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Preface

This book has its roots in a course I taught for many years at the University of
Paris. It is intended for students who have a good background in real analysis (as
expounded, for instance, in the textbooks of G. B. Folland [2], A. W. Knapp [1],
and H. L. Royden [1]). I conceived a program mixing elements from two distinct
“worlds”: functional analysis (FA) and partial differential equations (PDEs). The first
part deals with abstract results in FA and operator theory. The second part concerns
the study of spaces of functions (of one or more real variables) having specific
differentiability properties: the celebrated Sobolev spaces, which lie at the heart of
the modern theory of PDEs. I show how the abstract results from FA can be applied
to solve PDEs. The Sobolev spaces occur in a wide range of questions, in both pure
and applied mathematics. They appear in linear and nonlinear PDEs that arise, for
example, in differential geometry, harmonic analysis, engineering, mechanics, and
physics. They belong to the toolbox of any graduate student in analysis.

Unfortunately, FA and PDEs are often taught in separate courses, even though
they are intimately connected. Many questions tackled in FA originated in PDEs (for
a historical perspective, see, e.g., J. Dieudonné [1] and H. Brezis–F. Browder [1]).
There is an abundance of books (even voluminous treatises) devoted to FA. There
are also numerous textbooks dealing with PDEs. However, a synthetic presentation
intended for graduate students is rare. and I have tried to fill this gap. Students who
are often fascinated by the most abstract constructions in mathematics are usually
attracted by the elegance of FA. On the other hand, they are repelled by the never-
ending PDE formulas with their countless subscripts. I have attempted to present
a “smooth” transition from FA to PDEs by analyzing first the simple case of one-
dimensional PDEs (i.e., ODEs—ordinary differential equations), which looks much
more manageable to the beginner. In this approach, I expound techniques that are
possibly too sophisticated for ODEs, but which later become the cornerstones of
the PDE theory. This layout makes it much easier for students to tackle elaborate
higher-dimensional PDEs afterward.

A previous version of this book, originally published in 1983 in French and fol-
lowed by numerous translations, became very popular worldwide, and was adopted
as a textbook in many European universities. A deficiency of the French text was the

vii



viii Preface

lack of exercises. The present book contains a wealth of problems. I plan to add even
more in future editions. I have also outlined some recent developments, especially
in the direction of nonlinear PDEs.

Brief user’s guide

1. Statements or paragraphs preceded by the bullet symbol • are extremely impor-
tant, and it is essential to grasp them well in order to understand what comes
afterward.

2. Results marked by the star symbol � can be skipped by the beginner; they are of
interest only to advanced readers.

3. In each chapter I have labeled propositions, theorems, and corollaries in a con-
tinuous manner (e.g., Proposition 3.6 is followed by Theorem 3.7, Corollary 3.8,
etc.). Only the remarks and the lemmas are numbered separately.

4. In order to simplify the presentation I assume that all vector spaces are over
R. Most of the results remain valid for vector spaces over C. I have added in
Chapter 11 a short section describing similarities and differences.

5. Many chapters are followed by numerous exercises. Partial solutions are pre-
sented at the end of the book. More elaborate problems are proposed in a separate
section called “Problems” followed by “Partial Solutions of the Problems.” The
problems usually require knowledge of material coming from various chapters.
I have indicated at the beginning of each problem which chapters are involved.
Some exercises and problems expound results stated without details or without
proofs in the body of the chapter.
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Chapter 1
The Hahn–Banach Theorems. Introduction to
the Theory of Conjugate Convex Functions

1.1 The Analytic Form of the Hahn–Banach Theorem: Extension
of Linear Functionals

Let E be a vector space over R. We recall that a functional is a function defined
on E, or on some subspace of E, with values in R. The main result of this section
concerns the extension of a linear functional defined on a linear subspace of E by a
linear functional defined on all of E.

Theorem 1.1 (Helly, Hahn–Banach analytic form). Let p : E → R be a function
satisfying1

p(λx) = λp(x) ∀x ∈ E and ∀λ > 0,(1)

p(x + y) ≤ p(x)+ p(y) ∀x, y ∈ E.(2)

LetG ⊂ E be a linear subspace and let g : G → R be a linear functional such that

(3) g(x) ≤ p(x) ∀x ∈ G.
Under these assumptions, there exists a linear functional f defined on all of E that
extends g, i.e., g(x) = f (x) ∀x ∈ G, and such that

(4) f (x) ≤ p(x) ∀x ∈ E.
The proof of Theorem 1.1 depends on Zorn’s lemma, which is a celebrated and

very useful property of ordered sets. Before stating Zorn’s lemma we must clarify
some notions. Let P be a set with a (partial) order relation ≤. We say that a subset
Q ⊂ P is totally ordered if for any pair (a, b) inQ either a ≤ b or b ≤ a (or both!).
LetQ ⊂ P be a subset of P ; we say that c ∈ P is an upper bound forQ if a ≤ c for
every a ∈ Q. We say that m ∈ P is a maximal element of P if there is no element

1 A function p satisfying (1) and (2) is sometimes called a Minkowski functional.

1H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7_1, © Springer Science+Business Media, LLC 2011



2 1 The Hahn–Banach Theorems. Introduction to the Theory of Conjugate Convex Functions

x ∈ P such that m ≤ x, except for x = m. Note that a maximal element of P need
not be an upper bound for P .

We say that P is inductive if every totally ordered subset Q in P has an upper
bound.

• Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal
element.

Zorn’s lemma follows from the axiom of choice, but we shall not discuss its
derivation here; see, e.g., J. Dugundji [1], N. Dunford–J. T. Schwartz [1] (Volume 1,
Theorem 1.2.7), E. Hewitt–K. Stromberg [1], S. Lang [1], and A. Knapp [1].

Remark 1. Zorn’s lemma has many important applications in analysis. It is a basic
tool in proving some seemingly innocent existence statements such as “every vector
space has a basis” (see Exercise 1.5) and “on any vector space there are nontrivial
linear functionals.” Most analysts do not know how to prove Zorn’s lemma; but it is
quite essential for an analyst to understand the statement of Zorn’s lemma and to be
able to use it properly!

Proof of Lemma 1.2. Consider the set

P =

⎧
⎪⎨

⎪⎩
h : D(h) ⊂ E → R

∣
∣
∣
∣
∣
∣
∣

D(h) is a linear subspace of E,

h is linear, G ⊂ D(h),

h extends g, and h(x) ≤ p(x) ∀x ∈ D(h)

⎫
⎪⎬

⎪⎭
.

On P we define the order relation

(h1 ≤ h2) ⇔ (D(h1) ⊂ D(h2) and h2 extends h1) .

It is clear that P is nonempty, since g ∈ P . We claim that P is inductive. Indeed, let
Q ⊂ P be a totally ordered subset; we write Q as Q = (hi)i∈I and we set

D(h) =
⋃

i∈I
D(hi), h(x) = hi(x) if x ∈ D(hi) for some i.

It is easy to see that the definition of h makes sense, that h ∈ P , and that h is
an upper bound for Q. We may therefore apply Zorn’s lemma, and so we have a
maximal element f in P . We claim that D(f ) = E, which completes the proof of
Theorem 1.1.

Suppose, by contradiction, thatD(f ) 	= E. Let x0 /∈ D(f ); setD(h) = D(f )+
Rx0, and for every x ∈ D(f ), set h(x + tx0) = f (x) + tα (t ∈ R), where the
constant α ∈ R will be chosen in such a way that h ∈ P . We must ensure that

f (x)+ tα ≤ p(x + tx0) ∀x ∈ D(f ) and ∀t ∈ R.

In view of (1) it suffices to check that
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{
f (x)+ α ≤ p(x + x0) ∀x ∈ D(f ),
f (x)− α ≤ p(x − x0) ∀x ∈ D(f ).

In other words, we must find some α satisfying

sup
y∈D(f )

{f (y)− p(y − x0)} ≤ α ≤ inf
x∈D(f ){p(x + x0)− f (x)}.

Such an α exists, since

f (y)− p(y − x0) ≤ p(x + x0)− f (x) ∀x ∈ D(f ), ∀y ∈ D(f );
indeed, it follows from (2) that

f (x)+ f (y) ≤ p(x + y) ≤ p(x + x0)+ p(y − x0).

We conclude that f ≤ h; but this is impossible, since f is maximal and h 	= f .

We now describe some simple applications of Theorem 1.1 to the case in which
E is a normed vector space (n.v.s.) with norm ‖ ‖.

Notation. We denote by E� the dual space of E, that is, the space of all continuous
linear functionals on E; the (dual) norm on E� is defined by

(5) ‖f ‖E� = sup
‖x‖≤1
x∈E

|f (x)| = sup
‖x‖≤1
x∈E

f (x).

When there is no confusion we shall also write ‖f ‖ instead of ‖f ‖E� .
Given f ∈ E� and x ∈ E we shall often write 〈f, x〉 instead of f (x); we say that

〈 , 〉 is the scalar product for the duality E�,E.
It is well known that E� is a Banach space, i.e., E� is complete (even if E is not);

this follows from the fact that R is complete.

• Corollary 1.2. Let G ⊂ E be a linear subspace. If g : G → R is a continuous
linear functional, then there exists f ∈ E� that extends g and such that

‖f ‖E� = sup
x∈G‖x‖≤1

|g(x)| = ‖g‖G�.

Proof. Use Theorem 1.1 with p(x) = ‖g‖G�‖x‖.

• Corollary 1.3. For every x0 ∈ E there exists f0 ∈ E� such that

‖f0‖ = ‖x0‖ and 〈f0, x0〉 = ‖x0‖2.

Proof. Use Corollary 1.2 withG = Rx0 andg(tx0) = t‖x0‖2, so that‖g‖G� = ‖x0‖.

Remark 2. The element f0 given by Corollary 1.3 is in general not unique (try
to construct an example or see Exercise 1.2). However, if E� is strictly con-
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vex2—for example if E is a Hilbert space (see Chapter 5) or if E = Lp(�) with
1 < p < ∞ (see Chapter 4)—then f0 is unique. In general, we set, for every x0 ∈ E,

F(x0) =
{
f0 ∈ E�; ‖f0‖ = ‖x0‖ and 〈f0, x0〉 = ‖x0‖2

}
.

The (multivalued) map x0 
→ F(x0) is called the duality map from E into E�; some
of its properties are described in Exercises 1.1, 1.2, and 3.28 and Problem 13.

• Corollary 1.4. For every x ∈ E we have

(6) ‖x‖ = sup
f∈E�
‖f ‖≤1

|〈f, x〉| = max
f∈E�
‖f ‖≤1

|〈f, x〉|.

Proof. We may always assume that x 	= 0. It is clear that

sup
f∈E�
‖f ‖≤1

|〈f, x〉| ≤ ‖x‖.

On the other hand, we know from Corollary 1.3 that there is some f0 ∈ E� such
that ‖f0‖ = ‖x‖ and 〈f0, x〉 = ‖x‖2. Set f1 = f0/‖x‖, so that ‖f1‖ = 1 and
〈f1, x〉 = ‖x‖.

Remark 3. Formula (5)—which is a definition—should not be confused with formula
(6), which is a statement. In general, the “sup” in (5) is not achieved; see, e.g.,
Exercise 1.3. However, the “sup” in (5) is achieved if E is a reflexive Banach space
(see Chapter 3); a deep result due to R. C. James asserts the converse: ifE is a Banach
space such that for every f ∈ E� the sup in (5) is achieved, then E is reflexive; see,
e.g., J. Diestel [1, Chapter 1] or R. Holmes [1].

1.2 The Geometric Forms of the Hahn–Banach Theorem:
Separation of Convex Sets

We start with some preliminary facts about hyperplanes. In the following,E denotes
an n.v.s.

Definition. An affine hyperplane is a subset H of E of the form

H = {x ∈ E ; f (x) = α},
where f is a linear functional3 that does not vanish identically and α ∈ R is a given
constant. We write H = [f = α] and say that f = α is the equation of H .
2 A normed space is said to be strictly convex if ‖tx + (1 − t)y‖ < 1, ∀t ∈ (0, 1), ∀x, y with
‖x‖ = ‖y‖ = 1 and x 	= y; see Exercise 1.26.
3 We do not assume that f is continuous (in every infinite-dimensional normed space there exist
discontinuous linear functionals; see Exercise 1.5).
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Proposition 1.5. The hyperplane H = [f = α] is closed if and only if f is contin-
uous.

Proof. It is clear that if f is continuous then H is closed. Conversely, let us assume
thatH is closed. The complementHc ofH is open and nonempty (since f does not
vanish identically). Let x0 ∈ Hc, so that f (x0) 	= α, for example, f (x0) < α.

Fix r > 0 such that B(x0, r) ⊂ Hc, where

B(x0, r) = {x ∈ E ; ‖x − x0‖ < r}.
We claim that

(7) f (x) < α ∀x ∈ B(x0, r).

Indeed, suppose by contradiction that f (x1) > α for some x1 ∈ B(x0, r). The
segment

{xt = (1 − t)x0 + tx1 ; t ∈ [0, 1]}
is contained in B(x0, r) and thus f (xt ) 	= α, ∀t ∈ [0, 1]; on the other hand, f (xt ) =
α for some t ∈ [0, 1], namely t = f (x1)−α

f (x1)−f (x0)
, a contradiction, and thus (7) is proved.

It follows from (7) that

f (x0 + rz) < α ∀z ∈ B(0, 1).

Consequently, f is continuous and ‖f ‖ ≤ 1
r
(α − f (x0)).

Definition. LetA andB be two subsets ofE. We say that the hyperplaneH = [f =
α] separates A and B if

f (x) ≤ α ∀x ∈ A and f (x) ≥ α ∀x ∈ B.

We say that H strictly separates A and B if there exists some ε > 0 such that

f (x) ≤ α − ε ∀x ∈ A and f (x) ≥ α + ε ∀x ∈ B.

Geometrically, the separation means that A lies in one of the half-spaces deter-
mined by H , and B lies in the other; see Figure 1.

Finally, we recall that a subset A ⊂ E is convex if

tx + (1 − t)y ∈ A ∀x, y ∈ A, ∀t ∈ [0, 1].

• Theorem 1.6 (Hahn–Banach, first geometric form). Let A ⊂ E and B ⊂ E be
two nonempty convex subsets such thatA∩B = ∅. Assume that one of them is open.
Then there exists a closed hyperplane that separates A and B.

The proof of Theorem 1.6 relies on the following two lemmas.

Lemma 1.2. Let C ⊂ E be an open convex set with 0 ∈ C. For every x ∈ E set
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A

B

H

Fig. 1

(8) p(x) = inf{α > 0;α−1x ∈ C}
(p is called the gauge of C or the Minkowski functional of C).

Then p satisfies (1), (2), and the following properties:

there is a constant M such that 0 ≤ p(x) ≤ M‖x‖ ∀x ∈ E,(9)

C = {x ∈ E ;p(x) < 1}.(10)

Proof of Lemma 1.2. It is obvious that (1) holds.

Proof of (9). Let r > 0 be such that B(0, r) ⊂ C; we clearly have

p(x) ≤ 1

r
‖x‖ ∀x ∈ E.

Proof of (10). First, suppose that x ∈ C; sinceC is open, it follows that (1+ε)x ∈ C
for ε > 0 small enough and therefore p(x) ≤ 1

1+ε < 1. Conversely, if p(x) < 1
there exists α ∈ (0, 1) such that α−1x ∈ C, and thus x = α(α−1x)+ (1 − α)0 ∈ C.

Proof of (2). Let x, y ∈ E and let ε > 0. Using (1) and (10) we obtain that x
p(x)+ε ∈ C

and y
p(y)+ε ∈ C. Thus tx

p(x)+ε + (1−t)y
p(y)+ε ∈ C for all t ∈ [0, 1]. Choosing the value

t = p(x)+ε
p(x)+p(y)+2ε , we find that x+y

p(x)+p(y)+2ε ∈ C. Using (1) and (10) once more, we
are led to p(x + y) < p(x)+ p(y)+ 2ε, ∀ε > 0.

Lemma 1.3. Let C ⊂ E be a nonempty open convex set and let x0 ∈ E with x0 /∈ C.
Then there exists f ∈ E� such that f (x) < f (x0) ∀x ∈ C. In particular, the
hyperplane [f = f (x0)] separates {x0} and C.

Proof of Lemma 1.3. After a translation we may always assume that 0 ∈ C. We
may thus introduce the gauge p of C (see Lemma 1.2). Consider the linear subspace
G = Rx0 and the linear functional g : G → R defined by
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g(tx0) = t, t ∈ R.

It is clear that
g(x) ≤ p(x) ∀x ∈ G

(consider the two cases t > 0 and t ≤ 0). It follows from Theorem 1.1 that there
exists a linear functional f on E that extends g and satisfies

f (x) ≤ p(x) ∀x ∈ E.
In particular, we have f (x0) = 1 and that f is continuous by (9). We deduce from
(10) that f (x) < 1 for every x ∈ C.

Proof of Theorem 1.6. SetC = A−B, so thatC is convex (check!),C is open (since
C = ⋃

y∈B(A− y)), and 0 /∈ C (because A∩B = ∅). By Lemma 1.3 there is some
f ∈ E� such that

f (z) < 0 ∀z ∈ C,
that is,

f (x) < f (y) ∀x ∈ A, ∀y ∈ B.
Fix a constant α satisfying

sup
x∈A

f (x) ≤ α ≤ inf
y∈Bf (y).

Clearly, the hyperplane [f = α] separates A and B.

• Theorem 1.7 (Hahn–Banach, second geometric form). Let A ⊂ E and B ⊂ E

be two nonempty convex subsets such that A ∩ B = ∅. Assume that A is closed and
B is compact. Then there exists a closed hyperplane that strictly separates A and B.

Proof. Set C = A − B, so that C is convex, closed (check!), and 0 /∈ C. Hence,
there is some r > 0 such that B(0, r) ∩ C = ∅. By Theorem 1.6 there is a closed
hyperplane that separates B(0, r) and C. Therefore, there is some f ∈ E�, f 	≡ 0,
such that

f (x − y) ≤ f (rz) ∀x ∈ A, ∀y ∈ B, ∀z ∈ B(0, 1).

It follows that f (x − y) ≤ −r‖f ‖ ∀x ∈ A, ∀y ∈ B. Letting ε = 1
2 r‖f ‖ > 0, we

obtain
f (x)+ ε ≤ f (y)− ε ∀x ∈ A, ∀y ∈ B.

Choosing α such that

sup
x∈A

f (x)+ ε ≤ α ≤ inf
y∈Bf (y)− ε,

we see that the hyperplane [f = α] strictly separates A and B.

Remark 4. Assume that A ⊂ E and B ⊂ E are two nonempty convex sets such that
A∩B = ∅. If we make no further assumption, it is in general impossible to separate
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A and B by a closed hyperplane. One can even construct such an example in which
A and B are both closed (see Exercise 1.14). However, ifE is finite-dimensional one
can always separate any two nonempty convex sets A and B such that A ∩ B = ∅
(no further assumption is required!); see Exercise 1.9.

We conclude this section with a very useful fact:

• Corollary 1.8. Let F ⊂ E be a linear subspace such that F 	= E. Then there
exists some f ∈ E�, f 	≡ 0, such that

〈f, x〉 = 0 ∀x ∈ F.
Proof. Let x0 ∈ E with x0 /∈ F . Using Theorem 1.7 with A = F and B = {x0}, we
find a closed hyperplane [f = α] that strictly separates F and {x0}. Thus, we have

〈f, x〉 < α < 〈f, x0〉 ∀x ∈ F.
It follows that 〈f, x〉 = 0 ∀x ∈ F , since λ〈f, x〉 < α for every λ ∈ R.

• Remark 5. Corollary 1.8 is used very often in proving that a linear subspaceF ⊂ E

is dense. It suffices to show that every continuous linear functional onE that vanishes
on F must vanish everywhere on E.

1.3 The Bidual E��. Orthogonality Relations

Let E be an n.v.s. and let E� be the dual space with norm

‖f ‖E� = sup
x∈E‖x‖≤1

|〈f, x〉|.

The bidual E�� is the dual of E� with norm

‖ξ‖E�� = sup
f∈E�
‖f ‖≤1

|〈ξ, f 〉| (ξ ∈ E��).

There is a canonical injection J : E → E�� defined as follows: given x ∈ E, the
map f 
→ 〈f, x〉 is a continuous linear functional on E�; thus it is an element of
E��, which we denote by Jx.4 We have

〈Jx, f 〉E��,E� = 〈f, x〉E�,E ∀x ∈ E, ∀f ∈ E�.
It is clear that J is linear and that J is an isometry, that is, ‖Jx‖E�� = ‖x‖E ; indeed,
we have

4 J should not be confused with the duality map F : E → E� defined in Remark 2.
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‖Jx‖E�� = sup
f∈E�
‖f ‖≤1

|〈Jx, f 〉| = sup
f∈E�
‖f ‖≤1

|〈f, x〉| = ‖x‖

(by Corollary 1.4).
It may happen that J is not surjective from E onto E�� (see Chapters 3 and 4).

However, it is convenient to identify E with a subspace of E�� using J . If J turns
out to be surjective then one says that E is reflexive, and E�� is identified with E
(see Chapter 3).

Notation. If M ⊂ E is a linear subspace we set

M⊥ = {f ∈ E�; 〈f, x〉 = 0 ∀x ∈ M}.

If N ⊂ E� is a linear subspace we set

N⊥ = {x ∈ E ; 〈f, x〉 = 0 ∀f ∈ N}.

Note that—by definition—N⊥ is a subset of E rather than E��. It is clear that M⊥
(resp. N⊥) is a closed linear subspace of E� (resp. E). We say that M⊥ (resp. N⊥)
is the space orthogonal to M (resp. N ).

Proposition 1.9. Let M ⊂ E be a linear subspace. Then

(M⊥)⊥ = M .

Let N ⊂ E� be a linear subspace. Then

(N⊥)⊥ ⊃ N.

Proof. It is clear that M ⊂ (M⊥)⊥, and since (M⊥)⊥ is closed we have M ⊂
(M⊥)⊥. Conversely, let us show that (M⊥)⊥ ⊂ M . Suppose by contradiction that
there is some x0 ∈ (M⊥)⊥ such that x0 /∈ M . By Theorem 1.7 there is a closed
hyperplane that strictly separates {x0} and M . Thus, there are some f ∈ E� and
some α ∈ R such that

〈f, x〉 < α < 〈f, x0〉 ∀x ∈ M.
Since M is a linear space it follows that 〈f, x〉 = 0 ∀x ∈ M and also 〈f, x0〉 > 0.
Therefore f ∈ M⊥ and consequently 〈f, x0〉 = 0, a contradiction.

It is also clear that N ⊂ (N⊥)⊥ and thus N ⊂ (N⊥)⊥.

Remark 6. It may happen that (N⊥)⊥ is strictly bigger than N (see Exercise 1.16).
It is, however, instructive to “try” to prove that (N⊥)⊥ = N and see where the
argument breaks down. Suppose f0 ∈ E� is such that f0 ∈ (N⊥)⊥ and f0 /∈ N .
Applying Hahn–Banach in E�, we may strictly separate {f0} and N . Thus, there is
some ξ ∈ E�� such that 〈ξ, f0〉 > 0. But we cannot derive a contradiction, since
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ξ /∈ N⊥—unless we happen to know (by chance!) that ξ ∈ E, or more precisely
that ξ = Jx0 for some x0 ∈ E. In particular, if E is reflexive, it is indeed true that
(N⊥)⊥ = N . In the general case one can show that (N⊥)⊥ coincides with the closure
of N in the weak� topology σ(E�,E) (see Chapter 3).

1.4 A Quick Introduction to the Theory of Conjugate Convex
Functions

We start with some basic facts about lower semicontinuous functions and convex
functions. In this section we consider functions ϕ defined on a set E with values in
(−∞, +∞], so that ϕ can take the value +∞ (but −∞ is excluded). We denote by
D(ϕ) the domain of ϕ, that is,

D(ϕ) = {x ∈ E ; ϕ(x) < +∞}.

Notation. The epigraph of ϕ is the set5

epi ϕ = {[x, λ] ∈ E × R ; ϕ(x) ≤ λ}.
We assume now that E is a topological space. We recall the following.

Definition. A function ϕ : E → (−∞,+∞] is said to be lower semicontinuous
(l.s.c.) if for every λ ∈ R the set

[ϕ ≤ λ] = {x ∈ E; ϕ(x) ≤ λ}
is closed.

Here are some well-known elementary facts about l.s.c. functions (see, e.g.,
G. Choquet, [1], J. Dixmier [1], J. R. Munkres [1], H. L. Royden [1]):

1. If ϕ is l.s.c., then epi ϕ is closed in E × R; and conversely.
2. If ϕ is l.s.c., then for every x ∈ E and for every ε > 0 there is some neighborhood
V of x such that

ϕ(y) ≥ ϕ(x)− ε ∀y ∈ V ;
and conversely.
In particular, if ϕ is l.s.c., then for every sequence (xn) in E such that xn → x,
we have

lim inf
n→∞ ϕ(xn) ≥ ϕ(x)

and conversely if E is a metric space.
3. If ϕ1 and ϕ2 are l.s.c., then ϕ1 + ϕ2 is l.s.c.

5 We insist on the fact that R = (−∞,∞), so that λ does not take the value ∞.
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4. If (ϕi)i∈I is a family of l.s.c. functions then their superior envelope is also l.s.c.,
that is, the function ϕ defined by

ϕ(x) = sup
i∈I

ϕi(x)

is l.s.c.
5. If E is compact and ϕ is l.s.c., then infE ϕ is achieved.

(If E is a compact metric space one can argue with minimizing sequences. For a
general topological compact space consider the sets [ϕ ≤ λ] for appropriate values
of λ.)

We now assume that E is a vector space. Recall the following definition.

Definition. A function ϕ : E → (−∞,+∞] is said to be convex if

ϕ(tx + (1 − t)y) ≤ tϕ(x)+ (1 − t)ϕ(y) ∀x, y ∈ E, ∀t ∈ (0, 1).

We shall use some elementary properties of convex functions:

1. If ϕ is a convex function, then epi ϕ is a convex set in E × R; and conversely.
2. If ϕ is a convex function, then for every λ ∈ R the set [ϕ ≤ λ] is convex; but the

converse is not true.
3. If ϕ1 and ϕ2 are convex, then ϕ1 + ϕ2 is convex.
4. If (ϕi)i∈I is a family of convex functions, then the superior envelope, supi ϕi , is

convex.

We assume hereinafter that E is an n.v.s.

Definition. Let ϕ : E → (−∞,+∞] be a function such that ϕ 	≡ +∞ (i.e.,
D(ϕ) 	= ∅). We define the conjugate function ϕ� : E� → (−∞,+∞] to be6

ϕ�(f ) = sup
x∈E

{〈f, x〉 − ϕ(x)} (f ∈ E�).

Note that ϕ� is convex and l.s.c. on E�. Indeed, for each fixed x ∈ E the function
f 
→ 〈f, x〉 − ϕ(x) is convex and continuous (and thus l.s.c.) on E�. It follows that
the superior envelope of these functions (as x runs through E) is convex and l.s.c.

Remark 7. Clearly we have the inequality

(11) 〈f, x〉 ≤ ϕ(x)+ ϕ�(f ) ∀x ∈ E, ∀f ∈ E�,
which is sometimes calledYoung’s inequality. Of course, this fact is obvious with our
definition of ϕ�! The classical form of Young’s inequality (see the proof of Theorem
4.6 in Chapter 4) asserts that

6 ϕ� is sometimes called the Legendre transform of ϕ.
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• [x0, λ0] = B

R

Ex0

H

λ0

A = epi ϕ

Fig. 2

(12) ab ≤ 1

p
ap + 1

p′ b
p′ ∀a, b ≥ 0

with 1 < p < ∞ and 1
p

+ 1
p′ = 1. Inequality (12) becomes a special case of (11) with

E = E� = R and ϕ(t) = 1
p
|t |p, ϕ�(s) = 1

p′ |s|p′
(see Exercise 1.18, question (h)).

Proposition 1.10. Assume that ϕ : E → (−∞,+∞] is convex l.s.c. and ϕ 	≡ +∞.
Then ϕ� 	≡ +∞, and in particular, ϕ is bounded below by an affine continuous
function.

Proof. Let x0 ∈ D(ϕ) and let λ0 < ϕ(x0). We apply Theorem 1.7 (Hahn–Banach,
second geometric form) in the space E × R with A = epi ϕ and B = {[x0, λ0]}.
So, there exists a closed hyperplane H = [
 = α] in E × R that strictly separates
A and B; see Figure 2. Note that the function x ∈ E 
→ 
([x, 0]) is a continuous
linear functional on E, and thus 
([x, 0]) = 〈f, x〉 for some f ∈ E�. Letting
k = 
([0, 1]), we have


([x, λ]) = 〈f, x〉 + kλ ∀[x, λ] ∈ E × R.

Writing that 
 > α on A and 
 < α on B, we obtain

〈f, x〉 + kλ > α, ∀[x, λ] ∈ epi ϕ,

and
〈f, x0〉 + kλ0 < α.

In particular, we have

(13) 〈f, x〉 + kϕ(x) > α ∀x ∈ D(ϕ)
and thus

〈f, x0〉 + kϕ(x0) > α > 〈f, x0〉 + kλ0.

It follows that k > 0. By (13) we have
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〈

−1

k
f, x

〉

− ϕ(x) < −α
k

∀x ∈ D(ϕ)

and therefore ϕ�(− 1
k
f ) < +∞.

If we iterate the operation �, we obtain a function ϕ�� defined onE��. Instead, we
choose to restrict ϕ�� to E, that is, we define

ϕ��(x) = sup
f∈E�

{〈f, x〉 − ϕ�(f )} (x ∈ E).

• Theorem 1.11 (Fenchel–Moreau). Assume that ϕ : E → (−∞,+∞] is convex,
l.s.c., and ϕ 	≡ +∞. Then ϕ�� = ϕ.

Proof. We proceed in two steps:

Step 1: We assume in addition that ϕ ≥ 0 and we claim that ϕ�� = ϕ.

First, it is obvious that ϕ�� ≤ ϕ, since 〈f, x〉 − ϕ�(f ) ≤ ϕ(x) ∀x ∈ E and
∀f ∈ E�. In order to prove that ϕ�� = ϕ we argue by contradiction, and we assume
that ϕ��(x0) < ϕ(x0) for some x0 ∈ E. We could possibly have ϕ(x0) = +∞, but
ϕ��(x0) is always finite. We apply Theorem 1.7 (Hahn–Banach, second geometric
form) in the space E × R with A = epi ϕ and B = [x0, ϕ

��(x0)]. So, there exist, as
in the proof of Proposition 1.10, f ∈ E�, k ∈ R, and α ∈ R such that

〈f, x〉 + kλ > α ∀[x, λ] ∈ epi ϕ,(14)

〈f, x0〉 + kϕ��(x0) < α.(15)

It follows that k ≥ 0 (fix some x ∈ D(ϕ) and let λ → +∞ in (14)). [Here we cannot
assert, as in the proof of Proposition 1.10, that k > 0; we could possibly have k = 0,
which would correspond to a “vertical” hyperplane H in E × R.]

Let ε > 0; since ϕ ≥ 0, we have by (14),

〈f, x〉 + (k + ε)ϕ(x) ≥ α ∀x ∈ D(ϕ).
Therefore

ϕ�
(

− f

k + ε

)

≤ − α

k + ε
.

It follows from the definition of ϕ��(x0) that

ϕ��(x0) ≥
〈

− f

k + ε
, x0

〉

− ϕ�
(

− f

k + ε

)

≥
〈

− f

k + ε
, x0

〉

+ α

k + ε
.

Thus we have
〈f, x0〉 + (k + ε)ϕ��(x0) ≥ α ∀ε > 0,

which contradicts (15).
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Step 2: The general case.

Fix some f0 ∈ D(ϕ�) (D(ϕ�) 	= ∅ by Proposition 1.10) and define

ϕ(x) = ϕ(x)− 〈f0, x〉 + ϕ�(f0),

so that ϕ is convex l.s.c., ϕ 	≡ +∞, and ϕ ≥ 0. We know from Step 1 that (ϕ)�� = ϕ.
Let us now compute (ϕ)� and (ϕ)��. We have

(ϕ)�(f ) = ϕ�(f + f0)− ϕ�(f0)

and

(ϕ)��(x) = ϕ��(x)− 〈f0, x〉 + ϕ�(f0).

Writing that (ϕ)�� = ϕ, we obtain ϕ�� = ϕ.

Let us examine some examples.

Example 1. Consider ϕ(x) = ‖x‖. It is easy to check that

ϕ�(f ) =
{

0 if ‖f ‖ ≤ 1,

+∞ if ‖f ‖ > 1.

It follows that
ϕ��(x) = sup

f∈E�
‖f ‖≤1

〈f, x〉.

Writing the equality
ϕ�� = ϕ,

we obtain again part of Corollary 1.4.

Example 2. Given a nonempty set K ⊂ E, we set

IK(x) =
{

0 if x ∈ K,
+∞ if x /∈ K.

The function IK is called the indicator function of K (and should not be confused
with the characteristic function, χK , of K , which is 1 on K and 0 outside K). Note
that IK is a convex function iffK is a convex set, and IK is l.s.c. iffK is closed. The
conjugate function (IK)� is called the supporting function of K .

It is easy to see that ifK = M is a linear subspace then (IM)� = IM⊥ and (IM)�� =
I(M⊥)⊥ . Assuming thatM is a closed linear space and writing that (IM)�� = IM , we
obtain (M⊥)⊥ = M . In some sense, Theorem 1.11 can be viewed as a counterpart
of Proposition 1.9.
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We conclude this chapter with another useful property of conjugate functions.

� Theorem 1.12 (Fenchel–Rockafellar). Let ϕ,ψ : E → (−∞,+∞] be two con-
vex functions. Assume that there is some x0 ∈ D(ϕ)∩D(ψ) such that ϕ is continuous
at x0. Then

inf
x∈E{ϕ(x)+ ψ(x)} = sup

f∈E�
{−ϕ�(−f )− ψ�(f )}

= max
f∈E�{−ϕ

�(−f )− ψ�(f )} = − min
f∈E�{ϕ

�(−f )+ ψ�(f )}.

The proof of Theorem 1.12 relies on the following lemma.

Lemma 1.4. Let C ⊂ E be a convex set, then IntC is convex.7 If, in addition,
IntC 	= ∅, then

C = IntC.

For the proof of Lemma 1.4, see, e.g., Exercise 1.7.

Proof of Theorem 1.12. Set

a = inf
x∈E{ϕ(x)+ ψ(x)},

b = sup
f∈E�

{−ϕ�(−f )− ψ�(f )}.

It is clear that b ≤ a. If a = −∞, the conclusion of Theorem 1.12 is obvious. Thus
we may assume hereinafter that a ∈ R. Let C = epi ϕ, so that IntC 	= ∅ (since ϕ is
continuous at x0). We apply Theorem 1.6 (Hahn–Banach, first geometric form) with
A = IntC and

B = {[x, λ] ∈ E × R; λ ≤ a − ψ(x)}.
ThenA andB are nonempty convex sets. Moreover,A∩B = ∅; indeed, if [x, λ] ∈ A,
then λ > ϕ(x), and on the other hand, ϕ(x) ≥ a −ψ(x) (by definition of a), so that
[x, λ] /∈ B.

Hence there exists a closed hyperplane H that separates A and B. It follows that
H also separates A and B. But we know from Lemma 1.4 that A = C. Therefore,
there exist f ∈ E�, k ∈ R, and α ∈ R such that the hyperplane H = [
 = α] in
E × R separates C and B, where


([x, λ]) = 〈f, x〉 + kλ ∀[x, λ] ∈ E × R.

Thus we have

〈f, x〉 + kλ ≥ α ∀[x, λ] ∈ C,(16)

〈f, x〉 + kλ ≤ α ∀[x, λ] ∈ B.(17)

7 As usual, IntC denotes the interior of C.
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Choosing x = x0 and letting λ → +∞ in (16), we see that k ≥ 0. We claim that

(18) k > 0.

Assume by contradiction that k = 0; it follows that ‖f ‖ 	= 0 (since
 	≡ 0). By (16)
and (17) we have

〈f, x〉 ≥ α ∀x ∈ D(ϕ),
〈f, x〉 ≤ α ∀x ∈ D(ψ).

But B(x0, ε0) ⊂ D(ϕ) for some ε0 > 0 (small enough), and thus

〈f, x0 + ε0z〉 ≥ α ∀z ∈ B(0, 1),

which implies that 〈f, x0〉 ≥ α + ε0‖f ‖. On the other hand, we have 〈f, x0〉 ≤ α,
since x0 ∈ D(ψ); therefore we obtain ‖f ‖ = 0, which is a contradiction and
completes the proof of (18).

From (16) and (17) we obtain

ϕ�
(

−f
k

)

≤ −α
k

and

ψ�
(
f

k

)

≤ α

k
− a,

so that

−ϕ�
(

−f
k

)

− ψ�
(
f

k

)

≥ a.

On the other hand, from the definition of b, we have

−ϕ�
(

−f
k

)

− ψ�
(
f

k

)

≤ b.

We conclude that

a = b = −ϕ�
(

−f
k

)

− ψ�
(
f

k

)

.

Example 3. Let K be a nonempty convex set. We claim that for every x0 ∈ E we
have

(19) dist(x0,K) = inf
x∈K‖x − x0‖ = max

f∈E�
‖f ‖≤1

{〈f, x0〉 − I �K(f )}.

Indeed, we have
inf
x∈K‖x − x0‖ = inf

x∈E{ϕ(x)+ ψ(x)},
with ϕ(x) = ‖x − x0‖ and ψ(x) = IK(x). Applying Theorem 1.12, we obtain (19).
In the special case that K = M is a linear subspace, we obtain the relation
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dist(x0,M) = inf
x∈M‖x − x0‖ = max

f∈M⊥
‖f ‖≤1

〈f, x0〉.

Remark 8. Relation (19) may provide us with some useful information in the case
that infx∈K ‖x − x0‖ is not achieved (see, e.g., Exercise 1.17). The theory of min-
imal surfaces provides an interesting setting in which the primal problem (i.e.,
infx∈E{ϕ(x) + ψ(x)}) need not have a solution, while the dual problem (i.e.,
maxf∈E�{−ϕ�(−f )− ψ�(f )}) has a solution; see I. Ekeland–R. Temam [1].

Example 4. Let ϕ : E → R be convex and continuous and let M ⊂ E be a linear
subspace. Then we have

inf
x∈Mϕ(x) = − min

f∈M⊥
ϕ�(f ).

It suffices to apply Theorem 1.12 with ψ = IM .

Comments on Chapter 1

1. Generalizations and variants of the Hahn–Banach theorems.
The first geometric form of the Hahn–Banach theorem (Theorem 1.6) is still valid in
general topological vector spaces. The second geometric form (Theorem 1.7) holds in
locally convex spaces—such spaces play an important role, for example, in the theory
of distributions (see, e.g., L. Schwartz [1] and F. Treves [1]). Interested readers may
consult, e.g., N. Bourbaki [1], J. Kelley-I. Namioka [1], G. Choquet [2] (Volume 2),
A. Taylor–D. Lay [1], and A. Knapp [2].

2. Applications of the Hahn–Banach theorems.
The Hahn–Banach theorems have a wide and diversified range of applications. Here
are two examples:

(a) The Krein–Milman theorem.

The second geometric form of the Hahn–Banach theorem is a basic ingredient in
the proof of the Krein–Milman theorem. Before stating this result we need some
definitions. Let E be an n.v.s. and let A be a subset of E. The convex hull of A,
denoted by convA, is the smallest convex set containing A. Clearly, convA consists
of all finite convex combinations of elements in A, i.e.,

convA =
{
∑

i∈I
tiai; I finite, ai ∈ A ∀i, ti ≥ 0 ∀i, and

∑

i∈I
ti = 1

}

.

The closed convex hull of A, denoted by convA, is the closure of convA. Given a
convex set K ⊂ E we say that a point x ∈ K is extremal if x cannot be written
as a convex combination of two points x0, x1 ∈ K , i.e., x 	= (1 − t)x0 + tx1 with
t ∈ (0, 1), and x0 	= x1.
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• Theorem 1.13 (Krein–Milman). Let K ⊂ E be a compact convex set. Then K
coincides with the closed convex hull of its extremal points.

The Krein–Milman theorem has itself numerous applications and extensions (such
as Choquet’s integral representation theorem, Bochner’s theorem, Bernstein’s theo-
rem, etc.). On this vast subject, see, e.g., N. Bourbaki [1], G. Choquet [2] (Volume 2),
R. Phelps [1], C. Dellacherie-P.A. Meyer [1] (Chapter 10), N. Dunford–J. T. Schwartz
[1] (Volume 1), W. Rudin [1], R. Larsen [1], J. Kelley–I. Namioka [1], R. Edwards
[1].An interesting application to PDEs, due toY. Pinchover, is presented in S.Agmon
[2]. For a proof of the Krein–Milman theorem, see Problem 1.

(b) In the theory of partial differential equations.

Let us mention, for example, that the existence of a fundamental solution for a gen-
eral differential operatorP(D)with constant coefficients (the Malgrange–Ehrenpreis
theorem) relies on the analytic form of Hahn–Banach; see, e.g., L. Hörmander [1],
[2], K. Yosida [1], W. Rudin [1], F. Treves [2], M. Reed-B. Simon [1] (Volume 2).
In the same spirit, let us mention also the proof of the existence of the Green’s
function for the Laplacian by the method of P. Lax; see P. Lax [1] (Section 9.5)
and P. Garabedian [1]. The proof of the existence of a solution u ∈ L∞(�) for the
equation div u = f in � ⊂ R

N , given any f ∈ LN(�), relies on Hahn–Banach
(see J. Bourgain–H. Brezis [1], [2]). Surprisingly, the u obtained via Hahn–Banach
depends nonlinearly on f . In fact, there exists no bounded linear operator from LN

into L∞ giving u in terms of f . This shows that the use of Zorn’s lemma (and the
underlying axiom of choice) in the proof of Hahn–Banach can be delicate and may
destroy the linear character of the problem. Sometimes there is no way to circumvent
this obstruction.

3. Convex functions.
Convex analysis and duality principles are topics which have considerably expanded
and have become increasingly popular in recent years; see, e.g., J. J. Moreau [1],
R. T. Rockafellar [1], [2], I. Ekeland–R. Temam [1], I. Ekeland–T. Turnbull [1],
F. Clarke [1], J. P. Aubin–I. Ekeland [1], J. B. Hiriart–Urutty–C. Lemaréchal [1].
Among the applications let us mention the following:

(a) Game theory, economics, optimization, convex programming; see J. P. Aubin [1],
[2], [3], J. P. Aubin–I. Ekeland [1], S. Karlin [1], A. Balakrishnan [1], V. Barbu–
I. Precupanu [1], J. Franklin [1], J. Stoer–C. Witzgall [1].

(b) Mechanics; see J. J. Moreau [2], P. Germain [1], [2], G. Duvaut–J. L. Lions
[1], R. Temam–G. Strang [1] and the comments by P. Germain following this
paper, H. D. Bui [1] and the numerous references therein. Note also the use
of (nonconvex) duality by J. F. Toland [1], [2], [3] (for the study of rotating
chains), by A. Damlamian [1] (for a problem arising in plasma physics), and by
G. Auchmuty [1].

(c) The theory of monotone operators and nonlinear semigroups; see H. Brezis [1],
F. Browder [1], V. Barbu [1], and R. Phelps [2].

(d) Variational problems involving periodic solutions of Hamiltonian systems and
nonlinear vibrating strings; see the recent works of F. Clarke, I. Ekeland,
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J. M. Lasry, H. Brezis, J. M. Coron, L. Nirenberg (we refer, e.g., to F. Clarke–
I. Ekeland [1], H. Brezis–J. M. Coron–L. Nirenberg [1], H. Brezis [2], J. P.Aubin–
I. Ekeland [1], I. Ekeland [1], and their bibliographies).

(e) The theory of large deviations in probability; see, e.g., R. Azencott et al. [1],
D. W. Stroock [1].

(f) The theory of partial differential equations and complex analysis; see L. Hör-
mander [3].

4. Extensions of bounded linear operators.
Let E and F be two Banach spaces and let G ⊂ E be a closed subspace. Let
S : G → F be a bounded linear operator. One may ask whether it is possible to
extend S by a bounded linear operator T : E → F . Note that Corollary 1.2 settles
this question only when F = R. In general, the answer is negative (even if E and F
are reflexive spaces; see Exercise 1.27), except in some special cases; for example,
the following:

(a) If dim F < ∞. One may choose a basis in F and apply Corollary 1.2 to each
component of S.

(b) IfG admits a topological complement (see Section 2.4). This is true in particular
if dimG < ∞ or codim G < ∞ or if E is a Hilbert space.

One may also ask the question whether there is an extension T with the same norm,
i.e., ‖T ‖L(E,F ) = ‖S‖L(G,F ). The answer is yes only in some exceptional cases; see
L. Nachbin [1], J. Kelley [1], and Exercise 5.15.

Exercises for Chapter 1

1.1 Properties of the duality map.

Let E be an n.v.s. The duality map F is defined for every x ∈ E by

F(x) = {f ∈ E�; ‖f ‖ = ‖x‖ and 〈f, x〉 = ‖x‖2}.
1. Prove that

F(x) = {f ∈ E�; ‖f ‖ ≤ ‖x‖ and 〈f, x〉 = ‖x‖2}
and deduce that F(x) is nonempty, closed, and convex.

2. Prove that if E� is strictly convex, then F(x) contains a single point.
3. Prove that

F(x) =
{

f ∈ E�; 1

2
‖y‖2 − 1

2
‖x‖2 ≥ 〈f, y − x〉 ∀y ∈ E

}

.

4. Deduce that
〈F(x)− F(y), x − y〉 ≥ 0 ∀x, y ∈ E,
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and more precisely that

〈f − g, x − y〉 ≥ 0 ∀x, y ∈ E, ∀f ∈ F(x), ∀g ∈ F(y).
Show that, in fact,

〈f − g, x − y〉 ≥ (‖x‖ − ‖y‖)2 ∀x, y ∈ E, ∀f ∈ F(x), ∀g ∈ F(y).
5. Assume again that E� is strictly convex and let x, y ∈ E be such that

〈F(x)− F(y), x − y〉 = 0.

Show that Fx = Fy.

1.2 LetE be a vector space of dimension n and let (ei)1≤i≤n be a basis ofE. Given
x ∈ E, write x = ∑n

i=1 xiei with xi ∈ R; given f ∈ E�, set fi = 〈f, ei〉.

1. Consider on E the norm

‖x‖1 =
n∑

i=1

|xi |.

(a) Compute explicitly, in terms of the fi’s, the dual norm ‖f ‖E� of f ∈ E�.
(b) Determine explicitly the set F(x) (duality map) for every x ∈ E.

2. Same questions but where E is provided with the norm

‖x‖∞ = max
1≤i≤n|xi |.

3. Same questions but where E is provided with the norm

‖x‖2 =
(

n∑

i=1

|xi |2
)1/2

,

and more generally with the norm

‖x‖p =
(

n∑

i=1

|xi |p
)1/p

, where p ∈ (1,∞).

1.3 Let E = {u ∈ C([0, 1]; R); u(0) = 0} with its usual norm

‖u‖ = max
t∈[0,1]|u(t)|.

Consider the linear functional
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f : u ∈ E 
→ f (u) =
∫ 1

0
u(t)dt.

1. Show that f ∈ E� and compute ‖f ‖E� .
2. Can one find some u ∈ E such that ‖u‖ = 1 and f (u) = ‖f ‖E�?

1.4 Consider the space E = c0 (sequences tending to zero) with its usual norm
(see Section 11.3). For every element u = (u1, u2, u3, . . . ) in E define

f (u) =
∞∑

n=1

1

2n
un.

1. Check that f is a continuous linear functional on E and compute ‖f ‖E� .
2. Can one find some u ∈ E such that ‖u‖ = 1 and f (u) = ‖f ‖E�?

1.5 Let E be an infinite-dimensional n.v.s.

1. Prove (using Zorn’s lemma) that there exists an algebraic basis (ei)iεI in E such
that ‖ei‖ = 1 ∀i ∈ I .
Recall that an algebraic basis (or Hamel basis) is a subset (ei)iεI in E such that
every x ∈ E may be written uniquely as

x =
∑

iεJ

xiei with J ⊂ I, J finite.

2. Construct a linear functional f : E → R that is not continuous.
3. Assuming in addition that E is a Banach space, prove that I is not countable.

[Hint: Use Baire category theorem (Theorem 2.1).]

1.6 Let E be an n.v.s. and let H ⊂ E be a hyperplane. Let V ⊂ E be an affine
subspace containing H .

1. Prove that either V = H or V = E.
2. Deduce that H is either closed or dense in E.

1.7 Let E be an n.v.s. and let C ⊂ E be convex.

1. Prove that C and IntC are convex.
2. Given x ∈ C and y ∈ IntC, show that tx + (1 − t)y ∈ IntC ∀t ∈ (0, 1).
3. Deduce that C = IntC whenever IntC 	= ∅.

1.8 Let E be an n.v.s. with norm ‖ ‖. Let C ⊂ E be an open convex set such that
0 ∈ C. Let p denote the gauge of C (see Lemma 1.2).

1. Assuming C is symmetric (i.e., −C = C) and C is bounded, prove that p is a
norm which is equivalent to ‖ ‖.
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2. Let E = C([0, 1]; R) with its usual norm

‖u‖ = max
t∈[0,1]|u(t)|.

Let

C =
{

u ∈ E;
∫ 1

0
|u(t)|2dt < 1

}

.

Check that C is convex and symmetric and that 0 ∈ C. Is C bounded in E?
Compute the gauge p of C and show that p is a norm on E. Is p equivalent to
‖ ‖?

1.9 Hahn–Banach in finite-dimensional spaces.

Let E be a finite-dimensional normed space. Let C ⊂ E be a nonempty convex
set such that 0 /∈ C. We claim that there always exists some hyperplane that separates
C and {0}.

[Note that every hyperplane is closed (why?). The main point in this exercise is
that no additional assumption on C is required.]

1. Let (xn)n≥1 be a countable subset of C that is dense in C (why does it exist?).
For every n let

Cn = conv{x1, x2, . . . , xn} =
{

x =
n∑

i=1

tixi; ti ≥ 0 ∀i and
n∑

i=1

ti = 1

}

.

Check that Cn is compact and that
⋃∞
n=1 Cn is dense in C.

2. Prove that there is some fn ∈ E� such that

‖fn‖ = 1 and 〈fn, x〉 ≥ 0 ∀x ∈ Cn.
3. Deduce that there is some f ∈ E� such that

‖f ‖ = 1 and 〈f, x〉 ≥ 0 ∀x ∈ C.
Conclude.

4. Let A,B ⊂ E be nonempty disjoint convex sets. Prove that there exists some
hyperplane H that separates A and B.

1.10 Let E be an n.v.s. and let I be any set of indices. Fix a subset (xi)iεI in E and
a subset (αi)iεI in R. Show that the following properties are equivalent:

There exists some f ∈ E� such that 〈f, xi〉 = αi ∀i ∈ I .(A)
⎧
⎪⎪⎨

⎪⎪⎩

There exists a constant M ≥ 0 such that for each finite subset

J ⊂ I and for every choice of real numbers (βi)i∈J , we have
∣
∣
∑

i∈J
βiαi

∣
∣ ≤ M

∥
∥
∑

i∈J
βixi

∥
∥.

(B)
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Note that in the proof of (B) ⇒ (A) one may find some f ∈ E� with ‖f ‖E� ≤ M.

[Hint: Try first to define f on the linear space spanned by the (xi)iεI .]

1.11 Let E be an n.v.s. and let M > 0. Fix n elements (f1)1≤i≤n in E� and n real
numbers (αi)1≤i≤n. Prove that the following properties are equivalent:

{
∀ε > 0 ∃xε ∈ E such that

‖xε‖ ≤ M + ε and 〈fi, xε〉 = αi ∀i = 1, 2, . . . , n.
(A)

∣
∣
∣

n∑

i=1

βiαi

∣
∣
∣ ≤ M

∥
∥
∥

n∑

i=1

βifi

∥
∥
∥ ∀β1, β2, . . . , βn ∈ R.(B)

[Hint: For the proof of (B) ⇒ (A) consider first the case in which the fi’s are
linearly independent and imitate the proof of Lemma 3.3.]

Compare Exercises 1.10, 1.11 and Lemma 3.3.

1.12 Let E be a vector space. Fix n linear functionals (fi)1≤i≤n on E and n real
numbers (αi)1≤i≤n. Prove that the following properties are equivalent:

There exists some x ∈ E such that fi(x) = αi ∀i = 1, 2, . . . , n.(A)
{

For any choice of real numbers β1, β2, . . . , βn such that
∑n
i=1 βifi = 0, one also has

∑n
i=1 βiαi = 0.

(B)

1.13 Let E = R
n and let

P = {x ∈ R
n; xi ≥ 0 ∀i = 1, 2, . . . , n}.

Let M be a linear subspace of E such that M ∩ P = {0}. Prove that there is some
hyperplane H in E such that

M ⊂ H and H ∩ P = {0}.
[Hint: Show first that M⊥ ∩ Int P 	= ∅.]

1.14 Let E = �1 (see Section 11.3) and consider the two sets

X = {x = (xn)n≥1 ∈ E; x2n = 0 ∀n ≥ 1}

and

Y =
{

y = (yn)n≥1 ∈ E; y2n = 1

2n
y2n−1 ∀n ≥ 1

}

.

1. Check that X and Y are closed linear spaces and that X + Y = E.
2. Let c ∈ E be defined by
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{
c2n−1 = 0 ∀n ≥ 1,

c2n = 1
2n ∀n ≥ 1.

Check that c /∈ X + Y .
3. Set Z = X − c and check that Y ∩ Z = ∅. Does there exist a closed hyperplane

in E that separates Y and Z?
Compare with Theorem 1.7 and Exercise 1.9.

4. Same questions in E = �p, 1 < p < ∞, and in E = c0.

1.15 Let E be an n.v.s. and let C ⊂ E be a convex set such that 0 ∈ C. Set

C� = {f ∈ E� ; 〈f, x〉 ≤ 1 ∀x ∈ C},(A)

C�� = {x ∈ E ; 〈f, x〉 ≤ 1 ∀f ∈ C�}.(B)

1. Prove that C�� = C.
2. What is C� if C is a linear space?

1.16 LetE = �1, so thatE� = �∞ (see Section 11.3). ConsiderN = c0 as a closed
subspace of E�.

Determine

N⊥ = {x ∈ E; 〈f, x〉 = 0 ∀f ∈ N}

and

N⊥⊥ = {f ∈ E�; 〈f, x〉 = 0 ∀x ∈ N⊥}.

Check that N⊥⊥ 	= N .

1.17 Let E be an n.v.s. and let f ∈ E� with f 	= 0. Let M be the hyperplane
[f = 0].

1. Determine M⊥.
2. Prove that for every x ∈ E, dist(x,M) = infy∈M ‖x − y‖ = |〈f,x〉|

‖f ‖ .
[Find a direct method or use Example 3 in Section 1.4.]

3. Assume now that E = {u ∈ C([0, 1]; R); u(0) = 0} and that

〈f, u〉 =
∫ 1

0
u(t)dt, u ∈ E.

Prove that dist(u,M) = | ∫ 1
0 u(t)dt | ∀u ∈ E.

Show that infv∈M ‖u− v‖ is never achieved for any u ∈ E\M .

1.18 Check that the functions ϕ : R → (−∞, +∞] defined below are convex
l.s.c. and determine the conjugate functions ϕ�. Draw their graphs and mark their
epigraphs.
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ϕ(x) = ax + b, where a, b ∈ R.(a)

ϕ(x) = ex.(b)

ϕ(x) =
{

0 if |x| ≤ 1,

+∞ if |x| > 1.
(c)

ϕ(x) =
{

0 if x = 0,

+∞ if x 	= 0.
(d)

ϕ(x) =
{

− log x if x > 0,

+∞ if x ≤ 0.
(e)

ϕ(x) =
{

−(1 − x2)1/2 if |x| ≤ 1,

+∞ if |x| > 1.
(f)

ϕ(x) =
{

1
2 |x|2 if |x| ≤ 1,

|x| − 1
2 if |x| > 1.

(g)

ϕ(x) = 1

p
|x|p, where 1 < p < ∞.(h)

ϕ(x) = x+ = max{x, 0}.(i)

ϕ(x) =
{

1
p
xp if x ≥ 0, where 1 < p < +∞,

+∞ if x < 0.
(j)

ϕ(x) =
{

− 1
p
xp if x ≥ 0, where 0 < p < 1,

+∞ if x < 0.
(k)

ϕ(x) = 1

p
[(|x| − 1)+]p, where 1 < p < ∞.(l)

1.19 Let E be an n.v.s.

1. Let ϕ,ψ : E → (−∞, +∞] be two functions such that ϕ ≤ ψ . Prove that
ψ� ≤ ϕ�.

2. Let F : R → (−∞, +∞] be a convex l.s.c. function such that F(0) = 0 and
F(t) ≥ 0 ∀t ∈ R. Set ϕ(x) = F(‖x‖).
Prove that ϕ is convex l.s.c. and that ϕ�(f ) = F�(‖f ‖) ∀f ∈ E�.

1.20 Let E = �p with 1 ≤ p < ∞ (see Section 11.3). Check that the functions
ϕ : E → (−∞, +∞] defined below are convex l.s.c. and determine ϕ�. For x =
(x1, x2, . . . , xn, . . . ) set

ϕ(x) =
{∑+∞

k=1 k|xk|2 if
∑∞
k=1 k|xk|2 < +∞,

+∞ otherwise.
(a)

ϕ(x) =
+∞∑

k=2

|xk|k. (Check that ϕ(x) < ∞ for every x ∈ E.)(b)
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ϕ(x) =

⎧
⎪⎨

⎪⎩

+∞∑

k=1

|xk| if
∞∑

k=1

|xk| < +∞,

+∞ otherwise.

(c)

1.21 Let E = E� = R
2 and let

C = {[x1, x2]; x1 ≥ 0, x2 ≥ 0}.
On E define the function

ϕ(x) =
{

−√
x1x2 if x ∈ C,

+∞ if x /∈ C.
1. Prove that ϕ is convex l.s.c. on E.
2. Determine ϕ�.
3. Consider the set D = {[x1, x2]; x1 = 0} and the function ψ = ID . Compute the

value of the expressions

inf
x∈E{ϕ(x)+ ψ(x)} and sup

f∈E�
{−ϕ�(−f )− ψ�(f )}.

4. Compare with the conclusion of Theorem 1.12 and explain the difference.

1.22 Let E be an n.v.s. and let A ⊂ E be a closed nonempty set. Let

ϕ(x) = dist(x,A) = inf
a∈A‖x − a‖.

1. Check that |ϕ(x)− ϕ(y)| ≤ ‖x − y‖ ∀x, y ∈ E.
2. Assuming that A is convex, prove that ϕ is convex.
3. Conversely, assuming that ϕ is convex, prove that A is convex.
4. Prove that ϕ� = (IA)

� + IBE� for every A not necessarily convex.

1.23 Inf-convolution.

Let E be an n.v.s. Given two functions ϕ,ψ : E → (−∞, +∞], one defines the
inf-convolution of ϕ and ψ as follows: for every x ∈ E, let

(ϕ∇ψ)(x) = inf
y∈E{ϕ(x − y)+ ψ(y)}.

Note the following:

(i) (ϕ∇ψ)(x) may take the values ±∞,
(ii) (ϕ∇ψ)(x) < +∞ iff x ∈ D(ϕ)+D(ψ).

1. Assuming that D(ϕ�) ∩ D(ψ�) 	= ∅, prove that (ϕ∇ψ) does not take the value
−∞ and that
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(ϕ∇ψ)� = ϕ� + ψ�.

2. Assuming that D(ϕ) ∩D(ψ) 	= ∅, prove that

(ϕ + ψ)� ≤ (ϕ�∇ψ�) on E�.

3. Assume that ϕ and ψ are convex and there exists x0 ∈ D(ϕ)∩D(ψ) such that ϕ
is continuous at x0. Prove that

(ϕ + ψ)� = (ϕ�∇ψ�) on E�.

4. Assume that ϕ and ψ are convex and l.s.c., and that D(ϕ) ∩ D(ψ) 	= ∅. Prove
that

(ϕ�∇ψ�)� = (ϕ + ψ) on E.

Given a function ϕ : E → (−∞, +∞], set

epist ϕ = {[x, λ] ∈ E × R; ϕ(x) < λ}.
5. Check that ϕ is convex iff epist ϕ is a convex subset of E × R.

6. Let ϕ,ψ : E → (−∞, +∞] be functions such that D(ϕ�) ∩D(ψ�) 	= ∅. Prove
that

epist(ϕ∇ψ) = (epist ϕ)+ (epistψ).

7. Deduce that if ϕ,ψ : E → (−∞, +∞] are convex functions such that D(ϕ�) ∩
D(ψ�) 	= ∅, then (ϕ∇ψ) is a convex function.

1.24 Regularization by inf-convolution.

Let E be an n.v.s. and let ϕ : E → (−∞,+∞] be a convex l.s.c. function such
that ϕ 	≡ +∞. Our aim is to construct a sequence of functions (ϕn) such that we
have the following:

(i) For every n, ϕn : E → (−∞, +∞) is convex and continuous.
(ii) For every x, the sequence (ϕn(x))n is nondecreasing and converges to ϕ(x).

For this purpose, let
ϕn(x) = inf

y∈E{n‖x − y‖ + ϕ(y)}.

1. Prove that there is some N , large enough, such that for n ≥ N , ϕn(x) is finite for
all x ∈ E. From now on, one chooses n ≥ N.

2. Prove that ϕn is convex (see Exercise 1.23) and that

|ϕn(x1)− ϕn(x2)| ≤ n‖x1 − x2‖ ∀x1, x2 ∈ E.
3. Determine (ϕn)�.
4. Check that ϕn(x) ≤ ϕ(x) ∀x ∈ E, ∀n. Prove that for every x ∈ E, the sequence
(ϕn(x))n is nondecreasing.
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5. Given x ∈ D(ϕ), choose yn ∈ E such that

ϕn(x) ≤ n‖x − yn‖ + ϕ(yn) ≤ ϕn(x)+ 1

n
.

Prove that limn→∞ yn = x and deduce that limn→∞ ϕn(x) = ϕ(x).

6. For x /∈ D(ϕ), prove that limn→∞ ϕn(x) = +∞.
[Hint: Argue by contradiction.]

1.25 A semiscalar product.

Let E be an n.v.s.
1. Let ϕ : E → (−∞, +∞) be convex. Given x, y ∈ E, consider the function

h(t) = ϕ(x + ty)− ϕ(x)

t
, t > 0.

Check that h is nondecreasing on (0,+∞) and deduce that

lim
t↓0
h(t) = inf

t>0
h(t) exists in [−∞,+∞).

Define the semiscalar product [x, y] by

[x, y] = inf
t>0

1

2t
[‖x + ty‖2 − ‖x‖2].

2. Prove that |[x, y]| ≤ ‖x‖‖y‖ ∀x, y ∈ E.
3. Prove that

[x, λx + μy] = λ‖x‖2 + μ[x, y] ∀x, y ∈ E, ∀λ ∈ R, ∀μ ≥ 0

and
[λx, μy] = λμ[x, y] ∀x, y ∈ E, ∀λ ≥ 0, ∀μ ≥ 0.

4. Prove that for every x ∈ E, the function y 
→ [x, y] is convex. Prove that the
function G(x, y) = −[x, y] is l.s.c. on E × E.

5. Prove that
[x, y] = max

f∈F(x)〈f, y〉 ∀x, y ∈ E,

where F denotes the duality map (see Remark 2 following Corollary 1.3 and
Exercise 1.1).

[Hint: Set α = [x, y] and apply Theorem 1.12 to the functions ϕ and ψ defined
as follows:

ϕ(z) = 1

2
‖x + z‖2 − 1

2
‖x‖2, z ∈ E,

and

ψ(z) =
{

−tα when z = ty and t ≥ 0,

+∞ otherwise.]
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6. Determine explicitly [x, y], where E = R
n with the norm ‖x‖p, 1 ≤ p ≤ ∞

(see Section 11.3).

[Hint: Use the results of Exercise 1.2.]

1.26 Strictly convex norms and functions.

Let E be an n.v.s. One says that the norm ‖ ‖ is strictly convex (or that the space
E is strictly convex) if

‖tx + (1 − t)y‖ < 1, ∀x, y ∈ E with x 	= y, ‖x‖ = ‖y‖ = 1, ∀t ∈ (0, 1).

One says that a function ϕ : E → (−∞,+∞] is strictly convex if

ϕ(tx + (1 − t)y) < tϕ(x)+ (1 − t)ϕ(y) ∀x, y ∈ E with x 	= y, ∀t ∈ (0, 1).

1. Prove that the norm ‖ ‖ is strictly convex iff the function ϕ(x) = ‖x‖2 is strictly
convex.

2. Same question with ϕ(x) = ‖x‖p and 1 < p < ∞.

1.27 Let E and F be two Banach spaces and let G ⊂ E be a closed subspace.
Let T : G → F be a continuous linear map. The aim is to show that sometimes, T
cannot be extended by a continuous linear map T̃ : E → F . For this purpose, let E
be a Banach space and let G ⊂ E be a closed subspace that admits no complement
(see Remark 8 in Chapter 2). Let F = G and T = I (the identity map). Prove that
T cannot be extended.

[Hint: Argue by contradiction.]

Compare with the conclusion of Corollary 1.2.





Chapter 2
The Uniform Boundedness Principle and the
Closed Graph Theorem

2.1 The Baire Category Theorem

The following classical result plays an essential role in the proofs of Chapter 2.

• Theorem 2.1 (Baire). Let X be a complete metric space and let (Xn)n≥1 be a
sequence of closed subsets in X. Assume that

IntXn = ∅ for every n ≥ 1.

Then

Int

( ∞⋃

n=1

Xn

)

= ∅.

Remark 1. The Baire category theorem is often used in the following form. Let X
be a nonempty complete metric space. Let (Xn)n≥1 be a sequence of closed subsets
such that ∞⋃

n=1

Xn = X.

Then there exists some n0 such that IntXn0 	= ∅.

Proof. SetOn = Xcn, so thatOn is open and dense in X for every n ≥ 1. Our aim is
to prove that G = ⋂∞

n=1On is dense in X. Let ω be a nonempty open set in X; we
shall prove that ω ∩G 	= ∅.

As usual, set
B(x, r) = {y ∈ X; d(y, x) < r}.

Pick any x0 ∈ ω and r0 > 0 such that

B(x0, r0) ⊂ ω.

Then, choose x1 ∈ B(x0, r0) ∩O1 and r1 > 0 such that

31H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7_2, © Springer Science+Business Media, LLC 2011



32 2 The Uniform Boundedness Principle and the Closed Graph Theorem

{
B(x1, r1) ⊂ B(x0, r0) ∩O1,

0 < r1 <
r0
2 ,

which is always possible since O1 is open and dense. By induction one constructs
two sequences (xn) and (rn) such that

{
B(xn+1, rn+1) ⊂ B(xn, rn) ∩On+1, ∀n ≥ 0,

0 < rn+1 <
rn
2 .

It follows that (xn) is a Cauchy sequence; let xn → �.
Since xn+p ∈ B(xn, rn) for every n ≥ 0 and for every p ≥ 0, we obtain at the

limit (as p → ∞),
� ∈ B(xn, rn), ∀n ≥ 0.

In particular, � ∈ ω ∩G.

2.2 The Uniform Boundedness Principle

Notation. Let E and F be two n.v.s. We denote by L(E, F ) the space of continuous
(= bounded) linear operators from E into F equipped with the norm

∥
∥T

∥
∥

L (E,F )
= sup

x∈E‖x‖≤1

‖T x‖.

As usual, one writes L (E) instead of L (E,E).

• Theorem 2.2 (Banach–Steinhaus, uniform boundedness principle). Let E and
F be two Banach spaces and let (Ti)i∈I be a family (not necessarily countable) of
continuous linear operators from E into F . Assume that

(1) sup
i∈I

‖Tix‖ < ∞ ∀x ∈ E.

Then

(2) sup
i∈I

∥
∥Ti

∥
∥

L (E,F )
< ∞.

In other words, there exists a constant c such that

‖Tix‖ ≤ c‖x‖ ∀x ∈ E, ∀i ∈ I.
Remark 2. The conclusion of Theorem 2.2 is quite remarkable and surprising. From
pointwise estimates one derives a global (uniform) estimate.

Proof. For every n ≥ 1, let

Xn = {x ∈ E; ∀i ∈ I, ‖Tix‖ ≤ n},
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so that Xn is closed, and by (1) we have

∞⋃

n=1

Xn = E.

It follows from the Baire category theorem that Int(Xn0) 	= ∅ for some n0 ≥ 1. Pick
x0 ∈ E and r > 0 such that B(x0, r) ⊂ Xn0 . We have

‖Ti(x0 + rz)‖ ≤ n0 ∀i ∈ I, ∀z ∈ B(0, 1).

This leads to
r
∥
∥Ti

∥
∥L(E,F ) ≤ n0 + ‖Tix0‖,

which implies (2).

Remark 3. Recall that in general, a pointwise limit of continuous maps need not be
continuous. The linearity assumption plays an essential role in Theorem 2.2. Note,
however, that in the setting of Theorem 2.2 it does not follow that ‖Tn − T ‖L(E,F )
→ 0.

Here are a few direct consequences of the uniform boundedness principle.

Corollary 2.3. Let E and F be two Banach spaces. Let (Tn) be a sequence of con-
tinuous linear operators from E into F such that for every x ∈ E, Tnx converges
(as n → ∞) to a limit denoted by T x. Then we have

(a) supn
∥
∥Tn

∥
∥

L (E,F )
< ∞,

(b) T ∈ L(E, F ),
(c)

∥
∥T

∥
∥

L (E,F )
≤ lim infn→∞ ‖Tn‖L (E,F ).

Proof. (a) follows directly from Theorem 2.2, and thus there exists a constant c
such that

‖Tnx‖ ≤ c‖x‖ ∀n, ∀x ∈ E.
At the limit we find

‖T x‖ ≤ c‖x‖ ∀x ∈ E.
Since T is clearly linear, we obtain (b).

Finally, we have

‖Tnx‖ ≤ ‖Tn‖L(E,F )‖x‖ ∀x ∈ E,
and (c) follows directly.

• Corollary 2.4. Let G be a Banach space and let B be a subset of G. Assume that

(3) for every f ∈ G� the set f (B) = {〈f, x〉; x ∈ B} is bounded (in R).

Then

(4) B is bounded.
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Proof. We shall use Theorem 2.2 with E = G�, F = R, and I = B. For every
b ∈ B, set

Tb(f ) = 〈f, b〉, f ∈ E = G�,

so that by (3),
sup
b∈B

|Tb(f )| < ∞ ∀f ∈ E.

It follows from Theorem 2.2 that there exists a constant c such that

|〈f, b〉| ≤ c‖f ‖ ∀f ∈ G� ∀b ∈ B.
Therefore we find (using Corollary 1.4) that

‖b‖ ≤ c ∀b ∈ B.
Remark 4. Corollary 2.4 says that in order to prove that a set B is bounded it suffices
to “look” at B through the bounded linear functionals. This is a familiar procedure
in finite-dimensional spaces, where the linear functionals are the components with
respect to some basis. In some sense, Corollary 2.4 replaces, in infinite-dimensional
spaces, the use of components. Sometimes, one expresses the conclusion of Corollary
2.4 by saying that “weakly bounded” ⇐⇒ “strongly bounded” (see Chapter 3).

