so 
that the dynamic gravity effects if any might be shown to be of some detectabe 
magnitude. 
 
Key Words Dynamic theory of gravity, gauge fields, Weyl’s quantum principle, field 
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1. Introduction 
There is a new theory called the Dynamic Theory of Gravity [DTG].  It is derived from 
classical thermodynamics and requires that Einstein’s postulate of the constancy of the 
speed of light holds. [1].  Given the validity of the postulate, Einstein’s theory of special 
relativity follows right away [2].  The dynamic theory of gravity (DTG) through Weyl’s 
quantum principle also leads to a non-singular electrostatic potential of the form: 
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where Ko is a constant and λ is a constant defined by the theory.  The DTG describes 
physical phenomena in terms of five dimensions: space, time and mass. [3]  By 
conservation of the fifth dimension we obtain equations which are identical to Einstein’s 
field equations and describe the gravitational field.  These field equations are similar to 
those of general relativity and are given below: 
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Now Tαβ is the surface energy-momentum tensor which may be found within the space 
tensor and is given by: 
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and Tsp

µν is the space energy-momentum tensor for matter under the influence of the 
gauge fields and is given by:[4] 
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which further can be written in terms of the surface metric as follows:[4] 
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since: 
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is the statement required by the conservation of the fifth dimension, and the surface 
indices ν, α, β. = 0,1,2,3 and space index i, j, k, l = 0,1,2,3,4, and 
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It was shown by Weyl that the gauge fields may be derived from the gauge potentials and 
the components of the 5-dimensional field tensor Fij given by the 5×5 matrix given in (8). 
[4] 

Now the determination of the fifth dimension may be seen, for the only physically 
real property that could give Einstein’s equations is the gravitating mass or it’s 
equivalent, mass [5].  Finally the dynamic theory of gravity further argues that the 
gravitational field is a gauge field linked to the electromagnetic field in a 5-dimensional 
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manifold of space-time and mass, but, when conservation of mass is imposed, it may be 
described by the geometry of the 4-dimensional hypersyrface of space-time, embedded 
into the 5-dimensional manifold by the conservation of mass.  The 5 dimensional field 
tensor can only have one nonzero component V0 which must be related to the 
gravitational field and the fifth gauge potential must be related to the gravitational 
potential. 

The theory makes its predictions for red shifts by working in the five dimensional 
geometry of space, time, and mass, and determines the unit of action in the atomic states 
in a way that can be calculated with the help of quantum Poisson brackets when covariant 
differentiation is used: [6] 
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In (9) the vector curvature is contained in the Christoffel symbols of the second kind and 
the gauge function Φ is a multiplicative factor in the metric tensor gνq, where the indices 
take the values ν, q = 0,1,2,3,4.  In the commutator, xµ and pν are the space and 
momentum variables respectively, and finally δµq is the Cronecker delta.  In DTG the 
momentum ascribed, as a variable canonically conjugated to the mass is the rate at which 
mass may be converted into energy.  The canonical momentum is defined as follows: 
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where the velocity in the fifth dimension is given by: 
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and gamma dot is a time derivative and gamma has units of mass density (kg/m3) and αo 
is a density gradient with units of kg/m4.  In the absence of curvature (8) becomes: 
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2. The Gravitational Potential of Dymamic Gravity 
As it turns out in the DTG the gravitational potential takes the form: 
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Where M is the mass of the main body and m is the mass of the test particle body and r is 
the distance from the center of main body to the center of the test particle body, and 
finally λ is a distance factor, which may be different for each particle, and can be defined 
as: [6] 
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We can easily note that equation (3) is a non-singular equation, almost of the same form 
as a Yukawa equation.  Yukawa equation goes as r rather that 1/r in the exponent.  For 
distances much greater λ has the familiar 1/r form.  When λ = r the potential has its 
maximum value.  At r = 0 the potential becomes zero due to the overriding effect of the 
exponential. 
 
3. Equations of Hydrostatic Equilibrium for a Star 
The structure of any stable star where non-relativistic effects are not included in 
hydrostatic equilibrium, obeys the following differential equations: 
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If relativistic effects are taken into account then first of the equations in (15) becomes the 
so called” Oppenheimer-Volkoff” differential equation of stellar structure below: 
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Where: in equations, (1) and (2), the L.H.S of the first and second equations indicate, the 
pressure and the mass gradients as a function of radius r.  And in the R.H.S, of the first 
equation ρ(r) is the density of the star as a function of distance r, and M(r) is the mass of 
the star whithin the distance r.  In particular in equation (16) the extra appearing terms are 
the relativistic correction terms. 
 
