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FOREWORD

Nuclear data are fundamental to the development and application of all nuclear sciences and
technologies. Basic nuclear data, whether measured or calculated, follow a complex process of
evaluation, correction and analysis before becoming directly available in applications. This report
describes such a process in the case of neutron-induced reactions in the resonance range.

As there are no predictive theories for neutron-induced reactions in the resonance energy
range, the basic nuclear data have to be obtained through measurements at dedicated experimental
facilities, such as linear particle accelerators. The measured raw data are then corrected for the
experimental conditions, such as sample impurities, background effects and detector efficiencies.
However, the experimental data thus obtained are not directly suitable for application calculations. A
thorough analysis of the data is necessary to produce a coherent set of applicable data.

F. Frohner, The author of this report, describes in detail two elements necessary to perform a
correct analysis of experimental data in the resonance energy range: the neutron-nucleus interaction
theory in this energy range and the mathematical formalism of statistical inference. Concerning this
last point, the author expresses his preference for the Bayesian approach, which he considers the
most appropriate.

This report is part of an ongoing effort co-ordinated at an international level, involving
national research institutions and industry. It aims at preserving nuclear data knowledge, in a field
from which a large number of speciaists have recently retired. The French Atomic Energy
Commission at Cadarache, Electricité de France and the OECD Nuclear Energy Agency have
contributed to this report. Vincent Greissier trandated the report into French and Pierre Ribon
reviewed the origina English version and the French trandation. Laurent Carraro provided
comments on the mathematical part of the report.



Evaluation and Analysis of Nuclear Resonance Data

F.H. Frohner
Forschungszentrum Karlsruhe
Institut fiir Neutronenphysik und Reaktortechnik
D-76021 Karlsruhe, Germany

TABLE OF CONTENTS

ASTRACT

1. THE

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

PROBABILISTIC BASIS OF DATA EVALUATION

Probability, a Quantitative Measure of Rational Expectation
Bayes’ Theorem, the Rule for Updating Knowledge with New Data
Recommended Values from Estimation Under Quadratic Loss
Generalisation to More Observations and More Parameters

Closer Look at Prior Probabilities, Group-Theoretic Assignment
Bayesian Parameter Estimation for the Univariate Gaussian
Assignment of Probabilities by Entropy Maximisation
Approximation: Maximum Likelihood

Approximation: Least Squares

2. EVALUATION OF NUCLEAR DATA FOR APPLICATIONS

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

Stepwise Preparation of Nuclear Data for Applications

Iterative Least-Squares Fitting

Statistical Errors: Poisson Statistics

Systematic Errors: Correlated Uncertainties and their Propagation
Goodness of Fit

Inconsistent Data

Estimation of Unknown Systematic Errors

3. RESONANCE THEORY FOR THE RESOLVED REGION

3.1.
3.2.
3.3.

3.4.

The Blatt-Biedenharn Formalism

The Exact R-Matrix Expressions

The Practically Important Approximations

3.3.1. Kapur-Peierls Cross Section Expressions

3.3.2. SLBW Cross Section Expressions

3.3.3. MLBW Cross Section Expressions

3.3.4. Reich-Moore Cross Section Expressions

3.3.5. Adler-Adler Cross Section Expressions

3.3.6. Conversion of Wigner-Eisenbud to Kapur-Peierls Parameters
External Levels

3.4.1. Statistical Representation of the External Levels

3.4.2. Representation of the Edge Terms by Two Broad Resonances

3.4.3. Narrow Bound Level to Enforce Prescribed Thermal Cross Sections

23

23
28
31
32
35
37
40

44

48
ol
o4
26
o6
28
29
60
61
63
63
65
67



3.5.

3.6.

Doppler Broadening

3.5.1. Free-Gas Approximation

3.5.2. Cubic Crystal

3.5.3. Gaussian Broadening with Voigt Profiles

3.5.4. Gaussian Broadening with Turing’s Method

3.5.5. Broadening of Tabulated, Linearly Interpolable Point Data
Practical Analysis of Resonance Cross Section Data

3.6.1. Observables

3.6.2. Experimental Complications

3.6.3. Spin and Parity Assignment

4. STATISTICAL RESONANCE THEORY FOR THE UNRESOLVED REGION

4.1.

4.2.

4.3.

Level Statistics

4.1.1. The Porter-Thomas Hypothesis

4.1.2. Wigner’s Surmise and the Gaussian Orthogonal Ensemble
4.1.3. Transmission Coefficients

4.1.4. Nuclear Level Densities

4.1.4. Information from Resolved Resonances
Resonance-Averaged Cross Sections

4.2.1. Average Total Cross Sections

4.2.2. Average Partial Cross Sections: Heuristic Recipes

4.2.3. Average Partial Cross Sections: The Exact GOE Average
4.2.4. Analysis of Resonance-Averaged Data

Group Constants

4.3.1. Bondarenko Factors

4.3.2. Analytic and Monte Carlo Methods for Group Constant Generation

5. CONCLUDING REMARKS

ACKNOWLEDGEMENTS

APPENDICES

Appendix A: Practically Important Probability Distributions

A.1l. Binomial and Beta Distributions
A.2. Poisson and Gamma Distributions
A.3. Univariate Gaussian

A.4. Multivariate Gaussian

Appendix B: Mathematical Properties of the Voigt Profiles ¢ and x

REFERENCES

70
70
72
72
73
74
0]
76
78
80

82

82
82
84
86
88
95
97
98
99
100
102
106
106
108

110
110
111
111
111
112
113
115
118

120



Evaluation and Analysis of Nuclear Resonance Data

F.H. Frohner

Forschungszentrum Karlsruhe

Institut fir Neutronenphysik und Reaktortechnik
Postfach 3640, D-76021 Karlsruhe

Germany

(e-mail: fritz.froehner@inr.fzk.de).

ABSTRACT. The probabilistic foundations of data evaluation are reviewed, with special emphasis
on parameter estimation based on Bayes’ theorem and a quadratic loss function, and on modern
methods for the assignment of prior probabilities. The data reduction process leading from raw
experimental data to evaluated computer files of nuclear reaction cross sections is outlined, with a
discussion of systematic and statistical errors and their propagation and of the generalised least-
squares formalism including prior information and nonlinear theoretical models. It is explained
how common errors induce correlations between data, what consequences they have for uncer-
tainty propagation and sensitivity studies, and how evaluators can construct covariance matrices
from the usual error information provided by experimentalists. New techniques for evaluation
of inconsistent data are also presented. The general principles are then applied specifically to
the analysis and evaluation of neutron resonance data in terms of theoretical models - R-matrix
theory (and especially its practically used multi-level Breit-Wigner and Reich-Moore variants)
in the resolved region, and resonance-averaged R-matrix theory (Hauser-Feshbach theory with
width-fluctuation corrections) in the unresolved region. Complications arise because the mea-
sured transmission data, capture and fission yields, self-indication ratios and other observables
are not yet the wanted cross sections. These are obtained only by means of parametrisation.
The intervening effects - Doppler and resolution broadening, self-shielding, multiple scattering,
backgrounds, sample impurities, energy-dependent detector efficiencies, inaccurate reference data
etc. - are therefore also discussed.

1. The Probabilistic Basis of Data Evaluation

Historically data evaluation in the modern sense began with the effort of Dunnington
(1939), DuMond and Cohen (1953) and collaborators to determine a set of recommended
values of the fundamental physical constants (speed of light, Planck’s quantum of action,
fine-structure constant, etc.), and to establish their uncertainties, by a comprehensive
least-squares fit to all relevant experimental data. As measurements are invariably af-
fected by uncontrollable instrumental errors, inaccurate standards, finite counting statis-
tics and other sources of uncertainty, data evaluation involves reasoning from incomplete
information, hence probability theory. We begin therefore with a brief review of the
probability-theoretical foundations of data evaluation. This will help tie together various
rules for the extraction of “best” values and uncertainties from experimental data, and
prescriptions for data fitting and adjustment. Most scientists learn these rules and recipes
during laboratory courses and on the job, finding most books on probability theory full
of intimidating statistical terminology and awkward “ad-hockeries” (Good 1965) arising
from misconceived attempts to avoid Bayes’ theorem with its much-maligned a-priori prob-
abilities. The following exposition which (a) is firmly based on Bayes’ theorem and (b)
utilises recent progress concerning prior probabilities, will be found to lead to a concise
and mathematically simple treatment of parameter estimation and data adjustment in the



general framework of inductive inference, or learning from real, always error-affected and
incomplete observations.

1.1. PROBABILITY, A QUANTITATIVE MEASURE OF RATIONAL EXPECTATION

All our results in this section will be fairly direct consequences of the basic sum and
product rules of probability theory,

P(A|C) + P(A|C) =1, (1)
P(AB|C) = P(A|BC) P(B|C) = P(B|AC) P(A|C), (2)
where
A, B, C = propositions such as “the coin shows head”
or “the cross section is larger than 12 b”,

AB =  both A and B are true ,
A = Ais false ,
P(A|C) = probability of A given C.

Our notation indicates that all probability assignments are conditional, based on
either empirical or theoretical information or on assumptions. Following J. Bernoulli
(1713) and Laplace (1812) we interpret these probabilities as degrees of plausibility or
rational expectation on a numerical scale ranging from 0 (impossibility) to 1 (certainty),
intermediate values indicating intermediate degrees of plausibility. The sum rule tells us
that, under all circumstances C, the more probable A is the less probable is A, the unit
sum of both probabilities representing the certainty that one of these alternatives must
be true. The product rule says that, under all circumstances C, the probability that both
A and B are true is equal to the probability of A given B, times the probability that, in
fact, B is true. Since A and B enter symmetrically one can also take the probability of B
given A and multiply it by the probability of A.

The interpretation of the P as degrees of plausibility (not the equations among them)
has been criticised by statisticians who insist that by probability one must mean only
“relative frequency in a random experiment” such as coin tossing, in the limit of very
many repetitions, and that one can assign “direct” probabilities of effects (observations) if
causes (stochastic laws and their parameters) are given, but not the “inverse” probabilities
of various possible causes if observations are given. They argued that since physical
constants are not random variables that assume given values with certain frequencies one
ought to associate probabilities only with the observational errors, not with the physical
constants. For scientists in general, and data evaluators in particular, this viewpoint is
too narrow. It would not permit them to say that, according to measured data, a physical
constant has such and such a probability to lie between given limits. The task to infer
the values of natural constants, half-lives, reaction cross sections etc. from error-affected,
uncertain and incomplete data is not a random experiment that can be repeated at will, but
rather an exercise in inductive inference (reasoning in the face of uncertainty). Laplace’s
probability concept seems therefore more appropriate for the evaluation of scientific data.

All doubts were dispelled by R.T. Cox (1946). Using the arithmetic of logic, Boolean
algebra, he proved that any formal system of logical inference using degrees of plausibility
must either be equivalent to probability theory as derived from the basic sum and product
rules, or violate elementary consistency conditions. In his proof the most general con-
sistency conditions are cast in the form of two functional equations whose solutions are
just the basic rules. Criticism that Cox had assumed differentiability of his probability



functions was met by A. Rényi (1954) who gave a proof without that assumption. It is
interesting that Schrodinger (1947), one of the founders of quantum mechanics, arrived
independently at essentially the same conclusions as Cox: The basic rules, clearly valid
for relative frequencies, are equally valid for Laplacean probabilities. In quantum theory
it has always been understood that probabilities quantify incomplete knowledge but it is
widely believed that classical and quantum mechanical probabilities differ somehow. Ac-
tually, it can be shown that the quantum mechanical probability formalism is perfectly
consistent with the Laplacean probability concept and the basic sum and product rules
(Frohner 1998). After Cox’s proof two things should be clear.

1. Probabilities are not relative frequencies. They can equally well be applied to non-
repetitive situations as to repeated trials.

2. Allegedly superior schemes of logical inference, such as Fuzzy Logic or Artificial Intel-
ligence, are equivalent to probability theory at best — if not, they are bound to violate
elementary consistency requirements.

Although probabilities are not the same as frequencies, the two are surely related. In
repetitive situations one finds that the probabilities are essentially expectation values of
relative frequencies — see e. g. Jaynes (1968) and Frohner (1997).

1.2. BAYES’ THEOREM, THE RULE FOR UPDATING KNOWLEDGE WITH NEW DATA

Scientific experiments are usually describable by a statistical model, statistical el-
ements being introduced by uncontrollable, seemingly random instrumental effects, by
unknown errors and often by the theory itself (e. g. statistical mechanics or quantum the-
ory or the level-statistical theory of compound-nuclear reactions). The statistical model
enables one to calculate the “direct” probability of some set of observed data (“sample”),
provided the physical quantities and statistical parameters of the model are given. In
empirical science the situation is usually reversed: A sample of experimental data is given,
and one wants to find the “inverse” probabilities for the various possible values of the
physical quantities and statistical parameters of the model. Direct probabilities (of ef-
fects given the causes) and inverse probabilities (of causes given the effects) are related by
Bayes’ (1763) theorem. In its simplest form,

P(B|AC) P(A|C) 3
P(BIC)

P(A|BC) =

it is an immediate consequence of the symmetry of the product rule (2) with respect to
A and B. The typical situation is that we have data B which depend on the value of
an unknown physical quantity A and on other circumstances C. If we have a statistical
model, represented by the so-called likelihood function p(B|AC), telling us how likely
observation of the data B would be under the circumstances C' if the unknown quantity
were in fact A, and if we have also an a priori probability (“prior” for short) P(A|C),
then the updated or a posteriori probability (“posterior”) P(A|BC) is proportional to the
product P(B|AC)P(A|C). The prior summarises what we knew about A before the data
became available, the likelihood function conveys the impact of the data, and the posterior
contains the complete information available for further inference and prediction. Laplace
(1812) gave the generalisation to several distinct, mutually exclusive alternatives A;:

_ _P(BJA;C) P(4|C) o
P(4;|BC) = > PBIA,0) P(4,]C) i=1,2,...m, (4)




normalised to unity as demanded by the sum rule. For continuous alternatives A and
B we replace the finite discrete probabilities P(A|C), P(B|AC) etc. by infinitesimal
probabilities p(A|C)dA, p(B|AC)dB etc. with probability densities p(A|C), p(B|AC)
etc., and the sum over alternatives by an integral,

 p(BIAC) p(AIC) dA
PAIBO) A = 1 BTAC) p(AIC) dA”

Amin S A S Amax . (5)

These forms of Bayes’ theorem can be considered as the cornerstone of data evaluation and
adjustment. They show how prior knowledge (an existing data file) is to be updated with
new evidence (new data). In all forms, the denominator is just a normalisation constant,
so the formal rule for learning from observations can be stated briefly as

posterior  likelihood X prior.

It should be understood that the expressions prior and posterior have a logical rather than
temporal meaning. They simply mean without and with the new data taken into account.

As a fairly realistic illustration let us consider the determination of the decay constant
A of some short-lived radioisotope from decays registered at times #1, ts, ...%,. Obviously
we must identify A with A, and the data t1,...t, with B, while C' consists of all other
information about the situation such as applicability of the exponential decay law, purity
of the sample, reliability of the recording apparatus, sufficiently long observation time
for all observable decays to be recorded, etc. The statistical model for the experiment is
represented by the so-called sampling distribution, i. e. by the probability with which we
may “reasonably expect” the various alternatives if we sample once, given the parameters
of the model. In our example this is the probability that, given A, one particular decay,
let us say the i-th one, is recorded in the time interval dt; at ¢;,

p(ti|\) dt; = exp(—At;) Adt; , 0<t; <o0. (6)

We shall normally write continuous probability distributions in this form, with the proba-
bility density p multiplied by the relevant differential, i. e. as an infinitesimal probability,
and with the range of possible values explicitly stated. This emphasises the fact that
ultimately all probability distributions are used for the calculation of expectation values,
so that they are parts of integrands, subject to possible change of variables. Since we
generally use the letter p for probability densities irrespective of their functional form, a
change of variable results in p(z|.)dz = p(z|.)|dx/dy|dy = p(y|.)dy. (We simplified the
notation here by omitting explicit reference to the conditioning background information
).

According to the product rule the joint probability of observing the mutually inde-
pendent data t1,...t,, given A, is

p(tr, .. tp|N)dty ... dt, = exp ( — /\th)/\" dty...dt, . (7)
71=1

This corresponds to p(A|B)dB above. Multiplying the likelihood function p(ti,...t,|\)
by the prior p(\)d\ we get

POt o tn) dX o exp ( . AZti)A"p(A)dA, 0< A< oo. 8)
=1



We note that in our problem the likelihood function does not depend on all the individual
sample values. They appear only in the form 3;t; = nt, so that for given sample size n the
sample average t carries all the information contained in the data. In statistical jargon ¢
is a “sufficient statistic”, n an “ancillary statistic”, where statistic means any function of
the sample, i. e. of the data.

If we consider all values of A between 0 and oo as equally probable a priori, so that
p(A)d o d\, we get

p(A\Inf)dX oc e XN, 0<A<oo. (9)

Now the gamma function is defined by
Fn+1)= / e Tx"dx (10)
0

(which for non-negative integers is just the factorial n!). It follows that the final result of
our Bayesian estimation, properly normalised, can be written as

p(Ant)d\ =T(n + 1) te "z dx, 0<z=Ant<oo. (11)

This posterior, a gamma distribution (also known as chi-square distribution with x? = 2z
and v = 2n + 2 degrees of freedom) represents the complete information about A which
is contained in the data and the assumed prior. Fig. 1 shows chi-square distributions for
various values of v. As the sample size n increases, our posterior becomes more and more
concentrated: The more data are collected the better known is .

1.3. RECOMMENDED VALUES FROM ESTIMATION UNDER QUADRATIC LOSS

Most users of radioactive-decay data do not want to be bothered with the details of
a posterior distribution. What they usually want is a recommended decay constant and
its uncertainty, and nothing else. So we calculate, with Eq. 11, the expectation value,

() = /OOO Ap(Anf) d\ = "7;,1 , (12)

and the root-mean-square error (also called standard deviation or dispersion or one-sigma
uncertainty),

/2 n+

ax= /OOO<A—<A>>2p<A|nf>dA]1 -y (13)

and state our result summarily as (A\) £ AX. This choice is justified as follows. The
expectation value is that estimate A¢ which minimises the expected squared error,

/OOO()\O — N)? p(Ant) d\ = min, (14)

as is readily verified by differentiation with respect to Ay and equating to zero. With
this recommended value the mean squared error (expectation value) is just the variance,
var A = (A))?, which justifies also our uncertainty specification. What we just did is
called “estimation under quadratic loss” in decision theory. The basic idea is that there
is usually a penalty for bad estimates, the more severe the more the estimate differs from
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Fig. 1. Chi-square distributions for various degrees of freedom v (cf. Eq. 105 and Korn & Korn
1968 for standard definition and main properties.

the true value, and that this penalty can be described by a “loss function” which vanishes
at the true value and is positive everywhere else. In the vicinity of the true value a
reasonably smooth loss function can be taken as quadratic in the error (Ao — A), since
its Taylor expansion about zero error begins with the quadratic term (cf. e. g. DeGroot
1970, Berger 1985). Eq. 14 is therefore the condition for minimal expected penalty in this
parabolic approximation.

Obviously the recommendation (A) £ AX tends to obscure the asymmetry of the
gamma distribution which especially for small values of n is quite strong (see Fig. 1).
If such details are important, one must return to the full posterior distribution. So far



our result looks reasonable enough, but as we shall see, there is a problem caused by the
rather cavalier fashion in which we have assigned the prior probabilities.

1.4. GENERALISATION TO MORE OBSERVATIONS AND MORE PARAMETERS

Before we deal more carefully with priors, let us see what impact a second measure-
ment (with a fresh radioactive sample) would have on our knowledge of the decay constant.
Using the posterior distribution of the first measurement as the prior for the second one,
we find as the new posterior distribution

PNty ety by, ) dN o< p(t, ..t N p(t1, ..t A) dX, (15)

where t},...t, are the new data. More generally, if there are k measurements, with
associated data sets Dy, ... Dy and likelihood functions Ly,... Ly, one gets

k
p(AID1,...Dy) d\ o [HLj(Dj|/\)]p(>\) dX, (16)

which shows nicely how Bayes’ theorem models the process of learning by experience: Each
new experimental result can be formally incorporated into the existing body of knowledge
by multiplication of the associated likelihood function into the existing probability distri-
bution (and renormalisation). It is by no means necessary that all experiments are of the
same type. In nuclear resonance analysis, for instance, one usually combines likelihood
functions from transmission, capture, scattering and fission experiments involving all kinds
of detector and sample geometries in order to obtain best values of resonance energies and
partial widths. With each additional data set the posterior distribution becomes narrower
which means the uncertainty of the estimated parameter becomes smaller. Our example
shows this explicitly: For large n the relative uncertainty of A approaches zero as 1/y/n.
A last generalisation concerns the estimated parameters. In data evaluation and ad-
justment we deal not only with large bodies of data from many different experiments, but
also with many, usually correlated, parameters that must be determined simultaneously.
Instead of one parameter A one has then a parameter vector A in the equations, instead of
the increment d\ one has a volume element d™¥ ) in the parameter space, and the prior and
posterior distributions represent joint probabilities for all N parameters (coordinates of
the parameter vector), complete with correlations. Again, resonance analysis provides ex-
amples. With modern shape analysis codes one can simultaneously estimate the resonance
energies and widths of dozens of resonances by fitting appropriate resonance-theoretical
expressions to the combined data from several types of resonance measurements, each
experiment furnishing hundreds or thousands of data points (see Fig. 4 below).

1.5. CLOSER LOOK AT PRIOR PROBABILITIES, GROUP-THEORETIC ASSIGNMENTS

We must now deal more rigorously with prior probabilities. In our decay rate example
we have used the prior p(A)d\ o< dA, which in terms of the mean life 7 = 1/X can
be rewritten as p(1/7)d7r/7? = p(7)dr x dr/7%. Obviously we could have just as well
estimated 7 instead of A, and assumed all 7 equally probable, i. e. p(7)dr o dr. This,
however, would have resulted in a different posterior distribution. It is true that the
posterior depends only weakly on the prior if data are abundant, but from a fundamental
viewpoint this is no consolation. There seems to be a basic arbitrariness about priors,
particularly for continuous parameters.
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For more than a century this seeming arbitrariness has led many statisticians to
repudiate Bayesian parameter estimation and to seek alternative methods that circumvent
priors. Others, comparing this to an attempt to do arithmetic without zero, defended
Bayes’ theorem as derivable in a few lines from the basic sum and product rules. So they
used “subjective” priors or, as H. Jeffreys (1939), invoked invariance arguments to find
priors which avoided ambiguities. An important step forward was taken by A. Wald (1950).
He had started out to find better-founded (decision-theoretical) methods of statistical
inference, without Bayes’ theorem, but finished by proving that the optimal strategies for
making decisions (recommending a value, for instance) in the face of uncertainty are just
the Bayesian rules.

Even more important was the application of group theory and information theory
to the problem of priors by E.T. Jaynes (1968, 1973). He demonstrated for a number of
simple but practically important cases that, even if one is completely ignorant about the
numerical values of the estimated parameters, the symmetry of the problem determines
the prior unambiguously. If a so-called location parameter is to be estimated, for instance
the mean p of a Gaussian, the form of the prior must be invariant under a shift c of
location, p(u)dp = p(p+ ¢)d(p + ¢). Otherwise not all locations of the Gaussian would be
equiprobable a priori, contrary to the assumption of complete ignorance. The functional
equation has the solution

p(p)dp o du, —00 < p < 00, (17)

a thoroughly plausible result. Not quite so obvious is the case of a scale parameter such
as the standard deviation o of a Gaussian. If there is no preferred scale, one expects
invariance under rescaling, p(c) do = p(co) d(co). The solution of this functional equation
is

p(a)daoc%", 0<o<oo, (18)
as advocated already by H. Jeffreys (1939). Despite its importance and simplicity Jaynes’
(1968) proof seems so little known that we quote it here almost verbatim for the case of
a rate constant which multiplies (or scales) all times and time intervals in a problem (as
Ain Eq. 6 does):

Suppose that two observers, Mr. X and Mr. X’, wish to estimate a rate constant from
a number of events. If their watches run at different rates so that their measurements of a
given time interval are related by ¢ = ct’, their rate or scale parameters will be related by
X' = cA. They assign prior probabilities p(A)dA and ¢(\')dX', and if these are to represent
the same state of ignorance, p and ¢ must be the same function so that p(A)dA = p(\")d\'.
From the two equations for A and A\’ one gets the functional equation p(\) = ep(cA). Its
unique solution is Jeffreys’ prior,

dA

p(A)dAocT, 0<A<o00. (19)

Obviously this is the appropriate prior for our decay rate example, since the decay constant

is just such a scale parameter in our equations. It satisfies p(A) d\ o< dA/\ o< d7 /7 which

removes all ambiguity: Whether we estimate the scale parameter A or the scale parameter
7, we always get the same posterior,

e *z" dx

I'(n) =z

p(Ant) dX = , 0<z=Ant<oo, (20)



with
A1

(A vn'
This looks neater than our previous result, illustrating Ockham’s (1349) principle of par-

simony (“Ockham’s razor”): The simpler result is usually the more correct one. If not the
decay constant but the mean life is to be estimated, it is equally easy to find

=1 (21) (22)

_1,_ nt AT . 1
(r)y=(\7") = ; (23) T (24)

applicable if n > 2.

Other examples of priors derived from group-theoretical invariances can be found in
the works of Jaynes (1968, 1973, 1976, 1980). In the language of group theory the prior
corresponding to invariance under a group of transformations is the right invariant Haar
measure on this group (see Berger 1985, ch. 6.6)

The non-normalisability of such “least informative” priors is sometimes criticised, and
they are called “improper” priors. Now one can employ instead a broad normalisable prior
of convenient (“conjugate”) mathematical form. In our example this would be a gamma
distribution. The posterior would then, of course, depend on the width of this prior. If
one lets the width grow indefinitely one finds always that the posterior tends toward the
posterior obtained much more easily with the least informative prior. Our least informative
priors can therefore be considered as limits of extremely broad, normalisable distributions
on the linear (du) and on the logarithmic (do/o = d Ino) scale, just as Dirac’s delta
function is the limiting case of extremely narrow, normalised distributions. There are no
conceptual or mathematical difficulties if one keeps in mind that both the least informative
priors and the “most informative” delta function are, in this sense, nothing but convenient
shorthand notations for extremely broad and extremely narrow distributions, meaningful
only in convolution with other, less extreme distributions.

1.6. BAYESIAN PARAMETER ESTIMATION FOR THE UNIVARIATE GAUSSIAN

Let us apply least informative priors also to the principally and practically important
univariate Gaussian distribution. Suppose a repeated measurement of the same physi-
cal quantity p has produced the results z1,...x,, with experimental errors that can be
assumed as normally distributed. The sampling distribution is then

1 1/z; —pN\2
plxjlp, o) de; = \/ﬁexp [— 5(%) ] dzj, —00 < zj < 00, (25)

with unknown error dispersion o. The prior expressing complete ignorance of location
(mean) and scale (width) of the Gaussian is (see Jaynes 1968)

dpd
p(p,0)dudo a U, —o00 < pt < 00, 0<o<oo. (26)
o
The posterior is thus
1 1 < dp do
p(p,olzy,...xn) dudo o EXP [ ~ 5,7 Z(:cj - u)z] ,ua . (27)
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In terms of sample mean and sample variance,

5= %ij , (28) 52 =23 (@5 —a)2, (29)

the exponent can be written as

g ot = [t (A7) = vt )

The posterior joint probability for u and o, properly normalised and in simplified notation,
can thus be presented in the following two forms that correspond to the two factorisations
of the basic product rule (2),

P, 01, ') dps do

—vv(n 1)/2 dv

= p(ulv,n)du p(vjn)dv = \/_du — —
—(14u?)v [(1+ 2) ]n/2 d d
e u”)v v u
= p(v|u,n)dv p(uln)du = 5 — = ,
L3 v B(3,"50) (L+u?)/?
- ns'2
—o<uy=—— <00, O<wv= < 00, (31)
202

where B(3, 251) = D(3)I'(251)/I'(2) is a beta function. Note that w is essentially p, and
v is essentially 0~2, and that in both factorisations the posterior depends on the sample
only through the sample mean & and the sample variance s’? (apart from the sample size
n). These quantities are therefore “jointly sufficient statistics” in frequentist terminology.
In the first factorisation the probability distribution of x given o is Gaussian while that
of 072 is a gamma distribution. In the second one the probability distribution of o given
u is a gamma distribution while that of p is a Student t-distribution. The two alternative
factorisations display explicitly the two marginal distributions for p and o:

If only u is of interest, whatever o may be, we integrate over all possible values of the
“nuisance parameter” o (or v) to get the marginal distribution of possible y values,

- du — 7
p(u|z,s") du = - - 73 —o0o<u= M— <oo. (32
B(3, #7) (1+w?) i

This is Student’s t-distribution for t = u/\/v with v = n —1 degrees of freedom, see Fig. 2
and Appendix A. Its mean and variance are (u) = 0 and (u?) = 1/(n — 3), hence

812

n—3"

(n) =z, (33) var p = (34)
We encounter here the (plausible) frequentist recipe to use the sample mean as “estimator”
for the population mean. No finite and real standard error can be stated as long as n < 3.
On the other hand the half width is always well defined and can be used to indicate
the width of the t-distribution, as is common practice in the case n = 2, the Cauchy
distribution (known to physicists also as Lorentzian or as symmetric Breit-Wigner profile).
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Fig. 2. Student’s t-distribution for various degrees of freedom (see Korn & Korn 1986). The
Cauchy distribution (Lorentzian, ¥ = 1) and the Gaussian (v = oc) are limiting cases.

If only o is of interest, regardless of i, one gets upon integration over u the gamma
(or chi-square) distribution

v, (n-1)/2 i 2
- e dv _ns
p(O”.E,S)dUw-TEI)?, 0<'U‘:P<OO (35)
Its mean and variance are equal, (v) = var v = (n — 1)/2. The estimate under

quadratic loss for =2 is therefore

g, n—1 R A(o™?) _ 2
(1) = 1 TS o e

This supports to some extent the other (not so plausible) frequentist recipe to take not the
sample variance s'? but s? as estimator for o2, although this estimator is “biased” which
means its expectation value, the average over all possible samples, is not equal to the
estimated parameter, (s?) # o2. Now 0=2/2 is also called the precision (cf. e. g. DeGroot
1970) so we recognise that actually s~2/2 is an unbiased estimator for the precision. The
correct Bayesian estimate of o2 follows, however, from (v=!') = 2/(n — 3) and (v=2%) =
4/[(n — 3)(n — 5)]. Without any guesswork one gets

e
Q

<
XY

(%) = s, (38) =) =V (39)

We note that a sample of less than six values does not contain enough information for a
complete estimate of 02 whereas 0~2 can be estimated already with a sample of two.

The covariance of u and v vanishes because after integration over » the remaining
integrand is an odd function of u. As a consequence one has

cov (u,07%) = 0. (40)
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The case with one datum only, n = 1, must be treated differently because s’ = 0
precludes the definition of u, but this is easy. The posterior is simply

1 1/p—ax1\21dpdo
p(NaU|x1)dﬂdU X \/Wexp |:_§< o ) ] o ’ (41)
from which one gets the marginals

dp

) dpy = ——— 42
d

p(o|z1)do 7. (43)
o

The marginal distribution of y has a sharp maximum at the observed value but that of
o is seen to be still equal to the least informative prior — which makes sense, because
a sample of size n = 1 can tell something about the location but nothing whatsoever
about the spread of a distribution. This is but one example showing that the Bayesian
method is consistent with common sense even in extreme cases, in particular for very small
samples, where other methods tend to fail. We mention that the posterior (31) for n > 1
was found long before the prior (26) became available, but those who know R.A. Fisher’s
(1935) “fiducial” approach will appreciate how much simpler and more straightforward
the Bayesian derivation is, and how easily it is extended to the case n = 1 (Jeffreys
1939). Furthermore, the derivation can be extended in a straightforward way to the
mulivariate Gaussian distribution. With appropriate generalisations of scalar relationships
to matrix form, from variance (mean square error) to covariance matrix (02 — C), from
univariate differential to multivariate volume element (dz — d(x) = [], dz,, d(c?) —
d(C) =[1,<«, Cv.x) etc., one finds matrix expressions that look very similar to the scalar
expressions for the univariate Gaussian — see Appendix A (and Fréhner 1990).