Next we have a statement dual to Corollary 2.4:

Corollary 2.5. Let G be a Banach space and let B� be a subset of G�. Assume that

(5) for every x ∈ G the set 〈B�, x〉 = {〈f, x〉; f ∈ B�} is bounded (in R).

Then

(6) B� is bounded.

Proof. Use Theorem 2.2 with E = G, F = R, and I = B�. For every b ∈ B� set

Tb(x) = 〈b, x〉 (x ∈ G = E).

We find that there exists a constant c such that

|〈b, x〉| ≤ c‖x‖ ∀b ∈ B�, ∀x ∈ G.
We conclude (from the definition of a dual norm) that

‖b‖ ≤ c ∀b ∈ B�.

2.3 The Open Mapping Theorem and the Closed Graph Theorem

Here are two basic results due to Banach.
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• Theorem 2.6 (open mapping theorem). Let E and F be two Banach spaces and
let T be a continuous linear operator fromE into F that is surjective (= onto). Then
there exists a constant c > 0 such that

(7) T (BE(0, 1)) ⊃ BF (0, c).

Remark 5. Property (7) implies that the image under T of any open set in E is an
open set inF (which justifies the name given to this theorem!). Indeed, let us suppose
U is open in E and let us prove that T (U) is open. Fix any point y0 ∈ T (U), so
that y0 = T x0 for some x0 ∈ U . Let r > 0 be such that B(x0, r) ⊂ U , i.e.,
x0 + B(0, r) ⊂ U . It follows that

y0 + T (B(0, r)) ⊂ T (U).

Using (7) we obtain
T (B(0, r)) ⊃ B(0, rc)

and therefore
B(y0, rc) ⊂ T (U).

Some important consequences of Theorem 2.6 are the following.

• Corollary 2.7. LetE andF be two Banach spaces and let T be a continuous linear
operator fromE into F that is bijective, i.e., injective (= one-to-one) and surjective.
Then T −1 is also continuous (from F into E).

Proof of Corollary 2.7. Property (7) and the assumption that T is injective imply that
if x ∈ E is chosen so that ‖T x‖ < c, then ‖x‖ < 1. By homogeneity, we find that

‖x‖ ≤ 1

c
‖T x‖ ∀x ∈ E

and therefore T −1 is continuous.

Corollary 2.8. Let E be a vector space provided with two norms, ‖ ‖1 and ‖ ‖2.
Assume that E is a Banach space for both norms and that there exists a constant
C ≥ 0 such that

‖x‖2 ≤ C‖x‖1 ∀x ∈ E.
Then the two norms are equivalent, i.e., there is a constant c > 0 such that

‖x‖1 ≤ c‖x‖2 ∀x ∈ E.
Proof of Corollary 2.8. Apply Corollary 2.7 with

E = (E, ‖ ‖1), F = (E, ‖ ‖2), and T = I .

Proof of Theorem 2.6. We split the argument into two steps:

Step 1. Assume that T is a linear surjective operator from E onto F . Then there
exists a constant c > 0 such that
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(8) T (B(0, 1)) ⊃ B(0, 2c).

Proof. SetXn = nT (B(0, 1)). Since T is surjective, we have
⋃∞
n=1Xn = F , and by

the Baire category theorem there exists some n0 such that Int(Xn0) 	= ∅. It follows
that

Int [T (B(0, 1))] 	= ∅.
Pick c > 0 and y0 ∈ F such that

(9) B(y0, 4c) ⊂ T (B(0, 1)).

In particular, y0 ∈ T (B(0, 1)), and by symmetry,

(10) −y0 ∈ T (B(0, 1)).

Adding (9) and (10) leads to

B(0, 4c) ⊂ T (B(0, 1))+ T (B(0, 1)).

On the other hand, since T (B(0, 1)) is convex, we have

T (B(0, 1))+ T (B(0, 1)) = 2T (B(0, 1)),

and (8) follows.

Step 2. Assume T is a continuous linear operator from E into F that satisfies (8).
Then we have

(11) T (B(0, 1)) ⊃ B(0, c).

Proof. Choose any y ∈ F with ‖y‖ < c. The aim is to find some x ∈ E such that

‖x‖ < 1 and T x = y.

By (8) we know that

(12) ∀ε > 0 ∃z ∈ E with ‖z‖ < 1

2
and ‖y − T z‖ < ε.

Choosing ε = c/2, we find some z1 ∈ E such that

‖z1‖ < 1

2
and ‖y − T z1‖ < c

2
.

By the same construction applied to y − T z1 (instead of y) with ε = c/4 we find
some z2 ∈ E such that

‖z2‖ < 1

4
and ‖(y − T z1)− T z2‖ < c

4
.

Proceeding similarly, by induction we obtain a sequence (zn) such that
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‖zn‖ < 1

2n
and ‖y − T (z1 + z2 + · · · + zn)‖ < c

2n
∀n.

It follows that the sequence xn = z1 + z2 + · · · + zn is a Cauchy sequence. Let
xn → x with, clearly, ‖x‖ < 1 and y = T x (since T is continuous).

• Theorem 2.9 (closed graph theorem). Let E and F be two Banach spaces. Let T
be a linear operator from E into F . Assume that the graph of T , G(T ), is closed in
E × F . Then T is continuous.

Remark 6. The converse is obviously true, since the graph of any continuous map
(linear or not) is closed.

Proof of Theorem 2.9. Consider, on E, the two norms

‖x‖1 = ‖x‖E + ‖T x‖F and ‖x‖2 = ‖x‖E
(the norm ‖ ‖1 is called the graph norm).

It is easy to check, using the assumption that G(T ) is closed, that E is a Banach
space for the norm ‖ ‖1. On the other hand, E is also a Banach space for the norm
‖ ‖2 and ‖ ‖2 ≤ ‖ ‖1. It follows from Corollary 2.8 that the two norms are equivalent
and thus there exists a constant c > 0 such that ‖x‖1 ≤ c‖x‖2. We conclude that
‖T x‖F ≤ c‖x‖E.

� 2.4 Complementary Subspaces. Right and Left Invertibility of
Linear Operators

We start with some geometric properties of closed subspaces in a Banach space that
follow from the open mapping theorem.

� Theorem 2.10. Let E be a Banach space. Assume that G and L are two closed
linear subspaces such thatG+L is closed. Then there exists a constant C ≥ 0 such
that

(13)

{
every z ∈ G+ L admits a decomposition of the form

z = x + y with x ∈ G, y ∈ L, ‖x‖ ≤ C‖z‖ and ‖y‖ ≤ C‖z‖.
Proof. Consider the product space G× L with its norm

‖ [x, y] ‖ = ‖x‖ + ‖y‖
and the space G+ L provided with the norm of E.

The mapping T : G × L → G + L defined by T [x, y] = x + y is continuous,
linear, and surjective. By the open mapping theorem there exists a constant c > 0
such that every z ∈ G + L with ‖z‖ < c can be written as z = x + y with x ∈ G,
y ∈ L, and ‖x‖ + ‖y‖ < 1. By homogeneity every z ∈ G+ L can be written as
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z = x + y with x ∈ G, y ∈ L, and ‖x‖ + ‖y‖ ≤ (1/c)‖z‖.
� Corollary 2.11. Under the same assumptions as in Theorem 2.10, there exists a
constant C such that

(14) dist(x,G ∩ L) ≤ C{dist(x,G)+ dist(x, L)} ∀x ∈ E.
Proof. Given x ∈ E and ε > 0, there exist a ∈ G and b ∈ L such that

‖x − a‖ ≤ dist(x,G)+ ε, ‖x − b‖ ≤ dist(x, L)+ ε.

Property (13) applied to z = a − b says that there exist a′ ∈ G and b′ ∈ L such that

a − b = a′ + b′, ‖a′‖ ≤ C‖a − b‖, ‖b′‖ ≤ C‖a − b‖.
It follows that a − a′ ∈ G ∩ L and

dist(x,G ∩ L) ≤ ‖x − (a − a′)‖ ≤ ‖x − a‖ + ‖a′‖
≤ ‖x − a‖ + C‖a − b‖ ≤ ‖x − a‖ + C(‖x − a‖ + ‖x − b‖)
≤ (1 + C) dist(x,G)+ dist(x, L)+ (1 + 2C)ε.

Finally, we obtain (14) by letting ε → 0.

Remark 7. The converse of Corollary 2.11 is also true: If G and L are two closed
linear subspaces such that (14) holds, then G+ L is closed (see Exercise 2.16).

Definition. Let G ⊂ E be a closed subspace of a Banach space E. A subspace
L ⊂ E is said to be a topological complement or simply a complement of G if

(i) L is closed,
(ii) G ∩ L = {0} and G+ L = E.

We shall also say that G and L are complementary subspaces of E. If this holds,
then every z ∈ E may be uniquely written as z = x + y with x ∈ G and y ∈ L.
It follows from Theorem 2.10 that the projection operators z 
→ x and z 
→ y

are continuous linear operators. (That property could also serve as a definition of
complementary subspaces.)

Examples

1. Every finite-dimensional subspace G admits a complement. Indeed, let e1,
e2, . . . , en be a basis of G. Every x ∈ G may be written as x = ∑n

i=1 xiei .
Set ϕi(x) = xi . Using Hahn–Banach (analytic form)—or more precisely Corol-
lary 1.2—each ϕi can be extended by a continuous linear functional ϕ̃i defined
on E. It is easy to check that L = ∩ni=1(ϕ̃i)

−1(0) is a complement of G.

2. Every closed subspace G of finite codimension admits a complement. It suffices
to choose any finite-dimensional space L such thatG∩L = {0} andG+L = E

(L is closed since it is finite-dimensional).
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Here is a typical example of this kind of situation. Let N ⊂ E� be a subspace of
dimension p. Then

G = {x ∈ E; 〈f, x〉 = 0 ∀f ∈ N} = N⊥

is closed and of codimension p. Indeed, let f1, f2, . . . , fp be a basis of N . Then
there exist e1, e2, . . . , ep ∈ E such that

〈fi, ej 〉 = δij ∀i, j = 1, 2, . . . , p.

[Consider the map 
 : E → R
p defined by

(15) 
(x) = (〈f1, x〉, 〈f2, x〉, . . . , 〈fp, x〉)
and note that 
 is surjective; otherwise, there would exist—by Hahn–Banach
(second geometric form)—some α = (α1, α2, . . . , αp) 	= 0 such that

α ·
(x) =
〈
p∑

i=1

αifi, x

〉

= 0 ∀x ∈ E,

which is absurd].
It is easy to check that the vectors (ei)1≤i≤p are linearly independent and that the
space generated by the ei’s is a complement of G. Another proof of the fact that
the codimension of N⊥ equals the dimension of N is presented in Chapter 11
(Proposition 11.11).

3. In a Hilbert space every closed subspace admits a complement (see Section 5.2).

Remark 8. It is important to know that some closed subspaces (even in reflexive
Banach spaces) have no complement. In fact, a remarkable result of J. Lindenstrauss
and L. Tzafriri [1] asserts that in every Banach space that is not isomorphic to a
Hilbert space, there exist closed subspaces without any complement.

Definition. Let T ∈ L(E, F ). A right inverse of T is an operator S ∈ L(F,E) such
that T ◦S = IF . A left inverse of T is an operator S ∈ L(F,E) such that S ◦T = IE .

Our next results provide necessary and sufficient conditions for the existence of
such inverses.

� Theorem 2.12. Assume that T ∈ L(E, F ) is surjective. The following properties
are equivalent:

(i) T admits a right inverse.
(ii) N(T ) = T −1(0) admits a complement in E.

Proof.
(i) ⇒ (ii). Let S be a right inverse of T . It is easy to see (please check) that

R(S) = S(F ) is a complement of N(T ) in E.
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(ii) ⇒ (i). Let L be a complement of N(T ). Let P be the (continuous) projection
operator from E onto L. Given f ∈ F , we denote by x any solution of the equation
T x = f . Set Sf = Px and note that S is independent of the choice of x. It is easy
to check that S ∈ L(F,E) and that T ◦ S = IF .

Remark 9. In view of Remark 8 and Theorem 2.12, it is easy to construct surjective
operators T without a right inverse. Indeed, letG ⊂ E be a closed subspace without
complement, let F = E/G, and let T be the canonical projection from E onto F
(for the definition and properties of the quotient space, see Section 11.2).

� Theorem 2.13. Assume that T ∈ L(E, F ) is injective. The following properties
are equivalent:

(i) T admits a left inverse.
(ii) R(T ) = T (E) is closed and admits a complement in F.

Proof.
(i) ⇒ (ii). It is easy to check that R(T ) is closed and that N(S) is a complement

of R(T ) [write f = T Sf + (f − T Sf )].
(ii) ⇒ (i). Let P be a continuous projection operator from F onto R(T ). Let

f ∈ F ; since Pf ∈ R(T ), there exists a unique x ∈ E such that T x = Pf . Set
Sf = x. It is clear that S ◦ T = IE ; moreover, S is continuous by Corollary 2.7.

� 2.5 Orthogonality Revisited

There are some simple formulas giving the orthogonal expression of a sum or of an
intersection.

Proposition 2.14. Let G and L be two closed subspaces in E. Then

G ∩ L = (G⊥ + L⊥)⊥,(16)

G⊥ ∩ L⊥ = (G+ L)⊥.(17)

Proof of (16). It is clear that G ∩ L ⊂ (G⊥ + L⊥)⊥; indeed, if x ∈ G ∩ L and
f ∈ G⊥ + L⊥ then 〈f, x〉 = 0. Conversely, we have G⊥ ⊂ G⊥ + L⊥ and thus
(G⊥ + L⊥)⊥ ⊂ G⊥⊥ = G (note that if N1 ⊂ N2 then N⊥

2 ⊂ N⊥
1 ); similarly

(G⊥ + L⊥)⊥ ⊂ L. Therefore (G⊥ + L⊥)⊥ ⊂ G ∩ L.
Proof of (17). Use the same argument as for the proof of (16).

Corollary 2.15. Let G and L be two closed subspaces in E. Then

(G ∩ L)⊥ ⊃ G⊥ + L⊥,(18)

(G⊥ ∩ L⊥)⊥ = G+ L.(19)



2.5 Orthogonality Revisited 41

Proof. Use Propositions 1.9 and 2.14.

Here is a deeper result.

� Theorem 2.16. Let G and L be two closed subspaces in a Banach space E. The
following properties are equivalent:

(a) G+ L is closed in E,
(b) G⊥ + L⊥ is closed in E�,
(c) G+ L = (G⊥ ∩ L⊥)⊥,
(d) G⊥ + L⊥ = (G ∩ L)⊥.

Proof. (a) ⇐⇒ (c) follows from (19). (d) �⇒ (b) is obvious.
We are left with the implications (a) ⇒ (d) and (b) ⇒ (a).

(a) �⇒ (d). In view of (18) it suffices to prove that (G∩L)⊥ ⊂ G⊥ +L⊥. Given
f ∈ (G∩L)⊥, consider the functional ϕ : G+L → R defined as follows. For every
x ∈ G+ L write x = a + b with a ∈ G and b ∈ L. Set

ϕ(x) = 〈f, a〉.
Clearly, ϕ is independent of the decomposition of x, and ϕ is linear. On the other
hand, by Theorem 2.10 we may choose a decomposition of x in such a way that
‖a‖ ≤ C‖x‖, and thus

|ϕ(x)| ≤ C‖x‖ ∀x ∈ G+ L.

Extend ϕ by a continuous linear functional ϕ̃ defined on all of E (see Corollary 1.2).
So, we have

f = (f − ϕ̃)+ ϕ̃ with f − ϕ̃ ∈ G⊥ and ϕ̃ ∈ L⊥.

(b) �⇒ (a). We know by Corollary 2.11 that there exists a constant C such that

(20) dist(f,G⊥ ∩ L⊥) ≤ C{dist(f,G⊥)+ dist(f, L⊥)} ∀f ∈ E�.
On the other hand, we have

(21) dist(f,G⊥) = sup
x∈G‖x‖≤1

〈f, x〉 ∀f ∈ E�.

[Use Theorem 1.12 with ϕ(x) = IBE (x)− 〈f, x〉 and ψ(x) = IG(x), where

BE = {x ∈ E; ‖x‖ ≤ 1}.]
Similarly, we have
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(22) dist(f, L⊥) = sup
x∈L‖x‖≤1

〈f, x〉 ∀f ∈ E�

and also (by (17))

(23) dist(f,G⊥ ∩ L⊥) = dist(f, (G+ L)⊥) = sup
x∈G+L‖x‖≤1

〈f, x〉 ∀f ∈ E�.

Combining (20), (21), (22), and (23) we obtain

(24) sup
x∈G+L‖x‖≤1

〈f, x〉 ≤ C

{

sup
x∈G‖x‖≤1

〈f, x〉 + sup
x∈L‖x‖≤1

〈f, x〉
}

∀f ∈ E�.

It follows from (24) that

(25) BG +GL ⊃ 1

C
BG+L.

Indeed, suppose by contradiction that there existed some x0 ∈ G+ L with ‖x0‖ ≤
1/C and x0 /∈ BG + BL. Then there would be a closed hyperplane in E strictly
separating {x0} and BG + BL. Thus, there would exist some f0 ∈ E� and some
α ∈ R such that

〈f0, x〉 < α < 〈f0, x0〉 ∀x ∈ BG + BL.

Therefore, we would have

sup
x∈G‖x‖≤1

〈f0, x〉 + sup
x∈L‖x‖≤1

〈f0, x〉 ≤ α < 〈f0, x0〉,

which contradicts (24), and (25) is proved.

Finally, consider the space X = G× L with the norm

‖ [x, y] ‖ = max{‖x‖, ‖y‖}
and the space Y = G+ L with the norm of E. The map T : X → Y defined by
T ([x, y]) = x + y is linear and continuous. From (25) we know that

T (BX) ⊃ 1

C
BY .

Using Step 2 from the proof of Theorem 2.6 (open mapping theorem) we con-
clude that

T (BX) ⊃ 1

2C
BY .

It follows that T is surjective from X onto Y , i.e., G+ L = G+ L.
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2.6 An Introduction to Unbounded Linear Operators. Definition
of the Adjoint

Definition. Let E and F be two Banach spaces. An unbounded linear operator
from E into F is a linear map A : D(A) ⊂ E → F defined on a linear subspace
D(A) ⊂ E with values in F . The set D(A) is called the domain of A.

One says thatA is bounded (or continuous) ifD(A) = E and if there is a constant
c ≥ 0 such that

‖Au‖ ≤ c‖u‖ ∀u ∈ E.
The norm of a bounded operator is defined by

∥
∥A

∥
∥

L (E,F )
= Sup

u	=0

‖Au‖
‖u‖ .

Remark 10. It may of course happen that an unbounded linear operator turns out to
be bounded. This terminology is slightly inconsistent, but it is commonly used and
does not lead to any confusion.

Here are some important definitions and further notation:

Graph of A = G(A) = {[u,Au]; u ∈ D(A)} ⊂ E × F ,

Range of A = R(A) = {Au; u ∈ D(A)} ⊂ F ,

Kernel of A = N(A) = {u ∈ D(A);Au = 0} ⊂ E.

A map A is said to be closed if G(A) is closed in E × F .

• Remark 11. In order to prove that an operator A is closed, one proceeds in general
as follows. Take a sequence (un) in D(A) such that un → u in E and Aun → f in
F . Then check two facts:

(a) u ∈ D(A),
(b) f = Au.

Note that it does not suffice to consider sequences (un) such that un → 0 in E
and Aun → f in F (and to prove that f = 0).

Remark 12. If A is closed, then N(A) is closed; however, R(A) need not be closed.

Remark 13. In practice, most unbounded operators are closed and are densely defined,
i.e., D(A) is dense in E.

Definition of the adjoint A�. Let A : D(A) ⊂ E → F be an unbounded linear
operator that is densely defined. We shall introduce an unbounded operator A� :
D(A�) ⊂ F� → E� as follows. First, one defines its domain:

D(A�) = {v ∈ F�; ∃c ≥ 0 such that |〈v,Au〉| ≤ c‖u‖ ∀u ∈ D(A)}.
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It is clear that D(A�) is a linear subspace of F�. We shall now define A�v. Given
v ∈ D(A�), consider the map g : D(A) → R defined by

g(u) = 〈v,Au〉 ∀u ∈ D(A).
We have

|g(u)| ≤ c‖u‖ ∀u ∈ D(A).
By Hahn–Banach (analytic form; see Theorem 1.1) there exists a linear map f :
E → R that extends g and such that

|f (u)| ≤ c‖u‖ ∀u ∈ E.
It follows that f ∈ E�. Note that the extension of g is unique, since D(A) is dense
in E.

Set
A�v = f.

The unbounded linear operator A�: D(A�) ⊂ F� → E� is called the adjoint of
A. In brief, the fundamental relation between A and A� is given by

〈v,Au〉F�,F = 〈A�v, u〉E�,E ∀u ∈ D(A), ∀v ∈ D(A�).

Remark 14. It is not necessary to invoke Hahn–Banach to extend g. It suffices to
use the classical extension by continuity, which applies since D(A) is dense, g is
uniformly continuous on D(A), and R is complete (see, e.g., H. L. Royden [1]
(Proposition 11 in Chapter 7) or J. Dugundji [1] (Theorem 5.2 in Chapter XIV).

� Remark 15. It may happen that D(A�) is not dense in F� (even if A is closed);
but this is a rather pathological situation (see Exercise 2.22). It is always true that if
A is closed then D(A�) is dense in F� for the weak� topology σ(F �, F ) defined in
Chapter 3 (see Problem 9). In particular, if F is reflexive, thenD(A�) is dense in F�

for the usual (norm) topology (see Theorem 3.24).

Remark 16. If A is a bounded operator then A� is also a bounded operator (from F�

into E�) and, moreover,

∥
∥A�

∥
∥

L (F �,E�)
= ∥
∥A

∥
∥
L (E,F )

.

Indeed, it is clear that D(A�) = F�. From the basic relation, we have

|〈A�v, u〉| ≤ ‖A‖ ‖u‖ ‖v‖ ∀u ∈ E, ∀v ∈ F�,
which implies that ‖A�v‖ ≤ ‖A‖ ‖v‖ and thus ‖A�‖ ≤ ‖A‖.

We also have

|〈v,Au〉| ≤ ‖A�‖ ‖u‖ ‖v‖ ∀u ∈ E, ∀v ∈ F�,
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which implies (by Corollary 1.4) that ‖Au‖ ≤ ‖A�‖ ‖u‖ and thus ‖A‖ ≤ ‖A�‖.

Proposition 2.17. Let A : D(A) ⊂ E → F be a densely defined unbounded linear
operator. Then A� is closed, i.e., G(A�) is closed in F� × E�.

Proof. Let vn ∈ D(A�) be such that vn → v in F� and A�vn → f in E�. One has
to check that (a) v ∈ D(A�) and (b) A�v = f .

We have
〈vn,Au〉 = 〈A�vn, u〉 ∀u ∈ D(A).

At the limit we obtain

〈v,Au〉 = 〈f, u〉 ∀u ∈ D(A).
Therefore v ∈ D(A�) (since |〈v,Au〉| ≤ ‖f ‖ ‖u‖ ∀u ∈ D(A)) and A�v = f .

The graphs of A and A� are related by a very simple orthogonality relation:
Consider the isomorphism I : F� × E� → E� × F� defined by

I ([v, f ]) = [−f, v].
Let A : D(A) ⊂ E → F be a densely defined unbounded linear operator. Then

I [G(A�)] = G(A)⊥.

Indeed, let [v, f ] ∈ F� × E�, then

[v, f ] ∈ G(A�) ⇐⇒ 〈f, u〉 = 〈v,Au〉 ∀u ∈ D(A)
⇐⇒ −〈f, u〉 + 〈v,Au〉 = 0 ∀u ∈ D(A)
⇐⇒ [−f, v] ∈ G(A)⊥.

Here are some standard orthogonality relations between ranges and kernels:

Corollary 2.18. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. Then

N(A) = R(A�)⊥,(i)

N(A�) = R(A)⊥,(ii)

N(A)⊥ ⊃ R(A�),(iii)

N(A�)⊥ = R(A).(iv)

Proof. Note that (iii) and (iv) follow directly from (i) and (ii) combined with Propo-
sition 1.9. There is a simple and direct proof of (i) and (ii) (see Exercise 2.18).
However, it is instructive to relate these facts to Proposition 2.14 by the following
device. Consider the space X = E × F , so that X� = E� × F�, and the subspaces
of X
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G = G(A) and L = E × {0}.
It is very easy to check that

N(A)× {0} = G ∩ L,(26)

E × R(A) = G+ L,(27)

{0} ×N(A�) = G⊥ ∩ L⊥,(28)

R(A�)× F� = G⊥ + L⊥.(29)

Proof of (i). By (29) we have

R(A�)⊥ × {0} = (G⊥ + L⊥)⊥ = G ∩ L (by (16))

= N(A)× {0} (by (26)).

Proof of (ii). By (27) we have

{0} × R(A)⊥ = (G+ L)⊥ = G⊥ ∩ L⊥ (by (17))

= {0} ×N(A�) (by (28)).

Remark 17. It may happen, even if A is a bounded linear operator, that N(A)⊥ 	=
R(A�) (see Exercise 2.23). However, it is always true that N(A)⊥ is the closure
of R(A�) for the weak� topology σ(E�,E) (see Problem 9). In particular, if E is
reflexive then N(A)⊥ = R(A�).

� 2.7 A Characterization of Operators with Closed Range.
A Characterization of Surjective Operators

The main result concerning operators with closed range is the following.

� Theorem 2.19. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(i) R(A) is closed,
(ii) R(A�) is closed,

(iii) R(A) = N(A�)⊥,
(iv) R(A�) = N(A)⊥.

Proof. With the same notation as in the proof of Corollary 2.18, we have

(i) ⇔ G+ L is closed in X (see (27)),
(ii) ⇔ G⊥ + L⊥ is closed in X� (see (29)),

(iii) ⇔ G+ L = (G⊥ ∩ L⊥)⊥ (see (27) and (28)),
(iv) ⇔ (G ∩ L)⊥ = G⊥ + L⊥ (see (26) and (29)).

The conclusion then follows from Theorem 2.16.
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Remark 18. Let A : D(A) ⊂ E → F be a closed unbounded linear operator. Then
R(A) is closed if and only if there exists a constant C such that

dist(u,N(A)) ≤ C‖Au‖ ∀u ∈ D(A);
see Exercise 2.14.

The next result provides a useful characterization of surjective operators.

� Theorem 2.20. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(a) A is surjective, i.e., R(A) = F,

(b) there is a constant C such that

‖v‖ ≤ C‖A�v‖ ∀v ∈ D(A�),
(c) N(A�) = {0} and R(A�) is closed.

Remark 19. The implication (b) ⇒ (a) is sometimes useful in practice to establish
that an operator A is surjective. One proceeds as follows. Assuming that v satisfies
A�v = f , one tries to prove that ‖v‖ ≤ C‖f ‖ (with C independent of f ). This
is called the method of a priori estimates. One is not concerned with the question
whether the equationA�v = f admits a solution; one assumes that v is a priori given
and one tries to estimate its norm.

Proof.
(a) ⇒ (b). Set

B� = {v ∈ D(A�); ‖A�v‖ ≤ 1}.
By homogeneity it suffices to prove that B� is bounded. For this purpose—in view
of Corollary 2.5 (uniform boundedness principle)—we have only to show that given
any f0 ∈ F the set 〈B�, f0〉 is bounded (in R). Since A is surjective, there is some
u0 ∈ D(A) such that Au0 = f0. For every v ∈ B� we have

〈v, f0〉 = 〈v,Au0〉 = 〈A�v, u0〉
and thus |〈v, f0〉| ≤ ‖u0‖.

(b) ⇒ (c). Suppose fn = A�vn → f . Using (b) with vn − vm we see that (vn) is
Cauchy, so that vn → v. Since A� is closed (by Proposition 2.17), we conclude that
A�v = f .

(c) ⇒ (a). Since R(A�) is closed, we infer from Theorem 2.19 that R(A) =
N(A�)⊥ = F .

There is a “dual” statement.

� Theorem 2.21. LetA : D(A) ⊂ F be an unbounded linear operator that is densely
defined and closed. The following properties are equivalent:
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(a) A� is surjective, i.e., R(A�) = E�,
(b) there is a constant C such that

‖u‖ ≤ C‖Au‖ ∀u ∈ D(A),
(c) N(A) = {0} and R(A) is closed.

Proof. It is similar to the proof of Theorem 2.20 and we shall leave it as an exercise.

Remark 20. If one assumes that either dimE < ∞ or that dim F < ∞, then the
following are equivalent:

A surjective ⇔ A� injective,

A� surjective ⇔ A injective,

which is indeed a classical result for linear operators in finite-dimensional spaces. The
reason that these equivalences hold is that R(A) and R(A�) are finite-dimensional
(and thus closed).

In the general case one has only the implications

A surjective ⇒ A� injective,

A� surjective ⇒ A injective.

The converses fail, as may be seen from the following simple example. Let E =
F = �2; for every x ∈ �2 write x = (xn)n≥1 and set Ax = ( 1

n
xn
)

n≥1. It is easy to
see that A is a bounded operator and that A� = A; A� (resp. A) is injective but A
(resp. A�) is not surjective; R(A) (resp. R(A�)) is dense and not closed.

Comments on Chapter 2

1. One may write down explicitly some simple closed subspaces without complement.
For example c0 is a closed subspace of �∞ without complement; see, e.g., C. DeVito
[1] (the notation c0 and �∞ is explained in Section 11.3). There are other examples
in W. Rudin [1] (a subspace of L1), G. Köthe [1], and B. Beauzamy [1] (a subspace
of �p, p 	= 2).

2. Most of the results in Chapter 2 extend to Fréchet spaces (locally convex spaces
that are metrizable and complete). There are many possible extensions; see, e.g.,
H. Schaefer [1], J. Horváth [1], R. Edwards [1], F. Treves [1], [3], G. Köthe [1].
These extensions are motivated by the theory of distributions (see L. Schwartz [1]),
in which many important spaces are not Banach spaces. For the applications to the
theory of partial differential equations the reader may consult L. Hörmander [1] or
F. Treves [1], [2], [3].

3. There are various extensions of the results of Section 2.5 in T. Kato [1].
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Exercises for Chapter 2

2.1 Continuity of convex functions.
LetE be a Banach space and let ϕ : E → (−∞,+∞] be a convex l.s.c. function.

Assume x0 ∈ IntD(ϕ).

1. Prove that there exist two constants R > 0 and M such that

ϕ(x) ≤ M ∀x ∈ E with ‖x − x0‖ ≤ R.

[Hint: Given an appropriate ρ > 0, consider the sets

Fn = {x ∈ E; ‖x − x0‖ ≤ ρ and ϕ(x) ≤ n}.]
2. Prove that ∀r < R, ∃L ≥ 0 such that

|ϕ(x1)− ϕ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ E with ‖xi − x0‖ ≤ r, i = 1, 2.

More precisely, one may choose L = 2[M−ϕ(x0)]
R−r .

2.2 Let E be a vector space and let p : E → R be a function with the following
three properties:

(i) p(x + y) ≤ p(x)+ p(y) ∀x, y ∈ E,
(ii) for each fixed x ∈ E the function λ 
→ p(λx) is continuous from R into R,

(iii) whenever a sequence (yn) inE satisfies p(yn) → 0, then p(λyn) → 0 for every
λ ∈ R.

Assume that (xn) is a sequence in E such that p(xn) → 0 and (αn) is a bounded
sequence in R. Prove that p(0) = 0 and that p(αnxn) → 0.

[Hint: Given ε > 0 consider the sets

Fn = {λ ∈ R; |p(λxk)| ≤ ε, ∀k ≥ n}.]
Deduce that if (xn) is a sequence in E such that p(xn − x) → 0 for some x ∈ E,
and (αn) is a sequence in R such that αn → α, then p(αnxn) → p(αx).

2.3 Let E and F be two Banach spaces and let (Tn) be a sequence in L(E, F ).
Assume that for every x ∈ E, Tnx converges as n → ∞ to a limit denoted by T x.
Show that if xn → x in E, then Tnxn → T x in F.

2.4 Let E and F be two Banach spaces and let a : E × F → R be a bilinear form
satisfying:

(i) for each fixed x ∈ E, the map y 
→ a(x, y) is continuous;
(ii) for each fixed y ∈ F , the map x 
→ a(x, y) is continuous.

Prove that there exists a constant C ≥ 0 such that

|a(x, y)| ≤ C‖x‖ ‖y‖ ∀x ∈ E, ∀y ∈ F.
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[Hint: Introduce a linear operator T : E → F� and prove that T is bounded with
the help of Corollary 2.5.]

2.5 Let E be a Banach space and let εn be a sequence of positive numbers such
that lim εn = 0. Further, let (fn) be a sequence in E� satisfying the property

{
∃r > 0, ∀x ∈ E with ‖x‖ < r, ∃C(x) ∈ R such that

〈fn, x〉 ≤ εn‖fn‖ + C(x) ∀n.
Prove that (fn) is bounded.

[Hint: Introduce gn = fn/(1 + εn‖fn‖).]
2.6 Locally bounded nonlinear monotone operators.

Let E be Banach space and let D(A) be any subset in E. A (nonlinear) map
A : D(A) ⊂ E → E� is said to be monotone if it satisfies

〈Ax − Ay, x − y〉 ≥ 0 ∀x, y ∈ D(A).
1. Let x0 ∈ IntD(A). Prove that there exist two constants R > 0 and C such that

‖Ax‖ ≤ C ∀x ∈ D(A) with ‖x − x0‖ < R.

[Hint: Argue by contradiction and construct a sequence (xn) in D(A) such that
xn → x0 and ‖Axn‖ → ∞. Choose r > 0 such that B(x0, r) ⊂ D(A). Use the
monotonicity of A at xn and at (x0 + x) with ‖x‖ < r . Apply Exercise 2.5.]

2. Prove the same conclusion for a point x0 ∈ Int[convD(A)].
3. Extend the conclusion of question 1 to the case of A multivalued, i.e., for every
x ∈ D(A),Ax is a nonempty subset ofE�; the monotonicity is defined as follows:

〈f − g, x − y〉 ≥ 0 ∀x, y ∈ D(A), ∀f ∈ Ax, ∀g ∈ Ay.

2.7 Let α = (αn) be a given sequence of real numbers and let 1 ≤ p ≤ ∞. Assume
that

∑ |αn||xn| < ∞ for every element x = (xn) in �p (the space �p is defined in
Section 11.3).

Prove that α ∈ �p′
.

2.8 Let E be a Banach space and let T : E → E� be a linear operator satisfying

〈T x, x〉 ≥ 0 ∀x ∈ E.
Prove that T is a bounded operator.

[Two methods are possible: (i) Use Exercise 2.6 or (ii) Apply the closed graph
theorem.]

2.9 Let E be a Banach space and let T : E → E� be a linear operator satisfying

〈T x, y〉 = 〈Ty, x〉 ∀x, y ∈ E.
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Prove that T is a bounded operator.

2.10 Let E and F be two Banach spaces and let T ∈ L(E, F ) be surjective.

1. LetM be any subset ofE. Prove that T (M) is closed in F iffM+N(T ) is closed
in E.

2. Deduce that if M is a closed vector space in E and dimN(T ) < ∞, then T (M)
is closed.

2.11 Let E be a Banach space, F = �1, and let T ∈ L(E, F ) be surjective. Prove
that there exists S ∈ L(F,E) such that T ◦ S = IF , i.e., S has a right inverse of T .

[Hint: Do not apply Theorem 2.12; try to define S explicitly using the canonical
basis of �1.]

2.12 Let E and F be two Banach spaces with norms ‖ ‖E and ‖ ‖F . Let T ∈
L(E, F ) be such that R(T ) is closed and dimN(T ) < ∞. Let | | denote another
norm on E that is weaker than ‖ ‖E , i.e., |x| ≤ M‖x‖E ∀x ∈ E.

Prove that there exists a constant C such that

‖x‖E ≤ C(‖T x‖F + |x|) ∀x ∈ E.
[Hint: Argue by contradiction.]

2.13 Let E and F be two Banach spaces. Prove that the set

� = {T ∈ L(E, F ); T admits a left inverse}
is open in L(E, F ).

[Hint: Prove first that the set

O = {T ∈ L(E, F ); T is bijective}
is open in L(E, F ).]

2.14 Let E and F be two Banach spaces

1. Let T ∈ L(E, F ). Prove that R(T ) is closed iff there exists a constant C such
that

dist(x,N(T )) ≤ C‖T x‖ ∀x ∈ E.
[Hint: Use the quotient space E/N(T ); see Section 11.2.]

2. Let A : D(A) ⊂ E → F be a closed unbounded operator.
Prove that R(A) is closed iff there exists a constant C such that

dist(u,N(A)) ≤ C‖Au‖ ∀u ∈ D(A).
[Hint: Consider the operator T : E0 → F , where E0 = D(A) with the graph
norm and T = A.]
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2.15 Let E1, E2, and F be three Banach spaces. Let T1 ∈ L(E1, F ) and let
T2 ∈ L(E2, F ) be such that

R(T1) ∩ R(T2) = {0} and R(T1)+ R(T2) = F.

Prove that R(T1) and R(T2) are closed.
[Hint: Apply Exercise 2.10 to the map T : E1 × E2 → F defined by

T (x1, x2) = T1x1 + T2x2.]

2.16 LetE be a Banach space. LetG and L be two closed subspaces ofE. Assume
that there exists a constant C such that

dist(x,G ∩ L) ≤ C dist(x, L), ∀x ∈ G.
Prove that G+ L is closed.

2.17 Let E = C([0, 1]) with its usual norm. Consider the operator A : D(A) ⊂
E → E defined by

D(A) = C1([0, 1]) and Au = u′ = du

dt
.

1. Check that D(A) = E.
2. Is A closed?
3. Consider the operator B : D(B) ⊂ E → E defined by

D(B) = C2([0, 1]) and Bu = u′ = du

dt
.

Is B closed?

2.18 Let E and F be two Banach spaces and let A : D(A) ⊂ E → F be a densely
defined unbounded operator.

1. Prove that N(A�) = R(A)⊥ and N(A) ⊂ R(A�)⊥.
2. Assuming that A is also closed prove that N(A) = R(A�)⊥.

[Try to find direct arguments and do not rely on the proof of Corollary 2.18. For
question 2 argue by contradiction: suppose there is some u ∈ R(A�)⊥ such that
[u, 0] /∈ G(A) and apply Hahn–Banach.]

2.19 Let E be a Banach space and let A : D(A) ⊂ E → E� be a densely defined
unbounded operator.

1. Assume that there exists a constant C such that

〈Au, u〉 ≥ −C‖Au‖2 ∀u ∈ D(A).(1)

Prove that N(A) ⊂ N(A�).
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2. Conversely, assume thatN(A) ⊂ N(A�). Also, assume thatA is closed andR(A)
is closed. Prove that there exists a constant C such that (1) holds.

2.20 Let E and F be two Banach spaces. Let T ∈ L(E, F ) and let A : D(A) ⊂
E → F be an unbounded operator that is densely defined and closed. Consider the
operator B : D(B) ⊂ E → F defined by

D(B) = D(A), B = A+ T .

1. Prove that B is closed.
2. Prove that D(B�) = D(A�) and B� = A� + T �.

2.21 LetE be an infinite-dimensional Banach space. Fix an element a ∈ E, a 	= 0,
and a discontinuous linear functional f : E → R (such functionals exist; see
Exercise 1.5). Consider the operator A : E → E defined by

D(A) = E, Ax = x − f (x)a.

1. Determine N(A) and R(A).
2. Is A closed?
3. Determine A� (define D(A�) carefully).
4. Determine N(A�) and R(A�).
5. Compare N(A) with R(A�)⊥ as well as N(A�) with R(A)⊥.
6. Compare with the results of Exercise 2.18.

2.22 The purpose of this exercise is to construct an unbounded operatorA : D(A) ⊂
E → E that is densely defined, closed, and such that D(A�) 	= E�.

Let E = �1, so that E� = �∞. Consider the operator A : D(A) ⊂ E → E

defined by

D(A) =
{
u = (un) ∈ �1; (nun) ∈ �1

}
and Au = (nun).

1. Check that A is densely defined and closed.
2. Determine D(A�), A�, and D(A�).

2.23 LetE = �1, so thatE� = �∞. Consider the operator T ∈ L(E,E) defined by

T u =
(

1

n
un

)

n≥1
for every u = (un)n≥1 in �1.

Determine N(T ), N(T )⊥, T �, R(T �), and R(T �).
Compare with Corollary 2.18.
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2.24 Let E, F , and G be three Banach spaces. Let A : D(A) ⊂ E → F be a
densely defined unbounded operator. Let T ∈ L(F,G) and consider the operator
B : D(B) ⊂ E → G defined by D(B) = D(A) and B = T ◦ A.
1. Determine B�.
2. Prove (by an example) that B need not be closed even if A is closed.

2.25 Let E, F , and G be three Banach spaces.

1. Let T ∈ L(E, F ) and S ∈ L(F,G). Prove that

(S ◦ T )� = T � ◦ S�.
2. Assume thatT ∈ L(E, F ) is bijective. Prove thatT � is bijective and that (T �)−1 =
(T −1)�.

2.26 Let E and F be two Banach spaces and let T ∈ L(E, F ). Let ψ : F →
(−∞,+∞] be a convex function. Assume that there exists some element in R(T )
where ψ is finite and continuous.

Set
ϕ(x) = ψ(T x), x ∈ E.

Prove that for every f ∈ F�

ϕ�(T �f ) = inf
g∈N(T �) ψ

�(f − g) = min
g∈N(T �) ψ

�(f − g).

2.27 Le E, F be two Banach spaces and let T ∈ L(E, F ). Assume that R(T ) has
finite codimension, i.e., there exists a finite-dimensional subspace X of F such that
X + R(T ) = F and X ∩ R(T ) = {0}.

Prove that R(T ) is closed.



Chapter 3
Weak Topologies. Reflexive Spaces. Separable
Spaces. Uniform Convexity

3.1 The Coarsest Topology for Which a Collection of Maps
Becomes Continuous

We begin this chapter by recalling a well-known concept in topology. Suppose X is
a set (without any structure) and (Yi)i∈I is a collection of topological spaces. We are
given a collection of maps (ϕi)i∈I such that for every i ∈ I , ϕi maps X into Yi and
we consider the following:

Problem 1. Construct a topology on X that makes all the maps (ϕi)i∈I continuous.
If possible, find a topology T that is the most economical in the sense that it has the
fewest open sets.

Note that if we equip X with the discrete topology (i.e., every subset of X is
open), then every map ϕi is continuous; of course, this topology is far from being
the “cheapest”; in fact, it is the most expensive one! As we shall see, there is always
a (unique) “cheapest” topology T on X for which every map ϕi is continuous. It is
called the coarsest or weakest topology (or sometimes the initial topology) associated
to the collection (ϕi)i∈I .

If ωi ⊂ Yi is any open set, then ϕ−1
i (ωi) is necessarily an open set in T . As ωi

runs through the family of open sets of Yi and i runs through I we obtain a family
of subsets of X, each of which must be open in the topology T . Let us denote this
family by (Uλ)λ∈�. Of course, this family need not be a topology. Therefore, we are
led to the following:

Problem 2. Given a set X and a family (Uλ)λ∈� of subsets in X, construct the
cheapest topology T on X in which Uλ is open for all λ ∈ �.

In other words, we must find the cheapest family F of subsets ofX that is stable1

by ∩finite and ∪arbitrary and with the property that Uλ ∈ F for every λ ∈ �. The
construction goes as follows. First,consider finite intersections of sets in (Uλ)λ∈�,
i.e., ∩λ∈� Uλ where � ⊂ � is finite. In this way we obtain a new family, called
, of

1 Meaning that a finite intersection of sets in F and an arbitrary union of sets in F both belong
to F .
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subsets of X which includes (Uλ)λ∈� and which is stable under ∩finite. However, it
need not be stable under ∪arbitrary. Therefore, we consider next the family F obtained
by forming arbitrary unions of elements from 
. It is clear that F is stable under
∪arbitrary. It is not clear whether F is stable under ∩finite; but indeed we have the
following result:

Lemma 3.1. The family F is stable under ∩finite.

The proof of Lemma 3.1—a delightful exercise in set theory—is left to the reader;
see e.g., G. Folland [2]. It is now obvious that the above construction gives the
cheapest topology with the required property.

Remark 1. One cannot reverse the order of operations in the construction of F . It
would have been equally natural to start with ∪arbitrary and then to take ∩finite. The
outcome is a family that is stable under ∩finite; but it is not stable under ∪arbitrary.
One would have to consider once more ∪arbitrary and the process then stabilizes.

To summarize this discussion we find that the open sets of the topology T are
obtained by considering first ∩finite of sets of the form ϕ−1

i (ωi) and then ∪arbitrary. It
follows that for every x ∈ X, we obtain a basis of neighborhoods of x for the topology
T by considering sets of the form ∩finite ϕ

−1
i (Vi), where Vi is a neighborhood of

ϕi(x) in Yi . Recall that in a topological space, a basis of neighborhoods of a point
x is a family of neighborhoods of x, such that every neighborhood of x contains a
neighborhood from the basis.

In what follows we equip X with the topology T that is the weakest topology
associated to the collection (ϕi)i∈I . Here are two simple properties of the topology T .

• Proposition 3.1. Let (xn) be a sequence in X. Then xn → x (in T ) if and only if
ϕi(xn) → ϕi(x) for every i ∈ I .

Proof. If xn → x, then ϕi(xn) → ϕi(x) for each i, since each ϕi is continuous for
T . Conversely, let U be a neighborhood of x. From the preceding discussion, we
may always assume that U has the form U = ∩i∈J ϕ−1

i (Vi) with J ⊂ I finite. For
each i ∈ J there is some integerNi such that ϕi(xn) ∈ Vi for n ≥ Ni . It follows that
xn ∈ U for n ≥ N = maxi∈JNi .

• Proposition 3.2. Let Z be a topological space and let ψ be a map from Z into X.
Then ψ is continuous if and only if ϕi ◦ ψ is continuous from Z into Yi for every
i ∈ I .

Proof. If ψ is continuous then ϕi ◦ψ is also continuous for every i ∈ I . Conversely,
we have to prove that ψ−1(U) is open (in Z) for every open set U (in X). But we
know that U has the form U = ∪arbitrary ∩finite ϕ

−1
i (ωi), where ωi is open in Yi .

Therefore

ψ−1(U) = ∪
arbitrary

∩
finite

ψ−1[ϕ−1
i (ωi)] = ∪

arbitrary
∩

finite
(ϕi ◦ ψ)−1(ωi),

which is open in Z since every map ϕi ◦ ψ is continuous.
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3.2 Definition and Elementary Properties of the Weak Topology
σ(E, E�)

Let E be a Banach space and let f ∈ E�. We denote by ϕf : E → R the linear
functional ϕf (x) = 〈f, x〉. As f runs through E� we obtain a collection (ϕf )f∈E�
of maps from E into R. We now ignore the usual topology on E (associated to ‖ ‖)
and define a new topology on the set E as follows:

Definition. The weak topology σ(E,E�) on E is the coarsest topology associated
to the collection (ϕf )f∈E� (in the sense of Section 3.1 with X = E, Yi = R, for
each i, and I = E�).

Note that every map ϕf is continuous for the usual topology and therefore the
weak topology is weaker than the usual topology.

Proposition 3.3. The weak topology σ(E,E�) is Hausdorff.

Proof. Given x1, x2 ∈ E with x1 	= x2 we have to find two open sets O1 and O2
for the weak topology σ(E,E�) such that x1 ∈ O1, x2 ∈ O2, and O1 ∩ O2 = ∅.
By Hahn–Banach (second geometric form) there exists a closed hyperplane strictly
separating {x1} and {x2}. Thus, there exist some f ∈ E� and some α ∈ R such that

〈f, x1〉 < α < 〈f, x2〉.
Set

O1 = {x ∈ E; 〈f, x〉 < α} = ϕ−1
f ((−∞, α)) ,

O2 = {x ∈ E; 〈f, x〉 > α} = ϕ−1
f ((α,+∞)) .

Clearly, O1 and O2 are open for σ(E,E�) and they satisfy the required properties.

• Proposition 3.4. Let x0 ∈ E; given ε > 0 and a finite set {f1, f2, . . . , fk} in E�

consider

V = V (f1, f2, . . . , fk; ε) = {x ∈ E; |〈fi, x − x0〉| < ε ∀i = 1, 2, . . . , k} .
Then V is a neighborhood of x0 for the topology σ(E,E�). Moreover, we obtain a
basis of neighborhoods of x0 for σ(E,E�) by varying ε, k, and the fi’s in E�.

Proof. Clearly V = ∩ki=1 ϕ
−1
fi
((ai − ε, ai + ε)), with ai = 〈fi, x0〉, is open for the

topology σ(E,E�) and contains x0. Conversely, let U be a neighborhood of x0 for
σ(E,E�). From the discussion in Section 3.1 we know that there exists an open setW
containing x0,W ⊂ U , of the formW = ∩finiteϕ

−1
fi
(ωi), where ωi is a neighborhood

(in R) of ai = 〈fi, x0〉. Hence there exists ε > 0 such that (ai − ε, ai + ε) ⊂ ωi for
every i. It follows that x0 ∈ V ⊂ W ⊂ U .

Notation. If a sequence (xn) in E converges to x in the weak topology σ(E,E�)
we shall write
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xn ⇀ x.

To avoid any confusion we shall sometimes say, “xn ⇀ x weakly in σ(E,E�).”
In order to be totally clear we shall sometimes emphasize strong convergence by
saying, “xn → x strongly,” meaning that ‖xn − x‖ → 0.

• Proposition 3.5. Let (xn) be a sequence in E. Then

(i) [xn ⇀ x weakly in σ(E,E�)] ⇔ [〈f, xn〉 → 〈f, x〉 ∀f ∈ E�].
(ii) If xn → x strongly, then xn ⇀ x weakly in σ(E,E�).

(iii) If xn ⇀ x weakly in σ(E,E�), then (‖xn‖) is bounded and ‖x‖ ≤ lim inf ‖xn‖.
(iv) If xn ⇀ x weakly in σ(E,E�) and if fn → f strongly inE� (i.e., ‖fn−f ‖E� →

0), then 〈fn, xn〉 → 〈f, x〉.
Proof.

(i) follows from Proposition 3.1 and the definition of the weak topology σ(E,E�).
(ii) follows from (i), since |〈f, xn〉 − 〈f, x〉| ≤ ‖f ‖ ‖xn − x‖; it is also clear from

the fact that the weak topology is weaker than the strong topology.
(iii) follows from the uniform boundedness principle (see Corollary 2.4), since for

every f ∈ E� the set (〈f, xn〉)n is bounded. Passing to the limit in the inequality

|〈f, xn〉| ≤ ‖f ‖ ‖xn‖,
we obtain

|〈f, x〉| ≤ ‖f ‖ lim inf ‖xn‖,
which implies (by Corollary 1.4) that

‖x‖ = sup
‖f ‖≤1

|〈f, x〉| ≤ lim inf ‖xn‖.

(iv) follows from the inequality

|〈fn, xn〉−〈f, x〉| ≤ |〈fn−f, xn〉|+|〈f, xn−x〉| ≤ ‖fn−f ‖ ‖xn‖+|〈f, xn−x〉|,
combined with (i) and (iii).

• Proposition 3.6. When E is finite-dimensional, the weak topology σ(E,E�) and
the usual topology are the same. In particular, a sequence (xn) converges weakly if
and only if it converges strongly.

Proof. Since the weak topology has always fewer open sets than the strong topology,
it suffices to check that every strongly open set is weakly open. Let x0 ∈ E and let
U be a neighborhood of x0 in the strong topology. We have to find a neighborhood
V of x0 in the weak topology σ(E,E�) such that V ⊂ U . In other words, we have
to find f1, f2, . . . , fk in E� and ε > 0 such that

V = {x ∈ E; |〈fi, x − x0〉| < ε ∀i = 1, 2, . . . , k} ⊂ U.
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Fix r > 0 such that B(x0, r) ⊂ U . Pick a basis e1, e2, . . . , ek in E such that
‖ei‖ = 1, ∀i. Every x ∈ E admits a decomposition x = ∑k

i=1 xiei , and the maps
x 
→ xi are continuous linear functionals on E denoted by fi . We have

‖x − x0‖ ≤
k∑

i=1

|〈fi, x − x0〉| < kε

for every x ∈ V . Choosing ε = r/k, we obtain V ⊂ U .

Remark 2. Open (resp. closed) sets in the weak topology σ(E,E�) are always open
(resp. closed) in the strong topology. In any infinite-dimensional space the weak
topology is strictly coarser than the strong topology; i.e., there exist open (resp.
closed) sets in the strong topology that are not open (resp. closed) in the weak
topology. Here are two examples:

Example 1. The unit sphere S = {x ∈ E; ‖x‖ = 1}, with E infinite-dimensional, is
never closed in the weak topology σ(E,E�). More precisely, we have

(1) S
σ(E,E�) = BE,

where S
σ(E,E�)

denotes the closure of S in the topology σ(E,E�) and BE (already
defined in Chapter 2) denotes the closed unit ball in E,

BE = {x ∈ E; ‖x‖ ≤ 1}.

First let us check that every x0 ∈ E with ‖x0‖ < 1 belongs to S
σ(E,E�)

. Indeed,
let V be a neighborhood of x0 in σ(E,E�). We have to prove that V ∩ S 	= ∅. In
view of Proposition 3.4 we may always assume that V has the form

V = {x ∈ E; |〈fi, x − x0〉| < ε ∀i = 1, 2, . . . , k}
with ε > 0 and f1, f2, . . . , fk ∈ E�. Fix y0 ∈ E, y0 	= 0, such that

〈fi, y0〉 = 0 ∀i = 1, 2, . . . , k.

[Such a y0 exists; otherwise, the map ϕ : E → R
k defined by ϕ(x) =

(〈fi, x〉)1≤i≤k would be injective and ϕ would be an isomorphism from E onto
ϕ(E), and thus dimE ≤ k, which contradicts the assumption that E is infinite-
dimensional.]2 The functiong(t) = ‖x0+ty0‖ is continuous on [0,∞)withg(0) < 1
and limt→+∞ g(t) = +∞. Hence there exists some t0 > 0 such that ‖x0+t0y0‖ = 1.
It follows that x0 + t0y0 ∈ V ∩ S, and thus we have established that

S ⊂ BE ⊂ S
σ(E,E�)

.

2 The geometric interpretation of this construction is the following. WhenE is infinite-dimensional,
every neighborhood V of x0 in the topology σ(E,E�) contains a line passing through x0, even a
“huge” affine space passing through x0.



60 3 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity

In order to complete the proof of (1) it suffices to know that BE is closed in the
topology σ(E,E�). But we have

BE =
⋂

f∈E�
‖f ‖≤1

{x ∈ E; |〈f, x〉| ≤ 1},

which is an intersection of weakly closed sets.

Example 2. The unit ball U = {x ∈ E; ‖x‖ < 1}, with E infinite-dimensional, is
never open in the weak topology σ(E,E�). Suppose, by contradiction, that U is
weakly open. Then its complement Uc = {x ∈ E; ‖x‖ ≥ 1} is weakly closed. It
follows that S = BE ∩ Uc is also weakly closed; this contradicts Example 1.

� Remark 3. In infinite-dimensional spaces the weak topology is never metrizable,
i.e., there is no metric (and a fortiori no norm) on E that induces on E the weak
topology σ(E,E�); see Exercise 3.8. However, as we shall see later (Theorem 3.29),
if E� is separable one can define a norm on E that induces on bounded sets of E the
weak topology σ(E,E�).

� Remark 4. Usually, in infinite-dimensional spaces, there exist sequences that con-
verge weakly and do not converge strongly. For example, if E� is separable or if E
is reflexive one can construct a sequence (xn) in E such that ‖xn‖ = 1 and xn ⇀ 0
weakly (see Exercise 3.22). However, there are infinite-dimensional spaces with the
property that every weakly convergent sequence is strongly convergent. For exam-
ple, �1 has that unusual property (see Problem 8). Such spaces are quite “rare” and
somewhat “pathological.” This strange fact does not contradict Remark 2, which as-
serts that in infinite-dimensional spaces, the weak topology and the strong topology
are always distinct: the weak topology is strictly coarser than the strong topology.
Keep in mind that two metric (or metrizable) spaces with the same convergent se-
quences have identical topologies; however, if two topological spaces have the same
convergent sequences they need not have identical topologies.

3.3 Weak Topology, Convex Sets, and Linear Operators

Every weakly closed set is strongly closed and the converse is false in infinite-
dimensional spaces (see Remark 2). However, it is very useful to know that for
convex sets, weakly closed = strongly closed:

• Theorem 3.7. LetC be a convex subset ofE. ThenC is closed in the weak topology
σ(E,E�) if and only if it is closed in the strong topology.

Proof. Assume that C is closed in the strong topology and let us prove that C is
closed in the weak topology. We shall check that the complement Cc of C is open in
the weak topology. To this end, let x0 /∈ C. By Hahn–Banach there exists a closed
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hyperplane strictly separating {x0} and C. Thus, there exist some f ∈ E� and some
α ∈ R such that

〈f, x0〉 < α < 〈f, y〉 ∀y ∈ C.
Set

V = {x ∈ E; 〈f, x〉 < α};
so that x0 ∈ V , V ∩ C = ∅ (i.e., V ⊂ Cc) and V is open in the weak topology.

Corollary 3.8 (Mazur). Assume (xn) converges weakly to x. Then there exists a
sequence (yn) made up of convex combinations of the xn’s that converges strongly
to x.

Proof. LetC = conv(∪∞
p=1{xp}) denote the convex hull of the xn’s. Since x belongs

to the weak closure of ∪∞
p=1{xp} it belongs a fortiori to the weak closure of C. By

Theorem 3.7, x ∈ C, the strong closure of C, and the conclusion follows.

Remark 5. There are some variants of Corollary 3.8 (see Exercises 3.4 and 5.24).
Also, note that the proof of Theorem 3.7 shows that every closed convex set C
coincides with the intersection of all the closed half-spaces containing C.

• Corollary 3.9. Assume that ϕ : E → (−∞+∞] is convex and l.s.c. in the strong
topology. Then ϕ is l.s.c. in the weak topology σ(E,E�).

Proof. For every λ ∈ R the set

A = {x ∈ E; ϕ(x) ≤ λ}
is convex and strongly closed. By Theorem 3.7 it is weakly closed and thus ϕ is
weakly l.s.c.

• Remark 6. It may be rather difficult in practice to prove that a function is l.s.c. in
the weak topology. Corollary 3.9 is often used as follows:

ϕ convex and strongly continuous ⇒ ϕ weakly l.s.c.

For example, the function ϕ(x) = ‖x‖ is convex and strongly continuous; thus it is
weakly l.s.c. In particular, if xn ⇀ x weakly, it follows that ‖x‖ ≤ lim inf ‖xn‖ (see
also Proposition 3.5).

Theorem 3.10. Let E and F be two Banach spaces and let T be a linear operator
from E into F . Assume that T is continuous in the strong topologies. Then T is
continuous from E weak σ(E,E�) into F weak σ(F, F �) and conversely.

Proof. In view of Proposition 3.2 it suffices to check that for every f ∈ F� the map
x 
→ 〈f, T x〉 is continuous fromEweak σ(E,E�) into R. But the map x 
→ 〈f, T x〉
is a continuous linear functional on E. Therefore, it is also continuous in the weak
topology σ(E,E�).
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Conversely, suppose that T is continuous from E weak into F weak. ThenG(T )
is closed inE×F equipped with the product topology σ(E,E�)×σ(F, F �), which
is clearly the same as σ(E × F, (E × F)�). It follows that G(T ) is strongly closed
(any weakly closed set is strongly closed). We conclude with the help of the closed
graph theorem (Theorem 2.9) that T is continuous from E strong into F strong.

Remark 7. The argument above shows more: that if a linear operator T is continuous
from E strong into F weak then T is continuous from E strong into F strong. As
a consequence, for linear operators, the following continuity properties are all the
same: S → S, W → W , S → W (S = strong, W = weak). On the other hand,
very few linear operators are continuous W → S; this happens if and only if T is
continuous S → S and, moreover, dimR(T ) < ∞ (see Exercise 6.7).

Also, note that in general, nonlinear maps that are continuous from E strong into
F strong are not continuous from E weak into F weak (see, e.g., Exercise 4.20).
This is a major source of difficulties in nonlinear problems.

3.4 The Weak� Topology σ(E�, E)

So far, we have two topologies on E�:

(a) the usual (strong) topology associated to the norm of E�,
(b) the weak topology σ(E�,E��), obtained by performing on E� the construction

of Section 3.3.

We are now going to define a third topology on E� called the weak� topology and
denoted by σ(E�,E) (the � is here to remind us that this topology is defined only on
dual spaces). For every x ∈ E consider the linear functional ϕx : E� → R defined
by f 
→ ϕx(f ) = 〈f, x〉. As x runs through E we obtain a collection (ϕx)x∈E of
maps from E� into R.

Definition. The weak� topology,σ(E�,E), is the coarsest topology onE� associated
to the collection (ϕx)x∈E (in the sense of Section 3.1 with X = E�, Yi = R, for all
i, and I = E).

SinceE ⊂ E��, it is clear that the topology σ(E�,E) is coarser than the topology
σ(E�,E��); i.e., the topology σ(E�,E) has fewer open sets (resp. closed sets) than
the topology σ(E�,E��), which in turn has fewer open sets (resp. closed sets) than
the strong topology.

Remark 8. The reader probably wonders why there is such hysteria over weak topolo-
gies! The reason is the following: a coarser topology has more compact sets. For
example, the closed unit ball BE� in E�, which is never compact in the strong topol-
ogy (unless dimE < ∞; see Theorem 6.5), is always compact in the weak� topology
(see Theorem 3.16). Knowing the basic role of compact sets—for example, in exis-
tence mechanisms such as minimization—it is easy to understand the importance of
the weak� topology.
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Proposition 3.11. The weak� topology is Hausdorff.

Proof. Given f1, f2 ∈ E� with f1 	= f2 there exists some x ∈ E such that 〈f1, x〉 	=
〈f2, x〉 (this does not use Hahn–Banach, but just the fact that f1 	= f2). Assume for
example that 〈f1, x〉 < 〈f2, x〉 and choose α such that

〈f1, x〉 < α < 〈f2, x〉.
Set

O1 = {f ∈ E�; 〈f, x〉 < α} = ϕ−1
x ((−∞, α)),

O2 = {f ∈ E�; 〈f, x〉 > α} = ϕ−1
x ((α,+∞)).

Then O1 and O2 are open sets in σ(E�,E) such that f1 ∈ O1, f2 ∈ O2, and
O1 ∩O2 = ∅.

Proposition 3.12. Let f0 ∈ E�; given a finite set {x1, x2, . . . , xk} in E and ε > 0,
consider

V = V (x1, x2, . . . , xk; ε) = {
f ∈ E�; |〈f − f0, xi〉| < ε ∀i = 1, 2, . . . , k

}
.

Then V is a neighborhood of f0 for the topology σ(E�,E). Moreover, we obtain a
basis of neighborhoods of f0 for σ(E�,E) by varying ε, k, and the xi’s in E.

Proof. Same as the proof of Proposition 3.4.

Notation. If a sequence (fn) in E� converges to f in the weak� topology we shall
write

fn
�
⇀ f.

To avoid any confusion we shall sometimes emphasize “fn
�
⇀ f in σ(E�,E),”

“fn ⇀ f in σ(E�,E��),” and “fn → f strongly.”

• Proposition 3.13. Let (fn) be a sequence in E�. Then

(i) [fn �
⇀ f in σ(E�,E)] ⇔ [〈fn, x〉 → 〈f, x〉, ∀x ∈ E].

(ii) If fn → f strongly, then fn ⇀ f in σ(E�,E��).

If fn ⇀ f in σ(E�,E��), then fn
�
⇀ f in σ(E�,E).

(iii) If fn
�
⇀ f in σ(E�,E) then (‖fn‖) is bounded and ‖f ‖ ≤ lim inf ‖fn‖.

(iv) If fn
�
⇀ f in σ(E�,E) and if xn → x strongly in E, then 〈fn, xn〉 → 〈f, x〉.

Proof. Copy the proof of Proposition 3.5.

Remark 9. Assume fn
�
⇀ f in σ(E�,E) (or even fn ⇀ f in σ(E�,E��)) and

xn ⇀ x in σ(E,E�). One cannot conclude, in general, that 〈fn, xn〉 → 〈f, x〉 (it is
very easy to construct an example in Hilbert spaces).
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Remark 10. When E is a finite-dimensional space the three topologies (strong,
weak, weak�) on E� coincide. Indeed, the canonical injection J : E → E�� (see
Section 1.3) is surjective (since dimE = dimE��) and therefore σ(E�,E) =
σ(E�,E��).

� Proposition 3.14. Let ϕ : E� → R be a linear functional that is continuous for
the weak� topology. Then there exists some x0 ∈ E such that

ϕ(f ) = 〈f, x0〉 ∀f ∈ E�.
The proof relies on the following useful algebraic lemma:

Lemma 3.2. Let X be a vector space and let ϕ, ϕ1, ϕ2, . . . , ϕk be (k + 1) linear
functionals on X such that

(2) [ϕi(v) = 0 ∀i = 1, 2, . . . , k] ⇒ [ϕ(v) = 0].
Then there exist constants λ1, λ2, . . . , λk ∈ R such that ϕ = ∑k

i=1 λiϕi .

Proof of Lemma 3.2. Consider the map F : X → R
k+1 defined by

F(u) = [ϕ(u), ϕ1(u), ϕ2(u), . . . , ϕk(u)].
It follows from assumption (2) that a = [1, 0, 0, . . . , 0] does not belong to R(F).
Thus, one can strictly separate {a} and R(F) by some hyperplane in R

k+1; i.e., there
exist constants λ, λ1, λ2, . . . , λk and α such that

λ < α < λϕ(u)+
k∑

i=1

λiϕi(u) ∀u ∈ X.

It follows that

λϕ(u)+
k∑

i=1

λiϕi(u) = 0 ∀u ∈ X

and also λ < 0 (so that λ 	= 0).

Proof of Proposition 3.14. Since ϕ is continuous for the weak� topology, there exists
a neighborhood V of 0 for σ(E�,E) such that

|ϕ(f )| < 1 ∀f ∈ V.
We may always assume that

V = {f ∈ E�; |〈f, xi〉| < ε ∀i = 1, 2, . . . , k}
with xi ∈ E and ε > 0. In particular,

[〈f, xi〉 = 0 ∀i = 1, 2, . . . , k] ⇒ [ϕ(f ) = 0].
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It follows from Lemma 3.2 that

ϕ(f ) =
k∑

i=1

λi〈f, xi〉 =
〈

f,

k∑

i=1

λixi

〉

∀f ∈ E�.

� Corollary 3.15. Assume that H is a hyperplane in E� that is closed in σ(E�,E).
Then H has the form

H = {f ∈ E�; 〈f, x0〉 = α}
for some x0 ∈ E, x0 	= 0, and some α ∈ R.

Proof. H may be written as

H = {f ∈ E�; ϕ(f ) = α},
where ϕ is a linear functional onE�, ϕ 	≡ 0. Let f0 /∈ H and let V be a neighborhood
of f0 for the topology σ(E�,E) such that V ⊂ Hc. We may assume that

V = {f ∈ E�; |〈f − f0, xi〉| < ε ∀i = 1, 2, . . . , k}.
Since V is convex we find that either

(3) ϕ(f ) < α ∀f ∈ V
or

(3′) ϕ(f ) > α ∀f ∈ V.
Assuming, for example, that (3) holds, we obtain

ϕ(g) < α − ϕ(f0) ∀g ∈ W = V − f0,

and since −W = W we are led to

(4) |ϕ(g)| ≤ |α − ϕ(f0)| ∀g ∈ W.
It follows from (4) that ϕ is continuous at 0 for the topology σ(E�,E) (since W is
a neighborhood of 0). Applying Proposition 3.14, we conclude that there is some
x0 ∈ E such that

ϕ(f ) = 〈f, x0〉 ∀f ∈ E�.
Remark 11. Assume that the canonical injection J : E → E�� is not surjective.
Then the topology σ(E�,E) is strictly coarser than the topology σ(E�,E��). For
example, let ξ ∈ E�� with ξ /∈ J (E). Then the set

H = {f ∈ E�; 〈ξ, f 〉 = 0}
is closed in σ(E�,E��) but—in view of Corollary 3.15—it is not closed in σ(E�,E).
We also learn from this example that convex sets that are closed in the strong topology
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need not be closed in the weak� topology. There are two types of closed convex sets
in E�:

(a) the convex sets that are strongly closed (= closed in the topology σ(E�,E��) by
Theorem 3.7),

(b) the convex sets that are closed in σ(E�,E).

• Theorem 3.16 (Banach–Alaoglu–Bourbaki). The closed unit ball

BE� = {f ∈ E�; ‖f ‖ ≤ 1}
is compact in the weak� topology σ(E�,E).

Remark 12. The compactness of BE� is the most essential property of the weak�

topology; see also Remark 8.

Proof. Consider the Cartesian product Y = R
E , which consists of all maps from

E into R; we denote elements of Y by ω = (ωx)x∈E with ωx ∈ R. The space
Y is equipped with the standard product topology (see, e.g., H. L. Royden [1],
J. R. Munkres [1],A. Knapp [1], or J. Dixmier [1]), i.e., the coarsest topology on Y as-
sociated to the collection of mapsω 
→ ωx (as x runs throughE), which is, of course,
the same as the topology of pointwise convergence (see, e.g., J. R. Munkres [1]).
In what follows E� is systematically equipped with the weak� topology σ(E�,E).
Since E� consists of special maps from E into R (i.e., continuous linear maps),
we may consider E� as a subset of Y . More precisely, let 
 : E� → Y be the
canonical injection from E� into Y , so that 
(f ) = (ωx)x∈E with ωx = 〈f, x〉.
Clearly, 
 is continuous from E� into Y (use Proposition 3.2 and note that for
every fixed x ∈ E the map f ∈ E� 
→ (
(f ))x = 〈f, x〉 is continuous). The
inverse map 
−1 is also continuous from 
(E�) equipped with the Y topology)
into E�: indeed, using Proposition 3.2 once more, it suffices to check that for ev-
ery fixed x ∈ E the map ω 
→ 〈
−1(ω), x〉 is continuous on 
(E�), which is
obvious since 〈
−1(ω), x〉 = ωx (note that ω = 
(f ) for some f ∈ E� and
〈
−1(ω), x〉 = 〈f, x〉 = ωx). In other words, 
 is a homeomorphism from E� onto

(E�). On the other hand, it is clear that 
(BE�) = K , where K is defined by

K =
{

ω ∈ Y
∣
∣
∣
∣
|ωx | ≤ ‖x‖, ωx+y = ωx + ωy

and ωλx = λωx ∀λ ∈ R, ∀x, y ∈ E

}

.