4. Stellar Structure in the Dynamic Theory of Gravity 
To study any possible effects in Dynamic Gravity of gravity lets first find using equation 
(3) the force due to such potential as given by the DTG: 
 

 











−−

∂
∂

−=
∂

∂
−=

r
λ

r
GMm

rr
rVrF exp)()(      (17) 

 
Then equation (3) finally gives the following force function: 
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From which we find that the acceleration of gravity per unit mass takes the form: 
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 If we now substitute equation (19) into the first equation of hydrostatic 
equilibrium we obtain: 
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As the next step we will have to express the mass M(r) as function of distance r.  First we 
will assume constant density function ρ(r) = ρ0  Then the second equation for 
hydronamic equilibrioum gives that: 
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Which finally makes equation (20) equal to: 
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Integrating now from (0, r’) and changing variable back to r we obtain: 
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Where Γ(0,λ/r) is the Incomplete Gamma function of argument (0, λ/r).  This expression 
can be further simplified to: 
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 If we now apply the boundary condition that P(r=R) = 0, we obtain the central 
pressure P(0 ) to be equal to: 
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which can be further simplified as follows: 
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where the value of the incomplete gamma function Γ(0,λ/R) =  
Γ(0,2.117×10-6)=12.4883 for star of radius R = RSun 7].  The central pressure effect due to 
dynamic gravity is zero when R = 10.1112λ =14.986 Km.  That would probably mean 
that, dynamic gravity effects on the central pressure die out within a sphere of radius R = 
14.986 Km from the center of the star having a mass equal to Msun.  Finally the total 
pressure at any point r can be written as follows: 
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 In the case where the radius of the star R is much greater than lamda λ then 
equation (17) can be simplified as follows, after expanding the exponentials to first order: 

 ( ) 




































+














+

+
−−=

R
λΓ

R
r

r
λΓ

r
λ

rR
λrRρGπrP ,0,0341)(

3
2)(

22
222

0  

(27) 
 

 Taking into account that λ = G M/ c2 equation (14) can be further written as 
follows: 
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 If we look at equation (18) we can see that the first term in the right hand sight 
goes as (R2-r2) and is similar to the density profile of a Newtonian gravity star of constant 
density [8].  There is now a difference in the pressure profile due to the DTG and its new 
gravitational potential.  This difference can be shown as two extra correction terms in 
equation (28). 
 
5. Change in Central Pressure 
The change in central pressure P(0) between dynamic and Newtonian gravity star 
becomes: 
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Therefore we now further have: [9] 
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Table 1 
 Radius of the Star 
 In Solar Radii (Rsun) 

Mass of the Star  
In Solar Masses (MS) 

    Value of λ 
       (km) 2

2323.12141
R

λ
R
λ
+−  

     1.00     1.000     1.4822    0.9999 
     300n     0.180     0.2668    0.9999 
     8.80     0.720     1.0672    2.7842 
 

Apart from the solar type constant density star two more stars were used so that 
the dynamic gravity effects could be calculated on the central pressure.  These were 
neutron stars [9] and we must say these stars can not be really thought as constant density 
stars to really fit a simple constant density calculation.  A different relativistic treatment 
has to be performed in order to study these effects and that is the title of our ongoing 
publication.  We can now see that the value for the dynamic correction of the central 
pressure takes a value of 0.9999 for the two first stars, and 2.7842 times for the neutron 
star of radius equal to 8.8RSun.  Next an expression for the pressure change at any r is also 
derived below: 
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which can be further written if the numerical factors taken into account: 
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Plots of ∆P(r)/P(r) vs r are shown for the radial ranges of zero to thirty kilometers from 
the center of a sun like star, and where hundred thousand points have been plotted for this 
and all the graphs below. 
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Fig. 1 ∆P(r)/P(r) versus radial distance r from the center of a solar 

mass constant density star for 0 Km ≤ r ≤ 30 Km. 
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Fig. 2 ∆P(r)/P(r) versus radial distance r from the center of a solar 
mass constant density star for 30 Km ≤ r ≤ 7000 Km. 
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Fig. 3 ∆P(r)/P(r) versus radial distance r from the center of a solar 
mass constant density star and for 100 Km ≤ r ≤ 10000 Km. 
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Fig 4∆P(r)/P(r)  versus radial distance r from the center of a solar 
mass constant density star and for 70000 Km ≤ r ≤ 100000 Km. 
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Fig 5∆P(r)/P(r)  versus radial distance r from the center of a solar 
mass constant density star and for 100000 Km ≤ r ≤ 700000 Km. 