Quite generally Bayesian parameter estimation is logically and mathematically sim-
pler than alternative approaches, and at least as rigorous. Concepts like bias, efficiency,
sufficiency, admissibility, James-Stein shrinking (see e. g. Berger 1985), essential for fre-
quentist estimation methods, need not be introduced at all since they appear automatically
as more or less incidental features of the posterior distribution and its mean and variance.
There is no danger that best estimates are obtained outside the range of allowed values,
as happens sometimes with other methods. Although reaction rates or cross sections are
inherently positive quantities, measured data may well contain negative data points after
background subtraction. It would be wrong to discard the negative points. One can rely
on the fact that the prior always guarantees the correct range of the estimated quanti-
ties, e. g. o > 0, regardless of the range of observable values admitted by the likelihood
function, e. g. —oo < x; < 4+00. The basic simplicity and superiority of the Bayesian
approach as compared to other estimation methods has been demonstrated quite forcefully
by Jaynes (1976) with a whole series of real-life examples.

The joint posterior distribution of the mean p and the variance o2 is the complete
information about the parameters of a Gaussian which can be extracted from the data.
From the posterior we can obtain recommended values and their uncertainties for quadratic
or other loss functions as we have seen. Often, however, one is not only interested in
the parameters of the statistical model but also in predictions of the outcome of further
measurements. This, in fact, may be the reason why a statistical model was introduced in
the first place. What can we say, after having deduced the posterior (31) for the parameters
of the Gaussian model, about the outcome of one further measurement, x = z,,417 One



might think of taking the Gaussian with the a posteriori most probable, or with the average
values of the parameters, or of averaging the Gaussian over the posterior distribution of
its parameters. The last alternative is the correct one. This becomes clear if we write
down the joint probability of =, u and o for given data # and s'?, then use the product
rule, and finally integrate out the “nuisance parameters” p and o, which yields

pale,s)ds o do [ do [ dup(elu,o) i ol )

x dm/ dv/ du e~ (=) v/n e vpn/2 (44)
0 —oo

where u, v are defined as before and w = (xr—z)/s’. Integrating first over the Gaussian (all
u), then over the remaining gamma distribution (all v) we get, for n > 1, the “predictive”
distribution
(a]z, s') d dy <y=-2"Z% < (45)
x|z, s)dx = —00 =—— < 0.

re B(z, %50) (L+y)n/2” N e

Although the sampling distribution is Gaussian, the predictive distribution for the
outcome of an additional measurement is not a Gaussian but a t-distribution. It is true
that the t-distribution approaches a Gaussian for large n, but for finite n it is always
broader (see Fig. 2). The best estimate for any function f(x) of the next datum is its
expectation value (f) with respect to the predictive distribution.

1.7. ASSIGNMENT OF PROBABILITIES BY ENTROPY MAXIMISATION

Jaynes (1968, 1973, 1978, 1980) considered also the case that one is not completely
ignorant a priori about numerical values. He showed how probabilities can be assigned
in a well defined way if at least vague information is available about average quantities,
for instance estimates of expectation values such as first and second moments. The key
concept is that of information entropy, introduced by C.E. Shannon (1948) as the unique
measure of the indeterminacy or missing information implied by a given probability dis-
tribution. The information entropy of a discrete probability distribution p; with mutually
exclusive alternatives j is (up to a constant)

S==> p;lnp;. (46)
i

Shannon proved that this is the only measure of indeterminacy that satisfies the following

requirements:

(i) It is a smooth function of the p;.

(ii) If there are N alternatives, all equally probable, then the indeterminacy and hence S
must grow monotonically as IV increases.

(iii) Mere grouping of alternatives cannot make any difference: If we add the entropy quan-
tifying ignorance about the true group, and the suitably weighted entropies quantify-
ing ignorance about the true member within each group, we ought to find the same
overall entropy S as for ungrouped alternatives.

For continuous distributions with probability density p(z) we take the seemingly analogous
expression

S = —/d:z:p(:z:) Inp(zx). (47)
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Let us now assume that we do not know p(x) but that we have global information about
it in the form of expectation values for several known functions fy(z),

(fk>:/dacp(ac)fk(x), k=12 K. (48)

What is the probability density p(z) which satisfies these K equations without implying
any other, spurious information or hidden assumptions? The answer is provided by the
principle of mazimal entropy: If we want compatibility with the given information, yet
minimal information content otherwise, we must vary p(x) in such a way that its entropy
is maximised, S = max, subject to the K constraints (48). The well known solution to
this variational problem, obtained with the technique of Lagrange multipliers, is

p(e) = esp (= Mfile) (49)

This probability density is manifestly positive for real Ay, and properly normalised to
unity with

K
7 = /dw exp ( — kzﬂ/\kfk(ac)) . (50)

The Lagrange multipliers \; must be found from the K constraints (48) or from the
equivalent equations

0
(o) =5y InZ. (51)
The latter way is more convenient if Z can be expressed as an analytic function of the
Lagrange parameters.

Each time a new “global” datum (f;) becomes available one must multiply the ex-
isting distribution by a factor exp[—Ax fx(z)] (and renormalise). This shows how one can
generalise to the case where a given prior distribution m(z)dz is to be updated with new
global data (fy): The updated probability density must have the form

K
p(e) = " exp (= 30 Mefel) (52)
k=1

with .
Z = /dac m(x)exp ( - Z/\kfk(ac)) . (53)
k=1

The Lagrange multipliers can be found from Eqs. 48 or 51 as before. This result can be
obtained by maximisation of the relative information entropy (cross entropy)

S = —/dacp(ac) In :rl((i)) , (54)

subject to the constraints (48). The cross entropy has the required invariance under change
of variable, in contrast to Eq. 47 which we now recognise as restricted to the special case
of a uniform prior for the integration variable x.



The maximum entropy algorithm (48)-(51) ought to look familiar to physicists: It
constitutes nothing less than the missing rationale for Gibbs’ axiomatic approach to ther-
modynamics. There the maximised information entropy, multiplied by Boltzmann’s con-
stant, is Clausius’ thermodynamic entropy, and the normalisation constant Z is the parti-
tion function from which all macroscopically observable or controllable ensemble averages
can be obtained by suitable differentiation. For instance, if E is the (non-negative) energy
of the particles of a thermodynamical system, about which nothing is known except their
average energy (determined by the temperature of the system), one gets the canonical
distribution, p(E|(E)) o exp(—AE), i. e. a Boltzmann factor with the inverse tempera-
ture appearing as Lagrange parameter. If also the average number of particles is known
one obtains the grand-canonical ensemble, p(E, N|(E), (N)) x exp(—AE — puN), with the
chemical potential as a second Lagrange parameter, and so forth.

Data evaluators are mostly confronted with data reported in the form (r) £ Az. Our
notation indicates that we interpret these numbers as the measurer’s best estimate under
quadratic loss. The first two moments, (z) and (z?), of an unknown distribution are
thus given. (Remember that (Az)? = var z = (22) — (z)>.) If the range of the variate
is —0o < x < 00, the maximum entropy algorithm yields for this kind of information
p(x) o exp(—A1z—X222) as the least restrictive, least informative, hence most conservative
and most objective probability density. This is obviously a Gaussian that in terms of the
input data must have the form (confirmed, of course, by the maximum entropy algorithm)

p(z|[{x), Az) dx = m exp {— %(m ;;m)Q] dx, —co<z<oo. (5bh)

The case of an inherently positive variate, 0 < x < o0, is reduced to the case just considered
if we substitute y = Inz, so that —oo < y < 0co. With known first and second moment
on the log (y-)scale we get a Gaussian on the log scale, i. e. a lognormal distribution on
the linear (z-)scale. If we know only the mean (z), and x is inherently positive, we get
a decreasing exponential. We encounter here one of the reasons for the ubiquity of these
distributions in statistics and data analysis.

Traditionally the Gaussian is considered appropriate only if the variate is affected by
very many independent “random” errors so that the central limit theorem is applicable,
or it is invoked merely for mathematical convenience, with stern warnings about the dire
consequences if the true distribution is not Gaussian. The maximum entropy principle can
not eliminate those consequences but it prevents bad conscience or paralysis: If nothing
but the best value (mean) and the root-mean-square error (standard deviation) is given,
the optimal probability distribution for further inference is the corresponding Gaussian,
whatever the unknown true distribution may happen to be. In contrast to the central
limit theorem, the maximum entropy principle works also for correlated data.

Another myth is that systematic errors are to be described by rectangular probability
distributions. If we do not know their sign but have at least a vague idea about their
possible magnitude (from the state of the art, for instance), the maximum entropy principle
tells us to use a Gaussian with zero mean and a width corresponding to that magnitude,
rather than a rectangular distribution.

Generalisation to multivariate distributions is straightforward. Take, for instance, a
set of experimental errors (z;) — z; = €¢;, j=1, 2, ... n, about which only the expectation
values (ejeg), 1. e. their variances and covariances are known. The errors €; are the
Cartesian coordinates of the vector variate €, and the expectation values (e;ex) are the

elements of the symmetric, positive definite covariance matrix C = (eeT), where the dagger
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denotes the transpose. For each expectation value Cj, = C}; we introduce one Lagrange
multiplier Aj; = Agj. The maximum entropy distribution is then

p(e|C)d"e = %exp ( - Z Z ejAjkek> d"e. (56)
ik

Normalisation is easy in the coordinate system in which the square symmetric matrix A is
diagonal. We therefore substitute € = Oe, where O is the orthogonal matrix that renders
A’ = OoAOf diagonal, det A’ = det A, and d"¢’ = d"e. The n-dimensional integral Z

factorises then into n elementary integrals over univariate Gaussians,

Z = H/dej'exp (—Alje?) = de:nA . (57)
J

The relationship between the matrix A of Lagrange parameters and the given covariance
matrix C can be obtained by differentiation of In Z, see Eq. 51. One finds
0 1

CJk 8A]k InZ 2(A )]k? (58)

since differentiation of the determinant with respect to an element of the matrix yields
the cofactor for this element, which for a nonsingular matrix is equal to the corresponding
element of the inverse matrix times the determinant. The distribution with the highest
entropy among all those having the same covariance matrix C is therefore

1
Vdet (27C)

where (€) = 0, (eeh = C, det (2rC) = (2m)™ det C, and d(e) = d™e. Thus we find, for
given second moments, an n-variate Gaussian centred at the origin. Since nothing was
assumed about first moments of the errors, i. e. about the center of their distribution,
there is no reason to prefer either negative or positive €;, and so the algorithm yields
symmetry about zero. What if only the variances C}; are known, but not the covariances
Cjk, as often happens in practice? In this case only the Lagrange parameters A;; appear
in (56), i. e. the matrices A and C are a priori diagonal. Unknown covariances can
thus be taken as zero, and this simple rule can be applied also in cases where some
covariances are known and others not. This is another example, after the vanishing first
moments, for a general property of maximum entropy distributions: All expectation values
vanish unless the constraints demand otherwise. Thus there is no difference whether we
set unknown averages equal to zero after introducing Lagrange parameters for them, or
whether we ignore them right from the beginning. With € = (x) — x one can rewrite the
error distribution (59) in the form

p(e|C)d(e) = exp ( - %GTC_le) d(e), —00 < €; < 00, (59)

plx|(x), C) d(x) = 56— e = ) deo)

—00 < x; <00 (60)

1
Jdet 2rC) P (

which is the multivariate generalisation of the univariate Gaussian distribution (55).

It should be clear by now that entropy maximisation is a powerful tool for the as-
signment of prior or any other probabilities. A fascinating and very informative review of
the maximum entropy method, including a wide variety of applications from hypothesis
testing to non-equilibrium thermodynamics and fluctuation theory, was given by Jaynes
(1978).



1.8. APPROXIMATION: MAXIMUM LIKELIHOOD

The more abundant the data are, the less important is the prior distribution. There-
fore it is often a reasonable approximation to use a constant prior, as we did initially in
our decay constant example. This means that the posterior probability density is taken
as equal to the likelihood function. The widely used maximum likelihood method consists
essentially of the rule to recommend that parameter value (or vector) which maximises
the likelihood function. Since the likelihood function depends only on the sample, the
parameter value (or vector) maximising it can depend on nothing else: It is a statistic,
and its “direct” probability distribution, i. e. the probability that its deviation from the
true value (or vector) will fall between given limits if a sample is taken, can be calculated
as the integral of the likelihood function over a corresponding domain of the sample space.
If the distribution so obtained is narrow, the true parameter is likely to be close to the
particular maximum likelihood estimate obtained from a particular sample. The distribu-
tion of the statistic must therefore be related to the Bayesian posterior. In simple cases,
when sufficient statistics exist, one can, in fact, rigorously deduce the Bayesian posterior
from the distribution of the maximum likelihood estimate. This is R.A. Fisher’s (1935)
fiducial approach. In such favorable cases one finds that the maximum-likelihood result
coincides with the Bayesian result obtained with the appropriate least informative prior.

We illustrate this with our decay constant example. The likelihood function in Eq.
7 becomes maximal for A\ = 1/t, the maximum likelihood estimate is therefore the same
as the Bayesian “point” estimate (21). The probability for the sufficient statistic ¢ to be
found in the infinitesimal interval dt if a sample is drawn can be obtained by integration
of the likelihood function over a spherical shell with radius ¢ and thickness dt in the space
of the t;. With polar coordinates, t = r2, dt = 2rdr, d"t o« r?"~1drdS2, and (trivial)
integration over the angular coordinates € one gets

p(tln, \) dt emAnr? p2n=l gy 0<r=Vi<oo. (61)

After normalisation the right-hand side of this proportionality relation is the same as
the Bayesian posterior (20) obtained with Jeffreys’ prior. Obviously we have here the
universal probability distribution of the product Ant which we may interpret either as the
probability of A given nt (one particular sample, a continuum of possible decay constants)
or, equally well, as that of nt given A (one particular decay constant, an n-dimensional
continuum of possible samples for each positive integer n).

The maximum likelihood method, one of the techniques invented to circumvent priors,
is thus in favorable cases equivalent to the Bayesian approach, but even then it is more
cumbersome: First one must identify sufficient statistics, then one must calculate their
“direct” probability distribution by integration of the likelihood function over a suitable
domain in sample space, and finally one must “invert” to get the probability distribution
of the parameters. In more complicated cases sufficient statistics may not exist at all, and
even if they exist approximations may be required so that the maximum likelihood result
only approximates the exact Bayesian result.

1.9. APPROXIMATION: LEAST SQUARES

The next approximation to be discussed, the least-squares method, is the most im-
portant one for data evaluation and adjustment. As the simplest example we consider the
case that a quantity p has been measured n times, under different experimental conditions,
and that we are given the results in the form x; £ 0;. These numbers are best interpreted
as means and standard errors of unspecified probability distributions. Whether these are



Gaussians or not, the maximum entropy principle tells us to base all further inference on
Gaussians if the unknown errors can have any value between —oo and 400. The likelihood
function is the product of these Gaussian error distributions, and the appropriate prior
for the location parameter y is uniform, hence the posterior is also a Gaussian,

p(ul{xjaaj})duocexp[—%Z(xjgzu)z] dy. (62)

2

Introducing 0 ~“-weighted sample averages,

-2 -2 _2
po il (63) A% % " (64)
o Z.o'._2 ’ - g2 _2-072’
) g 3%
likewise 22, and normalising properly, we get
1 (u — )
P(pl{j,0}) dp = ———=exp [ - L2 du, (65)
202 /n 202 /n
with mean and variance
~2
_ o
(W) =1, (66) var p = (Ap)? = - (67)

The relative standard error of the result, Ap/(u), is seen to be proportional to 1/y/n
again. The best estimate under quadratic loss is the o~ 2-weighted average over all data.
It minimises the sum of squares in the exponent of the posterior (62). This least-squares
property will be met again in the multivariate generalisation:

Let us consider

e observables y;, j=1,2,...J (e. g. neutron capture data),
e parameters x, ,u =1,2,... M (e. g. resonance parameters),

e a theoretical model y = y(x) (e. g. the R-matrix theory of resonance reactions),

where x = {z1,...2m}, y = {y1,...ys)} are vectors in parameter space and in sample
space, respectively. Usually M < J but we shall see that this is not necessary. Now suppose
that before the data became available one had prior knowledge about the parameter vector,
in the form of an estimated vector € and a covariance matrix A = (¢ 5€T), with 0§ =
&€ —x, describing the uncertainties and correlations of the estimated parameters. The prior
probability distribution of x, given & and A, is then to be taken as

plxlE,A) d(x) o exp [ = 56— 0TAT (€= x0]d0o), (68)

where d(x) = dMx is the volume element of the M-dimensional parameter space (not to
be mistaken for the infinitesimal vector dx).

Suppose further that measurements yielded a data vector n, affected by experimental
errors whose uncertainties and correlations are specified by the covariance matrix B =



(0m 577Jr), with dn = n — y, so that the likelihood to obtain these values, given the true
vector y of observables, is

plnly, B)d(n) o exp |~ 30n—y)B(m—y)] o). (69)

where d(n) = d”n is the volume element in the .J-dimensional sample space.

These probability assignments are the multivariate Gaussians dictated by the maxi-
mum entropy principle (compare Eq. 59). Multiplying prior distribution and likelihood
function we get the posterior distribution,

p(xl€,A,n, B) d(x)
xexp [ = €= TAT € =) - 00—y B 0~y (o) dx). (70

So far we neglected correlations between prior information and new data. This is, however,
not always possible, for instance if the prior information stems from older measurements
in which the same techniques and standards were employed as in the new measurements.
Generalisation to this situation is not difficult. Eq. 70 shows that we can consider the
old parameter estimates and the new data on the same footing. Prior estimates and their
uncertainties have exactly the same impact as if they were data obtained in a measurement
of the special observables y, = x,. So we can combine the vectors x and y(x) in a
hypervector z(x) = {x,y(x)}. If the corresponding data vector { = {&€,m} and the

associated covariance matrix C = (6¢ 5CT) are given, the maximum entropy distribution
is

P16 C) () o exp [~ 5 (¢~ 2)TC7 (¢~ #(0)] (). ()

where C now contains also covariances between prior estimates and new data, (d¢, d7;).
This posterior distribution is the most general, most detailed result of our Bayesian param-
eter estimation. It contains in analytic form all information about the parameter vector
x that the given prior information and the new data contain.

The remaining task is condensation into a recommended parameter vector and its
uncertainty. Decision theory tells us what to do if a loss function is given. If none
is given we assume quadratic loss which entails that we must recommend the updated
posterior mean vector (x) and specify the uncertainties and correlations by the posterior

covariance matrix (0x 5XT>, with 0x = x — (x). For a linear model y(x) the necessary
integrations are easy as we shall see in Sect. 2.2. For a nonlinear model one must either
integrate numerically, which is not practical if many parameters are to be estimated (except
perhaps with Monte Carlo techniques), or one must resort to the method of steepest
descent (Laplace approximation). The latter means essentially that the exact posterior
is replaced by a multivariate Gaussian with the same maximum and the same curvature
tensor at the maximum so that the integrand is well approximated at least in the domain
that contributes most to the integral. This is accomplished by Taylor expansion of the
exponent of Eq. 71 about its minimum and truncation after the bilinear terms. (see
e. g. Bernardo and Smith 1994, Lange 1999). The maximum, i. e. the a posteriori most
probable parameter vector X, is specified by

(¢ —2(x)TC7} (¢ —2(%)) = min. (72)

This is the formal statement of the principle of least squares in its most general form.
(In the principal-axes system the quadratic form appears as a sum of squares, whence the
name).



In frequentist statistics the least-squares principle is introduced more or less ad hoc, or
it is derived from the maximum-likelihood principle which in turn is introduced at hoc. In
both cases only the likelihood function is utilised. Here we recognise that the least-squares
condition is a natural consequence of more fundamental premises, and that it demands
maximisation not only of the likelihood function but of the full posterior distribution.
Without simplifying too much one may say that generalised least squares is nothing but
Bayesian parameter estimation under quadratic loss in Laplace approzimation, in problems
where only data and data uncertainties are given so that the maximum entropy principle
demands Gaussians whether the unknown true distributions are Gaussian or not. An ad
hoc least-squares principle is not needed.

We conclude this chapter by summarising the essential difference between the frequen-
tist (also called orthodox or classical or sampling-theoretical) and the Bayesian approach
to inductive inference as follows. Frequentists average over all imaginable outcomes of
a measurement, conditional on given causes, whereas Bayesians average over all possible
causes, conditional on the one observed outcome and prior knowledge. There can be no
doubt that the Bayesian approach is the appropriate one for a physicist who must infer
cross sections or cross section parameters from uncertainty-affected observations.



2. Evaluation of Nuclear Data for Applications

In the following sections we shall discuss some of the more practical aspects of data
evaluation, with special attention to the least-squares formalism, to statistical versus sys-
tematic errors and how the latter cause correlations. Historically data evaluation in the
modern sense began with the effort of Dunnington (1939), Cohen, DuMond and collabo-
rators (1957, 1992))to determine a recommended set of fundamental constants (Planck’s
constant, fine-structure constant, electron mass, etc.), and to assess the uncertainties, by a
comprehensive least-squares fit to all relevant experimental data. At about the same time
the rapidly growing nuclear industry began to develop a voracious appetite for accurate
nuclear data, especially neutron and photon cross sections, but also nuclear structure and
decay data. The data for nuclear reactions induced by neutrons having “thermal” ener-
gies around 25.3 meV were evaluated with first priority (see Westcott et al. 1965, Lemmel
1975), but the expanding scope of nuclear technology, from thermal fission reactors to fast
fission reactors and eventually to fusion reactors, brought a corresponding expansion of the
energy range of interest. Modern neutron data files contain millions of cross section values
covering the whole range from 10 peV to at least 20 MeV for hundreds of isotopes, and
computers are indispensable for their maintenance and utilisation. Nuclear data provide a
highly developed example of the process leading from experimental raw data to evaluated
data files.

2.1. STEPWISE PREPARATION OF NUCLEAR DATA FOR APPLICATIONS

Nuclear (and other scientific) data for technological applications are usually prepared
in several steps, by different groups of specialists. Let us take neutron cross section data
to illustrate these steps.

1. Measurement: Experimenters take data, typically at steady-state or pulsed acceler-
ators, the latter permitting use of the time-of-flight method. This method produces,
in one experimental run and therefore under exactly identical conditions, large num-
bers of data points covering wide energy ranges with high resolution. The simplest
type of measurement is that of the total cross section . One measures that fraction of
a beam of particles of given energy (given flight time) which traverses, without inter-
acting, a sample of given thickness n (atoms/barn). This fraction, the transmission,
is 1 — 0An for a very thin layer of material. For the whole sample it is

— N _ n/An _ ,—no
T AITILIEO(I oAn) e 7. (73)

In practice the transmission is obtained as the ratio of the count rates from a “sample-
in” and a “sample-out” run. The incoming flux and the detector efficiency cancel out,
so there is no calibration uncertainty. Background noise, however, requires correc-
tions. If the cross section has resonance structure one employs both “thin” and
“thick” samples in order to obtain good accuracy of the extracted cross sections, at
the resonance peaks as well as in the valleys between resonances.

Partial cross sections are more difficult to measure. Experimentally one obtains a
reaction yield, for instance by recording the fission products or capture gamma rays
emitted from a thin sample under neutron bombardment. The reaction yield is defined
as that fraction of beam particles which undergoes a reaction of the measured type in
the sample. It is a sum of contributions from multiple-collision events where the beam
particle undergoes zero, one, two etc. scattering collisions before it finally induces the
recorded reaction,
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Fig. 3. Neutron capture yields, measured with the time-of-flight method at the Geel linear
accelerator (Gelina) across four overlapping s-wave resonances and one narrow p-wave reso-
nance, including instrumental and Doppler broadening and heavy multiple-collision capture.
Thin curve: least-squares fit with the R-matrix code FANAC (Frohner 1977), thick curve:
corresponding calculated first-collision yield (Brusegan et al. 1992).

Y, =Y+ Y +Yo+.... (74)

The first-collision yield is the product of the interaction probability of incident neu-
trons times the ratio o,/c of the number of (n,x) events to the total number of

interactions,
JI

Yoo=(1—-e"")—, (75)
a

where o, is the partial cross section for the (n,x) reaction of interest. For very thin
samples, no < 1, one can neglect multiple collisions and take Y, ~ Y,q ~ no,, but
for thicker samples the full first-collision term (75) must be used. Especially for reso-
nance reactions the multiple-collision terms are increasingly complicated functionals
of the cross sections, so that they must be calculated by Monte Carlo simulation
(see Frohner 1989). The observed count rate is the product of yield, incoming flux
and detector efficiency. The latter two quantities must be measured separately and
introduce correlated normalisation uncertainties as will be discussed below. Fig. 3
shows neutron capture data measured across overlapping resonances of **Cr+n with
heavy contribution from multiple-collision capture (Brusegan et al. 1992). Fig. 4
demonstrates the quality of modern time-of-flight data: there are three sets of neu-
tron transmission data and two sets of neutron-induced fission yields, all five showing
the same resonances of the compound system #**Pu+n (Derrien et al. 1988).



25

=
=
)]
)
=
(7]
=
<
x
}—
I
10!
2 100 b
Py ?‘ ‘:‘ﬁ-t
S. -+
5 10 3
Ll ]
0;') 4
& ]
8 10! I\
(s of ! ]
o ]
.,' 9
100 ' -
WESTON AND TODD 3
10— | l ! l ! | ]
160 170 180 190 200
ENERGY (eV)

Fig. 4. Transmission data for three samples and two sets of fission cross sections, measured with
the time-of-flight method at the electron linear accelerators at Saclay (Blons) and at Oak
Ridge (all others), showing resonances of 2*? Pu+n. The curves correspond to a simultaneous
R-matrix fit to the Oak Ridge data with the generalised least-squares code SAMMY (Larson
and Perey, 1980). From Derrien et al. (1988).

2. Reduction of raw data: Constant and time-dependent backgrounds are subtracted,
sample impurities are corrected for, and, in the case of partial cross section data
(vields), flux and detector efficiency are factorised out. Corrections for multiple scat-
tering and instrumental resolution are usually deferred to the next step if they require
e. g. resonance theory. Due to the complicated relationship between cross sections
and observables (Eqs. 73-75) cross sections are still unavailable at this stage, except
perhaps from thin-sample measurements.
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Fig. 5. Three sets of capture cross section data measured at Oak Ridge (1976), Harwell (1977)
and Karlsruhe (1980) for 241 A in the unresolved resonance region. The (piecewise) smooth
curve is a generalised least-squares fit obtained with the Hauser-Feshbach code FITACS.
From Frohner et al. (1982)

3. Analysis of clean data: Whenever possible, measured cross sections are paramet-
rised by means of nuclear reaction theory. This ensures consistency between partial
and total cross sections, permits inter- and extrapolation into regions where no data
were measured, and prevents unphysical values from being recommended. In order of
increasing energy the following theories and models are employed:

e R-matrix theory in the thermal and resolved resonance region (parameters: level
energies, level spins, partial widths), see Figs. 3, 4;

e level-statistical (Hauser-Feshbach) theory in the unresolved resonance region (pa-
rameters: level density, strength functions and average partial widths, or the
equivalent channel transmission coefficients), see Fig. 5;

e the optical model at higher energies, where levels overlap strongly but compound
reactions still dominate (parameters: radius, depth, diffuseness and deformation
of the real and imaginary potential well), see Fig. 6;

e precompound, direct and multistep theories at still higher energies where direct
and preequilibrium processes are important.

This is complemented by the giant dipole resonance model for photon reactions, fission
barrier models for fission reactions, etc. At this stage parameter estimation (curve
fitting) techniques are used extensively. From the estimated parameters one generates
the cross sections and uncertainties which the user finds in files of evaluated nuclear
data. Where suitable models are not available, polynormial or similar fits are used
to interpolate between evaluated data points. Gaps in the measured data are filled
by model calculations or with the help of systematics. Figs. 3-6 show examples of
theoretical curves fitted to measured data.

4. Generation of group constants: Doppler-broadened point cross sections for all
open reaction channels and for various temperatures can now be calculated, and av-
eraged over finite energy intervals as required for reactor or shielding calculations.
The result is a set of group constants, usually including group-averaged (“infinite-



27

Nb i ‘!“/\x"\,}‘mi 10.0
y‘\ A
(i

H
1

Fig. 6. Angle-dependent elastic-scattering cross sections of **Nb measured at Argonne National
Laboratory. Differential cross sections are given in b/sr and scattering angles (#, laboratory
system) in degrees. Point symbols represent data and their errors, curves are calculated from
an adjusted optical model potential. From Smith et al. (1985).

dilution”) cross sections for room temperature and temperature- and dilution-de-
pendent self-shielding factors on a specified grid of temperatures and “dilutions”
(describing admixtures of other nuclides), see e. g. Frohner (1989). These group
constant sets are usually special-purpose files for particular applications, in contrast
to the general-purpose “microscopic” files from which they are generated. In order
to enhance their special-purpose reliability they are often adjusted (least-squares fit-
ted) to data obtained in “integral” experiments with special test reactors or similar
facilities.

All these steps require time and several years may pass before measured nuclear data
needed for technological or scientific applications become available in the form of evaluated
computer files. This has motivated efforts to coordinate the work on an international scale.



Requests for Nuclear Data, known as the WRENDA list.
Measured data are collected by a network of data centers, each operating within its
agreed service area:

NNDC (National Nuclear Data Center) at Brookhaven, USA,
servicing the USA and Canada;

NEADB (NEA Data Bank, OECD) at Saclay, France,
servicing the non-American OECD coutries;

CJD (Centr po Jadernym Dannym) at Obninsk, Russia,
servicing the territory of the former Soviet Union;

NDS (Nuclear Data Section, TAEA), at Vienna, Austria,

servicing all other countries.

Regular data exchange ensures that the data base is essentially the same at all four
centers. Evaluated data are also collected, notably the files ENDF (USA), JEF (NEADB
member countries), JENDL (Japan), and BROND (Comecon countries). The centers pro-
duce also the widely used bibliographic Computer Index to Neutron Data (CINDA). The
well known “barn book” (Mughabghab et al. 1984) containing comprehensive resonance
parameter tables and cross section plots, is a product of NNDC. Similar networks of data
centers compile and distribute charged-particle data and nuclear structure and decay data.
The ENSDF file contains evaluated data of the latter type, it is the machine-readable off-
spring of the well known Nuclear Data Sheets and the Table of Isotopes (Lederer et al.
1979).

Comparable international cooperation involving data bank networks exists in me-
teorology, high-energy physics, materials research, aerospace research, and many other
scientific and technological areas.

2.2. ITERATIVE LEAST-SQUARES FITTING

Most of the parameter estimation work in the analysis of clean data (step 3. in the
last section) is based on the least-squares method. Let us therefore return to the least
squares condition,

(¢ —2(x)TC1(¢ - 2(%)) = min. (76)

We recall that the vector ¢ is the combined set of prior parameter estimates and of
measured data, ¢ = {&,n} = {&1,..-&m, 71, ---1s}. The measured data may come from
quite different types of measurements which, of course, must be mathematically described
by the corresponding coordinates of the model vector y(x).

Without prior information about the parameters one has simply

(n—yx) B (n - y(x)) = min. (77)

If one neglects also the correlations between the data 7;, so that the matrix B becomes
diagonal, one gets the equations for “primitive” least-squares fitting which is still employed
in many fitting codes. It utilises only the new data and their uncertainties, ignoring all
prior information that may be available. The resulting parameter estimates and their
uncertainties must then be combined with the prior information, derived for instance
from previous measurements, by some kind of weighted averaging after the fit. Now a
fundamental tenet of inductive logic is that the probabilities should encode all the available
information, prior knowledge as well as new evidence. It is therefore more correct —
and also more convenient — to include the prior estimates (or first guesses) and their
uncertainties (variances) right from the beginning in the form of a prior distribution as in



Eq. 70. Moreover, the convergence of nonlinear least-squares fitting is always improved —
often dramatically — after inclusion of prior information by means of Gaussian or similar
priors. One need not worry too much about unknown input correlations. According to the
maximum entropy principle we may simply neglect those that we do not know, and set the
corresponding elements of the input covariance matrix equal to zero. On the other hand it
is not difficult to construct complete input covariance matrices if the uncertainties of the
input data are well documented, with clear specification of the various error components
including their root-mean-square errors. This will be explained below but for now we shall
assume that the input covariance matrix C is given, at least in diagonal form.