In order to complete the proof of Theorem 3.16 it suffices to check thatK is a compact
subset of Y . Write K as K = K1 ∩K2, where

K1 = {ω ∈ Y ; |ωx | ≤ ‖x‖ ∀x ∈ E}
and

K2 = {
ω ∈ Y ;ωx+y = ωx + ωy and ωλx = λωx ∀λ ∈ R, ∀x, y ∈ E} .

The set K1 may also be written as a product of compact intervals
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K1 =
∏

x∈E
[−‖x‖,+‖x‖].

Let us recall that (arbitrary) products of compact spaces are compact—a deep theo-
rem due to Tychonoff; see, e.g., H. L. Royden [1], G. B. Folland [2], J. R. Munkres
[1], A. Knapp [1], or J. Dixmier [1]. Therefore K1 is compact. On the other hand,
K2 is closed in Y ; indeed, for each fixed λ ∈ R, x, y ∈ E the sets

Ax,y = {ω ∈ Y ;ωx+y − ωx − ωy = 0},
Bλ,x = {ω ∈ Y ;ωλx − λωx = 0},

are closed in Y (since the maps ω 
→ ωx+y − ωx − ωy and ω 
→ ωλx − λωx are
continuous on Y ) and we may write K2 as

K2 =
[ ⋂

x,y∈E
Ax,y

]
∩
[⋂

x∈E
λ∈R

Bλ,x

]
.

Finally, K is compact since it is the intersection of a compact set (K1) and a closed
set (K2).

3.5 Reflexive Spaces

Definition. LetE be a Banach space and let J : E → E�� be the canonical injection
fromE intoE�� (see Section 1.3). The spaceE is said to be reflexive if J is surjective,
i.e., J (E) = E��.

When E is reflexive, E�� is usually identified with E.

Remark 13. Many important spaces in analysis are reflexive. Clearly, finite-dimen-
sional spaces are reflexive (since dimE = dimE� = dimE��). As we shall see in
Chapter 4 (see also Chapter 11), Lp (and �p) spaces are reflexive for 1 < p < ∞. In
Chapter 5 we shall see that Hilbert spaces are reflexive. However, equally important
spaces in analysis are not reflexive; for example:

• L1 and L∞ (and �1, �∞) are not reflexive (see Chapters 4 and 11);
• C(K), the space of continuous functions on an infinite compact metric spaceK ,

is not reflexive (see Exercise 3.25).

� Remark 14. It is essential to use J in the above definition. R. C. James [1] has
constructed a striking example of a nonreflexive space with the property that there
exists a surjective isometry from E onto E��.

Our next result describes a basic property of reflexive spaces:

• Theorem 3.17 (Kakutani). Let E be a Banach space. Then E is reflexive if and
only if
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BE = {x ∈ E; ‖x‖ ≤ 1}
is compact in the weak topology σ(E,E�).

Proof. Assume first that E is reflexive, so that J (BE) = BE�� . We already know
(by Theorem 3.16) that BE�� is compact in the topology σ(E��, E�). Therefore, it
suffices to check that J−1 is continuous from E�� equipped with σ(E��, E�) with
values in E equipped with σ(E,E�). In view of Proposition 3.2, we have only to
prove that for every fixed f ∈ E� the map ξ 
→ 〈f, J−1ξ〉 is continuous on E��

equipped with σ(E��, E�). But 〈f, J−1ξ〉 = 〈ξ, f 〉, and the map ξ 
→ 〈ξ, f 〉 is
indeed continuous on E�� for the topology σ(E��, E�). Hence we have proved that
BE is compact in σ(E,E�).

The converse is more delicate and relies on the following two lemmas:

Lemma 3.3 (Helly). Let E be a Banach space. Let f1, f2, . . . , fk be given in E�

and let γ1, γ2, . . . , γk be given in R. The following properties are equivalent:

(i) ∀ε > 0 ∃xε ∈ E such that ‖xε‖ ≤ 1 and

|〈fi, xε〉 − γi | < ε ∀i = 1, 2, . . . , k,

(ii) |∑k
i=1 βiγi | ≤ ‖∑k

i=1 βifi‖ ∀β1, β2, . . . , βk ∈ R.

Proof. (i) ⇒ (ii). Fix β1, β2, . . . , βk in R and let S = ∑k
i=1 |βi |. It follows from (i)

that ∣
∣
∣
∣
∣

k∑

i=1

βi〈fi, xε〉 −
k∑

i=1

βiγi

∣
∣
∣
∣
∣
≤ εS

and therefore
∣
∣
∣
∣
∣

k∑

i=1

βiγi

∣
∣
∣
∣
∣
≤
∥
∥
∥
∥
∥

k∑

i=1

βifi

∥
∥
∥
∥
∥

‖xε‖ + εS ≤
∥
∥
∥
∥
∥

k∑

i=1

βifi

∥
∥
∥
∥
∥

+ εS.

Since this holds for every ε > 0, we obtain (ii).

(ii) ⇒ (i). Set γ = (γ1, γ2, . . . , γk) ∈ R
k and consider the map ϕ : E → R

k

defined by
ϕ(x) = (〈f1, x〉, . . . , 〈fk, x〉).

Property (i) says precisely that γ ∈ ϕ(BE). Suppose, by contradiction, that (i)
fails, so that γ /∈ ϕ(BE). Hence {γ } and ϕ(BE) may be strictly separated in R

k by
some hyperplane; i.e., there exists some β = (β1, β2, . . . , βk) ∈ R

k and some α ∈ R

such that
β · ϕ(x) < α < β · γ ∀x ∈ BE.

It follows that 〈
k∑

i=1

βifi, x

〉

< α <

k∑

i=1

βiγi ∀x ∈ BE,
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and therefore ∥
∥
∥
∥
∥

k∑

i=1

βifi

∥
∥
∥
∥
∥

≤ α <

k∑

i=1

βiγi,

which contradicts (ii).

Lemma 3.4 (Goldstine). Let E be any Banach space. Then J (BE) is dense in BE��
with respect to the topology σ(E��, E�), and consequently J (E) is dense in E�� in
the topology σ(E��, E�).

Proof. Let ξ ∈ BE�� and let V be a neighborhood of ξ for the topology σ(E��, E�).
We must prove that V ∩ J (BE) 	= ∅. As usual, we may assume that V is of the form

V = {
η ∈ E��; |〈η − ξ, fi〉| < ε ∀i = 1, 2, . . . , k

}

for some given elements f1, f2, . . . , fk inE� and some ε > 0. We have to find some
x ∈ BE such that J (x) ∈ V , i.e.,

|〈fi, x〉 − 〈ξ, fi〉| < ε ∀i = 1, 2, . . . , k.

Set γi = 〈ξ, fi〉. In view of Lemma 3.3 it suffices to check that

∣
∣
∣
∣
∣

k∑

i=1

βiγi

∣
∣
∣
∣
∣
≤
∥
∥
∥
∥
∥

k∑

i=1

βifi

∥
∥
∥
∥
∥
,

which is clear since
∑k
i=1βiγi =

〈
ξ,
∑k
i=1βifi

〉
and ‖ξ‖ ≤ 1.

Remark 15. Note that J (BE) is closed in BE�� in the strong topology. Indeed, if
ξn = J (xn) → ξ we see that (xn) is a Cauchy sequence in BE (since J is an
isometry) and therefore xn → x, so that ξ = Jx. It follows that J (BE) is not dense
in BE�� in the strong topology, unless J (BE) = BE�� , i.e., E is reflexive.

Remark 16. See Problem 9 for an alternative proof of Lemma 3.4 (based on a variant
of Hahn–Banach in E��).

Proof of Theorem 3.17, concluded. The canonical injection J : E → E�� is always
continuous from σ(E,E�) into σ(E��, E�), since for every fixed f ∈ E� the map
x 
→ 〈Jx, f 〉 = 〈f, x〉 is continuous with respect to σ(E,E�). Assuming that BE
is compact in the topology σ(E,E�), we deduce that J (BE) is compact—and thus
closed—in E�� with respect to the topology σ(E��, E�). On the other hand, by
Lemma 3.4, J (BE) is dense in BE�� for the same topology. It follows that J (BE) =
BE�� and thus J (E) = E��.

In connection with the compactness properties of reflexive spaces we also have
the following two results:

• Theorem 3.18. Assume thatE is a reflexive Banach space and let (xn)be a bounded
sequence in E. Then there exists a subsequence (xnk ) that converges in the weak
topology σ(E,E�).
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The converse is also true, namely the following.

� Theorem 3.19 (Eberlein–Šmulian). Assume that E is a Banach space such
that every bounded sequence in E admits a weakly convergent subsequence (in
σ(E,E�)). Then E is reflexive.

The proof of Theorem 3.18 requires a little excursion through separable spaces
and will be given in Section 3.6. The proof of Theorem 3.19 is rather delicate and
is omitted; see, e.g., R. Holmes [1], K. Yosida [1], N. Dunford–J. T. Schwartz [1],
J. Diestel [2], or Problem 10.

Remark 17. In order to clarify the connection between Theorems 3.17, 3.18, and 3.19
it is useful to recall the following facts:

(i) If X is a metric space, then

[X is compact] ⇔ [every sequence in X admits a convergent subsequence].
(ii) There exist compact topological spacesX and some sequences inX without any

convergent subsequence. A typical example is X = BE� , which is compact in
the topology σ(E�,E); when E = �∞ it is easy to construct a sequence in X
without any convergent subsequence (see Exercise 3.18).

(iii) If X is a topological space with the property that every sequence admits a
convergent subsequence, then X need not be compact.

Here are some further properties of reflexive spaces.

• Proposition 3.20. Assume that E is a reflexive Banach space and letM ⊂ E be a
closed linear subspace of E. Then M is reflexive.

Proof. The spaceM—equipped with the norm of E—has a priori two distinct weak
topologies:

(a) the topology induced by σ(E,E�),
(b) its own weak topology σ(M,M�).

In fact, these two topologies are the same (since, by Hahn–Banach, every continu-
ous linear functional onM is the restriction toM of a continuous linear functional on
E). In view of Theorem 3.17, we have to check that BM is compact in the topology
σ(M,M�) or equivalently in the topology σ(E,E�). However, BE is compact in
the topology σ(E,E�) andM is closed in the topology σ(E,E�) (by Theorem 3.7).
Therefore BM is compact in the topology σ(E,E�).

Corollary 3.21. A Banach space E is reflexive if and only if its dual space E� is
reflexive.

Proof. E reflexive ⇒ E� reflexive. The idea of the proof is simple, since, roughly
speaking, we have that E�� = E ⇒ E��� = E�. More precisely, let J be the
canonical isomorphism from E into E��. Let ϕ ∈ E��� be given. The map x 
→
〈ϕ, Jx〉 is a continuous linear functional on E. Call it f ∈ E�, so that
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〈ϕ, Jx〉 = 〈f, x〉 ∀x ∈ E.
But we also have

〈ϕ, Jx〉 = 〈Jx, f 〉 ∀x ∈ E.
Since J is surjective, we infer that

〈ϕ, ξ〉 = 〈ξ, f 〉 ∀ξ ∈ E��,
which means precisely that the canonical injection from E� into E��� is surjective.
E� reflexive ⇒ E reflexive. From the step above we already know that E�� is

reflexive. Since J (E) is a closed subspace ofE�� in the strong topology, we conclude
(by Proposition 3.20) that J (E) is reflexive. Therefore, E is reflexive.3

• Corollary 3.22. Let E be a reflexive Banach space. Let K ⊂ E be a bounded,
closed, and convex subset of E. Then K is compact in the topology σ(E,E�).

Proof. K is closed for the topology σ(E,E�) (by Theorem 3.7). On the other hand,
there exists a constantm such thatK ⊂ mBE , andmBE is compact in σ(E,E�) (by
Theorem 3.17).

• Corollary 3.23. Let E be a reflexive Banach space and let A ⊂ E be a nonempty,
closed, convex subset ofE. Let ϕ : A → (−∞,+∞] be a convex l.s.c. function such
that ϕ 	≡ +∞ and

(5) lim
x∈A‖x‖→∞

ϕ(x) = +∞ (no assumption if A is bounded).

Then ϕ achieves its minimum on A, i.e., there exists some x0 ∈ A such that

ϕ(x0) = min
A
ϕ.

Proof. Fix any a ∈ A such that ϕ(a) < +∞ and consider the set

Ã = {x ∈ A; ϕ(x) ≤ ϕ(a)}.
Then Ã is closed, convex, and bounded (by (5)) and thus it is compact in the topology
σ(E,E�) (by Corollary 3.22). On the other hand, ϕ is also l.s.c. in the topology
σ(E,E�) (by Corollary 3.9). It follows that ϕ achieves its minimum on Ã (see
property 5 following the definition of l.s.c. in Chapter 1), i.e., there exists x0 ∈ Ã

such that
ϕ(x0) ≤ ϕ(x) ∀x ∈ Ã.

If x ∈ A\Ã, we have ϕ(x0) ≤ ϕ(a) < ϕ(x); therefore

ϕ(x0) ≤ ϕ(x) ∀x ∈ A.
3 It is clear that if E and F are Banach spaces, and T is a linear surjective isometry from E onto F ,
then E is reflexive iff F is reflexive. Of course, there is no contradiction with Remark 14!
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Remark 18. Corollary 3.23 is the main reason why reflexive spaces and convex func-
tions are so important in many problems occurring in the calculus of variations and
in optimization.

Theorem 3.24. Let E and F be two reflexive Banach spaces. Let A : D(A) ⊂ E →
F be an unbounded linear operator that is densely defined and closed. Then D(A�)
is dense in F�. Thus A�� is well defined (A�� : D(A��) ⊂ E�� → F��) and it may
also be viewed as an unbounded operator from E into F . Then we have

A�� = A.

Proof.
1. D(A�) is dense in F�. Let ϕ be a continuous linear functional on F� that

vanishes on D(A�). In view of Corollary 1.8 it suffices to prove that ϕ ≡ 0 on F�.
Since F is reflexive, ϕ ∈ F and we have

(6) 〈w, ϕ〉 = 0 ∀w ∈ D(A�).
If ϕ 	= 0 then [0, ϕ] /∈ G(A) in E × F . Thus, one may strictly separate [0, ϕ] and
G(A) by a closed hyperplane in E × F ; i.e., there exist some [f, v] ∈ E� × F� and
some α ∈ R such that

〈f, u〉 + 〈v,Au〉 < α < 〈v, ϕ〉 ∀u ∈ D(A).
It follows that

〈f, u〉 + 〈v,Au〉 = 0 ∀u ∈ D(A)
and

〈v, ϕ〉 	= 0.

Thus v ∈ D(A�), and we are led to a contradiction by choosing w = v in (6).

2. A�� = A. We recall (see Section 2.6) that

I [G(A�)] = G(A)⊥

and
I [G(A��)] = G(A�)⊥.

It follows that
G(A��) = G(A)⊥⊥ = G(A),

since A is closed.

3.6 Separable Spaces

Definition. We say that a metric spaceE is separable if there exists a subsetD ⊂ E

that is countable and dense.
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Many important spaces in analysis are separable. Clearly, finite-dimensional
spaces are separable. As we shall see in Chapter 4 (see also Chapter 11),Lp (and �p)
spaces are separable for 1 ≤ p < ∞. Also C(K), the space of continuous functions
on a compact metric space K , is separable (see Problem 24). However, L∞ and �∞
are not separable (see Chapters 4 and 11).

Proposition 3.25. Let E be a separable metric space and let F ⊂ E be any subset.
Then F is also separable.

Proof. Let (un)be a countable dense subset ofE. Let (rm)be any sequence of positive
numbers such that rm → 0. Choose any point am,n ∈ B(un, rm) ∩ F whenever this
set is nonempty. The set (am,n) is countable and dense in F .

Theorem 3.26. Let E be a Banach space such that E� is separable. Then E is
separable.

Remark 19. The converse is not true. As we shall see in Chapter 4, E = L1 is
separable but its dual space E� = L∞ is not separable.

Proof. Let (fn)n≥1 be countable and dense in E�. Since

‖fn‖ = sup
x∈E‖x‖≤1

〈fn, x〉,

we can find some xn ∈ E such that

‖xn‖ = 1 and 〈fn, xn〉 ≥ 1

2
‖fn‖.

Let us denote byL0 the vector space over Q generated by the (xn)n≥1; i.e.,L0 consists
of all finite linear combinations with coefficients in Q of the elements (xn)n≥1.
We claim that L0 is countable. Indeed, for every integer n, let �n be the vector
space over Q generated by the (xk)1≤k≤n. Clearly, �n is countable and, moreover,
L0 = ⋃

n≥1�n.
Let L denote the vector space over R generated by the (xn)n≥1. Of course, L0 is a

dense subset of L. We claim that L is a dense subspace ofE—and this will conclude
the proof (L0 will be a dense countable subset of E). Let f ∈ E� be a continuous
linear functional that vanishes on L; in view of Corollary 1.8 we have to prove that
f = 0. Given any ε > 0, there is some integer N such that ‖f − fN‖ < ε. We have

1

2
‖fN‖ ≤ 〈fN, xN 〉 = 〈fN − f, xN 〉 < ε

(since 〈f, xN 〉 = 0). It follows that ‖f ‖ ≤ ‖f − fN‖ + ‖fN‖ < 3ε. Thus f = 0.

Corollary 3.27. Let E be a Banach space. Then

[E reflexive and separable] ⇔ [E� reflexive and separable].
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Proof. We already know (Corollary 3.21 and Theorem 3.26) that

[E� reflexive and separable] ⇒ [E reflexive and separable].

Conversely, if E is reflexive and separable, so is E�� = J (E); thus E� is reflexive
and separable.

Separability properties are closely related to the metrizability of the weak topolo-
gies. Let us recall that a topological space X is said to be metrizable if there is a
metric on X that induces the topology of X.

Theorem 3.28. Let E be a separable Banach space. Then BE� is metrizable in the
weak� topology σ(E�,E).

Conversely, if BE� is metrizable in σ(E�,E), then E is separable.

There is a “dual” statement.

Theorem 3.29. Let E be a Banach space such that E� is separable. Then BE is
metrizable in the weak topology σ(E,E�).

Conversely, if BE is metrizable in σ(E,E�), then E� is separable.

Proof of Theorem 3.28. Let (xn)n≥1 be a dense countable subset of BE . For every
f ∈ E� set

[f ] =
∞∑

n=1

1

2n
|〈f, xn〉|.

Clearly, [ ] is a norm on E� and [f ] ≤ ‖f ‖. Let d(f, g) = [f − g] be the
corresponding metric. We shall prove that the topology induced by d on BE� is the
same as the topology σ(E�,E) restricted to BE� .
(a) Let f0 ∈ BE� and let V be a neighborhood of f0 for σ(E�,E). We have to find
some r > 0 such that

U = {f ∈ BE�; d(f, f0) < r} ⊂ V.

As usual, we may assume that V has the form

V = {f ∈ BE�; |〈f − f0, yi〉| < ε ∀i = 1, 2, . . . , k}
with ε > 0 and y1, y2, . . . , yk ∈ E. Without loss of generality we may assume that
‖yi‖ ≤ 1 for every i = 1, 2, . . . , k. For every i there is some integer ni such that

‖yi − xni‖ < ε/4

(since the set (xn)n≥1 is dense in BE).
Choose r > 0 small enough that

2ni r < ε/2 ∀i = 1, 2, . . . , k.

We claim that for such r , U ⊂ V . Indeed, if d(f, f0) < r , we have
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1

2ni
|〈f − f0, xni 〉| < r ∀i = 1, 2, . . . , k

and therefore, ∀i = 1, 2, . . . , k,

|〈f − f0, yi〉| = |〈f − f0, yi − xni 〉 + 〈f − f0, xni 〉| <
ε

2
+ ε

2
.

It follows that f ∈ V .

(b) Let f0 ∈ BE� . Given r > 0, we have to find some neighborhood V of f0 for
σ(E�,E) such that

V ⊂ U = {f ∈ BE�; d(f, f0) < r} .
We shall choose V to be

V = {f ∈ BE�; 〈f − f0, xi〉| < ε ∀i = 1, 2, . . . , k}
with ε and k to be determined in such a way that V ⊂ U . For f ∈ V we have

d(f, f0) =
k∑

n=1

1

2n
|〈f − f0, xn〉| +

∞∑

n=k+1

1

2n
|〈f − f0, xn〉|

< ε + 2
∞∑

n=k+1

1

2n
= ε + 1

2k−1 .

Thus, it suffices to take ε = r
2 and k large enough that 1

2k−1 <
r
2 .

�Conversely, suppose BE� is metrizable in σ(E�,E) and let us prove that E is
separable. Set

Un = {f ∈ BE�; d(f, 0) < 1/n}
and let Vn be a neighborhood of 0 in σ(E�,E) such that Vn ⊂ Un. We may assume
that Vn has the form

Vn = {f ∈ BE�; |〈f, x〉| < εn ∀x ∈ 
n}
with εn > 0 and 
n is a finite subset of E. Set

D =
∞⋃

n=1


n,

so that D is countable.
We claim that the vector space generated by D is dense in E (which implies that

E is separable). Indeed, suppose f ∈ E� is such that 〈f, x〉 = 0 ∀x ∈ D. It follows
that f ∈ Vn ∀n and therefore f ∈ Un ∀n, so that f = 0.

Proof of Theorem 3.29. The proof of the implication
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[E� separable] ⇒ [BE is metrizable in σ(E,E�)]

is exactly the same as above—just change the roles of E and E�. The proof of the
converse is more delicate (find where the proof above breaks down); we refer to
N. Dunford–J. T. Schwartz [1] or Exercise 3.24.

Remark 20. One should emphasize again (see Remark 3) that in infinite-dimensional
spaces the weak topology σ(E,E�) (resp. weak� topology σ(E�,E)) on all of E
(resp. E�) is not metrizable; see Exercise 3.8. In particular, the topology induced by
the norm [ ] on all of E� does not coincide with the weak� topology.

Corollary 3.30. Let E be a separable Banach space and let (fn) be a bounded
sequence in E�. Then there exists a subsequence (fnk ) that converges in the weak�

topology σ(E�,E).

Proof. Without loss of generality we may assume that ‖fn‖ ≤ 1 for all n. The setBE�
is compact and metrizable for the topology σ(E�,E) (by Theorems 3.16 and 3.28).
The conclusion follows.

We may now return to the proof of Theorem 3.18:

Proof of Theorem 3.18. Let M0 be the vector space generated by the xn’s and let
M = M0. Clearly, M is separable (see the proof of Theorem 3.26). Moreover, M
is reflexive (by Proposition 3.20). It follows that BM is compact and metrizable in
the weak topology σ(M,M�), since M� is separable (we use here Corollary 3.27
and Theorem 3.29). We may thus find a subsequence (xnk ) that converges weakly
σ(M,M�), and hence (xnk ) converges also weakly σ(E,E�) (as in the proof of
Proposition 3.20).

3.7 Uniformly Convex Spaces

Definition. A Banach space is said to be uniformly convex if

∀ε > 0 ∃δ > 0 such that

[
x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ > ε

] ⇒
[∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ < 1 − δ

]

.

The uniform convexity is a geometric property of the unit ball: if we slide a rule
of length ε > 0 in the unit ball, then its midpoint must stay within a ball of radius
(1 − δ) for some δ > 0. In particular, the unit sphere must be “round” and cannot
include any line segment.

Example 1. Let E = R
2. The norm ‖x‖2 = [|x1|2 + |x2|2

]1/2 is uniformly convex,
while the norm ‖x‖1 = |x1| + |x2| and the norm ‖x‖∞ = max(|x1|, |x2|) are not
uniformly convex. This can be easily seen by staring at the unit balls, as shown in
Figure 3.
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2 1Unit ball of E for  ||   || Unit ball of E for  ||   ||

Fig. 3

Example 2. As we shall see in Chapters 4 and 5, the Lp spaces are uniformly convex
for 1 < p < ∞ and Hilbert spaces are also uniformly convex.

• Theorem 3.31 (Milman–Pettis). Every uniformly convex Banach space is reflex-
ive.

Remark 21. Uniform convexity is a geometric property of the norm; an equivalent
norm need not be uniformly convex. On the other hand, reflexivity is a topological
property: a reflexive space remains reflexive for an equivalent norm. It is a striking
feature of Theorem 3.31 that a geometric property implies a topological property.
Uniform convexity is often used as a tool to prove reflexivity; but it is not the ul-
timate tool—there are some weird reflexive spaces that admit no uniformly convex
equivalent norm!

Proof. Let ξ ∈ E�� with ‖ξ‖ = 1. We have to show that ξ ∈ J (BE). Since J (BE)
is closed in E�� in the strong topology, it suffices to prove that

(7) ∀ε > 0 ∃x ∈ BE such that ‖ξ − J (x)‖ ≤ ε.

Fix ε > 0 and let δ > 0 be the modulus of uniform convexity. Choose some f ∈ E�
such that ‖f ‖ = 1 and

(8) 〈ξ, f 〉 > 1 − (δ/2)

(which is possible, since ‖ξ‖ = 1). Set

V = {η ∈ E��; |〈η − ξ, f 〉| < δ/2},
so that V is a neighborhood of ξ in the topology σ(E��, E�). Since J (BE) is dense
in BE�� with respect to σ(E��, E�) (Lemma 3.4), we know that V ∩ J (BE) 	= ∅ and
thus there is some x ∈ BE such that J (x) ∈ V . We claim that this x satisfies (7).

Suppose, by contradiction, that ‖ξ −Jx‖ > ε, i.e., ξ ∈ (Jx+εBE��)c = W . The
setW is also a neighborhood of ξ in the topology σ(E��, E�) (sinceBE�� is closed in
σ(E��, E�)). Using Lemma 3.4 once more, we know that V ∩W ∩J (BE) 	= φ, i.e.,
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there exists some y ∈ BE such that J (y) ∈ V ∩W . Writing that J (x), J (y) ∈ V ,
we obtain

|〈f, x〉 − 〈ξ, f 〉| < δ/2

and
|〈f, y〉 − 〈ξ, f 〉| < δ/2.

Adding these inequalities leads to

2〈ξ, f 〉 < 〈f, x + y〉 + δ ≤ ‖x + y‖ + δ.

Combining with (8), we obtain
∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ > 1 − δ.

It follows (by uniform convexity) that ‖x − y‖ ≤ ε; this is absurd, since J (y) ∈ W
(i.e., ‖x − y‖ > ε).

We conclude with a useful property of uniformly convex spaces.

Proposition 3.32. Assume that E is a uniformly convex Banach space. Let (xn) be a
sequence in E such that xn ⇀ x weakly σ(E,E�) and

lim sup ‖xn‖ ≤ ‖x‖.
Then xn → x strongly.

Proof. We may always assume that x 	= 0 (otherwise the conclusion is obvious). Set

λn = max(‖xn‖, ‖x‖), yn = λ−1
n xn, and y = ‖x‖−1x,

so that λn → ‖x‖ and yn ⇀ y weakly σ(E,E�). It follows that

‖y‖ ≤ lim inf ‖(yn + y)/2‖
(see Proposition 3.5(iii)). On the other hand, ‖y‖ = 1 and ‖yn‖ ≤ 1, so that in fact,
‖(yn + y)/2‖ → 1. We deduce from the uniform convexity that ‖yn − y‖ → 0 and
thus xn → x strongly.

Comments on Chapter 3

1. The topologies σ(E,E�), σ(E�,E), etc., are locally convex topologies. As such,
they enjoy all the properties of locally convex spaces; for example, Hahn–Banach
(geometric form), Krein–Milman, etc., still hold; see, e.g., N. Bourbaki [1],A. Knapp
[2], and also Problem 9.
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2. Here is another remarkable property of the weak� topology that is worth mention-
ing.

� Theorem 3.33 (Banach–Dieudonné–Krein–Šmulian). Let E be a Banach space
and let C ⊂ E� be convex. Assume that for every integer n the set C ∩ (nBE�) is
closed for the topology σ(E�,E). Then C is closed for the topology σ(E�,E).

The proof may be found in, e.g., N. Bourbaki [1], R. Larsen [1], R. Holmes [1],
N. Dunford–J. T. Schwartz [1], H. Schaefer [1], and Problem 11. The above references
also include much material related to the Eberlein–Šmulian theorem (Theorem 3.19).

3. The theory of vector spaces in duality—which extends the duality 〈E,E�〉—was
very popular in the late forties and early fifties, especially in connection with the
theory of distributions. One says that two vector spaces X and Y are in duality if
there is a bilinear form 〈 , 〉 onX×Y that separates points (i.e., ∀x 	= 0 ∃y such that
〈x, y〉 	= 0 and ∀y 	= 0 ∃x such that 〈x, y〉 	= 0). Many topologies may be defined
on X (or Y ) such as the weak topology σ(X, Y ), Mackey’s topology τ(X, Y ), and
the strong topology β(X, Y ). These topologies are of interest in spaces that are
not Banach spaces, such as the spaces used in the theory of distributions. On this
subject the reader may consult, e.g., N. Bourbaki [1], H. Schaefer [1], G. Köthe [1],
F. Treves [1], J. Kelley–I. Namioka [1], R. Edwards [1], J. Horváth [1], etc.

4. The properties of separability, reflexivity, and uniform convexity are also related
to the differentiability properties of the function x 
→ ‖x‖ (see, e.g., J. Diestel [1],
B. Beauzamy [1], and Problem 13). The existence of equivalent norms with nice
geometric properties has been extensively studied. For example, how does one know
whether a Banach space admits an equivalent uniformly convex norm? how use-
ful is this information? (such spaces are called superreflexive; see, e.g., J. Diestel
[1] or B. Beauzamy [1]). The geometry of Banach spaces has flourished since the
early sixties and has become an active field associated with the names A. Dvoret-
zky, A. Grothendieck, R. C. James, J. Lindenstrauss, V. Milman, L. Tzafriri (and
their group in Israel), A. Pelczynski, P. Enflo, L. Schwartz (and his group including
G. Pisier, B. Maurey, B. Beauzamy), W. B. Johnson, H. P. Rosenthal, J. Bourgain,
D. Preiss, M. Talagrand, T. Gowers, and many others. On this subject the reader
may consult the books of B. Beauzamy [1], J. Diestel [1], [2], J. Lindenstrauss–
L. Tzafriri [2], L. Schwartz [2], R. Deville–G. Godefroy–V. Zizler [1],Y. Benyamini
and J. Lindenstrauss [1], F. Albiac and N. Kalton [1], A. Pietsch [1], etc.

Exercises for Chapter 3

3.1 LetE be a Banach space and letA ⊂ E be a subset that is compact in the weak
topology σ(E,E�). Prove that A is bounded.

3.2 Let E be a Banach space and let (xn) be a sequence such that xn ⇀ x in the
weak topology σ(E,E�). Set
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σn = 1

n
(x1 + x2 + · · · + xn).

Prove that σn ⇀ x in the weak topology σ(E,E�).

3.3 LetE be a Banach space. LetA ⊂ E be a convex subset. Prove that the closure
of A in the strong topology and that in the weak topology σ(E,E�) are the same.

3.4 Let E be a Banach space and let (xn) be a sequence in E such that xn ⇀ x in
the weak topology σ(E,E�).

1. Prove that there exists a sequence (yn) in E such that

yn ∈ conv

( ∞⋃

i=n
{xi}

)

∀n(a)

and

yn → x strongly.(b)

2. Prove that there exists a sequence (zn) in E such that

zn ∈ conv

(
n⋃

i=1

{xi}
)

∀n(a’)

and

zn → x strongly.(b’)

3.5 Let E be a Banach space and letK ⊂ E be a subset of E that is compact in the
strong topology. Let (xn) be a sequence in K such that xn ⇀ x weakly σ(E,E�).
Prove that xn → x strongly.

[Hint: Argue by contradiction.]

3.6 Let X be a topological space and let E be a Banach space. Let u, v : X → E

be two continuous maps from X with values in E equipped with the weak topology
σ(E,E�).

1. Prove that the map x 
→ u(x) + v(x) is continuous from X into E equipped
with σ(E,E�).

2. Let a : X → R be a continuous function. Prove that the map x 
→ a(x)u(x) is
continuous from X into E equipped with σ(E,E�).

3.7 Let E be a Banach space and let A ⊂ E be a subset that is closed in the weak
topology σ(E,E�). Let B ⊂ E be a subset that is compact in the weak topology
σ(E,E�).
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1. Prove that A+ B is closed in σ(E,E�).
2. Assume, in addition, thatA andB are convex, nonempty, and disjoint. Prove that

there exists a closed hyperplane strictly separating A and B.

3.8 Let E be an infinite-dimensional Banach space. Our purpose is to show that E
equipped with the weak topology is not metrizable. Suppose, by contradiction, that
there is a metric d(x, y) on E that induces on E the same topology as σ(E,E�).

1. For every integer k ≥ 1 let Vk denote a neighborhood of 0 in the topology
σ(E,E�), such that

Vk ⊂
{

x ∈ E; d(x, 0) <
1

k

}

.

Prove that there exists a sequence (fn) in E� such that every g ∈ E� is a (finite)
linear combination of the fn’s.
[Hint: Use Lemma 3.2.]

2. Deduce that E� is finite-dimensional.
[Hint: Use the Baire category theorem as in Exercise 1.5.]

3. Conclude.
4. Prove by a similar method that E� equipped with the weak� topology σ(E�,E)

is not metrizable.

3.9 Let E be a Banach space; let M ⊂ E be a linear subspace, and let f0 ∈ E�.
Prove that there exists some g0 ∈ M⊥ such that

inf
g∈M⊥

‖f0 − g‖ = ‖f0 − g0‖.

Two methods are suggested:

1. Use Theorem 1.12.
2. Use the weak� topology σ(E�,E).

3.10 Let E and F be two Banach spaces. Let T ∈ L (E, F ), so that T � ∈
L (F �, E�). Prove that T � is continuous from F� equipped with σ(F �, F ) into
E� equipped with σ(E�,E).

3.11 Let E be a Banach space and let A : E → E� be a monotone map defined on
D(A) = E; see Exercise 2.6. Assume that for every x, y ∈ E the map

t ∈ R 
→ 〈A(x + ty), y〉
is continuous at t = 0. Prove that A is continuous from E strong into E� equipped
with σ(E�,E).

3.12 Let E be a Banach space and let x0 ∈ E. Let ϕ : E → (−∞,+∞] be a
convex l.s.c. function with ϕ 	≡ +∞.
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1. Show that the following properties are equivalent:

(A) ∃R, ∃M < +∞ such that ϕ(x) ≤ M, ∀x ∈ E with ‖x − x0‖ ≤ R,

(B) lim
f∈E�

‖f ‖→∞
{ϕ�(f )− 〈f, x0〉} = +∞.

2. Assuming (A) or (B) prove that

inf
f∈E�{ϕ

�(f )− 〈f, x0〉} is achieved.

[Hint: Use the weak� topology σ(E�,E) or Theorem 1.12.]
What is the value of this inf?

3.13 Let E be a Banach space. Let (xn) be a sequence in E and let x ∈ E. Set

Kn = conv

( ∞⋃

i=n
{xi}

)

.

1. Prove that if xn ⇀ x weakly σ(E,E�), then

∞⋂

n=1

Kn = {x}.

2. Assume that E is reflexive. Prove that if (xn) is bounded and if
⋂∞
n=1Kn = {x},

then xn ⇀ x weakly σ(E,E�).
3. Assume that E is finite-dimensional and

⋂∞
n=1Kn = {x}. Prove that xn → x.

[Note that we do not assume here that (xn) is bounded.]
4. In �p, 1 < p < ∞ (see Chapter 11), construct a sequence (xn) such that⋂∞

n=1Kn = {x}, and (xn) is not bounded.
[I owe the results of questions 3 and 4 to Guy Amram and Daniel Baffet.]

3.14 Let E be a reflexive Banach space and let I be a set of indices. Consider a
collection (fi)i∈I in E� and a collection (αi)i∈I in R. Let M > 0.

Show that the following properties are equivalent:

(A)

{
There exists some x ∈ E with ‖x‖ ≤ M such that 〈fi, x〉 = αi

for every i ∈ I .

(B)

{
One has |∑i∈J βiαi | ≤ M‖∑i∈J βifi‖ for every collection (βi)i∈J
in R with J ⊂ I, J finite.

Compare with Exercises 1.10, 1.11 and Lemma 3.3.
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3.15 Center of mass of a measure on a convex set.
LetE be a reflexive Banach space and letK ⊂ E be bounded, closed, and convex.

In the followingK is equipped with σ(E,E�), so thatK is compact. Let F = C(K)

with its usual norm. Fix some μ ∈ F� with ‖μ‖ = 1 and assume that μ ≥ 0 in the
sense that

〈μ, u〉 ≥ 0 ∀u ∈ C(K), u ≥ 0 on K.

Prove that there exists a unique element x0 ∈ K such that

(1) 〈μ, f|K 〉 = 〈f, x0〉 ∀f ∈ E�.
[Hint: Find first some x0 ∈ E satisfying (1), and then prove that x0 ∈ K with the

help of Hahn–Banach.]

3.16 Let E be a Banach space.

1. Let (fn) be a sequence in (E�) such that for every x ∈ E, 〈fn, x〉 converges to

a limit. Prove that there exists some f ∈ E� such that fn
�
⇀ f in σ(E�,E).

2. Assume here that E is reflexive. Let (xn) be a sequence in E such that for every
f ∈ E�, 〈f, xn〉 converges to a limit. Prove that there exists some x ∈ E such
that xn ⇀ x in σ(E,E�).

3. Construct an example in a nonreflexive space E where the conclusion of 2 fails.
[Hint: Take E = c0 (see Section 11.3) and xn = (1, 1, . . . , 1

(n)
, 0, 0, . . . ).]

3.17

1. Let (xn) be a sequence in �p with 1 ≤ p ≤ ∞. Assuming xn ⇀ x in σ(�p, �p
′
)

prove that:

(a) (xn) is bounded in �p,
(b) xni −−−→

n→∞ xi for every i, where xn = (xn1 , x
n
2 , . . . , x

n
i , . . . ) and x =

(x1, x2, . . . , xi, . . . ).

2. Conversely, suppose (xn) is a sequence in �p with 1 < p ≤ ∞. Assume that (a)
and (b) hold (for some limit denoted by xi). Prove that x ∈ �p and that xn ⇀ x

in σ(�p, �p
′
).

3.18 For every integer n ≥ 1 let

en = (0, 0, . . . , 1
(n)
, 0, . . . ).

1. Prove that en ⇀
n→∞ 0 in �p weakly σ(�p, �p

′
) with 1 < p ≤ ∞.

2. Prove that there is no subsequence (enk ) that converges in �1 with respect to
σ(�1, �∞).

3. Construct an example of a Banach space E and a sequence (fn) in E� such
that ‖fn‖ = 1 ∀n and such that (fn) has no subsequence that converges in
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σ(E�,E). Is there a contradiction with the compactness of BE� in the topology
σ(E�,E)?
[Hint: Take E = �∞.]

3.19 Let E = �p and F = �q with 1 < p < ∞ and 1 < q < ∞. Let a : R → R

be a continuous function such that

|a(t)| ≤ C|t |p/q ∀t ∈ R.

Given
x = (x1, x2, . . . , xi, . . . ) ∈ �p,

set
Ax = (

a(x1), a(x2), . . . , a(xi), . . .
)
.

1. Prove that Ax ∈ �q and that the map x 
→ Ax is continuous from �p (strong)
into �q (strong).

2. Prove that if (xn) is a sequence in �p such that xn ⇀ x in σ(�p, �p
′
) then

Axn ⇀ Ax in σ(�q, �q
′
).

3. Deduce that A is continuous from BE equipped with σ(E,E�) into F equipped
with σ(F, F �).

3.20 Let E be a Banach space.

1. Prove that there exist a compact topological space K and an isometry from E

into C(K) equipped with its usual norm.
[Hint: Take K = BE� equipped with σ(E�,E).]

2. Assuming that E is separable, prove that there exists an isometry from E into
�∞.

3.21 Let E be a separable Banach space and let (fn) be a bounded sequence
in E�. Prove directly—without using the metrizability of E�—that there exists a
subsequence

(
fnk

)
that converges in σ(E�,E).

[Hint: Use a diagonal process.]

3.22 LetE be an infinite-dimensional Banach space satisfying one of the following
assumptions:

(a) E� is separable,
(b) E is reflexive.

Prove that there exists a sequence (xn) in E such that

‖xn‖ = 1 ∀n and xn ⇀ 0 weakly σ(E,E�).

3.23 The proof of Theorem 2.16 becomes much easier if E is reflexive. Find, in
particular, a simple proof of (b) ⇒ (a).
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3.24 The purpose of this exercise is to sketch part of the proof of Theorem 3.29,
i.e., ifE is a Banach space such that BE is metrizable with respect to σ(E,E�), then
E� is separable. Let d(x, y) be a metric onBE that induces onBE the same topology
as σ(E,E�). Set

Un =
{

x ∈ BE; d(x, 0) <
1

n

}

.

Let Vn be a neighborhood of 0 for σ(E,E�) such that Vn ⊂ Un. We may assume
that Vn has the form

Vn = {x ∈ E; |〈f, x〉| < εn ∀f ∈ 
n}
with εn > 0 and 
n ⊂ E� is some finite subset. Let D = ∪∞

n=1
n and let F denote
the vector space generated by D. We claim that F is dense in E� with respect to the
strong topology. Suppose, by contradiction, that F 	= E�.

1. Prove that there exist some ξ ∈ E�� and some f0 ∈ E� such that

〈ξ, f0〉 > 1, 〈ξ, f 〉 = 0 ∀f ∈ F, and ‖ξ‖ = 1.

2. Let

W =
{

x ∈ BE; |〈f0, x〉| < 1

2

}

.

Prove that there is some integer n0 ≥ 1 such that Vn0 ⊂ W .
3. Prove that there exists x1 ∈ BE such that

⎧
⎪⎨

⎪⎩

|〈f, x1〉 − 〈ξ, f 〉| < εn0 ∀f ∈ 
n0 ,

|〈f0, x1〉 − 〈ξ, f0〉| < 1

2
.

4. Deduce that x1 ∈ Vn0 and that 〈f0, x1〉 > 1
2 .

5. Conclude.

3.25 Let K be a compact metric space that is not finite. Prove that C(K) is not
reflexive.

[Hint: Let (an) be a sequence in K such that an → a and an 	= a ∀n. Consider
the linear functional f (u) = ∑∞

n=1
1

2n u(an), u ∈ C(K), and proceed as in Exercises
1.3 and 1.4.]

3.26 Let F be a separable Banach space and let (an) be a dense subset of BF .
Consider the linear operator T : �1 → F defined by

T x =
∞∑

i=1

xiai with x = (x1, x2, . . . , xn, . . . ) ∈ �1.

1. Prove that T is bounded and surjective.
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In what follows we assume, in addition, that F is infinite-dimensional and that
F� is separable.

2. Prove that T has no right inverse.
[Hint: Use the results of Exercise 3.22 and Problem 8.]

3. Deduce that N(T ) has no complement in �1.
4. Determine E�.

3.27 Let E be a separable Banach space with norm ‖ ‖. The dual norm on E� is
also denoted by ‖ ‖. The purpose of this exercise is to construct an equivalent norm
on E that is strictly convex and whose dual norm is also strictly convex.

Let (an) ⊂ BE be a dense subset of BE with respect to the strong topology. Let
(bn) ⊂ BE� be a countable subset ofBE� that is dense inBE� for the weak� topology
σ(E�,E). Why does such a set exist?

Given f ∈ E�, set

‖f ‖1 =
{

‖f ‖2 +
∞∑

n=1

1

2n
|〈f, an〉|2

}1/2

.

1. Prove that ‖ ‖1 is a norm equivalent to ‖ ‖.
2. Prove that ‖ ‖1 is strictly convex.

[Hint: Use Exercise 1.26.]

Given x ∈ E, set

‖x‖2 =
{

‖x‖2
1 +

∞∑

n=1

1

2n
|〈bn, x〉|2

}1/2

,

where ‖x‖1 = sup‖f ‖1≤1〈f, x〉.
3. Prove that ‖ ‖2 is a strictly convex norm that is equivalent to ‖ ‖.
4. Prove that the dual norm of ‖ ‖2 is also strictly convex.

[Hint: Use the result of Exercise 1.23, question 3.]
5. Find another approach based on the results of Problem 4.

3.28 Let E be a uniformly convex Banach space. Let F denote the (multivalued)
duality map from E into E�, see Remark 2 following Corollary 1.3 and also Exer-
cise 1.1.

Prove that for every f ∈ E� there exists a unique x ∈ E such that f ∈ Fx.

3.29 Let E be a uniformly convex Banach space.

1. Prove that ∀M > 0, ∀ε > 0, ∃δ > 0 such that

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥

2

≤ 1

2
‖x‖2 + 1

2
‖y‖2 − δ

∀x, y ∈ E with ‖x‖ ≤ M, ‖y‖ ≤ M and ‖x − y‖ > ε.
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[Hint: Argue by contradiction.]
2. Same question when ‖ ‖2 is replaced by ‖ ‖p with 1 < p < ∞.

3.30 Let E be a Banach space with norm ‖ ‖. Assume that there exists on E an
equivalent norm, denoted by | |, that is uniformly convex.

Prove that given any k > 1, there exists a uniformly convex norm ||| ||| on E such
that

‖x‖ ≤ |||x||| ≤ k‖x‖ ∀x ∈ E.
[Hint: Set |||x|||2 = ‖x‖2 + α|x|2 with α > 0 small enough and use Exercise

3.29.]
Example: E = R

n.

3.31 Let E be a uniformly convex Banach space.

1. Prove that

∀ε > 0, ∀α ∈
(

0,
1

2

)

, ∃δ > 0 such that

‖tx + (1 − t)y‖ ≤ 1 − δ

∀t ∈ [α, 1 − α], ∀x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε.

[Hint: If α ≤ t ≤ 1
2 write tx + (1 − t)y = 1

2 (y + z).]

2. Deduce that E is strictly convex.

3.32 Projection on a closed convex set in a uniformly convex Banach space.
LetE be a uniformly convex Banach space andC ⊂ E a nonempty closed convex

set.

1. Prove that for every x ∈ E,
inf
y∈C ‖x − y‖

is achieved by some unique point in C, denoted by PCx.
2. Prove that every minimizing sequence (yn) in C converges strongly to PCx.
3. Prove that the map x 
→ PCx is continuous from E strong into E strong.
4. More precisely, prove that PC is uniformly continuous on bounded subsets of E.

[Hint: Use Exercise 3.29.]

Let ϕ : E → (−∞,+∞] be a convex l.s.c. function, ϕ 	≡ +∞.
5. Prove that for every x ∈ E and every integer n ≥ 1,

inf
y∈E

{
n‖x − y‖2 + ϕ(y)

}

is achieved at some unique point, denoted by yn.
6. Prove that yn −−−→

n→∞ PCx, where C = D(ϕ).





Chapter 4
Lp Spaces

Let (�,M, μ) denote a measure space, i.e., � is a set and

(i) M is a σ -algebra in �, i.e., M is a collection of subsets of � such that:

(a) ∅ ∈ M,
(b) A ∈ M ⇒ Ac ∈ M,
(c)

⋃∞
n=1An ∈ M whenever An ∈ M ∀n,

(ii) μ is a measure, i.e., μ : M → [0,∞] satisfies

(a) μ(∅) = 0,

(b)

⎧
⎨

⎩

μ

( ∞⋃
n=1
An

)

=
∞⋃
n=1
μ(An) whenever (An) is a disjoint

countable family of members of M.

The members of M are called the measurable sets. Sometimes we shall
write |A| instead of μ(A). We shall also assume—even though this is not
essential—that

(iii) � is σ -finite, i.e., there exists a countable family (�n) in M such that � =⋃∞
n=1�n and μ(�n) < ∞ ∀n.

The sets E ∈ M with the property that μ(E) = 0 are called the null sets. We
say that a property holds a.e. (or for almost all x ∈ �) if it holds everywhere on �
except on a null set.

We assume that the reader is familiar with the notions of measurable functions
and integrable functions f : � → R; see, e.g., H. L. Royden [1], G. B. Folland [2],
A. Knapp [1], D. L. Cohn [1],A. Friedman [3],W. Rudin [2], P. Halmos [1], E. Hewitt–
K. Stromberg [1], R. Wheeden–A. Zygmund [1], J. Neveu [1], P. Malliavin [1],
A. J. Weir [1], A. Kolmogorov–S. Fomin [1], I. Fonseca–G. Leoni [1]. We denote by
L1(�,μ), or simply L1(�) (or just L1), the space of integrable functions from �

into R.
We shall often write

∫
f instead of

∫

�
f dμ, and we shall also use the notation

89H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
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‖f ‖L1 = ‖f ‖1 =
∫

�

|f |dμ =
∫

|f |.

As usual, we identify two functions that coincide a.e. We recall the following basic
facts.

4.1 Some Results about Integration That Everyone Must Know

• Theorem 4.1 (monotone convergence theorem, Beppo Levi). Let (fn) be a se-
quence of functions in L1 that satisfy

(a) f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · a.e. on �,
(b) supn

∫
fn < ∞.

Then fn(x) converges a.e. on � to a finite limit, which we denote by f (x); the
function f belongs to L1 and ‖fn − f ‖1 → 0.

• Theorem 4.2 (dominated convergence theorem, Lebesgue). Let (fn) be a se-
quence of functions in L1 that satisfy

(a) fn(x) → f (x) a.e. on �,
(b) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e. on �.

Then f ∈ L1 and ‖fn − f ‖1 → 0.

Lemma 4.1 (Fatou’s lemma). Let (fn) be a sequence of functions in L1 that satisfy

(a) for all n, fn ≥ 0 a.e.
(b) supn

∫
fn < ∞.

For almost all x ∈ � we set f (x) = lim infn→∞fn(x) ≤ +∞. Then f ∈ L1 and
∫

f ≤ lim inf
n→∞

∫

fn.

A basic example is the case in which � = R
N , M consists of the Lebesgue

measurable sets, and μ is the Lebesgue measure on R
N.

Notation. We denote by Cc(RN) the space of all continuous functions on R
N with

compact support, i.e.,

Cc(R
N) = {f ∈ C(RN); f (x) = 0 ∀x ∈ R

N\K, where K is compact}.
Theorem 4.3 (density). The space Cc(RN) is dense in L1(RN); i.e.,

∀f ∈ L1(RN) ∀ε > 0 ∃f1 ∈ Cc(RN) such that ‖f − f1‖1 ≤ ε.

Let (�1, M1, μ1) and (�2, M2 , μ2) be two measure spaces that are σ -finite.
One can define in a standard way the structure of measure space (�, M , μ) on the
Cartesian product � = �1 ×�2.
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Theorem 4.4 (Tonelli). Let F(x, y) : �1 × �2 → R be a measurable function
satisfying

(a)
∫

�2

|F(x, y)|dμ2 < ∞ for a.e. x ∈ �1

and

(b)
∫

�1

dμ1

∫

�2

|F(x, y)|dμ2 < ∞.

Then F ∈ L1(�1 ×�2).

Theorem 4.5 (Fubini). Assume that F ∈ L1(�1 × �2). Then for a.e. x ∈ �1,
F(x, y) ∈ L1

y(�2) and
∫

�2
F(x, y)dμ2 ∈ L1

x(�1). Similarly, for a.e. y ∈ �2,

F(x, y) ∈ L1
x(�1) and

∫

�1
F(x, y)dμ1 ∈ L1

y(�2).

Moreover, one has
∫

�1

dμ1

∫

�2

F(x, y)dμ2 =
∫

�2

dμ2

∫

�1

F(x, y)dμ1 =
∫∫

�1×�2

F(x, y)dμ1dμ2.

4.2 Definition and Elementary Properties of Lp Spaces

Definition. Let p ∈ R with 1 < p < ∞; we set

Lp(�) =
{
f : � → R; f is measurable and |f |p ∈ L1(�)

}

with

‖f ‖Lp = ‖f ‖p =
[∫

�

|f (x)|pdμ
]1/p

.

We shall check later on that ‖ ‖p is a norm.

Definition. We set

L∞(�) =
{

f : � → R

∣
∣
∣
∣

f is measurable and there is a constant C

such that |f (x)| ≤ C a.e. on �

}

with
‖f ‖L∞ = ‖f ‖∞ = inf{C; |f (x)| ≤ C a.e. on �}.

The following remark implies that ‖ ‖∞ is a norm:

Remark 1. If f ∈ L∞ then we have

|f (x)| ≤ ‖f ‖∞ a.e. on �.

Indeed, there exists a sequence Cn such that Cn → ‖f ‖∞ and for each n, |f (x)| ≤
Cn a.e. on �. Therefore |f (x)| ≤ Cn for all x ∈ �\En, with |En| = 0. We set
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E = ∪∞
n=1En, so that |E| = 0 and

|f (x)| ≤ Cn ∀n, ∀x ∈ �\E;
it follows that |f (x)| ≤ ‖f ‖∞ ∀x ∈ �\E.

Notation. Let 1 ≤ p ≤ ∞; we denote by p′ the conjugate exponent,

1

p
+ 1

p′ = 1.

• Theorem 4.6 (Hölder’s inequality). Assume that f ∈ Lp and g ∈ Lp
′

with
1 ≤ p ≤ ∞. Then fg ∈ L1 and

(1)
∫

|fg| ≤ ‖f ‖p ‖g‖p′ .

Proof. The conclusion is obvious if p = 1 or p = ∞; therefore we assume that
1 < p < ∞. We recall Young’s inequality:1

(2) ab ≤ 1

p
ap + 1

p′ b
p′ ∀a ≥ 0, ∀b ≥ 0.

Inequality (2) is a straightforward consequence of the concavity of the function
log on (0,∞):

log

(
1

p
ap + 1

p′ b
p′
)

≥ 1

p
log ap + 1

p′ log bp
′ = log ab.

We have

|f (x)g(x)| ≤ 1

p
|f (x)|p + 1

p′ |g(x)|p
′

a.e. x ∈ �.

It follows that fg ∈ L1 and

(3)
∫

|fg| ≤ 1

p

∥
∥f

∥
∥p
p

+ 1

p′
∥
∥g
∥
∥p

′
p′ .

Replacing f by λf (λ > 0) in (3), yields

(4)
∫

|fg| ≤ λp−1

p

∥
∥f

∥
∥p
p

+ 1

λp′
∥
∥g
∥
∥p

′
p′ .

Choosing λ = ‖f ‖−1
p ‖g‖p′/p

p (so as to minimize the right-hand side in (4)), we
obtain (1).

1 It is sometimes convenient to use the form ab ≤ εap + Cεb
p′

with Cε = ε−1/(p−1).
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Remark 2. It is useful to keep in mind the following extension of Hölder’s inequality:
Assume that f1, f2, . . . , fk are functions such that

fi ∈ Lpi , 1 ≤ i ≤ k with
1

p
= 1

p1
+ 1

p2
+ · · · + 1

pk
≤ 1.

Then the product f = f1f2 · · · fk belongs to Lp and

‖f ‖p ≤ ‖f1‖p1‖f2‖p2 · · · ‖fk‖pk .
In particular, if f ∈ Lp∩Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all r ,p ≤ r ≤ q,
and the following “interpolation inequality” holds:

‖f ‖r ≤ ‖f ‖αp
∥
∥f

∥
∥1−α
q

, where
1

r
= α

p
+ 1 − α

q
, 0 ≤ α ≤ 1;

see Exercise 4.4.

Theorem 4.7. Lp is a vector space and ‖ ‖p is a norm for any p, 1 ≤ p ≤ ∞.

Proof. The cases p = 1 and p = ∞ are clear. Therefore we assume 1 < p < ∞
and let f, g ∈ Lp. We have

|f (x)+ g(x)|p ≤ (|f (x)| + |g(x)|)p ≤ 2p(|f (x)|p + |g(x)|p).
Consequently, f + g ∈ Lp. On the other hand,

‖f + g‖pp =
∫

|f + g|p−1|f + g| ≤
∫

|f + g|p−1|f | +
∫

|f + g|p−1|g|.

But |f + g|p−1 ∈ Lp′
, and by Hölder’s inequality we obtain

‖f + g‖pp ≤ ‖f + g‖p−1
p (‖f ‖p + ‖g‖p),

i.e., ‖f + g‖p ≤ ‖f ‖p + ‖g‖p.
• Theorem 4.8 (Fischer–Riesz). Lp is a Banach space for any p, 1 ≤ p ≤ ∞.

Proof. We distinguish the cases p = ∞ and 1 ≤ p < ∞.

Case 1: p = ∞. Let (fn) be a Cauchy sequence is L∞. Given an integer k ≥ 1
there is an integer Nk such that ‖fm − fn‖∞ ≤ 1

k
for m, n ≥ Nk . Hence there is a

null set Ek such that

(5) |fm(x)− fn(x)| ≤ 1

k
∀x ∈ �\Ek, ∀m, n ≥ Nk.

Then we let E = ⋃
kEk—so that E is a null set—and we see that for all x ∈ �\E,

the sequence fn(x) is Cauchy (in R). Thus fn(x) → f (x) for all x ∈ �\E. Passing
to the limit in (5) as m → ∞ we obtain
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|f (x)− fn(x)| ≤ 1

k
for all x ∈ �\E, ∀n ≥ Nk.

We conclude that f ∈ L∞ and ‖f − fn‖∞ ≤ 1
k

∀n ≥ Nk; therefore fn → f

in L∞.

Case 2: 1 ≤ p < ∞. Let (fn) be a Cauchy sequence in Lp. In order to conclude,
it suffices to show that a subsequence converges in Lp.

We extract a subsequence (fnk ) such that

‖fnk+1 − fnk‖p ≤ 1

2k
∀k ≥ 1.

[One proceeds as follows: choose n1 such that ‖fm − fn‖p ≤ 1
2 ∀m, n ≥ n1;

then choose n2 ≥ n1 such that ‖fm − fn‖p ≤ 1
22 ∀m, n ≥ n2 etc.] We claim that

fnk converges in Lp. In order to simplify the notation we write fk instead of fnk , so
that we have

(6) ‖fk+1 − fk‖p ≤ 1

2k
∀k ≥ 1.

Let

gn(x) =
n∑

k=1

|fk+1(x)− fk(x)|,

so that
‖gn‖p ≤ 1.

As a consequence of the monotone convergence theorem, gn(x) tends to a finite limit,
say g(x), a.e. on �, with g ∈ Lp. On the other hand, for m ≥ n ≥ 2 we have

|fm(x)−fn(x)| ≤ |fm(x)−fm−1(x)|+· · ·+|fn+1(x)−fn(x)| ≤ g(x)−gn−1(x).

It follows that a.e. on �, fn(x) is Cauchy and converges to a finite limit, say f (x).
We have a.e. on �,

(7) |f (x)− fn(x)| ≤ g(x) for n ≥ 2,

and in particular f ∈ Lp. Finally, we conclude by dominated convergence that
‖fn − f ‖p → 0, since |fn(x)− f (x)|p → 0 a.e. and also |fn − f |p ≤ gp ∈ L1.

Theorem 4.9. Let (fn) be a sequence in Lp and let f ∈ Lp be such that ‖fn − f ‖p
→ 0.

Then, there exist a subsequence (fnk ) and a function h ∈ Lp such that

(a) fnk (x) → f (x) a.e. on �,
(b) |fnk (x)| ≤ h(x) ∀k, a.e. on �.

Proof. The conclusion is obvious whenp = ∞. Thus we assume 1 ≤ p < ∞. Since
(fn) is a Cauchy sequence we may go back to the proof of Theorem 4.8 and consider
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a subsequence (fnk )—denoted by (fk)—satisfying (6), such that fk(x) tends a.e. to
a limit2 f �(x) with f � ∈ Lp. Moreover, by (7), we have |f �(x) − fk(x)| ≤ g(x)

∀k, a.e. on � with g ∈ Lp. By dominated convergence we know that fk → f � in
Lp and thus f = f � a.e. In addition, we also have |fk(x)| ≤ |f �(x)| + g(x), and
the conclusion follows.

4.3 Reflexivity. Separability. Dual of Lp

We shall consider separately the following three cases:

(A) 1 < p < ∞,
(B) p = 1,
(C) p = ∞.

A. Study of Lp(�) for 1 < p < ∞.

This case is the most “favorable”: Lp is reflexive, separable, and the dual of Lp

is Lp
′
.

• Theorem 4.10. Lp is reflexive for any p, 1 < p < ∞.

The proof consists of three steps:
Step 1 (Clarkson’s first inequality). Let 2 ≤ p < ∞.We claim that

(8)

∥
∥
∥
∥
f + g

2

∥
∥
∥
∥

p

p

+
∥
∥
∥
∥
f − g

2

∥
∥
∥
∥

p

p

≤ 1

2
(‖f ‖pp + ‖g‖pp) ∀f, g ∈ Lp.

Proof of (8). Clearly, it suffices to show that
∣
∣
∣
∣
a + b

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
a − b

2

∣
∣
∣
∣

p

≤ 1

2
(|a|p + |b|p) ∀a, b ∈ R.

First we note that
αp + βp ≤ (α2 + β2)p/2 ∀α, β ≥ 0

(by homogeneity, assume β = 1 and observe that the function

(x2 + 1)p/2 − xp − 1

increases on [0,∞)). Choosing α = | a+b2 | and β = | a−b2 |, we obtain

∣
∣
∣
∣
a + b

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
a − b

2

∣
∣
∣
∣

p

≤
(∣
∣
∣
∣
a + b

2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
a − b

2

∣
∣
∣
∣

2
)p/2

=
(
a2

2
+ b2

2

)p/2

≤ 1

2
(|a|p+|b|p)

2 A priori one should distinguish f and f �: by assumption fn → f in Lp , and on the other hand,
fnk (x) → f �(x) a.e.
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(the last inequality follows from the convexity of the function x 
→ |x|p/2 since
p ≥ 2).

Step 2: Lp is uniformly convex, and thus reflexive for 2 ≤ p < ∞. Indeed, let
ε > 0 and let f, g ∈ Lp with ‖f ‖p ≤ 1, ‖g‖p ≤ 1, and ‖f − g‖p > ε. We deduce
from (8) that ∥

∥
∥
∥
f + g

2

∥
∥
∥
∥

p

p

< 1 −
(ε

2

)p

and thus ‖f+g
2 ‖p < 1 − δ with δ = 1 − [1 − ( ε2 )

p]1/p > 0. Therefore, Lp is
uniformly convex and thus reflexive by Theorem 3.31.

Step 3: Lp is reflexive for 1 < p ≤ 2.

Proof. Let 1 < p < ∞. Consider the operator T : Lp → (Lp
′
)
�

defined as follows:
Let u ∈ Lp be fixed; the mapping f ∈ Lp′ 
→ ∫

uf is a continuous linear functional
on Lp

′
and thus it defines an element, say T u, in (Lp

′
)
�

such that

〈T u, f 〉 =
∫

u f ∀f ∈ Lp′
.

We claim that

(9) ‖T u‖
(Lp

′
)
� = ‖u‖p ∀u ∈ Lp.

Indeed, by Hölder’s inequality, we have

|〈T u, f 〉| ≤ ‖u‖p ‖f ‖p′ ∀f ∈ Lp′

and therefore ‖T u‖
(Lp

′
)
� ≤ ‖u‖p.

On the other hand, set

f0(x) = |u(x)|p−2u(x) (f0(x) = 0 if u(x) = 0).

Clearly we have

f0 ∈ Lp′
, ‖f0‖p′ = ∥

∥u
∥
∥p−1
p

and 〈T u, f0〉 = ‖u‖pp;
thus

(10) ‖T u‖
(Lp

′
)
� ≥ 〈T u, f0〉

‖f0‖p′
= ‖u‖p.

Hence, we have shown that T is an isometry from Lp into (Lp
′
)
�
, which implies that

T (Lp) is a closed subspace of (Lp
′
)
�

(because Lp is a Banach space).
Assume now 1 < p ≤ 2. Since Lp

′
is reflexive (by Step 2), it follows that (Lp

′
)
�
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is also reflexive (Corollary 3.21). We conclude, by Proposition 3.20, that T (Lp) is
reflexive, and as a consequence, Lp is also reflexive.

Remark 3. In fact,Lp is also uniformly convex for 1 < p ≤ 2. This is a consequence
of Clarkson’s second inequality, which holds for 1 < p ≤ 2:

∥
∥
∥
∥
f + g

2

∥
∥
∥
∥

p′

p

+
∥
∥
∥
∥
f − g

2

∥
∥
∥
∥

p′

p

≤
(

1

2

∥
∥f

∥
∥p
p

+ 1

2

∥
∥g
∥
∥p
p

)1/(p−1)

∀f, g ∈ Lp.

This inequality is trickier to prove than Clarkson’s first inequality (see, e.g., Prob-
lem 20 or E. Hewitt–K. Stromberg [1]). Clearly, it implies thatLp is uniformly convex
when 1 < p ≤ 2; for another approach, see also C. Morawetz [1] (Exercise 4.12) or
J. Diestel [1].

• Theorem 4.11 (Riesz representation theorem). Let 1 < p < ∞ and let φ ∈
(Lp)�. Then there exists a unique function u ∈ Lp′

such that

〈φ, f 〉 =
∫

uf ∀f ∈ Lp.

Moreover, ∥
∥u
∥
∥
p′ = ∥

∥φ
∥
∥
(Lp)

� .

Remark 4. Theorem 4.11 is very important. It says that every continuous linear func-
tional on Lp with 1 < p < ∞ can be represented “concretely” as an integral. The
mapping φ 
→ u, which is a linear surjective isometry, allows us to identify the
“abstract” space (Lp)� with Lp

′
.

In what follows, we shall systematically make the identification

(Lp)� = Lp
′
.

Proof. We consider the operator T : Lp′ → (Lp)� defined by 〈T u, f 〉 = ∫
uf

∀u ∈ Lp
′
, ∀f ∈ Lp. The argument used in the proof of Theorem 4.10 (Step 3)

shows that
‖T u‖(Lp)� = ‖u‖p′ ∀u ∈ Lp′

.

We claim that T is surjective. Indeed, let E = T (Lp
′
). Since E is a closed subspace,

it suffices to prove that E is dense in (Lp)�. Let h ∈ (Lp)�� satisfy 〈h, T u〉 = 0
∀u ∈ Lp′

. Since Lp is reflexive, h ∈ Lp, and satisfies
∫
uh = 0 ∀u ∈ Lp′

. Choosing
u = |h|p−2h, we see that h = 0.

Theorem 4.12. The space Cc(RN) is dense in Lp(RN) for any p, 1 ≤ p < ∞.

Before proving Theorem 4.12, we introduce some notation.

Notation. The truncation operation Tn : R → R is defined by
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Tnr =
⎧
⎨

⎩

r if |r| ≤ n,
nr

|r| if |r| > n.

Given a set E ⊂ �, we define the characteristic function3 χE to be

χE(x) =
{

1 if x ∈ E,
0 if x ∈ �\E.

Proof. First, we claim that given f ∈ Lp(RN) and ε > 0 there exist a function
g ∈ L∞(RN) and a compact set K in R

N such that g = 0 outside K and

(11) ‖f − g‖p < ε.

Indeed, let χn be the characteristic function of B(0, n) and let fn = χnTnf . By
dominated convergence we see that ‖fn − f ‖p → 0 and thus we may choose
g = fn with n large enough. Next, given δ > 0 there exists (by Theorem 4.3) a
function g1 ∈ Cc(RN) such that

‖g − g1‖1 < δ.

We may always assume that ‖g1‖∞ ≤ ‖g‖∞; otherwise, we replace g1 by Tng1 with
n = ‖g‖∞. Finally, we have

‖g − g1‖p ≤ ‖g − g1‖1/p
1 ‖g − g1‖1−(1/p)∞ ≤ δ1/p(2 ‖g‖∞)1−(1/p).

We conclude by choosing δ > 0 small enough that

δ1/p(2‖g‖∞)1−(1/p) < ε.

Definition. The measure space � is called separable if there is a countable family
(En) of members of M such that the σ -algebra generated by (En) coincides with
M (i.e., M is the smallest σ -algebra containing all the En’s).

Example. The measure space� = R
N is separable. Indeed, we may choose for (En)

any countable family of open sets such that every open set in R
N can be written as a

union of En’s. More generally, if � is a separable metric space and M consists of
the Borel sets (i.e., M is the σ -algebra generated by the open sets in�), then � is a
separable measure space.

Theorem 4.13. Assume that � is a separable measure space. Then Lp(�) is sepa-
rable for any p, 1 ≤ p < ∞.

We shall consider only the case � = R
N , since the general case is somewhat

tricky. Note that as a consequence, Lp(�) is also separable for any measurable
set � ⊂ R

N . Indeed, there is a canonical isometry from Lp(�) into Lp(RN) (the

3 Not to be confused with the indicator function IE introduced in Chapter 1.
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extension by 0 outside �); therefore Lp(�) may be identified with a subspace of
Lp(RN) and hence Lp(�) is separable (by Proposition 3.25).

Proof of Theorem 4.13 when � = R
N . Let R denote the countable family of sets

in R
N of the form R = ∏N

k=1(ak, bk) with ak, bk ∈ Q. Let E denote the vector
space over Q generated by the functions (χR)R∈R, that is, E consists of finite linear
combinations with rational coefficients of functions χR , so that E is countable.

We claim that E is dense in Lp(RN). Indeed, given f ∈ Lp(RN) and ε > 0,
there exists some f1 ∈ Cc(RN) such that ‖f − f1‖p < ε. Let R ∈ R be any cube
containing supp f1 (the support of f1). Given δ > 0 it is easy to construct a function
f2 ∈ E such that ‖f1 − f2‖∞ < δ and f2 vanishes outside R: it suffices to split
R into small cubes of R where the oscillation (i.e., sup − inf) of f1 is less than δ.
Therefore we have ‖f1 − f2‖p ≤ ‖f1 − f2‖∞|R|1/p < δ|R|1/p. We conclude that
‖f − f2‖p < 2ε, provided δ > 0 is chosen so that δ|R|1/p < ε.

B. Study of L1(�).
We start with a description of the dual space of L1(�).

• Theorem 4.14 (Riesz representation theorem). Let φ ∈ (L1)�. Then there exists
a unique function u ∈ L∞ such that

〈φ, f 〉 =
∫

uf ∀f ∈ L1.

Moreover,
‖u‖∞ = ‖φ‖(L1)� .

• Remark 5. Theorem 4.14 asserts that every continuous linear functional on L1 can
be represented “concretely” as an integral. The mapping φ 
→ u, which is a linear
surjective isometry, allows us to identify the “abstract” space (L1)� withL∞. In what
follows, we shall systematically make the identification

(L1)� = L∞.

Proof. Let (�n) be a sequence of measurable sets in � such that � = ∪∞
n=1�n and

|�n| < ∞ ∀n. Set χn = χ�n.

The uniqueness of u is obvious. Indeed, suppose u ∈ L∞ satisfies
∫

uf = 0 ∀f ∈ L1.

Choosing f = χn sign u (throughout this book, we use the convention that sign 0 =
0), we see that u = 0 a.e. on �n and thus u = 0 a.e. on �.

We now prove the existence of u. First, we construct a function θ ∈ L2(�)

such that
θ(x) ≥ εn > 0 ∀x ∈ �n.
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It is clear that such a function θ exists. Indeed, we define θ to be α1 on �1, α2
on �2\�1, . . . , αn on �n\�n−1, etc., and we adjust the constants αn > 0 in such a
way that θ ∈ L2.

The mapping f ∈ L2(�) 
→ 〈φ, θf 〉 is a continuous linear functional on L2(�).
By Theorem 4.11 (applied with p = 2) there exists a function v ∈ L2(�) such that

(12) 〈φ, θf 〉 =
∫

vf ∀f ∈ L2(�).