 
6. Change in the Star Radius 
A change in the radius of the star if any due to the change in the central pressure 
becomes: 
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which makes the radius of the star to increase by: 
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7. Redshift in the Dynamic Gravity 
The redshift in the dynamic theory of gravity is given by the formula below [10]: 
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where Mr is the mass of the body where the redshifted photons are received, Me the mass 
of the body where the redshifted photons are received, and similarly Rr and Re the radii of 
the corresponding bodies, and λr and λe the values of dynamic theory parameter at the 
receiving and emitting bodies.  Using the really small increase in the radius of the star 
Re= RD = 1.2000002624RN we find that: 
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where the mass and radius of the receiving body is taken to be the mass and the radius of 
the earth.  The dynamic gravity redshift contribution due to the minute change in the 
star’s radius is calculated above and it is exactly identical to that of a star where the 
radius remains unchanged under Newtonian gravity and equal to R = 1Rsolar.  It is also of 
the same numerical value as the redshift created by Newtonian gravity.  Taking or not the 
really small change of the radius into account in dynamic gravity we see that the 
corresponding redshift is very small and of the order of approximately two parts per 
million.  For such a star it will be a really difficult task for an observer to differentiate 
with certainty if he is really observing dynamic or Newtonian gravity effects, not to 
mention that a redshift of two parts per million is a really small change to be observed for 
Newtonian or dynamic gravity…For such a star dynamic gravity effects do not poduce a 
drastic change in the redshift which can be eassily identified from those of which are 
caused by Newtonian gravity. 
 
8. Conclusions 
In the dynamic theory of gravity a very simple calculation has been performed using the 
non-relativistic equation of hydrodynamic equilibrium for a star of constant density and 
thus an analytical expression for the pressure at any point r has been obtained.  The 
pressure P(r) is found to be given in terms of the incomplete gamma function of 
argument (0, r/λ) where λ is the dynamic gravity parameter. 

Next by applying boundary conditions, an expression of the central pressure was 
also obtained.  Both expressions resemble those of a constant density star in Newtonian 
gravity but, they involve extra correction terms.  The central pressure of such a star 
appears to be slightly smaller than a constant density Newtonian star.  If that’s the case 
we anticipated some increase in the radius of the star which was estimated to be of the 
order of two parts per million small enough, to produce any noticeable redshiftt.  For our 
simple model calculations it appears to be no difference in magnitude between 
Newtonian and dynamic gravity redshift, and especially when the photons are emitted 
from such 1Msolar star and observed on the earth.  The small increase in radius does not 
effect the redshift which is identically the same as the Newtonian or that of dynamic 
gravity with Rstar = 1Rsolar. 

An expression for the changes in pressure ∆P(r)/P(r) at any r has also been 
derived and plotted for four different regions of r, namely 0 km ≤ r ≤ 29 Km from the 
center of the star, next for the ranges 29 km ≤ r ≤ 7000 km, 7000 Km ≤ r ≤ 100000 km, 
and finally, 100000 Km ≤ r ≤ 700000 km.  All graphs have been plotted for one hundred 
thousand points.   From the behaviour of the graphing function we can see that close to 
the center there is a positive change in pressure due to dynamic gravity which has a 
maximum value of approximately 0.700 and at approximately 2 Km from the center.  
That would agree with the maximum value af the dynamic gravity potential at λ = r = 
1.482 km for a solar type of star.  Next at approximately 220 Km the change in pressure 
drops to positive 10-5 and finally at becoming zero at approximately 2200 km.  Finally in 
the range of 30000 km and 280000 km from the center it takes the values of –8.350×10-6 
and –8.466×10-6 respectively.  Our expression derived for the central pressure predicts a 
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correction of 0.999, for M = 1Msolar and R = 1Rsolar star.  It seems that throughout the star 
and at different radial distances the corrections to the pressure due to dynamic gravity 
changes sign from positive to negative.  To conclude we admit inspire the fact that this is 
not a very realistic kind of star, it could give us an idea of how the dynamic gravity might 
effect stellar structure. 
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