Let us try to calculate the parameter estimate under quadratic loss, i.e. the mean and
the (output) covariance matrix of the posterior distribution (71). Numerical integration
is always possible but in order to get analytic expressions we must employ the Laplace
approximation (method of steepest descent, saddle point integration) which is strictly
exact only in the case of a linear model y(x). For nonlinear models it is adequate for most
practical purposes but one must keep in mind that it may fail if nonlinearities are severe
across the peak of the posterior. Taylor expansion of the exponent of Eq. 71 around its
minimum at x = % yields

Qx) = (¢ —2(x)TC'(¢ - 2(x))
Q&) + (x—%)TA " (x—%)+... (78)

The most probable parameter vector x is defined by VQ = 0 (with V, = 0/0z,), i. e. by
the “normal” equations

s T (¢ —z(x) =0, (79)
and the matrix A’ by

A =2 [vviQl L =sx)fcisx) +..., (80)

X=X

DN =

where S is the rectangular matrix of sensitivity coefficients

_ 9%
- Oz,

Siu (81)
The vector x can be found from the normal equations (79) by Newton-Raphson iteration: If
one has, after n steps, an approximate solution x,,, one can insert the linear approximations

z(X) ~ z(x,) + S(x,) (X — xp,) (82)

and S(x) ~ S(x,) in the normal equations and solve for x. The improved solution found
in this way is

Xn41 = Xn + [S(x,) [ CS(x,)] T S (x) T C ¢ — 2(x0)] - (83)

So one can start with the a priori most probable value, xqg = &, on the right-hand side,
calculate an improved value x;, reinsert it, and so on, until stationarity is achieved within
single precision of the computer (or until some other reasonable convergence criterion is
satisfied). In each step we must recalculate z(x) and the sensitivity matrix S(x). For a
linear model z is a linear function of x, i.e. Eq. 82 is exact for n = 0, with S not depending
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Fig. 7. Illustration of nonlinearities and correlations in least-squares fitting: neutron width I';,
and radiation width I, of the 23.52 eV resonance of **?Th+n were estimated by simul-
taneous adjustment to two measured transmission dip areas (TA), five capture peak areas
(CA) and two self-indication ratios (SIR). The curves represent the eight components of the
theoretical-model vector y(x), the parameter vector X having two coordinates, I',, and ;.
The “error ellipse” shows the best estimate and the correlated uncertainties (TACASI code).
From Frohner (1966).

on x. As a consequence the final result is already obtained in the first step, X = x;, as
expected.

Once we have established the final result X of the iteration we can calculate the
recommendation (in saddle point approximation)

(x) = [S@Tcs@) 's@ie ! [¢ - z(x)] (84)
(oxoxty = [Sx)Tc1sx)] . (85)

For a linear model we simply put X = £, the mean values thus obtained are exact.
Note that in the process of iteration one has to calculate improved vectors z(x) con-

taining both improved parameters x,, and improved data y(x,). The changes are small
if the sensitivity coefficients are small and if the calculated values are already close to



the prior estimates of parameters and data. In neutron data evaluation and cross section
parametrisation the number M of parameters is usually much smaller than the number J
of experimental data points. The opposite is true for group constant adjustment, since the
number M of adjusted group constants in a data library is usually much larger than the
number J of integral data (measured reactor responses). The equations are the same in
both cases. The iterative Bayesian least-squares formalism is employed in the resonance
analysis code SAMMY (Larson and Perey 1980) and in the Hauser-Feshbach program
FITACS (Frohner et al. 1982) that is used to analyse resonance-averaged neutron cross
section data in the unresolved resonance region. Experience with these codes has clearly
shown the advantage of explicit inclusion of a-priori information via a Gaussian prior.
Because the prior constrains the parameter search smoothly to a reasonable domain, the
(linear programming) problems encountered with sharp boundaries are avoided, and con-
vergence is dramatically improved relative to earlier “primitive” least-squares versions of
these codes which did not utilise prior uncertainties. A typical problem with “primitive”
least-squares fitting, viz. lack of convergence if too many parameters are adjusted simulta-
neously, is practically eliminated with the generalised least-squares scheme which tolerates
large numbers of adjusted parameters (e. g. several dozens in resonance analysis), even if
the prior uncertainties are quite large.

It must be kept in mind, however, that the covariance formalism based on first-order
error propagation, and hence the least-squares approach to data adjustment and model
fitting, is exact only for linear models but not in general. Different estimates can result in
nonlinear least-squares data combination depending on whether an evaluator has the raw
data available or whether he can only use reduced data with covariance information. A
much discussed example of this was “Peelle’s Pertinent Problem” (see Frohner 1997).

In reactor physics one often works with relative errors, (¢; — z;)/(;, and with the
corresponding relative covariance matrix elements (0¢; 0Cx)/(¢;(x), and relative sensitivity
coefficients, S;,,/¢;. This amounts to the replacements

¢(—z—>D(-2z), C—-DCD, S—DS with Dj,=06/¢. (86)

Obviously the inserted diagonal matrices D are canceled by their inverses in the least-
squares equations, so the use of relative quantities changes only the form of the equations
but not the content. The advantage is, of course, that relative (e.g. percentage) errors and
sensitivities are easier to grasp and to remember which makes it easier to compare them and
to assess their relative importance in problems with many physically different parameters.
Difficulties arise, however, if the values (; are much smaller than their uncertainties so
that one must divide essentially by zero. In this case it is better to use absolute rather
than relative values.

Occasionally the question is raised whether it is correct to use the (measured or a
priori estimated) data (; as reference or whether it is not better to use the true values
zj. The answer is simple: True values are principally unknown, so it is not possible to
use them as reference for instance in computer files of relative covariance matrices and
sensitivity coefficients. All one can do is to use the best estimates that are available at
a given stage. Before least-squares adjustment these are the prior parameter estimates
¢, and the experimental data 7;, hence the quantities (;. After the adjustment one
has improved parameter estimates (z,) and improved calculated data y;((x)), and those
are then the correct reference values for the relative output covariance matrices. True
values are never available, they appear only in the equations as arguments of probability
distributions, i. e. as possible values, and are integrated out whenever expectation values
or other recommended quantities are computed for practical applications.



2.3. STATISTICAL ERRORS: POISSON STATISTICS

We must now discuss the error information that is needed for the construction of the
covariance matrix C,, that describes the uncertainties of the data and their correlations. In
practically all nuclear data measurements one detects and counts particles of a particular
type, for instance fission fragments signalling nuclear fission events, or gamma quanta
signalling radiative capture events. The count rates are a measure of the corresponding
fission or capture probabilities (conventionally expressed as nuclear fission or capture cross
sections). In the limit of infinite counting time, and in the absence of other errors, one
would measure the probabilities (in the frequentist sense) directly, but in practice there is
always some statistical uncertainty about the limiting count rate (or cross section) because
of the finite counting time. What can we say about the true rate A\, and especially about
its uncertainty, if n events have been registered during a time ¢7

Constant count rate means that there is a well-defined average time interval (t) be-
tween counts. With this global information the maximum entropy principle yields imme-
diately the familiar exponential interval distribution of Poisson statistics,

p(tN) dt = e Ndt , 0<t<oo. (87)

The Lagrange multiplier, the rate constant, is the reciprocal of the mean interval, A =
1/(t). Knowing the interval distribution one can write down the joint probability that
counts are registered in infinitesimal time intervals dtq, dts, ... dt, within some time span
t, and integrate over all possible locations of these intervals. The result is the probability
of n counts registered at arbitrary times within the interval ¢, given the rate constant A,

e—At()\t)n

n!

P(n|At)d\ = , n=0,1,2,... (88)

This is the Poisson distribution. Bayes’ theorem with Jeffreys’ prior for the scale parameter
A yields immediately the inverse probability (Sect. 1.5, Eq. 20)

e x" dx
p(Alt,n) d\ = Ty = 0<x= M\t < o0, (89)
with Al .
n=", (90) oS (91)

The relative uncertainty is nothing but the familiar 1/y/n rule for the estimation of stati-
stical uncertainties, widely used for all kinds of tallies in statistics generally and in Monte
Carlo work in particular. More general problems, for instance the determination of a count
rate in the presence of a background, are also readily solved with the Bayesian method
(see Loredo 1990, Frohner 1997).

2.4. SYSTEMATIC ERRORS: CORRELATED UNCERTAINTIES AND THEIR PROPAGATION

We must now discuss briefly the basic types of systematic errors and how they induce
correlations between estimates. As before we denote the unknown errors of the data by
on; = n; —y;. If they were of purely statistical origin they would be uncorrelated, and the
elements of the covariance matrix B would be

(0 6mi)y = 6k var nj = 6;,(An;)?, (92)



i. e. the matrix would be diagonal. This is assumed in many “primitive” least-squares
codes: each squared error is weighted by the reciprocal variance. Besides the statistical
errors there are, however, always experimental errors from flux determination, detector
calibration, timing uncertainty, etc. In contrast to the statistical errors these so-called
systematic errors are common to a whole set of data, for instance to all the data accumu-
lated in the time channels during a time-of-flight experiment. Quite generally, correlations
between data are usually caused by common errors. To see this we write the unknown total
errors in the form

on; = on; + o', (93)

where 677; is the statistical, and dn’ the systematic error. The latter is the same for the
whole data set so it does not carry a subscript. The elements of the covariance matrix B
are

(5 o) = ((0m3)*) 850 + ((d1')?), (94)
since the statistical errors of different data points are uncorrelated, (67} dn;,) = ((69})*) 1,
with zero mean, (dn;) = 0, and since there is no correlation between statistical and

systematic errors, (0n;dn’) = 0. We conclude that common, i. e. systematic, errors
always produce correlations between the elements of an experimental data set.

The most frequent systematic errors are those that shift the observed value (e.g.
background errors) and those that multiply them (e.g. errors in flux normalisation or
detector calibration). If we vary a subtracted background b for one of the data points,
we must do the same for all others: all the reported values n; must be varied together.
This is, of course, the literal meaning of covariance. More generally, if the reported data
were obtained from raw count rates a; by application of common corrections b, c, ..., the
total errors are dn; ~ (0n;/daj)da; + (9n;/0b)ob + (9On;/0c)dc + .... Now the statistical
errors and usually the common errors, too, are uncorrelated, so that all their covariances
vanish, (da; dap) = (da; 0b) = (6bdc) = 0. The overall covariance elements depend then
only on mean square errors (variances) of the components and on sensitivity coefficients
(derivatives),

sy o (PN Ag V28, o i a2, O 29T
(dm; O} ~ ( aaj) (Day)? 8+ S (AB)? T + T (A2 (95)

This shows that for the construction of covariance matrices the evaluator needs from the
measurers

e root-mean-square errors for all error components,

e information about the data reduction so that he can calculate the sensitivity coeffi-
cients.

If he is told that the data reduction consisted in subtraction of a common background b
and multiplication by a calibration factor ¢, i. e. n; = (a; — b) - ¢, he has no difficulty to
calculate (dn; onk) =~ d;1(cAaj)? + (cAb)? + njnk(Ac)?/c. Obviously it is essential that
experimentalists state clearly, and in sufficient detail, the various statistical and systematic
error components when they report data, whereas they need not worry about correlations
since these can be constructed readily from the error components, even for very large data
sets (by computer, if necessary, see N. Larson 1986, 1992). For an instructive example of
correlated data uncertainties and their impact on estimated parameters see the discussion
of resonance energy standards by F. Perey (1978).

The merging of statistical and systematic errors into a total error is often considered
as incorrect. Our equations show, however, that it is perfectly straightforward to calculate



the mean square total error as the sum of the mean square errors (variances) of all error
components, statistical as well as systematic. The dividing line between the two error
types is debatable anyway: One person’s statistical error may well be another person’s
systematic error. The only problem with a sum of mean square errors is that by itself it
does not reveal how much of it is statistical and how much systematic, i. e. how much
correlation there may be. This question can only be answered if the physical meaning and
the standard errors of all the error components are known.

A somewhat related criticism has been raised against least-squares combination of
data obtained from different sources: Suppose a constant count rate, for example back-
ground noise, is measured repeatedly, with counts n; registered during time intervals ;.
The Uj_z—weighted sample average, calculated with relative uncertainties equal to 1/ N
as is appropriate for counts, turns out to be Y. #;/ 3" .(t5/n;). This does not look right
and has been mistaken as evidence that there is something fundamentally wrong with the
least-squares formalism which needs to be cleared up and remedied. The cause of the
difficulty is, however, not the least-squares formalism but its employment in a situation
where a non-Gaussian sample distribution — the Poisson distribution — is known to apply.
There is no need here to replace unknown distributions by Gaussians via entropy max-
imisation or the central limit theorem and then use least squares. The correct posterior
is a product of Poisson probabilities, Eq. 88, and of Jeffreys’ prior for the rate constant.

The resulting estimates, (A\) = >_.n;/ > ;t; and AN/(A) = 1/,/>".n;, involve the total

number of counts and the total counting time in precisely the way common sense expects
from Eqs. 90 and 91. The lesson is that the least-squares method should not be used blindly
if the available information admits a more rigorous treatment. This is another illustration
of the fundamental truth that the correct solution of a probabilistic problem requires all
given information to be utilised.

The statement that experimentalists need not worry much about correlations should
not be misunderstood. It does not mean that correlations are unimportant. It means only
that they are not needed for the construction of covariance matrices provided the data
reduction procedure and all relevant root-mean-square errors are adequately documented.
The correlated output uncertainties of cross sections or cross section parameters, contained

in the posterior covariance matrix (0x 5XT), constitute highly relevant information for users
of the data. The uncertainty of any function f of the cross sections z,, for example the
calculated criticality of a nuclear reactor, is given in linear approximation by the square

root of of of
(@) =D 5o (b)) 5=, (96)

where (6x,0z,) is an element of the covariance matrix, and where the derivatives or
sensitivity coefficients are to be calculated with the best estimates (x,). It is obvious
that a good sensitivity study is not feasible without the covariance matrix. In the past it
appeared repeatedly as if nuclear data were not accurate enough for certain applications
when covariance information was ignored. When it was properly taken into account the
accuracy turned out to be quite acceptable due to negative terms in the double sum from
anticorrelated (compensating) errors. Hence those who extract cross section parameters
from experimental data should not just state the parameters and their uncertainties, but
also at least the more important elements of the covariance matrix.

We close the subsection by noting that the covariance matrix elements C,,,, are related
to the standard errors Az, = ,/var ,, and the correlation coefficients p,,,, as follows,

Cu = 0z, 0z,) = Azypu Ay, (97)



with p,, = 1. The Schwarz inequality constrains the range of the correlation coefficients,

cov (T, T,)
yvar Ty\/var x,

Uncertainties can thus be stated in several equivalent ways:

< +1. (98)

-1 Sp,ut/ =

1. as variances and covariances,

2. as relative variances and relative covariances,

3. as standard errors and correlation coefficients,

4. as relative standard errors and correlation coefficients.

By far the most economic and mnemotechnically safest way is the last one (at least if the
data are not vanishingly small compared to the uncertainties). First, relative (percent-
age) standard errors are more easily grasped, remembered and compared than absolute
ones, especially if the data vectors contain physically distinct quantities (e. g. resonance
parameters and cross sections, or group cross sections and self-shielding factors). Second,
relative standard errors and correlation coefficients have a clearcut intuitive meaning in
contrast to variances and covariances. If I am told that the variances of x and y are 0.04
and 0.000009 and that their covariance is -0.000012 I am helpless. Only with the further
information that the recommended values are £ = 10 and y = 0.1 can I find out that the
relative standard errors are 2% for = and 3% for y and that the correlation coefficient is
-0.02. Had I been told the last three figures right away I would have understood immedi-
ately that both quantities are known with good accuracy and that their anticorrelation is
negligible for most purposes.

It is hard to understand why the present ENDF-6 format (Rose and Dunford 1990)
admits only variances and covariances. A format extension to standard errors and cor-
relation coefficients would enable evaluators and users to work with uncertainty files that
are much easter to construct, read, and update, hence considerably less error-prone than
the existing ones, without being bulkier.

2.5. GOODNESS OF FIT

The quality and consistency of a least-squares fit is indicated by the posterior value
of
=(¢-2)c (¢ -2). (99)

The smaller the residues |(; — z;| are, the better is the fit, and the smaller is x?. In-
consistencies, such as a wrong theoretical model (an overlooked resonance, for instance)
or underestimated errors, tend to make y? too large, while overestimated errors make it
too small. In order to see what too large or too small means we consider the probability
distribution of the variate y? (in sample space, for given parameters). For a linear model
y(x) it is easy to see that the distribution of x? is a gamma distribution: The maximum
entropy distribution of the data vector ¢, given the true vector z, is

X2

P(cln ©)d(¢) xexp [~ (¢ —mTC ¢ —n]d¢) = exp (= X)), (100)

We simplify by an orthogonal transformation to the principal-axes system in which y? is
a sum of N = M + J squares,

x* = i (L _Z;')Z => X (101)
. ol L



The primes indicate the principal-axes system and the 0;-2 are the elements of the diagonal

matrix C' = OTCO, with OTO = 1. The relative deviations X; can be considered
as Cartesian coordinates in the space of the (;. The corresponding volume element is
invariant under the orthogonal transformation (rotation) O,

d(¢) = d(¢') o« d(x) o< xVldxd. (102)

In the last term we introduced polar coordinates with the radial coordinate x, as suggested
by Eq. 101. With this volume element it is trivial to integrate Eq. 100 over the angular
coordinates 2. The resulting radial distribution can be written as a x? distribution with
N degrees of freedom,

Ny -1 X2 X2 N/2—-1 dXZ
2 2 _p(Y _ X\ (X2 ax”
Pz, ) dx _F(z) eXp( 2)(2) 2
0<x>= (¢ -2)fCc (¢ -2) < . (103)
Unfortunately we do not know the true vector observable z = z(x). All we know is

the estimate z = z(x), where x satisfies the least-squares condition (76) or the normal
equations (79) which we now write in more abbreviated form as

sfc-l(¢-2) =o0. (104)

Because of this system of M equations not all (; are mutually independent but only J of
them. Taylor expansion about the estimate x yields (compare Eqs. 78 and 80)

¢ =0+ (= 2)T(8TC8) (x - ), (105)
where
N o3\ 2
=Y () =2 (106)
i=1 J J
For a linear theory one has z’ = 2" + OTS(X —x) and therefore
. 1 T N
Xi=Xit+ > 0 Sk, — &) - (107)
i ko

One can now replace the integration variables x; by x; for j = 1,2,...J and by z, for
j=J+1,J4+2,... N. The Jacobian for this substitution is constant because of the linear
relationship (107) between old and new variables, so that

d(¢) x d(x) x ¥’ tdydQdMa . (108)

Integrating (100) over all angular coordinates and all =, one finds finally the distribution
of the sum of square deviations x? that can be calculated from known quantities,

2

gt (2 e (- ) ()14

0<2=(¢-2)fc (¢ -2 < co. (109)



This chi-square distribution with J degrees of freedom is broader than the chi-square
distribution (103) with J + M degrees of freedom. Its mean and variance are

) =J, (110) var X2 =2J. (111)

This result is exact for linear theoretical models z(x), for nonlinear models it is valid in
saddle point (Laplace) approximation. It certainly applies whenever iterative least-squares
fitting (see Sect. 2.2) works. The last two equations show that a good fit is characterised
by a chi-square value close to the number .J of data points, roughly between J — v/2.J and
J++/2J. The statement that a fit “yielded a chi-square of 1031 for 1024 data points” would
therefore indicate good consistency between input data and theoretical model. A much
higher chi-square could point to underestimated uncertainties, and it is fairly common
practice in this case to multiply all input uncertainties (i. e. the matrix elements of C)
by a common scale factor so as to enforce x? = .J (and to adjust the posterior parameter
covariance matrix accordingly). This is dangerous, however, because a high value of chi-
square could also be due to an inadequate theoretical model (incorrectly assigned level
spins or overlooked weak resonances, for instance, in resonance analysis). A suspiciously
small chi-square, on the other hand, could indicate too conservative uncertainty estimates,
but it could also be due to tampering with the data such as elimination of data (“outliers”)
which seem to contradict a favourite theory. Rescaling of the uncertainties should therefore
be considered only after one has made sure that there is nothing obviously wrong with the
model or the input.

In “primitive” least-squares fitting, where prior information is neglected, the same
argumentation leads to the widely used result that Y% = (g — y)TB_l(n —y) obeys a chi-
square distribution with J — M degrees of freedom so that x? is expected roughly between
(J—M)—/2(J—M) and (J — M) + \/2(J — M). The statement of the goodness of
fit must now include both the number of measured data points and of parameters. A
“chi-square of 1031 for 1024 data points and 20 adjusted parameters (1004 degrees of
freedom)” would indicate reasonable consistency.

2.6. INCONSISTENT DATA

One of the thorniest problems in data evaluation is that of inconsistent data. Sup-
pose we are given the results of n completely independent and experimentally different
measurements of the same physical quantity, u, in the form z; 0, j = 1,2,...,n. If
the separation of any two values, |z; — 2|, is smaller or at least not much larger than
the sum of the corresponding uncertainties, o; + oy, the data are said to be consistent
or to agree “within error bars”. (The probability that two equally precise measurements
yield a separation greater than o; + 0, = 20 is only erfc 1 ~ 0.157 for two Gaussian
sampling distributions with the same standard deviation o). If some or all separations are
much larger, the data are not consistent with the stated uncertainties. Inconsistencies are
caused by unrecognised or malcorrected experimental effects such as backgrounds, dead
time of the counting electronics, instrumental resolution, sample impurities, calibration
errors, etc. As already mentioned, a popular quick fix consists in increasing all input errors
by a common factor until chi-square has the expected value (and all error bars overlap).
This, however, does not change the relative weights, hence there is the same penalty for
overoptimistic as for conservative uncertainty assignments. The following Bayesian treat-
ment provides more justice. It considers not only the claimed uncertainties but also how
far a given datum is from the average.

What can we say about unrecognised errors? If we know only the data but not how
they were measured, positive and negative errors are equally probable, hence the probabil-
ity distribution for the unrecognised error €; of the j-th experiment should be symmetric



about zero, and the same distribution should apply to all measurements. Let us therefore
assume, in accordance with the maximum entropy principle, Gaussian distributions for all
Ej,
1 1 €4 2
p(€j|7;) dej = ——=exp [— —(—) } de; , —00 < €; < 00. (112)
2772 2\T;

The probability to measure the value x;, given the true value p, the unrecognised error
€5, and the uncertainty o; due to all recognised error sources, is then given by

1 1 /0 — 1 — €\ 2
p(zjlp, 05,€j) dr; = ———exp [— —(w> } dz; , —oo < z; <oo. (113)
270 ;2 2 oF

If the dispersions 7; of unrecognised errors are known, the joint posterior distribution for
p and the €; is

2
€5

n oy — )2
plps e, 7) dud(e) o du ] [ dejesp [~ RGN (114)

2 2
20 27;

=1

(e, o, T on the left-hand side are to be understood as vectors in sample space, with
coordinates €;, o; , 7;.) Completing squares in the exponent we can easily integrate over
the €;. The resulting posterior distribution for p is a Gaussian,

. 1 (n—x)?
l‘,sd = eX _:d,
Y =y - s

—co<p<oo, (115)

with 1
(wy =1z, (116) var pu = 5(02 + 72) (117)

where the overbars denote averages over j (over measurements) with weights 1/(0;%+7;2).
Integrating (114) over u we find the joint distribution of the unrecognised errors,

(e—x)TA_l(e—x)—%eTB_le de),  (118)

1
pelx,o,T)d(€) x exp -3

where A~! and B~! are positive definite, symmetric matrices defined by

-2 -2

— — 05 “Of — —

(AN = 0,726, — 7§: — (119) (B Yk =77 %05 . (120)
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This product of two multivariate Gaussians is a multivariate Gaussian again, with mean

vector (€) = CA~'x and inverse covariance matrix C~* = A=! + B~!, so that

(A7 + B ) (e) = A !x. (121)

Solving the last equation for (€;) one obtains

(6) = —52—(a; — 7). (122)

2 .
0%+ T

The best estimate of €, is thus the deviation 2; — Z of the j-th datum from the (weighted)
mean Z, multiplied by a “shrinking factor” 7;%/(0,;? + 7,;) that is close to zero if the



expected unrecognised error is much smaller than the known uncertainty o;, and close
to unity if it is much larger. This, however, is trivial: If we know the variances 7;2 of
the unrecognised errors then these are not really unrecognised. We know as much about
them as about the other errors. We can therefore add variances as usual to get the total
mean square errors o;2 + 7;2. Their reciprocals are expected to appear as weights in all
j-averages, and this is in fact what we have just found.

The simplest nontrivial case is obtained if the 7; can be considered not as the actual
root-mean-square unrecognised errors but merely as their estimates, based for instance
on the general quality of the various measurements, on the accuracy of the techniques
employed, perhaps even on the credibility of the experimentalists as judged from their
past record. (Note that it is perfectly all right to put 7; = 0 for those experiments that
can be considered as unaffected by unrecognised errors). The unknown true variance can
then be taken as 7;2/c, where c is an adjustable common scale parameter with prior p(c)dc,
and the joint probability for p and the vector € as

Z] . (123)

oo n o — )2 .
p(p, elx,o,7)dud(e) x d,u/ dep(c) H /2 de; exp [— (@ =p=e)" cq

2 T o
0 e 20 27;

Integrating over all €; one gets the posterior distribution of 1,

e X 1 (p—1j)?
d d d 2/c)=1/2 —— —— | (124
plplx,o,7)dp N/O ep(c ];I UJ +7;7/c) exp[ D) (aﬂ—l—Tf/c)] (124)

If we have no numerical information at all about the scale parameter ¢ Jeffreys’ prior de/c
appears appropriate. The integration over c is then easy if the known uncertainties are
unimportant. With o; = 0 for all j the integrand becomes essentially a gamma distribution
of ¢, integration over which yields Student’s t-distribution,

d -
p(u|z,s") dp = - - “ o730 —o0o<u= H—ICE <00, (125)
B(z, *7) (1+v?) °
with

812
(n) =2z, (126) var p1 = —, (127)

n—
where 52 = 22 — 72, the overbars denoting sample averages weighted by 7;72. Thus the

uncertainty of 4 in this extreme case is equal to the sample variance s'?, determined by
the scatter of the data z; (sometimes called the “external error”). This is, of course, just
what we found when we discussed estimation of p from a sample drawn from a Gaussian
with unknown standard deviation (Eq. 34). For large n the distribution of y is practically
Gaussian.

In the general case, o; > 0, 7; > 0, the integral (124) with Jeffreys’ least informative
prior p(c)de  de/c diverges logarithmically because the integrand becomes proportional
to 1/c for ¢ — 0. The Bayesian formalism signals in this way that the prior information
is not sufficient for definite predictions. Is there anything we know in addition to the fact
that c is a scale parameter? Actually, if the 7; are our best estimates of the uncertainties
caused by unrecognised errors, we expect ¢ to be close to unity. The maximum-entropy
prior constrained by (¢} =1 is

p(c)de =e “dc, 0<c<oo. (128)



This is almost as noncommittal as Jeffreys’ prior, decreasing also monotonically as ¢
increases, but normalisable and giving less weight to the extrema. With this prior both
the c-integral and the normalisation constant of the posterior u-distribution (124) are finite
and can be calculated numerically without difficulty. Fig. 8 shows a real-life example, the
posterior distribution of the 239Pu fission cross section for 14.7 MeV neutrons, together
with the Gaussian distributions representing the six experimental results listed in Table I.
Prior uncertainties of 7; = 0.1 b were assigned to all experiments indiscriminately, based on
the state of the art. The posterior mean and the root-mean-square uncertainty, computed
numerically, are also given in Table I.

2.7. ESTIMATION OF UNKNOWN SYSTEMATIC ERRORS

What can we learn about the unrecognised systematic errors €; from the set of in-
consistent data, z; £ 0;, j = 1,...n7 With the prior (128) it is easy to integrate the
posterior probability distribution (124) first over the gamma distribution of ¢, then over
the Gaussian distribution of . The result can be written in the form

]_"/2_1 die), (129)

1 1
p(elx,o,7)d(€) x exp | — 5(6 — X)TA_l(G — x)] [1 + EGTB_IG
with the matrices A and B defined as before, eqs. 119 and 120. In order to get the mean
vector and the covariance matrix of this distribution in analytic form we employ saddle
point integration, replacing the exact distribution by a multivariate Gaussian with the
same maximum and the same curvature at the maximum,

(- (VVIF)ele—&)],  (130)

DN =

plelx, o, 7) = expl—F(€)] = exp[—F(&) —
where the nabla operator has coordinates V; = 0/0¢;. Thus we have
~ £ T ~ T P -1
(€) ~ &, (131) (6edey ~ [(VVIF)ee] - (132)
The most probable vector € must be found by solving the equation

n+ 2 B 'e

VF=A"1'e—x)+ = 133
=)+ 1+ efB-1e/2 (133)
and the approximate covariance matrix as the inverse of
2 B-1(1+¢/B~1e/2) - B-leel B!
vwir=a-42F (L+eB7 ¢/2) cce= (134)
2 (1 + efB-1¢/2)2
evaluated at € = €. With the definitions (119) and (120) of A and B we obtain
_ 2 =25 .22,
RPN SR Sl W (135)

2 1+, 722

where z and é are o;~2-weighted averages. This is suitable for iteration. Inserting é; ~

x; — 7z for all j as first estimate on the right-hand side one finds the second approximation,

n-+ 2 Tj_20j2

2 14>, 2(xp —T)?

@ —a), (136)

6]'2 1



and by repetition better and better approximations. Our treatment of unrecognised sys-
tematic errors is an example of the “hierarchical” (here: two-stage) Bayesian method. It
involves repeated application of Bayes’ theorem: The sampling distribution (113) depends
on parameters €; with the prior (112) that, in turn, depends on the “hyperparameter” c
with the “hyperprior” (128) if we replace sz by TJ‘? /c.

The final estimates and their uncertainties (square roots of the diagonal elements of
the matrix (de 6(—:T> for our 23 Pu problem, obtained in this way, are listed in the last col-
umn of Table I. No significant unrecognised errors are found for the measurements 1, 5 and
6, whereas 2, 4 and perhaps 3 seem to be affected by unrecognised errors that are of the
same order of magnitude as the uncertainties stated by the authors. Of course, these con-
clusions could have been drawn already from the experimental data (and especially from
the pictorial representation by Gaussians in Fig. 8), but our formalism provides quantita-
tive support for our common sense also under less obvious circumstances. Furthermore,
it sheds some light on a much advertised recent estimation method:

Our second approximation (136) resembles the James-Stein estimators (Stein 1956)
that, since their introduction, have caused a great deal of excitement, confusion and a
flood of papers. C. Stein showed, using the frequentist definition of risk (square error
averaged over all possible samples, for a given set of parameters) that estimators similar
to (136) have sometimes lower risk than the estimates resulting from Bayesian estimation
under quadratic loss (that minimise the square error averaged over all possible parameters,
for the sample at hand). Many improvements have been suggested to Stein’s original
estimators, based on frequentist distribution theory and more or less educated guesswork.
For instance, the “plus rule” estimator

n—2 g2 _
— +(xj—w), (137)

Ej* ~ [1—

was proposed for the special case of equal uncertainties (0; = o for all j). The subscript
+ means that only positive values of the “shrinking factor” are accepted. For negative
values one must put €; = 0. Moreover, the “plus rule” estimator is to be used only for
n > 3. Wild discussions arose about the “paradox” that the estimator for €; depends
not only on z; but on all the other, independently sampled z, k # j. The question was
raised whether inclusion of other unrelated data would not improve the estimate. (“If I
want to estimate tea consumption in Taiwan will I do better to estimate simultaneously
the speed of light and the weight of hogs in Montana?” (Efron and Morris 1973). So-called
parametric empirical Bayes recipes seemed to offer some insight, e. g. replacement of 72
in Eq. 121 (in the case 7; = 7 for all j) by the sample variance s’>. However plausible
such recipes may seem (see e.g. Berger 1985), without rigorous justification they remain
ad-hockeries.
Under the same circumstances (0; = o, 7; = 7) our Eq. 136 yields

(n+2)o?
ns'? 4 272

(e;) = |1 - | @i -2, (138)
valid for all n > 2, without discontinuities or questions of interpretation. A paradox
exists only for frequentists who deny themselves the use of priors. For a Bayesian there
is no paradox. He or she encodes the information that the data are all of the same type,
measured in related and hence comparable experiments, in a second-stage prior which
induces correlations and “shrinking” factors in a natural way. Speed of light data are
unrelated, hence excluded. From the Bayesian viewpoint, on the other hand, it seems odd



42

g1
15 239y(n, )

6 En= 14.7 Mev

Fig. 8. Probability densities representing the experimental results in Table I (dashed Gaus-
sians), and posterior density of the true value (solid curve) estimated with the two-stage
Bayesian model, Eq. 124, with hyperprior Eq. 128. Inconsistencies are evident between the
experiments 2, 3 and 4 (curve labels correspond to the first column of the table).

Table 1. Experimental input and estimation results for
Z9Pu(n,f) at 14.7 MeV incident neutron energy

No. Authors Year measured estimated
fission unrecognised
cross section error
(barn) (barn)

1 Kari 1978 2.37+.09 -.019+.056
2 Cancé et al. 1978 2.294+.05 -.086+.050
3 Adamov et al. 1979 2.51+.05 .056+.048
4 Li et al. 1982 2.53+.05 .069+.049
5 Mahdawi et al. 1982 2.44+.09 .0064.056
6 Arlt et al. 1983 2.39 £ .03 -.027+.041
best estimate: 2.424+.05
prior estimates: 7,=0.1b for all systematic errors

to base the risk criterion not on the given sample and on prior knowledge, but on the
given sample and all other unobserved samples that can be imagined, without utilisation
of prior knowledge. Frequentist claims about the superiority of estimators “in the long



run” (averaged over many samples) are not very relevant for data evaluation, where one
must infer best values (for quadratic or any other loss) from one available sample. It may
be true that an estimator with low risk is closer to the true value for a larger fraction
of all possible samples than an estimator which ensures minimal quadratic loss, but for
the remaining fraction of samples the errors tend to be so much larger that the apparent
advantage turns into a net disadvantage (see Jaynes 1976). In any case, the Bayesian
two-stage method yields, in second saddle point approximation, estimators which are
similar to, but especially for small samples better than, James-Stein estimators. Moreover,
iteration yields all the possible improvement and also the uncertainties in a systematic and
unambiguous way, without the bizarre discontinuities (Efron and Morris 1973) of many
improved James-Stein estimators. The Bayesian method leaves no room for guesswork
once loss function, statistical model and priors are specified.