Set u(x) = v(x)/θ(x). Clearly, u is well defined since θ > 0 on �; moreover, u is
measurable and uχn ∈ L2(�). We claim that u has all the required properties. We
have

(13) 〈φ, χng〉 =
∫

uχng ∀g ∈ L∞(�) ∀n.

Indeed, it suffices to choose f = χng/θ in (12) (note that f ∈ L2(�) since f is
bounded on �n and f = 0 outside �n).

Next, we claim that u ∈ L∞(�) and that

(14) ‖u‖∞ ≤ ‖φ‖(L1)� .

Fix any constant C > ‖φ‖(L1)� and set

A = {x ∈ �; |u(x)| > C}.
Let us verify that A is a null set. Indeed, by choosing g = χA sign u in (13) we obtain

∫

A∩�n
|u| ≤ ‖φ‖(L1)� |A ∩�n|

and therefore
C|A ∩�n| ≤ ‖φ‖(L1)� |A ∩�n|.

It follows that |A ∩�n| = 0 ∀n, and thus A is a null set. This concludes the proof
of (14).

Finally, we claim that

(15) 〈φ, h〉 =
∫

uh ∀h ∈ L1(�).

Indeed, it suffices to choose g = Tnh (truncation of h) in (13) and to observe that
χnTnh → h in L1(�).

In order to complete the proof of Theorem 4.14 it remains only to check that
‖u‖∞ = ‖φ‖(L1)� . We have, by (15),

|〈φ, h〉| ≤ ‖u‖∞‖h‖1 ∀h ∈ L1(�),
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and therefore ‖φ‖(L1)� ≤ ‖u‖∞. We conclude with the help of (14).

• Remark 6. The space L1(�) is never reflexive except in the trivial case where �
consists of a finite number of atoms—and then L1(�) is finite-dimensional. Indeed
suppose, by contradiction, that L1(�) is reflexive and consider two cases:

(i) ∀ε > 0 ∃ω ⊂ � measurable with 0 < μ(ω) < ε.
(ii) ∃ε > 0 such that μ(ω) ≥ ε for every measurable set ω ⊂ � with μ(ω) > 0.

In Case (i) there is a decreasing sequence (ωn) of measurable sets such that
μ(ωn) > 0 ∀n and μ(ωn) → 0 [choose first any sequence (ω′

k) such that 0 <

μ(ω′
k) < 1/2k and then set ωn = ⋃∞

k=n ω′
k].

Let χn = χωn and define un = χn/‖χn‖1. Since ‖un‖1 = 1 there is a
subsequence—still denoted by un—and some u ∈ L1 such that un ⇀ u in the
weak topology σ(L1, L∞) (by Theorem 3.18), i.e.,

(16)
∫

unφ →
∫

uφ ∀φ ∈ L∞.

On the other hand, for fixed j , and n > j we have
∫
unχj = 1. At the limit, as

n → ∞, we obtain
∫
uχj = 1 ∀j . Finally, we note (by dominated convergence) that∫

uχj → 0 as j → ∞—a contradiction.
In Case (ii) the space � is purely atomic and consists of a countable union of

distinct atoms (an) (unless there is only a finite number of atoms!). In that case
L1(�) is isomorphic to �1 and it suffices to prove that �1 is not reflexive. Consider
the canonical basis:

en = (0, 0, . . . , 1
(n)
, 0, 0 . . . ).

Assuming �1 is reflexive, there exist a subsequence (enk ) and some x ∈ �1 such that
enk ⇀ x in the weak topology σ(�1, �∞), i.e.,

〈ϕ, enk 〉 −→
k→∞ 〈ϕ, x〉 ∀ϕ ∈ �∞.

Choosing
ϕ = ϕj = (0, 0, . . . , 1

(j)
, 1, 1, . . . )

we find that 〈ϕj , x〉 = 1 ∀j . On the other hand 〈ϕj , x〉 → 0 as j → ∞ (since
x ∈ �1)—a contradiction.

C. Study of L∞.
We already know (Theorem 4.14) that L∞ = (L1)�. Being a dual space, L∞

enjoys some nice properties. In particular, we have the following:

(i) The closed unit ball BL∞ is compact in the weak� topology σ(L∞, L1) (by
Theorem 3.16).

(ii) If � is a measurable subset in R
N and (fn) is a bounded sequence in L∞(�),

there exists a subsequence (fnk ) and some f ∈ L∞(�) such that fnk ⇀ f in
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the weak� topology σ(L∞, L1) (this is a consequence of Corollary 3.30 and
Theorem 4.13).

However L∞(�) is not reflexive, except in the trivial case where � consists of
a finite number of atoms; otherwise L1(�) would be reflexive (by Corollary 3.21)
and we know that L1 is not reflexive (Remark 6). As a consequence, it follows that
the dual space (L∞)� of L∞ contains L1 (since L∞ = (L1)�) and (L∞)� is strictly
bigger than L1. In other words, there are continuous linear functionals φ on L∞
which cannot be represented as

〈φ, f 〉 =
∫

uf ∀f ∈ L∞ and some u ∈ L1.

In fact, let us describe a “concrete” example of such a functional. Letφ0 : Cc(RN) →
R be defined by

φ0(f ) = f (0) for f ∈ Cc(RN).
Clearly φ0 is a continuous linear functional onCc(RN) for the ‖ ‖∞ norm. By Hahn–
Banach, we may extend φ0 into a continuous linear functional φ on L∞(RN) and
we have

(17) 〈φ, f 〉 = f (0) ∀f ∈ Cc(RN).
Let us verify that there exists no function u ∈ L1(RN) such that

(18) 〈φ, f 〉 =
∫

uf ∀f ∈ L∞(RN).

Assume, by contradiction, that such a function u exists. We deduce from (17) and
(18) that ∫

uf = 0 ∀f ∈ Cc(RN) and f (0) = 0.

Applying Corollary 4.24 (with � = R
N\{0}) we see that u = 0 a.e. on R

N\{0} and
thus u = 0 a.e. on R

N . We conclude (by (18)) that

〈φ, f 〉 = 0 ∀f ∈ L∞(RN),

which contradicts (17).

� Remark 7. The dual space of L∞ does not coincide with L1 but we may still ask
the question: what does (L∞)� look like? For this purpose it is convenient to view
L∞(�; C) as a commutative C�-algebra (see, e.g., W. Rudin [1]). By Gelfand’s
theorem L∞(�; C) is isomorphic and isometric to the space C(K; C) of continuous
complex-valued functions on some compact topological spaceK (K is the spectrum
of the algebra L∞; K is not metrizable except when � consists of a finite number
of atoms). Therefore (L∞(�; C))� may be identified with the space of complex-
valued Radon measures on K and L∞(�; R)� may be identified with the space of
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real-valued Radon measures on K; for more details, see Comment 3 at the end of
this chapter, W. Rudin [1] and K. Yosida [1] (p. 118).

Remark 8. The space L∞(�) is not separable except when � consists of a finite
number of atoms. In order to prove this fact it is convenient to use the following.

Lemma 4.2. Let E be a Banach space. Assume that there exists a family (Oi)i∈I
such that

(i) for each i ∈ I , Oi is a nonempty open subset of E,
(ii) Oi ∩Oj = ∅ if i 	= j ,

(iii) I is uncountable.

Then E is not separable.

Proof of Lemma 4.2. Suppose, by contradiction, that E is separable. Let (un)n∈N

denote a dense countable set in E. For each i ∈ I , the setOi ∩ (un)n∈N 	= ∅ and we
may choose n(i) such that un(i) ∈ Oi . The mapping i 
→ n(i) is injective; indeed,
if n(i) = n(j), then un(i) = un(j) ∈ Oi ∩ Oj and thus i = j . Therefore, I is
countable—a contradiction.

We now establish that L∞(�) is not separable. We claim that there is an un-
countable family (ωi)i∈I of measurable sets in � which are all distinct, that is, the
symmetric difference ωi�ωj has positive measure for i 	= j . We then conclude by
applying Lemma 4.2 to the family (Oi)i∈I defined by

Oi = {f ∈ L∞(�); ‖f − χωi‖∞ < 1/2}
(note that ‖χω−χω′ ‖∞ = 1 ifω andω′ are distinct). The existence of an uncountable
family (ωi) is clear when� is an open set in R

N since we may consider all the balls
B(x0, r) with x0 ∈ � and r > 0 small enough.

When � is a general measure space we split � into its atomic part �a and its
nonatomic (= diffuse) part �d ; then we distinguish two cases:

(i) �d is not a null set.
(ii) �d is a null set.

In Case (i), then for each real number t , 0 < t < μ(�d), there is a measurable
set ω with μ(ω) = t ; see, e.g., P. Halmos [1], A. J. Weir [1], or J. Neveu [1]. In this
way, we obtain an uncountable family of distinct measurable sets.

In Case (ii) � consists of a countable union of distinct atoms (an) (unless �
consists of a finite number of atoms). For any collection of integers,A ⊂ N, we define
ωA = ⋃

n∈A
an. Clearly, (ωA) is an uncountable family of distinct measurable sets.

The following table summarizes the main properties of the space Lp(�) when�
is a measurable subset of R

N :

Reflexive Separable Dual space
Lp with 1 < p < ∞ YES YES Lp

′

L1 NO YES L∞
L∞ NO NO Strictly bigger than L1
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4.4 Convolution and regularization

We first define the convolution product of a function f ∈ L1(RN) with a function
g ∈ Lp(RN).
• Theorem 4.15 (Young). Let f ∈ L1(RN) and let g ∈ Lp(RN) with 1 ≤ p ≤ ∞.
Then for a.e. x ∈ R

N the function y 
→ f (x − y)g(y) is integrable on R
N and we

define

(f � g)(x) =
∫

RN

f (x − y)g(y)dy.

In addition f � g ∈ Lp(RN) and

‖f � g‖p ≤ ‖f ‖1 ‖g‖p.

Proof. The conclusion is obvious when p = ∞. We consider two cases:

(i) p = 1 ,
(ii) 1 < p < ∞.

Case (i): p = 1. Set F(x, y) = f (x − y)g(y).

For a.e. y ∈ R
N we have

∫

RN

|F(x, y)|dx = |g(y)|
∫

RN

|f (x − y)|dx = |g(y)| ‖f ‖1 < ∞

and, moreover,
∫

RN

dy

∫

RN

|F(x, y)|dx = ‖g‖1 ‖f ‖1 < ∞.

We deduce from Tonelli’s theorem (Theorem 4.4) that F ∈ L1(RN ×R
N). Applying

Fubini’s theorem (Theorem 4.5), we see that
∫

RN

|F(x, y)|dy < ∞ for a.e. x ∈ R
N

and, moreover,
∫

RN

dx

∫

RN

|F(x, y)|dy =
∫

RN

dy

∫

RN

|F(x, y)|dx = ‖f ‖1‖g‖1.

This is precisely the conclusion of Theorem 4.15 when p = 1.
Case (ii): 1 < p < ∞. By Case (i) we know that for a.e. fixed x ∈ R

N the
function y 
→ |f (x − y)| |g(y)|p is integrable on R

N , that is,

|f (x − y)|1/p|g(y)| ∈ Lpy (RN).

Since |f (x, y)|1/p′ ∈ Lp′
y (R

N), we deduce from Hölder’s inequality that
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|f (x − y)||g(y)| = |f (x − y)|1/p′ |f (x − y)|1/p|g(y)| ∈ L1
y(R

N)

and

∫

RN

|f (x − y)||g(y)|dy ≤ ‖f ‖1/p′
1

(∫

RN

|f (x − y)| |g(y)|pdy
)1/p

,

that is,
|(f � g)(x)|p ≤ ∥

∥f
∥
∥p/p

′
1 (|f | � |g|p)(x).

We conclude, by Case (i), that f � g ∈ Lp(RN) and

∥
∥f � g

∥
∥p
p

≤ ∥
∥f

∥
∥p/p

′
1 ‖f ‖1

∥
∥g
∥
∥p
p
,

that is,
‖f � g‖p ≤ ‖f ‖1‖g‖p.

Notation. Given a function f on R
N we set f̌ (x) = f (−x).

Proposition 4.16. Let f ∈ L1(RN), g ∈ Lp(RN) and h ∈ Lp′
(RN). Then we have

∫

RN

(f � g)h =
∫

RN

g(f̆ � h).

Proof. The function F(x, y) = f (x − y)g(y)h(x) belongs to L1(RN × R
N) since

∫

|h(x)|dx
∫

|f (x − y)| |g(y)|dy < ∞

by Theorem 4.15 and Hölder’s inequality. Therefore we have
∫

(f � g)(x)h(x)dx =
∫

dx

∫

F(x, y)dy =
∫

dy

∫

F(x, y)dx

=
∫

g(y)(f̆ � h)(y)dy.

Support and convolution. The notion of support of a function f is standard: supp f
is the complement of the biggest open set on which f vanishes; in other words supp f
is the closure of the set {x; f (x) 	= 0}. This notion is not adequate when dealing with
equivalence classes, such as the space Lp. We need a definition which is intrinsic,
that is, supp f1 and supp f2 should be the same (or differ by a null set) if f1 = f2 a.e.
The reader will easily admit that the usual notion does not make sense for f = χQ

on R. In the following proposition we introduce the appropriate notion.

Proposition 4.17 (and definition of the support). Let f : R
N → R be any function.

Consider the family (ωi)i∈I of all open sets on R
N such that for each i ∈ I , f = 0

a.e. on ωi . Set ω = ⋃
i∈I ωi .

Then f = 0 a.e. on ω.
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By definition, supp f is the complement of ω in R
N.

Remark 9.

(a) Assume f1 = f2 a.e. on R
N ; clearly we have supp f1 = supp f2. Hence we may

talk about supp f for a function f ∈ Lp—without saying what representative
we pick in the equivalence class.

(b) If f is a continuous function on R
N it is easy to check that the new definition of

supp f coincides with the usual definition.

Proof of Proposition 4.17. Since the set I need not be countable it is not clear that
f = 0 a.e. on ω. However we may recover the countable case as follows. There is
a countable family (On) of open sets in R

N such that every open set on R
N is the

union of some On’s. Write ωi = ⋃
n∈AiOn and ω = ⋃

n∈BOn where B = ⋃
i∈IAi .

Since f = 0 a.e. on every set On with n ∈ B, we conclude that f = 0 a.e. on ω.

• Proposition 4.18. Let f ∈ L1(RN) and g ∈ Lp(RN) with 1 ≤ p ≤ ∞. Then

supp(f � g) ⊂ supp f + supp g.

Proof. Fix x ∈ R
N such that the function y 
→ f (x − y)g(y) is integrable (see

Theorem 4.15). We have

(f � g)(x) =
∫

f (x − y)g(y)dy =
∫

(x−supp f )∩supp g
f (x − y)g(y)dy.

If x /∈ supp f + supp g, then (x− supp f )∩ supp g = ∅ and so (f �g)(x) = 0. Thus

(f � g)(x) = 0 a.e. on (supp f + supp g)c.

In particular,

(f � g)(x) = 0 a.e. on Int[(supp f + supp g)c]
and therefore

supp(f � g) ⊂ supp f + supp g.

• Remark 10. If both f and g have compact support, then f � g also has compact
support. However, f � g need not have compact support if only one of them has
compact support.

Definition. Let � ⊂ R
N be open and let 1 ≤ p ≤ ∞. We say that a function

f : � → R belongs to Lploc(�) if f χK ∈ Lp(�) for every compact setK contained
in �.

Note that if f ∈ Lploc(�), then f ∈ L1
loc(�).

Proposition 4.19. Let f ∈ Cc(R
N) and g ∈ L1

loc(R
N). Then (f � g)(x) is well

defined for every x ∈ R
N , and, moreover, (f � g) ∈ C(RN).
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Proof. Note that for every x ∈ R
N the function y 
→ f (x − y)g(y) is integrable on

R
N and therefore (f � g)(x) is defined for every x ∈ R

N.

Let xn → x and letK be a fixed compact set in R
N such that (xn− supp f ) ⊂ K

∀n. Therefore, we have f (xn − y) = 0 ∀n, ∀y /∈ K . We deduce from the uniform
continuity of f that

|f (xn − y)− f (x − y)| ≤ εnχK(y) ∀n, ∀y ∈ R
N

with εn → 0. We conclude that

|(f � g)(xn)− (f � g)(x)| ≤ εn

∫

K

|g(y)|dy −→ 0.

Notation. Let � ⊂ R
N be an open set.

C(�) is the space of continuous functions on �.

Ck(�) is the space of functions k times continuously differentiable on � (k ≥ 1 is
an integer).

C∞(�) = ∩kCk(�).
Cc(�) is the space of continuous functions on � with compact support in �, i.e.,
which vanish outside some compact set K ⊂ �.

Ckc (�) = Ck(�) ∩ Cc(�).
C∞
c (�) = C∞(�) ∩ Cc(�),

(some authors write D(�) or C∞
0 (�) instead of C∞

c (�)).

If f ∈ C1(�), its gradient is defined by

∇f =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xN

)

.

If f ∈ Ck(�) and α = (α1, α2, . . . , αN) is a multi-index of length |α| = α1 + α2 +
· · · + αN , less than k, we write

Dαf = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

· · · ∂
αN

∂x
αN
N

f.

• Proposition 4.20. Let f ∈ Ckc (RN)(k ≥ 1) and let g ∈ L1
loc(R

N). Then f � g ∈
Ck(RN) and

Dα(f � g) = (Dαf ) � g ∀α with |α| ≤ k.

In particular, if f ∈ C∞
c (R

N) and g ∈ L1
loc(R

N), then f � g ∈ C∞(RN).

Proof. By induction it suffices to consider the case k = 1. Given x ∈ R
N we claim

that f � g is differentiable at x and that

∇(f � g)(x) = (∇f ) � g(x).
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Let h ∈ R
N with |h| < 1. We have, for all y ∈ R

N,

|f (x + h− y)− f (x − y)− h · ∇f (x − y)|

=
∣
∣
∣
∣

∫ 1

0
[h · ∇f (x + sh− y)− h · ∇f (x − y)]ds

∣
∣
∣
∣ ≤ |h|ε(|h|)

with ε(|h|) → 0 as |h| → 0 (since ∇f is uniformly continuous on R
N).

LetK be a fixed compact set in R
N large enough that x+B(0, 1)− supp f ⊂ K .

We have

f (x + h− y)− f (x − y)− h · ∇f (x − y) = 0 ∀y /∈ K, ∀h ∈ B(0, 1)

and therefore

|f (x+h−y)−f (x−y)−h·∇f (x−y)| ≤ |h|ε(|h|)χK(y) ∀y ∈ R
N, ∀h ∈ B(0, 1).

We conclude that for h ∈ B(0, 1),

|(f � g)(x + h)− (f � g)(x)− h · (∇f � g)(x)| ≤ |h|ε(|h|)
∫

K

|g(y)|dy.

It follows that f � g is differentiable at x and ∇(f � g)(x) = (∇f ) � g(x).

Mollifiers

Definition. A sequence of mollifiers (ρn)n≥1 is any sequence of functions on R
N

such that

ρn ∈ C∞
c (R

N), supp ρn ⊂ B(0, 1/n),
∫

ρn = 1, ρn ≥ 0 on R
N.

In what follows we shall systematically use the notation (ρn) to denote a sequence
of mollifiers.

It is easy to generate a sequence of mollifiers starting with a single function
ρ ∈ C∞

c (R
N) such that supp ρ ⊂ B(0, 1), ρ ≥ 0 on R

N , and ρ does not vanish
identically—for example the function

ρ(x) =
{
e1/(|x|2−1) if |x| < 1,

0 if |x| > 1.

We obtain a sequence of mollifiers by letting ρn(x) = C nNρ(nx)with C = 1/
∫
ρ.

Proposition 4.21. Assume f ∈ C(RN). Then (ρn �f ) −→
n→∞ f uniformly on compact

sets of R
N.
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Proof. 4 Let K ⊂ R
N be a fixed compact set. Given ε > 0 there exists δ > 0

(depending on K and ε) such that

|f (x − y)− f (x)| < ε ∀x ∈ K, ∀y ∈ B(0, δ).
We have, for x ∈ R

N,

(ρn � f )(x)− f (x) =
∫

[f (x − y)− f (x)]ρn(y)dy

=
∫

B(0,1/n)
[f (x − y)− f (x)]ρn(y)dy.

For n > 1/δ and x ∈ K we obtain

|(ρn � f )(x)− f (x)| ≤ ε

∫

ρn = ε.

• Theorem 4.22. Assume f ∈ Lp(RN) with 1 ≤ p < ∞. Then (ρn � f ) −→
n→∞ f in

Lp(RN).

Proof. Given ε > 0, we fix a function f1 ∈ Cc(RN) such that ‖f − f1‖p < ε (see
Theorem 4.12). By Proposition 4.21 we know that (ρn � f1) → f1 uniformly on
every compact set of R

N . On the other hand, we have (by Proposition 4.18) that

supp(ρn � f1) ⊂ B(0, 1/n)+ supp f1 ⊂ B(0, 1)+ supp f1,

which is a fixed compact set. It follows that

‖(ρn � f1)− f1‖p −→
n→∞ 0.

Finally, we write

(ρn � f )− f = [ρn � (f − f1)] + [(ρn � f1)− f1] + [f1 − f ]
and thus

‖(ρn � f )− f ‖p ≤ 2‖f − f1‖p + ‖(ρn � f1)− f1‖p
(by Theorem 4.15).

We conclude that

lim sup
n→∞

‖(ρn � f )− f ‖p ≤ 2ε ∀ε > 0

and therefore limn→∞‖(ρn � f )− f ‖p = 0.

• Corollary 4.23. Let � ⊂ R
N be an open set. Then C∞

c (�) is dense in Lp(�) for
any 1 ≤ p < ∞.

4 The technique of regularization by convolution was originally introduced by Leray and Friedrichs.
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Proof. Given f ∈ Lp(�) we set

f̄ (x) =
{
f (x) if x ∈ �,
0 if x ∈ R

N\�,

so that f̄ ∈ Lp(RN).
Let (Kn) be a sequence of compact sets in R

N such that

∞⋃

n=1

Kn = � and dist(Kn,�
c) ≥ 2/n ∀n.

[We may choose, for example, Kn = {x ∈ R
N ; |x| ≤ n and dist(x,�c) ≥ 2/n}.]

Set gn = χKnf̄ and fn = ρn � gn, so that

supp fn ⊂ B(0, 1/n)+Kn ⊂ �.

It follows that fn ∈ C∞
c (�). On the other hand, we have

∥
∥fn − f

∥
∥
Lp(�)

= ∥
∥fn − f̄

∥
∥
Lp(RN)

≤ ∥
∥(ρn � gn)− (ρn � f̄ )

∥
∥
Lp(RN)

+ ∥
∥(ρn � f̄ )− f̄

∥
∥
Lp(RN)

≤ ∥
∥gn − f̄

∥
∥
Lp(RN)

+ ‖(ρn � f̄ )− f̄ ‖Lp(RN).

Finally, we note that
∥
∥gn − f̄

∥
∥
Lp(RN)

→ 0 by dominated convergence and
∥
∥(ρn �

f̄ )− f̄
∥
∥
Lp(RN)

→ 0 by Theorem 4.22. We conclude that ‖fn − f ‖Lp(�) → 0.

Corollary 4.24. Let � ⊂ R
N be an open set and let u ∈ L1

loc(�) be such that

∫

uf = 0 ∀f ∈ C∞
c (�).

Then u = 0 a.e. on �.

Proof. Let g ∈ L∞(RN) be a function such that supp g is a compact set contained
in �. Set gn = ρn � g, so that gn ∈ C∞

c (�) provided n is large enough. Therefore
we have

(19)
∫

u gn = 0 ∀n.

Since gn → g in L1(RN) (by Theorem 4.22) there is a subsequence—still de-
noted by gn—such that gn → g a.e. on R

N (see Theorem 4.9). Moreover, we have
‖gn‖L∞(RN) ≤ ‖g‖L∞(RN). Passing to the limit in (19) (by dominated convergence),
we obtain

(20)
∫

ug = 0.
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Let K be a compact set contained in �. We choose as function g the function

g =
{

sign u on K,

0 on R
N\K.

We deduce from (20) that
∫

K
|u| = 0 and thus u = 0 a.e. onK . Since this holds for

any compact K ⊂ �, we conclude that u = 0 a.e. on �.

4.5 Criterion for Strong Compactness in Lp

It is important to be able to decide whether a family of functions in Lp(�) has
compact closure inLp(�) (for the strong topology). We recall that the Ascoli–Arzelà
theorem answers the same question in C(K), the space of continuous functions over
a compact metric space K with values in R.

• Theorem 4.25 (Ascoli–Arzelà). Let K be a compact metric space and let H be a
bounded subset of C(K). Assume that H is uniformly equicontinuous, that is,

(21) ∀ε > 0 ∃δ > 0 such that d(x1, x2) < δ ⇒ |f (x1)− f (x2)| < ε ∀f ∈ H.

Then the closure of H in C(K) is compact.

For the proof of the Ascoli–Arzelà theorem, see, e.g., W. Rudin [1], [2], A. Knapp
[1], J. Dixmier [1], A. Friedman [3], G. Choquet [1], K. Yosida [1], H. L. Royden
[1], J. R. Munkres [1], G. B. Folland [2], etc.

Notation (shift of function). We set (τhf )(x) = f (x + h), x ∈ R
N , h ∈ R

N.

The following theorem and its corollary are “Lp-versions” of the Ascoli–Arzelà
theorem.

• Theorem 4.26 (Kolmogorov–M. Riesz–Fréchet). Let F be a bounded set in
Lp(RN) with 1 ≤ p < ∞. Assume that5

(22) lim|h|→0
‖τhf − f ‖p = 0 uniformly in f ∈ F,

i.e., ∀ε > 0 ∃δ > 0 such that ‖τhf − f ‖p < ε ∀f ∈ F , ∀h ∈ R
N with |h| < δ.

Then the closure of F|� in Lp(�) is compact for any measurable set � ⊂ R
N

with finite measure.

[Here F|� denotes the restrictions to � of the functions in F .]
The proof consists of four steps:
Step 1: We claim that

(23) ‖(ρn � f )− f ‖Lp(RN) ≤ ε ∀f ∈ F, ∀n > 1/δ.

5 Assumption (22) should be compared with (21). It is an “integral” equicontinuity assumption.
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Indeed, we have

|(ρn � f )(x)− f (x)| ≤
∫

|f (x − y)− f (x)|ρn(y)dy

≤
[∫

|f (x − y)− f (x)|pρn(y)dy
]1/p

by Hölder’s inequality.
Thus we obtain

∫

|(ρn � f )(x)− f (x)|pdx ≤
∫ ∫

|f (x − y)− f (x)|pρn(y)dx dy

=
∫

B(0,1/n)
ρn(y)dy

∫

|f (x − y)− f (x)|pdx ≤ εp,

provided 1/n < δ.

Step 2: We claim that

(24)
∥
∥ρn � f

∥
∥
L∞(RN) ≤ Cn

∥
∥f

∥
∥
Lp(RN)

∀f ∈ F

and

|(ρn � f )(x1)− (ρn � f )(x2)| ≤ Cn‖f ‖p|x1 − x2|
∀f ∈ F, ∀x1, x2 ∈ R

N,
(25)

where Cn depends only on n.
Inequality (24) follows from Hölder’s inequality with Cn = ‖ρn‖p′ . On the other

hand, we have ∇(ρn � f ) = (∇ρn) � f and therefore

‖∇(ρn � f )‖L∞(RN) ≤ ‖∇ρn‖Lp′
(RN)

‖f ‖Lp(RN).
Thus we obtain (25) with Cn = ‖∇ρn‖Lp′

(RN)
.

Step 3: Given ε > 0 and� ⊂ R
N of finite measure, there is a bounded measurable

subset ω of � such that

(26) ‖f ‖Lp(�\ω) < ε ∀f ∈ F .

Indeed, we write
∥
∥f

∥
∥
Lp(�\ω) ≤ ∥

∥f − (ρn � f )
∥
∥
Lp(RN)

+ ∥
∥ρn � f

∥
∥
Lp(�\ω).

In view of (24) it suffices to choose ω such that |�\ω| is small enough.

Step 4: Conclusion. Since Lp(�) is complete, it suffices (see, e.g., A. Knapp [1]
or J. R. Munkres [1], Section 7.3) to show that F|� is totally bounded, i.e., given
any ε > 0 there is a finite covering of F|� by balls of radius ε. Given ε > 0 we fix
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a bounded measurable set ω such that (26) holds. Also we fix n > 1/δ. The family
H = (ρn �F)|ω̄ satisfies all the assumptions of the Ascoli–Arzelà theorem (by Step
2). Therefore H has compact closure in C(ω̄); consequently H also has compact
closure in Lp(ω). Hence we may cover H by a finite number of balls of radius ε in
Lp(ω), say,

H ⊂
⋃

i

B(gi, ε) with gi ∈ Lp(ω).

Consider the functions ḡi : � → R defined by

ḡi =
{
gi on ω,

0 on �\ω,
and the balls B(ḡi, 3ε) in Lp(�).

We claim that they cover F|�. Indeed, given f ∈ F there is some i such that
∥
∥(ρn � f )− gi

∥
∥
Lp(ω)

< ε.

Since
∥
∥f − ḡi

∥
∥p
Lp(�)

=
∫

�\ω
|f |p +

∫

ω

|f − gi |p

we have, by (26),
∥
∥f − ḡi

∥
∥
Lp(�)

≤ ε + ∥
∥f − gi

∥
∥
Lp(ω)

≤ ε + ∥
∥f − (ρn � f )

∥
∥
Lp(RN)

+ ∥
∥(ρn � f )− gi

∥
∥
Lp(ω)

< 3ε.

We conclude that F|� has compact closure in Lp(�).

Remark 11. When trying to establish that a family F in Lp(�) has compact closure
in Lp(�), with � bounded, it is usually convenient to extend the functions to all of
R
N , then apply Theorem 4.26 and consider the restrictions to �.

Remark 12. Under the assumptions of Theorem 4.26 we cannot conclude in general
that F itself has compact closure in Lp(RN) (construct an example, or see Exercise
4.33). An additional assumption is required; we describe it next:

Corollary 4.27. Let F be a bounded set in Lp(RN) with 1 ≤ p < ∞. Assume (22)
and also

(27)

{
∀ε > 0 ∃� ⊂ R

N, bounded, measurable such that

‖f ‖Lp(Rn\�) < ε ∀f ∈ F .

Then F has compact closure in Lp(RN).

Proof. Given ε > 0 we fix � ⊂ R
N bounded measurable such that (27) holds. By

Theorem 4.26 we know that F|� has compact closure inLp(�). Hence we may cover
F|� with a finite number of balls of radius ε in Lp(�), say
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F|� ⊂
⋃

i

B(gi, ε) with gi ∈ Lp(�).

Set

ḡi (x) =
{
gi(x) in �,

0 on R
N\�.

It is clear that F is covered by the balls B(ḡi, 2ε) in Lp(RN).

Remark 13. The converse of Corollary 4.27 is also true (see Exercise 4.34). Therefore
we have a complete characterization of compact sets in Lp(RN).

We conclude with a useful application of Theorem 4.26:

Corollary 4.28. Let G be a fixed function in L1(RN) and let

F = G � B,

where B is a bounded set in Lp(RN) with 1 ≤ p < ∞. Then F|� has compact
closure in Lp(�) for any measurable set � with finite measure.

Proof. Clearly F is bounded in Lp(RN). On the other hand, if we write f = G � u

with u ∈ B we have

‖τhf − f ‖p = ‖(τhG−G) � u‖p ≤ C‖τhG−G‖1,

and we conclude with the help of the following lemma:

Lemma 4.3. Let G ∈ Lq(RN) with 1 ≤ q < ∞.

Then
lim
h→0

‖τhG−G‖q = 0.

Proof. Given ε > 0, there exists (by Theorem 4.12) a function G1 ∈ Cc(RN) such
that ‖G−G1‖q < ε.

We write

‖τhG−G‖q ≤ ‖τhG− τhG1‖q + ‖τhG1 −G1‖q + ‖G1 −G‖q
≤ 2ε + ‖τhG1 −G1‖q .

Since limh→0‖τhG1 −G1‖q = 0 we see that

lim sup
h→0

‖τhG−G‖q ≤ 2ε ∀ε > 0.

Comments on Chapter 4

1. Egorov’s theorem.
Some basic results of integration theory have been recalled in Section 4.1. One useful
result that has not been mentioned is the following.
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� Theorem 4.29 (Egorov). Assume that � is a measure space with finite measure.
Let (fn) be a sequence of measurable functions on � such that

fn(x) → f (x) a.e. on � (with |f (x)| < ∞ a.e.).

Then ∀ε > 0 ∃A ⊂ � measurable such that |�\A| < ε and fn → f uniformly
on A.

For a proof, see Exercise 4.14, P. Halmos [1], G. B. Folland [2], E. Hewitt–
K. Stromberg [1], R. Wheeden–A. Zygmund [1], K. Yosida [1], A. Friedman [3],
etc.

2. Weakly compact sets in L1.
Since L1 is not reflexive, bounded sets of L1 do not play an important role with
respect to the weak topology σ(L1, L∞). The following result provides a useful
characterization of weakly compact sets of L1.

� Theorem 4.30 (Dunford–Pettis). Let F be a bounded set in L1(�). Then F has
compact closure in the weak topology σ(L1, L∞) if and only if F is equi-integrable,
that is,

(a)

⎧
⎨

⎩

∀ε > 0 ∃δ > 0 such that∫

A

|f | < ε ∀A ⊂ �,measurable with |A| < δ, ∀f ∈ F

and

(b)

⎧
⎨

⎩

∀ε > 0 ∃ω ⊂ �, measurable with |ω| < ∞ such that∫

�\ω
|f | < ε ∀f ∈ F .

For a proof and discussion of Theorem 4.30 see Problem 23 or N. Dunford–
J. T. Schwartz [1], B. Beauzamy [1], J. Diestel [2], I. Fonseca–G. Leoni [1], and
also J. Neveu [1], C. Dellacherie–P. A. Meyer [1] for the probabilistic aspects; see
also Exercise 4.36.

3. Radon measures.
As we have just pointed out, bounded sets of L1 enjoy no compactness properties.
To overcome this lack of compactness it is sometimes very useful to embed L1 into
a large space: the space of Radon measures.

Assume, for example, that � is a bounded open set of R
N with the Lebesgue

measure. Consider the space E = C(�) with its norm ‖u‖ = supx∈� |u(x)|. Its
dual space, denoted by M(�), is called the space of Radon measures on �. The
weak� topology on M(�) is sometimes called the “vague” topology.

We shall identifyL1(�)with a subspace of M(�). For this purpose we introduce
the mapping L1(�) → M(�) defined as follows. Given f ∈ L1(�), the mapping
u ∈ C(�) 
→ ∫

�
f u dx is a continuous linear functional on C(�), which we denote

Tf , so that
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〈Tf, u〉E�,E =
∫

�

f u dx ∀u ∈ E.
Clearly T is linear, and, moreover, T is an isometry, since

‖Tf ‖M(�) = sup
u∈E‖u‖≤1

∫

�

f u = ‖f ‖1 (see Exercise 4.26).

Using T we may identify L1(�) with a subspace of M(�). Since M(�) is the
dual space of the separable space C(�), it has some compactness properties in the
weak� topology. In particular, if (fn) is a bounded sequence in L1(�), there exist a

subsequence (fnk ) and a Radon measureμ such that fnk
�
⇀ μ in the weak� topology

σ(E�,E), that is, ∫

�

fnku → 〈μ, u〉 ∀u ∈ C(�).

For example, a sequence in L1 can converge to a Dirac measure with respect to
the weak� topology. Some futher properties of Radon measures are discussed in
Problem 24.

The terminology “measure” is justified by the following result, which connects
the above definition with the standard notion of measures in the set-theoretic sense:

Theorem 4.31 (Riesz representation theorem). Let μ be a Radon measure on �.
Then there is a unique signed Borel measure ν on � (that is, a measure defined on
Borel sets of �) such that

〈μ, u〉 =
∫

�

udν ∀u ∈ C(�).

It is often convenient to replace the space E = C(�) by the subspace

E0 = {f ∈ C(�); f = 0 on the boundary of �}.
The dual of E0 is denoted by M(�) (as opposed to M(�)). The Riesz repre-

sentation theorem remains valid with the additional condition that |ν|(boundary of
�) = 0.

On this vast and classical subject, see, e.g., H. L. Royden [1], W. Rudin [2],
G. B. Folland [2], A. Knapp [1], P. Malliavin [1], P. Halmos [1], I. Fonseca–
G. Leoni [1].

4. The Bochner integral of vector-valued functions.
Let� be a measure space and letE be a Banach space. The spaceLp(�;E) consists
of all functions f defined on � with values into E that are measurable in some
appropriate sense and such that

∫

�
‖f (x)‖pdμ < ∞ (with the usual modification

when p = ∞). Most of the properties described in Sections 4.2 and 4.3 still hold
under some additional assumptions onE. For example, ifE is reflexive and 1 < p <

∞, then Lp(�;E) is reflexive and its dual space is Lp
′
(�;E�). For more details,
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see K. Yosida [1], D. L. Cohn [1], E. Hille [1], B. Beauzamy [1], L. Schwartz [3].
The space Lp(�;E) is very useful in the study of evolution equations when� is an
interval in R (see Chapter 10).

5. Interpolation theory.
The most striking result, which began interpolation theory, is the following.

Theorem 4.32 (Schur, M. Riesz, Thorin). Assume that � is a measure space with
|�| < ∞, and that T : L1(�) → L1(�) is a bounded linear operator with norm

M1 = ‖T ‖L(L1,L1).

Assume, in addition, that T : L∞(�) → L∞(�) is a bounded linear operator
with norm

M∞ = ‖T ‖L(L∞,L∞).

Then T is a bounded operator from Lp(�) into Lp(�) for all 1 < p < ∞, and its
norm Mp satisfies

Mp ≤ M
1/p
1 M

1/p′
∞ .

Interpolation theory was originally discovered by I. Schur, M. Riesz, G. O. Thorin,
J. Marcinkiewicz, and A. Zygmund. Decisive contributions have been made by a
number of authors including J.-L. Lions, J. Peetre, A. P. Calderon, E. Stein, and
E. Gagliardo. It has become a useful tool in harmonic analysis (see, e.g., E. Stein–
G. Weiss [1], E. Stein [1], C. Sadosky [1]) and in partial differential equations
(see, e.g., J.-L. Lions–E. Magenes [1]). On these questions see also G. B. Folland
[2], N. Dunford–J. T. Schwartz [1] (Volume 1 p. 520), J. Bergh–J. Löfström [1],
M. Reed–B. Simon [1], (Volume 2, p. 27) and Problem 22.

6. Young’s inequality.
The following is an extension of Theorem 4.15.

Theorem 4.33 (Young). Assume f ∈ Lp(RN) and g ∈ Lq(RN) with 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞ and 1

r
= 1

p
+ 1

q
− 1 ≥ 0.

Then f � g ∈ Lr(RN) and ‖f � g‖r ≤ ‖f ‖p‖g‖q .

For a proof see, e.g., Exercise 4.30.

7. The notion of convolution—extended to distributions (see L. Schwartz [1] or
A. Knapp [2])—plays a fundamental role in the theory of partial differential equa-
tions. For example, the equation P(D)u = f in R

N , where P(D) is any differential
operator with constant coefficients, has a solution of the form u = E � f , where E
is the fundamental solution of P(D) (theorem of Malgrange–Ehrenpreis; see also
Comment 2b in Chapter 1). In particular, the equation �u = f in R

3 has a solution
of the form u = E � f , where E(x) = −(4π |x|)−1.
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Exercises for Chapter 4

Except where otherwise stated, � denotes a σ -finite measure space.

4.1 Let α > 0 and β > 0. Set

f (x) = {
1 + |x|α}−1 {1 + | log |x||β}−1

, x ∈ R
N.

Under what conditions does f belong to Lp(RN)?

4.2 Assume |�| < ∞ and let 1 ≤ p ≤ q ≤ ∞. Prove that Lq(�) ⊂ Lp(�) with
continuous injection. More precisely, show that

‖f ‖p ≤ |�| 1
p

− 1
q ‖f ‖q ∀f ∈ Lq(�).

[Hint: Use Hölder’s inequality.]

4.3

1. Let f, g ∈ Lp(�) with 1 ≤ p ≤ ∞. Prove that

h(x) = max {f (x), g(x)} ∈ Lp(�).
2. Let (fn) and (gn) be two sequences in Lp(�) with 1 ≤ p ≤ ∞ such that
fn → f in Lp(�) and gn → g in Lp(�). Set hn = max{fn, gn} and prove that
hn → h in Lp(�).

3. Let (fn) be a sequence in Lp(�) with 1 ≤ p < ∞ and let (gn) be a bounded
sequence in L∞(�). Assume fn → f in Lp(�) and gn → g a.e. Prove that
fngn → fg in Lp(�).

4.4

1. Let f1, f2, . . . , fk be k functions such that fi ∈ Lpi (�) ∀i with 1 ≤ pi ≤ ∞
and

∑k
i=1

1
pi

≤ 1.
Set

f (x) =
k∏

i=1

fi(x).

Prove that f ∈ Lp(�) with 1
p

= ∑k
i=1

1
pi

and that

‖f ‖p ≤
k∏

i=1

‖fi‖pi .

[Hint: Start with k = 2 and proceed by induction.]
2. Deduce that if f ∈ Lp(�) ∩ Lq(�) with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, then
f ∈ Lr(�) for every r between p and q. More precisely, write
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1

r
= α

p
+ 1 − α

q
with α ∈ [0, 1]

and prove that
∥
∥f

∥
∥
r

≤ ∥
∥f

∥
∥α
p

∥
∥f

∥
∥1−α
q

.

4.5 Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞.

1. Prove that L1(�) ∩ L∞(�) is a dense subset of Lp(�).
2. Prove that the set

{
f ∈ Lp(�) ∩ Lq(�) ; ‖f ‖q ≤ 1

}

is closed in Lp(�).
3. Let (fn) be a sequence in Lp(�) ∩ Lq(�) and let f ∈ Lp(�). Assume that

fn → f in Lp(�) and ‖fn‖q ≤ C.

Prove that f ∈ Lr(�) and that fn → f in Lr(�) for every r between p and
q, r 	= q.

4.6 Assume |�| < ∞.

1. Let f ∈ L∞(�). Prove that limp→∞ ‖f ‖p = ‖f ‖∞.
2. Let f ∈ ∩1≤p<∞Lp(�) and assume that there is a constant C such that

‖f ‖p ≤ C ∀ 1 ≤ p < ∞.

Prove that f ∈ L∞(�).
3. Construct an example of a function f ∈ ∩1≤p<∞Lp(�) such that f /∈ L∞(�)

with � = (0, 1).

4.7 Let 1 ≤ q ≤ p ≤ ∞. Let a(x) be a measurable function on �. Assume that
au ∈ Lq(�) for every function u ∈ Lp(�).

Prove that a ∈ Lr(�) with

r =
⎧
⎨

⎩

pq

p − q
if p < ∞,

q if p = ∞.

[Hint: Use the closed graph theorem.]

4.8 Let X ⊂ L1(�) be a closed vector space in L1(�). Assume that

X ⊂
⋃

1<q≤∞
Lq(�).
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1. Prove that there exists some p > 1 such that X ⊂ Lp(�).

[Hint: For every integer n ≥ 1 consider the set

Xn =
{
f ∈ X ∩ L1+(1/n)(�) ; ∥∥f ∥∥1+(1/n) ≤ n

}
.]

2. Prove that there is a constant C such that

‖f ‖p ≤ C‖f ‖1 ∀f ∈ X.

4.9 Jensen’s inequality.
Assume |�| < ∞. Let j : R → (−∞,+∞] be a convex l.s.c. function, j 	≡ +∞.

Let f ∈ L1(�) be such that f (x) ∈ D(j) a.e. and j (f ) ∈ L1(�). Prove that

j

(
1

|�|
∫

�

f

)

≤ 1

|�|
∫

�

j (f ).

4.10 Convex integrands.
Assume |�| < ∞. Let 1 ≤ p < ∞ and let j : R → R be a convex and continuous

function. Consider the function J : Lp(�) → (−∞,+∞] defined by

J (u) =
⎧
⎨

⎩

∫

�

j (u(x))dx if j (u) ∈ L1(�),

+∞ if j (u) /∈ L1(�).

1. Prove that J is convex.
2. Prove that J is l.s.c.

[Hint: Start with the case j ≥ 0 and use Fatou’s lemma.]
3. Prove that the conjugate function J � : Lp′

(�) → (−∞,+∞] is given by

J �(f ) =
{∫

�
j�(f (x))dx if j�(f ) ∈ L1(�),

+∞ if j�(f ) /∈ L1(�).

[Hint: When 1 < p < ∞ consider Jn(u) = J (u)+ 1
n

∫ |u|p and determine J �n .]
4. Let ∂j (resp. ∂J ) denote the subdifferential of j (resp. J ) (see Problem 2). Let
u ∈ Lp(�) and let f ∈ Lp′

(�); prove that

f ∈ ∂J (u) ⇐⇒ f (x) ∈ ∂j (u(x)) a.e. on �.

4.11 The spaces Lα(�) with 0 < α < 1.
Let 0 < α < 1. Set

Lα(�) =
{
u : � → R; u is measurable and |u|α ∈ L1(�)

}
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and

[u]α =
(∫

|u|α
)1/α

.

1. Check that Lα is a vector space but that [ ]α is not a norm. More precisely,
prove that if u, v ∈ Lα(�), u ≥ 0 a.e. and v ≥ 0 a.e., then

[u+ v]α ≥ [u]α + [v]α.
2. Prove that

[u+ v]αα ≤ [u]αα + [v]αα ∀u, v ∈ Lα(�).

4.12 Lp is uniformly convex for 1 < p ≤ 2 (by the method of C. Morawetz).

1. Let 1 < p < ∞. Prove that there is a constant C (depending only on p) such
that

|a − b|p ≤ C(|a|p + |b|p)1−s
(

|a|p + |b|p − 2

∣
∣
∣
∣
a + b

2

∣
∣
∣
∣

p)s

∀a, b ∈ R,

where s = p/2.
2. Deduce that Lp(�) is uniformly convex for 1 < p ≤ 2.

[Hint: Use question 1 and Hölder’s inequality.]

4.13

1. Check that ∣
∣|a + b| − |a| − |b|∣∣ ≤ 2|b| ∀a, b ∈ R.

2. Let (fn) be a sequence in L1(�) such that

(i) fn(x) → f (x) a.e.,
(ii) (fn) is bounded in L1(�) i.e., ‖fn‖1 ≤ M ∀n.

Prove that f ∈ L1(�) and that

lim
n→∞

∫

{|fn| − |fn − f |} =
∫

|f |.

[Hint: Use question 1 with a = fn − f and b = f , and consider the sequence
ϕn = ∣

∣|fn| − |fn − f | − |f |∣∣.]
3. Let (fn) be a sequence in L1(�) and let f be a function in L1(�) such that

(i) fn(x) → f (x) a.e.,
(ii) ‖fn‖1 → ‖f ‖.

Prove that ‖fn − f ‖1 = 0.

4.14 The theorems of Egorov and Vitali.
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Assume |�| < ∞. Let (fn) be a sequence of measurable functions such that
fn → f a.e. (with |f | < ∞ a.e.).

1. Let α > 0 be fixed. Prove that

meas[|fn − f | > α|] −→
n→∞ 0.

2. More precisely, let
Sn(α) =

⋃

k≥n
[|fk − f | > α].

Prove that |Sn(α)| −→
n→∞ 0.

3. (Egorov). Prove that
{

∀δ > 0 ∃A ⊂ � measurable such that

|A| < δ and fn → f uniformly on �\A.
[Hint: Given an integer m ≥ 1, prove with the help of question 2 that there
exists �m ⊂ �, measurable, such that |�m| < δ/2m and there exists an integer
Nm such that

|fk(x)− f (x)| < 1

m
∀k ≥ Nm, ∀x ∈ �\�m. ]

4. (Vitali). Let (fn) be a sequence in Lp(�) with 1 ≤ p < ∞. Assume that

(i) ∀ε > 0 ∃δ > 0 such that
∫

A
|fn|p < ε ∀n and ∀A ⊂ � measurable with

|A| < δ.
(ii) fn → f a.e.

Prove that f ∈ Lp(�) and that fn → f in Lp(�).

4.15 Let � = (0, 1).

1. Consider the sequence (fn) of functions defined by fn(x) = ne−nx . Prove that

(i) fn → 0 a.e.
(ii) fn is bounded in L1(�).

(iii) fn � 0 in L1(�) strongly.
(iv) fn 	⇀ 0 weakly σ(L1, L∞).

More precisely, there is no subsequence that converges weakly σ(L1, L∞).

2. Let 1 < p < ∞ and consider the sequence (gn) of functions defined by gn(x) =
n1/pe−nx . Prove that

(i) gn → 0 a.e.
(ii) (gn) is bounded in Lp(�).

(iii) gn � 0 in Lp(�) strongly.
(iv) gn ⇀ 0 weakly σ(Lp,Lp

′
).
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4.16 Let 1 < p < ∞. Let (fn) be a sequence in Lp(�) such that

(i) fn is bounded in Lp(�).
(ii) fn → f a.e. on �.

1. Prove that fn ⇀ f weakly σ(Lp,Lp
′
).

[Hint: First show that if fn ⇀ f̃ weakly σ(Lp,Lp
′
) and fn → f a.e., then

f = f̃ a.e. (use Exercise 3.4).]

2. Same conclusion if assumption (ii) is replaced by

(ii′) ‖fn − f ‖1 → 0.

3. Assume now (i), (ii), and |�| < ∞. Prove that ‖fn − f ‖q → 0 for every q with
1 ≤ q < p.
[Hint: Introduce the truncated functions Tkfn or alternatively use Egorov’s the-
orem.]

4.17 Brezis–Lieb’s lemma.
Let 1 < p < ∞.

1. Prove that there is a constant C (depending on p) such that

∣
∣|a + b|p − |a|p − |b|p∣∣ ≤ C

(
|a|p−1|b| + |a| |b|p−1

)
∀a, b ∈ R.

2. Let (fn) be a bounded sequence in Lp(�) such that fn → f a.e. on �. Prove
that f ∈ Lp(�) and that

lim
n→∞

∫

�

{|fn|p − |fn − f |p} =
∫

�

|f |p.

[Hint: Use question 1 with a = fn − f and b = f . Note that by Exercise 4.16,
|fn − f | ⇀ 0 weakly in Lp and |fn − f |p−1 ⇀ 0 weakly in Lp

′
.]

3. Deduce that if (fn) is a sequence in Lp(�) satisfying

(i) fn(x) → f (x) a.e.,
(ii) ‖fn‖p → ‖f ‖p,

then ‖fn − f ‖p → 0.
4. Find an alternative method for question 3.

4.18 Rademacher’s functions.
Let 1 ≤ p ≤ ∞ and letf ∈ Lploc(R).Assume thatf isT -periodic, i.e.,f (x+T ) =

f (x) a.e. x ∈ R.
Set

f = 1

T

∫ T

0
f (t)dt.

Consider the sequence (un) in Lp(0, 1) defined by
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un(x) = f (nx), x ∈ (0, 1).

1. Prove that un ⇀ f in Lp(0, 1) with respect to the topology σ(Lp,Lp
′
).

2. Determine limn→∞ ‖un − f ‖p.
3. Examine the following examples:

(i) un(x) = sin nx,
(ii) un(x) = f (nx) where f is 1-periodic and

f (x) =
{
α for x ∈ (0, 1/2),

β for x ∈ (1/2, 1).

The functions of example (ii) are called Rademacher’s functions.

4.19

1. Let (fn) be a sequence in Lp(�) with 1 < p < ∞ and let f ∈ Lp(�). Assume
that

(i) fn ⇀ f weakly σ(Lp,Lp
′
),

(ii) ‖fn‖p → ‖f ‖p.

Prove that fn → f strongly in Lp(�).
2. Construct a sequence (fn) in L1(0, 1), fn ≥ 0, such that:

(i) fn ⇀ f weakly σ(L1, L∞),
(ii) ‖fn‖1 → ‖f ‖1,

(iii) ‖fn − f ‖1 � 0.

Compare with the results of Exercise 4.13 and with Proposition 3.32.

4.20 Assume |�| < ∞. Let 1 ≤ p < ∞ and 1 ≤ q < ∞.
Let a : R → R be a continuous function such that

|a(t)| ≤ C{|t |p/q + 1} ∀t ∈ R.

Consider the (nonlinear) map A : Lp(�) → Lq(�) defined by

(Au)(x) = a(u(x)), x ∈ �.
1. Prove that A is continuous from Lp(�) strong into Lq(�) strong.
2. Take � = (0, 1) and assume that for every sequence (un) such that un ⇀ u

weakly σ(Lp,Lp
′
) then Aun ⇀ Au weakly σ(Lq, Lq

′
).

Prove that a is an affine function.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

4.21 Given a function u0 : R → R, set un(x) = u0(x + n).

1. Assume u0 ∈ Lp(R) with 1 < p < ∞. Prove that un ⇀ 0 in Lp(R) with
respect to the weak topology σ(Lp,Lp

′
).
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2. Assume u0 ∈ L∞(R) and that u0(x) → 0 as |x| → ∞ in the following weak
sense:

for every δ > 0 the set [|u0| > δ] has finite measure.

Prove that un
�
⇀ 0 in L∞(R) weak� σ (L∞, L1).

3. Take u0 = χ(0,1).
Prove that there exists no subsequence (unk ) that converges inL1(R)with respect
to σ(L1, L∞).

4.22

1. Let (fn) be a sequence in Lp(�) with 1 < p ≤ ∞ and let f ∈ Lp(�).
Show that the following properties are equivalent:
(A) fn ⇀ f in σ(Lp,Lp

′
).

(B)

⎧
⎪⎨

⎪⎩

‖fn‖p ≤ C

and
∫

E
fn → ∫

E
f ∀E ⊂ �,E measurable and |E| < ∞.

2. If p = 1 and |�| < ∞ prove that (A) ⇔ (B).
3. Assume p = 1 and |�| = ∞. Prove that (A) ⇒ (B).

Construct an example showing that in general, (B) � (A).
[Hint: Use Exercise 4.21, question 3.]

4. Let (fn) be a sequence inL1(�) and let f ∈ L1(�)with |�| = ∞. Assume that

(a) fn ≥ 0 ∀n and f ≥ 0 a.e. on �,
(b)

∫

�
fn → ∫

�
f ,

(c)
∫

E
fn → ∫

E
f ∀E ⊂ �,E measurable and |E| < ∞.

Prove that fn ⇀ f in L1(�) weakly σ(L1, L∞).
[Hint: Show that

∫

F
fn → ∫

F
f ∀F ⊂ �,F measurable and |F | ≤ ∞.]

4.23 Let f : � → R be a measurable function and let 1 ≤ p ≤ ∞. The purpose
of this exercise is to show that the set

C = {
u ∈ Lp(�) ; u ≥ f a.e.

}

is closed in Lp(�) with respect to the topology σ(Lp,Lp
′
).

1. Assume first that 1 ≤ p < ∞. Prove that C is convex and closed in the strong
Lp topology. Deduce that C is closed in σ(Lp,Lp

′
).

2. Taking p = ∞, prove that

C =
⎧
⎨

⎩
u ∈ L∞(�)

∣
∣
∣
∣

∫

uϕ ≥
∫

f ϕ ∀ϕ ∈ L1(�)

with f ϕ ∈ L1(�) and ϕ ≥ 0 a.e.

⎫
⎬

⎭
.

[Hint: Assume first that f ∈ L∞(�); in the general case introduce the sets
ωn = [|f | < n].]
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3. Deduce that when p = ∞, C is closed in σ(L∞, L1).
4. Let f1, f2 ∈ L∞(�) with f1 ≤ f2 a.e. Prove that the set

C = {
u ∈ L∞(�) ; f1 ≤ u ≤ f2 a.e.

}

is compact in L∞(�) with respect to the topology σ(L∞, L1).

4.24 Let u ∈ L∞(RN). Let (ρn) be a sequence of mollifiers. Let (ζn) be a sequence
in L∞(RN) such that

‖ζn‖∞ ≤ 1 ∀n and ζn → ζ a.e. on R
N.

Set
vn = ρn � (ζnu) and v = ζu.

1. Prove that vn
�
⇀ v in L∞(RN) weak� σ (L∞, L1).

2. Prove that
∫

B
|vn − v| → 0 for every ball B.

4.25 Regularization of functions in L∞(�).
Let � ⊂ R

N be open.

1. Let u ∈ L∞(�). Prove that there exists a sequence (un) in C∞
c (�) such that

(a) ‖un‖∞ ≤ ‖u‖∞ ∀n,
(b) un → u a.e. on �,

(c) un
�
⇀ u in L∞(�) weak� σ (L∞, L1).

2. If u ≥ 0 a.e. on �, show that one can also take

(d) un ≥ 0 on � ∀n.

3. Deduce thatC∞
c (�) is dense inL∞(�)with respect to the topology σ(L∞, L1).

4.26 Let � ⊂ R
N be open and let f ∈ L1

loc(�).

1. Prove that f ∈ L1(�) iff

A = sup

{∫

f ϕ ; ϕ ∈ Cc(�), ‖ϕ‖∞ ≤ 1

}

< ∞.

If f ∈ L1(�) show that A = ‖f ‖1.
2. Prove that f+ ∈ L1(�) iff

B = sup

{∫

f ϕ ; ϕ ∈ Cc(�), ‖ϕ‖∞ ≤ 1 and ϕ ≥ 0

}

< ∞.

If f+ ∈ L1(�) show that B = ‖f+‖1.
3. Same questions when Cc(�) is replaced by C∞

c (�).
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4. Deduce that
[∫

f ϕ = 0 ∀ϕ ∈ C∞
c (�)

]

�⇒ [f = 0 a.e.]

and [∫

f ϕ ≥ 0 ∀ϕ ∈ C∞
c (�), ϕ ≥ 0

]

�⇒ [f ≥ 0 a.e.] .

4.27 Let � ⊂ R
N be open. Let u, v ∈ L1

loc(�) with u 	= 0 a.e. on a set of positive
measure. Assume that

[

ϕ ∈ C∞
c (�) and

∫

uϕ > 0

]

�⇒
[∫

vϕ ≥ 0

]

.

Prove that there exists a constant λ ≥ 0 such that v = λu.

4.28 Let ρ ∈ L1(RN)with
∫
ρ = 1. Set ρn(x) = nNρ(nx). Let f ∈ Lp(RN)with

1 ≤ p < ∞. Prove that ρn � f → f in Lp(RN).

4.29 Let K ⊂ R
N be a compact subset. Prove that there exists a sequence of

functions (un) in C∞
c (R

N) such that

(a) 0 ≤ un ≤ 1 on R
N ,

(b) un = 1 on K ,
(c) supp un ⊂ K + B(0, 1/n),
(d) |Dαun(x)| ≤ Cαn

|α| ∀x ∈ R
N , ∀ multi-index α (where Cα depends only on α

and not on n).

[Hint: Let χn be the characteristic function ofK+B(0, 1/2n); take un = ρ2n �χn.]

4.30 Young’s inequality.
Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ be such that 1

p
+ 1

q
≥ 1.

Set 1
r

= 1
p

+ 1
q

− 1, so that 1 ≤ r ≤ ∞.

Let f ∈ Lp(RN) and g ∈ Lq(RN).
1. Prove that for a.e. x ∈ R

N , the function y 
→ f (x−y) g(y) is integrable on R
N .

[Hint: Set α = p/q ′, β = q/p′ and write

|f (x − y)g(y)| = |f (x − y)|α|g(y)|β
(
|f (x − y)|1−α|g(y)|1−β) .]

2. Set

(f � g)(x) =
∫

RN

f (x − y)g(y)dy.

Prove that f � g ∈ Lr(RN) and that ‖f � g‖r ≤ ‖f ‖p‖g‖q .
3. Assume here that 1

p
+ 1

q
= 1. Prove that

f � g ∈ C(RN) ∩ L∞(RN)
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and, moreover, if 1 < p < ∞ then (f � g)(x) → 0 as |x| → ∞.

4.31 Let f ∈ Lp(RN) with 1 ≤ p < ∞. For every r > 0 set

fr(x) = 1

|B(x, r)|
∫

B(x,r)

f (y)dy, x ∈ R
N.

1. Prove that fr ∈ Lp(RN) ∩ C(RN) and that fr(x) → 0 as |x| → ∞ (r being
fixed).

2. Prove that fr → f in Lp(RN) as r → 0.

[Hint: Write fr = ϕr � f for some appropriate ϕr .]

4.32

1. Let f, g ∈ L1(RN) and let h ∈ Lp(RN) with 1 ≤ p ≤ ∞. Show that f � g =
g � f and (f � g) � h = f � (g � h).

2. Let f ∈ L1(RN). Assume that f � ϕ = 0 ∀ϕ ∈ C∞
c (R

N). Prove that f = 0
a.e. on R

N . Same question for f ∈ L1
loc(R

N).
3. Let a ∈ L1(RN) be a fixed function. Consider the operator Ta : L2(RN) →
L2(RN) defined by

Ta(u) = a � u.

Check that Ta is bounded and that ‖Ta‖L(L2) ≤ ‖a‖L1(RN). Compute Ta ◦ Tb
and prove that Ta ◦Tb = Tb ◦Ta ∀a, b ∈ L1(RN). Determine (Ta)�, Ta ◦ (Ta)�
and (Ta)� ◦ Ta . Under what condition on a is (Ta)� = Ta?

4.33 Fix a function ϕ ∈ Cc(R), ϕ 	≡ 0, and consider the family of functions

F =
∞⋃

n=1

{ϕn},

where ϕn(x) = ϕ(x + n), x ∈ R.

1. Assume 1 ≤ p < ∞. Prove that ∀ε > 0 ∃δ > 0 such that

‖τhf − f ‖p < ε ∀f ∈ F and ∀h ∈ R with |h| < δ.

2. Prove that F does not have compact closure in Lp(R).

4.34 Let 1 ≤ p < ∞ and let F ⊂ Lp(RN) be a compact subset of Lp(RN).

1. Prove that F is bounded in Lp(RN).
2. Prove that ∀ε > 0 ∃δ > 0 such that

‖τhf − f ‖p < ε ∀f ∈ F and ∀h ∈ R
N with |h| < δ.

3. Prove that ∀ε > 0 ∃� ⊂ R
N bounded, open, such that
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∥
∥f

∥
∥
Lp(RN\�) < ε ∀f ∈ F .

Compare with Corollary 4.27.

4.35 Fix a function G ∈ Lp(RN) with 1 ≤ p < ∞ and let F = G � B, where B
is a bounded set in L1(RN).

Prove that F|� has compact closure in Lp(�) for any measurable set � ⊂ R
N

with finite measure. Compare with Corollary 4.28.

4.36 Equi-integrable families.
A subset F ⊂ L1(�) is said to be equi-integrable if it satisfies the following

properties:6

F is bounded in L1(�),(a)
{

∀ε > 0 ∃δ > 0 such that
∫

E
|f | < ε

∀f ∈ F, ∀E ⊂ �,E measurable and |E| < δ,
(b)

{
∀ε > 0 ∃ω ⊂ � measurable with |ω| < ∞
such that

∫

�\ω |f | < ε ∀f ∈ F .
(c)

Let (�n) be a nondecreasing sequence of measurable sets in � with |�n| <
∞ ∀n and such that � = ⋃

n �n.
1. Prove that F is equi-integrable iff

lim
t→∞ sup

f∈F

∫

[|f |>t]
|f | = 0(d)

and

lim
n→∞ sup

f∈F

∫

�\�n
|f | = 0.(e)

2. Prove that if F ⊂ L1(�) is compact, then F is equi-integrable. Is the converse
true?

4.37 Fix a function f ∈ L1(R) such that

∫ +∞

−∞
f (t)dt = 0 and

∫ +∞

0
f (t)dt > 0,

and let un(x) = nf (nx) for x ∈ I = (−1,+1).

1. Prove that

lim
n→∞

∫

I

un(x)ϕ(x)dx = 0 ∀ϕ ∈ C([−1,+1]).
6 One can show that (a) follows from (b) and (c) if the measure space � is diffuse (i.e., � has no
atoms). Consider for example � = R

N with the Lebesgue measure.
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2. Check that the sequence (un) is bounded in L1(I ). Show that no subsequence
of (un) is equi-integrable.

3. Prove that there exists no function u ∈ L1(I ) such that

lim
k→∞

∫

I

unk (x)ϕ(x)dx =
∫

I

u(x)ϕ(x)dx ∀ϕ ∈ L∞(I ),

along some subsequence (unk ).
4. Compare with the Dunford–Pettis theorem (see question A3 in Problem 23).
5. Prove that there exists a subsequence (unk ) such that unk (x) → 0 a.e. on I as
k → ∞.

[Hint: Compute
∫

[n−1/2<|x|<1] |un(x)|dx and apply Theorem 4.9.]

4.38 Set I = (0, 1) and consider the sequence (un) of functions inL1(I ) defined by

un(x) =

⎧
⎪⎨

⎪⎩

n if x ∈
n−1⋃

j=0

(
j
n
,
j
n

+ 1
n2

)
,

0 otherwise.

1. Check that | supp un| = 1
n

and ‖un‖1 = 1.
2. Prove that

lim
n→+∞

∫

I

un(x)ϕ(x)dx =
∫

I

ϕ(x)dx ∀ϕ ∈ C([0, 1]).

[Hint: Start with the case ϕ ∈ C1([0, 1]).]
3. Show that no subsequence of (un) is equi-integrable.
4. Prove that there exists no function u ∈ L1(I ) such that

lim
k→∞

∫

I

unk (x)ϕ(x)dx =
∫

I

u(x)ϕ(x)dx ∀ϕ ∈ L∞(I ),

along some subsequence (unk ).

[Hint: Use a further subsequence (un′
k
) such that

∑
k | supp un′

k
| < 1.]

5. Prove that there exists a subsequence (unk ) such that unk (x) → 0 a.e. on I as
k → ∞.



Chapter 5
Hilbert Spaces

5.1 Definitions and Elementary Properties. Projection onto a
Closed Convex Set

Definition. Let H be a vector space. A scalar product (u, v) is a bilinear form on
H ×H with values in R (i.e., a map fromH ×H to R that is linear in both variables)
such that

(u, v) = (v, u) ∀u, v ∈ H (symmetry),

(u, u) ≥ 0 ∀u ∈ H (positive),

(u, u) 	= 0 ∀u 	= 0 (definite).

Let us recall that a scalar product satisfies the Cauchy–Schwarz inequality

|(u, v)| ≤ (u, u)1/2(v, v)1/2 ∀u, v ∈ H.
[It is sometimes useful to keep in mind that the proof of the Cauchy–Schwarz in-
equality does not require the assumption (u, u) 	= 0 ∀u 	= 0.] It follows from the
Cauchy–Schwarz inequality that the quantity

|u| = (u, u)1/2

is a norm—we shall often denote by | | (instead of ‖ ‖) norms arising from scalar
products. Indeed, we have

|u+ v|2 = (u+ v, u+ v) = |u|2 + (u, v)+ (v, u)+ |v|2 ≤ |u|2 + 2|u| |v| + |v|2,
and thus |u+ v| ≤ |u| + |v|.

Let us recall the classical parallelogram law:

(1)

∣
∣
∣
∣
a + b

2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
a − b

2

∣
∣
∣
∣

2

= 1

2
(|a|2 + |b|2) ∀a, b ∈ H.

131H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7_5, © Springer Science+Business Media, LLC 2011
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Definition. A Hilbert space is a vector spaceH equipped with a scalar product such
that H is complete for the norm | |.

In what follows, H will always denote a Hilbert space.

Basic example. L2(�) equipped with the scalar product

(u, v) =
∫

�

u(x)v(x)dμ

is a Hilbert space. In particular, �2 is a Hilbert space. The Sobolev spaceH 1 studied
in Chapters 8 and 9 is another example of a Hilbert space; it is “modeled” on L2(�).

• Proposition 5.1. H is uniformly convex, and thus it is reflexive.

Proof. Let ε > 0 and u, v ∈ H satisfy |u| ≤ 1, |v| ≤ 1, and |u− v| > ε. In view of
the parallelogram law we have

∣
∣
∣
∣
u+ v

2

∣
∣
∣
∣

2

< 1 − ε2

4
and thus

∣
∣
∣
∣
u+ v

2

∣
∣
∣
∣ < 1 − δ with δ = 1 −

(

1 − ε2

4

)1/2

> 0.

• Theorem 5.2 (projection onto a closed convex set). Let K ⊂ H be a nonempty
closed convex set. Then for every f ∈ H there exists a unique element u ∈ K such
that

(2) |f − u| = min
v∈K |f − v| = dist(f,K).

Moreover, u is characterized by the property

(3) u ∈ K and (f − u, v − u) ≤ 0 ∀v ∈ K.
Notation. The above elementu is called the projection off ontoK and is denoted by

u = PKf.

Inequality (3) says that the scalar product of the vector
−→
uf with any vector −→

uv (v ∈
K) is ≤ 0, i.e., the angle θ determined by these two vectors is ≥ π/2; see Figure 4.

Proof. (a) Existence. We shall present two different proofs:

1. The function ϕ(v) = |f − v| is convex, continuous and lim|v|→∞ϕ(v) = +∞.
It follows from Corollary 3.23 that ϕ achieves its minimum on K since H is
reflexive.

2. The second proof does not rely on the theory of reflexive and uniformly convex
spaces. It is a direct argument. Let (vn) be a minimizing sequence for (2), i.e.,
vn ∈ K and

dn = |f − vn| → d = inf
v∈K |f − v|.

We claim that (vn) is a Cauchy sequence. Indeed, the parallelogram law applied
with a = f − vn and b = f − vm leads to
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K

v K

θ

u=P   f

f

Fig. 4

∣
∣
∣
∣f − vn + vm

2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
vn − vm

2

∣
∣
∣
∣

2

= 1

2
(d2
n + d2

m).

But vn+vm2 ∈ K and thus
∣
∣f − vn+vm

2

∣
∣ ≥ d . It follows that

∣
∣
∣
∣
vn − vm

2

∣
∣
∣
∣

2

≤ 1

2
(d2
n + d2

m)− d2 and lim
m,n→∞ |vn − vm| = 0.

Therefore the sequence (vn) converges to some limit u ∈ K with d = |f − u|.
(b) Equivalence of (2) and (3).
Assume that u ∈ K satisfies (2) and let w ∈ K . We have

v = (1 − t)u+ tw ∈ K ∀t ∈ [0, 1]
and thus

|f − u| ≤ |f − [(1 − t)u+ tw]| = |(f − u)− t (w − u)|.
Therefore

|f − u|2 ≤ |f − u|2 − 2t (f − u,w − u)+ t2|w − u|2,
which implies that 2(f − u,w − u) ≤ t |w − u|2 ∀t ∈ (0, 1]. As t → 0 we
obtain (3).

Conversely, assume that u satisfies (3). Then we have

|u− f |2 − |v − f |2 = 2(f − u, v − u)− |u− v|2 ≤ 0 ∀v ∈ K;
which implies (2).

(c) Uniqueness.
Assume that u1 and u2 satisfy (3). We have

(f − u1, v − u1) ≤ 0 ∀v ∈ K,(4)

(f − u2, v − u2) ≤ 0 ∀v ∈ K.(5)
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Choosing v = u2 in (4) and v = u1 in (5) and adding the corresponding inequalities,
we obtain |u1 − u2|2 ≤ 0.