Obviously, the correct interpretation of data inconsistencies is never easy, and the
old saying that “data evaluation is more an art than a science” remains true to a certain
extent, in spite of much progress toward formalisation and quantification during the last
three decades.



3. Resonance Theory for the Resolved Region

If nuclei of a given species, e. g. 23°U, are bombarded by neutrons, one observes
nuclear reactions such as elastic scattering, radiative capture, or fission. The probabilities
for those (n,n), (n,y), or (n,f) processes, customarily expressed as cross sections in units
of barn (1 b = 10724 ¢m?), depend sensitively on the energies of the incident neutrons.
The scattering cross section, for instance, is mostly close to the geometrical cross section
of the nuclei (several barns) but at certain energies it rises suddenly by several orders of
magnitude. Similar resonance behaviour, at the same energies, is exhibited by the capture
and fission cross sections. Fig. 9 (top and middle) shows this behaviour for the nucleus
238U for which elastic scattering and radiative capture are the only energetically allowed
neutron reactions at low energies.(Subthreshold fission is negligibly small.) For 23°U one
would see resonances also in fission in this energy range. Each of these resonances is due to
excitation of a relatively long-lived (quasi-stationary) state of the compound nucleus that
is formed temporarily if a neutron interacts with a target nucleus. Note the different peak
shapes: The resonances in the capture cross section are symmetric whereas those in the
scattering cross section are asymmetric with pronounced minima and sizable ”potential”
scattering between resonances.

The impact of the resonances on the neutron spectrum in a power reactor is shown
in Fig. 9 (bottom). The conspicuous dips in the neutron flux coincide with the resonance
peaks in the cross sections. The explanation is simple: Neutrons cannot survive long at
energies where 238U, the main fuel constituent, has high cross sections, because there they
are soon captured (removed completely) or scattered (transferred to some other, usually
lower) energy. As a result the flux is depleted at the 233U resonances. Smaller dips in the
flux are due to other, less abundant fuel components such as the fissile 235U.

At low energies the resonances appear fairly well separated but as the energy increases
their spacings decrease while their widths increase. Eventually they overlap so much that
the compound resonance structure is averaged out and only much broader structures
survive, such as the size (or single-particle) resonances described by the optical model,
or the giant dipole resonances observed in photonuclear reactions. As a rule only the
resonances at relatively low energies can be observed directly. At intermediate energies
they are not fully resolved because of limited instrumental resolution, although the real
disappearance of compound resonance structure due to excessive level overlap occurs only
at still higher energies. Thus one distinguishes the resolved resonance region from the
unresolved (or at best partially resolved) resonance region.

The more nucleons belong to the compound system the finer is the resonance struc-
ture. Typical level spacings observed in neutron reactions are of the order

MeV for light,
keV for medium-weight,
eV for heavy nuclei.

The level spacings of target nuclei with even nucleon number are generally larger than
those of nuclei with odd nucleon number. Magic or near-magic nuclei have untypically large
level spacings. The heavy, doubly-magic nucleus 2°®Pb, for instance, has level spacings
resembling those of light nuclei.

Thermal motion of the target nuclei causes Doppler broadening of the resonance
peaks observed in the laboratory system: As the target temperature increases, the peaks
become broader while their areas remain practically constant. This changes the average
scattering, capture and fission rates and the whole neutron balance in a fission reactor. Asa
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Fig. 9. Top: 23®U neutron capture cross section below 200 eV, Doppler broadened to 300 K.
Middle: 23®U neutron scattering cross section, broadened to 300 K. Bottom: Neutron spec-
trum in an advanced pressurised-water reactor (C. Broeders, FZK, private communication).
Note the logarithmic ordinate scales. Energies are given in the laboratory system.



consequence the safety characteristics of the various fission reactor designs depend crucially
on the cross section resonances of the main fuel constituents and in particular on their
Doppler broadening. The Doppler effect is the only natural phenomenon that promptly
counteracts a sudden power excursion in a fission reactor. Thermal expansion has the
same tendency but is much slower. Quite generally one demands that the temperature
rise accompanying a power excursion must result in less neutrons produced per neutron
absorbed so that the fission chain reaction does not get out of hand. In more technical
terms the prompt Doppler reactivity coefficient must be negative.

In shielding applications the minima displayed by the scattering and hence also by
the total cross section (the sum of all partial cross sections for scattering, capture, fission
etc.) provide dangerous energy ”windows” for neutrons. In fusion reactor designs such
as ITER (International Thermonuclear Experimental Reactor), at present on the drawing
boards, steel shielding is foreseen for the superconducting magnet coils. The windows in
the total cross sections of the main steel components limit the efficiency of the shielding
significantly (see Fig. 10 for “6Fe).

These examples should suffice to illustrate the importance of cross section resonances
in nuclear science and technology. Resolved resonances are described most conveniently
by R-matrix theory. It attained its standard form with the comprehensive review article
of Lane and Thomas (1958). This article is required reading for each specialist in the field.
Briefly the principles of R-matrix theory are as follows. All collisions are considered as
binary, an ingoing wave function describing the two incident particles, an outgoing wave
function the two emerging reaction products. The incident particles could be, for instance,
a neutron and a 23°U nucleus, the reaction products could be two fission fragments, or
an excited 23°U nucleus and a photon, or a 23U nucleus in its ground state and an
elastically scattered neutron. Since the nuclear forces have short range but are not well
understood otherwise, one divides configuration space into (i) an external region, where
nuclear forces are negligible so that the well known wave functions for free or at most
electromagnetically interacting particles can be used, and (ii) an internal region, where
nuclear forces predominate. Although the internal wave function is unknown, it can at
least be written as a formal expansion in terms of the eigenfunctions of an eigenvalue
problem. This eigenvalue problem is defined by the (nonrelativistic) Schrodinger equation
with prescribed logarithmic derivatives of the eigenfunctions at the boundary between
the two regions. Matching external and internal wave functions at the boundary, and
demanding finite probabilities everywhere, one finds that for a given ingoing wave all
outgoing waves, and hence all cross sections, are parametrised by the eigenvalues and
eigenvector components of the problem. These can be identified with the energies and
decay amplitudes of the quasi-stationary compound states. All this will be discussed in
detail below.

Although the principles of resonance theory are quite simple, the general expressions
can look rather formidable to the beginner. We cannot give full derivations (those can be
found in the review paper of Lane and Thomas 1958), and the basic quantum-mechanical
collision theory (see e. g. Lynn 1968) will be assumed to be known, but we shall try
to present the formalism in all the detail that is needed for applications in science and
technology. The practically important variants are

- the Blatt-Biedenharn formalism

- single-level Breit-Wigner approximation (SLBW)
C 7 multilevel 7 - 7 ” (MLBW)
- 7 (multi-level) Adler-Adler K

- 7 (multi-level) Reich-Moore 7
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fit (solid line, barely visible) with the one-channel Reich-Moore formalism of R-matrix theory.
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d-wave resonances. The data were obtained in a time-of-flight transmission measurement
with 201.6 m flight path at the Oak Ridge Electron Linear Accelerator. (From Perey et al.
1990)



The first one is quite general. It shows how cross sections can be expressed in terms
of the unitary, symmetric collision matrix (S matrix) with special emphasis on angular
distributions and on particle spins. It can be combined with any of the other four which
provide different approximations to the collision matrix.

3.1. THE BLATT-BIEDENHARN FORMALISM

Our notation in this and the following subsections will be basically that of Lane
and Thomas (1958). We recall that in nuclear reaction theory one talks about reaction
channels. Each channel is fully specified by

«, the partition of the compound system into reaction partners,
e. g. 235U + n or 235U + v (both involving the same compound nucleus)
J, the total angular momentum in units of %,
e 7 Orbital 7 ” ” 7 ” h
? ?

S, ” channel spin N %

The angular momenta satisfy the quantum-mechanical triangle relations
J=10+3, ie. 0—s|<J<l+s, (139)
g=T+1, ie. I —i| <s<I+i, (140)

where I and i are the spins (in units of %) of the two collision partners. Total energy,
total angular momentum and (for all practical purposes) parity are conserved in nuclear
reactions.

We further remember that for spinless, neutral particles one can solve the nonrela-
tivistic Schrédinger equation for the boundary condition ”stationary ingoing plane wave
+ stationary outgoing spherical wave” with the result

2| — 2 dS)
Ao e = TX 20+ 1)(1 — U, P, 9| == 141
o m a\g( + 1) (1 = Up) Py(cos )| in (141)

for the differential elastic-scattering cross section.The de Broglie wave length 27X, =
fi/(JtaVrer) corresponds to the relative motion of the collision partners, with reduced mass
1 and relative speed v,..;. The angular-momentum eigenfunctions P, are Legendre poly-
nomials of order £. The sum terms with ¢ = 0,1, 2,... are said to belong to the s-, p-, d-, {-
... wave, a historical nomenclature taken over from atomic spectroscopy (where it refers to
the so-called sharp, principal, diffuse, fundamental series of spectral lines). The collision
function U, describes the modification of the ¢-th outgoing partial wave relative to the
case without interaction. Its absolute value gives the reduction in amplitude, its argument
the phase shift caused by the interaction. With PpPp = (££'00, L0)? Pr,, where (££/00, LO)
is a Clebsch-Gordan coefficient vanishing unless |¢ — ¢/| < L < ¢4 ' and (=) = (=)F,
one can write the differential cross section as a linear expansion in Legendre polynomials,

d0ue = X" ByPp(cosv)dQ, (142)
L=0
with coefficients
1 ! / 2 *
By = > 20+ 1)(2¢' + 1)(0'00, L0)* (1 — U7 ) (1 — Uyp). (143)

0,0



Blatt and Biedenharn (1952) worked out the generalisation for particles with spin and for
partition-changing (rearrangement) collisions. For zero Coulomb interaction they obtained

X2

2i+1)(2 +1)

> Bp(as,o/s")Pp(cos ¥)dS, (144)
s,s’ L=0

da,m/ =

with coefficients

BL(OéS Oé S 61.]162.]2,SL)Z(E’l.Jlelz.]g,S,L)
J1,J2 41,02 Z’ ’
X (Bacr 8,0 0ot = Uilt,y artr )" Paar Oty 805 = UL L )5 (145)
Z(0y 0y s, sL) = /(201 +1)(205 + 1)(2J; + 1)(2J5 + 1)
X (@15200, LO) W(el J1€2J2, SL) y (146)

where W (¢yJ142.J5, sL) is a Racah coefficient, see e. g. Fano and Racah (1959) or de-Shalit
and Talmi (1963). Our phase convention is that of Lane and Thomas (1958); a slightly
different convention is used in the Z tables of Biedenharn (1953). The Z coefficients vanish
unless the quantum-mechanical triangle relations for the vector sums,

lo=L="0 +1] (147)
S=J, =0+ (i=1,2) (148)

are fulfilled. Parity conservation demands (—)‘Il, = II; = (—)Z,Ha/, where II,,,II, are
the eigenparities of the ingoing and outgoing particles (positive for neutrons, protons, -
particles and photons) and II; is the parity of the compound system with total angular
momentum J; (i = 1,2). If there is Coulomb interaction between the collision partners
additional terms must be included, see Lane and Thomas (1958).

Let us integrate Eq. 144 over angles. All terms with L < 0 vanish because of the
orthogonality of the P, and because of

(61.]1(2.]2,30 J1+S\/2J +1 5J1J25£1[2, (149)

(see de-Shalit and Talmi 1963) and one finds

Ona! = 7TX ZgJ ZZ ‘5(1&/5“/(5551 — Ua[s allls! 2 y (150)

£,8" s,s’
where the so-called spin factors

2J +1
2i+1)(2 + 1)

g5 = (151)

are weights for the various possible total angular momenta.

We cannot go into the details of angular distributions but we do point out that they
show interference between different partial waves, e. g. s and p wave, whereas angle-
integrated cross sections do not. The latter are simple sums over terms with given ¢ and



Table 2. Possible combinations of target spin I, orbital angular momentum ¢ and
channel spin s resulting in total spin J, parity II and spin factor g,
for positive target parity IIy and projectile spin i = 1/2.
(For negative target parity all signs must be reversed.)
Iy |4 |s JII g > g| wave
0+ |0 |1/2 | 1/2+4 1 1 s
1|1/2 | 1/2—, 3/2— 1, 2 3 p
2 |1/2 3/2+, 5/2+ 2, 3 5 d
etc.
1/2+]0 |0 0+ 1/4 1 s
1 1+ 3/4
110 1- 3/4 3 p
1 0—, 1—-, 2— 1/4, 3/4, 5/4
210 2+ 5/4 5 d
1 1+, 24, 3+ 3/4, 5/4, 7/4
etc.
1+ [0 |1/2 | 1/2+ 1/3 1 s
3/2 3/2+ 2/3
1(1/2 | 1/2—, 3/2— 1/3, 2/3 3 p
3/2 | 1/2—, 3/2—, 5/2— 1/3, 2/3, 3/3
2 |1/2 3/2+, 5/2+ 2/3, 3/3 5 d
3/2 | 1/24, 3/2+, 5/2+, 7/2+ | 1/3, 2/3, 3/3, 4/3
etc.

s, without cross terms, see Eq. 150. Nevertheless, a certain connexion exists between dif-
ferent partial waves. As already mentioned, the compound system and its quasi-stationary
states are characterised, apart from energy, by total angular momentum, J, and parity,
I1. Table 2 shows, for given target spin and positive parity, the possible combinations
of ¢, s and J for incident particles with spin ¢ = 1/2. Certain JII combinations can be
formed through more than one channel if £ > 0 and I > 0. If [T, = 1/2+, for instance,
resonances with JII = 1— can be excited by the two p waves with s =0 and s = 1, and
the 2+ levels can be excited by the d waves with s = 0 and s = 1. The neutron widths
(that give the strength of the excitation, see below) for 1— and 2+ levels are therefore
sums of two partial widths for the two channel spins. For ITI; = 1+ the 1/2+ levels can
be excited even by partial waves with different ¢, an s wave with s = 1/2 and a d wave
with s = 3/2, while the 3/2+ levels are excitable by three partial waves, an s wave with
s =3/2 and two d waves with s =1/2 and s = 3/2, and so on.

So we find that each quasi-stationary compound state shows up as a resonance in all
open channels that are not excluded by the spin and parity selection rules. The intensities
(peak areas) may differ, but the resonance width must be the same in all those channels,
being proportional to the reciprocal half life of the compound state. In this context it
should be understood that the customary terms s- or p-wave resonance actually mean
that the level can be excited at least by the s or p wave but possibly also by higher-order
partial waves with the same parity. To give an example: The 3/2+ s-wave resonances
observed in neutron reactions with target nuclei having ITl; = 1+ contain also a d-wave
component. It is true that at low incident energies the s-wave component is much larger



because of the higher centrifugal barrier for d-wave neutrons (see below) but it must
be realised that certain d, f, ... resonance sequences are masked by coinciding s, p, ...
sequences. This is important e. g. for the statistical interpretation of observed level
densities or for the simulation of resonance effects in the unresolved resonance region with
resonance “ladders” obtained by Monte Carlo sampling (see Section 4 below).

3.2. THE ExXACT R-MATRIX EXPRESSIONS

The angle-integrated cross section 0,4/, Eq. 150, can be written as a sum over partial
cross sections, o../, obtained by summing over all entrance channels ¢ = {a.Jls} and exit
channels ¢/ = {&/J¢'s'} that lead from partition « to partition «’. In slightly simplified
notation we write

Oce! = szgcwcc’ - Ucc’|2 . (152)

Note that for ¢ # ¢’ the partial cross section is proportional to the quantum-mechanical
probability |U..|? of a transition from channel ¢ to channel ¢/, and to the probability
g. of getting the correct angular momentum J from the spins of the collision partners.
The Kronecker symbol §.. arises since ingoing and outgoing particles cannot be distin-
guished if ¢ = ¢/. The kinematical factor =X 3 relates probability and cross section. The
collision matrix U, often called scattering or S matrix, is symmetric because for all practi-
cal purposes we can consider nuclear (and Coulomb) interactions as invariant under time
reversal. Moreover, U is unitary since the probabilities for transitions into the various
channels must add up to unity, Y., |Uer|*> = 1. From the unitarity of U and Eq. 152 it
follows that the total cross section for entrance channel c is a linear function of U,..,

0, = ZO’CC/ = 27rX3gc(1 — Re Ue,), (153)

(&)

in contrast to the partial cross sections which depend quadratically on the U... The
expressions obtained are thus simplest for the total cross section, most complicated for
elastic scattering (because of the Kronecker symbol). It is therefore more convenient to
calculate o.. as the difference between o. and the other partial cross sections rather than
directly from Eq. 152. The reciprocity relation between the cross sections for a reaction
¢ — ¢ and the inverse reaction ¢’ — c,

Oclc Oce!
= 154
gc’Xz' chz (154

follows immediately from the symmetry of U.

These equations are quite general. In order to introduce resonances we invoke R-
matrix theory which allows us to express U in terms of the channel matrix R (see Lane
and Thomas 1958, Lynn 1968),

Ueer = T et2) PU2{[1 - R(L - B)'[1 - R(L" - B)]} P,

(&)

— i Pete) (5,0 + 2iPM[(1 — RLO) 'Rl P)/? Y, (155)
YreVAe!
5 = R 1
R. Mot (156)

L%, = Lee — Bee = (Lo — Be)doer = (Se +iPe — Be)0ger - (157)



Alternatively the collision matrix can be expressed in terms of the level matrix A,

U = emilpetes) (506, +¢Zri/c2AMFL/C,2) , (158)
A p

V2 = ey/2P, (159)

(A7) = (Bx = E)oxu = > e Lpe - (160)

Note: Roman subscripts refer to reaction channels, Greek subscripts to compound levels,
and 1 is the unit matrix. Three groups of physical quantities appear in these equations:

First, there are the resonance parameters, viz. formal level energies £y and probability
amplitudes ). for decay (or formation) of compound states A via exit (or entrance)
channels ¢, all neatly wrapped up in the R matrix (156), each level contributing one sum
term (a hyperbola in terms of energies E). The 7). can be positive or negative, with
practically random signs except near the ground state. Cross section formulae are usually
written in terms of partial widths I'y. and total widths 'y = ZC I'yc rather than decay
amplitudes.

The second group, hard-sphere phases (. and logarithmic derivatives L., depend only
on the (known) in- and outgoing radial wave functions I. and O, at the channel radius a,

m Oc(a’c)
= = Re O, (ac) "
Pe arg Oc(ac) arc tan Re Oc(ac) ’ ( 6 )
_ Og(ac) o a ln OC
Lc = Qe Oc(ac) B |:TC arc ]TC:aC . (162)

The S. = Re L. are called shift factors for reasons that will become clear later on, the
P, =Im L, are centrifugal-barrier penetrabilities. The quantities B, and a. form the third
group. They define the eigenvalue problem with eigenvalues E). Their choice is largely a
matter of convenience. The B, are logarithmic derivatives of the radial eigenfunctions at
the channel radii a.. These radii define the boundary between the internal and the external
region. They must be chosen so large that the nuclear interaction can be safely neglected
if the distance r. between the collision partners is larger, otherwise they are arbitrary. It
is best to choose a, just slightly larger than the radius of the compound nucleus (see Lynn
1968). A reasonable choice for neutron channels is a, = (1.234'3 4 0.80) fm, where A
is the number of nucleons in the target nucleus. We mention here that in applied work
all energies, resonance widths etc. are given in the laboratory system, as for instance
in the widely used resonance parameter compilation of Mughabghab et al. (1981, 1984)
known as the “barn book”, or in that of Sukhoruchkin et al. (1998), or in computer files
of evaluated nuclear data.

For neutral projectiles the outgoing radial wave functions are proportional to the

spherical Hankel functions of the first kind, hﬁl),
O = It = ikerehSY (kere) (= itetere it kore > VOl +1)), (163)

where k. = 1/X.. The properties of the Hankel functions yield the recursion relations

. (kca6)2
Ly -0’
Yo = kcaca P = Pe—1 + arg(€ - Lé—l) ) (165)

Lo = ikea, = iPy L=~ (164)



Table 3. Channel wave functions and related quantities
for neutral projectiles (p = k.r., o= k.a.)

e OC Soc SC PC
0 etr Q 0 «
A -1 3

1 e”)(— —i) a —arctan o o

p a?+1 a?+1
5 ip( 3 3 1) arc ta 3a —3(a? +6) o’

erl—-——— « — arc tan
P> p 3—a? at4+3a24+9 | a*+3a%2+9

with which Table 3 is constructed. Note that S. = 0 for ¢ = 0, and that S. — —/
for kca. — 0 (at low energies). Therefore, B. = —{ is a good choice for the resolved
resonance region: Quite generally it simplifies all R-matrix expressions, and in particular
it eliminates shift factors rigorously for s waves and, as we shall see below, approximately
also for higher-order partial waves. This means that the cross section peaks occur at
the formal resonance energies E) as they should, instead of being shifted. S, and P, for
photon and fission channels are usually taken as constant.

The basic resonance parameters Ey, 7. depend on the unknown nuclear interaction.
They can therefore not be calculated from first principles (except for simple models like a
square well potential, see below). In typical applications of R-matrix theory they are just
fit parameters, adjustable to experimental data. Depending on the choice of B, they can
be either real and constant or complex and energy-dependent.

The Wigner-Eisenbud version of R-matrix theory is obtained if the boundary
parameters B, are chosen as real constants. (Wigner and Eisenbud 1947). The resonance
parameters E and ). are then also real and constant, and the energy dependence of the
collision matrix U is solely due to the ¢, and L., both known functions of k.a., i. e. of
energy. This makes the Wigner-Eisenbud version the most convenient formalism for most
purposes, especially with the choice B, = —/£. It is easily checked that the real R matrix
yields a unitary collision matrix, which means the partial cross sections, Eq. 152, add up
exactly to the correct total cross section, Eq. 153. A certain problem is, however, the
need to invert either the channel matrix 1 — RL® of Eq. 155, or the inverse level matrix
A~! of Eq. 160. Both matrices have very high rank. In practice the difficulty is overcome
by various approximations to the inverse level matrix as will be shown below.

The Kapur-Peierls version of R-matrix theory is obtained with the choice B, = L.,
i. e. L2 =0 (Kapur and Peierls 1938). This removes the need for matrix inversion com-
pletely, since 1 — RL® = 1, but leads to complex resonance parameters which depend
implicitly on energy in a rather obscure way as now the very definition of the eigenvalue
problem varies with energy, and thus the eigenvalues and the whole system of eigenfunc-
tions, too. Moreover, the unitarity of the collision matrix is not manifest because the R



matrix is complex. In spite of these handicaps, formulae of the Kapur-Peierls type are
useful in narrow energy ranges, in particular for the description of Doppler broadening.
We shall write the complex and energy-dependent Kapur-Peierls parameters as &y, gx. in
order to distinguish them from the real and constant Wigner-Eisenbud parameters F),
Yae- Thus

' G1/2G1/2

, — p—i(petocr) , : Ac A’
Upr = ¢ (5CC +i % 2o ) (166)
GY/? = g \/2P, . (167)

Note that the Kapur-Peierls form of the collision matrix (and hence the corresponding total
cross section expression) involves a simple sum over levels, whereas the Wigner-Eisenbud
expression (158) involves a double sum.

The R-matrix equations reviewed so far are practically all that is needed in applied
work from the whole apparatus of resonance theory. They ought to be thoroughly under-
stood, however, and experience shows that this is not easy for the beginner. He might
therefore wish to look at a simple illustration that shows the essential steps in the de-
velopment of the theory and exhibits the meaning of the various quantities without the
complications of spin algebra and matrix notation. Such an illustration is offered by the
spherical optical model, especially with a square-well complex potential, for which ev-
erything can be calculated explicitly (see Frohner 1998a), the results being of practical
relevance for the unresolved resonance region.

3.3. THE PRACTICALLY IMPORTANT APPROXIMATIONS

A convenient starting point for the practically important versions of R-matrix theory
is the inverse level matrix. We shall consider the following representations and approxi-
mations.

Wigner-Eisenbud representation (exact)
with B, real and constant:

(A_l)/\u = (Ex—E) 5>\u - Z 7Ach'Yuc (168)
(eigenvalues F\ and decay amplitudes 7). real, constant, energy dependence of L? known)

Kapur-Peierls representation (exact)
with B, = L. :

(A7 = (Ex — E) dx, (169)

(eigenvalues &, and decay amplitudes gy, complex, energy dependences implicit, obscure)

Single-level Breit-Wigner approximation (SLBW)
Only one level retained, all others neglected:

(A s 2 Eo—E—-)» LA =Ey+A—E—il/2 (170)

(level shift A and total width I"' = ) _I'; real, energy dependences explicit, well known)



Multi-level Breit-Wigner approximation (MLBW)
Off-diagonal elements of A~! neglected:

(A )x = (Bx—E =Y L23.) 0 = (Bx + Ay — E —iT5/2) 65, (171)
(level shift Ay and total width T'y = __T's. real, energy dependences explicit, well known)

Reich-Moore approximation
Off-diagonal contributions from photon channels, ¢ € ~, are neglected:

(A_l)ku = (Ex + Axy—E - ZTM/Z) Oy — Z YaeLeVue (172)
c#y

(real level shift Ay, from photon channels usually absorbed in real, constant Ey, radiation
width Ty, = >~ ¢ S e real, usually taken as constant; other energy dependences explicit)
Adler-Adler approximation

Energy dependence of L? neglected:

(A7) = (Bx = B) i = D ey Le(EN) L2 (Ep) Ve (173)

The Reich-Moore approximation is most, SLBW least accurate among these approxi-
mations. With a suitable choice of the boundary parameters the level shifts Ay vanish at
least locally. At low energies this is accomplished for neutron channels with B, = —¢ (see
Table 3) as mentioned before. Table 3 shows also that the centrifugal-barrier penetrabili-
ties P, = P, for neutrons, and hence all neutron widths,

0 (B) = 2B = a1 B (c={atts}en), (174

contain (at least) a factor v/E. Additional factors in the p-, d-, ... penetrabilities behave
for low energies as E, E2,... As a consequence s-wave levels dominate at low energies while
p-wave levels show up only at higher energies, d-wave levels at still higher energies, etc.

The absolute values in the conventional definition (170) of the neutron width make
it applicable not only to compound states with Ey > 0 but also to subthreshold (bound,
"negative”) states with ) < 0 although, strictly speaking, the centrifugal-barrier penetra-
bilities P;(E) and thus the widths vanish below the reaction threshold (E < 0). Neutron
widths given in tables and computer files are to be understood as I'y.(|Eyx|). Another
convention concerns the signs of the width amplitudes. They are important in the multi-
channel case but get lost when widths are calculated. It is therefore customary to tabulate
partial widths with the sign (relative to the neutron width amplitude) of the correspond-
ing width amplitude. From a principal viewpoint it would be more appropriate (and less
confusing) to list the width amplitudes rather than the partial widths — neither do they
depend on energy, nor do they vanish below the threshold, and the signs must not be
explained either — but it is too late to change ingrained habits.

The shifts and penetrabilities for photon and fission channels can usually be taken as
constant. Hence these shifts vanish if we choose B, = S., and the fission and radiation
widths do not depend on energy. Let us now look at the cross section expressions resulting
from the various representations and approximations.



3.3.1. Kapur-Peierls Cross Section Expressions

In anticipation of Doppler broadening we write the Kapur-Peierls collision matrix
(166) in the form

—i(pe + per) Gye Gt '
Ucc’ =€ ¢ ¢ |:5cc’ - ; W(¢A + ZXA)] ’ (175)

where the symmetric and asymmetric resonance profiles or line shape functions ¥, and
X are defined by

. iGy/2 G3 /4 . (BE—E\G\/2
Yy +ixy = G/ = - z/ +i ( — G/ (176)
E—-¢& (E-E\?+G3/4 (E—Ex\)?+G3/4
and the real Kapur-Peierls resonance energies E\ and widths G, by
Ex=Ey\—iGy)2. (177)

The symmetric resonance profile is essentially (if we disregard the weak energy dependences
of &\ and of G)) a Lorentzian, and the asymmetric profile is its energy derivative. The
resulting cross section expressions are

a2 oo —2i0. " Gac
O —47rXcgc{sm v + Re [e ¥ ; G, (1/»\—1—2)()\)]} (178)
GY2GL2
oot = Oeboe — 47X 2o Re [Z Gae Oy ()" (s + m)} , (179)
\ G

1/2G1/2
c HC'

ch (gA —6(10’ +Zz 5 _5* . (180)

The resonance profiles contain the rapid, resonance-related energy variations that are
sensitive to Doppler broadening, while the other quantities vary slowly with energy. We
stress that although the weak energy dependences of the Kapur-Peierls parameters are
not known explicitly, the Kapur-Peierls formalism is formally exact.

3.3.2. SLBW Cross Section Expressions

The collision matrix for a single level,

L 1/211/2
; 1 S A
Ucc’ - _Z(SOC + SOC,) <6cc’ < . ].8].
¢ TR TA_E—i)2 (181)
is unitary. The resulting cross section expressions are
2 -2 Fc .
0. =4nX_g.{sin” . + ?(zp cos 2. + X sin2¢p,)] (182)
2 Fcrc’
= XL~ (c#¢), (183)

Ope = O — Z Ocel s (184)

c'#c
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with the resonance profiles given by

/2 _ I%/4 . (E = E)T)/2
E-E0+¢r/2‘(E_Eﬂ)z+pz/4+€(E_E0)2+F2/4. (185)

P +ix =

The basic resonance shape displayed by partial cross sections with ¢ # ¢’ is essentially
symmetric, wereas that of the total and of the scattering cross section is a sum of three
terms: the nearly constant potential-scattering cross section, a symimetric resonance term,
and an asymmetric term arising from interference between potential (hard-sphere) and
resonance scattering. It is easy to deduce from Egs. 182 and 185 that the total cross
section reaches its peak value,

.
ag.(Ey) = 47rXigc(1 -T cos® @) , (186)

at the energy

r
E,=Ey+ 3 tan @, , (187)
while the minimum value in the interference dip is

r, r

c.(E_) = 47TX§gc T sin® @, = ?aa'p,c (188)

at r
E_=FE,- 3 cot . , (189)

where 'y, = I'-I,, is the absorption width and o, .
the potential-scattering cross section for entrance
channel ¢. These last expressions are valid if the
slow energy dependences of X 3,9%, [’ and I',, are
negligible. For pure elastic scattering (', = 0) the
minimum cross section is zero, the peak cross sec-
tion is equal to the unitarity limit 47X zgc (com-
pare Eq. 153). The spin factor, hence the level
spin J, can thus often be obtained by just mea-
suring the resonance height. This works best for
light nuclei or structural materials such as **Fe and
other iron, nickel and chromium isotopes that are
almost pure scatterers, and for broad, "isolated”
resonances that are virtually unaffected by Doppler
broadening and multi-level interference, and ob-
servable with good instrumental resolution. The
depth of the interference minimum, most impor-
tant for shielding calculations, is essentially given
by the ratio I',/I" timnes the potential scattering
cross section. At low energies s-wave reactions
dominate, the potential scattering cross section is
practically constant, whereas the capture and fis-
sion cross sections behave like 1 /v. This low-energy
behaviour is quite generally true, not just in SLBW
Fig. 11. approximation.




Because of the slow variation of the sines and cosines with energy the total cross
section resonances look differently at different energies: At low energies they look as in
Fig. 11, with the interference minimum ("window”) on the low-energy side. This shape
is typical for the resolved region. At higher energies the symmetric term becomes less
and less important until the asymmetric term dominates. At still higher energies, when
. /& T, resonances appear as dips rather than peaks (a famous example is the 2.35 MeV
resonance of 10+n) and eventually the interference windows reappear on the high-energy
side of the peaks.

In practice one must, however, describe cross sections with many resonances. One
can simply add SLBW resonance terms (and add potential scattering for o, and o).
This is the SLBW definition of the ENDF format (cf. Rose and Dunford 1990) that is
used world-wide for applications-oriented, computer-readable libraries of evaluated neu-
tron data. Since this ad-hoc re(npe does not originate from a unitary collision matrix the
unitarity constraint 0 < o, < Anx’? ~gc is not guaranteed. In fact, this "many-level” SLBW
approximation is notorious for the occurence of nonphysical negative total and scattering
cross sections. The reason is easy to understand: At low energies negative contributions
can only come from the asymmetric profiles of resonances above. On average they are
compensated by positive contributions from resonances below, but if the resonances above
are unusually strong or those below unusually weak, scattering cross sections can become
negative in the interference minima. Less noticeable but often equally bad is the opposite
effect: SLBW peak cross sections can exceed the unitarity limit if resonances above are
weak or those below strong.

3.3.3. MLBW Cross Section Expressions

The MLBW approximation is better than the many-level SLBW approximation. The
collision matrix following from Eq. 171,

(oo + 1/2F1/2
, = —1{Pe Pe! 5 Ac 1
Ueer =€ ( “ZEAJFAA— —zT,\/Z)’ (190)

involves a simple sum over resonances, as the Kapur-Peierls collision matrix does. It follows
that we can take over the Kapur-Peierls expressions with the replacements Ef — Ex+Aj,

G,\—>F)\:ZCF)\C, 1/2—>F / Whence

= 47rXCgc[sm <PC+Z sz cos 2¢. + XA sm2<pc)] (191)
1/2p1/2
Oce! = Uc(scc’ 47rxcgc Re [Z 2e }\AC WCC (8}\) (¢>\ + ZXA):| ) (192)
A
r}/frl/?
Weer (EX) = 0eer + 1 e . 193

Since the partial cross sections (192) were derived from the collision matrix as absolute
squares (see Eq. 152), they are guaranteed to be positive, and they are again linear
functions of the line profiles 1) and Y, defined exactly as in the SLBW case, Eq. 185.
We recognise further that o., Eq. 191, is just the "many-level” SLBW approximation. As



the MLBW collision matrix is not unitary, however, . is not the sum of the partial cross
sections, Eq. 192. The MLBW approximation as defined in the ENDF format (cf. Rose
and Dunford 1990) is even cruder, in fact it is an SLBW/MLBW hybrid: Only elastic
scattering is actually calculated in MLBW approximation. All other partial cross sections
are calculated in (many-level) SLBW approximation, and the total cross section as the
sum over all partials. This avoids negative cross sections yet prevents neither unphysical
peak cross sections nor badly described interference minima for strongly overlapping levels.
For light and medium-mass nuclei and for fissile actinides the MLBW approximation is
therefore often inadequate, although it works quite well for compound systems with widely
spaced, narrow levels like 232Th+n or 228U + n.

Note that the calculation of MLBW partial cross sections according to Eqgs. 192
and 193 involves double sums over levels. Even with modern computers this can be
time-consuming if hundreds of levels are to be included, as is not unusual with modern
evaluated files. It is then better to calculate the partial cross section directly from the
collision matrix (i. e. from Eqgs. 152 and 190) which involves only a single sum over levels.
For Doppler broadening, however, the representation (192), (193) in terms of line shape
profiles has advantages as will be seen below.

3.3.4. Reich-Moore Cross Section Expressions

Usually very many photon channels contribute to the sum ) va.L27v,c in the inverse
level matrix A~!, Eq. 160. While their contributions all add up with the same sign in
the diagonal elements, they tend to cancel in the off-diagonal elements because the decay
amplitudes have practically random signs but comparable magnitudes. Therefore the error
is quite small if one simply neglects all photon channel contributions to the off-diagonal
elements, as proposed independently by Thomas (1955) and by Reich and Moore (1958).
The resulting inverse level matrix, Eq. 172, belongs evidently to an eigenvalue problem
with F)y replaced by Ey — iy, /2, with a "reduced” R matrix

Yxe Ve’ /
cc! = § - 5 s 194
R S E}\ _ E _ ZF}(Y/Z (C c g 7) ( 9 )

reduced in the sense that it is defined in the subspace of nonphotonic channels only. The
only traces of the eliminated photon channels are the total radiation widths, I'y,, in the
denominators. A similar complex R function is encountered in the R-matrix treatment
of the optical model (see Frohner 1998a) which suggests that the imaginary part of the
denominators in the reduced R matrix and the imaginary part of the complex potential
are different consequences of the same phenomenon: absorption into compound states and
subsequent decay into eliminated channels.

From the reduced R matrix one gets a reduced collision matrix and therefrom the cross
sections for all retained nonphotonic channels in the usual way, Eqs. 152-153. The reduced
R matrix is of low rank, hence inversion of 1 — RL® is easy. In fact, the highest rank
employed in neutron resonance analyses up to now is 3 (1 elastic, 2 fission channels). Cases
with rank 2 involve 1 elastic plus 1 fission or 1 inelastic channel. For the overwhelming
majority of neutron resonance data the only energetically allowed processes are merely
elastic scattering and radiative capture, for which 1-channel Reich-Moore expressions are
sufficient, with R functions instead of R matrices. (An example is the 1-channel Reich-
Moore fit to *°Fe total cross section data displayed in Fig 10.) The capture cross section
can be found from

2
PY?[(1 — RL®)~Y),.. P Y/ ?11/?
Z [( ) ] c Ac (195)

2
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(cf. Reich and Moore 1958). We point out that this approximation is exact in the limit
of vanishing radiation widths (more generally: vanishing widths for eliminated channels)
in which it reduces to the general Wigner-Eisenbud formalism. It is also exact in the
limit of one single level since in this case the Reich-Moore level matrix A reduces to the
corresponding SLBW level matrix. Otherwise it is so exact that although the reduced
collision matrix cannot be unitary - because of transitions into eliminated channels - the
overall collision matrix can still be considered as unitary, i. e. as conserving probability
flux, so that the capture cross section may alternatively be obtained as the difference

=0c— Y O, (196)

c'gy

with o, calculated from the reduced collision matrix element U.. according to Eq. 153.
Experience has shown that with this approximation all resonance cross section data can
be described in detail, in the windows as well as in the peaks, even the weirdest multilevel
interference patterns (see Fig. 10). It works equally well for light, medium-mass and heavy
nuclei, fissile and nonfissile. It is often believed that the Reich-Moore approximation can
only be applied to fissile nuclei, but actually the retained channels can be of any type
- elastic, inelastic, fission, even individual photon channels such as those for transitions
to the ground state or to specific metastable states. Furthermore, computer programs
written for the Reich-Moore formalism can be used for general Wigner-Eisenbud R-matrix
calculations - one must simply set all radiation widths (eliminated-channel widths) equal
to zero.

It might be expected that with all these advantages the Reich-Moore formalism is the
most widely used one, but this is not true. The main reason is that Reich-Moore cross
sections cannot be expressed as sums over Breit-Wigner resonance profiles, at least not
without some preparatory work. This is often considered as a disadvantage for Doppler
broadening computations. We shall see below, however, that the problem is not as serious
as some believe. Among resonance analysts there is no question that the Reich-Moore
approximation is superior to the other single- and multi-level variants of R-matrix theory.

3.3.5. Adler-Adler Cross Section Expressions

The approximation (173) for the matrix A~! is a generalisation for the s-wave ex-
pression used by Adler and Adler (1970), a generalisation that preserves symmetry with
respect to the level indices A and p. Diagonalisation of the level matrix A yields the colli-
sion matrix in Kapur-Peierls form, Eqs. 172-173, but with parameters £\ and g). that do
not depend on energy, in contrast to genuine Kapur-Peierls parameters. The correspond-

ing cross section expressions are often not written for specific channels (c, ¢’,...) but for
specific reaction types (x = f, 7, ..., total), restricted to £ = 0:
1 L (o (T)
=Yoot L¢Py ) 197
o Cezna ap+\/EZV/\(,\¢,\ X XA (197)
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where o, is the potential-scattering cross section, Gg\x)/(l/,\ VE) and H)(\w)/(w\ VE) are sums
over all coefficients of ¢, and x» in Egs. 178-180, with vy = I'y/2 and V'E coming from
P.(E). The sums over X are over levels irrespective of JII, with spin factors absorbed in



the coeflicients G(;) and H }(\w). These coefficients, together with the level energies 1y = EY,
(half) widths vy and the potential-scattering cross section o, (or an effective radius) are the
Adler-Adler parameters. In principle one could define them even for isotopic mixtures, by
similarly absorbing the relative abundances in the coefficients. The approximation (173)
means essentially that the energy dependence of level shifts and total widths is neglected
in the resonance denominators. Therefore the Adler-Adler approximation works well for
fissile nuclei, for which I'y ~ I'yy +I'yy = const, but not so well for light or medium-mass
nuclei, for which T'y = [y, = 2P.(E)93,,-

3.3.6. Conversion of Wigner-Eisenbud to Kapur-Peierls Parameters

Wigner-Eisenbud parameters can be converted to Kapur-Peierls parameters as fol-
lows (Frohner 1978). The collision matrix must be invariant under a change of boundary
parameters, e. g. from B, = —( to B, = L°. (We shall use the tilde for Kapur-Peierls
quantities.) Eq. 155 shows that this implies (1 — RL®)~'R = R, which with the abbre-
viations

K = L°Y/2RL°Y/? K = L°Y/2RL°'/? (199)

yields _
1-K)'=1+K. (200)

The Kapur-Peierls resonance energies £, are the complex poles of I~(, i. e. the solutions of
det[1—K(E\)] =0 (201)

because A~! = C[A]/det A for any nonsingular matrix A, where we use the notation
det (A) for the determinant and C[A] for the matrix of cofactors. The residues are ob-
tained from Eq. 200. In the limit E — & one gets [1+K(E)]oe ~ L2/ 2grcgrer Lo ? ) (E
Ex) on the right hand side, while on the left one has {C[1 — K(E))]}eer/ det [1 — K(E))],
where Taylor expansion of the determinant gives det[1 — K(E)] ~ (E — &) tr {C[1 —
K(E)\)]K'(Ex)}. Hence the residues at the pole £y are

1 {C[1 —K(&\)]}eer
cYxe! = 5 202
P = e e (@) (Ol — K(En) K () 202
where tr denotes the trace and K’ is the derivative of K,
0 /
/ - 01/2 o 1/2 7/107/10
Keo(B) = 5o Ld " Reer LY @, — B (203)

So we know how to calculate residuals from given poles, but how do we find the poles
corresponding to given Wigner-Eisenbud parameters, i. e. how can we solve the deceptively
simple-looking Eq. 2017 Fortunately we know already the MLBW approximation &, =
E\x + Ay —il'y/2, see Eq. 190. We may take it as an initial guess to be improved by
iteration. In order to find an iteration scheme we write the determinant (201) in the form

det (1 —K) =1—tr K+ F(K), (204)

where — tr K + F(K) is the sum of det (—K) and all its principal minors (cf. e. g. Korn
and Korn 1968), in particular
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Fig. 12. Verification of the resonance parameter conversion technique explained in Subsect.
3.3.6: 3-channel Reich-Moore cross sections (symbols) and Kapur-Peierls cross sections cal-
culated from converted resonance parameters (solid line) agree. (From Frohner 1978)

F=0 for 1 (elastic) channel,
F = det (-K) for 2 channels,
F =det (-K) + tr C[-K] for 3 channels.

Next we pull out the A-th term of tr K,

Ay —ily/2 A, —il,/2
trK(SA):Z ZLC Yol = DA A S / +Z—-}‘3 iTuf , (205)

which together with Eq. 204 permits us to rewrite Eq. 201 in the form
Ax —1il'x\/2

—q0,/2 ’
1+ Z - 5’;/ + F(&)
HFEX

Ex=E,+

(206)

This equation is convenient for iteration: Inserting the initial MLBW approximation on
the right-hand side one gets an improved value that can be reinserted on the right, and so
on. After a few iterations the result becomes stable within some reasonable accuracy and
can be inserted in Eq. 202 to yield the residues. Once all Kapur-Peierls parameters &y
and gxcgx’ are known one can insert them in the Kapur-Peierls cross section expressions
that involve the resonance profiles.



Conversion of Reich-Moore to Kapur-Peierls parameters works in the same way, the
only change being that F, must be replaced by E, —il',,/2, and T'), by I', — T',,, ev-
erywhere. Fig. 12 shows cross sections calculated from Reich-Moore parameters directly
and from Kapur-Peierls parameters after conversion. Conversion of Wigner-Eisenbud to
Adler-Adler parameters by matrix inversion is possible for instance with the POLLA code
(de Saussure and Perez 1969).

3.4. EXTERNAL LEVELS

R-matrix theory shows that the cross sections in a limited energy range depend not
only on the “internal” levels in that range but also on the “external” levels below and
above. Problems arise in practical resonance fitting and parametrisation work because
below the neutron or proton threshold (E < 0) the compound levels are unobservable and
therefore unknown. Above the analysed range, resonances may still be observable but less
and less well resolved as energy increases, because instrumental resolution worsens while
level density grows and resonance widths increase — all of which makes the distinction
between single resonances and unresolved multiplets increasingly difficult and eventually
impossible. If the unknown external levels are simply omitted one cannot fit the exper-
imental data satisfactorily. In particular with elastic scattering and total cross section
data one gets troublesome edge effects and problems with the potential scattering cross
section between resonances. Various ad hoc methods have been developed in the past to
cope with the unknown external levels, from simulating them by “picket fence” or Monte
Carlo sampled fictitious resonance sequences (“ladders”) to repeating the internal levels
periodically below and above the internal region. The following sections present better
founded, well tested and more convenient methods that have been available since decades
but are not as widely used as they deserve.

3.4.1. Statistical Representation of External Levels

Modern evaluated nuclear-data libraries contain parameters for hundreds of reso-
nances per isotope. Such large numbers suggest a statistical treatment of the more distant
levels if a cross section is to be calculated at a given energy. Moreover, there are always
enormous numbers of unknown levels both below and above the resolved resonance region
contributing noticeably to the R matrix, in particular near the edges of this region. In
order to include them at least statistically we split the (Reich-Moore) R matrix for a given
level sequence (given JII) into a sum over the unknown (“distant” or “external” levels)
and another one over the known (“local” or “internal”) levels,

0 ’Y)\c’ykc
cc’ - § ) 2
R ot EA — — ZF>\7/2 ( 07)

and replace the sums in the distant-level term by integrals,
’yAc’yAc
RO [ ( )
e Z Z EA — — ZFA,Y/Z

E+1/2 dE’ E' —E —il,/2
=([ - [ ) e e (208)
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where F and I are midpoint and length of the interval containing the local levels, 1/D, =
1/Dy is the density of levels with spin J (and given parity) that is needed if the sums



are to be approximated by integrals, and Fv is the average radiation width. Especially
for heavy nuclei the radiation width, as a sum over very many partial radiation widths,
does not vary much from level to level so that I'y, ~ I',. Since (E' — E)? > f%/él for
the distant levels we can neglect f‘% /4 in the last expression. Moreover we can neglect the
off-diagonal elements of the average matrix (7.7, ) because of the practically random signs
of the vy.. With the usual definition of the pole strength s. and its Hilbert transform, the
distant-level parameter RS,

(209) R™(E) = 5[ T g ]‘;‘j(_E % : (210)

— o0

where ' denotes a (Cauchy) principal-value integral, and neglecting the (weak) energy
variation of both these quantities in the internal region, we find in Reich-Moore approxi-
mation . B
E—-F T, I/4
+ (2 / _ )] Ot
12 " 12/4—(E—E)?

The cyclometric or area function ar tanh z = (1/2) In[(1 + z)/(1 — )] (where ar stands for
area, not arcus) is the inverse hyperbolic tangent, also written, in somewhat misleading
fashion, tanh™" 2 or arc tanh z. The analogous distant-level contribution to the general
Wigner-Eisenbud R matrix is obtained if one simply puts I'y, = 0 and f‘7 = 0 everywhere:

RY ,(E) = [RSO + 2s.(ar tanh (211)

E—-FE
R(c)c’ (E) = [Rso + ZSCar tanhIi/z] 600’ . (212)

If the pole strength is not taken as constant in the internal region but as varying linearly

the only modification is that s. is to be interpreted as s.(F) and that an additional term
—s! (E)I appears which can, however, be absorbed in R%°. Experience has shown that it
is usually quite adequate for fitting purposes to adjust merely two constants, RS° and s..

The pole strength s. is related to the strength function Sy commonly employed in

applied neutron resonance work by

S = 2kcacs.\/1eV/E. (213)

This follows from the (historical) definition of reduced neutron widths as the neutron
widths taken at the arbitrary reference energy E, = 1 eV. For s-wave resonances one has
[ = 2Py(E,)y2. The same convention has been used later on also for p-, d-, ... resonances
so that reduced neutron widths for single channels ¢ = {n.J¢s} are quite generally defined
as ['¢ = 2Py (E,)y2. Averaging and dividing by the mean level spacing D, one obtains
the strength function S. = 2Py(E,)s. with Py(E,) = k.ac.\/1eV/E, that is the right-hand
side of Eq. (213). The optical model suggests, and experiment confirms, that one can
usually take s. = sy, hence S, = Sy, which we used on the left-hand side.

The distant-level parameter R°(FE) is essentially the difference between the contribu-
tions to the R matrix from the resonances below and above E. It is negative if the levels
below (including the bound ones) have more strength than those above, and positive if the
levels above are stronger. Near F the integrand is practically an odd function of E' — E, so
that the contributions from nearby levels tend to cancel. As a consequence mostly distant
levels contribute, whence the name, and typical values are small, |[R°| < 1. In applied
neutron resonance work the effective nuclear radius,

R, =a.(1 - RX) (for s-wave channels), (214)



is often employed instead of the distant-level parameter. The reason is that at low energies
the potential scattering cross section appears modified by a smooth contribution from the
distant levels with the result

0P — 4ma?(1— R®)? = 4nR” for ke =0, (215)

It has been concluded that the hard-sphere phases ought to be computed as functions
of k.R., rather than k.a. but that is wrong, notwithstanding fairly common practice and
misleading ENDF formats. The effective radius is well defined and applicable only in the
low-energy limit, and only for the s-wave. For accurate scattering or total cross section
calculations beyond the thermal range one needs the distant-level parameter as the more
fundamental, generally valid concept. It modifies the R matrix, not the hard-sphere phase
shift.

We conclude that input from optical-model calculations, e. g. from the plots of
s- and p-wave strength functions and of effective nuclear radii given in the barn book
(Mughabghab et al. 1981, 1984), can be used to estimate the contribution of distant
levels. If it is neglected, one gets troublesome edge effects near the boundaries of the
internal range (with explicitly given resonances).

3.4.2. Representation of the Edge Terms by Two Broad Resonances

The statistical representation of external levels is quite convenient for cross sec-
tion parametrisation but an even simpler one is obtained if we approximate the energy-
dependent “edge” (area function) terms in Eqgs. 211 and 212 by the tails of two very broad
resonances of equal strength, located symmetrically below and above the internal range,

E—-E T E—E\27-1 2 2
)| I B
Seq Artanh —rp— H 172 E._E-—il,)2 B, _E_il,2

(216)

We want to fix the parameters B, — E = E — E_, 2, and I, in such a way that
the right-hand side becomes similar to the left-hand side. A suitable degree of similarity
is attained, for example, if both sides have equal values, slopes (first derivatives) and
curvatures (second derivatives) at the mid-energy E. The resulting three equations for
three unknowns can be solved rigorously. The solution can be further simplified with
i, < I which yields the final approximations

V3

Ei~FE+ 7I, (217)
3

V2~ 515 (218)

r,~T.,. (219)

(Eq. 218 can be rewritten with Eqs. 174 and 213 as I';,1 ~ (3/2)1Se+/|E+|/1 eVue(|E+|)
with v, = Py/P,.) Insertion on the right-hand side of Eq. 216 reveals that they are tanta-
mount to the approximations ar tanh x ~ 3x/(3 —2?%) and 1/(1 —2?) ~ 3(3+22)/(3 —2?%)%.
Fig. 13 shows that the differences between the original functions and the approximations
are small over most of the range. Towards the edges they become larger but since the ap-
proximations stay finite there, in contrast to the original functions, this is not necessarily
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Fig. 13. Comparison of functions describing edge effects. Solid lines: statistically averaged
external levels (left-hand side of Eq. 216); dashed lines: approximation by two fictitious
broad levels (right-hand side of Eq. 216).

distant-level parameter plus two symmetrically located very broad external levels for the
energy-dependent edge effects is convenient and suitable as input for resonance fitting,
readily adjusted (if necessary at all) along with the internal resonances. In the current
ENDF format it is trivial to store two more resonances but for the distant-level parameter
there is no place. It is therefore best to put it equal to zero in ENDF-oriented resonance
fitting (which means R, = a. at low energies, see Eq. 214) and adjust the two broad
levels independently of each other (together with the internal resonances). Then one of
them can become stronger than the other one which produces the imbalance originally
described by the distant-level parameter. Fig. 14 shows how well this worked in a recent
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Fig. 14. Transmission data from ORNL (Harvey 1995) fitted with the SAMMY code (Larson
and Perey 1980) by O. Bouland (1999). Account of external levels by two broad fictitious
levels (with R2° = 0) is seen to be sufficient for a good cross section description all the way
down to the lower edge (and in fact also up to the upper edge) of the internal range, 45-1400
keV.

fit to 52Cr transmission data.

In order to speed up point cross section calculations if very many resonances are given
explicitly, one can retain only those in a restricted range around the energy of interest and
let the others be described summarily by the external-level part (211) of the R matrix.
Explicit inclusion of something like fifty levels below and fifty levels above the energy of
interest (/ = 100 D,) is enough for most purposes.

3.4.3. Narrow Bound Level to Enforce Prescribed Thermal Cross Sections Bound Level

The simulation of external levels by the constant distant-level parameter and either
the level-statistical (area function) edge term in Eqs. 211 and 212 or a fictitious pair
of broad levels with parameters given by Eqs. 217-219 is usually not quite enough to
guarantee, together with the known internal levels, the thermal cross sections that for
many nuclei are known very accurately. Given thermal cross sections can, however, be
reproduced exactly with just one more fictitious bound level (Frohner 1978, 1981).

Let us consider a nonfissile nucleus (6, = 0¢c + 0ey, I' = I'y + I'y) for which the
parameters of all internal levels are given, and also the level-statistical approximation R,



parameters of all internal levels are given, and also the level-statistical approximation R?,
to the external part of the R matrix. These parameters, usually determined by fitting
internal resonance data, will not reproduce given thermal cross sections exactly but we
can fine-tune by adding one bound (“negative”) level with appropriate parameters. At
thermal energies only s-wave resonances must be considered, all other resonances being
negligible due to the small centrifugal-barrier penetration factors P,. With the natural
choice By = 0 one has Lg = 1, = ik.a., so the Reich-Moore collision function for each
s-wave channel (one for zero, two for nonzero target spin) is

1
HZA: By —E —ily, /2

U, = e~ 2ikcac (cen). (220)

The summation is over all s-wave levels, internal as well as external ones, that have the
spin and parity implied by c¢. We now split the sum into three parts, namely the internal-
level part (A = 1,2,...A), the external-level part R?, calculated either from Eq. 211 or
with two broad levels, Eqs. 217-219, and a third part from the additional bound level
(A =0). Solving for the third part (A = 0) we get

Ucc _ e—Zik:Cac
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The right-hand side, denoted by A.., can be calculated from the given resonance param-
eters and the prescribed thermal cross sections with

2
Uee = (1= 25— ) iy |5 — (25—, (222)
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as follows from the basic equations (152) and (153). Separating real and imaginary part
of Eq. (225) one finds

—I,.I, /4

Re A, = <0, (223)
(E — Ep)? + F%/él
Im A.. = fi E 224
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With only two equations for the three unknowns Ey, I'y,, Iy we can choose one of them
arbitrarily. The weak variation of radiation widths from level to level suggests to set I,
equal to the average radiation width of the internal levels,

r,=r,, (227)



but exact reproduction of the thermal cross sections is ensured also with any other choice.
The sign ambiguity in Eq. 222 is due to the fact that the cross sections depend only on
Re U, and |U..|?. Usually the plus sign can be discarded immediately because it yields
Ey > 0 contrary to the assumption of a bound level.

For thermally fissile nuclei one finds that Eqs. 225 and 226, although no longer
rigorous, are valid in good approximation at least in the usual situation where there is
no resonance very close to the thermal energy, so that o, < 47X 390. There is now an
additional equation for the fission width,

r Agl2 T
i Ty (228)
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where o.s is the thermal fission cross section for the entrance channel c.
If, for target nuclei with nonzero spin, the level spins are unknown and only ¢TI, is
known for the unbound levels but not ¢ and I',, separately, one finds the equations
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) O/ ) —— . 2
0 Re Ann 2 ) ( 30)
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and

Unn = (1 - 27:;2) +i \/(Zkacoh)z = (2;2)2. (235)

The directly oservable total and fission cross sections at the thermal energy are sums
over the two s-wave channels ¢ (with spins I +1/2 and I —1/2), 0 = ) _ o0, and oy =
Yo Zc,ef 0cer. The total widths are to be approximated by I'y o~ (2¢gT",,)x+I'x,+I'xz. The
same external-level term R? . i. e. the same distant-level parameters, strength functions
and average radiation widths were assumed for both spin states, and the channel subscript
of A\, and k. was dropped. Furthermore we used the relationship between the coherent
scattering length a..,n and the elastic scattering cross sections for the two spin states,

[GcOce
Qcoh = Z A . (236)




Specialisation to one spin state (target spin zero, gy = g.) or to nonfissile nuclei (o =0,
[y =T =0) leads to the equations given above.

With the bound-level parameters calculated analytically in this way the cross sections
are usually well reproduced not only at the thermal energy, = 0.0253 eV, but in the
entire thermal region below the first resonance. Sometimes it happens, however, that the
calculated fictitious bound level is much closer to the neutron threshold than the first
unbound level (i. e. |Ep| < Ey). Although the calculated capture or fission cross section
curve goes through the prescribed point it shows normal 1/v behaviour only below the
“mirror energy” |Fp|. Around that energy the curve changes towards 1/v° behaviour
(before the resonance at E; makes it rise again). The single-level Breit-Wigner formulae
(183) and (185) explain this: The asymptotic behaviour at low and high energies due to a
bound level at Ey < 0 is the same as that of an unbound level at the mirror energy |Eg| > 0
(see Fig. 15). It is easy, however, to restore an actually observed 1/v shape all the way up
to the first unbound resonance, without changing the correctly calculated thermal cross
sections, simply by increasing the (arbitrarily chosen) radiation width that scales the other
resonance parameters, see Eqgs. 225-226 and 230-232. The computed changeover from 1/v
to 1/v® can thereby be shifted toward energies above E; where it is harmless because
other resonances dominate.

3.5. DOPPLER BROADENING

In practical applications resonance cross sections are mostly needed in Doppler-
broadened form. It is sometimes claimed that for light nuclei Doppler broadening can
be neglected. This may be true for the broad s-wave levels but certainly not for the nar-
row p-, d-, ... wave levels that in the case of the so-called structural materials (iron, nickel,
chromium, cobalt, manganese etc.) contribute significantly to resonance absorption and
activation.

3.5.1. Free-Gas Approximation

Doppler broadening in nuclear reactions is caused by the thermal motion of target
nuclei. Consider a parallel beam of monoenergetic particles with laboratory velocity v,
colliding with target nuclei whose velocities u are distributed in such a way that p(u)d®u
is the fraction with velocities in a small three-dimensional region du around u in velocity
space. If p; and po are the densities of beam and target particles, respectively, the number
of reactions occurring per unit time and unit volume is

p1p2 / Pup(u) |v — ul (v — ul) = p1p27 (), (237)

where o(|v — u|) is the unbroadened cross section for a relative speed |v — u| between the
collision partners, and & (v) the effective or Doppler-broadened cross section for incident
particles with speed v. It is obvious from this definition that a 1/v cross section is not
affected by Doppler broadening. Let us now assume that the target nuclei have the same
velocity distribution as the atoms of an ideal gas, viz. the Maxwell-Boltzmann distribution

1 u? | d*u Mu?
3, _ T _
p(u)d’u = —573 ©XP (— u%) i ( 5 = kT, (238)

where M is the mass of the target nucleus and kT the gas temperature in energy units.
Integrating over all possible relative velocities w = v —u and employing polar coordinates
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Fig. 15. SLBW capture cross section of an unbound and a bound s-wave level, as given by Eqgs.
183, 185 with [';,(E) = [',,(| Eo|)v/ E/| Eo|. Both show the same asymptotic behaviour at
low and high energies.

with the polar axis parallel to the beam, d®u = d*w = w?dw du dy with p = cosé, one
finds easily the exact free-gas expression for the Doppler-broadened cross section (Solbrig
1961)

0= e [ - (222 e (522} ot
e [ (222)] S, =

This means Gaussian broadening of the odd function v|v|o(|v|) on a speed scale ranging
from —oo to 400, with a broadening width ur. In terms of laboratory energies, £ =
mv?/2, one has

~ oo ’ _ 7.2 ,\/_f '
“(E):%ﬁfu dE{exp[_(ETfE)]_exp[ (E+A/2'EE }\/F

(240)



where
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(241)

is called the Doppler width. For E > A, which is usually satisfied above a few eV, one can
simplify by retaining only the first two terms of the expansion vV EE' = E4+(E'—E)/2+. ..
in the exponent, by neglecting the second exponential, and by shifting the lower limit of
the integral to —oco. The result is

VEG(E) = AL\/% /_O:O dE' exp | - (EIA_ E)Z} VE o(E'), (242)

which means Gaussian broadening of the reaction rate on the energy scale with a width

A.
3.5.2. Cubic Crystal

Lamb (1939) found the expression (241) also for radiative capture of neutrons by the
nuclei of a Debye crystal, in the practically most important case I' + A > 4kTp, where
Tp is the Debye temperature that is a measure of the binding force holding the atoms
at their positions in the lattice, high for tightly bound and low for weakly bound atoms.
The only difference between an ideal gas and a Debye crystal is that one must calculate
the Doppler width not with the true temperature 7" but with an effective temperature 77,

given by
T\33 [Tp/T T 1 T}
T :T(—) 2 dz z° th—:T(l — D ) 243
I T, 2/0 T T°Co 5 +20T2 + (243)

that is usually - at room temperature - a few percent higher than T'. In the approximation
of quasi-free scattering one finds the same result for scattering, and for cubic crystals in
general (Frohner 1970). The correction as a function of Tp /T is given in curve form by
Lamb (1939). Problems with the Debye temperature of crystals containing both light and
heavy nuclei — example: 233UQ; — are discussed by Lynn (1968).

3.5.3. Gaussian Broadening with Voigt Profiles

In Kapur-Peierls representation, Eqs. 178-180, all resonance cross sections appear
as linear superpositions of symmetric and asymmetric line shape profiles (plus a slowly
varying potential scattering cross section in case of 0. and o..). Since the shape pro-
files contain the rapid, resonance-type variations while everything else varies slowly we get
Doppler-broadened cross sections in good approximation if we simply replace the unbroad-
ened ("natural”) line shapes of the Kapur-Peierls expressions by the Gaussian-broadened
profiles introduced by Voigt (1912)

N /oo dE' e~ (E'—E)* /A% G3/4 (244)
AV oo (B' = E\)2 4+ G3/4

XA = 1 /Oo dE' e~ (E'—E)*[A? (£ _~E~/\)G>\/2

AV oo (B — By +G3/4°

(245)

where A, Ey and G, are to be taken at E' = E. This means that all weak energy depen-
dences are neglected locally, over the range (few Doppler widths) of the Gaussian weight



function, but that their long-range effect is fully taken into account. Doppler broaden-
ing by means of the Voigt profiles is popular because fast subroutines are available for
their computation (see e. g. Bhat and Lee-Whiting 1967). In Adler-Adler approximation
their utilisation is straightforward. In other representations one must first convert from
Wigner-Eisenbud to Kapur-Peierls parameters. In SLBW and MLBW approximation this
is trivial, one has simply By = Ey + Ay, Gi/? = TY/?, Gy = T, (¢f. Eqs. 170-171).
In Reich-Moore approximation one must first convert iteratively as explained in Subsect.
3.3.6. This is easy to program and does not add significantly to computing time, especially
if used together with a fast algorithm for Gaussian broadening.