Remark 1. It is not surprising to find that a minimization problem is connected with
a system of inequalities. Let us recall a well-known example. Suppose F : R → R

is a differentiable function and suppose u ∈ [0, 1] is a point where F achieves its
minimum on [0, 1]. Then either u ∈ (0, 1) and F ′(u) = 0, or u = 0 and F ′(u) ≤ 0,
or u = 1 and F ′(u) = 1. These three cases are summarized by saying that u ∈ [0, 1]
and F ′(u)(v − u) ≤ 0 ∀v ∈ [0, 1]; see also Exercise 5.10.

Remark 2. Let K ⊂ E be a nonempty closed convex set in a uniformly convex
Banach space E. Then for every f ∈ E there exists a unique element u ∈ E such
that

‖f − u‖ = min
v∈K ‖f − v‖ = dist(f,K);

see Exercise 3.32.

Proposition 5.3. Let K ⊂ H be a nonempty closed convex set. Then PK does not
increase distance, i.e.,

|PKf1 − PKf2| ≤ |f1 − f2| ∀f1, f2 ∈ H.
Proof. Set u1 = PKf1 and u2 = PKf2. We have

(f1 − u1, v − u1) ≤ 0 ∀v ∈ K(6)

(f2 − u2, v − u2) ≤ 0 ∀v ∈ K.(7)

Choosing v = u2 in (6) and v = u1 in (5) and adding the corresponding inequalities,
we obtain

|u1 − u2|2 ≤ (f1 − f2, u1 − u2).

It follows that |u1 − u2| ≤ |f1 − f2|.
Corollary 5.4. Assume that M ⊂ H is a closed linear subspace. Let f ∈ H . Then
u = PMf is characterized by

(8) u ∈ M and (f − u, v) = 0 ∀v ∈ M.

Moreover, PM is a linear operator, called the orthogonal projection.

Proof. By (3) we have

(f − u, v − u) ≤ 0 ∀v ∈ M
and thus

(f − u, tv − u) ≤ 0 ∀v ∈ M, ∀t ∈ R.

It follows that (8) holds.
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Conversely, if u satisfies (8) we have

(f − u, v − u) = 0 ∀v ∈ M.
It is obvious that PM is linear.

5.2 The Dual Space of a Hilbert Space

It is very easy, in a Hilbert space, to write down continuous linear functionals. Pick
any f ∈ H ; then the map u 
→ (f, u) is a continuous linear functional on H . It
is a remarkable fact that all continuous linear functionals on H are obtained in this
fashion:

• Theorem 5.5 (Riesz–Fréchet representation theorem). Given any ϕ ∈ H� there
exists a unique f ∈ H such that

〈ϕ, u〉 = (f, u) ∀u ∈ H.
Moreover,

|f | = ‖ϕ‖H�.

Proof. Once more we shall present two proofs:

1. The first one is almost identical to the proof of Theorem 4.11. Consider the map
T : H → H� defined as follows: given any f ∈ H , the map u 
→ (f, u) is a
continuous linear functional onH . It defines an element ofH�, which we denote
by Tf , so that

〈Tf, u〉 = (f, u) ∀u ∈ H.
It is clear that ‖Tf ‖H� = |f |. Thus T is a linear isometry from H onto T (H),
a closed subspace of H�. In order to conclude, it suffices to show that T (H) is
dense inH�. Assume that h is a continuous linear functional onH� that vanishes
on T (H). SinceH is reflexive, h belongs toH and satisfies 〈Tf, h〉 = 0 ∀f ∈ H .
It follows that (f, h) = 0 ∀f ∈ H and thus h = 0.

2. The second proof is a more direct argument that avoids any use of reflexivity. Let
M = ϕ−1({0}), so thatM is a closed subspace ofH . We may always assume that
M 	= H (otherwise ϕ ≡ 0 and the conclusion of Theorem 5.5 is obvious—just
take f = 0). We claim that there exists some element g ∈ H such that

|g| = 1 and (g, v) = 0 ∀v ∈ M (and thus g /∈ M).

Indeed, let g0 ∈ H with g0 /∈ M . Let g1 = PMg0. Then

g = (g0 − g1)/|g0 − g1|
satisfies the required properties.
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Given any u ∈ H , set

v = u− λg with λ = 〈ϕ, u〉
〈ϕ, g〉 .

Note that v is well defined, since 〈ϕ, g〉 	= 0, and, moreover, v ∈ M , since 〈ϕ, v〉 = 0.
It follows that (g, v) = 0, i.e.,

〈ϕ, u〉 = 〈ϕ, g〉(g, u) ∀u ∈ H,
which concludes the proof with f = 〈ϕ, g〉g.

• Remark 3. H and H�: to identify or not to identify? The triplet V ⊂ H ⊂ V �.
Theorem 5.5 asserts that there is a canonical isometry from H onto H�. It is

therefore “legitimate” to identify H and H�. We shall often do so but not always.
Here is a typical situation—which arises in many applications—where one should be
cautious with identifications. Assume thatH is a Hilbert space with a scalar product
( , ) and a corresponding norm | |. Assume that V ⊂ H is a linear subspace that is
dense in H . Assume that V has its own norm ‖ ‖ and that V is a Banach space with
‖ ‖. Assume that the injection V ⊂ H is continuous, i.e.,

|v| ≤ C‖v‖ ∀v ∈ V.
[For example, H = L2(0, 1) and V = Lp(0, 1) with p > 2 or V = C([0, 1]).]

There is a canonical map T : H� → V � that is simply the restriction to V of
continuous linear functionals ϕ on H , i.e.,

〈T ϕ, v〉V �,V = 〈ϕ, v〉H�,H .

It is easy to see that T has the following properties:

(i) ‖T ϕ‖V � ≤ C|ϕ|H� ∀ϕ ∈ H�,
(ii) T is injective,

(iii) R(T ) is dense in V � if V is reflexive.1

Identifying H� with H and using T as a canonical embedding from H� into V �,
one usually writes

(9) V ⊂ H ! H� ⊂ V � ,

where all the injections are continuous and dense (provided V is reflexive). One says
that H is the pivot space. Note that the scalar products 〈 , 〉V �,V and ( , ) coincide
whenever both make sense, i.e.,

〈f, v〉V �,V = (f, v) ∀f ∈ H, ∀v ∈ V.

1 However, T is not surjective in general.
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The situation becomes more delicate if V turns out to be a Hilbert space with its
own scalar product (( , )) associated to the norm ‖ ‖. We could, of course, identify
V and V � with the help of (( , )). However, (9) becomes absurd. This shows that one
cannot identify simultaneously V and H with their dual spaces: one has to make a
choice. The common habit is to identifyH� withH , to write (9), and not to identify
V � with V [naturally, there is still an isometry from V onto V �, but it is not viewed
as the identity map]. Here is a very instructive example.

Let

H = �2 =
{

u = (un)n≥1 ;
∞∑

n=1

u2
n < ∞

}

equipped with the scalar product (u, v) = ∑∞
n=1 unvn.

Let

V =
{

u = (un)n≥1;
∞∑

n=1

n2u2
n < ∞

}

equipped with the scalar product ((u, v)) = ∑∞
n=1 n

2unvn.
Clearly V ⊂ H with continuous injection and V is dense in H . Here we identify

H� with H , while V � is identified with the space

V � =
{

f = (fn)n≥1 ;
∞∑

n=1

1

n2 f
2
n < ∞

}

,

which is bigger than H . The scalar product 〈 , 〉V �,V is given by

〈f, v〉V �,V =
∞∑

n=1

fnvn,

and the Riesz–Fréchet isomorphism T : V → V � is given by

u = (un)n≥1 
→ T u = (n2un)n≥1.

Remark 4. It is easy to prove that Hilbert spaces are reflexive without invoking the
theory of uniformly convex spaces. It suffices to use twice the Riesz–Fréchet iso-
morphism (from H onto H� and then from H� onto H��).

Remark 5. Assume that H is a Hilbert space identified with its dual space H�. Let
M be a subspace of H . We have already defined M⊥ (in Section 1.3) as a subspace
of H�. We may now consider it as a subspace of H , namely

M⊥ = {u ∈ H ; (u, v) = 0 ∀v ∈ M}.
Clearly we haveM∩M⊥ = {0}. Moreover, ifM is closed we also haveM+M⊥ = H .
Indeed, every f ∈ H may be written as

f = (PMf )+ (f − PMf )
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and f − PMf ∈ M⊥; more precisely, f − PMf = PM⊥f .

It follows that in a Hilbert space every closed subspace has a complement (in the
sense of Section 2.4).

5.3 The Theorems of Stampacchia and Lax–Milgram

Definition. A bilinear form a : H ×H → R is said to be

(i) continuous if there is a constant C such that

|a(u, v)| ≤ C|u| |v| ∀u, v ∈ H ;
(ii) coercive if there is a constant α > 0 such that

a(v, v) ≥ α|v|2 ∀v ∈ H.
Theorem 5.6 (Stampacchia). Assume that a(u, v) is a continuous coercive bilinear
form on H . Let K ⊂ H be a nonempty closed and convex subset. Then, given any
ϕ ∈ H�, there exists a unique element u ∈ K such that

(10) a(u, v − u) ≥ 〈ϕ, v − u〉 ∀v ∈ K.
Moreover, if a is symmetric, then u is characterized by the property

(11) u ∈ K and
1

2
a(u, u)− 〈ϕ, u〉 = min

v∈K

{
1

2
a(v, v)− 〈ϕ, v〉

}

.

The proof of Theorem 5.6 relies on the following very classical result.

• Theorem 5.7 (Banach fixed-point theorem—the contraction mapping princi-
ple). Let X be a nonempty complete metric space and let S : X → X be a strict
contraction, i.e.,

d(Sv1, Sv2) ≤ k d(v1, v2) ∀v1, v2 ∈ X with k < 1.

Then S has a unique fixed point, u = Su.

For a proof see, e.g., T. M. Apostol [1], G. Choquet [1], A. Friedman [3].

Proof of Theorem 5.6. From the Riesz–Fréchet representation theorem (Theorem 5.5)
we know that there exists a unique f ∈ H such that

〈ϕ, v〉 = (f, v) ∀v ∈ H.
On the other hand, if we fix u ∈ H , the map v 
→ a(u, v) is a continuous linear
functional onH . Using once more the Riesz–Fréchet representation theorem we find
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some unique element in H , denoted by Au, such that a(u, v) = (Au, v) ∀v ∈ H .
Clearly A is a linear operator from H into H satisfying

|Au| ≤ C|u| ∀u ∈ H,(12)

(Au, u) ≥ α|u|2 ∀u ∈ H.(13)

Problem (10) amounts to finding some u ∈ K such that

(14) (Au, v − u) ≥ (f, v − u) ∀v ∈ K.
Let ρ > 0 be a constant (to be determined later). Note that (14) is equivalent to

(15) (ρf − ρAu+ u− u, v − u) ≤ 0 ∀v ∈ K,
i.e.,

u = PK(ρf − ρAu+ u).

For every v ∈ K , set Sv = PK(ρf −ρAv+v). We claim that if ρ > 0 is properly
chosen then S is a strict contraction. Indeed, since PK does not increase distance (see
Proposition 5.3) we have

|Sv1 − Sv2| ≤ |(v1 − v2)− ρ(Av1 − Av2)|
and thus

|Sv1 − Sv2|2 = |v1 − v2|2 − 2ρ(Av1 − Av2, v1 − v2)+ ρ2|Av1 − Av2|2
≤ |v1 − v2|2(1 − 2ρα + ρ2C2).

Choosing ρ > 0 in such a way that k2 = 1−2ρα+ρ2C2 < 1 (i.e., 0 < ρ < 2α/C2)

we find that S has a unique fixed point.2

Assume now that the form a(u, v) is also symmetric. Then a(u, v) defines a new
scalar product onH ; the corresponding norm a(u, u)1/2 is equivalent to the original
norm |u|. It follows that H is also a Hilbert space for this new scalar product. Using
the Riesz–Fréchet theorem we may now represent the functional ϕ through the new
scalar product, i.e., there exists some unique element g ∈ H such that

〈ϕ, v〉 = a(g, v) ∀v ∈ H.
Problem (10) amounts to finding some u ∈ K such that

(16) a(g − u, v − u) ≤ 0 ∀v ∈ K.
The solution of (16) is an old friend: u is simply the projection onto K of g for the
new scalar product a. We also know (by Theorem 5.2) that u is the unique element
K that achieves

2 If one has to compute the fixed point numerically, it pays to choose ρ = α/C2 in order to minimize
k and to accelerate the convergence of the iterates of S.
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min
v∈K a(g − v, g − v)1/2.

This amounts to minimizing on K the function

v 
→ a(g−v, g−v) = a(v, v)−2a(g, v)+a(g, g) = a(v, v)−2〈ϕ, v〉+a(g, g),
or equivalently the function

v 
→ 1

2
a(v, v)− 〈ϕ, v〉.

Remark 6. It is easy to check that if a(u, v) is a bilinear form with the property

a(v, v) ≥ 0 ∀v ∈ H
then the function v 
→ a(v, v) is convex.

• Corollary 5.8 (Lax–Milgram). Assume that a(u, v) is a continuous coercive bi-
linear form on H . Then, given any ϕ ∈ H�, there exists a unique element u ∈ H

such that

(17) a(u, v) = 〈ϕ, v〉 ∀v ∈ H.
Moreover, if a is symmetric, then u is characterized by the property

(18) u ∈ H and
1

2
a(u, u)− 〈ϕ, u〉 = min

v∈H

{
1

2
a(v, v)− 〈ϕ, v〉

}

.

Proof. Use Theorem 5.6 with K = H and argue as in the proof of Corollary 5.4.

Remark 7. The Lax–Milgram theorem is a very simple and efficient tool for solving
linear elliptic partial differential equations (see Chapters 8 and 9). It is interesting
to note the connection between equation (17) and the minimization problem (18).
When such questions arise in mechanics or in physics they often have a natural
interpretation: least action principle, minimization of the energy, etc. In the language
of the calculus of variations one says that (17) is the Euler equation associated with
the minimization problem (18). Roughly speaking, (17) says that “F ′(u) = 0,” where
F is the function F(v) = 1

2a(v, v)− 〈ϕ, v〉.
Remark 8. There is a direct and elementary argument proving that (17) has a unique
solution. Indeed, this amounts to showing that

∀f ∈ H ∃u ∈ H unique such that Au = f ,

i.e., A is bijective from H onto H . This is a trivial consequence of the following
facts:

(a) A is injective (since A is coercive),
(b) R(A) is closed, since α|v| ≤ |Av| ∀v ∈ H (a consequence of the coerciveness),
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(c) R(A) is dense; indeed, suppose v ∈ H satisfies

(Au, v) = 0 ∀u ∈ H,
then v = 0.

5.4 Hilbert Sums. Orthonormal Bases

Definition. Let (En)n≥1 be a sequence of closed subspaces of H . One says that H
is the Hilbert sum of the En’s and one writes H = ⊕nEn if

(a) the spaces En are mutually orthogonal, i.e.,

(u, v) = 0 ∀u ∈ En, ∀v ∈ Em, m 	= n,

(b) the linear space spanned by
⋃∞
n=1 En is dense in H .3

• Theorem 5.9. Assume that H is the Hilbert sum of the En’s. Given u ∈ H , set

un = PEnu

and

Sn =
n∑

k=1

uk.

Then we have

(19) lim
n→∞ Sn = u

and

(20)
∞∑

k=1

|uk|2 = |u|2 (Bessel–Parseval’s identity).

It is convenient to use the following lemma.

Lemma 5.1. Assume that (vn) is any sequence in H such that

(vm, vn) = 0 ∀m 	= n,(21)
∞∑

k=1

|vk|2 < ∞.(22)

Set

3 The linear space spanned by the En’s is understood in the algebraic sense, i.e., finite linear
combinations of elements belonging to the spaces (En).
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Sn =
n∑

k=1

vk.

Then
S = lim

n→∞ Sn exists

and, moreover,

(23) |S|2 =
∞∑

k=1

|vk|2.

Proof of Lemma 5.1. Note that for m > n we have

|Sm − Sn|2 =
m∑

k=n+1

|vk|2.

It follows that Sn is a Cauchy sequence and thus S = limn→∞ Sn exists. On the other
hand, we have

|Sn|2 =
n∑

k=1

|vk|2.

As n → ∞ we obtain (23).

Proof of Theorem 5.9. Since un = PEnu, we have (by (8))

(24) (u− un, v) = 0 ∀v ∈ En,
and in particular,

(u, un) = |un|2.
Adding these equalities, we find that

(u, Sn) =
n∑

k=1

|uk|2.

But we also have

(25)
n∑

k=1

|uk|2 = |Sn|2,

and thus we obtain
(u, Sn) = |Sn|2.

It follows that |Sn| ≤ |u| and therefore
∑n
k=1 |uk|2 ≤ |u|2.

Hence, we may apply Lemma 5.1 and conclude that S = limn→∞ Sn exists. Let
us identify S even without assumption (b). Let F be the linear space spanned by the
En’s. We claim that
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(26) S = PFu.

Indeed, we have
(u− Sn, v) = 0 ∀v ∈ Em, m ≤ n

(just write u− Sn = (u− um)− ∑
k 	=m uk). As n → ∞ we obtain

(u− S, v) = 0 ∀v ∈ Em, ∀m
and thus

(u− S, v) = 0 ∀v ∈ F,
which implies that

(u− S, v) = 0 ∀v ∈ F .
On the other hand, Sn ∈ F ∀n, and at the limit S ∈ F . This proves (26). Of course,
if (b) holds, then F = H and thus S = u. Passing to the limit as n → ∞ in (25) we
obtain (20).

Definition. A sequence (en)n≥1 in H is said to be an orthonormal basis of H (or
a Hilbert basis4 or simply a basis when there is no confusion)5 if it satisfies the
following properties:

(i) |en| = 1 ∀n and (em, en) = 0 ∀m 	= n,
(ii) the linear space spanned by the en’s is dense in H .

• Corollary 5.10. Let (en) be an orthonormal basis. Then for every u ∈ H , we have

u =
∞∑

k=1

(u, ek)ek, i.e., u = lim
n→∞

n∑

k=1

(u, ek)ek

and

|u|2 =
∞∑

k=1

|(u, ek)|2.

Conversely, given any sequence (αn) ∈ �2, the series
∑∞
k=1 αkek converges to some

element u ∈ H such that (u, ek) = αk ∀k and |u|2 = ∑∞
k=1 α

2
k .

Proof. Note that H is the Hilbert sum of the spaces En = Ren and that PEnu =
(u, en)en. Use Theorem 5.9 and Lemma 5.1.

Remark 9. In general, the series
∑
uk in Theorem 5.9 and the series

∑
(u, ek)ek in

Corollary 5.10 are not absolutely convergent, i.e., it may happen that
∑∞
k=1 |uk| = ∞

or that
∑∞
k=1 |(u, ek)| = ∞.

• Theorem 5.11. Every separable Hilbert space has an orthonormal basis.

4 Not to be confused with an algebraic (= Hamel) basis, which is a family (ei )i∈I in H such that
every u ∈ H can be uniquely written as a finite linear combination of the ei ’s (see Exercise 1.5).
5 Some authors say that (en) is a complete orthonormal system.
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Proof. Let (vn) be a countable dense subset of H . Let Fk denote the linear space
spanned by {v1, v2, . . . , vk}. The sequence (Fk) is a nondecreasing sequence of finite-
dimensional spaces such that

⋃∞
k=1 Fk is dense in H . Pick any unit vector e1 in F1.

If F2 	= F1 there is some vector e2 in F2 such that {e1, e2} is an orthonormal basis
of F2. Repeating the same construction, one obtains an orthonormal basis of H .

Remark 10. Theorem 5.11 combined with Corollary 5.10 shows that all separable
Hilbert spaces are isomorphic and isometric with the space �2. Despite this seemingly
spectacular result it is still very important to consider other Hilbert spaces such as
L2(�) (or the Sobolev space H 1(�), etc.). The reason is that many nice linear (or
nonlinear) operators may look dreadful when they are written in a basis.

Remark 11. If H is a nonseparable Hilbert space—a rather unusual situation—one
may still prove (with the help of Zorn’s lemma) the existence of an uncountable or-
thonormal basis (ei)i∈I ; see, e.g., W. Rudin [2],A. E. Taylor–D. C. Lay [1], G. B. Fol-
land [2], G. Choquet [1].

Comments on Chapter 5

1. Characterization of Hilbert spaces.
It is sometimes useful to know whether a given norm ‖ ‖ on a vector space E
is a Hilbert norm, i.e., whether there exists a scalar product ( , ) on E such that
‖u‖ = (u, u)1/2 ∀u ∈ E. Various criteria are known:

(a) Theorem 5.12 (Fréchet–von Neumann–Jordan). Assume that the norm ‖ ‖
satisfies the parallelogram law (1). Then ‖ ‖ is a Hilbert norm.
For a proof see K. Yosida [1] or Exercise 5.1.

(b) Theorem 5.13 (Kakutani [1]). Assume that E is a normed space with dimE ≥
3. Assume that every subspace F of dimension 2 has a projection operator of
norm 1 (i.e., there exists a bounded linear projection operator P : E → F such
that Pu = u ∀u ∈ F and ‖P ‖ ≤ 1).6 Then ‖ ‖ is a Hilbert norm.

(c) Theorem 5.14 (de Figueiredo–Karlovitz [1]). Let E be a normed space with
dimE ≥ 3. Consider the radial projection on the unit ball, i.e.,

T u =
{
u if ‖u‖ ≤ 1,

u/‖u‖ if ‖u‖ > 1.

Assume7 that

6 Let us point out that every subspace of dimension 1 has always a projection operator of norm 1.
(Use Hahn–Banach.)
7 One can show that in an arbitrary normed space, T satisfies

‖T u− T v‖ ≤ 2 ‖u− v‖ ∀u, v ∈ E
and the constant 2 cannot be improved; see Exercise 5.6.
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‖T u− T v‖ ≤ ‖u− v‖ ∀u, v ∈ E.
Then ‖ ‖ is a Hilbert norm.

Finally, let us recall a result that has already been mentioned (Remark 2.8).

(d) Theorem 5.15 (Lindenstrauss–Tzafriri [1]). Assume thatE is a Banach space
such that every closed subspace has a complement.8 Then E is Hilbertizable,
i.e., there exists an equivalent Hilbert norm.

2. Variational inequalities.
Stampacchia’s theorem is the starting point of the theory of variational inequalities
(see, e.g., D. Kinderlehrer–G. Stampacchia [1]), which has numerous applications
in mechanics and in physics (see, e.g., G. Duvaut–J. L. Lions [1]), in free boundary
value problems (see, e.g., C. Baiocchi–A. Capelo [1] and A. Friedman [4]), in op-
timal control (see, e.g., J.-L. Lions [2] and V. Barbu [2]), in stochastic control (see
A. Bensoussan–J.-L. Lions [1]).

3. Nonlinear equations associated with monotone operators.
The theorems of Stampacchia and Lax–Milgram extend to some classes of nonlinear
operators. Let us mention the following, for example.

Theorem 5.16 (Minty–Browder). Let E be a reflexive Banach space. Let A : E →
E� be a continuous nonlinear map such that

〈Av1 − Av2, v1 − v2〉 > 0 ∀v1, v2 ∈ E, v1 	= v2,

and

lim‖v‖→∞
〈Av, v〉

‖v‖ = ∞.

Then for every f ∈ E� there exists a unique solution u ∈ E of the equationAu = f .

The interested reader will find in F. Browder [1] and J.-L. Lions [3] a proof of
Theorem 5.16 as well as many extensions and applications; see also Problem 31.

4. Special orthonormal bases. Fourier series. Wavelets.
In Chapter 6 we shall present a very powerful technique for constructing orthonor-
mal bases, namely by taking the eigenvectors of a compact self-adjoint operator. In
practice one very often uses special bases of L2(�) that consist of eigenfunctions of
differential operators (see Sections 8.6 and 9.8). The orthonormal basis on L2(0, π)
defined by

en(x) = √
2/π sin nx, n ≥ 1, or en(x) = √

2/π cos nx, n ≥ 0,

is quite beloved, since it leads to Fourier series and harmonic analysis, a major field
in its own right; see, e.g., J. M. Ash [1], H. Dym–H. P. McKean [1], Y. Katznelson
[1], C. S. Rees–S. M. Shah–C. V. Stanojevic [1].
8 It is equivalent to say that every closed subspace has a bounded projection operator P . Note that
here—in contrast to Theorem 5.13—we do not assume that ‖P ‖ ≤ 1.
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Here is a question that puzzled analysts for decades. Given u ∈ L2(0, π), consider
its Fourier series Sn = ∑n

k=1(u, ek)ek . One knows (see Corollary 5.10) that Sn → u

inL2(0, π). It follows that a subsequence Snk → u a.e. on (0, π) (see Theorem 4.9).
But can one say that the full sequence Sn → u a.e. on (0, π)? The answer is given
by the following very deep result:

Theorem 5.17 (Carleson [1]). If u ∈ L2(0, π) then Sn → u a.e.

Other classical bases of L2(0, 1) or L2(R) are associated with the names of Bessel,
Legendre, Hermite, Laguerre, Chebyshev, Jacobi, etc.We refer the interested reader to
R. Courant–D. Hilbert [1], Volume 1, and R. Dautray–J.-L. Lions [1], Chapter VIII;
see also the comments at the end of Chapter 8 (spectral properties of the Sturm–
Liouville operator). Recently, there has also been much interest in the Haar and the
Walsh bases of L2(0, 1), which consist of step functions; see, e.g., Exercises 5.31,
5.32, G. Alexits [1], H. F. Harmuth [1].

The theory of wavelets provides a very important and beautiful new type of bases.
It is a powerful tool in decomposing functions, signals, speech, images, etc. The
interested reader may consult the recent books of Y. Meyer [1], [2], [3], R. Coifman
and Y. Meyer [1], I. Daubechies [1], G. David [1], C. K. Chui [1], M. B. Ruskai et
al. [1], J. J. Benedetto–M. W. Frazier [1], G. Kaiser [1], J. P. Kahane–P. G. Lemarié-
Rieusset [1], S. Mallat [1], G. Bachman–L. Narici–E. Beckenstein [1], T. F. Chan–
J. Shen [1], P. Wojtaszczyk [1], E. Hernandez–G. Weiss [1], and their references.

5. Schauder bases in Banach spaces.
Let E be a Banach space. A sequence (en)n≥1 is said to be a Schauder basis if for
every u ∈ E there exists a unique sequence (αn)n≥1 in R such that u = ∑∞

k=1 αkek
(i.e., u = limn→∞

∑n
k=1 αkek). Such bases play an important role in the geometry

of Banach spaces (see, e.g., B. Beauzamy [1], J. Lindenstrauss–L. Tzafriri [2], J. Di-
estel [2], R. C. James [2]). All classical (separable) Banach spaces used in analysis
have a Schauder basis (see, e.g., I. Singer [1]). This fact led Banach to conjecture
that every separable Banach space has a basis. After a few decades of unavailing
efforts a counterexample was discovered by P. Enflo [1]. One can even construct
closed subspaces of �p (with 1 < p < ∞, p 	= 2) without a Schauder basis (see
J. Lindenstrauss–L. Tzafriri [2]). A. Szankowski [1] has found another surprising
example: L (H) (with its usual norm) has no Schauder basis when H is an infinite-
dimensional separable Hilbert space. In Chapter 6 we shall see that a related problem
for compact operators also has a negative answer.

Exercises for Chapter 5

In what follows, H will always denote a Hilbert space equipped with the scalar
product ( , ) and the corresponding norm | |.
5.1 The parallelogram law.
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SupposeE is a vector space equipped with a norm ‖ ‖ satisfying the parallelogram
law, i.e.,

‖a + b‖2 + ‖a − b‖2 = 2(‖a‖2 + ‖b‖2) ∀a, b ∈ E.
Our purpose is to show that the quantity defined by

(u, v) = 1

2
(‖u+ v‖2 − ‖u‖2 − ‖v‖2) u, v ∈ E,

is a scalar product such that (u, u) = ‖u‖2.

1. Check that

(u, v) = (v, u), (−u, v) = −(u, v) and (u, 2v) = 2(u, v) ∀u, v ∈ E.
2. Prove that

(u+ v,w) = (u,w)+ (v,w) ∀u, v,w ∈ E.
[Hint: Use the parallelogram law successively with (i) a = u, b = v; (ii) a =
u+ w, b = v + w, and (iii) a = u+ v + w, b = w.]

3. Prove that (λu, v) = λ(u, v) ∀λ ∈ R, ∀u, v ∈ E.
[Hint: Consider first the case λ ∈ N, then λ ∈ Q, and finally λ ∈ R.]

4. Conclude.

5.2 Lp is not a Hilbert space for p 	= 2.
Let � be a measure space and assume that there exists a measurable set A ⊂ �

such that 0 < |A| < |�|.
Prove that the ‖ ‖p norm does not satisfy the parallelogram law for any 1 ≤ p ≤

∞, p 	= 2.
[Hint: Use functions with disjoint supports.]

5.3 Let (un) be a sequence in H and let (tn) be a sequence in (0,∞) such that

(tnun − tmum, un − um) ≤ 0 ∀m, n.

1. Assume that the sequence (tn) is nondecreasing (possibly unbounded). Prove
that the sequence (un) converges.
[Hint: Show that the sequence (|un|) is nonincreasing.]

2. Assume that the sequence (tn) is nonincreasing. Prove that the following alter-
native holds:

(i) either |un| → ∞,
(ii) or (un) converges.

If tn → t > 0, prove that (un) converges, and if tn → 0, prove that both cases
(i) and (ii) may occur.

5.4 Let K ⊂ H be a nonempty closed convex set. Let f ∈ H and let u = PKf .
Prove that
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|v − u|2 ≤ |v − f |2 − |u− f |2 ∀v ∈ K.
Deduce that

|v − u| ≤ |v − f | ∀v ∈ K.
Give a geometric interpretation.

5.5

1. Let (Kn) be a nonincreasing sequence of closed convex sets in H such that
∩nKn 	= ∅.
Prove that for every f ∈ H the sequence un = PKnf converges (strongly) to a
limit and identify the limit.

2. Let (Kn) be a nondecreasing sequence of nonempty closed convex sets in H .

Prove that for every f ∈ H the sequence un = PKnf converges (strongly) to a
limit and identify the limit.

Let ϕ : H → R be a continuous function that is bounded from below. Prove that
the sequence αn = infKnϕ converges and identify the limit.

5.6 The radial projection onto the unit ball.
Let E be a vector space equipped with the norm ‖ ‖.
Set

T u =
{
u if ‖u‖ ≤ 1,

u/‖u‖ if ‖u‖ > 1.

1. Prove that ‖T u− T v‖ ≤ 2‖u− v‖ ∀u, v ∈ E.
2. Show that in general, the constant 2 cannot be improved.

[Hint: Take E = R
2 with the norm ‖u‖ = |u1| + |u2|.]

3. What happens if ‖ ‖ is a Hilbert norm?

5.7 Projection onto a convex cone.
Let K ⊂ H be a convex cone with vertex at 0, i.e.,

0 ∈ K and λu+ μv ∈ K ∀λ,μ > 0, ∀u, v ∈ K;
assume in addition that K is closed.

Given f ∈ H , prove that u = PKf is characterized by the following properties:

u ∈ K, (f − u, v) ≤ 0 ∀v ∈ K and (f − u, u) = 0.

5.8 Let� be a measure space and let h : � → [0,+∞) be a measurable function.
Let

K = {u ∈ L2(�); |u(x)| ≤ h(x) a.e. on �}.

Check that K is a nonempty closed convex set in H = L2(�). Determine PK .

5.9 LetA ⊂ H andB ⊂ H be two nonempty closed convex set such thatA∩B = ∅
and B is bounded.
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Set
C = A− B.

1. Show that C is closed and convex.
2. Set u = PC0 and write u = a0 −b0 for some a0 ∈ A and b0 ∈ B (this is possible

since u ∈ C).
Prove that |a0 − b0| = dist(A,B) = infa∈A,b∈B |a − b|.
Determine PAb0 and PBa0.

3. Suppose a1 ∈ A and b1 ∈ B is another pair such that |a1 − b1| = dist(A,B).
Prove that u = a1 − b1.
Draw some pictures where the pair [a0, b0] is unique (resp. nonunique).

4. Find a simple proof of the Hahn–Banach theorem, second geometric form, in
the case of a Hilbert space.

5.10 Let F : H → R be a convex function of class C1. LetK ⊂ H be convex and
let u ∈ H . Show that the following properties are equivalent:

(i) F(u) ≤ F(v) ∀v ∈ K ,
(ii) (F ′(u), v − u) ≥ 0 ∀v ∈ K .

Example: F(v) = |v − f |2 with f ∈ H given.

5.11 Let M ⊂ H be a closed linear subspace that is not reduced to {0}. Let
f ∈ H, f /∈ M⊥.

1. Prove that
m = inf

u∈M|u|=1

(f, u)

is uniquely achieved.
2. Let ϕ1, ϕ2, ϕ3 ∈ H be given and let E denote the linear space spanned by

{ϕ1, ϕ2, ϕ3}. Determine m in the following cases:

(i) M = E,
(ii) M = E⊥.

3. Examine the case in whichH = L2(0, 1), ϕ1(t) = t, ϕ2(t) = t2, and ϕ3(t) = t3.

5.12 Completion of a pre-Hilbert space.
Let E be a vector space equipped with the scalar product ( , ). One does not

assume that E is complete for the norm |u| = (u, u)1/2 (E is said to be a pre-Hilbert
space).

Recall that the dual space E�, equipped with the dual norm ‖f ‖E� , is complete.
Let T : E → E� be the map defined by

〈T u, v〉E�,E = (u, v) ∀u, v ∈ E.
Check that T is a linear isometry. Is T surjective?

Our purpose is to show that R(T ) is dense inE� and that ‖ ‖E� is a Hilbert norm.
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1. Transfer to R(T ) the scalar product of E and extend it to R(T ). The resulting
scalar product is denoted by ((f, g)) with f, g ∈ R(T ).
Check that the corresponding norm ((f, f ))1/2 coincides on R(T ) with ‖f ‖E� .
Prove that

〈f, v〉 = ((f, T v)) ∀v ∈ E, ∀f ∈ R(T ).
2. Prove that R(T ) = E�.

[Hint: Given f ∈ E�, transfer f to a linear functional on R(T ) and use the
Riesz–Fréchet representation theorem in R(T ).]
Deduce that E� is a Hilbert space for the norm ‖ ‖E� .

3. Conclude that the completion of E can be identified with E�. (For the definition
of the completion see, e.g., A. Friedman [3].)

5.13 Let E be a vector space equipped with the norm ‖ ‖E . The dual norm is
denoted by ‖ ‖E� . Recall that the (multivalued) duality map is defined by

F(u) = {f ∈ E�; ‖f ‖E� = ‖u‖E and 〈f, u〉 = ‖u‖2
E}.

1. Assume that F satisfies the following property:

F(u)+ F(v) ⊂ F(u+ v) ∀u, v ∈ E.
Prove that the norm ‖ ‖E arises from a scalar product.
[Hint: Use Exercise 5.1.]

2. Conversely, if the norm ‖ ‖E arises from a scalar product, what can one say
about F ?
[Hint: Use Exercise 5.12 and 1.1.]

5.14 Let a : H ×H → R be a bilinear continuous form such that

a(v, v) ≥ 0 ∀v ∈ H.
Prove that the function v 
→ F(v) = a(v, v) is convex, of class C1, and determine
its differential.

5.15 LetG ⊂ H be a linear subspace of a Hilbert spaceH ;G is equipped with the
norm of H . Let F be a Banach space. Let S : G → F be a bounded linear operator.

Prove that there exists a bounded linear operator T : H → F that extends S and
such that ∥

∥T
∥
∥
L (H,F )

= ∥
∥S

∥
∥
L (G,F )

.

5.16 The triplet V ⊂ H ⊂ V �.
Let H be a Hilbert space equipped with the scalar product ( , ) and the corre-

sponding norm | |. Let V ⊂ H be a linear subspace that is dense in V . Assume that
V has its own norm ‖ ‖ and that V is a Banach space for ‖ ‖. Assume also that the
injection V ⊂ H is continuous, i.e., |v| ≤ C‖v‖ ∀v ∈ V . Consider the operator
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T : H → V � defined by

〈T u, v〉V �,V = (u, v) ∀u ∈ H, ∀v ∈ V.
1. Prove that ‖T u‖V � ≤ C|u| ∀u ∈ H .
2. Prove that T is injective.
3. Prove that R(T ) is dense in V � if V is reflexive.
4. Given f ∈ V �, prove that f ∈ R(T ) iff there is a constant a ≥ 0 such that

|〈f, v〉V �,V | ≤ a|v| ∀v ∈ V .

5.17 Let M,N ⊂ H be two closed linear subspaces.
Assume that (u, v) = 0 ∀u ∈ M, ∀v ∈ N . Prove that M +N is closed.

5.18 Let E be a Banach space and let H be a Hilbert space. Let T ∈ L (E,H).
Show that the following properties are equivalent:

(i) T admits a left inverse,
(ii) there exists a constant C such that ‖u‖ ≤ C|T u| ∀u ∈ E.

5.19 Let (un) be a sequence in H such that un ⇀ u weakly. Assume that
lim sup |un| ≤ |u|. Prove that un → u strongly without relying on Proposition 3.32.

5.20 Assume that S ∈ L (H) satisfies (Su, u) ≥ 0 ∀u ∈ H .

1. Prove that N(S) = R(S)⊥.
2. Prove that I + tS is bijective for every t > 0.
3. Prove that

lim
t→+∞(I + tS)−1f = PN(S)f ∀f ∈ H.

[Hint: Two methods are possible:

(a) Consider the cases f ∈ N(S) and f ∈ R(S).
(b) Use weak convergence.]

5.21 Iterates of linear contractions. The ergodic theorem of Kakutani–Yosida.
Let T ∈ L (H) be such that ‖T ‖ ≤ 1. Given f ∈ H and given an integer

n ≥ 1, set

σn(f ) = 1

n
(f + Tf + T 2f + · · · + T n−1f )

and

μn(f ) =
(
I + T

2

)n

f.

Our purpose is to show that

lim
n→∞σn(f ) = lim

n→∞μn(f ) = PN(I−T )f.

1. Check that N(I − T ) = R(I − T )⊥.
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2. Assume thatf ∈ R(I−T ). Prove that there exists a constantC such that |σn(f )| ≤
C/n ∀n ≥ 1.

3. Deduce that for every f ∈ H , one has

lim
n→∞σn(f ) = PN(I−T )f.

4. Set S = 1

2
(I + T ). Prove that

(1) |u− Su|2 + |Su|2 ≤ |u|2 ∀u ∈ H.
Deduce that ∞∑

i=0

|Siu− Si+1u|2 ≤ |u|2 ∀u ∈ H

and that

|Sn(u− Su)| ≤ |u|√
n+ 1

∀u ∈ H ∀n ≥ 1.

5. Assume that f ∈ R(I − T ). Prove that there exists a constant C such that
|μn(f )| ≤ C/

√
n ∀n ≥ 1.

6. Deduce that for every f ∈ H , one has

lim
n→∞μn(f ) = PN(I−T )f.

5.22 Let C ⊂ H be a nonempty closed convex set and let T : C → C be a
nonlinear contraction, i.e.,

|T u− T v| ≤ |u− v| ∀u, v ∈ C.

1. Let (un) be a sequence in C such that

un ⇀ u weakly and (un − T un) → f strongly.

Prove that u− T u = f .
[Hint: Start with the caseC = H and use the inequality ((u−T u)−(v−T v), u−
v) ≥ 0 ∀u, v.]

2. Deduce that if C is bounded and T (C) ⊂ C, then T has a fixed point.
[Hint: Consider Tεu = (1−ε)T u+εawith a ∈ C being fixed and ε > 0, ε → 0.]

5.23 Zarantonello’s inequality.
Let T : H → H be a (nonlinear) contraction. Assume that α1, α2, . . . , αn ∈ R

are such that αi ≥ 0 ∀i and
∑n
i=1 αi = 1. Assume that u1, u2, . . . , un ∈ H and set

σ =
n∑

i=1

αiui .
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Prove that
∣
∣
∣
∣T σ −

n∑

i=1

αiT ui

∣
∣
∣
∣

2

≤ 1

2

n∑

i,j=1

αiαj

[

|ui − uj |2 − |T ui − T uj |2
]

.

[Hint: Write

∣
∣
∣
∣T σ −

n∑

i=1

αiT ui

∣
∣
∣
∣

2

=
n∑

i,j=1

αiαj (T σ − T ui, T σ − T uj )

and use the identity (a, b) = 1
2 (|a|2 + |b|2 − |a − b|2).]

What can one deduce whenT is an isometry (i.e., |T u−T v| = |u−v| ∀u, v ∈ H )?

5.24 The Banach–Saks property.

1. Assume that (un) is a sequence in H such that un ⇀ 0 weakly. Construct by
induction a subsequence (unj ) such that un1 = u1 and

|(unj , unk )| ≤ 1

k
∀k ≥ 2 and ∀j = 1, 2, . . . , k − 1.

Deduce that the sequence (σp) defined by σp = 1
p

∑p
j=1 unj converges strongly

to 0 as p → ∞.
[Hint: Estimate |σp|2.]

2. Assume that (un) is a bounded sequence in H . Prove that there exists a subse-
quence (unj ) such that the sequence σp = 1

p

∑p
j=1 unj converges strongly to a

limit as p → ∞.
Compare with Corollary 3.8 and Exercise 3.4.

5.25 Variations on Opial’s lemma.
Let K ⊂ H be a nonempty closed convex set. Let (un) be a sequence in H such

that for each v ∈ K the sequence (|un − v|) is nonincreasing.

1. Check that the sequence (dist(un,K)) is nonincreasing.
2. Prove that the sequence (PKun) converges strongly to a limit, denoted by �.

[Hint: Use Exercise 5.4.]
3. Assume here that the sequence (un) satisfies the property

(P)

{
Whenever a subsequence (unk ) converges weakly

to some limit u ∈ H , then u ∈ K.
Prove that un ⇀ � weakly.

4. Assume here that
⋃
λ>0λ(K−K) = H . Prove that there exists some u ∈ H such

that un ⇀ u weakly and PKu = �.
5. Assume here that IntK 	= ∅. Prove that there exists someu ∈ H such thatun → u

strongly.
[Hint: Consider first the case that K is the unit ball and then the general case.]
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6. Set σn = 1
n
(u1 + u2 + · · · + un) and assume that the sequence (σn) satisfies

property (P). Prove that σn ⇀ � weakly.

5.26 Assume that (en) is an orthonormal basis of H .

1. Check that en ⇀ 0 weakly.
Let (an) be a bounded sequence in R and set un = 1

n

∑n
i=1 aiei .

2. Prove that |un| → 0.
3. Prove that

√
n un ⇀ 0 weakly.

5.27 LetD ⊂ H be a subset such that the linear space spanned byD is dense inH .
Let (En)n≥1 be a sequence of closed subspaces in H that are mutually orthogonal.
Assume that ∞∑

n=1

|PEnu|2 = |u|2 ∀u ∈ D.

Prove that H is the Hilbert sum of the En’s.

5.28 Assume that H is separable.

1. Let V ⊂ H be a linear subspace that is dense in H . Prove that V contains an
orthonormal basis of H .

2. Let (en)n≥1 be an orthonormal sequence inH , i.e., (ei, ej ) = δij . Prove that there
exists an orthonormal basis of H that contains

⋃∞
n=1{en}.

5.29 A lemma of Grothendieck.
Let�be a measure space with |�| < ∞. LetE be a closed subspace ofLp(�)with

1 ≤ p < ∞. Assume that E ⊂ L∞(�). Our purpose is to prove that dimE < ∞.

1. Prove that there exists a constant C such that

‖u‖∞ ≤ C‖u‖p ∀u ∈ E.
[Hint: Use Corollary 2.8.]

2. Prove that there exists a constant M such that

‖u‖∞ ≤ M‖u‖2 ∀u ∈ E.
[Hint: Distinguish the cases 1 ≤ p ≤ 2 and 2 < p < ∞.]

3. Deduce that E is a closed subspace of L2(�).

In what follows we assume that dimE = ∞. Let (en)n≥1 be an orthonormal
sequence of E (equipped with the L2 scalar product).

4. Fix any integer k ≥ 1. Prove that there exists a null set ω ⊂ � such that

k∑

i=1

αiei(x) ≤ M

(
k∑

i=1

α2
i

)1/2

∀x ∈ �\ω, ∀α = (α1, α2, . . . , αk) ∈ R
k.
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[Hint: Start with the case α ∈ Q
k .]

5. Deduce that
∑k
i=1 |ei(x)|2 ≤ M2 ∀x ∈ �\ω.

6. Conclude.

5.30 Let (en)n≥1 be an orthonormal sequence inH = L2(0, 1). Let p(t) be a given
function in H .

1. Prove that for every t ∈ [0, 1], one has

(1)
∞∑

n=1

∣
∣
∣
∣

∫ t

0
p(s)en(s)ds

∣
∣
∣
∣

2

≤
∫ t

0
|p(s)|2ds.

2. Deduce that

(2)
∞∑

n=1

∫ 1

0

∣
∣
∣
∣

∫ t

0
p(s)en(s)ds

∣
∣
∣
∣

2

dt ≤
∫ 1

0
|p(t)|2(1 − t)dt.

3. Assume now that (en)n≥1 is an orthonormal basis of H .
Prove that (1) and (2) become equalities.

4. Conversely, assume that equality holds in (2) and that p(t) 	= 0 a.e. Prove that
(en)n≥1 is an orthonormal basis.

Example: p ≡ 1.

5.31 The Haar basis.
Given an integer n ≥ 1, write n = k + 2p, where p ≥ 0 and k ≥ 0 are integers

uniquely determined by the condition k ≤ 2p − 1. Consider the function defined on
(0, 1) by

ϕn(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2p/2 if k2−p < t < (k + 1

2
)2−p,

−2p/2 if (k + 1

2
)2−p < t < (k + 1)2−p,

0 elsewhere.

Set ϕ0 ≡ 1 and prove that (ϕn)n≥0 is an orthonormal basis of L2(0, 1).

5.32 The Rademacher system and the Walsh basis.
For every integer i ≥ 0 consider the function ri(t) defined on (0, 1) by ri(t) =

(−1)[2i t] (as usual [x] denotes the largest integer ≤ x).

1. Check that (ri)i≥0 is an orthonormal sequence inL2(0, 1) (called the Rademacher
system).

2. Is (ri)i≥0 an orthonormal basis?
[Hint: Consider the function u = r1r2.]

3. Given an integer n ≥ 0, consider its binary representation n = ∑�
i=0 αi2

i with
αi ∈ {0, 1}.
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Set

wn(t) =
�∏

i=0

ri+1(t)
αi .

Prove that (wn)n≥0 is an orthonormal basis of L2(0, 1) (called the Walsh basis).
Note that (ri)i≥0 is a subset of (wn)n≥0.



Chapter 6
Compact Operators. Spectral Decomposition of
Self-Adjoint Compact Operators

6.1 Definitions. Elementary Properties. Adjoint

Throughout this chapter, and unless otherwise specified,E andF denote two Banach
spaces.

Definition. A bounded operator T ∈ L(E, F ) is said to be compact if T (BE) has
compact closure in F (in the strong topology).

The set of all compact operators from E into F is denoted by K(E, F ). For
simplicity one writes K(E) = K(E,E).

Theorem 6.1. The set K(E, F ) is a closed linear subspace of L(E, F ) (in the topol-
ogy associated to the norm ‖ ‖L(E,F )).

Proof. Clearly the sum of two compact operators is a compact operator. Suppose
that (Tn) is a sequence of compact operators and T is a bounded operator such that
‖Tn − T ‖L(E,F ) → 0. We claim that T is a compact operator. Since F is complete
it suffices to check that for every ε > 0 there is a finite covering of T (BE) with
balls of radius ε (see, e.g., J. R. Munkres [1], Section 7.3). Fix an integer n such that
‖Tn−T ‖L(E,F ) < ε/2. Since Tn(BE) has compact closure, there is a finite covering
of Tn(BE) by balls of radius ε/2, say Tn(BE) ⊂ ⋃

i∈IB(fi, ε/2). It follows that
T (BE) ⊂ ⋃

i∈IB(fi, ε).

Definition. An operator T ∈ L(E, F ) is said to be of finite rank if the range of T ,
R(T ), is finite-dimensional.

Clearly, any finite-rank operator is compact and thus we have the following.

Corollary 6.2. Let (Tn) be a sequence of finite-rank operators and let T ∈ L(E, F )
be such that ‖Tn − T ‖L(E,F ) → 0. Then T ∈ K(E, F ).

� Remark 1. The celebrated “approximation problem” (Banach, Grothendieck) deals
with the converse of Corollary 6.2: given a compact operator T does there always
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exist a sequence (Tn) of finite-rank operators such that ‖Tn − T ‖L(E,F ) → 0? The
question was open for a long time until P. Enflo [1] discovered a counterexample
in 1972. The original construction was quite complicated, and subsequently simpler
examples were found, for example, with F being some closed subspace of �p (for
any 1 < p < ∞, p 	= 2). The interested reader will find a detailed discussion of
the approximation problem in J. Lindenstrauss–L. Tzafriri [2]. Note that the answer
to the approximation problem is positive in some special cases—for example if F
is a Hilbert space. Indeed, set K = T (BE). Given ε > 0 there is a finite covering
of K with balls of radius ε, say K ⊂ ⋃

i∈IB(fi, ε). Let G denote the vector space
spanned by the fi’s and set Tε = PGT , so that Tε is of finite rank. We claim that
‖Tε − T ‖L(E,F ) < 2ε. For every x ∈ BE there is some i0 ∈ I such that

(1) ‖T x − fi0‖ < ε.

Thus
‖PGT x − PGfi0‖ < ε,

that is,

(2) ‖PGT x − fi0‖ < ε.

Combining (1) and (2), one obtains

‖PGT x − T x‖ < 2ε ∀x ∈ BE,
that is,

‖Tε − T ‖L(E,F ) < 2ε.

[More generally, one sees that if F has a Schauder basis, then the answer to the
approximation problem is positive for every space E and every compact operator
from E into F .]

In connection with the approximation problem, let us mention a technique that
is very useful in nonlinear analysis to approximate a continuous map (linear or
nonlinear) by nonlinear maps of finite rank. Let X be a topological space, let F
be a Banach space, and let T : X → F be a continuous map such that T (X) has
compact closure in F . We claim that for every ε > 0 there exists a continuous map
Tε : X → F of finite rank such that

(3) ‖Tε(x)− T (x)‖ < ε ∀x ∈ X.
Indeed, since K = T (X) is compact there is a finite covering of K , say K ⊂⋃
i∈IB(fi, ε/2). Set

Tε(x) =
∑

i∈I
qi(x)fi

∑

i∈I
qi(x)

with qi(x) = max{ε − ‖T x − fi‖, 0};
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clearly Tε satisfies (3).
This kind of approximation is very useful, for example, to deduce Schauder’s

fixed-point theorem from Brouwer’s fixed-point theorem (see, e.g., K. Deimling [1],
A. Granas–J. Dugundji [1], J. Franklin [1], and Exercise 6.26).A similar construction,
combined with the Schauder fixed-point theorem, has also been used in a surprising
way by Lomonosov to prove the existence of nontrivial invariant subspaces for a
large class of linear operators (see, e.g., C. Pearcy [1], N. Akhiezer–I. Glazman [1],
A. Granas–J. Dugundji [1], and Problem 42). Another linear result that has a simple
proof based on the Schauder fixed-point theorem is the Krein–Rutman theorem (see
Theorem 6.13 and Problem 41).

Proposition 6.3. Let E, F , and G be three Banach spaces. Let T ∈ L(E, F) and
S ∈ K(F , G) [resp. T ∈ K(E, F) and S ∈ L(F , G)]. Then S ◦ T ∈ K(E, G).

The proof is obvious.

Theorem 6.4 (Schauder). If T ∈ K(E, F), then T � ∈ K(F �, E�). And conversely.

Proof. We have to show that T �(BF�) has compact closure in E�. Let (vn) be a
sequence in BF� . We claim that (T �(vn)) has a convergent subsequence. Set K =
T (BE); this is a compact metric space. Consider the set H ⊂ C(K) defined by

H = {ϕn : x ∈ K 
−→ 〈vn, x〉; n = 1, 2, . . . } .
The assumptions of Ascoli–Arzelà’s theorem (Theorem 4.25) are satisfied. Thus,
there is a subsequence, denoted by ϕnk , that converges uniformly on K to some
continuous function ϕ ∈ C(K). In particular, we have

sup
u∈BE

∣
∣〈vnk , T u〉 − ϕ(T u)

∣
∣ −→ 0
k→∞ .

Thus
sup
u∈BE

∣
∣〈vnk , T u〉 − 〈vn�, T u〉

∣
∣ −→ 0
k,�→∞,

i.e., ‖T �vnk − T �vn�‖E� −→ 0
k,�→∞. Consequently T �vnk converges in E�.

Conversely, assume T � ∈ K(F �, E�). We already know, from the first part,
that T �� ∈ K(E��, F��). In particular, T ��(BE) has compact closure in F��. But
T (BE) = T ��(BE) and F is closed in F��. Therefore T (BE) has compact closure
in F.

Remark 2. LetE andF be two Banach spaces and letT ∈ K(E,F). If (un) converges
weakly to u in E, then (T un) converges strongly to T u. The converse is also true if
E is reflexive (see Exercise 6.7).

6.2 The Riesz–Fredholm Theory

We start with some useful preliminary results.



160 6 Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators

Lemma 6.1 (Riesz’s lemma). Let E be an n.v.s. and let M ⊂ E be a closed linear
space such that M 	= E. Then

∀ε > 0 ∃u ∈ E such that ‖u‖ = 1 and dist(u,M) ≥ 1 − ε.

Proof. Let v ∈ E with v /∈ M . Since M is closed, then

d = dist(v,M) > 0.

Choose any m0 ∈ M such that

d ≤ ‖v −m0‖ ≤ d/(1 − ε).

Then
u = v −m0

‖v −m0‖
satisfies the required properties. Indeed, for every m ∈ M , we have

‖u−m‖ =
∥
∥
∥
∥
v −m0

‖v −m0‖ −m

∥
∥
∥
∥ ≥ d

‖v −m0‖ ≥ 1 − ε,

since m0 + ‖v −m0‖m ∈ M.
Remark 3. If M is finite-dimensional (or more generally if M is reflexive) one can
choose ε = 0 in Lemma 6.1. But this is not true in general (see Exercise 1.17).

• Theorem 6.5 (Riesz). Let E be an n.v.s. with BE compact. Then E is finite-
dimensional.

Proof. Assume, by contradiction, that E is infinite-dimensional. Then there is a
sequence (En) of finite-dimensional subspaces of E such that En−1 ⊂ En and
En−1 	= En. By Lemma 6.1 there is a sequence (un) with un ∈ En such that
‖un‖ = 1 and dist(un, En−1) ≥ 1/2. In particular, ‖un − um‖ ≥ 1/2 for m < n.
Thus (un) has no convergent subsequence, which contradicts the assumption thatBE
is compact.

• Theorem 6.6 (Fredholm alternative). Let T ∈ K(E). Then

(a) N(I − T ) is finite-dimensional,
(b) R(I − T ) is closed, and more precisely R(I − T ) = N(I − T �)⊥,
(c) N(I − T ) = {0} ⇔ R(I − T ) = E,
(d) dimN(I − T ) = dimN(I − T �).

Remark 4. The Fredholm alternative deals with the solvability of the equation
u− T u = f . It says that

• either for every f ∈ E the equation u− T u = f has a unique solution,
• or the homogeneous equationu−T u = 0 admitsn linearly independent solutions,

and in this case, the inhomogeneous equation u−T u = f is solvable if and only
if f satisfies n orthogonality conditions, i.e.,
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f ∈ N(I − T �)⊥.

Remark 5. Property (c) is familiar in finite-dimensional spaces. If dimE < ∞, a
linear operator from E into itself is injective (= one-to-one) if and only if it is
surjective (= onto). However, in infinite-dimensional spaces a bounded operator
may be injective without being surjective and conversely, for example the right shift
(resp. the left shift) in �2 (see Remark 6). Therefore, assertion (c) is a remarkable
property of the operators of the form I − T with T ∈ K(E).

Proof.

(a) LetE1 = N(I −T ). Then BE1 ⊂ T (BE) and thus BE1 is compact. By Theorem
6.5, E1 must be finite-dimensional.

(b) Let fn = un−T un → f . We have to show that f ∈ R(I−T ). Set dn = dist(un,
N(I − T )). Since N(I − T ) is finite-dimensional, there exists vn ∈ N(I − T )

such that dn = ‖un − vn‖. We have

(4) fn = (un − vn)− T (un − vn).

We claim that ‖un − vn‖ remains bounded. Suppose not; then there is a subse-
quence such that ‖unk − vnk‖ → ∞. Set wn = (un − vn)/‖un − vn‖. From (4)
we see that wnk − Twnk → 0. Choosing a further subsequence (still denoted
by wnk for simplicity), we may assume that Twnk → z. Thus wnk → z and
z ∈ N(I − T ), so that dist(wnk , N(I − T )) → 0. On the other hand,

dist(wn,N(I − T )) = dist(un,N(I − T ))

‖un − vn‖ = 1

(since vn ∈ N(I − T )); a contradiction.
Thus ‖un − vn‖ remains bounded, and since T is a compact operator, we may
extract a subsequence such that T (unk − vnk ) converges to some limit �. From
(4) it follows that unk − vnk → f + �. Letting g = f + �, we have g−T g = f ,
i.e., f ∈ R(I −T ). This completes the proof of the fact that the operator (I −T )
has closed range. We may therefore apply Theorem 2.19 and deduce that

R(I − T ) = N(I − T �)⊥, R(I − T �) = N(I − T )⊥.

(c) We first prove the implication ⇒. Assume, by contradiction, that

E1 = R(I − T ) 	= E.

Then E1 is a Banach space and T (E1) ⊂ E1. Thus T|E1 ∈ K(E1) and E2 =
(I − T )(E1) is a closed subspace of E1. Moreover, E2 	= E1 (since (I − T ) is
injective). LettingEn = (I−T )n(E), we obtain a (strictly) decreasing sequence
of closed subspaces. Using Riesz’s lemma we may construct a sequence (un)
such that un ∈ En, ‖un‖ = 1 and dist(un, En+1) ≥ 1/2. We have

T un − T um = −(un − T un)+ (um − T um)+ (un − um).
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Note that if n > m, then En+1 ⊂ En ⊂ Em+1 ⊂ Em and therefore

−(un − T un)+ (um − T um)+ un ∈ Em+1.

It follows that ‖T un−T um‖ ≥ dist(um,Em+1) ≥ 1/2. This is impossible, since
T is a compact operator. Hence we have proved that R(I − T ) = E.

Conversely, assume thatR(I −T ) = E. By Corollary 2.18 we know thatN(I −
T �) = R(I − T )⊥ = {0}. Since T � ∈ K(E�), we may apply the preceding step
to infer that R(I − T �) = E�. Using Corollary 2.18 once more, we conclude
that N(I − T ) = R(I − T �)⊥ = {0}.

(d) Set d = dim N(I − T ) and d� = dim N(I − T �). We will first prove that
d� ≤ d. Suppose not, that d < d�. Since N(I − T ) is finite-dimensional, it
admits a complement in E (see Section 2.4, Example 1). Thus there exists a
continuous projection P fromE ontoN(I −T ). On the other hand,R(I −T ) =
N(I − T �)⊥ has finite codimension d� (see Section 2.4, Example 2) and thus it
has a complement (in E), denoted by F , of dimension d�. Since d < d�, there
is a linear map � : N(I − T ) → F that is injective and not surjective. Set
S = T +� ◦ P . Then S ∈ K(E), since � ◦ P has finite rank.
We claim that N(I − S) = {0}. Indeed, if

0 = u− Su = (u− T u)− (� ◦ Pu),
then

u− T u = 0 and � ◦ Pu = 0,

i.e., u ∈ N(I − T ) and �u = 0. Therefore, u = 0.

Applying (c) to the operator S, we obtain that R(I − S) = E. This is absurd, since
there exists some f ∈ F with f /∈ R(�), and so the equation u − Su = f has no
solution.

Hence we have proved that d� ≤ d . Applying this fact to T �, we obtain

dimN(I − T ��) ≤ dimN(I − T �) ≤ dimN(I − T ).

But N(I − T ��) ⊃ N(I − T ) and therefore d = d�.

6.3 The Spectrum of a Compact Operator

Here are some important definitions.

Definition. Let T ∈ L(E).
The resolvent set, denoted by ρ(T ), is defined by

ρ(T ) = {λ ∈ R; (T − λI) is bijective from E onto E}.
The spectrum, denoted by σ(T ), is the complement of the resolvent set, i.e.,

σ(T ) = R\ρ(T ). A real number λ is said to be an eigenvalue of T if
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N(T − λI) 	= {0};
N(T − λI) is the corresponding eigenspace. The set of all eigenvalues is denoted
by EV (T ).1

It is useful to keep in mind that if λ ∈ ρ(T ) then (T − λI)−1 ∈ L(E) (see
Corollary 2.7).

Remark 6. It is clear that EV (T ) ⊂ σ(T ). In general, this inclusion can be strict:2

there may exist some λ such that

N(T − λI) = {0} and R(T − λI) 	= E

(such a λ belongs to the spectrum but is not an eigenvalue). Consider, for example,
in E = �2 the right shift, i.e., T u = (0, u1, u2, . . . ) with u = (u1, u2, u3, . . . ).
Then 0 ∈ σ(T ), while 0 /∈ EV (T ). In fact, in this case EV (T ) = ∅, while
σ(T ) = [−1,+1] (see Exercise 6.18). It may of course happen, in finite- or infinite-
dimensional spaces, that EV (T ) = σ(T ) = ∅; consider, for example, a rotation
by π/2 in R

2, or in �2 the operator T u = (−u2, u1,−u4, u3, . . . ). If we work in
vector spaces over C (see Section 11.4) the situation is totally different; the study of
eigenvalues and spectra is much more interesting in spaces over C. As is well known,
in finite-dimensional spaces over C, EV (T ) = σ(T ) 	= ∅ (these are the roots of the
characteristic polynomial). In infinite-dimensional spaces over C a nontrivial result
asserts that σ(T ) is always nonempty (see Section 11.4). However, it may happen
that EV (T ) = ∅ (take for example the right shift in E = �2).

Proposition 6.7. The spectrum σ(T ) of a bounded operator T is compact and

σ(T ) ⊂ [−‖T ‖, +‖T ‖].
Proof. Letλ ∈ R be such that |λ| > ‖T ‖.We will show thatT−λI is bijective, which
implies that σ(T ) ⊂ [−‖T ‖, +‖T ‖]. Given f ∈ E, the equation T u− λu = f has
a unique solution, since it may be written as u = λ−1(T u− f ) and the contraction
mapping principle (Theorem 5.7) applies.

We now prove that ρ(T ) is open. Let λ0 ∈ ρ(T ). Given λ ∈ R (close to λ0) and
f ∈ E, we try to solve

(5) T u− λu = f.

Equation (5) may be written as

T u− λ0u = f + (λ− λ0)u,

i.e.,

(6) u = (T − λ0I )
−1[f + (λ− λ0)u].

1 Some authors write σp(T ) (= point spectrum) instead of EV (T ).
2 Of course, if E is finite-dimensional, then EV (T ) = σ(T ).
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Applying the contraction mapping principle once more, we see that (6) has a solu-
tion if

|λ− λ0||(T − λ0I )
−1‖ < 1.

• Theorem 6.8. Let T ∈ K(E) with dimE = ∞, then we have:

(a) 0 ∈ σ(T ),
(b) σ(T )\{0} = EV (T )\{0},
(c) one of the following cases holds:

• σ(T ) = {0},
• σ(T )\{0} is a finite set,
• σ(T )\{0} is a sequence converging to 0.

Proof.

(a) Suppose not, that 0 /∈ σ(T ). Then T is bijective and I = T ◦ T −1 is compact.
Thus BE is compact and dimE < ∞ (by Theorem 6.5); a contradiction.

(b) Let λ ∈ σ(T ), λ 	= 0. We shall prove that λ is an eigenvalue. Suppose not, that
N(T − λI) = {0}. Then by Theorem 6.6(c), we know that R(T − λI) = E and
therefore λ ∈ ρ(T ); a contradiction.

For the proof of assertion (c) we shall use the following lemma.

Lemma 6.2. Let T ∈ K(E) and let (λn)n≥1 be a sequence of distinct real numbers
such that

λn → λ

and
λn ∈ σ(T )\{0} ∀n.

Then λ = 0.

In other words, all the points of σ(T )\{0} are isolated points.

Proof. We know that λn ∈ EV (T ); let en 	= 0 be such that (T − λnI)en = 0. Let
En be the space spanned by {e1, e2, . . . , en}. We claim thatEn ⊂ En+1,En 	= En+1
for all n. It suffices to check that for all n, the vectors e1, e2, . . . , en are linearly
independent. The proof is by induction on n. Assume that this holds up to n and
suppose that en+1 = ∑n

i=1 αiei . Then

T en+1 =
n∑

i=1

αiλiei =
n∑

i=1

αiλn+1ei .

It follows that αi(λi − λn+1) = 0 for i = 1, 2, . . . , n and thus αi = 0 for i =
1, 2, . . . , n; a contradiction. Hence we have proved that En ⊂ En+1, En 	= En+1
for all n.

Applying Riesz’s lemma (Lemma 6.1), we may construct a sequence (un)n≥1 such
that un ∈ En, ‖un‖ = 1 and dist(un, En−1) ≥ 1/2 for all n ≥ 2. For 2 ≤ m < n

we have
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Em−1 ⊂ Em ⊂ En−1 ⊂ En.

On the other hand, it is clear that (T − λnI)En ⊂ En−1. Thus we have
∥
∥
∥
∥
T un

λn
− T um

λm

∥
∥
∥
∥ =

∥
∥
∥
∥
(T un − λnun)

λn
− (T um − λmum)

λm
+ un − um

∥
∥
∥
∥

≥ dist(un, En−1) ≥ 1/2.

If λn → λ and λ 	= 0 we have a contradiction, since (T un) has a convergent
subsequence.

Proof of Theorem 6.8, concluded. For every integer n ≥ 1 the set

σ(T ) ∩ {λ ∈ R ; |λ| ≥ 1/n}
is either empty or finite (if it had infinitely many distinct points we would have a
subsequence that converged to some λ with |λ| ≥ 1/n—since σ(T ) is compact—
and this would contradict Lemma 6.2). Hence ifσ(T )\{0} has infinitely many distinct
points we may order them as a sequence tending to 0.

Remark 7. Given any sequence (αn) converging to 0 there is a compact operator T
such that σ(T ) = (αn)∪ {0}. In �2 it suffices to consider the multiplication operator
T defined by T u = (α1u1, α2u2, . . . , αnun, . . . ), where u = (u1, u2, . . . , un, . . . ).
Note that T is compact, since T is a limit of finite-rank operators. More precisely, let
Tnu = (α1u1, α2u2, . . . , αnun, 0, 0, . . . ); then ‖Tn − T ‖ → 0. In this example, we
also see that 0 may or may not belong to EV (T ). On the other hand, if 0 ∈ EV (T ),
the corresponding eigenspace, i.e., N(T ), may be finite- or infinite-dimensional.

6.4 Spectral Decomposition of Self-Adjoint Compact Operators

In what follows we assume that E = H is a Hilbert space and that T ∈ L(H).
Identifying H� and H , we may view T � as a bounded operator from H into itself.

Definition. A bounded operator T ∈ L(H) is said to be self-adjoint if T � = T , i.e.,

(T u, v) = (u, T v) ∀u, v ∈ H.
Proposition 6.9. Let T ∈ L(H) be a self-adjoint operator. Set

m = inf
u∈H|u|=1

(T u, u) and M = sup
u∈H|u|=1

(T u, u).

Thenσ(T ) ⊂ [m,M],m ∈ σ(T ), andM ∈ σ(T ).Moreover, ‖T ‖ = max{|m|, |M|}.
Proof. Let λ > M; we will prove that λ ∈ ρ(T ). We have

(T u, u) ≤ M|u|2 ∀u ∈ H,
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and therefore

(λu− T u, u) ≥ (λ−M)|u|2 = α|u|2 ∀u ∈ H, with α > 0.

Applying Lax–Milgram’s theorem (Corollary 5.8), we deduce that λI−T is bijective
and thus λ ∈ ρ(T ). Similarly, any λ < m belongs to ρ(T ) and therefore σ(T ) ⊂
[m,M].

We now prove that M ∈ σ(T ) (the proof that m ∈ σ(T ) is similar). The bilinear
form a(u, v) = (Mu− T u, v) is symmetric and satisfies

a(v, v) ≥ 0 ∀v ∈ H.
Hence, it satisfies the Cauchy–Schwarz inequality

|a(u, v)| ≤ a(u, u)1/2a(v, v)1/2 ∀u, v ∈ H,
i.e.,

|(Mu− T u, v)| ≤ (Mu− T u, u)1/2(Mv − T v, v)1/2 ∀u, v ∈ H.
It follows that

(7) |Mu− T u| ≤ C(Mu− T u, u)1/2 ∀u ∈ H.
By the definition ofM there is a sequence (un) such that |un| = 1 and (T un, un) →
M . From (7) we deduce that |Mun − T un| → 0 and thus M ∈ σ(T ) (since if
M ∈ ρ(T ), then un = (MI − T )−1(Mun − T un) → 0, which is impossible).

Finally, we prove that ‖T ‖ = μ, where μ = max{|m|, |M|}. Write ∀u, v ∈ H ,

(T (u+ v), u+ v) = (T u, u)+ (T v, v)+ 2(T u, v),

(T (u− v), u− v) = (T u, u)+ (T v, v)− 2(T u, v).

Thus

4(T u, v) = (T (u+ v), u+ v)− (T (u− v), u− v)

≤ M|u+ v|2 −m|u− v|2,
and therefore

4|(T u, v)| ≤ μ(|u+ v|2 + |u− v|2) = 2μ(|u|2 + |v|2).
Replacing v by αv with α > 0 yields

4|(T u, v)| ≤ 2μ

( |u|2
α

+ α|v|2
)

.
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Next we minimize the right-hand side over α, i.e., choose α = |u|/|v|, and then we
obtain

|(T u, v)| ≤ μ|u| |v| ∀u, v, so that ‖T ‖ ≤ μ.

On the other hand, it is clear that |(T u, u)| ≤ ‖T ‖ |u|2, so that |m| ≤ ‖T ‖ and
|M| ≤ ‖T ‖, and thus μ ≤ ‖T ‖.

Corollary 6.10. Let T ∈ L(H) be a self-adjoint operator such that σ(T ) = {0}.
Then T = 0.

Our last statement is a fundamental result. It asserts that every compact self-adjoint
operator may be diagonalized in some suitable basis.

• Theorem 6.11. Let H be a separable Hilbert space and let T be a compact self-
adjoint operator. Then there exists a Hilbert basis composed of eigenvectors of T .

Proof. Let (λn)n≥1 be the sequence of all (distinct) nonzero eigenvalues of T . Set

λ0 = 0, E0 = N(T ), and En = N(T − λnI).