3.5.4. Gaussian Broadening with Turing’s Method

A fast algorithm for Gaussian broadening of functions having poles in the complex
plane (meromorphic functions) was proposed by Turing (1943). The simplest meromorphic
function, with a single pole, is the combination v+ 7y of natural resonance profiles that we
encountered in the resonance formulae of Sect. 3.3. Turing’s method is therefore widely
used for the calculation of Voigt profiles. He introduced artificial, equidistant poles along
the real axis and applied contour integration (see e.g. Bhat and Lee-Whiting 1967) to get

iT/2
E, — Eo +il/2

e S p e (B - BN’
zp—l—zx—Aﬁnzz_oodEe

o—(E — Eg +iT'/2)? | A? -
~ omi(E— B+ iT/2) 0B

VA F, (246)
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where 0F is the (arbitrary) spacing of the artificial poles, FE,, = E + ndFE is a grid point
(artificial pole), and

0 /2 “| =2
T
1 <
2
9 E — Ey\271/2 27A2\2 -1 ¢ (TA/IE)
F|>—]1 — . 24
7l = \/E[ +( r'/2 ) ] ‘ (FéE) ‘ 1_6—2(7TA/6E)2 (248)

We recognise that Turing’s approximation consists of (i) a simple sum approximation to
the integral with bin width JF, (ii) a term involving the pole energy Ey + i'/2 and a
discontinuous factor P, and (iii) an error term F which becomes small for §E' < A because
of the factor exp[—(7A/6E)?]. The pole term is a correction to the sum, needed only in
the neighbourhood of narrow peaks (poles close to the real axis) for which the bin width
of the sum approximation is too coarse, but negligible elsewhere as specified by the factor
P. With the choice 0F ~ 0.7A one can neglect the error term completely and still obtain
relative accuracies of 1077 or better (Bhat and Lee-Whiting 1967). Applying Turing’s
method to each term of the Kapur-Peierls cross section expressions (178) or (179) one
finds

N
VEG(E) :AL\/% Z gE e (En — E)?/A? VE,o(E,)
n=—N

(B — &)/ A? .
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where C' is the coefficient of ¥\ + iy, in Eq. 178 (for total cross sections) or in Eq. 179
(for partial cross sections), and the factors Py are analogous to P, Eq. 247.

The first term on the right-hand side is again the sum approximation to the integral.
Due to the rapidly decreasing weight in the wings of the Gaussian one needs only the
sum terms with —5 < n < +5 for the usual accuracy of about 0.1% required in typical
applications. Moreover, the natural (unbroadened) cross section o(E,,) can be calculated
directly from the unconverted Wigner-Eisenbud or Adler-Adler parameters given in the
evaluated files. Double sums are not needed: Natural MLBW cross sections are directly
obtained from the collision matrix (190), Reich-Moore cross sections from the reduced R
matrix (194). In both cases one needs only single sums over levels. The computer time
needed for the histogram approximation (first sum in Eq. 250) is therefore practically the
same in all four approximations: SLBW, MLBW, Reich-Moore and Adler-Adler.

The pole term in Eq. 249, on the other hand, requires Kapur-Peierls parameters,
but only for narrow resonances (nonvanishing Py) and only near their peaks where weak
energy dependences can be neglected. Adler-Adler parameters need not be converted at
all, for SLBW and MLBW the conversion is trivial. Only in Reich-Moore approximation
must one convert by iteration as explained in Subsect. 3.3.6, but merely at few energies,
namely at the formal resonance energies of the narrow resonances. The extra time needed
for this preparation is only a small fraction of the total time required for comprehensive
point cross section calculations for which time savings are important.

Turing’s method can be applied, of course, not only to Gaussian broadening on the
energy scale, Eq. 242, but also to Gaussian broadening on the speed (or momentum) scale
with the free-gas kernel, Eq. 239. In the latter case there is even an extra bonus: The width
of the Gaussian weight function does not depend any more on energy (or momentum), so
the Gaussian weights needed (for —5 < n < 45, say) can be computed once and for all
before the calculation begins. Another bonus of Turing’s method is the introduction of
a natural grid depending only on the effective temperature, which is convenient for fast
point cross section calculation, producing automatically less points at higher temperatures
where broadened cross sections are smoother. The method is convenient not only for cross
section fitting, as is sometimes thought, but quite generally whenever Doppler-broadened
multi-level point cross sections are needed. The program DOBRO is written along these
lines (Frohner 1980). Employing the exact free-gas kernel it generates Doppler-broadened
MLBW and Reich-Moore cross sections about equally fast as SLBW cross sections from
given resonance parameters. The key idea is not to insist on Voigt profiles but to apply
the best technique for their computation — Turing’s method — directly to the multi-level
cross section expressions.

3.5.5. Broadening of Tabulated, Linearly Interpolable Point Data

A widely used method for the generation of Doppler-broadened resonance cross sec-
tions starts from natural cross sections oy given at energies Ey such that for any interme-
diate energy F linear interpolation is possible,

(E — Ei)ors1 + (Bry1 — E)oy
Eyi1— Ey

o(E) = (B, < E < Epy1) (250)

with some specified accuracy. The linear variation with energy translates into a quadratic
variation with speed,

o(v) = ap, + bro?, (251)



where a; and by are constant coefficients. Linearly interpolable point cross section tables
are typical for evaluated nuclear data files. Insertion in Eq. 239 yields

Z /wk+1 o v o~ (w—=v)*/uf _ —(w+ v)2/U2T] (ar + bew?). (252)

ur v?

Each sum term corresponds to a linear piece of the cross section representation. Substi-
tuting x = (w — v)/ur we find that for each sum term we need the integrals

Thi1
— / dte " tm = I,(xg) — L (zk41) for n=20,1,23,4 (253)
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with 0 - . .
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I, (z) = —
Iy and I; are easily calculated whereupon the others can be obtained with the last recursion
relation (that results from partial integration):

In_s(z) . (254)

Iy(xz) = erfc z
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I(z) = 1 erfc z + NG e (27 + Z:c) , (255)

This is the basis of the SIGMA1 code (Cullen and Weisbin 1976). It should be noted that in
spite of the title of the paper the method is not exact since the linear interpolation between
the tabulated cross sections is an approximation that introduces some error. (In modern
evaluated files relative deviations of up to 0.5 % or at best 0.1 % are admitted within
each linear piece.) It should also be realised that exponentials and error functions must
be calculated for each linear piece of the cross section representation. If the cross sections
o are not given but must be calculated first, the SIGMA method is definitely slower and
in any case less accurate than the Turing approach, and the choice of an irregular grid
permitting interpolation with a specified accuracy, with a minimum of grid points, may
be problematic, whereas the Turing method provides a suitable grid automatically.

3.6. PRACTICAL ANALYSIS OF RESONANCE CROSS SECTION DATA

We mentioned in Section 2 that the determination of cross sections from experimental
data is best accomplished via extraction of resonance parameters. In fact all resolved reso-
nance cross sections that go into reactor calculations and similar applications are generated
from resonance parameters. It might be asked whether one cannot use the best measured
high-resolution cross sections directly and thus eliminate the need for resonance parame-
ter extraction. There are several reasons why the determination of resonance parameters
cannot be avoided if resonance reactions are to be described and predicted accurately.



(1) Resonance parameters along with consequent utilisation of resonance theory enable
us to represent the often staggering detail of cross section structure by comparably
few numbers.

Example: The presently analysed number of resonances of the compound system
238U+n is of the order of 1000. If subthreshold fission is neglected they are specified
by about 4000 parameters (Ey, I',, I'y, JII) whereas a reasonably accurate pointwise
representation of the scattering and capture cross section requires about 5 - 10* data
points or 10° numbers. If one considers also angular distributions and different tem-
peratures one gets easily several million data points that would be needed to describe
the behaviour of 23%U in a reactor.

(2) Doppler broadening of resonances for arbitrary temperatures can be calculated reli-
ably only from resonance parameters but not from point data.

(3) Resonance parameters and the R-matrix formalism guarantee consistency with phys-
ical constraints such as the unitary limits for the total cross section in each reaction
channel (0 < 0. < 47X igc) or Wick’s limit for scattering in the forward direction
(doe.(0)/dQ > 02 /(47X .)?).

Another consistency is more subtle but practically at least equally important, espe-
cially for the calculation of self-shielding. Theory tells us that there is a rigid relation-
ship between the line shape in one reaction channel and the line shape corresponding
to the same compound level in other channels. This relationship is guaranteed if cross
sections are generated coherently from resonance parameters, whereas for experimen-
tal data sets a common energy scale is always problematic.

(4) At least equally important is the fact that even the best measured resonance data
are affected by resolution and Doppler broadening and (except transmission data)
by self-shielding and multiple scattering. The only reliable way to correct for these
effects is full-scale parametrisation by fitting resonance-theoretical curves to the data.
The fitted quantities should not be some sort of reduced data resembling cross sec-
tions, such as logarithms of transmission values, but the observables themselves, e. g.
transmissions and capture, fission, or scattering yields. It is then straightforward to
include resolution and temperature broadening, self-shielding and multiple scattering,
sample impurities and other effects in the theoretical model.

(5) Extrapolation into the region of unmeasured or unresolved resonances by level-stati-
stical (Hauser-Feshbach) cross section calculations requires statistical parameters such
as level desities and strength functions. These in turn must be estimated from resolved
resonance parameters.

In order to understand the more practical problems of resonance fitting let us review
in some detail the principal types of experimental resonance data that must be modelled by
the fitting algorithm. The observables are more or less complicated functions or functionals
of the cross sections, rather than cross sections themselves.

3.6.1. Observables

As already mentioned in Sect. 2.1, the simplest measurement is that of the total cross
section 0. One mesasures the fraction of a beam of particles of given energy that traverses
without interaction a sample of given areal thickness n (nuclei/b),

T=em. (256)



The total cross section is thus proportional to the logarithm of the observable.
The (n,x) reaction yield Y, (x =f, v, n’, p, a, ...), i. e. the fraction of beam particles
inducing an (n,x) reaction in the sample, is a sum of contributions from events where the

(n,x) reaction is preceded by 0, 1, 2, ... scattering collisions,
with
Y:cO - (1 - T) & )
o
Vo= (1-1) 22 ((1-1) 2 |
g o1 /1
Vo= (1-T) 2 {(1-m) 22 {(1 - 1) Z22) )
g 01 o9 /271
etc. (258)

The numerical subscripts indicate the number of preceding collisions so that 1 — 7%, for
example, is the probability that after the first collision the scattered neutron interacts
again somewhere in the sample. The brackets ( )1, ( )2, ... denote spatial and angular
averages over all possible 1st, 2nd, ... collisions. In each elastic collision the energy of the
projectile changes from E to

o A% 424, +1
N (A+1)2

if the target particle is initially at rest. Here pu. is the cosine of the centre-of-mass scattering
angle and A the projectile-to-target mass ratio. Note that in the resonance region small
energy changes can cause dramatic cross section changes. The multiple-collision yields Y1,
Yo, ... are therefore increasingly complicated functionals of the cross sections o, o, and
o. If inelastic scattering is energetically allowed the brackets ( ); etc. include also averages
over all possible scattering modes (residual reactions). The thin-sample approximation,

(259)

Y, = no, if no <1, (260)

is often accurate enough for fission yields since fissile samples must be extremely thin so
that the fission fragments signalling (n,f) events can get out out. In capture data analysis,
on the other hand, one must usually include the self-shielding factor (1 — T")/(no) and
multiple-collision contributions because the weak self-absorption of the photons signalling
(n,y) events enables measurers to improve count rates by employing thick samples.

Sample thickness effects, i. e. self-shielding and multiple scattering, are also important
in scattering measurements. In analogy to Eqs. 257-258 one has

dY, = dYp, +dYpy +dY,s + ... (261)
with

1-T do,
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etc. (262)



where df is a solid-angle element covered by the detector.

From our discussion of reaction yields it should be clear that, unless samples are very
thin, extraction of (n,x) cross sections from (n,x) yields involves also the total cross section.
Quite generally one can say that total cross section data are a prerequisite to good partial
cross section analysis. Another data type, valuable in particular for level-statistical tests
in the unresolved resonance region is obtained in self-indication measurements. One places
two samples in the beam, a filter sample (thickness n;) and a detector sample (thickness
ng), both consisting of the same material. The probability for a beam particle to induce
an (n,x) reaction in the second sample is

Sw(nl,ng) = T(nl)Yw(ng) . (263)

In this way one measures essentially the transmission of the filter sample with a detector
system that has enhanced efficiency across the resonance peaks (across the transmission
dips).

Ideally the resonance parameter analysis is based on data measured with isotopically
pure samples and proceeds more or less as follows.

(1) From transmission data one determines basically

FEo, T, g for{ =0,
Eo, gT'y, for £>0.

(2) The transmission results permit calculation of sample-thickness corrections for (n,x)
yield data from which one obtains basically

Ey, I, if I',, g are known
Ey, gl'y if only gI',, is known
(3) If transmission results are not available (p-, d-, ... levels are not easily seen in trans-

mission measurements) one gets only
Ey, gT',,)L', /T if gT",, is not known

In less ideal cases there are complications because of sample impurities — mostly
other isotopes of the same element in enriched materials, oxygen in oxide samples or from
corrosion, but also hydrogen from adsorbed water vapour. Other unavoidable experimental
complications are briefly described in the next subsection.

3.6.2. Experimental Complications

Backgrounds are a main source of uncertainties in resonance analysis. In time-of-flight
measurements there are always two types of background: constant and time-dependent.
Constant backgrounds may be due to radioactivity of the sample and its environment or to
cosmic radiation. Time-dependent backgrounds are induced by the accelerator pulses or by
sample effects. An example is the background caused by resonance-scattered neutrons in
time-of-flight measurements of neutron transmission or capture. It reflects the resonance
structure of the scattering cross section, hence fluctuates violently with time of flight (or
energy). This influence of the sample makes “sample-out” background determinations
often questionable. Therefore one uses “notch” filters, special samples placed in front of
the sample under study. The ideal notch filter has a few widely spaced resonances and
is so thick that at the corresponding dips (notches) all beam particles are removed and
only the background is observed during the actual run. Of course, no “true” data can
be measured across the notches, so one uses several complementary filters. Notch filters



provide an improvement over sample-out background determination but do not completely
remove the problems caused by the presence of the sample.

Resolution broadening is another source of complications. All experimental data are
resolution broadened. The true observables are

T (E) = / dE'r(E',E)T(E) , (264)
Y. (E) = / dE'r(E',E) Y, (E) , (265)

etc., where dE' r(E', F) is the probability that an event observed at the energy E (or the
corresponding flight time) was actually due to a beam particle with an energy £’ in dE'.
The main causes for the deviations £ — E’ in time-of-flight data are

- finite accelerator burst width (ty) ,
- finite time channel width (te)
- electronic drift, jitter (ta) ,

- uncertain starting point of flight path
(e. g. in moderator slab or booster)
and end point

(e. g. in sample or Li glass detector) (AL),
finite angular resolution (A0) .
The resolution function r(E’, E) is often taken as a Gaussian,
1 /! 2 2
E'\E)= —— ¢ (E-EN/W 266
"B E) = e (266)
with, for instance (Frohner and Haddad 1965),
ALN?2 E 1/2
W:2E[2<T> +ﬁ(t2+tf+t3)] . oNETN (267)
m

Slight adjustment of ¢; and ¢; may improve the fit but frequently the true resolution
functions have tails and the Gaussians must be replaced by other, asymmetric resolution
functions such as x? functions (Frohner 1978) or Gaussians with tails.

Detector efficiency and flux are a third important source of uncertainties for partial
cross section measurements where the observables are count rates,

c=pYee (=~ pnoge if no < 1). (268)

Absolute determination of the flux ¢ and the efficiency ¢ is difficult and is therefore avoided
where possible. Often one measures relative to a reference sample (subscript r) in the same
flux to get

c Y. € Noz€

; B err (2 NypOr€p no < 17 Ny Oy < 1)’ (269)

where Y, is known with good accuracy. This eliminates the need to know the flux but one
may still have problems with n/n, and €/e, as the thin-sample approximation shows. If
the energy dependence of €/¢, is known one can calibrate by normalising to an accurately
known cross section value, for example the thermal cross section. If no suitable known
value is available one can often use the saturated-resonance (“black sample”) technique.



One uses a special sample which is so thick that at a well known resonance the transmission
is negligibly small. Quite generally one has

-T2 <Y, <1-T. (270)
g

Because of ¢ = @Y, € this yields at the resonance peak, £/ = Ey, where the sample is black,
T~0,

o(Ep)

c<eg0<c%(E0) . (271)
If 0(Ey) ~ 0,(Ep) (i. e. I' ~ I';) this defines, without further calculation, a quite accurate
value of ep. The 4.91 eV resonance of %7 Au+n, for example, has frequently been used in
this way for black-sample normalisation of capture data. Serious problems are encountered
if the detector efficiency varies from isotope to isotope or, even worse, from resonance to
resonance. This has been a persistent source of difficulties with capture measurements.
Here the detector response depends on the gamma spectrum (binding energy, transition
strength to low-lying levels etc.) which fluctuates from level to level in an unpredictable
way, especially for light and medium-mass nuclei.The problem could be overcome only
with massive liquid-scintillator or crystal scintillator detectors that surround the sample
in 47 geometry and absorb most of the capture gamma rays.

Self-shielding and multiple scattering affect mostly neutron capture and scattering
data. As the Eqgs. 257-258 and 261-262 show the two effects are intertwined and cannot
be treated separately. Both together are referred to as sample-thickness effects. An
analytical treatment is not possible in the resolved resonance region because of the violently
fluctuating scattering and capture cross sections and the need to describe the data in
detail, not just in an average sense. The only reliable way is Monte Carlo simulation of
multiple-collision neutron histories based on the detailed resonance cross sections, on the
appropriate probability distributions for free paths and scattering angles, and on the exact
sample geometry (cf. Frohner 1989 for details). The feasibility of straightforward Monte
Carlo simulation of sample-thickness effects in capture resonance fitting was demonstrated
with the FANAC code (Frohner 1978).

3.6.3. Spin and Parity Assignment

The conventional least-squares fitting algorithm employs derivatives (sensitivities),
hence it is directly applicable only to continuous probability distributions. Therefore res-
onance parameter determination by nonlinear least-squares fitting is straightforward only
for resonance energies and widths, for which a continuum of possible values exists so that
derivatives for Newton-Raphson iteration can be calculated. For spins and parities, having
discrete values, derivatives are not available. One could imagine a combinatorial generali-
sation of the least-squares method including also discrete probability distributions, but in
resonance analyses involving dozens or even hundreds of levels the number of possible spin-
parity combinations for which least squares must be found is forbidding. Therefore a first
assignment of spins and parities is usually based on inspection of transmission data. Most
s-wave resonances are easily recognised because pronounced interference between resonant
and potential scattering makes them quite asymmetric (see Fig. 11), whereas p- and d-
wave resonances tend to be narrower and symmetric because of small potential-scattering
cross sections and small centrifugal-barrier penetrabilities at low energies.

A first rough categorisation of those narrow levels for which only ¢gI',, is known from
transmission analysis can be based on the expected average neutron widths. If the expec-
tation values (¢gI',,),s for the possible (¢,.J) combinations are given, one can calculate the



corresponding probabilities for (¢,.J) by means of Bayes’ theorem (Bollinger and Thomas
1968). The prior is proportional to the density of levels with spin .J and parity IT = (—)*
which can be taken as independent of parity, p,; = ps. With the rough approximation
ps x 2J + 1 one gets, for example, s-, p- and d-wave level densities in the ratio 1:3:5 if the
target spin is zero (see Y g column in Table 2). The likelihood function is given by the
Porter-Thomas distribution (see Chapter 4 below)

0<xpy =

[e_””x"/Z dx veg  9ln
L(y)  ale’ 2 (gTn)es

p(glnlt, J) d(gly) = <oo, (272)

where I'(%) is a gamma function and v; the number of channel spins (1 or 2) that can be
combined with ¢ to give J (cf. Egs. 139-140 and Table 2). Since dz/z does not depend
on £, J the resulting posterior probability is

pale 2"y

_ZPJ —tl?yy

(=0,1,2,..., [0— T —1/2|| <T<t+T+1/2, (273)

P, J|gly,)

where I is the target spin. The average widths involve products of level spacings Dy =
1/ps and strength functions Sy,

(9Cn)es = gsvesDySe/E/1 eV (E) . (274)

Estimates of the average widths can therefore be based on observed mean level spacings
and on observed or optical-model strength functions Sy. The functions v, = P,/ Py (with
Py = ka) are relative centrifugal-barrier penetrabilities, equal to unity for the s wave.
For the other partial waves one has v, ~ (ka)?/[(2¢ — D)!']? if ka < J({+1) (i. e.
at low energies). This means that in the resonance region only partial waves with ¢ =
0, 1, 2 and (at most) 3 need be considered. The others are effectively suppressed by
high centrifugal barriers. A spin-parity assignment based merely on comparison of the
observed width with estimated average widths for the various possible £J combinations is,
of course, purely probabilistic, subject to revision if new evidence becomes available such
as a characteristic s-wave interference minimum of the total cross section.

The ultimate spin-parity information is provided by scattering data since angular
distributions differ markedly for s-, p- and d-levels. Usually one compares precalculated
angular distributions for isolated resonances with the observed ones. In practice the re-
sonances are, however, rarely isolated but interfere with other levels having the same spin
and parity. Moreover, angular distributions exhibit interference even between different
partial waves, for instance between s- and p-wave amplitudes. A certain amount of trial
and error concerning spins and parities is therefore unavoidable during the initial phase of
resonance fitting, even in the ideal case where high-resolution double-differential data are
available. With increasing energy the interference effects become more troublesome and
eventually analysis of resolved resonances must be replaced by analysis of average cross
section data as is discussed in the following chapter.



4. Statistical Resonance Theory for the Unresolved Region

We have already begun to use resonance statistics when we estimated the contribution
of external (“distant”) levels to the R-matrix in Subsect. 3.4.7. Now we shall apply it more
systematically to the so-called unresolved resonance region, where limited instrumental res-
olution permits only observation of resonance-averaged, seemingly smooth cross sections,
although resonances exist and make themselves felt in phenomena such as temperature-
dependent absorption and self-shielding. Cross section averages, mean square fluctuations
(variances) and other cross section functionals such as beam attenuation or temperature-
dependent self-shielding can be calulated and predicted at least probabilistically if one
knows the statistics of the unseen resonances, in particular the probability distributions
of their spacings and partial widths. The Statistical Model of nuclear (and atomic) reso-
nance reactions emerged in the nineteen-fifties (see Porter 1965 for key publications). It is
based on the probability theory of Hamiltonian matrices, i. e. on joint probability distri-
butions (“ensembles”) of their matrix elements constrained by their symmetries and other
global characteristics. The Gaussian Orthogonal Ensemble of real symmetric matrices was
recognised as implying theoretical distributions of partial widths and level spacings that
agree with the observed ones. Analytic cross section expressions, in terms of mean level
spacings and average partial widths, could be deduced at first only for resonance-averaged
total sections, whereas the expressions found for partial cross sections were approximate,
valid only in the limit of well separated, weakly overlapping resonances. For strong level
overlap this so-called Hauser-Feshbach problem remained unsolved until 1985.

4.1. LEVEL STATISTICS

We begin with basic level statistics, in particular with the (local) distributions of the
R-matrix resonance parameters, level energies E) and decay amplitudes y..

4.1.1. The Porter-Thomas Hypothesis

The decay amplitudes ). of R-matrix theory are essentially values of the internal
radial eigenfunctions at the channel entrance, representing the overlap of the A-th eigen-
function and the external (“channel”) wave function at the matching radius r. = a. (see
Lane and Thomas 1958, Lynn 1968). For a compound system with A + 1 nucleons they
are (3A 4 2)-dimensional integrals over the surface of the internal region in configuration
space. The integrands oscillate rapidly so that positive and negative contributions nearly
cancel. The integrals are therefore expected to be close to zero, and positive or negative
with equal probability, depending on the unknown particulars of the A-th eigenstate. Un-
der these circumstances a Gaussian distribution of the 7v,. with mean zero seems to be a
reasonable guess. In fact, the maximum entropy principle of probability theory (see Sect.
1.7) tells us that, if we know only that the distribution has zero mean and finite variance
(72), the most conservative and objective probability distribution for all further inference
is indeed the Gaussian,

1 _,2 g
POl (V) dye = —=e™ " dx, o0 <@ = i < oo, (275)

v 2(72)

With dv? = 27.dvy. and p(v.|(v))dv. = p(v2|(v?))dy? this becomes the distribution
hypothesised by Porter and Thomas (1956),

212V dr2 = &g 0<y= Lt 276
p(VZ|(v2))dv: N y <y TeE) < 00, (276)



83

150+ 238 ,n

N statistical analysis: STARA code .
== reduced neutron widths: JEF-2

missing

100

50+

Q 5 10 15 20 meV

Fig. 16. Porter-Thomas distribution. Histogram: number of s-wave resonances of ?*®*U+n below
3 keV with reduced neutron width exceeding abscissa value. Smooth curves: cumulative
Porter-Thomas distribution with confidence band, maximum-likelihood estimate. (From
Frohner 1989).

for partial widths I'y, = 2P.y%_ of single channels (and at a given energy). Examples
for single-channel widths are neutron widths for I = 0 or £ = 0 (see Table 2) or partial
radiation widths for single radiative transitions, not only in nuclear but also in atomic and
molecular spectroscopy. The single-channel Porter-Thomas distribution agrees well with
observed distributions of single-channel reduced neutron widths and single-transition pho-
ton widths. It must be realised, however, that the weakest levels — those with the smallest
entrance channel widths — tend to get lost in the experimental background. According to
the Porter-Thomas hypothesis they are the most frequent ones. Empirical width distri-
butions and, in particular, empirical level densities must therefore invariably be corrected
for missing levels. Fig. 16 shows an example of the good agreement between observed
and theoretical width distribution above the detection threshold for weak levels. On the
other hand it is seen that more than 20% of the levels are missing. (The sample contained
resonances of 2** U+n from the neutron energy range 0 to 3 keV that belong to the s-wave
sequence with an estimated probability of 99% or more.)

Many observable widths are, however, sums of single-channel widths, for instance
neutron widths for I > 0 and ¢ > 0 (see Table 2), or total radiation widths, or fission
widths. If the averages (vy2) were the same for all v contributing channels, such an observ-
able width would obey the generalised Porter-Thomas distribution, i. e. a y*-distribution
with © degrees of freedom,

- u/2d

2 /a2 2 _ €Yy Y v
p(valvz))dve = 75—, 0<y=s

(val(v2)) [y 2 72)

< oo, (277)



where I'(%§) is a Gamma function (not a width), and

n=> %, (278) (v2) = v(v2). (279)

cEx

The generalised Porter-Thomas distribution applies to two-channel neutron widths (v =
2, exponential distribution) and, with an effective (not necessarily integer) number v
of fission channels, to fission widths (v small) and to total radiation widths (v large,
distribution delta-like: radiation widths fluctuate little from level to level). Large effective
v for total radiation widths are not unexpected because of the usually large number of
allowed radiative transitions to lower-lying compound states. That v is small for total
fission widths, however, was a surprise. The hundreds of possible pairs of fission fragments,
each with many possible excited states, would seem to imply equally many partial fission
widths, and a correspondingly large effective v.

The puzzle was solved by A. Bohr (1955). He pointed out that before scission can
occur the compound system must pass the saddle point of the potential-energy surface (in
the space of deformation parameters) beyond which Coulomb repulsion prevails over nu-
clear cohesion. At the saddle point most of the excitation energy is tied up as deformation
energy, so only little remains for other modes of excitation whose spectrum resembles that
of the low-lying states observed at the ground state deformation. Energy, angular momen-
tum and parity conservation allow access to only few of these transition states, regardless
of the huge number of final partitions. Therefore the fission channels are correlated in
such a way that the fission width can be approximated as a sum over a small number of
terms, one for each transition state (”saddle point channel”). For fission, therefore, v is
the effective number of open saddle point channels rather than the number of reaction
channels in the usual sense.

This illustrates that the level-statistical ”laws” are not as rigid as the resonance
formalism discussed in Chapter 3. They hold mainly for highly excited compound states
for which all single-particle, collective, or other simplicity is lost. Reflecting more our
ignorance than truly random phenomena they are not really applicable where the states
considered are simple and well understood. Recognition of the role of collective transition
states of a fissioning nucleus, for example, enables us to modify and, in fact, to simplify the
statistical description of fission resonances. In the model case of neutron interaction with
a complex square-well potential, where everything can be calculated explicitly, nothing at
all is random or unspecified, and the reduced neutron widths (essentially squared decay
amplitudes) turn out to be all equal instead of exhibiting a Porter-Thomas distribution
(see Frohner 1998a).

4.1.2. Wigner’s Surmise and the Gaussian Orthogonal Ensemble

It proved to be much more difficult to find the distribution of level spacings in a
given JII level sequence than to find the partial-width distributions. Early in the game
Wigner (1957) tried a bold guess. He took issue with the Poisson distribution tried by
others according to which the probability of finding a level spacing Ex4+1 — E) in a small
interval dD at D is just proportional to dD, independent of the distance to the preceding
level. He pointed out that level energies are eigenvalues of Hamiltonian matrices, and
that matrix ensembles always exhibit eigenvalue repulsion (vanishing probability for zero
level spacing) so that at least for small spacings the probability should be proportional to
DdD. Assuming proportionality also for large D he got immediately what is now known
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as Wigner’s surmise,
b 2
p(D|(D))dD = exp ( - cf D’dD’)chD —ce D" 2paD, 0<D <0, (280)
0

where the proportionality constant is related to the mean level spacing (D) by ¢ =
7/(2(D)?).

The theory of Hamiltonian matrix ensembles (that is, of probability distributions for
Hamiltonian matrices) was subsequently developped by Wigner, Porter, Dyson, Mehta and
others (see Porter 1965, Brody et al. 1981, Mehta 1991). Nuclear Hamiltonian matrices
are Hermitean, of course, but also, due to the practical invariance of nuclear interactions
under time reversal, symmetric and thus real. If we knew a probability distribution of such
matrices we could derive the corresponding probability distribution of eigenvalues. The
simplest ensemble is obtained if we assume nothing but a finite spread of the eigenvalue
spectrum, which is well supported by the Gaussian-like eigenvalue distributions resulting
from shell model calculations (see Brody et al. 1981). Maximising the entropy of the
distribution under the constraint of finite spread (see e. g. Frohner 1990, 1991a) one finds
as the most objective choice

p(H|o?)d(H) o [ exp ( - )\Hﬁﬂ) dH,,,, [] exp ( - 2AH§V)(1HW, A= %, (281)
m

n<v

where N is the rank of the matrix H (the number of eigenvalues), d(H) = [],., dH,
the volume element in the space of independent matrix elements, and ¢ the spread of the
eigenvalue spectrum (around its centre at E = 0). Having maximal entropy (minimal infor-
mation content) among all distributions of real, symmetric matrices with given standard



deviation o, this ensemble plays a similar role for those matrices as the Gaussian distribu-
tion does for scalar distributions with given spread. It is called the Gaussian orthogonal
ensemble (GOE) because it is invariant under orthogonal transformations and because
the matrix elements have independent Gaussian distributions. Actually Wigner derived
it from the requirements of rotational invariance (all orthogonal bases must be equiva-
lent in quantum mechanics) and of independently distributed matrix elements, but the
independence requirement was criticised as unphysical, in conflict with the predominant
two-body character of nuclear forces. In the maximum entropy approach independence is
a natural consequence of the limited input information. In any case Wigner’s suggestion
that the GOE provides a mathematically simple model of level statistics has been fully
confirmed. Porter and Rosenzweig (1960) demonstrated that for very large matrices (very
many compound states) the GOE yields the Porter-Thomas distribution of partial widths.
The GOE level spacing distribution for 2 x 2 matrices is exactly Wigner’s surmise, while for
larger matrices it is very close as shown by Mehta (1960) and Gaudin (1961), see Fig. 17.

The level spacings are correlated in such a way that a relatively large spacing is
followed by a short one more often than not, and vice versa. The resulting correlation
coefficient is

Ccov (DA, D>\+1)

V/var (Dy) var (Dy41)

for large matrices. The eigenvalue sequence is therefore remarkably regular (“stiff”), with
almost equidistant level positions, differing noticeably from a “random” sequence with
Poisson interval distribution. All this is in excellent agreement with observed nuclear
(and atomic) level statistics, at least in limited energy ranges where slow variations of the
mean level spacing and of average partial widths can be neglected. Seeming deviations
from GOE predictions usually vanish if the long-range (”secular”) variations of the level-
statistical parameters are properly taken into account.