Recall that
0 ≤ dim E0 ≤ ∞ and 0 < dimEn < ∞.

We claim that H is the Hilbert sum of the En’s, n = 0, 1, 2, . . . (in the sense of
Section 5.4):

(i) The spaces (En)n≥0 are mutually orthogonal.
Indeed, if u ∈ Em and v ∈ En with m 	= n, then

T u = λmu and T v = λnv,

so that
(T u, v) = λm(u, v) = (u, T v) = λn(u, v).

Therefore
(u, v) = 0.

(ii) Let F be the vector space spanned by the spaces (En)n≥0. We shall prove that
F is dense in H.

Clearly, T (F ) ⊂ F . It follows that T (F⊥) ⊂ F⊥; indeed, given u ∈ F⊥ we have

(T u, v) = (u, T v) = 0 ∀v ∈ F,
so that T u ∈ F⊥. The operator T restricted to F⊥ is denoted by T0. This is a self-
adjoint compact operator on F⊥. We claim that σ(T0) = {0}. Suppose not; suppose
that some λ 	= 0 belongs to σ(T0). Since λ ∈ EV (T0), there is some u ∈ F⊥, u 	= 0,
such that T0u = λu. Therefore, λ is one of the eigenvalues of T , say λ = λn with
n ≥ 1. Thus u ∈ En ⊂ F . Since u ∈ F⊥ ∩F , we deduce that u = 0; a contradiction.

Applying Corollary 6.10, we deduce that T0 = 0, i.e.,T vanishes onF⊥. It follows
that F⊥ ⊂ N(T ). On the other hand, N(T ) ⊂ F and consequently F⊥ ⊂ F . This
implies that F⊥ = {0}, and so F is dense in H.



168 6 Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators

Finally, we choose in each subspace (En)n≥0 a Hilbert basis (the existence of such
a basis for E0 follows from Theorem 5.11; for the other En’s, n ≥ 1, this is obvious,
since they are finite-dimensional). The union of these bases is clearly a Hilbert basis
for H , composed of eigenvectors of T .

Remark 8. Let T be a compact self-adjoint operator. From the preceding analysis we
may write any element u ∈ H as

u =
∞∑

n=0

un with un ∈ En.

Then T u = ∑∞
n=1 λnun. Given an integer k ≥ 1, set

Tku =
k∑

n=1

λnun.

Clearly, Tk is a finite-rank operator and

‖Tk − T ‖ ≤ sup
n≥k+1

|λn| → 0 as k → ∞.

Recall that in fact, in a Hilbert space, every compact operator—not necessarily self-
adjoint—is the limit of a sequence of finite-rank operators (see Remark 1).

Comments on Chapter 6

� 1. Fredholm operators.
Theorem 6.6 is the first step toward the theory of Fredholm operators. Given two
Banach spaces E and F , one says that A ∈ L(E, F ) is a Fredholm operator (or a
Noether operator)—one writes A ∈ 
(E,F)—if it satisfies:

(i) N(A) is finite-dimensional,
(ii) R(A) is closed and has finite codimension.3

The index of A is defined by

ind A = dimN(A) — codim R(A).

For example, A = I − T with T ∈ K(E) is a Fredholm operator of index zero; this
follows from Theorem 6.6.

The main properties of Fredholm operators are the following:

3 Let A ∈ L(E, F ) be such that N(A) is finite-dimensional and R(A) has finite codimension (i.e.,
there is a finite-dimensional space G ⊂ F such that R(A)+G = F). Then it follows that R(A) is
closed (see Exercise 2.27).
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(a) The class of Fredholm operators
(E,F) is an open subset of L(E, F ) and the
mapA 
→ ind A is continuous; thus it is constant on each connected component
of 
(E,F).

(b) Every operator A ∈ 
(E,F) is invertible modulo finite-rank operators, i.e.,
there exists an operator B ∈ L(F,E) such that

(A ◦ B − IF ) and (B ◦ A− IE) are finite-rank operators.

Conversely, let A ∈ L(E, F ) and assume that there exists B ∈ L(F,E) such
that

A ◦ B − IF ∈ K(F ) and B ◦ A− IE ∈ K(E).

Then A ∈ 
(E,F).
(c) If A ∈ 
(E,F) and T ∈ K(E, F ) then A+ T ∈ 
(E,F) and ind(A + T ) =

indA.
(d) If A ∈ 
(E,F) and B ∈ 
(F,G) then B ◦ A ∈ 
(E,G) and ind(B ◦ A) =

ind(A)+ind(B).

On this question, see, e.g., T. Kato [1], M. Schechter [1], S. Lang [1],A. E. Taylor–
D. C. Lay [1], P. Lax [1], L. Hörmander [2] (volume 3), and Problem 38.

� 2. Hilbert–Schmidt operators.
Let H be a separable Hilbert space. A bounded operator T ∈ L(H) is called a
Hilbert–Schmidt operator if there is a Hilbert basis (en) in H such that ‖T ‖2

HS =
∑ |T en|2 < ∞. One can prove that this definition is independent of the basis and
that ‖ ‖HS is a norm. Every Hilbert–Schmidt operator is compact. Hilbert–Schmidt
operators play an important role, in particular because of the following:

Theorem 6.12. Let H = L2(�) and K(x, y) ∈ L2(�×�). Then the operator

u 
→ (Ku)(x) =
∫

�

K(x, y)u(y)dy

is a Hilbert–Schmidt operator.
Conversely, every Hilbert–Schmidt operator on L2(�) is of the preceding form

for some unique function K(x, y) ∈ L2(�×�).

On this question, see, e.g., A. Balakrishnan [1], N. Dunford–J. T. Schwartz [1],
Volume 2, and Problem 40.

3. Multiplicity of eigenvalues.
Let T ∈ K(E) and let λ ∈ σ(T )\{0}. One can show that the sequenceN((T −λI)k),
k = 1, 2, . . . , is strictly increasing up to some finite p and then it stays constant (see,
e.g., A. E. Taylor–D. C. Lay [1], E. Kreyszig [1], and Problem 36). This integer p is
called the ascent of (T −λI). The dimension ofN(T −λI) is called by some authors
the geometric multiplicity of λ, and the dimension of N((T − λI)p) is called the
algebraic multiplicity of λ; they coincide if E is a Hilbert space and T is self-adjoint
(see Problem 36).
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4. Spectral analysis.
LetH be a Hilbert space. Let T ∈ L(H) be a self-adjoint operator, possibly not com-
pact. There is a construction called the spectral family of T that extends the spectral
decomposition of Section 6.4. It allows one in particular to define a functional cal-
culus, i.e., to give a sense to the quantity f (T ) for any continuous function f . It also
extends to unbounded and non-self-adjoint operators, provided one assumes only
that T is normal, i.e., T T � = T �T . Spectral analysis is a vast subject, especially in
Banach spaces over C (see Section 11.4), with many applications and ramifications.
For an elementary presentation see, e.g., W. Rudin [1], E. Kreyszig [1], A. Fried-
man [3], and K.Yosida [1]. For a more complete exposition, see, e.g., M. Reed–B. Si-
mon [1], T. Kato [1], R. Dautray–J.-L. Lions [1], Chapters VIII and IX, N. Dunford–
J. T. Schwartz [1],Volume 2, N.Akhiezer–I. Glazman [1],A. E. Taylor–D. C. Lay [1],
J. Weidmann [1], J. B. Conway [1], P. Lax [1], and M. Schechter [2].

5. The min-max principle. The min-max formulas, due to Courant–Fischer, provide
a very useful way of computing the eigenvalues; see, e.g., R. Courant–D. Hilbert [1],
P. Lax [1], and Problem 37 . The monograph of H. Weinberger [2] contains numerous
developments on this subject.

6. The Krein–Rutman theorem.
The following result has useful applications in the study of spectral properties of
second-order elliptic operators (see Chapter 9).

� Theorem 6.13 (Krein–Rutman). Let E be a Banach space and let P be a convex
cone with vertex at 0, i.e., λx + μy ∈ P ∀λ ≥ 0, ∀μ ≥ 0, ∀x ∈ P , ∀y ∈ P .
Assume that P is closed, Int P 	= ∅, and P 	= E. Let T ∈ K(E) be such that
T (P \{0}) ⊂ Int P . Then there exist some x0 ∈ Int P and some λ0 > 0 such that
T x0 = λ0x0; moreover, λ0 is the unique eigenvalue corresponding to an eigenvector
of T in P , i.e., T x = λx with x ∈ P and x 	= 0, imply λ = λ0 and x = mx0 for
some m > 0 . Finally,

λ0 = max{|λ|; λ ∈ σ(T )},
and the multiplicity (both geometric and algebraic) of λ equals one.

The proof presented in Problem 41 is due to P. Rabinowitz [2]. Variants of the
above Krein–Rutman theorem may be found, e.g., in H. Schaefer [1], R. Nussbaum
[1], F. F. Bonsall [1], and J. F. Toland [4].

Exercises for Chapter 6

6.1 Let E = �p with 1 ≤ p ≤ ∞ (see Section 11.3). Let (λn) be a bounded
sequence in R and consider the operator T ∈ L(E) defined by

T x = (λ1x1, λ2x2, . . . , λnxn, . . . ),

where
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x = (x1, x2, . . . , xn, . . . ).

Prove that T is a compact operator from E into E iff λn → 0.

6.2 Let E and F be two Banach spaces, and let T ∈ L(E, F ).

1. Assume that E is reflexive. Prove that T (BE) is closed (strongly).
2. Assume that E is reflexive and that T ∈ K(E, F ). Prove that T (BE) is compact.
3. Let E = F = C([0, 1]) and T u(t) = ∫ t

0 u(s)ds. Check that T ∈ K(E). Prove
that T (BE) is not closed.

6.3 LetE andF be two Banach spaces, and let T ∈ K(E, F ).Assume dimE = ∞.
Prove that there exists a sequence (un) inE such that ‖un‖E = 1 and ‖T un‖F → 0.

[Hint: Argue by contradiction.]

6.4 Let 1 ≤ p < ∞. Check that �p ⊂ c0 with continuous injection (for the
definition of �p and c0, see Section 11.3).

Is this injection compact?

[Hint: Use the canonical basis (en) of �p.]

6.5 Let (λn) be a sequence of positive numbers such that limn→∞ λn = +∞. Let
V be the space of sequences (un)n≥1 such that

∞∑

n=1

λn|un|2 < ∞.

The space V is equipped with the scalar product

((u, v)) =
∞∑

n=1

λnunvn.

Prove that V is a Hilbert space and that V ⊂ �2 with compact injection.

6.6 Let 1 ≤ q ≤ p ≤ ∞. Prove that the canonical injection from Lp(0, 1) into
Lq(0, 1) is continuous but not compact.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

6.7 Let E and F be two Banach spaces, and let T ∈ L(E, F ). Consider the
following properties:

(P)

{
For every weakly convergent sequence (un) in E,

un ⇀ u, then T un → T u strongly in F .

(Q)

{
T is continuous from E equipped with the weak topology

σ(E,E�) into F equipped with the strong topology.
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1. Prove that
(Q) ⇔ T is a finite-rank operator.

2. Prove that T ∈ K(E, F ) �⇒ (P).
3. Assume that either E = �1 or F = �1. Prove that every operator T ∈ L(E, F )

satisfies (P).

[Hint: Use a result of Problem 8.]

In what follows we assume that E is reflexive.

4. Prove that T ∈ K(E, F ) ⇐⇒ (P).
5. Deduce that every operator T ∈ L(E, �1) is compact.
6. Prove that every operator T ∈ L(c0, E) is compact.

[Hint: Consider the adjoint operator T �.]

6.8 Let E and F be two Banach spaces, and let T ∈ K(E, F ). Assume that R(T )
is closed.

1. Prove that T is a finite-rank operator.

[Hint: Use the open mapping theorem, i.e., Theorem 2.6.]

2. Assume, in addition, that dimN(T ) < ∞. Prove that dimE < ∞.

6.9 Let E and F be two Banach spaces, and let T ∈ L(E, F ).

1. Prove that the following three properties are equivalent:4

(A) dimN(T ) < ∞ and R(T ) is closed.

(B)

⎧
⎪⎨

⎪⎩

There are a finite-rank projection operator P ∈ L(E)
and a constant C such that

‖u‖E ≤ C(‖T u‖F + ‖Pu‖E) ∀u ∈ E.

(C)

⎧
⎪⎨

⎪⎩

There exist a Banach space G, an operator

Q ∈ K(E,G), and a constant C such that

‖u‖E ≤ C(‖T u‖F + ‖Qu‖G) ∀u ∈ E.
[Hint: When dimN(T ) < ∞ consider a complement of N(T ); see Section 2.4.]
Compare with Exercise 2.12.

2. Assume that T satisfies (A). Prove that (T + S) also satisfies (A) for every S ∈
K(E, F ).

3. Prove that the set of all operators T ∈ L(E, F ) satisfying (A) is open in L(E, F ).
4. Let F0 be a closed linear subspace of F , and let S ∈ K(F0, F ).

Prove that (I + S)(F0) is a closed subspace of F .

4 A projection operator is an operator P such that P 2 = P .
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6.10 Let Q(t) = ∑p
k=1 akt

k be a polynomial such that Q(1) 	= 0. Let E be a
Banach space, and let T ∈ L(E). Assume that Q(T ) ∈ K(E).

1. Prove that dimN(I − T ) < ∞, and that R(I − T ) is closed. More generally,
prove that (I − T )(E0) is closed for every closed subspace E0 ⊂ E.

[Hint: Write Q(1) − Q(t) = Q̃(t)(1 − t) for some polynomial Q̃ and apply
Exercise 6.9.]

2. Prove that N(I − T ) = {0} ⇔ R(I − T ) = E.
3. Prove that dimN(I − T ) = dimN(I − T �).

[Hint for questions 2 and 3: Use the same method as in the proof of Theorem 6.6.]

6.11 Let K be a compact metric space, and let E = C(K; R) equipped with the
usual norm ‖u‖ = maxx∈K |u(x)|.

Let F ⊂ E be a closed subspace. Assume that every function u ∈ F is Hölder
continuous, i.e.,

{
∀u ∈ F ∃α ∈ (0, 1] and ∃L such that

|u(x)− u(y)| ≤ Ld(x, y)α ∀x, y ∈ K.
The purpose of this exercise is to show that F is finite-dimensional.

1. Prove that there exist constants γ ∈ (0, 1] and C ≥ 0 (both independent of u)
such that

|u(x)− u(y)| ≤ C‖u‖d(x, y)γ ∀u ∈ F, ∀x, y ∈ K.

[Hint: Apply the Baire category theorem (Theorem 2.1) with

Fn = {u ∈ F ; |u(x)− u(y)| ≤ nd(x, y)1/n ∀x, y ∈ K}.]
2. Prove that BF is compact and conclude.

6.12 A lemma of J.-L. Lions.
LetX,Y , andZ be three Banach spaces with norms ‖ ‖X, ‖ ‖Y , and ‖ ‖Z .Assume

that X ⊂ Y with compact injection and that Y ⊂ Z with continuous injection.
Prove that

∀ε > 0 ∃Cε ≥ 0 satisfying ‖u‖Y ≤ ε‖u‖X + Cε‖u‖Z ∀u ∈ X.

[Hint: Argue by contradiction.]

Application. Prove that ∀ε > 0 ∃Cε ≥ 0 satisfying

max[0,1] |u| ≤ εmax[0,1] |u′| + Cε‖u‖L1 ∀u ∈ C1([0, 1]).
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6.13 Let E and F be two Banach spaces with norms ‖ ‖E and ‖ ‖F . Assume that
E is reflexive. Let T ∈ K(E, F ). Consider another norm | | on E, which is weaker
than the norm ‖ ‖E , i.e., |u| ≤ C‖u‖E ∀u ∈ E. Prove that

∀ε > 0 ∃Cε ≥ 0 satisfying ‖T u‖F ≤ ε‖u‖E + Cε|u| ∀u ∈ E.
Show that the conclusion may fail when E is not reflexive.

[Hint: Take E = C([0, 1]), F = R, ‖u‖ = ‖u‖L∞ and |u| = ‖u‖L1 .]

6.14 Let E be a Banach space, and let T ∈ L(E) with ‖T ‖ < 1.

1. Prove that (I − T ) is bijective and that

‖(I − T )−1‖ ≤ 1
/
(1 − ‖T ‖).

2. Set Sn = I + T + · · · + T n−1. Prove that

‖Sn − (I − T )−1‖ ≤ ‖T ‖n/(1 − ‖T ‖).

6.15 Let E be a Banach space and let T ∈ L(E).

1. Let λ ∈ R be such that |λ| > ‖T ‖. Prove that

‖I + λ(T − λI)−1‖ ≤ ‖T ‖/(|λ| − ‖T ‖).
2. Let λ ∈ ρ(T ). Check that

(T − λI)−1T = T (T − λI)−1,

and prove that
dist(λ, σ (T )) ≥ 1

/‖(T − λI)−1‖.
3. Assume that 0 ∈ ρ(T ). Prove that

σ(T −1) = 1
/
σ(T ).

In what follows assume that 1 ∈ ρ(T ); set

U = (T + I )(T − I )−1 = (T − I )−1(T + I ).

4. Check that 1 ∈ ρ(U) and give a simple expression for (U − I )−1 in terms of T .
5. Prove that T = (U + I )(U − I )−1.
6. Consider the function f (t) = (t + 1)

/
(t − 1), t ∈ R. Prove that

σ(U) = f (σ(T )).

6.16 Let E be a Banach space and let T ∈ L(E).
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1. Assume that T 2 = I . Prove that σ(T ) ⊂ {−1,+1} and determine (T − λI)−1

for λ 	= ±1.
2. More generally, assume that there is an integer n ≥ 2 such that T n = I . Prove

that σ(T ) ⊂ {−1,+1} and determine (T − λI)−1 for λ 	= ±1.
3. Assume that there is an integer n ≥ 2 such that T n = 0. Prove that σ(T ) = {0}

and determine (T − λI)−1 for λ 	= 0.
4. Assume that there is an integer n ≥ 2 such that ‖T n‖ < 1. Prove that I − T is

bijective and give an expression for (I − T )−1 in terms of (I − T n)−1 and the
iterates of T .

6.17 Let E = �p with 1 ≤ p ≤ ∞ and let (λn) be a bounded sequence in R.
Consider the multiplication operator M ∈ L(E) defined by

Mx = (λ1x1, λ2x2, . . . , λnxn, . . . ), where x = (x1, x2, . . . , xn, . . . ).

Determine EV (M) and σ(M).

6.18 Spectral properties of the shifts.
An element x ∈ E = �2 is denoted by x = (x1, x2, . . . , xn, . . . ).

Consider the operators

Srx = (0, x1, x2, . . . , xn−1, . . . ),

and
S�x = (x2, x3, x4, . . . , xn+1, . . . ),

respectively called the right shift and left shift.

1. Determine ‖Sr‖ and ‖S�‖. Does Sr or S� belong to K(E)?
2. Prove that EV (Sr) = ∅.
3. Prove that σ(Sr) = [−1,+1].
4. Prove that EV (S�) = (−1,+1). Determine the corresponding eigenspaces.
5. Prove that σ(S�) = [−1,+1].
6. Determine S�r and S�� .
7. Prove that for every λ ∈ (−1,+1), the spaces R(Sr − λI) and R(S� − λI) are

closed. Give an explicit representation of these spaces.

[Hint: Apply Theorems 2.19 and 2.20.]

8. Prove that the spaces R(Sr ± I ) and R(S� ± I ) are dense and that they are not
closed.

Consider the multiplication operator M defined by

Mx = (α1x1, α2x2, . . . , αnxn, . . . ),

where (αn) is a bounded sequence in R.
9. Determine EV (Sr ◦M).

10. Assume that αn → α as n 
→ ∞. Prove that
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σ(Sr ◦M) = [−|α|,+|α|].
[Hint: Apply Theorem 6.6.]

11. Assume that for every integer n, α2n = a and α2n+1 = bwith a 	= b. Determine
σ(Sr ◦M).
[Hint: Compute (Sr ◦M)2 and apply question 4 of Exercise 6.16.]

6.19 Let E be a Banach space and let T ∈ L(E).

1. Prove that σ(T �) = σ(T ).
2. Give examples showing that there is no general inclusion relation betweenEV (T )

and EV (T �).

[Hint: Consider the right shift and the left shift.]

6.20 Let E = Lp(0, 1) with 1 ≤ p < ∞. Given u ∈ E, set

T u(x) =
∫ x

0
u(t)dt.

1. Prove that T ∈ K(E).

2. Determine EV (T ) and σ(T ).

3. Give an explicit formula for (T − λI)−1 when λ ∈ ρ(T ).
4. Determine T �.

6.21 Let V and H be two Banach spaces with norms ‖ ‖ and | | respectively,
satisfying

V ⊂ H with compact injection.

Letp(u) be a seminorm onV such thatp(u)+|u| is a norm onV that is equivalent
to ‖ ‖.

Set
N = {u ∈ V ;p(u) = 0},

and
dist(u,N) = inf

v∈N ‖u− v‖ for u ∈ V.

1. Prove that N is a finite-dimensional space.

[Hint: Consider the unit ball in N equipped with the norm | |.]
2. Prove that there exists a constant K1 > 0 such that

p(u) ≤ K1 dist(u,N) ∀u ∈ V.

3. Prove that there exists a constant K2 > 0 such that
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K2 dist(u,N) ≤ p(u) ∀u ∈ V.
[Hint: Argue by contradiction. Assume that there is a sequence (un) in V such
that dist(un,N) = 1 for all n and p(un) → 0.]

6.22 Let E be a Banach space, and let T ∈ L(E). Given a polynomial Q(t) =
∑p
k=0 akt

k with ak ∈ R, let Q(T ) = ∑p
k=0 akT

k .

1. Prove that Q(EV (T )) ⊂ EV (Q(T )).

2. Prove that Q(σ(T )) ⊂ σ(Q(T )).

3. Construct an example in E = R
2 for which the above inclusions are strict.

In what follows we assume thatE is a Hilbert space (identified with its dual space
H�) and that T � = T .

4. Assume here that the polynomial Q has no real root, i.e., Q(t) 	= 0 ∀t ∈ R.
Prove that Q(T ) is bijective.

[Hint: Start with the case thatQ is a polynomial of degree 2 and more specifically,
Q(t) = t2 + 1.]

5. Deduce that for every polynomial Q, we have

(i) Q(EV (T )) = EV (Q(T )),
(ii) Q(σ(T )) = σ(Q(T )).

[Hint: WriteQ(t)−λ = (t − t1)(t − t2) · · · (t − tq)Q(t), where t1, t2, . . . , tq are
the real roots of Q(t)− λ and Q has no real root.]

6.23 Spectral radius.
Let E be a Banach space and let T ∈ L(E). Set

an = log ‖T n‖, n ≥ 1.

1. Check that
ai+j ≤ ai + aj ∀i, j ≥ 1.

2. Deduce that

lim
n→+∞(an/n) exists and coincides with inf

m≥1
(am/m).

[Hint: Fix an integer m ≥ 1. Given any integer n ≥ 1 write n = mq + r , where
q = [ n

m
] is the largest integer ≤ n/m and 0 ≤ r < m. Note that an ≤ n

m
am+ar .]

3. Conclude that r(T ) = limn→∞‖T n‖1/n exists and that r(T ) ≤ ‖T ‖. Construct
an example in E = R

2 such that r(T ) = 0 and ‖T ‖ = 1.

The number r(T ) is called the spectral radius of T .
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4. Prove that σ(T ) ⊂ [−r(T ),+r(T )]. Deduce that if σ(T ) 	= ∅, then

max{|λ|; λ ∈ σ(T )} ≤ r(T ).

[Hint: Note that if λ ∈ σ(T ), then λn ∈ σ(T n); see Exercise 6.22.]

5. Construct an example in E = R
3 such that σ(T ) = {0}, while r(T ) = 1.

In what follows we take E = Lp(0, 1) with 1 ≤ p ≤ ∞. Consider the operator
T ∈ L(E) defined by

T u(t) =
∫ t

0
u(s)ds.

6. Prove by induction that for n ≥ 2,

(
T nu

)
(t) = 1

(n− 1)!
∫ t

0
(t − τ)n−1u(τ)dτ.

7. Deduce that ‖T n‖ ≤ 1
n! .

[Hint: Use an inequality for the convolution product.]
8. Prove that the spectral radius of T is 0.

[Hint: Use Stirling’s formula.]
9. Show that σ(T ) = {0}. Compare with Exercise 6.20.

6.24 Assume that T ∈ L(H) is self-adjoint.

1. Prove that the following properties are equivalent:

(i) (T u, u) ≥ 0 ∀u ∈ H ,
(ii) σ(T ) ⊂ [0,∞).

[Hint: Apply Proposition 6.9.]

2. Prove that the following properties are equivalent:

(iii) ‖T ‖ ≤ 1 and (T u, u) ≥ 0 ∀u ∈ H ,
(iv) 0 ≤ (T u, u) ≤ |u|2 ∀u ∈ H ,
(v) σ(T ) ⊂ [0, 1],

(vi) (T u, u) ≥ |T u|2 ∀u ∈ H .

[Hint: To prove that (v) ⇒ (vi) apply Proposition 6.9 to (T + εI)−1 with ε > 0.]

3. Prove that the following properties are equivalent:

(vii) (T u, u) ≤ |T u|2 ∀u ∈ H ,
(viii) (0, 1) ⊂ ρ(T ).

[Hint: Introduce U = 2T − I .]
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6.25 LetE be a Banach space, and letK ∈ K(E). Prove that there existM ∈ L(E),
M̃ ∈ L(E), and finite-rank projections P , P̃ such that

(i) M ◦ (I +K) = I − P ,
(ii) (I +K) ◦ M̃ = I − P̃ .

[Hint: Let X be a complement of N(I +K) in E. Then (I +K)|X is bijective from
X onto R(I + K). Denote by M its inverse. Let Q be a projection from E onto
R(I +K) and set M̃ = M ◦Q. Show that (i) and (ii) hold.]

6.26 From Brouwer to Schauder fixed-point theorems.
In this exercise we assume that the following result is known (for a proof, see,

e.g., K. Deimling [1], A. Granas–J. Dugundji [1], or L. Nirenberg [2]).

Theorem (Brouwer). Let F be a finite-dimensional space, and let Q ⊂ F be a
nonempty compact convex set. Let f : Q → Q be a continuous map. Then f has a
fixed point, i.e., there exists p ∈ Q such that f (p) = p.

Our goal is to prove the following.

Theorem (Schauder). Let E be a Banach space, and let C be a nonempty closed
convex set in E. Let F : C → C be a continuous map such that F(C) ⊂ K , where
K is a compact subset of C. Then F has a fixed point in K .

1. Given ε > 0, consider a finite covering of K , i.e., K ⊂ ∪i∈IB(yi, ε/2), where
I is finite, and yi ∈ K ∀i ∈ I . Define the function q(x) = ∑

i∈I qi(x), where

qi(x) =
∑

i∈I
max{ε − ‖Fx − yi‖, 0}.

Check that q is continuous on C and that q(x) ≥ ε/2 ∀x ∈ C.

2. Set

Fε(x) =
∑
i∈I qi(x)yi
q(x)

, x ∈ C.
Prove that Fε : C → C is continuous and that

‖Fε(x)− F(x)‖ ≤ ε, ∀x ∈ C.

3. Show that Fε admits a fixed point xε ∈ C.

[Hint: LetQ = conv (∪i∈I {yi}). Check that Fε|Q admits a fixed point xε ∈ Q.]

4. Prove that (xεn) converges to a limit x ∈ C for some sequence εn → 0. Show
that F(x) = x.





Chapter 7
The Hille–Yosida Theorem

7.1 Definition and Elementary Properties of Maximal Monotone
Operators

Throughout this chapter H denotes a Hilbert space.

Definition. An unbounded linear operator A: D(A) ⊂ H → H is said to be mono-
tone1 if it satisfies

(Av, v) ≥ 0 ∀v ∈ D(A).
It is called maximal monotone if, in addition, R(I + A) = H , i.e.,

∀f ∈ H ∃u ∈ D(A) such that u+ Au = f .

Proposition 7.1. Let A be a maximal monotone operator. Then

(a) D(A) is dense in H ,
(b) A is a closed operator,
(c) For every λ > 0, (I + λA) is bijective from D(A) onto H , (I + λA)−1 is a

bounded operator, and ‖(I + λA)−1‖L(H) ≤ 1.

Proof.

(a) Let f ∈ H be such that (f, v) = 0 ∀v ∈ D(A). We claim that f = 0. Indeed,
there exists some v0 ∈ D(A) such that v0 + Av0 = f . We have

0 = (f, v0) = |v0|2 + (Av0, v0) ≥ |v0|2.
Thus v0 = 0 and hence f = 0.

(b) First, observe that given any f ∈ H , there exists a unique u ∈ D(A) such that
u+ Au = f , since if u is another solution, we have

u− u+ A(u− u) = 0.

1 Some authors say that A is accretive or that −A is dissipative.

181H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7_7, © Springer Science+Business Media, LLC 2011
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Taking the scalar product with (u − u) and using monotonicity, we see that
u − u = 0. Next, note that |u| ≤ |f |, since |u|2 + (Au, u) = (f, u) ≥ |u|2.
Therefore the map f 
→ u, denoted by (I +A)−1, is a bounded linear operator
from H into itself and ‖(I + A)−1‖L(H) ≤ 1. We now prove that A is a closed
operator. Let (un) be a sequence in D(A) such that un → u and Aun → f . We
have to check that u ∈ D(A) and that Au = f . But un + Aun → u + f and
thus

un = (I + A)−1(un + Aun) → (I + A)−1(u+ f ).

Hence u = (I + A)−1(u+ f ), i.e., u ∈ D(A) and u+ Au = u+ f .

(c) We will prove that if R(I + λ0A) = H for some λ0 > 0 then R(I + λA) = H

for every λ > λ0/2. Note first—as in part (b)—that for every f ∈ H there is a
unique u ∈ D(A) such that u+λ0Au = f . Moreover, the map f 
→ u, denoted
by (I +λ0A)

−1, is a bounded linear operator with ‖(I +λ0A)
−1‖L(H) ≤ 1. We

try to solve the equation

(1) u+ λAu = f with λ > 0.

Equation (1) may be written as

u+ λ0Au = λ0

λ
f +

(

1 − λ0

λ

)

u

or alternatively

(2) u = (I + λ0A)
−1

[
λ0

λ
f +

(

1 − λ0

λ

)

u

]

.

If |1 − λ0
λ

| < 1, i.e., λ > λ0/2, we may apply the contraction mapping principle
(Theorem 5.7) and deduce that (2) has a solution.
Conclusion (c) follows easily by induction: since I +A is surjective, I + λA is
surjective for every λ > 1/2, and thus for every λ > 1/4, etc.

Remark 1. If A is maximal monotone then λA is also maximal monotone for every
λ > 0. However, if A and B are maximal monotone operators, then A+ B, defined
on D(A) ∩D(B), need not be maximal monotone.

Definition. Let A be a maximal monotone operator. For every λ > 0, set

Jλ = (I + λA)−1 and Aλ = 1

λ
(I − Jλ);

Jλ is called the resolvent ofA, andAλ is theYosida approximation (or regularization)
of A. Keep in mind that ‖Jλ‖L(H) ≤ 1.

Proposition 7.2. Let A be a maximal monotone operator. Then

Aλv = A(Jλv) ∀v ∈ H and ∀λ > 0,(a1)
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Aλv = Jλ(Av) ∀v ∈ D(A) and ∀λ > 0,(a2)

|Aλv| ≤ |Av| ∀v ∈ D(A) and ∀λ > 0,(b)

lim
λ→0

Jλv = v ∀v ∈ H,(c)

lim
λ→0

Aλv = Av ∀v ∈ D(A),(d)

(Aλv, v) ≥ 0 ∀v ∈ H and ∀λ > 0,(e)

|Aλv| ≤ (1/λ)|v| ∀v ∈ H and ∀λ > 0.(f)

Proof.

(a1) can be written as v = (Jλv)+ λA(Jλv), which is just the definition of Jλv.
(a2) By (a1) we have

Aλv + A(v − Jλv) = Av,

i.e.,
Aλv + λA(Aλv) = Av,

which means that Aλv = (I + λA)−1Av.
(b) Follows easily from (a2).
(c) Assume first that v ∈ D(A). Then

|v − Jλv| = λ|Aλv| ≤ λ|Av| by (b)

and thus limλ→0Jλv = v.
Suppose now that v is a general element inH . Given any ε > 0 there exists some
v1 ∈ D(A) such that |v − v1| ≤ ε (since D(A) is dense in H by Proposition
7.1). We have

|Jλv − v| ≤ |Jλv − Jλv1| + |Jλv1 − v1| + |v1 − v|
≤ 2|v − v1| + |Jλv1 − v1| ≤ 2ε + |Jλv1 − v1|.

Thus
lim sup
λ→0

|Jλv − v| ≤ 2ε ∀ε > 0,

and so
lim
λ→0

|Jλv − v| = 0.

(d) This is a consequence of (a2) and (c).
(e) We have

(Aλv, v) = (Aλv, v − Jλv)+ (Aλv, Jλv) = λ|Aλv|2 + (A(Jλv), Jλv),

and thus

(3) (Aλv, v) ≥ λ|Aλv|2.
(f) This is a consequence of (3) and the Cauchy–Schwarz inequality.
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Remark 2. Proposition 7.2 implies that (Aλ)λ>0 is a family of bounded operators
that “approximate” the unbounded operator A as λ → 0. This approximation will
be used very often. Of course, in general, ‖Aλ‖L(H) “blows up” as λ → 0.

7.2 Solution of the Evolution Problem du
dt

+ Au = 0 on [0, +∞),
u(0) = u0. Existence and uniqueness

We start with a very classical result:

• Theorem 7.3 (Cauchy, Lipschitz, Picard). Let E be a Banach space and let F :
E → E be a Lipschitz map, i.e., there is a constant L such that

‖Fu− Fv‖ ≤ L‖u− v‖ ∀u, v ∈ E.
Then given any u0 ∈ E, there exists a unique solution u ∈ C1([0,+∞); E) of the
problem

(4)

⎧
⎨

⎩

du

dt
(t) = Fu(t) on [0,+∞),

u(0) = u0.

u0 is called the initial data.

Proof.
Existence. Solving (4) amounts to finding some u ∈ C([0,+∞); E) satisfying the
integral equation

(5) u(t) = u0 +
∫ t

0
F(u(s))ds.

Given k > 0, to be fixed later, set

X =
{

u ∈ C([0,+∞);E); sup
t≥0

e−kt‖u(t)‖ < ∞
}

.

It is easy to check that X is a Banach space for the norm

‖u‖X = sup
t≥0

e−kt‖u(t)‖.

For every u ∈ X, the function 
u defined by

(
u)(t) = u0 +
∫ t

0
F(u(s))ds

also belongs to X. Moreover, we have
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‖
u−
v‖X ≤ L

k
‖u− v‖X ∀u, v ∈ X.

Fixing any k > L, we find that 
 has a (unique) fixed point u in X, which is a
solution of (5).

Uniqueness. Let u and u be two solutions of (4) and set

ϕ(t) = ‖u(t)− u(t)‖.
From (5) we deduce that

ϕ(t) ≤ L

∫ t

0
ϕ(s)ds ∀t ≥ 0

and consequently ϕ ≡ 0.

The preceding theorem is extremely useful in the study of ordinary differential
equations. However, it is of little use in the study of partial differential equations. Our
next result is a very powerful tool in solving evolution partial differential equations;
see Chapter 10.

• Theorem 7.4 (Hille–Yosida). LetA be a maximal monotone operator. Then, given
any u0 ∈ D(A) there exists a unique function2

u ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A))
satisfying

(6)

⎧
⎨

⎩

du

dt
+ Au = 0 on [0,+∞),

u(0) = u0.

Moreover,

|u(t)| ≤ |u0| and

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣ = |Au(t)| ≤ |Au0| ∀t ≥ 0.

Remark 3. The main interest of Theorem 7.4 lies in the fact that we reduce the study
of an “evolution problem” to the study of the “stationary equation” u + Au = f

(assuming we already know that A is monotone, which is easy to check in practice).

Proof. It is divided into six steps.

Step 1: Uniqueness. Let u and u be two solutions of (6). We have
(
d

dt
(u− u), (u− u)

)

= − (A(u− u), u− u) ≤ 0.

2 The space D(A) is equipped with the graph norm |v| + |Av| or with the equivalent Hilbert norm
(|v|2 + |Av|2)1/2.
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But3
1

2

d

dt
|u(t)− u(t)|2 =

(
d

dt
(u(t)− u(t)), u(t)− u(t)

)

.

Thus, the function t 
→ |u(t) − u(t)| is nonincreasing on [0,+∞). Since |u(0) −
u(0)| = 0, it follows that

|u(t)− u(t)| = 0 ∀t ≥ 0.

The main idea in order to prove existence is to replace A by Aλ in (6), to apply
Theorem 7.3 on the approximate problem, and then to pass to the limit as λ → 0
using various estimates that are independent of λ. So, let uλ be the solution of the
problem

(7)

⎧
⎨

⎩

duλ

dt
+ Aλuλ = 0 on [0,+∞),

uλ(0) = u0 ∈ D(A).
Step 2: We have the estimates

|uλ(t)| ≤ |u0| ∀t ≥ 0, ∀λ > 0,(8)
∣
∣
∣
∣
duλ

dt
(t)

∣
∣
∣
∣ = |Aλuλ(t)| ≤ |Au0| ∀t ≥ 0, ∀λ > 0.(9)

They follow directly from the next lemma and the fact that |Aλu0| ≤ |Au0|.
Lemma 7.1. Let w ∈ C1([0,+∞);H) be a function satisfying

(10)
dw

dt
+ Aλw = 0 on [0,+∞).

Then the functions t 
→ |w(t)| and t 
→ ∣
∣ dw
dt
(t)

∣
∣ = |Aλw(t)| are nonincreasing on

[0,+∞).

Proof. We have (
dw

dt
, w

)

+ (Aλw,w) = 0.

By Proposition 7.2(e) we know that (Aλw,w) ≥ 0 and thus 1
2
d
dt

|w|2 ≤ 0, so that
|w(t)| is nonincreasing. On the other hand, since Aλ is a linear bounded operator,
we deduce (by induction) from (10) that w ∈ C∞([0,+∞); H) and also that

d

dt

(
dw

dt

)

+ Aλ

(
dw

dt

)

= 0.

Applying the preceding fact to dw
dt

, we see that
∣
∣ dw
dt
(t)

∣
∣ is nonincreasing. In fact, at

any order k, the function
∣
∣
∣ d

kw
dtk
(t)

∣
∣
∣ is nonincreasing.

3 Keep in mind that if ϕ ∈ C1([0,+∞);H), then |ϕ|2 ∈ C1([0,+∞); R) and d
dt

|ϕ|2 = 2( dϕ
dt
, ϕ).
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Step 3: We will prove here that for every t ≥ 0, uλ(t) converges, as λ → 0, to some
limit, denoted by u(t). Moreover, the convergence is uniform on every bounded
interval [0, T ].

For every λ, μ > 0 we have

duλ

dt
− duμ

dt
+ Aλuλ − Aμuμ = 0

and thus

(11)
1

2

d

dt
|uλ(t)− uμ(t)|2 + (Aλuλ(t)− Aμuμ(t), uλ(t)− uμ(t)) = 0.

Dropping t for simplicity, we write

(12)

(Aλuλ − Aμuμ,uλ − uμ)

= (Aλuλ − Aμuμ, uλ − Jλuλ + Jλuλ − Jμuμ + Jμuμ − uμ)

= (Aλuλ − Aμuμ, λAλuλ − μAμuμ)

+ (A(Jλuλ − Jμuμ), Jλuλ − Jμuμ)

≥ (Aλuλ − Aμuμ, λAλuλ − μAμuμ).

It follows from (9), (11), and (12) that

1

2

d

dt
|uλ − uμ|2 ≤ 2(λ+ μ)|Au0|2.

Integrating this inequality, we obtain

|uλ(t)− uμ(t)|2 ≤ 4(λ+ μ)t |Au0|2,
i.e.,

(13) |uλ(t)− uμ(t)| ≤ 2
√
(λ+ μ)t |Au0|.

It follows that for every fixed t ≥ 0, uλ(t) is a Cauchy sequence as λ → 0 and thus
it converges to a limit, denoted by u(t). Passing to the limit in (13) as μ → 0, we
have

|uλ(t)− u(t)| ≤ 2
√
λt |Au0|.

Therefore, the convergence is uniform in t on every bounded interval [0, T ] and so
u ∈ C([0,+∞); H).
Step 4: Assuming, in addition, that u0 ∈ D(A2), i.e., u0 ∈ D(A) and Au0 ∈ D(A),
we prove here that duλ

dt
(t) converges, asλ → 0, to some limit and that the convergence

is uniform on every bounded interval [0, T ].
Set vλ = duλ

dt
, so that dvλ

dt
+Aλvλ = 0. Following the same argument as in Step 3,

we see that
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(14)
1

2

d

dt
|vλ − vμ|2 ≤ (|Aλvλ| + |Aμvμ|)(λ|Aλvλ| + μ|Aμvμ|).

By Lemma 7.1 we have

(15) |Aλvλ(t)| ≤ |Aλvλ(0)| = |AλAλu0|
and similarly

(16) |Aμvμ(t)| ≤ |Aμvμ(0)| = |AμAμu0|.
Finally, since Au0 ∈ D(A), we obtain

AλAλu0 = JλAJλAu0 = JλJλAAu0 = J 2
λA

2u0

and thus

(17) |AλAλu0| ≤ |A2u0|, |AμAμu0| ≤ |A2u0|.
Combining (14), (15), (16), and (17), we are led to

1

2

d

dt
|vλ − vμ|2 ≤ 2(λ+ μ)|A2u0|2.

We conclude, as in Step 3, that vλ(t) = duλ
dt
(t) converges, as λ → 0, to some limit

and that the convergence is uniform on every bounded interval [0, T ].
Step 5: Assuming that u0 ∈ D(A2) we prove here that u is a solution of (6).

By Steps 3 and 4 we know that for all T < ∞,
⎧
⎨

⎩

uλ(t) → u(t), as λ → 0, uniformly on [0, T ],
duλ

dt
(t) converges, as λ → 0, uniformly on [0, T ].

It follows easily that u ∈ C1([0,+∞); H) and that duλ
dt
(t) → du

dt
(t), as λ → 0,

uniformly on [0, T ]. Rewrite (7) as

(18)
duλ

dt
(t)+ A(Jλuλ(t)) = 0.

Note that Jλuλ(t) → u(t) as λ → 0, since

|Jλuλ(t)− u(t)| ≤ |Jλuλ(t)− Jλu(t)| + |Jλu(t)− u(t)|
≤ |uλ(t)− u(t)| + |Jλu(t)− u(t)| → 0.

Applying the fact that A has a closed graph, we deduce from (18) that u(t) ∈ D(A)
∀t ≥ 0, and that

du

dt
(t)+ Au(t) = 0.
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Finally, since u ∈ C1([0,+∞); H), the function t 
→ Au(t) is continuous from
[0,+∞) into H and thus u ∈ C([0,+∞); D(A)). Hence we have obtained a
solution of (6) satisfying, in addition,

|u(t)| ≤ |u0| ∀t ≥ 0 and

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣ = |Au(t)| ≤ |Au0| ∀t ≥ 0.

Step 6: We conclude here the proof of the theorem.
We shall use the following lemma.

Lemma 7.2. Let u0 ∈ D(A). Then ∀ε > 0 ∃ u0 ∈ D(A2) such that |u0 − u0| < ε

and |Au0 −Au0| < ε. In other words,D(A2) is dense inD(A) (for the graph norm).

Proof of Lemma 7.2. Set u0 = Jλu0 for some appropriate λ > 0 to be fixed later. We
have

u0 ∈ D(A) and u0 + λAu0 = u0.

Thus Au0 ∈ D(A), i.e., u0 ∈ D(A2). On the other hand, by Proposition 7.2, we
know that

lim
λ→0

|Jλu0 − u0| = 0, lim
λ→0

|JλAu0 − Au0| = 0, and JλAu0 = AJλu0.

The desired conclusion follows by choosing λ > 0 small enough.

We now turn to the proof of Theorem 7.4. Given u0 ∈ D(A) we construct (using
Lemma 7.2) a sequence (u0n) in D(A2) such that u0n → u0 and Au0n → Au0. By
Step 5 we know that there is a solution un of the problem

(19)

⎧
⎨

⎩

dun

dt
+ Aun = 0 on [0,+∞),

un(0) = u0n.

We have, for all t ≥ 0,

|un(t)− um(t)| ≤ |u0n − u0m| −→
m,n→∞ 0,

∣
∣
∣
∣
dun

dt
(t)− dum

dt
(t)

∣
∣
∣
∣ ≤ |Au0n − Au0m| −→

m,n→∞ 0.

Therefore

un(t) → u(t) uniformly on [0,+∞),

dun

dt
(t) → du

dt
(t) uniformly on [0,+∞),

with u ∈ C1([0,+∞); H). Passing to the limit in (19)—using the fact that A is a
closed operator—we see that u(t) ∈ D(A) and u satisfies (6). From (6) we deduce
that u ∈ C([0,+∞); D(A)).



190 7 The Hille–Yosida Theorem

Remark 4. Let uλ be the solution of (7):
(a) Assume u0 ∈ D(A). We know (by Step 3) that as λ → 0, uλ(t) converges, for

every t ≥ 0, to some limit u(t). One can prove directly that u ∈ C1([0,+∞); H)∩
C([0,+∞); D(A)) and that it satisfies (6).
(b) Assume only that u0 ∈ H . One can still prove that as λ → 0, uλ(t) converges

for every t ≥ 0, to some limit, denoted by u(t). But it may happen that this limit u(t)
does not belong toD(A) ∀t > 0 and thatu(t) is nowhere differentiable on [0,+∞).
Hence u(t) is not a “classical” solution of (6). In fact, for such a u0, problem (6) has
no classical solution. Nevertheless, we may view u(t) as a “generalized” solution of
(6). We shall see in Section 7.4 that this does not happen whenA is self-adjoint: in this
case u(t) is a “classical” solution of (6) for every u0 ∈ H , even when u0 /∈ D(A).

� Remark 5 (Contraction semigroups). For each t ≥ 0 consider the linear map u0 ∈
D(A) 
→ u(t) ∈ D(A), where u(t) is the solution of (6) given by Theorem 7.4. Since
|u(t)| ≤ |u0| and since D(A) is dense in H , we may extend this map by continuity
as a bounded operator from H into itself, denoted by SA(t).4 It is easy to check that
SA(t) satisfies the following properties:

for each t ≥ 0, SA(t) ∈ L(H) and ‖SA(t)‖L(H) ≤ 1,(a)
{
SA(t1 + t2) = SA(t1) ◦ SA(t2) ∀t1, t2 ≥ 0,

SA(0) = I,
(b)

lim
t→0
t>0

|SA(t)u0 − u0| = 0 ∀u0 ∈ H.(c)

Such a family {S(t)}t≥0 of operators (from H into itself) depending on a parameter
t ≥ 0 and satisfying (a), (b), (c) is called a continuous semigroup of contractions.

A remarkable result due to Hille andYosida asserts that conversely, given a contin-
uous semigroup of contractions S(t) on H there exists a unique maximal monotone
operator A such that S(t) = SA(t) ∀t ≥ 0. This establishes a bijective correspon-
dence between maximal monotone operators and continuous semigroups of contrac-
tions. (For a proof see the references quoted in the comments on Chapter 7.)

• Remark 6. Let A be a maximal monotone operator and let λ ∈ R. The problem
⎧
⎨

⎩

du

dt
+ Au+ λu = 0 on [0,+∞),

u(0) = u0,

reduces to problem (6) using the following simple device. Set

v(t) = eλtu(t).

Then v satisfies

4 Alternatively one may use Remark 4(b) to define SA(t) onH directly as being the map u0 ∈ H 
→
u(t) ∈ H .
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⎧
⎨

⎩

dv

dt
+ Av = 0 on [0,+∞),

v(0) = u0.

7.3 Regularity

We shall prove here that the solution u of (6) obtained in Theorem 7.4 is more regular
than just C1([0,+∞); H) ∩ C([0,+∞); D(A)) provided one makes additional
assumptions on the initial data u0. For this purpose we define by induction the space

D(Ak) = {v ∈ D(Ak−1); Av ∈ D(Ak−1)},
where k is any integer, k ≥ 2. It is easily seen that D(Ak) is a Hilbert space for the
scalar product

(u, v)D(Ak) =
k∑

j=0

(Aju, Ajv);

the corresponding norm is

|u|D(Ak) =
⎛

⎝
k∑

j=0

|Aju|2
⎞

⎠

1/2

.

Theorem 7.5. Assume u0 ∈ D(Ak) for some integer k ≥ 2. Then the solution u of
problem (6) obtained in Theorem 7.4 satisfies

u ∈ Ck−j ([0,+∞); D(Aj )) ∀j = 0, 1, . . . , k.

Proof. Assume first that k = 2. Consider the Hilbert space H1 = D(A) equipped
with the scalar product (u, v)D(A). It is easy to check that the operatorA1 : D(A1) ⊂
H1 → H1 defined by

{
D(A1) = D(A2),

A1u = Au for u ∈ D(A1),

is maximal monotone in H1. Applying Theorem 7.4 to the operator A1 in the space
H1, we see that there exists a function

u ∈ C1([0,+∞); H1) ∩ C([0,+∞); D(A1))

such that ⎧
⎨

⎩

du

dt
+ A1u = 0 on [0,+∞),

u(0) = u0.

In particular, u satisfies (6); by uniqueness, this u is the solution of (6). It remains
only to check that u ∈ C2([0,+∞); H). Since
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A ∈ L(H1, H) and u ∈ C([0,+∞);H1),

it follows that Au ∈ C1([0,+∞); H) and

(20)
d

dt
(Au) = A

(
du

dt

)

.

Applying (6), we see that du
dt

∈ C1([0,+∞); H), i.e., u ∈ C2([0,+∞); H)
and that

(21)
d

dt

(
du

dt

)

+ A

(
du

dt

)

= 0 on [0,+∞).

We now turn to the general case k ≥ 3. We argue by induction on k: assume that
the result holds up to order (k−1) and let u0 ∈ D(Ak). By the preceding analysis we
know that the solution u of (6) belongs to C2([0,+∞); H) ∩C1([0,+∞); D(A))
and that u satisfies (21). Letting

v = du

dt
,

we have
v ∈ C1([0,+∞); H) ∩ C([0,+∞); D(A)),

⎧
⎨

⎩

dv

dt
+ Av = 0 on [0,+∞),

v(0) = −Au0.

In other words, v is the solution of (6) corresponding to the initial data v0 = −Au0.
Since v0 ∈ D(Ak−1), we know, by the induction assumption, that

v ∈ Ck−1−j ([0,+∞); D(Aj )) ∀j = 0, 1, . . . , k − 1,(22)

i.e.,

u ∈ Ck−j ([0,+∞); D(Aj )) ∀j = 0, 1, . . . , k − 1.

It remains only to check that

(23) u ∈ C([0,+∞); D(Ak)).
Applying (22) with j = k − 1, we see that

(24)
du

dt
∈ C([0,+∞); D(Ak−1)).

It follows from (24) and equation (6) that

Au ∈ C([0,+∞); D(Ak−1)),

i.e., (23).
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7.4 The Self-Adjoint Case

Let A : D(A) ⊂ H → H be an unbounded linear operator with D(A) = H .
Identifying H� with H , we may view A� as an unbounded linear operator in H .

Definition. One says that

• A is symmetric if (Au, v) = (u, Av) ∀u, v ∈ D(A),
• A is self-adjoint if D(A�) = D(A) and A� = A.

Remark 7. For bounded operators the notions of symmetric and self-adjoint oper-
ators coincide. However, if A is unbounded there is a subtle difference between
symmetric and self-adjoint operators. Clearly, any self-adjoint operator is symmet-
ric. The converse is not true: an operator A is symmetric if and only if A ⊂ A�, i.e.,
D(A) ⊂ D(A�) and A� = A on D(A). It may happen that A is symmetric and that
D(A) 	= D(A�). Our next result shows that if A is maximal monotone, then

(A is symmetric) ⇔ (A is self-adjoint).

Proposition 7.6. Let A be a maximal monotone symmetric operator. Then A is self-
adjoint.

Proof. Let J1 = (I + A)−1. We will first prove that J1 is self-adjoint. Since J1 ∈
L(H) it suffices to check that

(25) (J1u, v) = (u, J1v) ∀u, v ∈ H.
Set u1 = J1u and v1 = J1v, so that

u1 + Au1 = u,

v1 + Av1 = v.

Since by assumption, (u1, Av1) = (Au1, v1), it follows that (u1, v) = (u, v1),
i.e., (25).

Let u ∈ D(A�) and set f = u+ A�u. We have

(f, v) = (u, v + Av) ∀v ∈ D(A),
i.e.,

(f, J1w) = (u,w) ∀w ∈ H.
Therefore u = J1f and thus u ∈ D(A). This proves thatD(A�) = D(A) and hence
A is self-adjoint.

Remark 8. One has to be careful that if A is a monotone operator (even a symmetric
monotone operator) thenA� need not be monotone. However, one can prove that the
following properties are equivalent:
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A is maximal monotone ⇐⇒ A� is maximal monotone

⇐⇒ A is closed, D(A) is dense, A and A� are monotone.

A more general version of this result appears in Problem 16.

• Theorem 7.7. Let A be a self-adjoint maximal monotone operator. Then for every
u0 ∈ H there exists a unique function5

u ∈ C([0,+∞); H) ∩ C1((0,+∞); H) ∩ C((0,+∞); D(A))
such that ⎧

⎨

⎩

du

dt
+ Au = 0 on (0,+∞),

u(0) = u0.

Moreover, we have

|u(t)| ≤ |u0| and

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣ = |Au(t)| ≤ 1

t
|u0| ∀t > 0,

u ∈ Ck((0,+∞); D(A�)) ∀k, � integers.(26)

Proof.
Uniqueness. Let u and u be two solutions. By the monotonicity of A we see

that ϕ(t) = |u(t) − u(t)|2 is nonincreasing on (0,+∞). On the other hand, ϕ is
continuous on [0,+∞) and ϕ(0) = 0. Thus ϕ ≡ 0.

Existence. The proof is divided into two steps:

Step 1. Assume first that u0 ∈ D(A2) and let u be the solution of (6) given by
Theorem 7.4. We claim that

(27)

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣ ≤ 1

t
|u0| ∀t > 0.

As in the proof of Proposition 7.6 we have

J �λ = Jλ and A�λ = Aλ ∀λ > 0.

We go back to the approximate problem introduced in the proof of Theorem 7.4:

(28)
duλ

dt
+ Aλuλ = 0 on [0,+∞), uλ(0) = u0.

Taking the scalar product of (28) with uλ and integrating on [0, T ], we obtain

5 Let us emphasize the difference between Theorems 7.4 and 7.7. Here u0 ∈ H (instead of u0 ∈
D(A)); the conclusion is that there is a solution of (6), which is smooth away from t = 0. However,
| du
dt
(t)| may possibly “blow up” as t → 0.
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(29)
1

2
|uλ(T )|2 +

∫ T

0
(Aλuλ, uλ)dt = 1

2
|u0|2.

Taking the scalar product of (28) with t duλ
dt

and integrating over [0, T ], we obtain

(30)
∫ T

0

∣
∣
∣
∣
duλ

dt
(t)

∣
∣
∣
∣

2

t dt +
∫ T

0

(

Aλuλ(t),
duλ

dt
(t)

)

t dt = 0.

But

d

dt
(Aλuλ, uλ) =

(

Aλ
duλ

dt
, uλ

)

+
(

Aλuλ,
duλ

dt

)

= 2

(

Aλuλ,
duλ

dt

)

,

since A�λ = Aλ. Integrating the second integral in (30) by parts, we are led to

(31)

∫ T

0

(

Aλuλ(t),
duλ

dt
(t)

)

t dt = 1

2

∫ T

0

d

dt
[(Aλuλ, uλ)]t dt

= 1

2
(Aλuλ(T ), uλ(T )) T − 1

2

∫ T

0
(Aλuλ, uλ) dt.

On the other hand, since the function t 
→ | duλ
dt
(t)| is nonincreasing (by Lemma 7.1),

we have

(32)
∫ T

0

∣
∣
∣
∣
duλ

dt
(t)

∣
∣
∣
∣

2

t dt ≥
∣
∣
∣
∣
duλ

dt
(T )

∣
∣
∣
∣

2
T 2

2
.

Combining (29), (30), (31), and (32), we obtain

1

2
|uλ(T )|2 + T (Aλuλ(T ), uλ(T ))+ T 2

∣
∣
∣
∣
duλ

dt
(T )

∣
∣
∣
∣

2

≤ 1

2
|u0|2;

it follows, in particular, that

(33)

∣
∣
∣
∣
duλ

dt
(T )

∣
∣
∣
∣ ≤ 1

T
|u0| ∀T > 0.

Finally, we pass to the limit in (33) as λ → 0. This completes the proof of (27), since
duλ
dt

→ du
dt

(see Step 5 in the proof of Theorem 7.4).

Step 2. Assume now that u0 ∈ H . Let (u0n) be a sequence in D(A2) such that
u0n → u0 (recall that D(A2) is dense in D(A) and that D(A) is dense in H ; thus
D(A2) is dense in H). Let un be the solution of

⎧
⎨

⎩

dun

dt
+ Aun = 0 on [0,+∞),

un(0) = u0n.

We know (by Theorem 7.4) that
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|un(t)− um(t)| ≤ |u0n − u0m| ∀m, n, ∀t ≥ 0,

and (by Step 1) that
∣
∣
∣
∣
dun

dt
(t)− dum

dt
(t)

∣
∣
∣
∣ ≤ 1

t
|u0n − u0m| ∀m, n, ∀t > 0.

It follows that un converges uniformly on [0,+∞) to some limit u(t) and that dun
dt
(t)

converges to du
dt
(t) uniformly on every interval [δ,+∞), δ > 0. The limiting function

u satisfies

u ∈ C([0,+∞); H) ∩ C1((0,+∞); H),

u(t) ∈ D(A) ∀t > 0 and
du

dt
(t)+ Au(t) = 0 ∀t > 0

(this uses the fact that A is closed).
We now turn to the proof of (26). We will show by induction on k ≥ 2 that

(34) u ∈ Ck−j ((0,+∞); D(Aj )) ∀j = 0, 1, . . . , k.

Assume that (34) holds up to order k − 1. In particular, we have

(35) u ∈ C((0,+∞); D(Ak−1)).

In order to prove (34) it suffices (in view of Theorem 7.5) to check that

(36) u ∈ C((0,+∞),D(Ak)).

Consider the Hilbert space H̃ = D(Ak−1) and the operator Ã : D(Ã) ⊂ H̃ → H̃

defined by {
D(Ã) = D(Ak),

Ã = A.

It is easily seen that Ã is maximal monotone and symmetric in H̃ ; thus it is self-
adjoint. Applying the first assertion of Theorem 7.7 in the space H̃ to the operator
Ã, we obtain a unique solution v of the problem

(37)

⎧
⎨

⎩

dv

dt
+ Av = 0 on (0,+∞),

v(0) = v0,

given any v0 ∈ H̃ . Moreover,

v ∈ C([0,+∞); H̃ ) ∩ C1((0,+∞); H̃ ) ∩ C((0,+∞); D(Ã)).
Choosing v0 = u(ε)(ε > 0)—we already know by (35) that v0 ∈ H̃—we conclude
that u ∈ C((ε,+∞); D(Ak)), and this completes the proof of (36).
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Comments on Chapter 7

1. The Hille–Yosida theorem in Banach spaces.
The Hille–Yosida theorem extends to Banach spaces. The precise statement is the
following. Let E be a Banach space and let A : D(A) ⊂ E → E be an unbounded
linear operator. One says that A is m-accretive if D(A) = E and for every λ > 0,
I + λA is bijective from D(A) onto E with ‖(I + λA)−1‖L(E) ≤ 1.

Theorem 7.8 (Hille–Yosida). Let A be m-accretive. Then given any u0 ∈ D(A)

there exists a unique function

u ∈ C1([0,+∞); E) ∩ C([0,+∞); D(A))
such that

(38)

⎧
⎨

⎩

du

dt
+ Au = 0 on [0,+∞),

u(0) = u0.

Moreover,

‖u(t)‖ ≤ ‖u0‖ and

∥
∥
∥
∥
du

dt
(t)

∥
∥
∥
∥ = ‖Au(t)‖ ≤ ‖Au0‖ ∀t ≥ 0.

The map u0 
→ u(t) extended by continuity to all of E is denoted by SA(t). It is
a continuous semigroup of contractions on E. Conversely, given any continuous
semigroup of contractions S(t), there exists a unique m-accretive operator A such
that S(t) = SA(t) ∀t ≥ 0.

For the proof, see, e.g., P. Lax [1], A. Pazy [1], J. Goldstein [1], E. Davies [1],
[2], K. Yosida [1], M. Reed–B. Simon [1], Volume 2, H. Tanabe [1], N. Dunford–
J. T. Schwartz [1] Volume 1, M. Schechter [1], A. Friedman [2], R. Dautray–J.-
L. Lions [1], Chapter XVII, A. Balakrishnan [1], T. Kato [1], W. Rudin [1]. These
references present extensive developments on the theory of semigroups.

2. The exponential formula.
There are numerous iteration techniques for solving (38). Let us mention a basic
method.

Theorem 7.9. Assume that A ism-accretive. Then for every u0 ∈ D(A) the solution
u of (38) is given by the “exponential formula”

(39) u(t) = lim
n→+∞

[(

I + t

n
A

)−1
]n

u0.

For a proof see, e.g., K.Yosida [1] andA. Pazy [1]. Formula (39) corresponds, in the
language of numerical analysis, to the convergence of an implicit time discretization
scheme for (38) (see, e.g., K. W. Morton–D. F. Mayers [1]). More precisely, one
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divides the interval [0, t] into n intervals of equal length �t = t/n and one solves
inductively the equations

uj+1 − uj

�t
+ Auj+1 = 0, j = 0, 1, . . . , n− 1,

starting with u0. In other words, un is given by

un = (I +�tA)−nu0 =
(

I + t

n
A

)−n
u0.

As n → ∞ (i.e., �t → 0) it is “intuitive” that un converges to u(t).

3. Theorem 7.7 is a first step toward the theory of analytic semigroups. On this
subject see, e.g., K. Yosida [1], T. Kato [1], M. Reed–B. Simon [1], Volume 2,
A. Friedman [2], A. Pazy [1], and H. Tanabe [1].

4. Inhomogeneous equations. Nonlinear equations.
Consider, in a Banach space E, the problem

(40)

⎧
⎨

⎩

du

dt
(t)+ Au(t) = f (t) on [0, T ],

u(0) = u0.

The following holds.

Theorem 7.10. Assume that A is m-accretive. Then for every u0 ∈ D(A) and every
f ∈ C1([0, T ]; E) there exists a unique solution u of (40) with

u ∈ C1([0, T ]; E) ∩ C([0, T ]; D(A)).
Moreover, u is given by the formula

(41) u(t) = SA(t)u0 +
∫ t

0
SA(t − s)f (s)ds,

where SA(t) is the semigroup introduced in Comment 1.

Note that if one assumes just f ∈ L1((0, T ); E), formula (41) still makes sense
and provides a generalized solution of (40). On these questions see, e.g., T. Kato [1],
A. Pazy [1], R. H. Martin [1], H. Tanabe [1].

In physical applications one encounters many “semilinear” equations of the form

du

dt
+ Au = F(u),

where F is a nonlinear map from E into E. On these questions see, e.g., R. H. Mar-
tin [1], Th. Cazenave–A. Haraux [1], and the comments on Chapter 10.
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Let us also mention that some results of Chapter 7 have nonlinear extensions. It
is useful to consider nonlinear m-accretive operators A : D(A) ⊂ E → E. On this
subject, see, e.g., H. Brezis [1] and V. Barbu [1].





Chapter 8
Sobolev Spaces and the Variational Formulation
of Boundary Value Problems in One Dimension

8.1 Motivation

Consider the following problem. Given f ∈ C([a, b]), find a function u satisfying

(1)

{
−u′′ + u = f on [a, b],
u(a) = u(b) = 0.

A classical—or strong—solution of (1) is a C2 function on [a, b] satisfying (1) in
the usual sense. It is well known that (1) can be solved explicitly by a very simple
calculation, but we ignore this feature so as to illustrate the method on this elementary
example.

Multiply (1) by ϕ ∈ C1([a, b]) and integrate by parts; we obtain

(2)
∫ b

a

u′ϕ′ +
∫ b

a

uϕ =
∫ b

a

f ϕ ∀ϕ ∈ C1([a, b]), ϕ(a) = ϕ(b) = 0.

Note that (2) makes sense as soon as u ∈ C1([a, b]) (whereas (1) requires two
derivatives on u); in fact, it suffices to know that u, u′ ∈ L1(a, b), where u′ has a
meaning yet to be made precise. Let us say (provisionally) that a C1 function u that
satisfies (2) is a weak solution of (1).

The following program outlines the main steps of the variational approach in the
theory of partial differential equations:

Step A. The notion of weak solution is made precise. This involves Sobolev spaces,
which are our basic tools.

Step B. Existence and uniqueness of a weak solution is established by a variational
method via the Lax–Milgram theorem.

Step C. The weak solution is proved to be of classC2 (for example): this is a regularity
result.

201H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
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Step D. A classical solution is recovered by showing that any weak solution that is
C2 is a classical solution.

To carry out Step D is very simple. In fact, suppose that u ∈ C2([a, b]), u(a) =
u(b) = 0, and that u satisfies (2). Integrating (2) by parts we obtain

∫ b

a

(−u′′ + u− f )ϕ = 0 ∀ϕ ∈ C1([a, b]), ϕ(a) = ϕ(b) = 0

and therefore ∫ b

a

(−u′′ + u− f )ϕ = 0 ∀ϕ ∈ C1
c ((a, b)).

It follows (see Corollary 4.15) that −u′′ + u = f a.e. on (a, b) and thus everywhere
on [a, b], since u ∈ C2([a, b]).

8.2 The Sobolev Space W 1,p(I )

Let I = (a, b) be an open interval, possibly unbounded, and let p ∈ R with 1 ≤
p ≤ ∞.

Definition. The Sobolev space W 1,p(I )1 is defined to be

W 1,p(I ) =
{

u ∈ Lp(I); ∃g ∈ Lp(I) such that
∫

I

uϕ′ = −
∫

I

gϕ ∀ϕ ∈ C1
c (I )

}

.

We set
H 1(I ) = W 1,2(I ).

For u ∈ W 1,p(I ) we denote 2 u′ = g.

Remark 1. In the definition of W 1,p we call ϕ a test function. We could equally
well have used C∞

c (I ) as the class of test functions because if ϕ ∈ C1
c (I ), then

ρn � ϕ ∈ C∞
c (I ) for n large enough and ρn � ϕ → ϕ in C1 (see Section 4.4; of

course, ϕ is extended to be 0 outside I ).

Remark 2. It is clear that if u ∈ C1(I )∩Lp(I) and if u′ ∈ Lp(I) (here u′ is the usual
derivative of u) then u ∈ W 1,p(I ). Moreover, the usual derivative of u coincides with
its derivative in the W 1,p sense—so that notation is consistent! In particular, if I is
bounded, C1(Ī ) ⊂ W 1,p(I ) for all 1 ≤ p ≤ ∞.

Examples. Let I = (−1, +1). As an exercise show the following:

(i) The function u(x) = |x| belongs to W 1,p(I ) for every 1 ≤ p ≤ ∞ and u′ = g,
where

1 If there is no confusion we shall write W 1,p instead of W 1,p(I ) and H 1 instead of H 1(I ).
2 Note that this makes sense: g is well defined a.e. by Corollary 4.24.
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g(x) =
{

+1 if 0 < x < 1,

−1 if − 1 < x < 0.

More generally, a continuous function on Ī that is piecewise C1 on Ī belongs to
W 1,p(I ) for all 1 ≤ p ≤ ∞.

(ii) The function g above does not belong to W 1,p(I ) for any 1 ≤ p ≤ ∞.

� Remark 3. To define W 1,p one can also use the language of distributions (see
L. Schwartz [1] or A. Knapp [2]). All functions u ∈ Lp(I) admit a derivative in the
sense of distributions; this derivative is an element of the huge space of distributions
D′(I ). We say that u ∈ W 1,p if this distributional derivative happens to lie in Lp,
which is a subspace of D′(I ). When I = R and p = 2, Sobolev spaces can also be
defined using the Fourier transform; see, e.g., J. L. Lions–E. Magenes [1], P. Mal-
liavin [1], H. Triebel [1], L. Grafakos [1]. We shall not take this viewpoint here.

Notation. The space W 1,p is equipped with the norm

‖u‖W 1,p = ‖u‖Lp + ‖u′‖Lp

or sometimes, if 1 < p < ∞, with the equivalent norm (‖u‖pLp + ‖u′‖pLp)1/p. The
space H 1 is equipped with the scalar product

(u, v)H 1 = (u, v)L2 + (u′, v′)L2 =
∫ b

a

(uv + u′v′)

and with the associated norm

‖u‖H 1 = (‖u‖2
L2 + ‖u′‖2

L2)
1/2.

Proposition 8.1. The space W 1,p is a Banach space for 1 ≤ p ≤ ∞. It is reflexive3

for 1 < p < ∞ and separable for 1 ≤ p < ∞. The spaceH 1 is a separable Hilbert
space.

Proof.

(a) Let (un) be a Cauchy sequence inW 1,p; then (un) and (u′
n) are Cauchy sequences

in Lp. It follows that un converges to some limit u in Lp and u′
n converges to

some limit g in Lp. We have
∫

I

unϕ
′ = −

∫

I

u′
nϕ ∀ϕ ∈ C1

c (I ),

and in the limit ∫

I

uϕ′ = −
∫

gϕ ∀ϕ ∈ C1
c (I ).

3 This property is a considerable advantage ofW 1,p . In the problems of the calculus of variations,
W 1,p is preferred over C1, which is not reflexive. Existence of minimizers is easily established in
reflexive spaces (see, e.g., Corollary 3.23).



204 8 Sobolev Spaces and the Variational Formulation of Boundary Value Problems in 1D

Thus u ∈ W 1,p, u′ = g, and ‖un − u‖W 1,p → 0.
(b) W 1,p is reflexive for 1 < p < ∞. Clearly, the product spaceE = Lp(I)×Lp(I)

is reflexive. The operator T : W 1,p → E defined by T u = [u, u′] is an isometry
fromW 1,p intoE. SinceW 1,p is a Banach space, T (W 1,p) is a closed subspace
of E. It follows that T (W 1,p) is reflexive (see Proposition 3.20). Consequently
W 1,p is also reflexive.

(c) W 1,p is separable for 1 ≤ p < ∞. Clearly, the product space E = Lp(I) ×
Lp(I) is separable. Thus T (W 1,p) is also separable (by Proposition 3.25). Con-
sequently W 1,p is separable.

Remark 4. It is convenient to keep in mind the following fact, which we have used
in the proof of Proposition 8.1: let (un) be a sequence in W 1,p such that un → u in
Lp and (u′

n) converges to some limit in Lp; then u ∈ W 1,p and ‖un − u‖W 1,p → 0.
In fact, when 1 < p ≤ ∞ it suffices to know that un → u in Lp and ‖u′

n‖Lp stays
bounded to conclude that u ∈ W 1,p (see Exercise 8.2).