The Gaussian orthogonal ensemble, constrained only by the finite spread of the eigen-
value spectrum, cannot be expected to reproduce more specific nuclear features such as
fermion gas level densities, shell effects, giant dipole resonances or fission barriers. In fact,
the semicircular GOE level density obtained by Wigner (1957) differs from the Gaussian-
like densities found in more realistic shell model calculations (see Brody et al. 1981).
Although the distributions of level energies and partial widths can locally be taken as
those of the GOE, their parameters (level density, average widths) vary slowly with en-
ergy. These secular variations are described by macroscopic models of the nucleus — level
densities, for instance, by the fermion gas model or, at higher energies, by the shell model
with residual interaction; neutron, proton and alpha particle strength functions by the
optical model; photon strength functions by the giant-dipole resonance model; fission
strength functions by fission barrier models.

p(Dx, Day1) =

—0.27 (282)

4.1.3. Transmission Coefficients

The appropriate theory for the unresolved resonance region is Hauser-Feshbach theory
with width fluctuation corrections. It is obtained if one averages R-matrix cross section
expressions over the GOE. The essential parameters are strength functions or the closely
related transmission coefficients. For particle (neutron, proton, alpha) channels the latter
are defined by

— 4dms. P,
_ 2 cle
T.=1—|Usl” = 7|1 C R (283)
The denominator, with B
R..= R +ims,, (284)



accounts for overlap and interference effects due to nearby and distant levels, s. and RZ°
being the pole strength and the distant-level parameter already encountered in the context
of external levels, Egs. 209 and 210. The transmission coefficient is thus essentially 27
times the ratio of average effective particle (e. g. neutron) width to mean level spacing.
For photon and fission channels one uses analogously

r
T, =25, (285) Ty = 2L (286)

c c

Transmission coefficients for particle channels can be obtained from the optical model
which describes the interaction between an incident particle and the target nucleus by a
complex potential, in analogy to the diffraction and absorption of light by the proverbial
cloudy crystal ball. The complex potential is adjusted so that the resonance-averaged
total cross section is well reproduced over the whole unresolved resonance range and far
above. For nuclei of similar size, e. g. actinides like 23°U, 233U and ?3°Pu, one expects
similar potential wells and thus similar average total cross sections. This is in fact what
one observes — see for instance the neutron transmission measurements and optical-model
fits performed by Poenitz et al. (1981) on a whole series of heavy nuclides. The optical
model has therefore considerable predictive and systematising power.

It must be kept in mind, however, that it is essentially a single-particle model where
scattering means direct (potential) scattering only, while absorption means compound nu-
cleus formation and includes not only final radiative capture and fission but also compound
scattering, i. e. reemission of the incident particle (or one indistinguishable from it) from
the compound nucleus. Moreover, the angular distributions calculated from a complex
potential that reproduces the total cross section correctly are not exactly equal to the
resonance-averaged double-differential scattering derived from the R matrix formalism.
The only directly observable cross section type obtained from the optical model is thus
the (average) total cross section. Fits to scattering or other partial cross section data
require due account of compound scattering except far above the unresolved resonance
region where compound processes are unimportant.

The main insights gained from optical-model studies of neutron induced reactions are
that the strength functions and distant-level parameters vary but little over the relatively
narrow resolved resonance range, and little from nucleus to nucleus. Furthermore, they
can usually be taken as depending only on orbital angular momentum as was mentioned
already in the context of Eq. 213. Transmission coefficients for inelastic, for example
(n,n’) or (p,p’), channels can be calculated with the same expressions as for elastic (n,n)
or (p,p) channels but with the particle energy E replaced by E — E., where E. is the
excitation energy transferred to the residual nucleus.

The total photon transmission coefficient for the JII resonance sequence is dominated
by electric and magnetic dipole transitions,

= S [rE T, (287)
c' ey, 11

where the summation is over all accessible exit channels ¢/, i. e. all allowed dipole transi-
tions from the compound state with spin J and parity II to lower lying levels. The electric
dipole contributions are commonly taken as having the classical Lorentz form of giant
dipole resonances,

Ej

T o :
(B2~ E})? + (T, )2

(288)



where F, is the photon energy of the transition, Ey and I' are energy and width of the giant
dipole resonance where all protons vibrate against all neutrons. Empirically it is found
that for spherical compound nuclei with A nucleons one has E, ~ MeV/AY¢ T' ~ 33
MeV /A3, For magic nuclei T is smaller by a factor of 0.6, for near-magic nuclei with Z
or N differing from a magic number by 1 or 2 the factor is about 0.8, and for deformed
nuclei it is about 1.2 (see Holmes, Woosley, Fowler and Zimmerman 1976). The magnetic
dipole contributions are smaller. They are often approximated by the simple Weisskopf
estimate

M x E3 (289)

or neglected altogether. The sum (287) over final levels, for arbitrary excitation energy
U, can be calculated as an integral fOU dE,p;(U — E,) ..., with e. g. a Gilbert-Cameron
level density ps, and normalised to the photon strength function 2mp Jff){n in the resolved
resonance region (empirically obtained at least for s-wave resonances from their radiation
widths and spacings, inferred for others via the theoretical spin distributions discussed
below).

Fission transmission coefficients were derived by Hill and Wheeler (1939). For single-
hump fission barriers of identical parabolic shapes for all transition states they have the
form

JTI 1
Ti ce;]n 1 +exp[2m(E, — E)/hw] ’ (290)
where E is the energy of the incident particle, E. the height of the barrier on the same
energy scale, fiw is proportional to the inverse curvature of the parabola, and the sum
is over all fission transition states (saddle point channels) consistent with J and II. For
double-hump barriers it is often sufficient to combine the transmission coefficients T’y for
the inner barrier and T for the outer one by adding reciprocals,

1 1 1

e —+ ,
T]}IH TAJH Tél’[

(291)

in analogy to resistors in series. More general expressions are given for example by Van-
denbosch and Huizenga (1973). Again the sum (290) must be calculated as an integral
over a suitable density of transition states, see Lynn (1974).

Mean level spacings or their reciprocals, nuclear level densities, are seen to play the
role of scale factors in the theory. Their spin and energy dependence has a strong influence
on the behaviour of resonance-averaged cross sections and will be discussed next.

4.1.4. Nuclear Level Densities

Compound nuclear levels can be observed in two energy regions — near the ground
state up to few MeV (e. g. by neutron capture gamma ray spectroscopy or Coulomb
excitation), and at the neutron separation energy of about 7 MeV (by observation of
resonances in neutron and proton induced reactions). At those higher excitation energies
the level density is found to be several orders of magnitude larger than near the ground
state. An explanation of such a rapid increase of level densities with excitation energy must
start from the basic features of nuclei that are incorporated in the nuclear shell model:
The nucleons, obeying Fermi-Dirac statistics and therefore Pauli’s exclusion principle,
move almost independently in the potential well created by their mutual interaction. Let
us denote the v-th energy eigenvalue of the well by €,, and the occupation number of the



v-th level in the i-th nuclear state by n;, (0 or 1 for fermions). For independent nucleons
the total nucleon number and the total energy of the i-th nuclear state are then

Ni=> ni,, ni, =0,1. (292)

Ei =) nié,, €, >0. (293)

The actual two-dimensional density of compound nuclear states,

p(N, ) = S 6(N = N)3(E - Ey) , (204)

admits only discrete possibilities. A smooth density can be obtained if we prescribe arbi-
trary non-negative values of NV and E as weighted averages

N=> pN;, (295) E=) pE;. (296)

The maximum entropy principle tells us how to choose the weights p; under these two
constraints. The most conservative choice, ensuring a minimum of spurious information,
is the grand-canonical ensemble (first introduced by Gibbs in thermodynamics),

_ 1 an,sE _ aN;—BE;
pi = e , (297) 7 = Z e , (298)

with Lagrange multipliers o and 8. Noting that the partition function Z is the Laplace
transform of the level density p, Eq. 294, we conclude that the level density must be
related to the partition function by inverse Laplace transformation,

Z(a, ) = /0 dN /0 dE p(N, E) e*N=PE (299)
1 700 200

p(N,E) = o do / d3 Z(a, f) e oN+AE
™ —1700 —1700
1 700 200 s

where S is the information entropy for arbitrary Lagrange parameters o and [,

S:—Zpilnpizan—aN—i—ﬁE. (301)

Saddle point integration, i. e. expansion of S about its maximum at o = &, § = 3 and
truncation after the quadratic terms, yields the following remarkable relationship between
level density and entropy
s
e
p(N,E) = , (302)

det (2rVVT9)

where we introduced the differential vector operator V = (0/0& 0/ 63)T The Lagrange
parameters &, § at the maximum are just those following from the maximum entropy



algorithm, and the maximised information entropy S = S (&, B) is the physicists’ thermo-
dynamic entropy divided by Boltzmann’s constant.

Let us consider the partition function. We note that summation over all possible com-
pound nuclear states is the same as summation over all possible sets of fermion occupation

numbers,
Z =Y e NimBE Z TT(1 4 e~ Pe). (303)

v

Expanding the last product one recognises in fact that each state is represented by one
sum term, each sum term being a product of exponentials for all the occupied levels and of
unit factors for the empty ones, as demanded by Eqgs. 292 and 293. Taking the logarithm
and approximating the sum by an integral one obtains

InZ = Zln(l 4 e ) ~ / de g(e) In(1 + e*=P<) | (304)
- 0

where g(€) is the density of single-particle levels. In the ground state, with total energy
Ejy, all levels are occupied up to the so-called Fermi edge ep, so that

N = /0 " degle) (305) Fo = /0 " degloe . (306)

The nucleus is thus described as a condensed (“degenerate”) fermion gas. The condensa-
tion is weakened as excitation increases and more and more empty levels are created below
the Fermi edge while levels above are filled. As long as only a relatively narrow energy
band around the Fermi edge is affected, where the energy variation of g(e) is negligible,
one can use the approximation

(er) ((a—Ber)® | 7°
3 ( + _)

2 6
(see e. g. Bohr and Mottelson 1969). Entropy maximisation with this partition function

InZ ~aN — BEy + 2 (307)

yields two coupled equations for & and ﬁ,

. m g(er)
& = fep (308) E—-E,= 3 Rk (309)
and finally the fermion gas level density formula
VdaU
p(N,B) = ZP L (310)

VAU

where U = FE — Ej is the excitation energy, and a = (72/6)g(er), called the fermion gas
level density parameter, depends on N because of Eq. 305.

Van Lier and Uhlenbeck pointed out, following a hint by Goudsmit, that in the
special case of equidistant single-particle levels, i. e. for a harmonic-oscillator potential,
the fermion gas level density can be calculated exactly (see Ericson 1960). The possible
excitation energies are integer multiples of the spacing d = 1/g. For U/d =1, 2, 3, 4 ...
one has 1, 2, 3, 5 ... different states (occupation patterns). As can be seen from Fig. 18
(top) the number of states is equal to the number of different partitions of the integer U/d,
partition being defined here in the number-theoretic sense as a decomposition in positive
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Fig. 18. Fermions occupying equidistant single-particle levels. Top: ground and first excited
states. Bottom: Exact level densities from number theory (steps) and approximation from
entropy maximisation (smooth curve).



integer summands. The number of partitions can be calculated with a recursion formula
due to Euler (1753). The resulting rigorous level density histogram is plotted together
with the approximate fermion gas curve in Fig. 18 (bottom). The agreement is good
except at the lowest excitation energies. The rapid, almost exponential rise of the level
density with increasing energy is evident.

So far we neglected the difference between protons and neutrons and their spins. It is
straightforward to generalise to nuclei with Z protons, IV neutrons, and spin orientation
quantum number M. The result is Bethe’s (1937) famous level density formula (see also
Gilbert and Cameron 1965)

o(Z N, B M) ~ 2V Aall = M2/ 2g(m?))]

= 22U — M2 (2g(m?)) PP 31y

with
9=Ggp+ Gn, (312) g(m?) = gp(m2) + gn(my) , (313)

where g, and g,, are the single-particle level densities for protons and neutrons, m,, and m,,
their spin orientation quantum numbers. (The potential well and hence the single-particle
levels for protons differ from those for neutrons because of the Coulomb interaction.)
Usually M?/(2g(m?)) is much smaller than U. This leads to the approximate factorisation

—M? /207

Z,N,EM) =wy(U) ~w(U) ———— 314
p( ) =wn(U) ~w(U) S (314)
into the total state density
o 27 e 4aU
U) = U)=21="" 315
)= 3 @ =35 e (315)

and a Gaussian distribution over the various orientation quantum numbers M, with vari-
ance

o2 = g(m?) % . (316)

The Gaussian is correctly normalised to unity since the Euler-MacLaurin summation for-
mula yields Y 57_ e~M?/20% — [ dM e~M*/20" — \/2702 first for integer but then
also for half-integer M. The standard deviation ¢ is often called the spin cut-off. Typical
values are o ~ 3 for medium weight nuclides such as the structural materials Fe, Ni, Cr
and o ~ 4.5 for actinides like Th, U, Pu.

It must be realised, however, that in the absence of external fields one can distinguish,
and count as separate resonances, only nuclear states |.J, M) with different total angular
momentum (level spin) J. States differing merely in spin orientation, M = —J,—J+1,... J,
are degenerate, hence indistinguishable. This means that we ought to count only one of
these alternatives, for example only the states with M = J, |.J, J), if we want the density
pg of levels with given J. Now the states contributing to w; and wyy; can be arranged
in two columns as follows,

|1, J)
|J +1,J) |J+1,J+1)
|J +2,J) |J+2,J+1)
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Fig. 19. Level spin distributions for ¢ = 3 (roughly corresponding to medium-weight nuclei
such as Fe, Ni, Cr) and ¢ = 4.5 (roughly corresponding to actinides such as Th, U, Pu).
Dots: integer spin, crosses: half-integer spin.

with states in the same row, e. g. |J +1,J) and |J + 1,J + 1), being degenerate. If we
form the difference wy —wy41 all contributions from the first column are therefore canceled
by those from the second one — except for the contribution from the states |.J, J) that is
equal to the wanted level density p; (Bethe 1937). Thus one has, with the approximate
factorisation (314),

Py =Wp = Wik = x/;:rT[eXp ( N ;;5) o ( - (J;T"l)l)]

= o (- ) o () e (- 4

This is the density of all levels with spin J, regardless of parity. The level density for either
parity (4 or —) can normally be taken as just half as big (see Ericson 1960, Gilbert and
Cameron 1965). Widely used approximations are obtained by replacing the hyperbolic
sine by its argument or, more drastically, by putting p;y o 2J + 1 < g, which, however,
is good enough only if J < o, i. e. for the two or three smallest possible spins. Fig. 19
shows the exact distribution f; = exp[—J?/20?%] — exp[—(J + 1)?/20?] for ¢ = 3.0 and
o = 4.5, values that roughly apply to the resolved neutron resonance region of structural
materials like Fe, Ni, Cr, and to actinides like Th, U, Pu, respectively. We note that the
distribution is normalised to unity — for integer spins exactly, for half-integer spins almost
exactly (to e=1/87" ~ 1),

Although the number-theoretic approach to nuclear level densities looks promising
also for realistic (non-equidistant) single-particle level schemes (Anzaldo 1995), most cur-

) . (317)



rent level density theories that include explicit shell model levels, residual interaction,
deformation, collective rotations and vibrations, and the superfluidity of nuclear matter
at low excitation energies, are based on Bethe’s thermodynamical (maximum entropy)
approach.

An example is the widely used composite level density formula of Gilbert and Cameron
(1965). It accounts in a heuristic way for nucleon pairing effects and for the empirically
observed behaviour of level densities near the ground state where collective modes preclude
a purely statistical treatment of compound states. It is composed of two parts, a constant-
temperature part valid at low excitation energies and a smoothly joining fermion gas
(Bethe) part valid at high energies, with parameter systematics derived from a large body
of nuclear structure data near the ground state and of resonance data above the neutron
and proton separation energies. The density of levels with spin J and arbitrary parity is
described by Eq. 317 with

V2 exp VdaU a

w 3 (@al)iZ Al U2 U, -
V2mo? @ exp v4aU, a (U — Ux) U <U
3 (4aU, )32 Jears “P\TT Y=Y

the high-energy part of which is obtained if one puts, following Jensen and Luttinger
(1952), (m?) = cA?/3 with A = Z + N and ¢ = 0.146. The effective excitation energy,

U=B+E-PZ)—P(N), (319)

is taken as the sum of the neutron binding energy B and the kinetic neutron energy F,
corrected for the energies P(Z) and P(N) that are needed for pair breaking if all protons
or all neutrons are paired, i. e. if the proton number Z or the neutron number N is
even. Below the matching energy the spin cut-off is often taken as a linear function of U,
vanishing at the ground state, so that

cA?3\/4aU , U>U,,
992 — (320)
P(Z) + P(N
cA?/3\/4aU, U+ P(Z) + P(N) U<U,

U, + P(Z) + P(N) B

Bethe’s fermion gas form for high energies and the constant-temperature form for low
energies are required to join smoothly at the matching energy U,. The temperature 7' (in
energy units) following from the matching condition is given by

3 Jmin -1 /U, /0 for even A,
r=(1- -t ) e e {% forodd 4,  (321)

where the third term is usually negligible. Typical values in the resolved resonance region
are T' ~ 1.4 MeV for structural materials like Fe, Ni, Cr and T' ~ 0.4 MeV for actinides
like U and Pu. Gilbert and Cameron give empirical parameters a, U,, P(Z), P(N) for
many compound nuclei, as well as analytical formulae for their systematics, e. g.
150

U. = (25 + 7) MeV, (322)
so that level densities can be estimated even in the absence of nuclear structure data (level
schemes) for low-lying levels or resonance data (cross sections) above the neutron binding



energy. This is valuable, for instance, if fission cross sections are to be calculated, for which
one needs the transition state densities at the saddle point deformation. Those are not
directly observable but are expected to be similar to the state densities near the ground
state deformation and therefore at least roughly describable by the constant-temperature
part of the composite level density formula. Other examples are nuclei in metastable
states or short-lived radionuclides, data for which are difficult to measure but are needed
for burnup and transmutation calculations in nuclear technology or for nucleosynthesis
studies in astrophysics.

As already mentioned the Gaussian Orthogonal Ensemble has a semicircular eigen-
value distribution, and more physical ensembles such as the shell model with statistically
treated residual interaction have eigenvalue spectra resembling Gaussians. Is this not in
conflict with the nearly exponentially increasing level density of the Bethe formula? The
answer is that the Bethe formula is valid for modest excitation, where only few single-
particle levels around the Fermi edge are affected and neither the finite depth of the
single-particle potential nor unbound continuum states have any effect yet. As excitation
energy grows, however, more and more nucleons are lifted from levels below the Fermi edge
to levels above and even to continuum states that no longer involve the intact compound
nucleus. The level density of a given compound nucleus rises therefore to a maximum but
then it decreases again, in Gaussian-like fashion, due to growing competition by unbound
states representing nuclear transmutation and destruction. The Bethe formula appears
thus as an approximation to the low-energy tail of a nearly Gaussian density function
(see Grimes 1980), certainly applicable in the unresolved resonance region but not at GeV
excitation energies.

4.1.5. Information from Resolved Resonances

Global information about strength functions or transmission coefficients can be ob-
tained from optical-model systematics. More specific prior information for a given com-
pound system comes, however, from resolved resonances. The transmission coefficient for
a particle channel ¢ = {«aJls} is related to the corresponding average partial width by
T, = 27T./D, (we absorb the multi-level correction denominator of Eq. 283 in the partial
width) but the observable (“lumped”) neutron widths are sums of partial widths for all
channels compatible with the level characteristics J and II. Neglecting the weak channel
spin dependence of the transmission coefficients predicted by the optical model one gets
for the average neutron width

(Fn>[J = VZJDJS[ vV E/lerg(E) s (323)

where vy is the number of channel spins (1 or 2) that can be combined with ¢ to give
J. This is essentially Eq. 274 that we employed to find the Bayesian probability of the
characteristics J and ¢ (or rather IT) of a resonance with given value of gI',,. One can now
introduce the usual definition of the reduced neutron width,

L'y
It = , (324)
\/E/lve(E)
replace the ensemble average by the sample average,
1N
3 ¢
(9T5) = 5 D _(9T0) (325)



multiply both sides by g;p; and sum over all J compatible with £. With } ; gjver = 2041
and N/ ; p; ~ AFE one finds eventually the widely used recipe for estimating neutron
strength functions from all the gI'Y values found in an energy interval AE,

(9T

Se = (20 + 1)AE (326)

It has the advantage that neither the resonance spins nor the level densities must be known.
Only the products gT'Y are needed which is often all that is known for the weaker reso-
nances. Moreover, the estimator is fairly insensitive to missing levels as these have small
reduced widths and therefore contribute little to the sum, and it is similarly insensitive to
wrong ¢ assignments that again affect mainly the weak levels.

The problem of missing levels is encountered head-on if the level density is to be esti-
mated. Weak resonances are often not seen at all in transmission measurements whereas
at least some of them show up in capture and fission yield data. A mere counting of
observed peaks in some energy interval AFE is then not enough. Nor is a fit to the Wigner
distribution very helpful because missing levels tend to distort the whole observed level
spacing distribution. A better way to estimate the fraction of missing levels is to look
at the neutron width distribution where only the portion below some detection threshold
is affected. Without threshold we have the complete Porter-Thomas distribution (277)
which we now write, with the abbreviations G = gI'Y, © = (gI'? ), and n = v,;/2, as

¢ "ot dv 0<z=nl <. (327)

p(GlO,n) dG = T T .

With the likelihood function ij(Gj|®,n) for a sample G, Ga,...G N reduced widths
and with Jeffreys’ prior d©/© for the scale parameter © one gets the posterior
e vy dy

G
e =nN_~ 2
p(©|G1,...GN,n)dO TNy oy O<y=n 5 (328)

where G = (G1 + ...+ Gy)/N is the sample average. With this gamma distribution it

is easy to calculate the expectation values (y~!) = 1/(nN — 1) and (y~=2) = 1/[(nN —
1)(nN — 2)] and then the estimate under quadratic loss,

(©) = n;\f\i -G, (329) % - ﬁ (330)

with n = 1/2 for single-channel neutron widths (¢ = 0 or I = 0) and n = 1 for two-channel
neutron widths (¢ > 1 and I > 0). Note how big the uncertainty is even for large samples
—e. g. 10 % for a sample of 204 s-wave resonances.

The case of a given detection threshold G. > 0 can be treated in complete analogy.
The sampling distribution is now a truncated Porter-Thomas distribution of G (gamma
distribution of z),

—x

"o G. G
c T Te=n—<zr=n— <00, (331)

p(G|®,7’L,GC)dG:m T ) /) =)

normalised by the incomplete gamma function,

L(n,z.) E/ e " dr, (332)

c



which we recognise as the probability of a level to be observable. It depends on the
estimated parameter, in contrast to the gamma function I'(n) that we had before. The
posterior for the sample Gy, Ga,... G is thus

1 e vy dy G
p(©|G1,...GN,n)dO Z Ty O<y=n 5 (333)

where ¢ = G./(NG), so that cy = x.. The normalisation is given by
0o -y, nN d
7 = / ein “@ (334)
o Fln,ey)V y

The needed expectation values (y~!) and (y~=2) involve similar integrals,

_ 1 [ e vyrN=F dy
k
— - < k=1,2 335

and the same is true for the expected fraction of unobservable (missing) levels, 1—(I'(n, cy))
with

1 [ e vy™N dy
r = — _ — . 336
Coen) = 5 [ g 1 (336)

The particular incomplete gamma functions needed for neutron (and proton) widths are

F(%,xc) = /7 erfc \/x., (337)
I'(1,z.) = exp(—x.) . (338)

This shows that at least for n = 1, i. e. two possible channel spins, the integrals can be
calculated analytically: The width estimate under quadratic loss is

(©)=NGy™ " = %(G‘ +G.), (339) % = ﬁ (340)

while the observed fraction of levels is expected to be

(T, cy)) = (1 + ﬁ)w. (341)

For n = 1/2 one must integrate numerically, or use the Laplace approximation which
yields the same estimate for ©® as the maximum likelihood method. For a more general
discussion of missing level estimators, including unknown, energy-dependent and diffuse
thresholds as well as unresolved multiplets, see Fréhner (1983).

4.2. RESONANCE-AVERAGED CROSS SECTIONS

The usual task in the unresolved resonance region is that average cross sections or
cross section functionals like the average transmission are to be calculated, in an averaging
interval wide enough to contain many resonances but so narrow that secular variations
of level statistics and other weak energy dependences can be neglected. We may then
simplify our equations by choosing boundary parameters such that locally LS = iP., and
by absorbing P, in the decay widths v).. Furthermore, we shall write S instead of U for



the S matrix, as is customary in the literature on average cross sections. The average
collision matrix is then (compare Eqs. 155-160, 209-210, 284)

5., = ¢ i(Pa + ¢1) [(1—iR)"'(1+iR)],

_ o—i(a + 00) <5ab +20y ’y,\aAMfy,\b> , (342)
A
with
(A_I)A,u = (EA - E)(SA;A —1 Z YreVpe - (343)

4.2.1. Average Total Cross Section

In order to average the total cross section we must average the collision matrix element
Scc over suitable energy bands, beam profiles or resolution functions. This is easy with a
Lorentzian weight function,

_ o I/’]I'
T 1 1 ,

oo

where 21 is the full width at half maximum of the Lorentzian. Due to causality the collision
matrix has no poles above the real axis (see Lane and Thomas 1958), so if we close the
contour by a large upper semicircle (with vanishing contribution) it encloses only the pole
at E + ¢ of the Lorentzian, and the residue is

S(E) = S(E +il). (345)

As we may neglect weak energy dependences we need only replace R(E) by R(E + iI),
with
. TraVAb
Ropy(E +1il) = _—
o(B+il) ;E,\—E—ZI
= B Tm

In the last approximation we exploited the fact that because of the random signs of the v,
the average matrix 7,7, is practically diagonal. Furthermore, we introduced the definitions
of pole strength and distant-level parameter, Eqs. 209-210, and neglected the variation of
the pole strength over the peak region of the Lorentzian — exactly as in our treatment of
external levels (Subsect. 3.4.1). The final result is

7. = 27X g.(1 — Re 8..) , (347)

— _9ip. L Fi(RX + ims,)
See = Pe . 348
¢ 1—i(R® + ins.) (348)

The resonance-averaged total cross section is thus expressed by the pole strength and the
distant-level parameter, quantities that can be obtained either from statistical analysis



of resolved resonances or from optical-model phase shifts (after specification of a channel
radius).

4.2.2. Average Partial Cross Sections: Heuristic Recipes

In contrast to the total cross section the average partial cross sections,
_ 2 a5
Oab :anga|5ab_5ab|2a (349)

are no linear function of S but require averaging over quadratic terms like S, S.4. These
have poles above as well as below the real axis which prevents contour integration with
a Lorentzian weight function. Under the usual ergodicity and stationarity conditions of
good statistics - many resonances and negligible variation of the parameter distributions
within the averaging interval - one can replace the energy average by an ensemble average
(i. e. expectation value) over the GOE, i. e. over the joint distribution of level energies and
decay amplitudes. The ensemble average is readily obtained in the limit of widely spaced
("isolated”) resonances that overlap so weakly that multi-level effects and eigenvalue cor-
relations can be neglected. Assuming generalised Porter-Thomas (x?) distributions for
the partial widths one obtains in many-level SLBW approximation

TaT 2 e 2TC —dac—0 c_Vc/2
Tab = Tpadas + TX ua (1 n ,75“”> /0 de ] (1 + :c) ’ (350)

v

(Dresner 1957, Lane and Lynn 1957), where o, , is the potential-scattering cross section,
T.=1—1S..|? is the transmission coefficient for channel ¢, T = >-.T., and v, the degree
of freedom for the partial widths I'y. = 272, (remember that P, is absorbed in v%,). The
approximation T, ~ 27['./D., valid for vanishing level overlap, was used to write the result
in terms of the T,.. This is the Hauser-Feshbach formula with elastic enhancement (first
pair of parentheses) and width fluctuation correction (integral) - see Moldauer (1975). We
recall that v, = 1 for single channels but that in practical applications one often uses
lumped channels, with an effective 7. differing from unity, in order to represent e. g.
all fission or capture channels or all particle channels that have the same total angular
momentum and parity and thus involve the same compound levels. The number of photon
channels is usually so large (except for light and magic nuclei) that one may put

H (1 + 21 x) el ~ lim (1 + %m) i = e_xTV/T, (351)

VCT Vy—00 Vs

cey

where T, = Zcev T.. The many photon channels can thus be represented approximately
by an exponential factor in the integral (“Dresner factor”) of Eq. 331. Generalisation
of the Hauser-Feshbach formula to arbitrary level overlap turned out to be extremely
difficult. Of course one could always resort to Monte Carlo sampling of level spacings
and decay amplitude from their probability distributions, with subsequent point cross
section calculation and averaging. The desired cross section average is thus obtained,
although with the statistical uncertainty and lack of analytical transparency typical for the
Monte Carlo method. From such numerical Monte Carlo studies two practically important
analytical recipes were deduced heuristically, by trial and error and educated guesswork.

The first recipe, due to Moldauer (1980), consists in using the Hauser-Feshbach for-
mula, strictly valid only for weak level overlap, also for strong overlap, but with o, ,
interpreted as the “direct” or “shape elastic” cross section,

Opa =TX-Ga|l = Saal?, (352)
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and with the exact expression for the particle-channel transmission coefficients,

41s,

T,=——
|1 —iRq|?

(353)

Furthermore, the v, are considered as depending on the 7T,.. The dependence is chosen so
as to fit a large body of Monte Carlo results while giving the correct limit for small level
overlap (small transmission coefficients). Moldauer’s heuristic recommendation is

Ve = [L78 + (T}2'® — 0.78)e =028 Ty, . (354)

The second practically important prescription is due to Hofmann, Richert, Tepel and
Weidenmiiller (1975) who, in the spirit of Bohr’s original compound-nuclear model (no
memory of compound formation), take the partial cross sections as factorisable,

VaVe
v

Tab = Op.adab + ﬂ'Xiga [1 + (we — 1)5ab] , (355)
with V' = > V.. The elastic enhancement factors w. are expected to approach 3 for
vanishing and 2 for very strong level overlap (Satchler 1963). The authors found their
Monte Carlo results adequately reproduced with

2
0.3+1.57,/T
0-3+15Ta/

T, 1\2
-1y,

Wo =1+ T n

- (356)

where n is the number of open channels. With these heuristic values of the w, one can
calculate the V, from
Ty

T 1A (we - D)V VO

by iteration, beginning with V. = T,.. The last equation follows from the unitarity of S.

Both prescriptions yield similar results for intermediate and strong absorption (me-
dium and strong level overlap). Moldauer’s recipe is convenient for lumped channels and,
by construction, it yields the correct limit for vanishing overlap and few (nonphotonic)
channels at low energies where the factorisation approximation fails. Other approximate
analytic expressions were derived with picket fence models (e. g. Janeva et al. 1985) and
disordered picket fence models (Miiller and Harney 1987).

v, (357)

4.2.3. Average Partial Cross Sections: The Exact GOE Average

For decades all attempts at solving the Hauser-Feshbach problem had failed. In this
situation the information-theoretic maximum entropy principle seemed to offer a possi-
bility to bypass all “microscopic” resonance details by treating them as a kind of noise
superimposed on the “macroscopic” average behaviour described by the optical model.
The probability distributions of the S- and R-matrix elements were found by entropy
maximisation constrained by given (optical model) averages S and R (Mello 1979, Mello
et al. 1985, Frohner 1986) which in principle offered the possibility to average the cross
section expressions over these distributions rather than the GOE. In practice, for many
channels, this looked still very difficult.

Only few months after the maximum-entropy distributions of the S and R matrix
had been published, Verbaarschot, Weidenmiiller and Zirnbauer (1985) presented a direct
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solution to the Hauser-Feshbach problem of finding an analytic expression for the average
partial cross sections, i. e. to average analytically over the GOE resonance parameter dis-
tributions, with given transmission coefficients. These authors started from an expression
involving a GOE Hamiltonian coupled to the channels. In our notation it reads

|Sab® = 100t + 7 > PrnaAruTubl® 5 (358)
A
(A = Hau — Edx —i Y AneFpe » (359)

which is a generalisation of what Eqs. 158-160 give for |S,;|?. The tilde indicates that
the Hamiltonian has its general, nondiagonal form, so that H,, and 9, replace Exdy,
and vy, of Eq. 160. By a formidable display of analytic skill the authors managed,
with new tools from the many-body theory of disordered systems, to reduce the ensemble
average (expectation value) of |S,|? over the GOE to a threefold integral. Making full
use of the symmetries of the GOE, of a generating function involving both commuting
and anticommuting (Grassmann) variables, of the Hubbard-Stratonovitch transformation
to simplify the integrations, then going to the limit of infinitely many levels (n — oo for
the rank of H) by the method of steepest descent, they derived the awsome triple-integral
expression

_ T.T, [ oo ! M1 =N\ — A
1Sasl? = San)? + ”/ d>\1/ dho | dX ( JA1 = Ao
8 Jo 0 0 VAL A1) VA2l + A) A+ A1)2(A + A2)?
I_Tc>\ Al AQ 2)\ 2
X 511 ]-_Ta + +
(1:[\/1+TCA1\/1+TCA2>{ ol )(1+TaA1 1+ ToAs 1—TaA>

A (L+Xp) A2(1+ Ag) 20(1—X)
1+ T )1 +TpA1) (1 +Tor)(L+Tpho) (1 =T A)(1 - Tb)\)>}

v

(360)

for the absolute square of the collision matrix element that had caused the difficulties
with its poles below and above the real axis in the complex energy plane. The channel
product allows a similar treatment of the many weakly absorbing photon channels as in
the Hauser-Feshbach formula:

11 1 —TcA ~ e~ Oa AT 2 T 1 —TcA (361)
LVI+T M VT + T s VIFTAVI+ T

with T, = >~ . T, as in Eq. 351

Verbaarschot (1986) verified that in the limit of small level overlap the GOE triple in-
tegral (360) yields the Hauser-Feshbach formula (350) with elastic enhancement and width
fluctuation correction. Thus the GOE triple integral is the long-sought rigorous solution
to the Hauser-Feshbach problem, eliminating all uncertainties associated with picket fence
models or heuristic analytic formulae inferred from Monte Carlo results. These uncer-
tainties had always been bothersome because width fluctuation corrections are often quite
substantial (see e. g. Lynn 1968, Gruppelaar and Reffo 1977). An important point is
that above a few eV resonance-averaged cross sections are practically independent of tem-
perature: Energy averaging involves essentially sums over peak areas, and since those are
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invariant under Doppler broadening (in Kapur-Peierls, Adler-Adler, MLBW and SLBW
form we have [dE vy = w['y\/2 and [dE x = 0, irrespective of temperature, see Appen-
dix B), the same is true for average cross sections. Thus the GOE triple integral, valid for
unbroadened resonances, gives also correct averages over Doppler-broadened resonances.

4.2.4. Analysis of Resonance-Averaged Data

Figs. 20-22 show average total, capture and inelastic scattering cross section data
for 238U and theoretical curves fitted to all these data simultaneously. The fitting was
done by least-squares adjustment of average resonance parameters, viz. of s-, p-, d- and
f-wave neutron strength functions (which are essentially transmission coefficients for neu-
tron channels) and of radiation widths scaled by the mean level spacing (transmission
coefficients for the lumped photon channels) with the code FITACS (Frohner et al. 1982).
The main energy dependences are introduced by the centrifugal-barrier penetration fac-
tors P, for the neutron widths and by the employed composite level density formula of
Gilbert and Cameron (1965), whereas the strength functions and radiation widths vary
only little in the energy range covered. The total cross section was calculated with Egs.
347-348, the partial cross sections with the Hauser-Feshbach formula in the form proposed
by Moldauer (1980), Eqs. 350-354, and cross-checked with the GOE triple integral, Eqs.
360-361. Similar fits to many more 233U data defined eventually a new evaluation for 238U
in the unresolved resonance region that was adopted for the evaluated data libraries JEF-2
and ENDF/B-VI (Frohner 1989). The final adjusted average resonance parameters are
fully consistent with the resolved resonance parameters determined at lower energies, and
also with optical-model calculations at higher energies up to 10 MeV. The error estimates
from the least-squares fits indicate that, after decades of world-wide effort, the average
total and capture cross sections of 238U in the resolved resonance region are finally known
with about the accuracies requested for applications in nuclear technology (1-3%). For
inelastic scattering this goal is not yet achieved, the uncertainties there are still of the
order of 5 - 15% .

Accurate average cross sections are, however, only part of the story. The other part
concerns the resonance structure, i. e. the resonance fluctuations around the average
cross section curves. They are implicitly given by the level-statistical model, in particular
by the GOE distributions of level spacings and partial widths together with the mean
values parametrising these distributions. The presence of unresolved resonance structure
manifests itself in sample-thickness and self-shielding effects. As the simplest illustration
consider the relationship between the average transmission of a slab of material with
thickness n (atoms/b) and average total cross section (o),

<e—na> _ e—ﬂ((f) <e—"(0 - (‘7>)> = e_"<‘7> (1 + %2\7&1" o—+. ) . (362)

The last pair of parentheses represents a correction for resonance effects, containing the
cross section variance (mean square fluctuation) and higher moments of the cross section
distribution which quantify the resonance structure. Solving for the average cross section

one gets
1 —no 1 n?
(o) = —In(e )—l——ln(l—l——vara——l—...). (363)
n n 2
Often the first term on the right-hand side is presented by measurers as the total cross
section but the true average is seen to be always larger. Although the correction is small

for well resolved data it becomes important for resonance-averaged data. It is dangerous to
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Fig. 20. Simultaneous Hauser-Feshbach fit to 2*®U neutron data in the unresolved resonance
region: total cross section (for references see Frohner 1989)
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Fig. 21. Simultaneous Hauser-Feshbach fit to 238U neutron data in the unresolved resonance
region: capture cross section (for references see Frohner 1989). The discontinuity (Wigner
cusp) at 45 keV is due to the onset of inelastic scattering at that energy. Inelastic thresholds
are indicated by spin-parity characteristics of residual levels.
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Fig. 22. Simultaneous Hauser-Feshbach fit to 23®U neutron data in the unresolved resonance re-
gion: inelastic-scattering cross section (for references see Frohner 1989). Inelastic thresholds
are indicated by spin-parity of residual levels.

calculate the transmission of a shield from resonance-averaged cross sections, e. g. group
cross sections for infinite dilution, without correction for the cross section fluctuations.
The correction is important for thick samples and strongly fluctuating cross sections such
as those in the unresolved resonance region. Thick-sample transmission measurements can
therefore provide information about the resonance structure. If we want to compare exper-
iments with calculations, however, we must average the transmnission over resonances. In
view of the experiences with GOE averaging of partial cross sections we must expect even
worse problems for the average transmission. The need to deal with Doppler-broadened
cross sections makes the problem rather hopeless as far as an analytic solution is concerned.
Ounly the cross section variance can be calculated theoretically in the case that Doppler
broadening is not too important (as for light nuclei and structural materials like iron
or nickel). Averaging with a Lorentzian weight function and using causality, as in the
derivation of the total cross section expression (347-348), one finds (SZ) = (S..) and

var o = 27X " ZQC(USN — (a2°™)), (364)

where oSN = 71X %9.(1 - [(S2.)]) is the usual compound nucleus formation cross section of
the optical model and (g2°") = X 2gc(l —{(|Sce|?)) the resonance-averaged nonelastic cross
section of Hauser-Feshbach theory that must be calculated from optical-model transmis-
sion coefficients either in many-level SLBW approximation, Eq. 350, or more rigorously
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Fig. 23. Relative root-mean-square fluctuations of the total cross section of iron (Ao =

var o). Solid line: calculation with Eq. 364; broken line: calculation with nonelastic

processes neglected; open circles: values obtained directly from data taken with very high
resolution (Berthold et al. 1994). From Fréhner (1994).

with the GOE triple integral, Eq. 360. Fig. 23 shows relative root-mean-square fluctu-
ations calculated in this way for 56Fe together with values obtained directly from recent
high-resolution transmission data. Agreement is reasonable in view of the fact that Eq.
364 is exact only for pure compound reactions and for negligible Doppler and resolution
broadening, all of which tend to reduce the resonance fluctuations.

Although general analytical expressions for resonance-averaged cross section function-
als are not available, it is perfectly straightforward to calculate them by Monte Carlo meth-
ods. An example is shown in Fig. 24, where thick-sample transmission data measured at
room temperature are plotted together with Monte Carlo calculated curves. ”Ladders” of
resonances were defined by sampling resonance spacings from the Wigner distribution and
of partial widths from Porter-Thomas distributions, with average resonance parameters
taken from the JEF-2 evaluation. The corresponding total cross section was calculated,
Doppler broadened, exponentiated, and averaged. In this way 100 000 transmission values
were sampled and averaged for each data point, so that the statistical error of the Monte
Carlo results was negligible compared to the uncertainties of the data. The good agree-
ment between experiment and calculation in Fig. 24 indicates that the JEF-2 evaluation
describes not only the total cross section well (see Fig. 20) but also its resonance structure,
e. g. the ratio of resonance (compound) to potential scattering (direct) cross sections, and
the "windows”.

More information about the cross section structure comes from self-indication mea-
surements. Those differ from transmission measurements only insofar as the detector
measuring the transmitted fraction of the neutron beam consists of a thin sample ("radia-
tor”), made of the same material as the thick transmitting sample ("filter”) and viewed by
gamma ray detectors. From ”filter in” and ”filter out” runs one obtains the self-indication
ratio

(e_naa-’)’) — E—n?(l _ nCOV (01 U'Y) +—... ) (365)
(a4) (74)
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which involves the covariance between the total and capture cross section structure,

cov (0,04) = ({0 — (o)) (0 = (04))) = (o04) — (o){0y) . (366)

(For positive covariance the two arguments tend to vary in the same sense - if one
increases, the other one is likely to increase too - for negative covariance they tend to vary
in opposite directions.) In practice the radiators are not ideally thin, so that the capture
cross section o, ought to be replaced by the capture yield y, that includes self-shielding
and multiple-collision capture. Both effects require Monte Carlo techniques, in addition
to ladder sampling one must now also simulate multiple-collision events in the radiator
(for details see Frohner 1989a). Fig. 25 shows that the measured data and the Monte
Carlo results are in good agreement again, indicating that also the capture cross section
structure is adequately represented by the average resonance parameters of the JEF-2
evaluation.

4.3. GROUP CONSTANTS

We saw that for a given average total cross section the average transmission (in
some finite energy interval containing many resonances) of a thick sample is larger if the
cross section fluctuates than if it is smooth (see Eq. 362). This means that the sample
becomes less transparent as the temperature rises, due to the smoothing effect of Doppler
broadening. (Thermal expansion of the sample counteracts this effect to some degree.)
In a reactor region filled with a mixture of materials a temperature increase means that
(n,x) processes, e. g. (n,y) reactions in 238U, become more probable with increasing
temperature because the flux depletion across the resonances (cf. Fig. 9) becomes weaker
as the resonance structure is smoothed out. In order to calculate these complicated effects
one simplifies by using group constants, i. e. suitably defined cross section averages. The
(n,x) reaction rate for a given nuclide, averaged over the region and over a finite (group)
interval AFE, can be written as

dE
) = — ... (367)
ap AE

(pos) = faloa)(p)  with (...
The group boundaries are usually taken as equidistant on a logarithmic energy scale,
i. e. on a linear lethargy scale, so that there is always the same number of groups per
energy decade. The cross section o, is to be understood as Doppler broadened. Since
(0,) does not depend on temperature (apart from edge effects at group boundaries which
become negligible if the group interval contains many resonances) the main temperature
dependence for given average flux is contained in the so-called self-shielding or Bondarenko
factor f,.

4.3.1. Bondarenko Factors

The self-shielding factor depends not only on temperature but also on the cross sec-
tions of all other nuclides in the mixture, the so-called dilution. The data filed in group
constant sets for technological applications are (cf. e. g. Bondarenko et al. 1964)

- cross sections for infinite dilution (02) ,
fz _ <<100.$>

 {eMow)

stored for each nuclide on a grid of temperatures and dilution cross sections oy, €. g.

- self-shielding factors
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Fig. 24. Thick-sample transmission data of Bokhovko et al. (1988) (point symbols) and curves
generated with Monte Carlo techniques from JEF-2 average resonance parameters (solid
lines). Also shown are the transmission curves obtained without correction for resonance

structure (broken lines). From Frohner (1991).

278
2381 .

Fig. 25. Self-indication ratios measured by Bokhovko et al. (1988) (point symbols ) and curves
generated with Monte Carlo techniques from JEF-2 average resonance parameters (solid
lines). Also shown are ratios calculated without corrections for resonance self-shielding and

multiple scattering (broken lines). From Frohner (1991).
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T =300, 900, 1500, 3100 K ,
oq =0, 1, 10, 100, 1000, 10 000, 100 000, 1 000 000 b .

The self-shielded group cross section
T = [o(0z) (368)

is defined so that multiplication with the group-averaged flux o gives the correct reaction
rate. With the definition of the covariance one can write

fo =1+ cov (%, é—;) . (369)

Now the flux is low where the cross section is high, so the two are anticorrelated, the
covariance is negative, hence f, < 1. On the other hand f, must be positive since
otherwise the average reaction rate would become negative. It follows (at least in the
case of many levels within the group interval) that one has 0 < f, < 1. We can be
more explicit by invoking the narrow-resonance approximation, valid in the important
case that the resonances are narrow as compared to the mean energy loss of scattered
neutrons. In this approximation the flux is proportional to the reciprocal macroscopic
total cross section, ¢ o 1/(0 + 04), where 0 = ) 0, is the total cross section of the
nuclide considered. One has then in narrow-resonance approximation

_ _fos/lotoa)) _ Jo~dneT" e " 0u)/{0u)
fﬂc - <0'ac> <1/(0 + (Td)> - fooo dn e‘”"d<e—na> ’ (370)

Since o4 is a constant in the Bondarenko scheme one recognises that f, — 1 if either
T — oo (smooth total cross section) or o4 — oo (infinite dilution). Therefore (o) is
called the group cross section for infinite dilution (or the unshielded group cross section).
In groups containing many resonances it is just the average cross section in the usual sense.

The last expression shows how self-shielding factors are related to self-indication ra-
tios, Eq. 365, and average transmissions, Eq. 362. If those latter quantities can be
predicted accurately for thick samples the self-shielding factor, too, can be predicted well.
With the results shown in Figs. 15 and 16, and because of the positive correlation between
numerator and denominator in the last equation, it is concluded that the self-shielding fac-
tors for the unresolved resonance region of 23*U can be calculated to 1-2% accuracy from
the JEF-2 average resonance parameters.

4.3.2. Analytic and Monte Carlo Methods for Group Constant Generation

The practically most important technique for group constant generation is the analytic
method (Frolich 1965, Hwang 1965). The averages in the last equation are calculated
on the basis of level statistics in narrow-resonance approximation. The simplest version
includes the following additional approximations:

- Cross sections are written as sums over SLBW terms (”many-level” Breit-Wigner
approximation).
- Doppler broadening is described by the symmetric and asymmetric Voigt profiles

and x.

- Interference between resonance and potential scattering (terms with x) are neglected
- Level-statistical averages are calculated for each level sequence with the other se-
quences approximately represented by a smooth cross section included in oy.
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The result can be written in the form

_ (TJ)s\ L (Cpd)s

0y = fu(0z) = (Up—l—ad)(l—;—Ds ) ;71)5 cos 25, (371)
where o, is the potential scattering cross section of the nuclide considered, (...), denotes
an average over all partial widths for the s-th level sequence, the summations are over all

sequences, and J is the integral

_ [ (@)
Ik, B) = /0 O (372)

introduced by Dresner (1960). It involves the symmetric Voigt profiles (compare Eq. 244
and Appendix B)

v == [ ew [ ()] (373

where § = 2A/T is the Doppler width in units of the natural half width at half maximum,
I'/2, and x = 2(E — Ey) /I is the distance to the resonance peak at Ey in the same units.
Furthermore,

L,
L A+ - , (374) o= 47rX2g? cos 2¢ , (375)
o

with r describing eigenvalue repulsion in approximate form. This is the fastest method
available for group constant generation. It is employed in many widely used codes, e. g.
ETOX (Schenter et al. 1969), MIGROS (Broeders and Krieg 1977), NJOY (MacFarlane
et al. 1982), and GRUCON (Sinitsa 1983).

The slowing-down method uses Monte Carlo sampled resonance ladders so that the
calculation of average reaction rates can be reduced to the case of resolved resonances.
The TIMS code (Takano et al. 1980) is an example. Monte Carlo sampled resonance
ladders are also used in the subgroup/multiband methods pioneered by Nikolaev et al.
(1970) and Cullen (1974) (see also Ribon and Maillard 1986). One stores, for each of few
(e. g. four) subgroups/bands, the weights «; and the band averages o;, 0,; representing
in a crude way the cross section distribution within an energy group. They must be found
by matching averages obtained from ladder cross sections as follows,

(0,) = Z ViOgi (376) (o) = Z ;05 (377)

)Xot ™ - )= (319)

% %

The subgroup/multiband method is essentially a coarse but efficient variant of the prob-
ability table method (Levitt 1972) where one generates from sampled resonance ladders
the whole multivariate probability density

p(0,0n,0,,...) =plo)plo,|o)ploylo, o) ... . (380)

The distribution of the total cross section, p(o), is stored together with the conditional
probabilities p(o,|0), p(c,|o,0,) etc. in suitably discretised form, so that macroscopic
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(isotope-weighted, Doppler broadened) cross sections rather than resonance parameters
may be sampled directly.

5. Concluding remarks

The first part of the present overview is devoted to the probabilistic tools of data
evaluators, with the objective to make readers aware of how modern probability theory
has advanced and simplified the treatment of data uncertainties, in particular with respect
to utilisation of prior knowledge, assignment of probabilities representing vague or global
information, and handling of systematic errors and the correlations induced by them — ar-
eas where conventional statistics had not much to offer. The Bayesian scheme of learning
from observations is illustrated with typical applications to counting statistics, data eval-
uation, and model fitting. Bayesian parameter estimation leaves no room for guesswork
about “estimators” and their more or less desirable properties (absence of bias, sufficiency,
efficiency, admissibility etc.) once prior, statistical model and loss function are specified.
Under quadratic loss the optimal estimate consists of (posterior) mean value and mean
square error (or, for mutivariate problems, mean vector and covariance matrix) rather than
modes or medians and frequentist confidence intervals. The least-squares method emerges
as a natural consequence of the information-theoretic maximume-entropy principle in the
practically most important cases where the given input consists of data with standard
(root-mean-square) errors and, perhaps, correlations. Generalisation to nonlinear models
is straightforward. There has also been some progress with respect to discrepant data but
there is need for more work. The ENDF format used world-wide for evaluated nuclear
reaction data is not yet satisfactory for the storage of uncertainty information. Storage of
the intuitively clear standard errors and correlation coefficients instead of the inconvenient
and error-prone variances and covariances should be admitted and encouraged.

The remainder of the overview is specifically devoted to the evaluation of resolved and
unresolved resonance data. The close relationship between R-matrix theory, the statistical
model of resonance reactions, Hauser-Feshbach theory with width-fluctuation corrections
and the optical model is explained. Doppler broadening is treated in some detail for the
practically important resonance formalisms and for tabulated cross sections. Experimental
effects like resolution broadening, self-shielding and multiple-scattering, backgrounds and
impurities are also discussed. The entire exposition is brief by necessity but it is hoped
that enough material and references are presented to newcomers and non-specialists to
have an adequate starting base for further study and professional work. Especially in
the unresolved resonance region there is considerable need for methods development and
creative programming, in both the fission and the fusion reactor field. Missing level esti-
mation is still based essentially on the maximum likelihood approximation as reviewed by
Frohner (1983). A more rigorous Bayesian approach seems feasible and worthwhile but
has to be worked out. Those who are particularly interested in analysis and evaluation of
resonance data or in a rigorous R-matrix treatment of the spherical optical model will find
additional material in the 1988 ICTP proceedings (Frohner 1989a). Nuclear data evalua-
tion methods and procedures were also discussed in considerable depth, with emphasis on
practical experience, by Poenitz (1981) and Bhat (1981).
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Appendices

APPENDIX A: PRACTICALLY IMPORTANT PROBABILITY DISTRIBUTIONS

In this appendix we summarise briefly the probability distributions which are most
important in nuclear data evaluation and analysis, together with their parameter estimates
under quadratic loss (means and variances). The notation is as follows:

P(A|I) probability of A given information I
p(z|I) dx infinitesimal probability of = in dx given I,
with probability density p(z|I)

univariate distributions

() mean (expectation value)
var z = ((z — (2))?) = (2?) — (2)?  variance (mean square error)
Az = /var x standard deviation (root-mean-square

or standard error)

multivariate distributions

(x) mean vector

d(x) =[], dz, volume element in x-space
C={((x—(x))(x— (x))T) covariance matrix

Cuw = Azypu Az, covariance matrix element
Puv = Pup correlation coefficient

(_1 S puu g +17 Pvv = 1)

The dagger indicates transposition (Hermitean conjugation of real vectors and matrices).
Expectation values are denoted by angular brackets, (x), sample averages by overbars, Z.

A.1. Binomial and Beta Distributions

Applications: Bernoulli trials with two possible outcomes (success or failure, positive
or negative parity, fermion level occupied or not, ...).

Sampling distribution (probability of success, in 1 trial):
P(1]1,0) = 0. (A1)
Likelihood function for s successes in n trials (binomial distribution):
P(s|n,0) = (71)95(1—9)"_S s=0,1,2,...n>1. (A2)
s
Case 1 — Total ignorance about parameter #, admitting even the possibility that there is

one alternative only, § =0 or 1.

Least informative (group-theoretic) prior (Haldane’s rule, see Jaynes 1968):

do

p(0)df o m )

0<f<1. (A3)

Posterior (beta distribution):

p(0)s,n)dd = B(s,n —s)"'0* " (1 —0)"~*"tdo , 0<6<1, (A4)
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with B(z,y) =I'(z)I'(y)/T'(x + y) (beta function) and, for x = n integer, I'(n) = (n — 1)!
(gamma function). Parameter estimates under quadratic loss:

S 1 s S
o) =2 A5 ar 0 = Z(1-2). A6
=" (45) varg——— 2 (1-2 (46)
As long as only successes or only failures occur the probability remains overwhelmingly
concentrated at 8 = 1 or § = 0, with zero variance. As soon as there is at least 1 success
(s > 1) and one failure (n — s > 1) other expectation values are obtained and the variance
becomes finite.

Case 2 — If there is no doubt a priori that one has genuine Bernoulli trials with two
alternatives, the appropriate prior is equal to what Eq. (A4) would give after observation
of one success and one failure (Bayes-Laplace rule):

p(6)df = df 0<f<1. (A7)
Posterior (beta distribution):
!
(83, n)d0 = %93(1 —oyrcdg 0<f<1. (48)

Estimate under quadratic loss:

s+1 1 s+1 s+1
0 =1 (49) Y L 32 n+2

(A10)

(A9) is Laplace’s rule of succession.

A.2. Poisson and Gamma Distributions

Applications: Radioactive decay, counting statistics, rare events with constant average
rate of occurrence.

Average time interval

(ty=r1 (A11)
Maximum entropy distribution for this constraint, Lagrange parameter A:
p(t|7) dt = e \dt 0<t<oo (A12)
(exponential interval distribution) with
(ty=T=1/A=At. (A13)

Probability for n events between 0 and ¢, in time-ordered but else arbitrary intervals dtq,
dts,. . .dt, (Poisson distribution):

t tn to
P(n|\,t) = e A”/ dtn/ dtn_l.../ dt,
0 0 0
1 t t t
:e—”,\"—,/ dtn/ dtn_l.../ dt,
n. Jo 0 0

A\t n
_ My n=012,..., (A14)

n!
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with expectation values
(n) = At (A15) var n = \t . (A16)

Prior for rate A (Jeffreys’ prior for scale parameters)

p(A)dAocdlnA:d—;\, 0<A<oo. (A17)

The likelihood function for n events during observation time ¢ is the Poisson distribution
(A14).

Posterior (gamma distribution):

e~ M (AL dA

Alt,n)d\ = ————— — 0<A . Al8
p(Aft,n) Ty X <A<oo (A18)
Estimate under quadratic loss:
n A) 1
(A) = var A= —, (A19) NN (420)

Note: Posterior and estimate are the same if number of events n and observation time ¢
were accumulated during several distinct measurements (runs).

A.3. Univariate Gaussian

Applications: Unknown errors, uncontrollable fluctuations, error propagation, com-
bination of data from various sources, etc., valid if many independent components act
together (central limit theorem) or if only means and standard deviations are known
(maximum entropy principle) with possible errors or deviations between —oo and +oo.

Sampling distribution (probability of possible deviation or error x — i, given true value p
and standard deviation o):

p(z|p, o) de = 2;02 exp[—%(x;'uf] dr , —o<r<oo. (A21)

Likelihood for z-values in dz1,...dz, at z1,...Z,:

p(xy, ... x|, 0)dxy ... d,

= W exp [— %i(:cj —u)z} dxy ...dz,
j=1
:mexp{—gjj [1+<j;u)2]}d1‘1...d:cn. (A22)

This depends on the sample only through the sample mean and the sample variance,

7:1 - . ,221 ._72—_2_72
x_n;arj, (A23) 5= Z(CL‘J z)* =a?2—-17°. (A24)
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Case 1 — Location parameter y and scale parameter o both unknown.

Least informative (group-theoretic) prior:

p(p, o) dudo o« duada , —0o< <o, 0<o<. (A25)
Posterior:
plp, olz,s',n)
—vu? —v(n=1)/2 ¢4
= p(u|v,n)dup(v|n)dv = 67 Vo du erzjﬁ %)
—oo<uEM8—_,j<oo, 0<vzg<oo, (A26)

The two factorisations correspond to the two forms of the fundamental product rule for
joint probabilities.

Marginal distribution for u (Student’s ¢ distribution with ¢ = uv/n — 1, n — 1 degrees of

freedom):

p(u|n)du = du —oo <u <00, (A27)

B, 251+ )72

and for v (gamma or chi-square distribution with x? = 2v, n — 1 degrees of freedom):

e~vpn=1/2

reegh) v

p(v|n)dv = , 0<v<oo. (A28)

Parameter estimate under quadratic loss: With the marginal distributions one finds readily
(u), (v), var u, var v and the estimates

(W =2, (429) var = ——, (430)
n—3
(o2 = "L g2 (431) var o2 = 9 L1 (432)
n ’ n?
The estimated parameters are uncorrelated, cov (u,v) = (uv) — (u){v) = 0 implies
cov (u,072) =0. (A33)
Case 2 — If ¢ is known the posterior is simply
p(p|lo,n)dpy = ——— ex [— M] du —00 < f1 < 00 . (A34)
202 /n 20%/n

Estimate under quadratic loss:

(n) =z, (A35) var i = % . (A36)
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Case 3 — Repeated uncorrelated measurements of u, results reported as z1+04, ...z, +0o,.

Sampling distribution with maximal entropy:

exp {— %(%)2] dzj , —oo <z <oo. (A37)

p(zjloj) de; =

2
271'0j

Likelihood function:

n

1 T — 2
p(z1,. .. Tn|p,01,. .. 00} )dxy ... dx,, X exp [— 3 Z ( J : M) ]dacl...dacn (A38)
i=1
Posterior:
1 (b — @)
p(ul{,0}) dj = ——— exp [ = L= | du —co<p<oo, (A39)
\/2mo?/n 20% [n

where the overbars denote weighted averages over the sample (over measurements),

-2 -2 2
~ 0T, —  Y..o; %03 n
xr = 2]7;-_2 ; (A40) 02 = ZJ ;_2J = Z 0_2 . (A41)
JoJ JjoJ JoJ
Estimate under quadratic loss:
-2
() =7, (A42) var p = -, (A43)
n

A 4. Multivariate Gaussian

Applications: Propagation of correlated errors, least-squares fitting in multidimen-
sional sample and parameter spaces. Derivations follow closely those for the univariate
Gaussian, resulting in formally similar vector and matrix expressions. Roman subscripts
(7, k) denote trials or sample members, Greek subscripts (v, k) denote parameters (Carte-
sian coordinates in parameter space).

Sampling distribution (probabilities of possible vector deviations or errors x — p, given
true vector p and covariance matrix C):

p(x|, ) d(x) = ——

1
Jdet2rC) P -3
Likelihood for x-vectors in d(xy),...d(X,) at Xi,...X,:

p(X1,.. X, |0, C) d(x1) ... d(x,,)

(x —piot(x - u)] dx), —oo<u, <oo.
(A44)

- W exp [— % > (% - wic(x; - u)] d(x1) ... d(xp)
B W exp| = 5 [r(CO™) + (X~ w1 C7 (& - )] (1) . d(xa)

(A45)

This depends on the sample only through the sample mean vector and the sample covari-
ance maftrix,

E%ixj, (446)  C==3(x—R)(x; - =xxl —xx . (447)
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Case 1 - Location parameters p, and covariance matrix elements C,, = o,p, 0,
unknown.

Least informative (group-theoretic) prior in m-dimensional parameter space (v = 1,...m):

p(p, C) d(p) d(C) o di(’g(i(ﬁ))p - diélgii((g;))/? ’

Cw/’
—oo <y, <00, 0<0i=C,, <00, —1<p,=——oee <+1. (A4R)

V Cuu Ct/’u’

Posterior: With the identities exp(—tr V) = det {exp(—V)} and det (l—i—uuT) = 14+ufu=
1 + u? one finds

p(p, C|x,C,n)
= p(u|V,n)d(u) p(Vin)d(V)

exp(—ufVu)d(u) det {exp(—V)VE-D/21 (V)

det (rV—1) amm=D/AT[" T(25¥) det V(m+D/2

= p(uln)d(u) p(V|u,n)d(V)

(1 +u?)~"/2d(u) det {exp[—(1 + uuT)V] [(1+ uuT)V]"/Q} d(V)
I[T0= B(3, %) am(m=)/4 [[7_ T (2H=x) det Vmt1)/2
(A49)

where, in close analogy to the univariate case, we defined the vector
u=S"1'(pu-x)), —00 < U, < 00, (A50)
and the positive definite, real symmetric matrix (with real positive eigenvalues)
= gs'c—ls' : 0<det V< oo, (A51)
with the positive definite, real symmetric matrix S’ defined by
C=1S" (A52)

(in the principal-axes system of C). The two factorisations correspond to the two forms
of the fundamental product rule for joint probabilities.

Marginal distribution for u (multivariate t distribution)

(1 + u?)~"/2d(u)

p(un)d(u) = —= s (453)
HV:I B(%’ Tl)
and for V (multivariate gamma distribution or Wishart distribution)
det {exp(—V) V(»—1/2 d(V
p(Vimd(v) = StV V) ) (454)

T gm(m=1)/4 Hfunzl F(";”) det V(m+1)/2 °
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Parameter estimate under quadratic loss: With the marginal distributions one finds (u),

(uuT>, (V), and finally

(m) =%, (A55) <(“_§)(“_§)T _

—1__
(chy="""¢".

n

Case 2 — If C is known the posterior is simply

—00 < Uy <00

1
p(H|C,n)d(p) = \/W exp
Estimate under quadratic loss:
(n) =x, (459) (i — () (s — ()

C

n—m-—2"

[ S-nfe e -%] dw

c
=

(A56)

(457)

(A58)

(A60)

Case 3 — Repeated correlated measurements of p, results reported as vectors x; and

covariance matrices Cj (j,k =1,...n).

Definitions:
X1 Cn Gy
< = X:2 (A61) C= C:12 C:22
* Ci. Cu
Likelihood:
p(x|p, C) d(x) o ™ d(x) |
where

Q=) (x- (€™l — )

a:k

= 3 e [(C ) (e — x0) (1 — )]

gk

Cln
CZn

= ntr (ot —xxNCT 4+ n(p-%CT (w-%) .

The overbars denote weighted averages over the sample (over measurements),

-1

X = (Z(C_l)jk) > (C7Hxk

J:k a:k

(462)

(A63)

(A64)

(A65)

(A66)

(A67)
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Posterior:
P, ©) d(p) = ————— exp [~ 2 ()T (0 -0 d(w)
det (27C/n)
—00 < pty <00, (A68)
Estimate under quadratic loss:
() =%, (469) (== )h =" (a7

APPENDIX B: MATHEMATICAL PROPERTIES OF THE VOIGT PROFILES ¥ AND Y

The shapes of Doppler broadened isolated resonances can be described by the sym-
metric and asymmetric Voigt profiles ¢(x, 3) and x(z, 3). The arguments

FE— F A
e= S5 (B1) f= 17 (B2)

depend on the resonance energy Ej, the total width T', the Doppler width A (see Eq. 110),
and the bombarding energy E (all in the laboratory system).

Definition: . - 2 g
vef) = 5= [ mle TR < ) (B3

1 o0 _ o 2 2 /d /
M) = 5oz [ TP (o (34)

Special arguments:

at resonance energy, ' = Ej

0(0.0) = LM ot (B5) X(0,8) = 0 (B6)
for zero temperature, 7' =0
1 T
9(w,0) = 1 (B7) X(@,0) = 1 (BS)

Convergent series:

R A N I 11

U(, )—Be( )8 ;;(@) F(—"+§a@) (B9)
1 (14?32 = 1 a2t 11

x(, )——e( )/B TLZ[)"_(@) —”—Ea@) (B10)



where I'(a, t) is the incomplete gamma function, with

I(a+1,t) = al(a,t) + e't* = / dt'e=t'¢'®
t

F(%,t) = /merfc Vi

Asymptotic series for low temperatures (small 3):

> 2 1 2 n 1 n+1/2
Z ;n—:- 1 (_ %) (1 n x2> cos[(2n + 1) arc tan z]

n=0

[e o]

(2n + 1)! (_ﬁ_2)n< 1 >n+1/2

= m+1 2 1+ 22

sin[(2n + 1) arc tan x]

3

whence

[e o]

2n+1),  B\ny 1 iz \2ntl
() +ix(@, ) = E: %r%l(_“5>(l+x2+l+xﬁ

Relationship with complex probability integral:

Bl B) +ix(e, ) = Yo (21

B B
where ,
1 © et 21 ? —t2
W@—E[M_ﬂ—eo+7 @
Derivatives:
oy 2 ox 2 .
Integrals:

/i:d(xﬁﬁdx::ﬂ (B20) /i:XQa )dz = 0
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(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B19)

(B21)
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