The functions in W 1,p are roughly speaking the primitives of the Lp functions.
More precisely, we have the following:

Theorem 8.2. Let u ∈ W 1,p(I ) with 1 ≤ p ≤ ∞, and I bounded or unbounded;
then there exists a function ũ ∈ C(Ī ) such that

u = ũ a.e. on I

and

ũ(x)− ũ(y) =
∫ x

y

u′(t)dt ∀x, y ∈ Ī .

Remark 5. Let us emphasize the content of Theorem 8.2. First, note that if one func-
tion u belongs to W 1,p then all functions v such that v = u a.e. on I also belong to
W 1,p (this follows directly from the definition of W 1,p). Theorem 8.2 asserts that
every function u ∈ W 1,p admits one (and only one) continuous representative on Ī ,
i.e., there exists a continuous function on Ī that belongs to the equivalence class of u
(v ∼ u if v = u a.e.). When it is useful4 we replaceu by its continuous representative.
In order to simplify the notation we also write u for its continuous representative.
We finally point out that the property “u has a continuous representative” is not the
same as “u is continuous a.e.”

Remark 6. It follows from Theorem 8.2 that if u ∈ W 1,p and if u′ ∈ C(Ī ) (i.e., u′
admits a continuous representative on Ī ), thenu ∈ C1(Ī ); more precisely, ũ ∈ C1(Ī ),
but as mentioned above, we do not distinguish u and ũ.

In the proof of Theorem 8.2 we shall use the following lemmas:

Lemma 8.1. Let f ∈ L1
loc(I ) be such that

4 For example, in order to give a meaning to u(x) for every x ∈ Ī .
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(3)
∫

I

f ϕ′ = 0 ∀ϕ ∈ C1
c (I ).

Then there exists a constant C such that f = C a.e. on I .

Proof. Fix a function ψ ∈ Cc(I) such that
∫

I
ψ = 1. For any function w ∈ Cc(I)

there exists ϕ ∈ C1
c (I ) such that

ϕ′ = w −
(∫

I

w

)

ψ.

Indeed, the function h = w− (
∫

I
w)ψ is continuous, has compact support in I , and

also
∫

I
h = 0. Therefore h has a (unique) primitive with compact support in I . We

deduce from (3) that
∫

I

f

[

w −
(∫

I

w

)

ψ

]

= 0 ∀w ∈ Cc(I),

i.e., ∫

I

[

f −
(∫

I

f ψ

)]

w = 0 ∀w ∈ Cc(I),

and therefore (by Corollary 4.24) f − (
∫

I
f ψ) = 0 a.e. on I , i.e., f = C a.e. on I

with C = ∫

I
f ψ .

Lemma 8.2. Let g ∈ L1
loc(I ); for y0 fixed in I , set

v(x) =
∫ x

y0

g(t)dt, x ∈ I.

Then v ∈ C(I) and ∫

I

vϕ′ = −
∫

I

gϕ ∀ϕ ∈ C1
c (I ).

Proof. We have

∫

I

vϕ′ =
∫

I

[∫ x

y0

g(t)dt

]

ϕ′(x)dx

= −
∫ y0

a

dx

∫ y0

x

g(t)ϕ′(x)dt +
∫ b

y0

dx

∫ x

y0

g(t)ϕ′(x)dt.

By Fubini’s theorem,

∫

I

vϕ′ = −
∫ y0

a

g(t)dt

∫ t

a

ϕ′(x)dx +
∫ b

yo

g(t)dt

∫ b

t

ϕ′(x)dx

= −
∫

I

g(t)ϕ(t)dt.
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Proof of Theorem 8.2. Fix y0 ∈ I and set ū(x) = ∫ x
y0
u′(t)dt . By Lemma 8.2 we

have ∫

I

ūϕ′ = −
∫

I

u′ϕ ∀ϕ ∈ C1
c (I ).

Thus
∫

I
(u − ū)ϕ′ = 0 ∀ϕ ∈ C1

c (I ). It follows from Lemma 8.1 that u − ū = C

a.e. on I . The function ũ(x) = ū(x)+ C has the desired properties.

Remark 7. Lemma 8.2 shows that the primitive v of a function g ∈ Lp belongs
to W 1,p provided we also know that v ∈ Lp, which is always the case when I is
bounded.

Proposition 8.3. Let u ∈ Lp with 1 < p ≤ ∞. The following properties are equiv-
alent:

(i) u ∈ W 1,p,
(ii) there is a constant C such that

∣
∣
∣
∣

∫

I

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖

Lp
′
(I )

∀ϕ ∈ C1
c (I ).

Furthermore, we can take C = ‖u′‖Lp(I) in (ii).

Proof.
(i) ⇒ (ii). This is obvious.
(ii) ⇒ (i). The linear functional

ϕ ∈ C1
c (I ) 
→

∫

I

uϕ′

is defined on a dense subspace of Lp
′

(since p′ < ∞) and it is continuous for the
Lp

′
norm. Therefore it extends to a bounded linear functional F defined on all of

Lp
′
(applying the Hahn–Banach theorem, or simply extension by continuity). By the

Riesz representation theorems (Theorems 4.11 and 4.14) there exists g ∈ Lp such
that

〈F, ϕ〉 =
∫

I

gϕ ∀ϕ ∈ Lp′
.

In particular, ∫

I

uϕ′ =
∫

I

gϕ ∀ϕ ∈ C1
c

and thus u ∈ W 1,p.

� Remark 8 (absolutely continuous functions and functions of bounded variation).
Whenp = 1, the implication (i) ⇒ (ii) remains true but not the converse. To illustrate
this fact, suppose that I is bounded. The functions u satisfying (i) with p = 1, i.e.,
the functions of W 1,1(I ), are called the absolutely continuous functions. They are
also characterized by the property
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(AC)

⎧
⎪⎨

⎪⎩

∀ε > 0, ∃δ > 0 such that for every finite sequence

of disjoint intervals (ak, bk) ⊂ I such that
∑ |bk − ak| < δ,

we have
∑ |u(bk)− u(ak)| < ε.

On the other hand, the functions u satisfying (ii) with p = 1 are called functions of
bounded variation; these functions can be characterized in many different ways:

(a) they are the difference of two bounded nondecreasing functions (possibly dis-
continuous) on I ,

(b) they are the functions u satisfying the property

(BV )

⎧
⎪⎨

⎪⎩

there exists a constant C such that
k−1∑

i=0
|u(ti+1)− u(ti)| ≤ C for all t0 < t1 < · · · < tk in I,

(c) they are the functions u ∈ L1(I ) that have as distributional derivative a bounded
measure.

Note that functions of bounded variation need not have a continuous repre-
sentative. On this subject see, e.g., E. Hewitt–K. Stromberg [1], A. Kolmogorov–
S. Fomin [1], S. Chae [1], H. Royden [1], G. Folland [2], G. Buttazzo–M. Giaquinta–
S. Hildebrandt [1], W. Rudin [2], R. Wheeden–A. Zygmund [1], and A. Knapp [1].

Proposition 8.4. A function u in L∞(I ) belongs to W 1,∞(I ) if and only if there
exists a constant C such that

|u(x)− u(y)| ≤ C|x − y| for a.e. x, y ∈ I.
Proof. If u ∈ W 1,∞(I ) we may apply Theorem 8.2 to deduce that

|u(x)− u(y)| ≤ ‖u′‖L∞|x − y| for a.e. x, y ∈ I.
Conversely, let ϕ ∈ C1

c (I ). For h ∈ R, with |h| small enough, we have
∫

I

[u(x + h)− u(x)]ϕ(x)dx =
∫

I

u(x)[ϕ(x − h)− ϕ(x)]dx

(these integrals make sense for h small, since ϕ is supported in a compact subset of
I ). Using the assumption on u we obtain

∣
∣
∣
∣

∫

I

u(x)[ϕ(x − h)− ϕ(x)]dx
∣
∣
∣
∣ ≤ C|h|‖ϕ‖L1 .

Dividing by |h| and letting h → 0, we are led to
∣
∣
∣
∣

∫

I

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖L1 ∀ϕ ∈ C1

c (I ).
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We may now apply Proposition 8.3 and conclude that u ∈ W 1,∞.

The Lp-version of Proposition 8.4 reads as follows:

Proposition 8.5. Let u ∈ Lp(R) with 1 < p < ∞. The following properties are
equivalent:

(i) u ∈ W 1,p(R),

(ii) there exists a constant C such that for all h ∈ R,

‖τhu− u‖Lp(R) ≤ C|h|.
Moreover, one can choose C = ‖u′‖Lp(R) in (ii).

Recall that (τhu)(x) = u(x + h).

Proof.
(i) ⇒ (ii). (This implication is also valid when p = 1.) By Theorem 8.2 we have,

for all x and h in R,

u(x + h)− u(x) =
∫ x+h

x

u′(t)dt = h

∫ 1

0
u′(x + sh)ds.

Thus

|u(x + h)− u(x)| ≤ |h|
∫ 1

0
|u′(x + sh)|ds.

Applying Hölder’s inequality, we have

|u(x + h)− u(x)|p ≤ |h|p
∫ 1

0
|u′(x + sh)|pds.

It then follows that
∫

R

|u(x + h)− u(x)|pdx ≤ |h|p
∫

R

dx

∫ 1

0
|u′(x + sh)|pds

≤ |h|p
∫ 1

0
ds

∫

R

|u′(x + sh)|pdx.

But for 0 < s < 1,
∫

R

|u′(x + sh)|pdx =
∫

R

|u′(y)|pdy,

from which (ii) can be deduced.

(ii) ⇒ (i). Let ϕ ∈ C1
c (R). For all h ∈ R we have

∫

R

[u(x + h)− u(x)]ϕ(x)dx =
∫

R

u(x)[ϕ(x − h)− ϕ(x)]dx.
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Using Hölder’s inequality and (ii) one obtains
∣
∣
∣
∣

∫

R

[u(x + h)− u(x)]ϕ(x)dx
∣
∣
∣
∣ ≤ C|h|‖ϕ‖

Lp
′
(R)

and thus ∣
∣
∣
∣

∫

R

u(x)[ϕ(x − h)− ϕ(x)]dx
∣
∣
∣
∣ ≤ C|h|‖ϕ‖

Lp
′
(R)
.

Dividing by |h| and letting h → 0, we obtain
∣
∣
∣
∣

∫

R

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖

Lp
′
(R)
.

We may apply Proposition 8.3 once more and conclude that u ∈ W 1,p(R).

Certain basic analytic operations have a meaning only for functions defined on
all of R (for example convolution and Fourier transform). It is therefore useful to be
able to extend a function u ∈ W 1,p(I ) to a function ū ∈ W 1,p(R).5 The following
result addresses this point.

Theorem 8.6 (extension operator). Let 1 ≤ p ≤ ∞. There exists a bounded linear
operator P : W 1,p(I ) → W 1,p(R), called an extension operator, satisfying the
following properties:

(i) Pu|I = u ∀u ∈ W 1,p(I ),

(ii) ‖Pu‖Lp(R) ≤ C‖u‖Lp(I) ∀u ∈ W 1,p(I ),

(iii) ‖Pu‖W 1,p(R) ≤ C‖u‖W 1,p(I ) ∀u ∈ W 1,p(I ),

where C depends only on |I | ≤ ∞.6

Proof. Beginning with the case I = (0,∞) we show that extension by reflexion

(Pu)(x) = u�(x) =
{
u(x) if x ≥ 0,

u(−x) if x < 0,

works. Clearly we have
‖u�‖Lp(R) ≤ 2‖u‖Lp(I).

Setting

v(x) =
{
u′(x) if x > 0,

−u′(−x) if x < 0,

we easily check that v ∈ Lp(R) and

u�(x)− u�(0) =
∫ x

0
v(t)dt ∀x ∈ R.

5 If u is extended as 0 outside I then the resulting function will not, in general, be inW 1,p(R) (see
Remark 5 and Section 8.3).
6 One can take C = 4 in (ii) and C = 4(1 + 1

|I | ) in (iii).
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It follows that u� ∈ W 1,p(R) (see Remark 7) and ‖u�‖W 1,p(R) ≤ 2‖u‖W 1,p(I ).

Now consider the case of a bounded interval I ; without loss of generality we can
take I = (0, 1). Fix a function η ∈ C1(R), 0 ≤ η ≤ 1, such that

η(x) =
{

1 if x < 1/4,

0 if x > 3/4.

See Figure 5.
Given a function f on (0, 1) set

f̃ (x) =
{
f (x) if 0 < x < 1,

0 if x > 1.

We shall need the following lemma.

Lemma 8.3. Let u ∈ W 1,p(I ). Then

ηũ ∈ W 1,p(0,∞) and (ηũ)′ = η′ũ+ ηũ′.

Proof. Let ϕ ∈ C1
c ((0,∞)); then

∫ ∞

0
ηũϕ′ =

∫ 1

0
ηuϕ′ =

∫ 1

0
u[(ηϕ)′ − η′ϕ]

= −
∫ 1

0
u′ηϕ −

∫ 1

0
uη′ϕ since ηϕ ∈ C1

c ((0, 1))

= −
∫ ∞

0
(ũ′η + ũη′)ϕ.
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Proof of Theorem 8.6, concluded. Given u ∈ W 1,p(I ), write

u = ηu+ (1 − η)u.

The function ηu is first extended to (0,∞) by ηũ (in view of Lemma 8.3) and
then to R by reflection. In this way we obtain a function v1 ∈ W 1,p(R) that extends
ηu and such that

‖v1‖Lp(R) ≤ 2‖u‖Lp(I) , ‖v1‖W 1,p(R) ≤ C‖u‖W 1,p(I )

(where C depends on ‖η′‖L∞ ).
Proceed in the same way with (1 − η)u, that is, first extend (1 − η)u to (−∞, 1)

by 0 on (−∞, 0) and then extend to R by reflection (this time about the point 1, not
0). In this way we obtain a function v2 ∈ W 1,p(R) that extends (1−η)u and satisfies

‖v2‖Lp(R) ≤ 2‖u‖Lp(I), ‖v2‖W 1,p(R) ≤ C‖u‖W 1,p(I ).

Then Pu = v1 + v2 satisfies the condition of the theorem.

Certain properties ofC1 functions remain true forW 1,p functions (see for example
Corollaries 8.10 and 8.11). It is convenient to establish these properties by a density
argument based on the following result.

• Theorem 8.7 (density). Let u ∈ W 1,p(I ) with 1 ≤ p < ∞. Then there exists a
sequence (un) in C∞

c (R) such that un|I → u in W 1,p(I ).

Remark 9. In general, there is no sequence (un) in C∞
c (I ) such that un → u in

W 1,p(I ) (see Section 8.3). This is in contrast to Lp spaces: recall that for every
function u ∈ Lp(I) there is a sequence (un) in C∞

c (I ) such that un → u in Lp(I)
(see Corollary 4.23).

Proof. We can always suppose I = R; otherwise, extend u to a function inW 1,p(R)

by Theorem 8.6. We use the basic techniques of convolution (which makes functions
C∞) and cut-off (which makes their support compact).

(a) Convolution.
We shall need the following lemma.

Lemma 8.4. Let ρ ∈ L1(R) and v ∈ W 1,p(R) with 1 ≤ p ≤ ∞. Then ρ � v ∈
W 1,p(R) and (ρ � v)′ = ρ � v′.

Proof. First, suppose that ρ has compact support. We already know (Theorem 4.15)
that ρ � v ∈ Lp(R). Let ϕ ∈ C1

c (R); from Propositions 4.16 and 4.20 we have
∫

(ρ � v)ϕ′ =
∫

v(ρ̌ � ϕ′) =
∫

v(ρ̌ � ϕ)′ = −
∫

v′(ρ̌ � ϕ) = −
∫

(ρ � v′)ϕ,

from which it follows that

ρ � v ∈ W 1,p and (ρ � v)′ = ρ � v′.
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If ρ does not have compact support introduce a sequence (ρn) from Cc(R) such that
ρn → ρ in L1(R) (see Corollary 4.23). From the above, we get

ρn � v ∈ W 1,p(R) and (ρn � v)
′ = ρn � v

′.

But ρn � v → ρ � v in Lp(R) and ρn � v′ → ρ � v′ in Lp(R) (by Theorem 4.15). We
conclude with the help of Remark 4 that

ρ � v ∈ W 1,p(R) and (ρ � v)′ = ρ � v′.

(b) Cut-off.
Fix a function ζ ∈ C∞

c (R) such that 0 ≤ ζ ≤ 1 and

ζ(x) =
{

1 if |x| < 1,

0 if |x| ≥ 2.

Define the sequence

(4) ζn(x) = ζ(x/n) for n = 1, 2, . . . .

It follows easily from the dominated convergence theorem that if a function f belongs
to Lp(R) with 1 ≤ p < ∞, then ζnf → f in Lp(R).

(c) Conclusion.
Choose a sequence of mollifiers (ρn). We claim that the sequence un = ζn(ρn �u)

converges to u in W 1,p(R). First, we have ‖un − u‖p → 0. In fact, write

un − u = ζn((ρn � u)− u)+ (ζnu− u)

and thus
‖un − u‖p ≤ ‖ρn � u− u‖p + ‖ζnu− u‖p → 0.

Next, by Lemma 8.4, we have

u′
n = ζ ′

n(ρn � u)+ ζn(ρn � u
′).

Therefore

‖u′
n − u′‖p ≤ ‖ζ ′

n(ρn � u)‖p + ‖ζn(ρn � u′)− u′‖p
≤ C

n
‖u‖p + ‖ρn � u′ − u′‖p + ‖ζnu′ − u′‖p → 0,

where C = ‖ζ ′‖∞.

The next result is an important prototype of a Sobolev inequality (also called a
Sobolev embedding).

• Theorem 8.8. There exists a constant C (depending only on |I | ≤ ∞) such that

(5) ‖u‖L∞(I ) ≤ C‖u‖W 1,p(I ) ∀ u ∈ W 1,p(I ), ∀ 1 ≤ p ≤ ∞.
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In other words, W 1,p(I ) ⊂ L∞(I ) with continuous injection for all 1 ≤ p ≤ ∞.
Further, if I is bounded then

the injection W 1,p(I ) ⊂ C(Ī ) is compact for all 1 < p ≤ ∞,(6)

the injection W 1,1(I ) ⊂ Lq(I) is compact for all 1 ≤ q < ∞.(7)

Proof. We start by proving (5) for I = R; the general case then follows from this
by the extension theorem (Theorem 8.6). Let v ∈ C1

c (R); if 1 ≤ p < ∞ set
G(s) = |s|p−1s. The function w = G(v) belongs to C1

c (R) and

w′ = G′(v)v′ = p|v|p−1v′.

Thus, for x ∈ R, we have

G(v(x)) =
∫ x

−∞
p|v(t)|p−1v′(t)dt,

and by Hölder’s inequality

|v(x)|p ≤ p‖v‖p−1
p ‖v′‖p,

from which we conclude that

(8) ‖v‖∞ ≤ C‖v‖W 1,p ∀v ∈ C1
c (R),

where C is a universal constant (independent of p).7

Argue now by density. Let u ∈ W 1,p(R); there exists a sequence (un) ⊂ C1
c (R)

such that un → u in W 1,p(R) (by Theorem 8.7). Applying (8), we see that (un) is a
Cauchy sequence in L∞(R). Thus un → u in L∞(R) and we obtain (5).

Proof of (6). Let H be the unit ball inW 1,p(I )with 1 < p ≤ ∞. For u ∈ H we have

|u(x)− u(y)| =
∣
∣
∣
∣

∫ x

y

u′(t)dt
∣
∣
∣
∣ ≤ ‖u′‖p|x − y|1/p′ ≤ |x − y|1/p′ ∀x, y ∈ I.

It follows then from theAscoli–Arzelà theorem (Theorem 4.25) that H has a compact
closure in C(Ī ).

Proof of (7). Let H be the unit ball in W 1,1(I ). Let P be the extension operator of
Theorem 8.6 and set F = P(H), so that H = F|I . We prove that H has a compact
closure in Lq(I) (for all 1 ≤ q < ∞) by applying Theorem 4.26. Clearly, F is
bounded inW 1,1(R); therefore F is also bounded in Lq(R), since it is bounded both
in L1(R) and in L∞(R). We now check condition (22) of Chapter 4, i.e.,

lim
h→0

‖τhf − f ‖q = 0 uniformly in f ∈ F .

7 Noting that p1/p ≤ e1/e ∀p ≥ 1.
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By Proposition 8.5 we have, for every f ∈ F ,

‖τhf − f ‖L1(R) ≤ |h|‖f ′‖L1(R) ≤ C|h|,

since F is a bounded subset of W 1,1(R). Thus

‖τhf − f ‖q
Lq(R)

≤ (2‖f ‖L∞(R))
q−1‖τhf − f ‖L1(R) ≤ C|h|

and consequently
‖τhf − f ‖Lq(R) ≤ C|h|1/q,

where C is independent of f . The desired conclusion follows since q 	= ∞.

Remark 10. The injection W 1,1(I ) ⊂ C(Ī ) is continuous but it is never compact,
even if I is a bounded interval; the reader should find an argument or see Exercise
8.2. Nevertheless, if (un) is a bounded sequence in W 1,1(I ) (with I bounded or
unbounded) there exists a subsequence (unk ) such that unk (x) converges for all x ∈ I
(this is Helly’s selection theorem; see for example A. Kolmogorov–S. Fomin [1]
and Exercise 8.3). When I is unbounded and 1 < p ≤ ∞, we know that the
injection W 1,p(I ) ⊂ L∞(I ) is continuous; this injection is never compact—again
give an argument or see Exercise 8.4. However, if (un) is bounded in W 1,p(I ) with
1 < p ≤ ∞ there exist a subsequence (unk ) and some u ∈ W 1,p(I ) such that
unk → u in L∞(J ) for every bounded subset J of I .

Remark 11. Let I be a bounded interval, let 1 ≤ p ≤ ∞, and let 1 ≤ q ≤ ∞. From
Theorem 8.2 and (5) it can be shown easily that the norm

|||u||| = ‖u′‖p + ‖u‖q
is equivalent to the norm of W 1,p(I ).

Remark 12. Let I be an unbounded interval. If u ∈ W 1,p(I ), then u ∈ Lq(I) for all
q ∈ [p,∞], since ∫

I

|u|q ≤ ‖u‖q−p∞ ‖u‖pp.
But in general u /∈ Lq(I) for q ∈ [1, p) (see Exercise 8.1).

Corollary 8.9. Suppose that I is an unbounded interval and u ∈ W 1,p(I ) with
1 ≤ p < ∞. Then

(9) lim
x∈I|x|→∞

u(x) = 0.

Proof. From Theorem 8.7 there exists a sequence (un) in C1
c (R) such that un|I → u

in W 1,p(I ). It follows from (5) that ‖un − u‖L∞(I ) → 0. We deduce (9) from this.
Indeed, given ε > 0 we choose n large enough that ‖un−u‖L∞(I ) < ε. For |x| large
enough, un(x) = 0 (since un ∈ C1

c (R)) and thus |u(x)| < ε.
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Corollary 8.10 (differentiation of a product).8 Let u, v ∈ W 1,p(I ) with 1 ≤ p ≤
∞. Then

uv ∈ W 1,p(I )

and

(10) (uv)′ = u′v + uv′.

Furthermore, the formula for integration by parts holds:

(11)
∫ x

y

u′v = u(x)v(x)− u(y)v(y)−
∫ x

y

uv′ ∀x, y ∈ Ī .

Proof. First recall that u ∈ L∞ (by Theorem 8.8) and thus uv ∈ Lp. To show that
(uv)′ ∈ Lp let us begin with the case 1 ≤ p < ∞. Let (un) and (vn) be sequences in
C1
c (R) such that un|I → u and vn|I → v in W 1,p(I ). Thus un|I → u and vn|I → v

in L∞(I ) (again by Theorem 8.8). It follows that unvn|I → uv in L∞(I ) and also
in Lp(I). We have

(unvn)
′ = u′

nvn + unv
′
n → u′v + uv′ in Lp(I).

Applying once more Remark 4 to the sequence (unvn), we conclude that uv ∈
W 1,p(I ) and that (10) holds. Integrating (10), we obtain (11).

We now turn to the case p = ∞; let u, v ∈ W 1,∞(I ). Thus uv ∈ L∞(I ) and
u′v + uv′ ∈ L∞(I ). It remains to check that

∫

I

uvϕ′ = −
∫

I

(u′v + uv′)ϕ ∀ϕ ∈ C1
c (I ).

For this, fix a bounded open interval J ⊂ I such that suppϕ ⊂ J . Thus u, v ∈
W 1,p(J ) for all p < ∞ and from the above we know that

∫

J

uvϕ′ = −
∫

J

(u′v + uv′)ϕ,

that is, ∫

I

uvϕ′ = −
∫

I

(u′v + uv′)ϕ.

Corollary 8.11 (differentiation of a composition). Let G ∈ C1(R) be such that9

G(0) = 0, and let u ∈ W 1,p(I ) with 1 ≤ p ≤ ∞. Then

G ◦ u ∈ W 1,p(I ) and (G ◦ u)′ = (G′ ◦ u)u′.

8 Note the contrast of this result with the properties of Lp functions: in general, if u, v ∈ Lp , the
product uv does not belong to Lp . We say that W 1,p(I ) is a Banach algebra.
9 This restriction is unnecessary when I is bounded (or also if I is unbounded and p = ∞). It is
essential if I is unbounded and 1 ≤ p < ∞.
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Proof. LetM = ‖u‖∞. SinceG(0) = 0, there exists a constantC such that |G(s)| ≤
C|s| for all s ∈ [−M , +M]. Thus |G ◦ u| ≤ C|u|; it follows that G ◦ u ∈ Lp(I).
Similarly, (G′ ◦ u)u′ ∈ Lp(I). It remains to verify that

(12)
∫

I

(G ◦ u)ϕ′ = −
∫

I

(G′ ◦ u)u′ϕ ∀ϕ ∈ C1
c (I ).

Suppose first that 1 ≤ p < ∞. Then there exists a sequence (un) from C1
c (R) such

that un|I → u in W 1,p(I ) and also in L∞(I ). Thus (G ◦ un)|I → G ◦ u in L∞(I )
and (G′ ◦ un)u′

n|I → (G′ ◦ u)u′ in Lp(I). Clearly (by the standard rules for C1

functions) we have
∫

I

(G ◦ un)ϕ′ = −
∫

I

(G′ ◦ un)u′
nϕ ∀ϕ ∈ C1

c (I ),

from which we deduce (12). For the case p = ∞ proceed in the same manner as in
the proof of Corollary 8.10.

The Sobolev Spaces Wm,p

Definition. Given an integer m ≥ 2 and a real number 1 ≤ p ≤ ∞ we define by
induction the space

Wm,p(I ) = {u ∈ Wm−1,p(I ); u′ ∈ Wm−1,p(I )}.
We also set

Hm(I) = Wm,2(I ).

It is easily shown that u ∈ Wm,p(I ) if and only if there existm functions g1, g2, . . . ,
gm ∈ Lp(I) such that

∫

I

u Djϕ = (−1)j
∫

I

gjϕ ∀ϕ ∈ C∞
c (I ), ∀j = 1, 2, . . . , m,

whereDjϕ denotes the j th derivative ofϕ. Whenu ∈ Wm,p(I )we may thus consider
the successive derivatives of u : u′ = g1, (u′)′ = g2, . . . , up to order m. They are
denoted by Du, D2u, . . . ,Dmu. The space Wm,p(I ) is equipped with the norm

‖u‖Wm,p = ‖u‖p +
m∑

α=1

‖Dαu‖p,

and the space Hm(I) is equipped with the scalar product

(u, v)Hm = (u, v)L2 +
m∑

α=1

(Dαu,Dαv)L2 =
∫

I

uv +
m∑

α=1

∫

I

Dαu Dαv.
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One can show that the norm ‖ ‖Wm,p is equivalent to the norm

|||u||| = ‖u‖p + ‖Dmu‖p.
More precisely, one proves that for every integer j , 1 ≤ j ≤ m − 1, and for every
ε > 0 there exists a constant C (depending on ε and |I | ≤ ∞) such that

‖Dju‖p ≤ ε‖Dmu‖p + C‖u‖p ∀u ∈ Wm,p(I )

(see, e.g., R. Adams [1], or Exercise 8.6 for the case |I | < ∞).

The reader can extend to the space Wm,p all the properties shown for W 1,p; for
example, if I is bounded, Wm,p(I ) ⊂ Cm−1(Ī ) with continuous injection (resp.
compact injection for 1 < p ≤ ∞).

8.3 The Space W
1,p

0

Definition. Given 1 ≤ p < ∞, denote by W
1,p
0 (I ) the closure of C1

c (I ) in
W 1,p(I ).10 Set

H 1
0 (I ) = W

1,2
0 (I ).

The space W 1,p
0 (I ) is equipped with the norm of W 1,p(I ), and the space H 1

0 is
equipped with the scalar product of H 1.11

The space W 1,p
0 is a separable Banach space. Moreover, it is reflexive for p > 1.

The space H 1
0 is a separable Hilbert space.

Remark 13. When I = R we know that C1
c (R) is dense in W 1,p(R) (see Theorem

8.7) and therefore W 1,p
0 (R) = W 1,p(R).

Remark 14. Using a sequence of mollifiers (ρn) it is easy to check the following:

(i) C∞
c (I ) is dense in W 1,p

0 (I ).

(ii) If u ∈ W 1,p(I ) ∩ Cc(I) then u ∈ W 1,p
0 (I ).

Our next result provides a basic characterization of functions in W 1,p
0 (I ).

• Theorem 8.12. Let u ∈ W 1,p(I ). Then u ∈ W 1,p
0 (I ) if and only if u = 0 on ∂I .

Remark 15. Theorem 8.12 explains the central role played by the spaceW 1,p
0 (I ). Dif-

ferential equations (or partial differential equations) are often coupled with boundary
conditions, i.e., the value of u is prescribed on ∂I .

10 We do not define W 1,p
0 for p = ∞.

11 When there is no confusion we often write W 1,p
0 and H 1

0 instead of W 1,p
0 (I ) and H 1

0 (I ).
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Proof. If u ∈ W
1,p
0 , there exists a sequence (un) in C1

c (I ) such that un → u in
W 1,p(I ). Therefore un → u uniformly on Ī and as a consequence u = 0 on ∂I .

Conversely, let u ∈ W 1,p(I ) be such that u = 0 on ∂I . Fix any function G ∈
C1(R) such that

G(t) =
{

0 if |t | ≤ 1,

t if |t | ≥ 2,

and
|G(t)| ≤ |t | ∀t ∈ R.

Set un = (1/n)G(nu), so that un ∈ W 1,p(I ) (by Corollary 8.11). On the other hand,

supp un ⊂ {x ∈ I ; |u(x)| ≥ 1/n},
and thus supp un is in a compact subset of I (using the fact that u = 0 on ∂I and
u(x) → 0 as |x| → ∞, x ∈ I ). Therefore un ∈ W 1,p

0 (I ) (see Remark 14). Finally,
one easily checks that un → u in W 1,p(I ) by the dominated convergence theorem.
Thus u ∈ W 1,p

0 (I ).

Remark 16. Let us mention two other characterizations of W 1,p
0 functions:

(i) Let 1 ≤ p < ∞ and let u ∈ Lp(I). Define ū by

ū(x) =
{
u(x) if x ∈ I,
0 if x ∈ R\I.

Then u ∈ W 1,p
0 (I ) if and only if ū ∈ W 1,p(R).

(ii) Let 1 < p < ∞ and let u ∈ Lp(I). Then u belongs to W 1,p
0 (I ) if and only if

there exists a constant C such that
∣
∣
∣
∣

∫

I

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖

Lp
′
(I )

∀ϕ ∈ C1
c (R).

• Proposition 8.13 (Poincaré’s inequality). Suppose I is a bounded interval. Then
there exists a constant C (depending on |I | < ∞) such that

(13) ‖u‖W 1,p(I ) ≤ C‖u′‖Lp(I) ∀u ∈ W 1,p
0 (I ).

In other words, on W
1,p
0 , the quantity ‖u′‖Lp(I) is a norm equivalent to the

W 1,p norm.

Proof. Let u ∈ W 1,p
0 (I ) (with I = (a, b)). Since u(a) = 0, we have

|u(x)| = |u(x)− u(a)| =
∣
∣
∣
∣

∫ x

a

u′(t)dt
∣
∣
∣
∣ ≤ ‖u′‖L1 .

Thus ‖u‖L∞(I ) ≤ ‖u′‖L1(I ) and (13) then follows by Hölder’s inequality.
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Remark 17. If I is bounded, the expression (u′, v′)L2 = ∫
u′v′ defines a scalar

product on H 1
0 and the associated norm, i.e., ‖u′‖L2 , is equivalent to the H 1 norm.

Remark 18. Given an integer m ≥ 2 and a real number 1 ≤ p < ∞, the space
W
m,p
0 (I ) is defined as the closure of Cmc (I ) in Wm,p(I ). One shows (see Exer-

cise 8.9) that

W
m,p
0 (I ) = {u ∈ Wm,p(I ); u = Du = · · · = Dm−1u = 0 on ∂I }.

It is essential to notice the distinction between

W
2,p
0 (I ) = {u ∈ W 2,p(I ); u = Du = 0 on ∂I }

and
W 2,p(I ) ∩W 1,p

0 (I ) = {u ∈ W 2,p(I ); u = 0 on ∂I }.

� The Dual Space of W
1,p

0 (I )

Notation. The dual space of W 1,p
0 (I ) (1 ≤ p < ∞) is denoted by W−1,p′

(I ) and
the dual space of H 1

0 (I ) is denoted by H−1(I ).

Following Remark 3 of Chapter 5, we identify L2 and its dual, but we do not
identify H 1

0 and its dual. We have the inclusions

H 1
0 ⊂ L2 ⊂ H−1,

where these injections are continuous and dense (i.e., they have dense ranges).
If I is a bounded interval we have

W
1,p
0 ⊂ L2 ⊂ W−1,p′

for all 1 ≤ p < ∞
with continuous injections (and dense injections when 1 < p < ∞).

If I is unbounded we have only

W
1,p
0 ⊂ L2 ⊂ W−1,p′

for all 1 ≤ p ≤ 2

with continuous injections (see Remark 12).

The elements of W−1,p′
can be represented with the help of functions in Lp

′
; to

be precise, we have the following

Proposition 8.14. Let F ∈ W−1,p′
(I ). Then there exist two functions f0, f1 ∈

Lp
′
(I ) such that

〈F, u〉 =
∫

I

f0u+
∫

I

f1u
′ ∀u ∈ W 1,p

0 (I )

and
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‖F‖
W−1,p′ = max{‖f0‖p′ , ‖f1‖p′ }.

When I is bounded we can take f0 = 0.

Proof. Consider the product space E = Lp(I)× Lp(I) equipped with the norm

‖h‖ = ‖h0‖p + ‖h1‖p where h = [h0, h1].

The map T : u ∈ W 1,p
0 (I ) 
→ [u, u′] ∈ E is an isometry from W

1,p
0 (I ) into E. Set

G = T (W
1,p
0 (I )) equipped with the norm of E and S = T −1 : G → W

1,p
0 (I ). The

map h ∈ G 
→ 〈F , Sh〉 is a continuous linear functional onG. By the Hahn–Banach
theorem, it can be extended to a continuous linear functional 
 on all of E with
‖
‖E� = ‖F‖. By the Riesz representation theorem we know that there exist two
functions f0, f1 ∈ Lp′

(I ) such that

〈
,h〉 =
∫

I

f0h0 +
∫

I

f1h1 ∀h = [h0, h1] ∈ E.

It is easy to check that ‖
‖E� = max{‖f0‖p′ , ‖f1‖p′ }. Also, we have

〈
, T u〉 = 〈F, u〉 =
∫

I

f0u+
∫

I

f1u
′ ∀u ∈ W 1,p

0 .

When I is bounded the space W 1,p
0 (I ) may be equipped with the norm ‖u′‖p (see

Proposition 8.13). We repeat the same argument with E = Lp(I) and T : u ∈
W 1,p(I ) 
→ u′ ∈ Lp(I).
Remark 19. The functions f0 and f1 are not uniquely determined by F.

Remark 20. The element F ∈ W−1,p′
(I ) is usually identified with the distribution

f0 −f ′
1 (by definition, the distribution f0 −f ′

1 is the linear functional u 
→ ∫

I
f0u+∫

I
f1u

′, on C∞
c (I )).

Remark 21. The first assertion of Proposition 8.14 also holds for continuous linear
functionals on W 1,p(1 ≤ p < ∞), i.e., every continuous linear functional F on
W 1,p may be represented as

〈F, u〉 =
∫

I

f0u+
∫

I

f1u
′ ∀u ∈ W 1,p

for some functions f0, f1 ∈ Lp′
.

8.4 Some Examples of Boundary Value Problems

Consider the problem

(14)

{
−u′′ + u = f on I = (0, 1),

u(0) = u(1) = 0,
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where f is a given function (for example in C(Ī ) or more generally in L2(I )).
The boundary condition u(0) = u(1) = 0 is called the (homogeneous) Dirichlet
boundary condition.

Definition. A classical solution of (14) is a function u ∈ C2(Ī ) satisfying (14) in
the usual sense. A weak solution of (14) is a function u ∈ H 1

0 (I ) satisfying

(15)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1
0 (I ).

Let us “put into action” the program outlined in Section 8.1:

Step A. Every classical solution is a weak solution. This is obvious by integration
by parts (as justified in Corollary 8.10).

Step B. Existence and uniqueness of a weak solution. This is the content of the
following result.

• Proposition 8.15. Given any f ∈ L2(I ) there exists a unique solution u ∈ H 1
0 to

(15). Furthermore, u is obtained by

min
v∈H 1

0

{
1

2

∫

I

(v′2 + v2)−
∫

I

f v

}

;

this is Dirichlet’s principle.

Proof. We apply Lax–Milgram’s theorem (Corollary 5.8) in the Hilbert space H =
H 1

0 (I ) with the bilinear form

a(u, v) =
∫

I

u′v′ +
∫

I

uv = (u, v)H 1

and with the linear functional ϕ : v 
→ ∫

I
f v.

Remark 22. Given F ∈ H−1(I ) we know from the Riesz–Fréchet representation
theorem (Theorem 5.5) that there exists a unique u ∈ H 1

0 (I ) such that

(u, v)H 1 = 〈F, v〉H−1,H 1
0

∀v ∈ H 1
0 .

The mapF 
→ u is the Riesz–Fréchet isomorphism fromH−1 ontoH 1
0 . The function

u coincides with the weak solution of (14) in the sense of (15).

Steps C and D. Regularity of weak solutions. Recovery of
classical solutions

First, note that if f ∈ L2 and u ∈ H 1
0 is the weak solution of (14), then u ∈ H 2.

Indeed, we have
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∫

I

u′v′ =
∫

I

(f − u)v ∀v ∈ C1
c (I ),

and thus u′ ∈ H 1 (by definition of H 1 and since f − u ∈ L2), i.e., u ∈ H 2.
Furthermore, if we assume that f ∈ C(Ī ), then the weak solution u belongs to
C2(Ī ). Indeed, (u′)′ ∈ C(Ī ) and thus u′ ∈ C1(Ī ) (see Remark 6). The passage from
a weak solution u ∈ C2(Ī ) to a classical solution has been carried out in Section 8.1.

Remark 23. If f ∈ Hk(I), with k an integer ≥ 1, it is easily verified (by induction)
that the solution u of (15) belongs to Hk+2(I ).

The method described above is extremely flexible and can be adapted to a mul-
titude of problems. We indicate several examples frequently encountered. In each
problem it is essential to specify precisely the function space and to find the appro-
priate weak formulation.

Example 1 (inhomogeneous Dirichlet condition). Consider the problem

(16)

{
−u′′ + u = f on I = (0, 1),

u(0) = α, u(1) = β,

with α, β ∈ R given and f a given function.

• Proposition 8.16. Given α, β ∈ R and f ∈ L2(I ) there exists a unique function
u ∈ H 2(I ) satisfying (16). Furthermore, u is obtained by

min
v∈H 1(I )

v(0)=α,v(1)=β

{
1

2

∫

I

(v′2 + v2)−
∫

I

f v

}

.

If, in addition, f ∈ C(Ī ) then u ∈ C2(Ī ).

Proof. We give two possible approaches:

Method 1. Fix any smooth function12 u0 such that u0(0) = α and u0(1) = β.
Introduce as new unknown ũ = u− u0. Then ũ satisfies

{
−ũ′′ + ũ = f + u′′

0 − u0 on I,

ũ(0) = ũ(1) = 0.

We are reduced to the preceding problem for ũ.

Method 2. Consider in the space H 1(I ) the closed convex set

K = {v ∈ H 1(I ); v(0) = α and v(1) = β}.
If u is a classical solution of (16) we have

12 Choose, for example, u0 to be affine.
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∫

I

u′(v − u)′ +
∫

I

u(v − u) =
∫

I

f (v − u) ∀v ∈ K.

Then in particular,

(17)
∫

I

u′(v − u)′ +
∫

I

u(v − u) ≥
∫

I

f (v − u) ∀v ∈ K.

We may now invoke Stampacchia’s theorem (Theorem 5.6): there exists a unique
function u ∈ K satisfying (17) and, moreover, u is obtained by

min
v∈K

{
1

2

∫

I

(v′2 + v2)−
∫

I

f v

}

.

To recover a classical solution of (16), set v = u±w in (17) withw ∈ H 1
0 and obtain

∫

I

u′w′ +
∫

I

uw =
∫

I

fw ∀w ∈ H 1
0 .

This implies (as above) that u ∈ H 2(I ). If f ∈ C(Ī ) the same argument as in the
homogeneous case shows that u ∈ C2(Ī ).

� Example 2 (Sturm–Liouville problem). Consider the problem

(18)

{
−(pu′)′ + qu = f on I = (0, 1),

u(0) = u(1) = 0,

where p ∈ C1(Ī ), q ∈ C(Ī ), and f ∈ L2(I ) are given with

p(x) ≥ α > 0 ∀x ∈ I.
If u is a classical solution of (18) we have

∫

I

pu′v′ +
∫

I

quv =
∫

I

f v ∀v ∈ H 1
0 (I ).

We use H 1
0 (I ) as our function space and

a(u, v) =
∫

I

pu′v′ +
∫

I

quv

as symmetric continuous bilinear form on H 1
0 . If q ≥ 0 on I this form is coercive

by Poincaré’s inequality (Proposition 8.13). Thus, by Lax–Milgram’s theorem, there
exists a unique u ∈ H 1

0 such that

(19) a(u, v) =
∫

I

f v ∀v ∈ H 1
0 (I ).
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Moreover, u is obtained by

min
v∈H 1

0 (I )

{
1

2

∫

I

(pv′2 + qv2)−
∫

I

f v

}

.

It is clear from (19) that pu′ ∈ H 1; thus (by Corollary 8.10) u′ = (1/p)(pu′) ∈ H 1

and hence u ∈ H 2. Finally, if f ∈ C(Ī ), then pu′ ∈ C1(Ī ), and so u′ ∈ C1(Ī ),
i.e., u ∈ C2(Ī ). Step D carries over and we conclude that u is a classical solution
of (18).

Consider now the more general problem

(20)

{
−(pu′)′ + ru′ + qu = f on I = (0, 1),

u(0) = u(1) = 0.

The assumptions on p, q, and f are the same as above, and r ∈ C(Ī ). If u is a
classical solution of (20) we have

∫

I

pu′v′ +
∫

I

ru′v +
∫

I

quv =
∫

I

f v ∀v ∈ H 1
0 .

We use H 1
0 (I ) as our function space and

a(u, v) =
∫

I

pu′v′ +
∫

I

ru′v +
∫

I

quv

as bilinear continuous form. This form is not symmetric. In certain cases it is coercive;
for example,

(i) if q ≥ 1 and r2 < 4α;
(ii) or if q ≥ 1 and r ∈ C1(Ī ) with r ′ ≤ 2; here we use the fact that

∫

rv′v = −1

2

∫

r ′v2 ∀v ∈ H 1
0 .

One may then apply the Lax–Milgram theorem, but there is no straightforward asso-
ciated minimization problem. Here is a device that allows us to recover a symmetric
bilinear form. Introduce a primitive R of r/p and set ζ = e−R . Equation (20) can
be written, after multiplication by ζ , as

−ζpu′′ − ζp′u′ + ζ ru′ + ζqu = ζf,

or (since ζ ′p + ζ r = 0)
−(ζpu′)′ + ζqu = ζf.

Define on H 1
0 the symmetric continuous bilinear form

a(u, v) =
∫

I

ζpu′v′ +
∫

I

ζquv.
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When q ≥ 0, this form is coercive, and so there exists a unique u ∈ H 1
0 such that

a(u, v) =
∫

I

ζf v ∀v ∈ H 1
0 .

Furthermore, u is obtained by

min
v∈H 1

0 (I )

{
1

2

∫

I

(ζpv′2 + ζqv2)−
∫

I

ζf v

}

.

It is easily verified that u ∈ H 2, and if f ∈ C(Ī ) then u ∈ C2(Ī ) is a classical
solution of (20).

Example 3 (homogeneous Neumann condition). Consider the problem

(21)

{
−u′′ + u = f on I = (0, 1),

u′(0) = u′(1) = 0.

• Proposition 8.17. Given f ∈ L2(I ) there exists a unique function u ∈ H 2(I )

satisfying (21).13 Furthermore, u is obtained by

min
v∈H 1(I )

{
1

2

∫

I

(v′2 + v2)−
∫

I

f v

}

.

If, in addition, f ∈ C(Ī ), then u ∈ C2(Ī ).

Proof. If u is a classical solution of (21) we have

(22)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1(I ).

We use H 1(I ) as our function space: there is no point in working in H 1
0 as above

since u(0) and u(1) are a priori unknown. We apply the Lax–Milgram theorem with
the bilinear form a(u, v) = ∫

I
u′v′ + ∫

I
uv and the linear functional ϕ : v 
→ ∫

I
f v.

In this way we obtain a unique function u ∈ H 1(I ) satisfying (22). From (22) it
follows, as above, that u ∈ H 2(I ). Using (22) once more we obtain

(23)
∫

I

(−u′′ + u− f )v + u′(1)v(1)− u′(0)v(0) = 0 ∀v ∈ H 1(I ).

In (23) begin by choosing v ∈ H 1
0 and obtain −u′′ + u = f a.e. Returning to (23),

there remains
u′(1)v(1)− u′(0)v(0) = 0 ∀v ∈ H 1(I ).

Since v(0) and v(1) are arbitrary, we deduce that u′(0) = u′(1) = 0.

13 Note that u ∈ H 2(I ) ⇒ u ∈ C1(Ī ) and thus the condition u′(0) = u′(1) = 0 makes sense. It
would not make sense if we knew only that u ∈ H 1.
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Example 4 (inhomogeneous Neumann condition). Consider the problem

(24)

{
−u′′ + u = f on I = (0, 1),

u′(0) = α, u′(1) = β,

with α, β ∈ R given and f a given function.

Proposition 8.18. Given any f ∈ L2(I ) and α, β ∈ R there exists a unique function
u ∈ H 2(I ) satisfying (24). Furthermore, u is obtained by

min
v∈H 1(I )

{
1

2

∫

I

(v′2 + v2)−
∫

I

f v + αv(0)− βv(1)

}

.

If, in addition, f ∈ C(Ī ) then u ∈ C2(Ī ).

Proof. If u is a classical solution of (24) we have
∫

I

u′v′ +
∫

I

uv =
∫

I

f v − αv(0)+ βv(1) ∀v ∈ H 1(I ).

We use H 1(I ) as our function space and we apply the Lax–Milgram theorem with
the bilinear form a(u, v) = ∫

I
u′v′ + ∫

I
uv and the linear functional

ϕ : v 
→
∫

I

f v − αv(0)+ βv(1).

This linear functional is continuous (by Theorem 8.8). Then proceed as in Example
3 to prove that u ∈ H 2(I ) and that u′(0) = α, u′(1) = β.

Example 5 (mixed boundary condition). Consider the problem

(25)

{
−u′′ + u = f on I = (0, 1),

u(0) = 0, u′(1) = 0.

If u is a classical solution of (25) we have

(26)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1(I ) with v(0) = 0.

The appropriate space to work in is

H = {v ∈ H 1(I ); v(0) = 0}
equipped with the H 1 scalar product. The rest is left to the reader as an exercise.

Example 6 (Robin, or “third type,” boundary condition). Consider the problem

(27)

{
−u′′ + u = f on I = (0, 1),

u′(0) = ku(0), u(1) = 0,
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where k ∈ R is given.14

If u is a classical solution of (27) we have
∫

I

u′v′ +
∫

I

uv + ku(0)v(0) =
∫

I

f v ∀v ∈ H 1(I ) with v(1) = 0.

The appropriate space for applying Lax–Milgram is the Hilbert space

H = {v ∈ H 1(I ); v(1) = 0}
equipped with the H 1 scalar product. The bilinear form

a(u, v) =
∫

I

u′v′ +
∫

I

uv + ku(0)v(0)

is symmetric and continuous. It is coercive if k ≥ 0.15

Example 7 (periodic boundary conditions). Consider the problem

(28)

{
−u′′ + u = f on I = (0, 1),

u(0) = u(1), u′(0) = u′(1).

If u is a classical solution of (28) we have

(29)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1(I ) with v(0) = v(1).

The appropriate setting for applying Lax–Milgram is the Hilbert space

H = {v ∈ H 1(I ); v(0) = v(1)}
with the bilinear form a(u, v) = ∫

I
u′v′ + ∫

I
uv. When f ∈ L2(I ) we obtain a

solution u ∈ H 2(I ) of (28). If, in addition, f ∈ C(Ī ) then the solution is classical.

Example 8 (a boundary value problem on R). Consider the problem

(30)

{
−u′′ + u = f on R,

u(x) → 0 as |x| → ∞,

with f given inL2(R).A classical solution of (30) is a function u ∈ C2(R) satisfying
(30) in the usual sense. A weak solution of (30) is a function u ∈ H 1(R) satisfying
14 More generally, one can handle the boundary condition

α0u
′(0)+ β0u(0) = 0, α1u

′(1)+ β1u(1) = 0,

with appropriate conditions on the constants α0, β0, α1, and β1.
15 If k < 0 with |k| small enough the form a(u, v) is still coercive. On the other hand, an explicit
calculation shows that there exist a negative value of k and (smooth) functions f for which (27) has
no solution (see Exercise 8.21).
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∫

R

u′v′ +
∫

R

uv =
∫

R

f v ∀v ∈ H 1(R).

We have first to prove that any classical solution u is a weak solution; let us check in
the first place that u ∈ H 1(R). Choose a sequence (ζn) of cut-off functions as in the
proof of Theorem 8.7. Multiplying (30) by ζnu and integrating by parts, we obtain

∫

R

u′(ζnu′ + ζ ′
nu)+

∫

R

ζnu
2 =

∫

R

ζnf u,

from which we deduce

(31)
∫

R

ζn(u
′2 + u2) =

∫

R

ζnf u+ 1

2

∫

R

ζ ′′
n u

2.

But
1

2

∫

R

ζ ′′
n u

2 ≤ C

n2

∫

n<|x|<2n
u2 with C = ‖ζ ′′‖L∞(R)

and 1
n2

∫

n<|x|<2n u
2 → 0 as n → ∞, since u(x) → 0 as |x| → ∞. Inserting the

inequality ∫

R

ζnf u ≤ 1

2

∫

R

ζnu
2 + 1

2

∫

R

ζnf
2

in (31), we see that
∫
ζn(u

′2 + u2) remains bounded as n → ∞ and therefore
u ∈ H 1(R).

Assuming that u is a classical solution of (30), we have
∫

R

u′v′ +
∫

R

uv =
∫

R

f v ∀v ∈ C1
c (R).

By density (and since u ∈ H 1(R)) this holds for every v ∈ H 1(R). Therefore u is a
weak solution of (30).

To obtain existence and uniqueness of a weak solution it suffices to apply Lax–
Milgram in the Hilbert space H 1(R). One easily verifies that the weak solution u
belongs toH 2(R) and if furthermore f ∈ C(R) then u ∈ C2(R). We conclude (using
Corollary 8.9) that given f ∈ L2(R) ∩ C(R), problem (30) has a unique classical
solution (which furthermore belongs to H 2(R)).

Remark 24. The problem
{

−u′′ = f on R,

u(x) → 0 as |x| → ∞,

cannot be attacked by the preceding technique because the bilinear form a(u, v) =∫
u′v′ is not coercive in H 1(R). In fact, this problem need not have a solution even

if f is smooth with compact support (why?).

Remark 25. On the other hand, the same method applies to the problem
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{
−u′′ + u = f on I = (0,+∞),

u(0) = 0 and u(x) → 0 as x → +∞,

with f given in L2(0, +∞).

8.5 The Maximum Principle

Here is a very useful property called the maximum principle.

• Theorem 8.19. Let f ∈ L2(I ) with I = (0, 1) and let u ∈ H 2(I ) be the solution
of the Dirichlet problem

(32)

{
−u′′ + u = f on I,

u(0) = α, u(1) = β.

Then we have, for every x ∈ I ,16

(33) min{α, β, inf
I
f } ≤ u(x) ≤ max{α, β, sup

I

f }.

Proof (using Stampacchia’s truncation method). We have

(34)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1
0 (I ).

Fix any function G ∈ C1(R) such that

(i) G is strictly increasing on (0, +∞),
(ii) G(t) = 0 for t ∈ (−∞, 0].

SetK = max{α, β, supI f } and suppose thatK < ∞. We shall show that u ≤ K

on I. The function v = G(u−K) belongs to H 1(I ) and even to H 1
0 (I ), since

u(0)−K = α −K ≤ 0 and u(1)−K = β −K ≤ 0.

Plugging v into (34), we obtain
∫

I

u′2G′(u−K)+
∫

I

uG(u−K) =
∫

I

fG(u−K),

that is,
∫

I

u′2G′(u−K)+
∫

I

(u−K)G(u−K) =
∫

I

(f −K)G(u−K).

16 sup f and inf f refer respectively to the essential sup (possibly +∞) and the essential inf of f
(possibly −∞). Recall that ess sup f = inf{C; f (x) ≤ C a.e.} and ess inf f = −ess sup(−f ).
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But (f−K) ≤ 0 andG(u−K) ≥ 0, from which it follows that (f−K)G(u−K) ≤ 0,
and therefore ∫

I

(u−K)G(u−K) ≤ 0.

Since tG(t) ≥ 0 ∀t ∈ R, the preceding inequality implies (u−K)G(u−K) = 0 a.e.
It follows that u ≤ K a.e., and consequently everywhere on I , since u is continuous.
The lower bound for u is obtained by applying this upper bound to −u.

Remark 26. Whenf ∈ C(Ī ), thenu ∈ C2(Ī ) and one can establish (33) by a different
method: the classical approach to the maximum principle. Let x0 ∈ Ī be the point
where u attains its maximum on Ī . If x0 = 0 or if x0 = 1 the conclusion is obvious.
Otherwise, 0 < x0 < 1 and then u′(x0) = 0, u′′(x0) ≤ 0. From equation (33) it
follows that

u(x0) = f (x0)+ u′′(x0) ≤ f (x0) ≤ K

and therefore u ≤ K on I .

Here are some immediate consequences of Theorem 8.19.

• Corollary 8.20. Let u be a solution of (34).

(i) If u ≥ 0 on ∂I and if f ≥ 0 on I , then u ≥ 0 on I .
(ii) If u = 0 on ∂I and if f ∈ L∞(I ), then ‖u‖L∞(I ) ≤ ‖f ‖L∞(I ).

(iii) If f = 0 on I , then ‖u‖L∞(I ) ≤ ‖u‖L∞(∂I ).

We have a similar result for the case of Neumann condition.

Proposition 8.21. Let f ∈ L2(I ) with I = (0, 1) and let u ∈ H 2(I ) be the solution
of the problem {

−u′′ + u = f on I,

u′(0) = u′(1) = 0.

Then we have, for every x ∈ Ī ,

(35) inf
I
f ≤ u(x) ≤ sup

I

f.

Proof. We have

(36)
∫

I

u′v′ +
∫

I

uv =
∫

I

f v ∀v ∈ H 1(I ).

Plug v = G(u−K) into (36) with K = supI f and the same function G as above.
Then proceed just as in the proof of Theorem 8.19.

Remark 27. If f ∈ C(Ī ), then u ∈ C2(Ī ) and we can establish (35) along the same
lines as in Remark 26. Note that if u achieves its maximum on ∂I , say at 0, then
u′′(0) ≤ 0 (extending u by reflection to the left of 0 and using the fact that u′(0) = 0).
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Remark 28. Let f ∈ L2(R) and let u ∈ H 2(R) be the solution of
{

−u′′ + u = f on R,

u(x) → 0 as |x| → ∞,

discussed in Example 8. Then we have, for all x ∈ R,

inf
R

f ≤ u(x) ≤ sup
R

f.

8.6 Eigenfunctions and Spectral Decomposition

The following is a basic result.

• Theorem 8.22. Let p ∈ C1(Ī ) with I = (0, 1) and p ≥ α > 0 on I; let q ∈ C(Ī ).
Then there exist a sequence (λn) of real numbers and a Hilbert basis (en) of L2(I )

such that en ∈ C2(Ī ) ∀n and

(37)

{
−(pe′n)′ + qen = λnen on I,

en(0) = en(1) = 0.

Furthermore, λn → +∞ as n → +∞.

One says that the (λn) are the eigenvalues of the differential operator Au =
−(pu′)′ + qu with Dirichlet boundary condition and that the (en) are the associated
eigenfunctions.

Proof. We can always assume q ≥ 0, for if not, pick any constant C such that
q +C ≥ 0, which amounts to replacing λn by λn +C in (37). For every f ∈ L2(I )

there exists a unique u ∈ H 2(I ) ∩H 1
0 (I ) satisfying

(38)

{
−(pu′)′ + qu = f on I,

u(0) = u(1) = 0.

Denote by T the operator f 
→ u considered as an operator fromL2(I ) intoL2(I ).17

We claim that T is self-adjoint and compact. First, the compactness. Because of
(38) we have ∫

I

pu′2 +
∫

I

qu2 =
∫

I

f u

and thus α‖u′‖2
L2 ≤ ‖f ‖L2‖u‖L2 . It follows that ‖u‖H 1 ≤ C‖f ‖L2 , where C is a

constant depending only on α. This can be written as

‖Tf ‖H 1 ≤ C‖f ‖L2 ∀f ∈ L2(I ).

17 We could also envisage T as an operator from H 1
0 into H 1

0 (see Section 9.8, Remark 28).
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Since the injection of H 1(I ) into L2(I ) is compact (because I is bounded), we
deduce that T is a compact operator from L2(I ) into L2(I ). Next, we show that T
is self-adjoint, i.e.,

∫

I

(Tf )g =
∫

I

f (T g) ∀f, g ∈ L2(I ).

Indeed, setting u = Tf and v = T g, we have

(39) −(pu′)′ + qu = f

and

(40) −(pv′)′ + qv = g.

Multiplying (39) by v and (40) by u and then integrating, we obtain
∫

I

pu′v′ +
∫

I

quv =
∫

I

f v =
∫

I

gu,

which is the desired conclusion.
Finally, we note that

(41)
∫

I

(Tf )f =
∫

I

uf =
∫

I

pu′2 + qu2 ≥ 0 ∀f ∈ L2(I )

and also that N(T ) = {0}, since Tf = 0 implies u = 0 and so f = 0.
Applying Theorem 6.11, we know that L2(I ) admits a Hilbert basis (en)n≥1

consisting of eigenvectors of T with corresponding eigenvalues (μn)n≥1. We have
μn > 0 ∀n (μn ≥ 0 by (41) and μn 	= 0, since N(T ) = {0}). We also know that
μn → 0. Writing that T en = μnen, we obtain

{
−(pe′n)′ + qen = λnen with λn = 1/μn,

en(0) = en(1) = 0.

In addition, we have en ∈ C2(Ī ), since f = λnen ∈ C(Ī ) (in fact en ∈ C∞(Ī ) if
p, q ∈ C∞(Ī )).

Example. If p ≡ 1 and q ≡ 0 we have

en(x) = √
2 sin(nπx) and λn = n2π2, n = 1, 2, . . . .

Remark 29. For the same differential operator the eigenvalues and the eigenfunctions
vary with the boundary conditions. As an exercise determine the eigenvalues of the
operator Au = −u′′ with the boundary conditions of Examples 3, 5, 6, and 7.
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Remark 30. The assumption that I is bounded enters in an essential way in show-
ing the compactness of the operator T . When I is not bounded the conclusion of
Theorem 8.22 is in general false;18 one encounters instead the very interesting phe-
nomenon of continuous spectrum—on this subject, see, e.g., M. Reed–B. Simon [1].
In Exercise 8.38 we determine the eigenvalues and the spectrum of the operator
T : f 
→ u, where u ∈ H 2(R) is the solution of problem (30): T is a self-adjoint
bounded operator from L2(R) into itself, but it is not compact.

Comments on Chapter 8

1. Some further inequalities.
Let us mention some very useful inequalities involving the Sobolev norms:

(i) Poincaré–Wirtinger’s inequality.
Let I be a bounded interval. Given u ∈ L2(I ), set ū = 1

|I |
∫

I
u (this is the mean

of u on I ). We have

‖u− ū‖∞ ≤ ‖u′‖1 ∀u ∈ W 1,1(I )

(see Problem 47).

(ii) Hardy’s inequality.
Let I = (0, 1) and let u ∈ W 1,p

0 (I ) with 1 < p < ∞. Then the function

v(x) = u(x)

x(1 − x)

belongs to Lp(I) and furthermore,

‖v‖p ≤ Cp‖u′‖p ∀u ∈ W 1,p
0 (I )

(see Exercise 8.8).

(iii) Interpolation inequalities of Gagliardo–Nirenberg.
Let I be a bounded interval and let 1 ≤ r ≤ ∞, 1 ≤ q ≤ p ≤ ∞. Then there

exists a constant C such that

(42) ‖u‖p ≤ C‖u‖1−a
q ‖u‖a

W 1,r ∀u ∈ W 1,r (I ),

where 0 ≤ a ≤ 1 is defined by a( 1
q

− 1
r

+ 1) = 1
q

− 1
p

(see Exercise 8.15). In
particular, it follows from inequality (42) that if p < ∞ (or even if p = ∞ but
r > 1), then

18 In certain circumstances, with some appropriate assumptions on p and q, the conclusion of
Theorem 8.22 still holds on unbounded intervals (see Problem 51).
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(43)

{
∀ε > 0 ∃Cε > 0 such that

‖u‖p ≤ ε‖u‖W 1,r + Cε‖u‖q ∀u ∈ W 1,r (I ).

One can also establish (43) by a direct “compactness method”; see Exercise 8.5. Other
more general inequalities can be found in L. Nirenberg [1] (see alsoA. Friedman [2]).
In particular, we call attention to the inequality

‖u′‖p ≤ C‖u‖1/2
W 2,r‖u‖1/2

q ∀u ∈ W 2,r (I ),

where p is the harmonic mean of q and r , i.e., 1
p

= 1
2 (

1
q

+ 1
r
).

2. Hilbert–Schmidt operators.
It can be shown that the operator T : f 
→ u that associates to each f in L2(I ) the
unique solution u of the problem

{
−(pu′)′ + qu = f on I = (0, 1),

u(0) = u(1) = 0

(assuming p ≥ α > 0 and q ≥ 0) is a Hilbert–Schmidt operator from L2(I ) into
L2(I ); see Exercise 8.37.

3. Spectral properties of Sturm–Liouville operators.
Many spectral properties of the Sturm–Liouville operator Au = −(pu′)′ + qu with
Dirichlet condition on a bounded interval I are known. Among these let us mention
that:

(i) Each eigenvalue has multiplicity one: it is then said that each eigenvalue is
simple.

(ii) If the eigenvalues (λn) are arranged in increasing order, then the eigenfunction
en(x) corresponding to λn possesses exactly (n−1) zeros on I ; in particular the
first eigenfunction e1(x) has a constant sign on I , and usually one takes e1 > 0
on I .

(iii) The quotient λn/n2 converges as n → ∞ to a positive limit.

Some of these properties are discussed in Exercises 8.33, 8.42 and Problem 49.
The interested reader can also consult Weinberger [1], M. Protter–H. Weinberger [1],
E. Coddington–N. Levinson [1], Ph. Hartman [1], S. Agmon [1], R. Courant–
D. Hilbert [1], Vol. 1, E. Ince [1], Y. Pinchover–J. Rubinstein [1], A. Zettl [1], and
G. Buttazzo–M. Giaquinta–S. Hildebrandt [1].

The celebrated Gelfand–Levitan theory deals with an important “inverse” prob-
lem: what informations on the function q(x) can one retrieve purely from the knowl-
edge of the spectrum of the Sturm–Liouville operator Au = −u′′ + q(x)u? This
question has attracted much attention because of its numerous applications; see, e.g.,
B. Levitan [1] and also Comment 13 in Chapter 9.
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Exercises for Chapter 8

8.1 Consider the function

u(x) = (1 + x2)−α/2(log(2 + x2))−1, x ∈ R,

with 0 < α < 1. Check that u ∈ W 1,p(R) ∀p ∈ [1/α,∞] and that u /∈ Lq(R)

∀q ∈ [1, 1/α).

8.2 Let I = (0, 1).

1. Assume that (un) is a bounded sequence in W 1,p(I ) with 1 < p ≤ ∞.
Show that there exist a subsequence (unk ) and some u in W 1,p(I ) such that
‖unk − u‖L∞ → 0. Moreover, u′

nk
⇀ u′ weakly in Lp(I) if 1 < p < ∞, and

u′
nk

�
⇀ u′ in σ(L∞, L1) if p = ∞.

2. Construct a bounded sequence (un) in W 1,1(I ) that admits no subsequence con-
verging in L∞(I ).

[Hint: Consider the sequence (un) defined by

un(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ [0, 1
2 ],

n(x − 1
2 ) if x ∈ ( 1

2 ,
1
2 + 1

n
),

1 if x ∈ [ 1
2 + 1

n
, 1],

with n ≥ 2.]

8.3 Helly’s selection theorem.
Let (un) be a bounded sequence in W 1,1(0, 1). The goal is to prove that there

exists a subsequence (unk ) such that unk (x) converges to a limit for every x ∈ [0, 1].
1. Show that we may always assume in addition that

(1) ∀n, un is nondecreasing on [0, 1].
[Hint: Consider the sequences vn(x) = ∫ x

0 |u′
n(t)|dt and wn = vn − un.]

In what follows we assume that (1) holds.

2. Prove that there exist a subsequence (unk ) and a measurable set E ⊂ [0, 1]
with |E| = 0 such that unk (x) converges to a limit, denoted by u(x), for every
x ∈ [0, 1] \ E.

[Hint: Use the fact that W 1,1 ⊂ L1 with compact injection.]

3. Show that u is nondecreasing on [0, 1] \E and deduce that there are a countable
set D ⊂ (0, 1) and a nondecreasing function u : (0, 1) \ D → R such that
u(x + 0) = u(x − 0) ∀x ∈ (0, 1) \D and u(x) = u(x) ∀x ∈ (0, 1) \ (D ∪ E).

4. Prove that unk (x) → u(x) ∀x ∈ (0, 1) \D.
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5. Construct a subsequence from the sequence (unk ) that converges for every x ∈
[0, 1].
[Hint: Use a diagonal process.]

8.4 Fix a function ϕ ∈ C∞
c (R), ϕ 	≡ 0, and set un(x) = ϕ(x+n). Let 1 ≤ p ≤ ∞.

1. Check that (un) is bounded in W 1,p(R).

2. Prove that there exists no subsequence (unk ) converging strongly in Lq(R), for
any 1 ≤ q ≤ ∞.

3. Show that un ⇀ 0 weakly in W 1,p(R) ∀p ∈ (1,∞).

8.5 Let p > 1.

1. Prove that ∀ε > 0 ∃C = C(ε, p) such that

(1) ‖u‖L∞(0,1) ≤ ε‖u′‖Lp(0,1) + C‖u‖L1(0,1) ∀u ∈ W 1,p(0, 1).

[Hint: Use Exercise 6.12 with X = W 1,p(0, 1), Y = L∞(0, 1), and Z =
L1(0, 1).]

2. Show that (1) fails when p = 1.

[Hint: Take u(x) = xn and let n → ∞.]

3. Let 1 ≤ q < ∞. Prove that ∀ε > 0 ∃C = C(ε, q) such that

(2) ‖u‖Lq(0,1) ≤ ε‖u′‖L1(0,1) + C‖u‖L1(0,1) ∀u ∈ W 1,1(0, 1).

8.6 Let I = (0, 1) and p > 1.

1. Check that W 2,p(I ) ⊂ C1(I ) with compact injection.

2. Deduce that ∀ε > 0, ∃C = C(ε, p) such that

‖u′‖L∞(I ) + ‖u‖L∞(I ) ≤ ε‖u′′‖Lp(I) + C‖u‖L1(I ) ∀u ∈ W 2,p(I ).

3. Let 1 ≤ q < ∞. Prove that ∀ε > 0 ∃C = C(ε, q) such that

‖u′‖Lq(I) + ‖u‖L∞(I ) ≤ ε‖u′′‖L1(I ) + C‖u‖L1(I ) ∀u ∈ W 2,1(I ).

More generally, let m ≥ 2 be an integer.

4. Show that ∀ε > 0 ∃C = C(ε,m, p) such that
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m−1∑

j=0

‖Dju‖L∞(I ) ≤ ε‖Dmu‖Lp(I) + C‖u‖L1(I ) ∀u ∈ Wm,p(I ).

5. Let 1 ≤ q < ∞. Prove that ∀ε > 0 ∃C = C(ε, q) such that

‖D(m−1)u‖Lq(I)+
m−2∑

j=0

‖Dju‖L∞(I ) ≤ ε‖Dmu‖L1(I )+C‖u‖L1(I ) ∀u ∈ Wm,1(I ).

8.7 Let I = (0, 1). Given a function u defined on I , set

u(x) =
{
u(x) if x ∈ I,
0 if x ∈ R, x /∈ I.

1. Assume that u ∈ W 1,p
0 (I ) with 1 ≤ p < ∞. Prove that u ∈ W 1,p(R).

2. Conversely, let u ∈ Lp(I) with 1 ≤ p < ∞ be such that u ∈ W 1,p(R). Show
that u ∈ W 1,p

0 (I ).

3. Let u ∈ Lp(I) with 1 < p < ∞. Show that u ∈ W
1,p
0 (I ) iff there exists a

constant C such that
∣
∣
∣
∣

∫

R

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖

Lp
′
(R)

∀ϕ ∈ C1
c (R).

8.8

1. Letu ∈ W 1,p(0, 1)with 1 < p < ∞. Show that ifu(0) = 0, then u(x)
x

∈ Lp(0, 1)
and ∥

∥
∥
∥
u(x)

x

∥
∥
∥
∥
Lp(0,1)

≤ p

p − 1
‖u′‖Lp(0,1).

[Hint: Use Problem 34, part C.]

2. Conversely, assume that u ∈ W 1,p(0, 1) with 1 ≤ p < ∞ and that u(x)
x

∈
Lp(0, 1). Show that u(0) = 0.

[Hint: Argue by contradiction.]

3. Let u(x) = (1 + | log x|)−1. Check that u ∈ W 1,1(0, 1), u(0) = 0, but u(x)
x

/∈
L1(0, 1).

4. Assume that u ∈ W 1,p(0, 1) with 1 ≤ p < ∞ and u(0) = 0. Fix any function
ζ ∈ C∞(R) such that ζ(x) = 0 ∀x ∈ (−∞, 1] and ζ(x) = 1 ∀x ∈ [2,+∞).
Set ζn(x) = ζ(nx) and un(x) = ζn(x)u(x), n = 1, 2 . . . . Check that un ∈
W 1,p(0, 1) and prove that un → u in W 1,p(0, 1) as n → ∞.
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[Hint: Consider separately the cases p = 1 and p > 1.]

8.9 Set I = (0, 1).

1. Let u ∈ W 2,p(I ) with 1 < p < ∞. Assume that u(0) = u′(0) = 0. Show that
u(x)

x2 ∈ Lp(I) and u′(x)
x

∈ Lp(I) with

(1)

∥
∥
∥
∥
u(x)

x2

∥
∥
∥
∥
Lp(I)

+
∥
∥
∥
∥
u′(x)
x

∥
∥
∥
∥
Lp(I)

≤ Cp‖u′′‖Lp(I).

[Hint: Look at Exercise 8.8.]

2. Deduce that v(x) = u(x)
x

∈ W 1,p(I ) with v(0) = 0.

3. Let u be as in question 1. Set un = ζnu, where ζn is defined in question 4 of
Exercise 8.8. Check that un ∈ W 2,p(I ) and un → u in W 2,p(I ) as n → ∞.

4. More generally, let m ≥ 1 be an integer, and let 1 < p < ∞. Assume that
u ∈ Xm, where

Xm = {u ∈ Wm,p(I ); u(0) = Du(0) = · · · = Dm−1u(0) = 0}.
Show that u(x)

xm
∈ Lp(I) and that u(x)

xm−1 ∈ X1.

[Hint: Use induction on m.]

5. Assume that u ∈ Xm and prove that

v = Dju(x)

xm−j−k ∈ Xk ∀j, k integers, j ≥ 0, k ≥ 1, j + k ≤ m− 1.

6. Let u be as in question 4 and ζn as in question 3. Prove that ζnu ∈ Wm,p(I ) and
ζnu → u in Wm,p(I ), as n → ∞.

7. Give a proof of Remark 18 in Chapter 8 when p > 1.

8. Assume now that u ∈ W 2,1(I ) with u(0) = u′(0) = 0. Set

v(x) =
{
u(x)
x

if x ∈ (0, 1],
0 if x = 0.

Check that v ∈ C([0, 1]). Prove that v ∈ W 1,1(I ).

[Hint: Note that v′(x) = 1
x2

∫ x
0 u

′′(t)tdt .]

9. Construct an example of a function u ∈ W 2,1(I ) satisfying u(0) = u′(0) = 0,
but u(x)

x2 /∈ L1(I ) and u′(x)
x

/∈ L1(I ).

[Hint: Use question 3 in Exercise 8.8.]
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10. Let u be as in question 8, and ζn as in question 3. Check that un = ζnu ∈ W 2,1(I ),
and that un → u in W 2,1(I ), as n → ∞.

11. Give a proof of Remark 18 in Chapter 8 when m = 2 and p = 1.

12. Generalize questions 8–11 to Wm,1(I ) with m ≥ 2.

[The result of question 8, and its generalization to m ≥ 2, are due to Hernan
Castro and Hui Wang.]

8.10 Let I = (0, 1). Let u ∈ W 1,p(I ) with 1 ≤ p < ∞. Our goal is to prove that
u′ = 0 a.e. on the set E = {x ∈ I ; u(x) = 0}.

Fix a function G ∈ C1(R,R) such that |G(t)| ≤ 1 ∀t ∈ R, |G′(t)| ≤ C ∀t ∈ R,
for some constant C, and

G(t) =

⎧
⎪⎨

⎪⎩

1 if t ≥ 1,

t if |t | ≤ 1/2,

−1 if t ≤ −1.

Set

vn(x) = 1

n
G(nu(x)).

1. Check that ‖vn‖L∞(I ) → 0 as n → ∞.

2. Show that vn ∈ W 1,p(I ) and compute v′
n.

3. Deduce that |v′
n| is bounded by a fixed function in Lp(I).

4. Prove that v′
n(x) → f (x) a.e. on I , as n → ∞, and identify f .

[Hint: Consider separately the cases x ∈ E and x /∈ E. ]

5. Deduce that v′
n → f in Lp(I).

6. Prove that f = 0 a.e. on I and conclude that u′ = 0 a.e. on E.

8.11 Let F ∈ C(R,R) and assume that F ∈ C1(R \ {0}) with |F ′(t)| ≤ C ∀t ∈
R \ {0}, for some constant C. Let 1≤ p < ∞.

The goal is to prove that for every u ∈ W 1,p(0, 1), v = F(u) belongs to
W 1,p(0, 1) and

v′(x) =
{
F ′(u(x))u′(x) a.e. on [u(x) 	= 0],
0 a.e. on [u(x) = 0].

1. Construct a sequence (Fn) in C∞(R) such that ‖F ′
n‖L∞(R) ≤ C ∀n and
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{
Fn → F uniformly on compact subsets of R,

F ′
n → F ′ uniformly on compact subsets of R \ {0}.

2. Check that vn = Fn(u) ∈ W 1,p(0, 1) and that v′
n = F ′

n(u)u
′.

3. Prove that vn → v = F(u) in C([0, 1]) and that v′
n converges in Lp(0, 1) to f ,

where

f (x) =
{
F ′(u(x))u′(x) a.e. on [u(x) 	= 0],
0 a.e. on [u(x) = 0].

[Hint: Apply dominated convergence and Exercise 8.10.]

4. Deduce that v ∈ W 1,p(0, 1) and v′ = f . Show that vn → v in W 1,p(0, 1).

5. Let (uk) be a sequence inW 1,p(0, 1) such that uk → u inW 1,p(0, 1). Prove that
F(uk) → F(u) in W 1,p.

[Hint: Applying Theorem 4.9 and passing to a subsequence (still denoted by uk),
one may assume that u′

k → u′ a.e. on (0, 1) and |u′
k| ≤ g ∀k, for some function

g ∈ Lp(0, 1). Set wk = F(uk) and check that w′
k → f a.e. on (0, 1), where f is

defined in question 3. Deduce that wk → F(u) in W 1,p(0, 1). Conclude that the
full original sequence F(uk) converges to F(u) in W 1,p(0, 1).]

6. Application: take F(t) = t+ = max{t, 0}. Check that u+ ∈ W 1,p(0, 1) ∀u ∈
W 1,p(0, 1). Compute (u+)′.

8.12 Let I = (0, 1) and 1 ≤ p ≤ ∞. Set

Bp = {u ∈ W 1,p(I ); ‖u‖Lp(I) + ‖u′‖Lp(I) ≤ 1}.

1. Prove that Bp is a closed subset of Lp(I) when 1 < p ≤ ∞; more precisely, Bp
is compact in Lp(I).

2. Show that B1 is not a closed subset of L1(I ).

8.13 Let 1 ≤ p < ∞ and u ∈ W 1,p(R). Set

Dhu(x) = 1

h
(u(x + h)− u(x)), x ∈ R, h > 0.

Show that Dhu → u′ in Lp(R) as h → 0.

[Hint: Use the fact that C1
c (R) is dense in W 1,p(R).]

8.14 Let u ∈ C1((0, 1)). Prove that the following conditions are equivalent:

(a) u ∈ W 1,1(0, 1),
(b) u′ ∈ L1(0, 1) (where u′ denotes the derivative of u in the usual sense),
(c) u ∈ BV (0, 1) (for the definition of BV see Remark 8).
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Check that the function u(x) = x sin(1/x), 0 < x ≤ 1, with u(0) = 0, is
continuous on [0, 1] and that u /∈ W 1,1(0, 1).

8.15 Gagliardo–Nirenberg’s inequality (first form).

Let I = (0, 1).

1. Let 1 ≤ q < ∞ and 1 < r ≤ ∞. Prove that

(1) ‖u‖L∞(I ) ≤ C‖u‖a
W 1,r (I )

‖u‖1−a
Lq(I ) ∀u ∈ W 1,r (I )

for some constant C = C(q, r), where 0 < a < 1 is defined by

(2) a

(
1

q
+ 1 − 1

r

)

= 1

q
.

[Hint: Start with the case u(0) = 0 and write G(u(x)) = ∫ x
0 G

′(u(t))u′(t)dt ,
whereG(t) = |t |α−1t and α = 1

a
. When u(0) 	= 0, apply the previous inequality

to ζu, where ζ ∈ C1([0, 1]), ζ(0) = 0, and ζ(t) = 1 for t ∈ [ 1
2 , 1].]

2. Let 1 ≤ q < p < ∞ and 1 ≤ r ≤ ∞.

Prove that

(3) ‖u‖Lp(I) ≤ C‖u‖b
W 1,r (I )

‖u‖1−b
Lq(I ) ∀u ∈ W 1,r (I )

for some constant C = C(p, q, r), where 0 < b < 1 is defined by

(4) b

(
1

q
+ 1 − 1

r

)

= 1

q
− 1

p
.

[Hint: Write ‖u‖pLp(I) = ∫

I
|u|q |u|p−q ≤ ‖u‖qLq(I )‖u‖p−q

L∞ and use (1) if r > 1.]

3. With the same assumptions as in question 2 show that

(5) ‖u‖Lp(I) ≤ C‖u′‖bLr (I )‖u‖1−b
Lq(I ) ∀u ∈ W 1,r (I ) with

∫

I

u = 0.

8.16 Let E = Lp(0, 1) with 1 ≤ p < ∞. Consider the unbounded operator
A : D(A) ⊂ E → E defined by

D(A) = {u ∈ W 1,p(0, 1), u(0) = 0} and Au = u′.

1. Check thatD(A) is dense inE and thatA is closed (i.e.,G(A) is closed inE×E).

2. Determine R(A) and N(A).

3. Compute A�. Check that D(A�) is dense in E� = Lp
′
(0, 1) when 1 < p < ∞,

but D(A�) is not dense in E� = L∞(0, 1) when p = 1.
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4. Same questions for the operator Ã defined by

D(Ã) = W
1,p
0 (0, 1) and Ãu = u′.

8.17 Let H = L2(0, 1) and let A : D(A) ⊂ H → H be the unbounded operator
defined by Au = u′′, whose domain D(A) will be made precise below. Determine
A�,D(A�), N(A), and N(A�) in the following cases:

1. D(A) = {u ∈ H 2(0, 1); u(0) = u(1) = 0}.
2. D(A) = H 2(0, 1).

3. D(A) = {u ∈ H 2(0, 1); u(0) = u(1) = u′(0) = u′(1) = 0}.
4. D(A) = {u ∈ H 2(0, 1); u(0) = u(1)}.

Same questions for the operator Au = u′′ − xu′.

8.18 Check that the mapping u 
→ u(0) fromH 1(0, 1) into R is a continuous linear
functional on H 1(0, 1). Deduce that there exists a unique v0 ∈ H 1(0, 1) such that

u(0) =
∫ 1

0
(u′v′

0 + uv0) ∀u ∈ H 1(0, 1).

Show that v0 is the solution of some differential equation with appropriate boundary
conditions. Compute v0 explicitly.

[Hint: Consider Example 4 in Section 8.4.]

8.19 LetH = L2(0, 1) and consider the function ϕ : H → (−∞,+∞] defined by

ϕ(u) =
{

1
2

∫ 1
0 u

′2 if u ∈ H 1(0, 1),

+∞ if u ∈ L2(0, 1) and u /∈ H 1(0, 1).

1. Check that ϕ is convex and l.s.c.
2. Compute ϕ�(f ) for every f ∈ H .

[Hint: Show first that ϕ�(f ) = +∞ if
∫ 1

0 f 	= 0. Assume next that
∫ 1

0 f = 0

and set F(x) = ∫ x
0 f (t)dt . Note that

∫ 1
0 f v = − ∫ 1

0 Fv
′ ∀v ∈ H 1(0, 1).]

8.20 Set
V = {v ∈ H 1(0, 1); v(0) = 0}.

1. Given f ∈ L2(0, 1) such that 1
x
f (x) ∈ L2(0, 1), prove that there exists a unique

u ∈ V satisfying

(1)
∫ 1

0
u′(x)v′(x)dx +

∫ 1

0

u(x)v(x)

x2 dx =
∫ 1

0

f (x)v(x)

x2 dx ∀v ∈ V.
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[Hint: Use question 1 in Exercise 8.8.]

2. What is the minimization problem associated with (1)?

In what follows we assume that 1
x2 f (x) ∈ L2(0, 1).

3. In (1) choose v(x) = u(x)

(x+ε)2 , ε > 0, and deduce that

(2)
∫ 1

0

∣
∣
∣
∣
d

dx

(
u(x)

x + ε

)∣
∣
∣
∣

2

dx ≤
∫ 1

0

f (x)

x2

u(x)

(x + ε)2
dx.

4. Prove that u(x)
x2 ∈ L2(0, 1), u(x)

x
∈ H 1(0, 1), and u′(x)

x
∈ L2(0, 1).

[Hint: Use once more question 1 in Exercise 8.8 and pass to the limit as ε → 0.]

5. Deduce that u ∈ H 2(0, 1) and that

(3)

{
−u′′(x)+ u(x)

x2 = f (x)

x2 a.e. on (0, 1),

u(0) = u′(0) = 0 and u′(1) = 0.

6. Conversely, assume that a function u ∈ H 2(0, 1) satisfies u(x)
x2 ∈ L2(0, 1) and (3).

Show that (1) holds.

8.21 Assume that p ∈ C1([0, 1]) with p(x) ≥ α > 0 ∀x ∈ [0, 1] and q ∈
C([0, 1]) with q(x) ≥ 0 ∀x ∈ [0, 1]. Let v0 ∈ C2([0, 1]) be the unique solution of

(1)

{
−(pv′

0)
′ + qv0 = 0 on [0, 1],

v0(0) = 1, v0(1) = 0.

Set k0 = v′
0(0).

1. Check that k0 ≤ −α/p(0).
[Hint: Multiply equation (1) by v0 and integrate by parts. Use the fact that
1 ≤ ‖v′

0‖1 ≤ ‖v′
0‖2.]

We now investigate the problem

(2)

{
−(pu′)′ + qu = f on (0, 1),

u′(0) = ku(0), u(1) = 0,

where k ∈ R is fixed and f ∈ L2(0, 1) is given.

2. Assume k = k0. Show that

[(2) has a solution u ∈ H 2(0, 1)] ⇐⇒
[∫ 1

0
f v0 = 0

]

.
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Is there uniqueness of u?

3. Assume now that k 	= k0. Prove that for every f ∈ L2(0, 1), problem (2) admits
a unique solution u ∈ H 2(0, 1).

[Hint: Using Exercise 8.5, find a constantK such that the bilinear form a(u, v) =
∫ 1

0 (pu
′v′ + quv + Kuv) + p(0)ku(0)v(0) is coercive on H 1. Write (2) in the

form u = T (f + Ku) for some appropriate compact operator T . Then apply
assertion (c) in the Fredholm alternative.]

8.22 Set

K = {ρ ∈ H 1(0, 1); ρ ≥ 0 on (0, 1) and
√
ρ ∈ H 1(0, 1)}.

1. Construct an example of a function ρ ∈ H 1(0, 1) with ρ ≥ 0 on (0, 1) such that
ρ /∈ K .

2. Given ρ ∈ H 1(0, 1) with ρ ≥ 0 on (0, 1), set

μ =
{

1
2
ρ′√
ρ

on [ρ > 0],
0 on [ρ = 0].

Prove that ρ ∈ K ⇐⇒ μ ∈ L2, and then (
√
ρ)′ = μ.

[Hint: Consider ρε = ρ + ε.]

3. Show that K is a convex cone with vertex at 0.

4. Prove that the function ρ ∈ K 
→ ‖(√ρ)′‖2
L2 is convex.

8.23 Let I = (0, 1) and fix a constant k > 0.

1. Given f ∈ L1(I ) prove that there exists a unique u ∈ H 1
0 (I ) satisfying

(1)
∫

I

u′v′ + k

∫

I

uv =
∫

I

f v ∀v ∈ H 1
0 (I ).

2. Show that u ∈ W 2,1(I ).

3. Prove that

‖u‖L1(I ) ≤ 1

k
‖f ‖L1(I ).

[Hint: Fix a function γ ∈ C1(R,R) such that γ ′(t) ≥ 0 ∀t ∈ R, γ (0) = 0,
γ (t) = +1 ∀t ≥ 1, and γ (t) = −1 ∀t ≤ −1. Take v = γ (nu) in (1) and let
n → ∞.]

4. Assume now that f ∈ Lp(I) with 1 < p < ∞. Show that there exists a constant
δ > 0 independent of k and p, such that
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‖u‖Lp(I) ≤ 1

k + δ/pp′ ‖f ‖Lp(I).

[Hint: When 2 ≤ p < ∞, take v = γ (u) in (1), where γ (t) = |t |p−1 sign t .
When 1 < p < 2, use duality.]

5. Prove that if f ∈ L∞(I ), then

‖u‖L∞(I ) ≤ Ck‖f ‖L∞(I ),

and find the best constant Ck .

[Hint: Compute explicitly the solution u of (1) corresponding to f ≡ 1.]

8.24 Let I = (0, 1).

1. Prove that for every ε > 0 there exists a constant Cε such that

|u(1)|2 ≤ ε‖u′‖2
L2(I )

+ Cε‖u‖2
L2(I )

∀u ∈ H 1(I ).

[Hint: Use Exercise 8.5 or simply write

u2(1) = u2(x)+ 2
∫ 1

x

u(t)u′(t)dt.]

2. Prove that if the constant k > 0 is sufficiently large, then for every f ∈ L2(I )

there exists a unique u ∈ H 2(I ) satisfying

(1)

{
−u′′ + ku = f on (0, 1),

u′(0) = 0 and u′(1) = u(1).

What is the weak formulation of problem (1)? What is the associated minimiza-
tion problem?

3. Assume that k is sufficiently large. Let T be the operator T : f 
→ u, where u is
the solution of (1). Prove that T is a self-adjoint compact operator in L2(I ).

4. Deduce that there exist a sequence (λn) in R with |λn| → ∞ and a sequence (un)
of functions in C2(I ) such that ‖un‖L2(I ) = 1 and

{
−u′′

n = λnun on (0, 1),

u′
n(0) = 0 and u′

n(1) = un(1).

Prove that λn → +∞.

5. Let � be the set of all values of λ ∈ R for which there exists u 	≡ 0 satisfying
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{
−u′′ = λu on (0, 1),

u′(0) = 0 and u′(1) = u(1).

Determine the positive elements in �. Show that there is exactly one negative
value of λ (denoted by λ0) in �.

[Hint: Do not try to compute � explicitly; use instead the intersection of two
graphs.]

6. What happens in question 2 when k = |λ0|?

8.25 Let I = (0, 2) and V = H 1(I ). Consider the bilinear form

a(u, v) =
∫ 2

0
u′(t)v′(t)dt +

(∫ 1

0
u(t)dt

)(∫ 1

0
v(t)dt

)

.

1. Check that a(u, v) is a continuous symmetric bilinear form, and that a(u, u) = 0
implies u = 0.

2. Prove that a is coercive.

[Hint: Argue by contradiction and assume that there exists a sequence (un) in
H 1(I ) such that a(un, un) → 0 and ‖un‖H 1 = 1. Let (unk ) be a subsequence
such that unk converges weakly inH 1(I ) and strongly inL2(I ) to a limit u. Show
that u = 0.]

3. Deduce that for every f ∈ L2(I ) there exists a unique u ∈ H 1(I ) satisfying

(1) a(u, v) =
∫ 2

0
f v ∀v ∈ H 1(I ).

What is the corresponding minimization problem?

4. Show that the solution of (1) belongs to H 2(I ) (and in particular u ∈ C1(I )).
Determine the equation and the boundary conditions satisfied by u.

[Hint: It is convenient to set g = (
∫ 1

0 u)χ , where χ is the characteristic function
of (0, 1).]

5. Assume that f ∈ C(I), and let u be the solution of (1). Prove that u belongs to
W 2,p(I ) for every p < ∞. Show that u ∈ C2(I ) iff

∫

I
f = 0.

6. Determine explicitly the solution u of (1) when f is a constant.

7. Set u = Tf , where u is the solution of (1) and f ∈ L2(I ). Check that T is a
self-adjoint compact operator from L2(I ) into itself.

8. Study the eigenvalues of T .

8.26 A bounded linear operator S from a Hilbert space H into itself is said to be
nonnegative, written S ≥ 0, if
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(Sf, f ) ≥ 0 ∀f ∈ H.
Set I = (0, 1). Assume that p ∈ C1(I ) and q ∈ C(I) satisfy

p(x) ≥ α > 0 and q(x) ≥ α > 0 ∀x ∈ I .
Recall that given f ∈ H = L2(I ), there exists a unique solution u ∈ H 2(I ) of the
equation

(1) −(pu′)′ + qu = f on I

with the Dirichlet boundary condition

(2) u(0) = u(1) = 0.

The solution is denoted by uD = SDf , where SD is viewed as a bounded linear
operator from H into itself. Similarly, there exists a unique solution u ∈ H 2(I ) of
(1) with the Neumann boundary condition

(3) u′(0) = u′(1) = 0

This solution is denoted by uN = SNf , where SN is also viewed as a bounded linear
operator from H into itself.

1. Show that SD ≥ 0 and SN ≥ 0.

2. Recall the minimization principles associated with the Dirichlet and Neumann
conditions. Deduce that

(4)
1

2

∫

I

p(u′
N)

2 + qu2
N −

∫

I

f uN ≤ 1

2

∫

I

p(u′
D)

2 + qu2
D −

∫

I

f uD.

[Hint: Use the fact that H 1
0 ⊂ H 1.]

3. Prove that SN − SD ≥ 0.

[Hint: Use (4) together with (1) multiplied, respectively, by uD and uN .]

Given a real number k ≥ 0, consider the equation (1) associated to the boundary
condition

(5) p(0)u′(0) = ku(0) and u(1) = 0.

4. Check that problem (1) with (5) admits a unique solution, denoted by uk = Skf .

What is the corresponding minimization principle?

5. Show that Sk ≥ 0.

6. Let k1 ≥ k2 ≥ 0. Prove that Sk2 − Sk1 ≥ 0.
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8.27 Let I = (−1,+1). Consider the bilinear form defined on H 1
0 (I ) by

a(u, v) =
∫

I

(u′v′ + uv − λu(0)v),

where λ ∈ R is fixed.

1. Check that a(u, v) is a continuous bilinear form on H 1
0 (I ).

2. Prove that if |λ| < √
2, the bilinear form a is coercive.

[Hint: Check that |u(0)| ≤ ‖u′‖L2 ∀u ∈ H 1
0 (I ).]

3. Deduce that if |λ| < √
2, then for every f ∈ L2(I ) there exists a unique solution

u ∈ H 2(I ) ∩H 1
0 (I ) of the problem

(1)

{
−u′′ + u− λu(0) = f on I,

u(−1) = u(1) = 0.

4. Prove that there exists a unique value λ = λ0 ∈ R, to be determined explicitly,
such that the problem

(2)

{
−u′′ + u = λu(0) on I,

u(−1) = u(1) = 0,

admits a solution u 	≡ 0.

[Hint: It is convenient to introduce the unique solution ϕ of the problem

(3)

{
−ϕ′′ + ϕ = 1 on I,

ϕ(−1) = ϕ(1) = 0.

Compute ϕ explicitly.]

5. Prove that if λ 	= λ0, then for every f ∈ L2(I ) there exists a unique solution
u ∈ H 2(I ) ∩H 1

0 (I ) of (1).

[Hint: Consider the linear operator S : g 
→ v, where g ∈ L2(I ) and v ∈
H 2(I ) ∩H 1

0 (I ) is the unique solution of

(4)

{
−v′′ + v = g on I,

v(−1) = v(1) = 0.

Write (1) in the form u− λu(0)ϕ = Sf .]

6. Analyze completely problem (1) when λ = λ0.

[Hint: Find a simple necessary and sufficient condition on Sf such that problem
(1) admits a solution.]
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8.28 LetH = L2(0, 1) equipped with its usual scalar product. Consider the operator
T : H → H defined by

(Tf )(x) = x

∫ 1

x

f (t)dt +
∫ x

0
tf (t)dt, for 0 ≤ x ≤ 1.

1. Check that T is a bounded operator.

2. Prove that T is a compact operator.

3. Prove that T is self-adjoint.

4. Show that (Tf, f ) ≥ 0 ∀f ∈ H , and that (Tf, f ) = 0 implies f = 0.

5. Set u = Tf . Prove that u ∈ H 2(0, 1) and compute u′′. Check that u(0) =
u′(1) = 0.

6. Determine the spectrum and the eigenvalues of T . Examine carefully the case
λ = 0.

In what follows, set

ek(x) = √
2 sin

[(

k + 1

2

)

πx

]

, k = 0, 1, 2, . . . .

7. Check that (ek) is an orthonormal basis of H .

[Hint: Use question 6.]
8. Deduce that the sequence (ẽk) defined by

ẽk(x) = √
2 cos

[(

k + 1

2

)

πx

]

, k = 0, 1, 2, . . . ,

is also an orthonormal basis of H .

[Hint: Consider ek(1 − x).]

Given f ∈ H we denote by (αk(f )) the components of f in the basis (ek).

9. Compute αk(f ) for the following functions:

(a) f1(x) = χ[a,b](x) =
{

1 if x ∈ [a, b],
0 if x /∈ [a, b],

where 0 ≤ a < b ≤ 1.
(b) f2(x) = x.
(c) f3(x) = x2.

Finally, we propose to characterize the functions f ∈ L2(0, 1) that belong
to H 1(0, 1), using their components αk(f ).

10. Assume f ∈ H 1(0, 1). Prove that there exists a constant a ∈ R (depending on
f ) such that (kαk(f )+ a) ∈ �2, i.e.,
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(1)
∞∑

k=0

|kαk(f )+ a|2 < ∞.

[Hint: Use an integration by parts in the computation of αk(f ).]

11. Conversely, assume that f ∈ L2(0, 1) and that (1) holds for some a ∈ R. Prove
that f ∈ H 1(0, 1).

[Hint: Set f̃ = f + aπ√
2

and f̃n(x) = ∑n−1
k=0 αk(f̃ )ek(x). Check that ‖f̃ ′

n‖L2

remains bounded as n → ∞.]

8.29 Set

a(u, v) =
∫ 1

0
(u′v′ + uv)+ (u(1)− u(0))(v(1)− v(0)) ∀u, v ∈ H 1(0, 1).

1. Check that a is a continuous coercive bilinear form on H 1(0, 1).

2. Deduce that for every f ∈ L2(0, 1), there exists a unique u ∈ H 2(0, 1) satisfying

(1) a(u, v) =
∫ 1

0
f v ∀v ∈ H 1(0, 1).

3. Check that u satisfies

(2)

⎧
⎪⎨

⎪⎩

−u′′ + u = f on (0, 1),

u′(0) = u(0)− u(1),

u′(1) = u(0)− u(1).

Show that any solution u ∈ H 2(0, 1) of (2) satisfies (1).

Let T : L2(0, 1) → L2(0, 1) be the operator defined by Tf = u.

4. Check that T is self-adjoint and compact.

5. Show that if f ≥ 0 a.e. on (0, 1), then u = Tf ≥ 0 on (0, 1).

6. Check that (Tf, f )L2 ≥ 0 ∀f ∈ L2(0, 1).

7. Determine EV (T ).

8.30 Let k ∈ R, k 	= 1, and consider the space

V = {v ∈ H 1(0, 1); v(0) = kv(1)},
and the bilinear form

a(u, v) =
∫ 1

0
(u′v′ + uv)−

(∫ 1

0
u

)(∫ 1

0
v

)

∀u, v ∈ V.
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1. Check that V is a closed subspace of H 1(0, 1). In what follows, V is equipped
with the Hilbert structure induced by the H 1 scalar product.

2. Prove that a is a continuous and coercive bilinear form on V .

[Hint: Show that there exists a constant C such that ‖v‖L∞(0,1) ≤ C‖v′‖L2(0,1)
∀v ∈ V.]

3. Deduce that for every f ∈ L2(0, 1) there exists a unique solution of the problem

(1) u ∈ V and a(u, v) =
∫ 1

0
f v ∀v ∈ V.

4. Show that the solution u of (1) belongs to H 2(0, 1) and satisfies

(2)

{
−u′′ + u− ∫ 1

0 u = f on (0, 1),

u(0) = ku(1) and u′(1) = ku′(0).

5. Conversely, prove that any function u ∈ H 2(0, 1) satisfying (2) is a solution
of (1).

6. Let kn ∈ R, kn 	= 1 ∀n, be a sequence converging to k 	= 1. Set

Vn = {v ∈ H 1(0, 1); v(0) = knv(1)}.
Given f ∈ L2(0, 1), let un be the solution of

(1n) un ∈ Vn and a(un, v) =
∫ 1

0
f v ∀v ∈ Vn.

Prove that un → u inH 1(0, 1) as n → ∞, where u is the solution of (1). Deduce
that un → u in H 2(0, 1)

[Hint: Check that the function u(n) defined by

u(n)(x) = u(x)+ k − kn

kn − 1
u(1)

belongs toVn and converges to u inH 1(0, 1). Show that a(un−u(n), un−u(n)) =
(kn − k)u′(0)(un(1)− u(n)(1)).]

7. What happens to the sequence (un) if kn converges to 1?

8. Consider the operator T : L2(0, 1) → L2(0, 1) defined by Tf = u, where u is
the solution of (1). Show that T is self-adjoint and compact. Study EV (T ).

8.31 Consider the Sturm–Liouville operatorAu = −u′′+uon (0, 1)with Neumann
boundary condition u′(0) = u′(1) = 0.
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1. Compute the eigenvalues of A and the corresponding eigenfunctions.

2. Given f ∈ L2 with
∫ 1

0 f = 0, let u be the solution of

{
−u′′ + u = f on (0, 1),

u′(0) = u′(1) = 0.

Prove that

‖u‖L2(0,1) ≤ 1

(1 + π2)
‖f ‖L2(0,1).

[Hint: Apply question 6 in Problem 49.]

3. Let (un) be the sequence defined inductively by
{

−u′′
n + un = un−1 on (0, 1),

u′
n(0) = u′

n(1) = 0,

starting with some u0 ∈ L2(0, 1). Prove that

‖un − u0‖L2(0,1) ≤ 1

(1 + π2)n
‖u0 − u0‖L2(0,1) ∀n,

where u0 = ∫ 1
0 u0.

8.32 Set
V = {v ∈ H 1(0, 1); v(1) = 0}.

Let
H = {f is measurable on (0, 1) and xf (x) ∈ L2(0, 1)}.

1. Show that H equipped with the scalar product

(f, g)H =
∫ 1

0
f (x)g(x)x2dx

is a Hilbert space.

2. Given f ∈ H and ε > 0, check that there exists a unique u ∈ V satisfying

∫ 1

0
u′(x)v′(x)(x2 + ε)dx +

∫ 1

0
u(x)v(x)x2dx =

∫ 1

0
f (x)v(x)x2dx ∀v ∈ V.

This u is denoted by uε.

3. Prove that uε ∈ H 2(0, 1) and satisfies

(1)

{
−((x2 + ε)u′

ε)
′ + x2uε = x2f on (0, 1),

u′
ε(0) = 0 and uε(1) = 0.
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4. Deduce that

(2) |u′
ε(x)| ≤ 1

x

∫ x

0
t |f (t)− uε(t)|dt ∀x ∈ [0, 1].

5. Prove that xuε(x) and u′
ε(x) remain bounded in L2(0, 1) as ε → 0.

[Hint: Use question 1 in Exercise 8.8.]

6. Pass to the limit as ε → 0 and conclude that there exists a unique u ∈ V satisfying

(3)
∫ 1

0
(u′(x)v′(x)+ u(x)v(x))x2dx =

∫ 1

0
f (x)v(x)x2dx ∀v ∈ V.

Consider the operator T : H → H defined by Tf = u, where u is the solution
of (3).

7. Check that T is a self-adjoint compact operator from H into itself.

8. Determine all the eigenvalues of T .

[Hint: Look for eigenfunctions of the form 1
x

sin kx with appropriate k.]

8.33 Simplicity of eigenvalues.

Consider the Sturm–Liouville operator

Au = −(pu′)′ + qu on I = (0, 1),

where p ∈ C1([0, 1]), p ≥ α > 0 on I , and q ∈ C([0, 1]). (No further assumptions
are made; in particular, the associated bilinear form a(u, v) = ∫ 1

0 (pu
′v′ +quv) need

not be coercive.) Set

N = {u ∈ H 2(0, 1); a(u, v) = 0 ∀v ∈ H 1
0 (0, 1)}.

1. Prove that there exists a unique U ∈ N satisfying U(0) = 1 and U ′(0) = 0.

[Hint: Apply Theorem 7.3 (Cauchy–Lipschitz–Picard) to the equation Au = 0
written as a first-order differential system.]

2. Prove that dimN = 2.

[Hint: Consider the unique V ∈ N satisfying V (0) = 0 and V ′(0) = 1. Then
write any u ∈ N as u = u(0)U + u′(0)V .]

3. Let N0 = {u ∈ N; u(0) = 0}. Check that dimN0 = 1.

4. Set N00 = {u ∈ N; u(0) = u(1) = 0}. Prove that

dimN00 = 1 ⇐⇒ 0 is an eigenvalue of A with zero Dirichlet condition.

Otherwise, dimN00 = 0.
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5. Deduce that all the eigenvalues of A with zero Dirichlet condition are simple.
(By contrast, eigenvalues associated with periodic boundary conditions can have
multiplicity 2; see Exercise 8.34.)

6. Extend the above results to the case in which the condition p ∈ C1([0, 1]) is
replaced by p ∈ C([0, 1]) and N is replaced by

Ñ = {u ∈ H 1(0, 1); a(u, v) = 0 ∀v ∈ H 1
0 (0, 1)}.

8.34 Consider the problem

(1)

{
−u′′ + u = f on (0, 1),

u(0) = u(1) and u′(1)− u′(0) = k,

where k ∈ R and f (x) are given.

1. Find the weak formulation of problem (1).

2. Show that for every f ∈ L2(0, 1) and every k ∈ R there exists a unique weak
solution u ∈ H 1(0, 1) of (1). What is the corresponding minimization problem?

3. Show that the weak solution u belongs to H 2(0, 1) and satisfies (1). Check that
u ∈ C2([0, 1]) if f ∈ C([0, 1]).

4. Prove that u ≤ 0 on (0, 1) if f ≤ 0 on (0, 1) and k ≤ 0.

5. Take k = 0 and consider the operator T : L2(0, 1) → L2(0, 1) defined by Tf =
u. Check that T is a self-adjoint compact operator. Compute the eigenvalues of T
and prove that the multiplicity of each eigenvalue λ is 2 (i.e., dimN(T −λI) = 2),
except for the first one.

Remark. Note that by contrast, each eigenvalue of a Sturm–Liouville operator with
Dirichlet boundary condition (u(0) = u(1) = 0) is simple (i.e., the corresponding
eigenspace has dimension 1).

8.35 Fix two functions a, b ∈ C([0, 1]) and consider the problem

(1)

{
−u′′ + au′ + bu = f on (0, 1),

u(0) = u(1) = 0,

with f ∈ L2(0, 1).
Given g ∈ L2(0, 1), let v ∈ H 2(0, 1) be the unique solution of

(2)

{
−v′′ = g on (0, 1),

v(0) = v(1) = 0.

Set Sg = v, so that S : L2(0, 1) → H 2(0, 1).
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1. Check that problem (1) is equivalent to

(3)

{
u ∈ H 1(0, 1),

u = S(f − au′ − bu).

Consider the operator T : H 1(0, 1) → H 1(0, 1) defined by

T u = −S(au′ + bu), u ∈ H 1(0, 1).

2. Show that T is a compact operator.

3. Prove that problem (1) has a solution for every f ∈ L2(0, 1) iff the only solution
u of (1) with f = 0 is u = 0.

4. Assume that b ≥ 0 on (0, 1). Prove that the only solution of (1) with f = 0 is
u = 0.

[Hint: Fix a constant k > 0 such that k2−ka−b > 0 on [0, 1]. Setuε(x) = u(x)+
εekx, ε > 0. Implement on uε the “classical approach” to the maximum principle;
see Remark 26 in Chapter 8. Deduce that u(x) ≤ εek ∀x ∈ [0, 1], ∀ε > 0.]

Conclude that for every f ∈ L2(0, 1) problem (1) admits a unique solution
u ∈ H 2(0, 1).

5. Check that in general (without any assumption on a or b), the space of solutions
of problem (1) with f = 0 has dimension 0 or 1. If this dimension is 1 prove
that problem (1) has a solution iff

∫ 1
0 f ϕ0 = 0 for some function ϕ0 	≡ 0 to be

determined.

[Hint: Use Exercise 8.33 and the Fredholm alternative.]

8.36 Let I = (0, 1). Given two functions f1, f2 on I , consider the system

(1)

{
−u′′

1 + u2 = f1 on I,

−u′′
2 − u1 = f2 on I,

where u1, u2 are the unknowns.

-A-

In this part we prescribe the Dirichlet condition

(2) u1(0) = u2(0) = u1(1) = u2(1) = 0.

1. Define an appropriate concept of weak solution for the problem (1)–(2). Show
that for every pair f = [f1, f2] ∈ L2(I ) × L2(I ) there exists a unique weak
solution

u = [u1, u2] ∈ H 1
0 (I )×H 1

0 (I ) of (1)–(2).
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2. Check that u1, u2 ∈ H 2(I ).

3. Prove that if f = [f1, f2] ∈ C(I) × C(I), then u = [u1, u2] ∈ C2(I ) × C2(I )

and u is a classical solution of (1)–(2).

4. Consider the operator T fromL2(I )×L2(I ) into itself defined by Tf = u. Check
that T is compact.

5. Prove that EV (T ) = ∅.

6. Is T surjective? Deduce that σ(T ) = {0}.
7. Is T self-adjoint? Compute T �.

-B-

In this part we prescribe the Neumann condition

(3) u′
1(0) = u′

1(1) = u′
2(0) = u′

2(1) = 0.

1. Define an appropriate concept of weak solution for the problem (1)–(3). Check
that the Lax–Milgram theorem does not apply.
Given ε > 0, consider the system

(1ε)

{
−u′′

1 + u2 + εu1 = f1 on I,

−u′′
2 − u1 + εu2 = f2 on I.

2. Show that for every f = [f1, f2] ∈ L2(I ) × L2(I ) there exists a unique weak
solution uε = [uε1, uε2] ∈ H 1(I )×H 1(I ) of the problem (1ε)–(3).

3. Prove that
‖uε1‖2

L2(I )
+ ‖uε2‖2

L2(I )
≤ ‖f1‖2

L2(I )
+ ‖f2‖2

L2(I )
.

4. Deduce that uε = [uε1, uε2] remains bounded in H 2(I )×H 2(I ) as ε → 0.

5. Show that for every f = [f1, f2] ∈ L2(I )×L2(I ) there exists a unique solution
u = [u1, u2] ∈ H 2(I )×H 2(I ) of (1)–(3).

8.37

1. Prove that the identity operator fromH 1(0, 1) into L2(0, 1) is a Hilbert–Schmidt
operator (see Problem 40).

[Hint: Write u(x) = u(0) + ∫ x
0 u

′(t)dt and apply questions A3, A6, and B4 in
Problem 40.]

2. Consider the eigenvalues (λn) of the Sturm–Liouville problem
{

−(pu′)′ + qu = λu on (0, 1),

u(0) = u(1) = 0.



8.6 Exercises for Chapter 8 257

Recall that under the asumptions of Theorem 8.22, λn → +∞. Thus, for some
integer N , we have λn > 0 ∀n ≥ N . Prove that

+∞∑

n=N

1

λ2
n

< ∞.

Remark. A much sharper estimate is described in Exercise 8.42.

8.38 Example of an operator with continuous spectrum.

Given f ∈ L2(R), let u ∈ H 1(R) be the unique (weak) solution of the problem

−u′′ + u = f on R,

in the sense that
∫

R

u′v′ +
∫

R

uv =
∫

R

f v ∀v ∈ H 1(R).

Set u = Tf and consider T as a bounded linear operator from H = L2(R) into
itself.

1. Check that T � = T (H is identified with its dual space) and that ‖T ‖ ≤ 1.

2. Prove that EV (T ) = ∅. Is T a compact operator?

3. Let λ ∈ (−∞, 0); check that λ ∈ ρ(T ).
4. Let λ ∈ (1,+∞); check that λ ∈ ρ(T ).
5. Deduce that σ(T ) ⊂ [0, 1].
6. Is T surjective? Deduce that 0 ∈ σ(T ).
7. Is (T − I ) surjective? Deduce that 1 ∈ σ(T ) and that ‖T ‖ = 1.

8. Let λ ∈ (0, 1). Is (T − λI) surjective?

9. Conclude that σ(T ) = [0, 1].
8.39 Given f ∈ L2(0, 1), consider the function ϕ : H 1(0, 1) → R defined by

ϕ(v) = 1

2

∫ 1

0
v′2 + 1

4

∫ 1

0
v4 −

∫ 1

0
f v, v ∈ H 1(0, 1).

1. Check that ϕ is convex and continuous on H 1(0, 1).

2. Show that ϕ(v) → +∞ as ‖v‖H 1 → ∞.

3. Deduce that there exits a unique u ∈ H 1(0, 1) such that

(1) ϕ(u) = min
v∈H 1(0,1)

ϕ(v).
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4. Show that

(2)
∫ 1

0
(u′v′ + u3v) =

∫ 1

0
f v ∀v ∈ H 1(0, 1).

[Hint: Write that ϕ(u) ≤ ϕ(u + εv) ∀v ∈ H 1(0, 1) and compute ϕ(u + εv)

explicitly.]

5. Prove that u ∈ H 2(0, 1) and that u satisfies

(3)

{
−u′′ + u3 = f a.e. on (0, 1),

u′(0) = u′(1) = 0.

6. Conversely, show that any solution of (3) satisfies (1). Deduce that (3) admits a
unique solution.

7. Show that if f ≥ 0 a.e. on (0, 1), then u ≥ 0 on (0, 1).

[Hint: Use the same technique as in Section 8.5.]

8. Prove that if f ∈ L∞(0, 1) then

‖u‖3
L∞(0,1) ≤ ‖f ‖L∞(0,1).

[Hint: Argue as in the proof of Theorem 8.19 using as test functionG(u−K1/3),
where K = ‖f ‖L∞ .]

9. What happens when ϕ(v) is replaced by

ψ(v) = 1

2

∫ 1

0
v′2 + 1

4
v4(0)−

∫ 1

0
f v, v ∈ H 1(0, 1)?

8.40 Let j ∈ C1(R,R) be a convex function satisfying

(1) j (t) ≥ |t | − C ∀t ∈ R, for some C ∈ R,

and

(2) −1 < j ′(t) < +1 ∀t ∈ R.

[A good example to keep in mind is j (t) = (1 + t2)1/2.]
Given f ∈ L2(0, 1), consider the function ϕ : H 1(0, 1) → R defined by

ϕ(v) = 1

2

∫ 1

0
v′2 +

∫ 1

0
j (v)−

∫ 1

0
f v, v ∈ H 1(0, 1).

1. Prove that if | ∫ 1
0 f | > 1, then

inf
v∈H 1(0,1)

ϕ(v) = −∞.
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[Hint: Take v = const.]

2. Show that if | ∫ 1
0 f | ≤ 1, then

inf
v∈H 1(0,1)

ϕ(v) > −∞.

[Hint: Write
∫ 1

0 f v = ∫ 1
0 f (v−v)+f v, where v = ∫ 1

0 v, f = ∫ 1
0 f , and use the

Poincaré–Wirtinger inequality; see Comment 1 on Chapter 8, and Problem 47.]

3. Show that if | ∫ 1
0 f | < 1, then

lim‖v‖
H1(0,1)→∞ϕ(v) = +∞.

Deduce that infv∈H 1(0,1) ϕ(v) is achieved, and that every minimizer u ∈ H 1(0, 1)
satisfies ∫ 1

0
u′w′ +

∫ 1

0
j ′(u)w =

∫ 1

0
fw ∀w ∈ H 1(0, 1).

Show that u ∈ H 2(0, 1) is a solution of the problem

(3)

{
−u′′ + j ′(u) = f on (0, 1),

u′(0) = u′(1) = 0.

4. Suppose that | ∫ 1
0 f | = 1. Show that infv∈H 1(0,1) ϕ(v) is not achieved.

[Hint: Argue by contradiction. If the infimum is achieved at some u, then u
satisfies (3). Integrate (3) on (0, 1).]

5. What happens to a minimizing sequence (un) of ϕ when | ∫ 1
0 f | = 1?

[Hint: Show that un = un + (un − un) with |un| → ∞ and ‖un − un‖H 1 ≤ C

as n → ∞.]

8.41 Let q ∈ C([0, 1]) and assume that the bilinear form

a(u, v) =
∫ 1

0
(u′v′ + quv), u, v ∈ H 1

0 (0, 1),

is coercive on H 1
0 (0, 1). The space H 1

0 (0, 1) is equipped with the scalar product

a(u, v), now denoted by (u, v)H , and the norm |u|H = (u, u)
1/2
H .

1. Prove that

(1) α = sup

{∫ 1

0
|u|4; u ∈ H 1

0 (0, 1) and |u|H = 1

}

> 0

is achieved by some u0.
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[Hint: Consider a maximizing sequence (un) converging weakly in H 1
0 (0, 1) to

some u0. Check that α = ∫ 1
0 |u0|4 and that |u0|H ≤ 1. Show that |u0|H = 1 by

introducing u0/|u0|H .]

2. Show that one can assume u0 ≥ 0 on [0,1].

[Hint: Replace u0 by |u0| and apply Exercise 8.11.]

3. Prove that u0 belongs to H 2(0, 1) and satisfies

(2)

{
−u′′

0 + qu0 = 1
α
u3

0 on (0, 1),

u0(0) = u0(1) = 0.

[Hint: Write ‖wε‖L4(0,1) ≤ ‖u0‖L4(0,1), where wε = u0+εv|u0+εv|H , v ∈ H 1
0 (0, 1),

and ε > 0 is sufficiently small. Then use a Taylor expansion for ‖wε‖4
L4(0,1)

and

for |u0 + εv|2H as ε → 0.]

4. Deduce that u0(x) > 0 ∀x ∈ (0, 1).

[Hint: Use the strong maximum principle; see Problem 45.]

5. Let u1 be any maximizer in (1). Show that either u1(x) > 0 ∀x ∈ (0, 1) or
u1(x) < 0 ∀x ∈ (0, 1).

[Hint: Check that |u1(x)| > 0 ∀x ∈ (0, 1).]

6. Deduce that there exists a solution u ∈ C2([0, 1]) of the problem

(3)

⎧
⎪⎨

⎪⎩

−u′′ + qu = u3 on (0, 1),

u > 0 on (0, 1),

u(0) = u(1) = 0.

[Hint: Take u = ku0 for some appropriate constant k > 0.]

7. Assume now that a is not coercive and more precisely that there exists some
v1 ∈ H 1

0 (0, 1) such that v1 	= 0 and a(v1, v1) ≤ 0. Prove that problem (3) has no
solution.

[Hint: Check that λ1 ≤ 0, where λ1 is the first eigenvalue of Au = −u′′ + qu

and multiply (3) by the corresponding eigenfunctions ϕ1.]

8.42 Asymptotic behavior of Sturm–Liouville eigenvalues.

Consider the operator Av = −v′′ + a(x)v on I = (0, L), with zero Dirichlet
condition and a ∈ C([0, L]).
1. Let (λn) denote the sequence of eigenvalues of A. Prove that

∣
∣
∣
∣λn − π2n2

L2

∣
∣
∣
∣ ≤ ‖a‖L∞(0,L) ∀n.
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[Hint: Consider the eigenvalues of the operator A0 corresponding to a ≡ 0 and
use the Courant–Fischer min–max principle (see Problem 49).]

Consider now the general Sturm–Liouville operator

Bu = −(pu′)′ + qu on (0, 1)

with zero Dirichlet condition. Assume that p ∈ C2([0, 1]), p ≥ α > 0 on (0, 1),
and q ∈ C([0, 1]).
Set L = ∫ 1

0 p(t)
−1/2dt and introduce the new variable x = ∫ t

0 p(t)
−1/2dt , so

that 0 < x < L when 0 < t < 1. Given a function u ∈ C2([0, 1]), set

v(x) = p1/4(t)u(t), 0 < t < 1.

2. Prove that u satisfies −(pu′)′ + qu = μu on (0, 1) iff v satisfies −v′′ + av = μv

on (0, L), where a ∈ C([0, 1]) depends only on p and q.

[Hint: Prove, after some tedious computations, that a(x) = q(t) + 1
4p

′′(t) −
(p′(t))2
16p(t) .]

3. Deduce that the eigenvalues (μn) of the operator B satisfy

∣
∣
∣
∣μn − π2n2

L2

∣
∣
∣
∣ ≤ C.





Chapter 9
Sobolev Spaces and the Variational Formulation
of Elliptic Boundary Value Problems in
N Dimensions

9.1 Definition and Elementary Properties of the Sobolev Spaces
W 1,p(�)

Let � ⊂ R
N be an open set and let p ∈ R with 1 ≤ p ≤ ∞.

Definition. The Sobolev space W 1,p(�) is defined by1

W 1,p(�) =
⎧
⎨

⎩
u ∈ Lp(�)

∣
∣
∣
∣
∣
∣

∃g1, g2, . . . , gN ∈ Lp(�) such that
∫

�

u
∂ϕ

∂xi
= −

∫

�

giϕ ∀ϕ ∈ C∞
c (�), ∀i = 1, 2, . . . , N

⎫
⎬

⎭
.

We set
H 1(�) = W 1,2(�).

For u ∈ W 1,p(�) we define 2 ∂u
∂xi

= gi , and we write

∇u = grad u =
(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xN

)

.

The space W 1,p(�) is equipped with the norm

‖u‖W 1,p = ‖u‖p +
N∑

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥
p

or sometimes with the equivalent norm (‖u‖pp +∑N
i=1 ‖ ∂u

∂xi
‖pp)1/p (if 1 ≤ p < ∞).

The space H 1(�) is equipped with the scalar product

1 When there is no confusion we shall often write W 1,p instead of W 1,p(�).
2 This definition makes sense: gi is unique (a.e.) by Corollary 4.24.
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(u, v)H 1 = (u, v)L2 +
N∑

i=1

(
∂u

∂xi
,
∂v

∂xi

)

L2
=
∫

�

uv +
N∑

i=1

∂u

∂xi

∂v

∂xi
.

The associated norm

‖u‖H 1 =
(

‖u‖2
2 +

N∑

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

2

2

)1/2

is equivalent to the W 1,2 norm.

• Proposition 9.1. W 1,p(�) is a Banach space for every 1 ≤ p ≤ ∞. W 1,p(�) is
reflexive for 1 < p < ∞, and it is separable for 1 ≤ p < ∞. H 1(�) is a separable
Hilbert space.

Proof. Adapt the proof of Proposition 8.1 using the operator T u = [u,∇u].
Remark 1. In the definition of W 1,p we could equally well have used C∞

c (�) as set
of test functions ϕ (instead ofC1

c (�)); to show this, use a sequence of mollifiers (ρn).

Remark 2. It is clear that if u ∈ C1(�) ∩ Lp(�) and if ∂u
∂xi

∈ Lp(�) for all i =
1, 2, . . . , N (here ∂u

∂xi
means the usual partial derivative of u), then u ∈ W 1,p(�).

Furthermore, the usual partial derivatives coincide with the partial derivatives in
the W 1,p sense, so that notation is consistent. In particular, if � is bounded, then
C1(�) ⊂ W 1,p(�) for all 1 ≤ p ≤ ∞. Conversely, one can show that if u ∈
W 1,p(�) for some 1 ≤ p ≤ ∞ and if ∂u

∂xi
∈ C(�) for all i = 1, 2, . . . , N (here

∂u
∂xi

means the partial derivative in theW 1,p sense), then u ∈ C1(�); more precisely,

there exists a function ũ ∈ C1(�) such that u = ũ a.e.

� Remark 3. For every u ∈ L1
loc(�), the theory of distributions gives a meaning to

∂u
∂xi
( ∂u
∂xi

is an element of the huge space of distributions D′(�), a space that contains

in particular L1
loc(�)). Using the language of distributions one can say thatW 1,p(�)

is the set of functions u ∈ Lp(�) for which all the partial derivatives ∂u
∂xi

, 1 ≤ i ≤ N

(in the sense of distributions), belong to Lp(�).

When� = R
N and p = 2 one can also define the Sobolev spaces using the Four-

ier transform; see, e.g., J.-L. Lions–E. Magenes [1], P. Malliavin [1], H. Triebel [1],
L. Grafakos [1]. We do not take this point of view here.

Remark 4. It is useful to keep in mind the following facts:

(i) Let (un) be a sequence inW 1,p such that un → u in Lp and (∇un) converges to
some limit in (Lp)N . Then u ∈ W 1,p and ‖un−u‖W 1,p → 0. When 1 < p ≤ ∞
it suffices to know that un → u in Lp and that (∇un) is bounded in (Lp)N to
conclude that u ∈ W 1,p (why?).
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(ii) Given a function f defined on� we denote by f̄ its extension outside�, that is,

f̄ (x) =
{
f (x) if x ∈ �,
0 if x ∈ R

N\�.

Let u ∈ W 1,p(�) and let α ∈ C1
c (�). Then 3

αu ∈ W 1,p(RN) and
∂

∂xi
(αu) = α

∂u

∂xi
+ ∂α

∂xi
u.

Indeed, let ϕ ∈ C1
c (R

N); we have

∫

RN

αu
∂ϕ

∂xi
=
∫

�

αu
∂ϕ

∂xi
=
∫

�

u

[
∂

∂xi
(αϕ)− ∂α

∂xi
ϕ

]

= −
∫

�

(
∂u

∂xi
αϕ + u

∂α

∂xi
ϕ

)

= −
∫

RN

(

α
∂u

∂xi
+ ∂α

∂xi
u

)

ϕ.

The same conclusion holds if instead of assuming that α ∈ C1
c (�), we take

α ∈ C1(RN) ∩ L∞(RN) with ∇α ∈ L∞(RN)N and suppα ⊂ R
N\(∂�).

Here is a first density result that holds for general open sets �; we establish later
(Corollary 9.8) a more precise result under additional assumptions on �. We need
the following.

Definition. Let� ⊂ R
N be an open set. We say that an open set ω in R

N is strongly
included in � and we write ω ⊂⊂ � if ω̄ ⊂ � and ω̄ is compact.4

• Theorem 9.2 (Friedrichs). Let u ∈ W 1,p(�) with 1 ≤ p < ∞. Then there exists
a sequence (un) from C∞

c (R
N) such that

(1) un|� → u in Lp(�)

and

(2) ∇un|ω → ∇u|ω in Lp(ω)N for all ω ⊂⊂ �.

In case � = R
N and u ∈ W 1,p(RN) with 1 ≤ p < ∞, there exists a sequence (un)

from C∞
c (R

N) such that
un → u in Lp(RN)

and
∇un → ∇u in Lp(RN)N .

In the proof we shall use the following lemma.

3 Be careful: in general, ū 	∈ W 1,p(RN) (why?).
4 ω̄ denotes the closure of ω in R

N .
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Lemma 9.1. Let ρ ∈ L1(RN) and let v ∈ W 1,p(RN) with 1 ≤ p ≤ ∞. Then

ρ � v ∈ W 1,p(RN) and
∂

∂xi
(ρ � v) = ρ �

∂v

∂xi
∀i = 1, 2, . . . , N.

Proof of Lemma 9.1. Adapt the proof of Lemma 8.4.

Proof of Theorem 9.2. Set

ū(x) =
{
u(x) if x ∈ �,
0 if x ∈ R

N\�,
and set vn = ρn � ū (where ρn is a sequence of mollifiers). We know (see Section
4.4) that vn ∈ C∞(RN) and vn → ū in Lp(RN). We claim that ∇vn|ω → ∇u|ω
in Lp(ω)N for all ω ⊂⊂ �. Indeed, given ω ⊂⊂ �, fix a function α ∈ C1

c (�),
0 ≤ α ≤ 1, such that α = 1 on a neighborhood of ω.

If n is large enough we have

(3) ρn � (αu) = ρn � ū on ω,

since

supp(ρn � αu− ρn � ū) = supp(ρn � (1 − ᾱ)ū)

⊂ supp ρn + supp(1 − ᾱ)ū ⊂ B

(

0,
1

n

)

+ supp(1 − ᾱ)

⊂ (ω)c

for n large enough. From Lemma 9.1 and Remark 4(ii) we have

∂

∂xi
(ρn � αu) = ρn �

(

α
∂u

∂xi
+ ∂α

∂xi
u

)

.

It follows that

∂

∂xi
(ρn � αu) → α

∂u

∂xi
+ ∂α

∂xi
u in Lp(RN)

and in particular,
∂

∂xi
(ρn � αu) → ∂u

∂xi
in Lp(ω).

Because of (3) we have

∂

∂xi
(ρn � ū) → ∂u

∂xi
in Lp(ω).

Finally, we multiply the sequence (vn) by a sequence of cut-off functions (ζn) as
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in the proof of Theorem 8.7.5 It is easily verified that the sequence un = ζnvn has
the desired properties, i.e., un ∈ C∞

c (R
N), un → u in Lp(�), and ∇un → ∇u in

(Lp(ω))N for every ω ⊂⊂ �.
In case � = R

N the sequence un = ζn(ρn � u) has the desired properties.

� Remark 5. It can be shown (Meyers–Serrin’s theorem) that if u ∈ W 1,p(�) with
1 ≤ p < ∞ then there exists a sequence (un) from C∞(�) ∩W 1,p(�) such that
un → u inW 1,p(�); the proof of this result is fairly delicate (see, e.g., R. Adams [1]
or A. Friedman [2]). In general, if � is an arbitrary open set and if u ∈ W 1,p(�)

there need not exist a sequence (un) in C1
c (R

N) such that un|� → u in W 1,p(�).
Compare the Meyers–Serrin theorem (which holds for any open set) to Corollary 9.8
(which assumes that � is regular).

Here is a simple characterization of W 1,p functions:

Proposition 9.3. Let u ∈ Lp(�) with 1 < p ≤ ∞. The following properties are
equivalent:

(i) u ∈ W 1,p(�),

(ii) there exists a constant C such that
∣
∣
∣
∣

∫

�

u
∂ϕ

∂xi

∣
∣
∣
∣ ≤ C‖ϕ‖

Lp
′
(�)

∀ϕ ∈ C∞
c (�), ∀i = 1, 2, . . . , N,

(iii) there exists a constant C such that for all ω ⊂⊂ �, and all h ∈ R
N with

|h| < dist(ω, ∂�) we have

‖τhu− u‖Lp(ω) ≤ C|h|.
(Note that τhu(x) = u(x + h) makes sense for x ∈ ω and |h| < dist(ω, ∂�).)
Furthermore, we can take C = ‖∇u‖Lp(�) in (ii) and (iii).

If � = R
N we have

‖τhu− u‖Lp(RN) ≤ |h|‖∇u‖Lp(RN).
Proof.

(i) ⇒ (ii). Obvious.
(ii) ⇒ (i). Proceed as in the proof of Proposition 8.3.
(i) ⇒ (iii). Assume first that u ∈ C∞

c (R
N). Let h ∈ R

N and set

v(t) = u(x + th), t ∈ R.

5 Throughout this chapter we denote systematically by (ζn) a sequence of cut-off functions, that is,
we fix a function ζ ∈ C∞

c (R
N) with 0 ≤ ζ ≤ 1 and

ζ(x) =
{

1 if |x| ≤ 1,

0 if |x| ≥ 2,

and we set ζn(x) = ζ(x/n), n = 1, 2, . . . .
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Then v′(t) = h · ∇u(x + th) and thus

u(x + h)− u(x) = v(1)− v(0) =
∫ 1

0
v′(t)dt =

∫ 1

0
h · ∇u(x + th)dt.

It then follows that for 1 ≤ p < ∞,

|τhu(x)− u(x)|p ≤ |h|p
∫ 1

0
|∇u(x + th)|pdt

and
∫

ω

|τhu(x)− u(x)|pdx ≤ |h|p
∫

ω

dx

∫ 1

0
|∇u(x + th)|pdt

= |h|p
∫ 1

0
dt

∫

ω

|∇u(x + th)|pdx

= |h|p
∫ 1

0
dt

∫

ω+th
|∇u(y)|pdy.

If |h| < dist(ω ∂�), there exists an open set ω′ ⊂⊂ � such that ω+ th ⊂ ω′ for all
t ∈ [0, 1] and thus

(4) ‖τhu− u‖pLp(ω) ≤ |h|p
∫

ω′
|∇u|p.

This concludes the proof of (ii) for u ∈ C∞
c (R

N) and 1 ≤ p < ∞. Assume now
that u ∈ W 1,p(�) with 1 ≤ p < ∞. By Theorem 9.2 there exists a sequence (un)
in C∞

c (R
N) such that un → u in Lp(�) and ∇un → ∇u in Lp(ω)N ∀ω ⊂⊂ �.

Applying (4) to (un) and passing to the limit, we obtain (iii) for every u ∈ W 1,p(�),
1 ≤ p < ∞. When p = ∞, apply the above (for p < ∞) and let p → ∞.

(iii) ⇒ (ii). Let ϕ ∈ C∞
c (�) and consider an open setω such that suppϕ ⊂ ω ⊂⊂

�. Let h ∈ R
N with |h| < dist(ω, ∂�). Because of (iii) we have

∣
∣
∣
∣

∫

�

(τhu− u)ϕ

∣
∣
∣
∣ ≤ C|h| ‖ϕ‖

Lp
′
(�)
.

On the other hand, since
∫

�

(u(x + h)− u(x))ϕ(x)dx =
∫

�

u(y)(ϕ(y − h)− ϕ(y))dy,

it follows that
∫

�

u(y)
(ϕ(y − h)− ϕ(y))

|h| dy ≤ C‖ϕ‖
Lp

′
(�)
.

Choosing h = tei , t ∈ R, and passing to the limit as t → 0, we obtain (ii).
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� Remark 6. When p = 1 the following implications remain true:

(i) ⇒ (ii) ⇔ (iii).

The functions that satisfy (ii) (or (iii)) with p = 1 are called functions of bounded
variation (in the language of distributions a function of bounded variation is an L1

function such that all its first derivatives, in the sense of distributions, are bounded
measures). This space plays an important role in many applications. One encounters
functions of bounded variation (or with similar properties) in the theory of minimal
surfaces (see, e.g., E. Giusti [1] and the works of E. DeGiorgi, M. Miranda, and
others cited there), in questions of elasticity and plasticity (functions of bounded
deformation, see, e.g., R. Temam–G. Strang [2] and the cited work of P. Suquet),
in quasilinear equations of first order, the so-called conservation laws, which admit
discontinuous solutions (see, e.g., A. I. Volpert [1] and A. Bressan [1]). On this vast
subject, see also the book by L. Ambrosio–N. Fusco–D. Pallara [1] and Comment 16
at the end of this chapter.

Remark 7. Proposition 9.3 ((i) ⇒ (iii)) implies that any function u ∈ W 1,∞(�) has
a continuous representative on �. More precisely, if � is connected then

(5) |u(x)− u(y)| ≤ ‖∇u‖L∞(�) dist
�
(x, y) ∀x, y ∈ �

(for this continuous representative u), where dist�(x, y) denotes the geodesic dis-
tance from x to y in�; in particular, if� is convex then dist�(x, y) = |x−y|. From
here one can also deduce that if u ∈ W 1,p(�) for some 1 ≤ p ≤ ∞ (and some open
set �), and if ∇u = 0 a.e. on �, then u is constant on each connected component
of �.

Proposition 9.4 (differentiation of a product). Let u, v ∈ W 1,p(�) ∩L∞(�) with
1 ≤ p ≤ ∞. Then uv ∈ W 1,p(�) ∩ L∞(�) and

∂

∂xi
(uv) = ∂u

∂xi
v + u

∂v

∂xi
, i = 1, 2, . . . , N.

Proof. As in the proof of Corollary 8.10, it suffices to consider the case 1 ≤ p < ∞.
By Theorem 9.2 there exist sequences (un), (vn) in C∞

c (R
N) such that

un → u, vn → v in Lp(�) and a.e. on �,

∇un → ∇u, ∇vn → ∇v in Lp(ω)N for all ω ⊂⊂ �.

Checking the proof of Theorem 9.2, we see easily that we have further

‖un‖L∞(RN) ≤ ‖u‖L∞(�) and ‖vn‖L∞(RN) ≤ ‖v‖L∞(�).

On the other hand,
∫

�

unvn
∂ϕ

∂xi
= −

∫

�

(
∂un

∂xi
vn + un

∂vn

∂xi

)

ϕ ∀ϕ ∈ C1
c (�).
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Passing to the limit, by the dominated convergence theorem, this becomes

∫

�

uv
∂ϕ

∂xi
= −

∫

�

(
∂u

∂xi
v + u

∂v

∂xi

)

ϕ ∀ϕ ∈ C1
c (�).

Proposition 9.5 (differentiation of a composition). Let G ∈ C1(R) be such that
G(0) = 0 and |G′(s)| ≤ M ∀s ∈ R for some constant M . Let u ∈ W 1,p(�) with
1 ≤ p ≤ ∞. Then

G ◦ u ∈ W 1,p(�) and
∂

∂xi
(G ◦ u) = (G′ ◦ u) ∂u

∂xi
, i = 1, 2, . . . , N.

Proof. We have |G(s)| ≤ M|s| ∀s ∈ R and thus |G◦u| ≤ M|u|; as a consequence,
G ◦ u ∈ Lp(�) and also (G′ ◦ u) ∂u

∂xi
∈ Lp(�). It remains to verify that

(6)
∫

�

(G ◦ u) ∂ϕ
∂xi

= −
∫

�

(G′ ◦ u) ∂u
∂xi

ϕ ∀ϕ ∈ C1
c (�).

When 1 ≤ p < ∞, one chooses a sequence (un) in C∞
c (R

N) such that un → u

in Lp(�) and a.e. on �, ∇un → ∇u in Lp(ω)N ∀ω ⊂⊂ � (Theorem 9.2). We
have ∫

�

(G ◦ un) ∂ϕ
∂xi

= −
∫

�

(G′ ◦ un)∂un
∂xi

ϕ ∀ϕ ∈ C1
c (�).

ButG◦un → G◦u inLp(�) and (G′ ◦un) ∂un∂xi → (G′ ◦u) ∂u
∂xi

inLp(ω) ∀ω ⊂⊂ �

(by dominated convergence), so that (6) follows. When p = ∞, fix an open set �′
such that suppϕ ⊂ �′ ⊂⊂ �. Then u ∈ W 1,p(�′) ∀p < ∞ and (6) follows from
the above.

Proposition 9.6 (change of variables formula). Let � and �′ be two open sets in
R
N and let H : �′ → � be a bijective map, x = H(y), such that H ∈ C1(�′),

H−1 ∈ C1(�), JacH ∈ L∞(�′), JacH−1 ∈ L∞(�).6 Let u ∈ W 1,p(�) with
1 ≤ p ≤ ∞. Then u ◦H ∈ W 1,p(�′) and

∂

∂yj
u(H(y)) =

∑

i

∂u

∂xi
(H(y))

∂Hi

∂yj
(y) ∀j = 1, 2, . . . , N.

Proof. When 1 ≤ p < ∞, choose a sequence (un) in C∞
c (R

N) such that un → u

in Lp(�) and ∇un → ∇u in Lp(ω)N ∀ω ⊂⊂ �. Thus un ◦H → u ◦H in Lp(�′)
and

(
∂un

∂xi
◦H

)
∂Hi

∂yj
→

(
∂u

∂xi
◦H

)
∂Hi

∂yj
in Lp(ω′) ∀ω′ ⊂⊂ �′.

6 JacH denotes the Jacobian matrix ∂Hi
∂yj

; thus it is a function in L∞(�′)N×N .
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Given ψ ∈ C1
c (�

′), we have

∫

�′
(un ◦H) ∂ψ

∂yj
dy = −

∫

�′

∑

i

(
∂un

∂xi
◦H

)
∂Hi

∂yj
ψdy.

In the limit we obtain the desired result. When p = ∞, proceed in the same way as
at the end of the proof of Proposition 9.5.

The spaces Wm,p(�)

Let m ≥ 2 be an integer and let p be a real number with 1 ≤ p ≤ ∞. We define by
induction

Wm,p(�) =
{

u ∈ Wm−1,p(�); ∂u

∂xi
∈ Wm−1,p(�) ∀i = 1, 2, . . . , N

}

.

Alternatively, these sets could also be introduced as

Wm,p(�) =
⎧
⎨

⎩
u ∈ Lp(�)

∣
∣
∣
∣
∣
∣

∀α with |α| ≤ m, ∃gα ∈ Lp(�) such that
∫

�

uDαϕ = (−1)|α|
∫

�

gαϕ ∀ϕ ∈ C∞
c (�)

⎫
⎬

⎭
,

where we use the standard multi-index notation α = (α1, α2, . . . , αN) with αi ≥ 0
an integer,

|α| =
N∑

i=1

αi and Dαϕ = ∂ |α|ϕ
∂x

α1
1 ∂x

α2
2 · · · ∂xαNN

.

We set Dαu = gα . The space Wm,p(�) equipped with the norm

‖u‖Wm,p =
∑

0≤|α|≤m
‖Dαu‖p

is a Banach space.
The space Hm(�) = Wm,2(�) equipped with the scalar product

(u, v)Hm =
∑

0≤|α|≤m
(Dαu,Dαv)L2

is a Hilbert space.

Remark 8. One can show that if � is “smooth enough” with � = ∂� bounded, then
the norm on Wm,p(�) is equivalent to the norm

‖u‖p +
∑

|α|=m
‖Dαu‖p.
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More precisely, it is proved that for every multi-index α with 0 < |α| < m and for
every ε > 0 there exists a constant C (depending on �, ε, α) such that

‖Dαu‖p ≤ ε
∑

|β|=m
‖Dβu‖p + C‖u‖p ∀u ∈ Wm,p(�)

(see, e.g., R. Adams [1]).

9.2 Extension Operators

It is often convenient to establish properties of functions in W 1,p(�) by beginning
with the case � = R

N (see for example the results of Section 9.3). It is therefore
useful to be able to extend a function u ∈ W 1,p(�) to a function ũ ∈ W 1,p(RN).
This is not always possible (in a general domain �). However, if � is “smooth,”
such an extension can be constructed. Let us begin by making precise the notion of
a smooth open set.

Notation. Given x ∈ R
N , write

x = (x′, xN) with x′ ∈ R
N−1, x′ = (x1, x2, . . . , xN−1),

and set

|x′| =
(
N−1∑

i=1

x2
i

)1/2

.

We define
R
N+ = {x = (x′, xN); xN > 0},
Q = {x = (x′, xN); |x′| < 1 and |xN | < 1},
Q+ = Q ∩ R

N+ ,
Q0 = {x = (x′, 0); |x′| < 1}.

Definition. We say that an open set � is of class C1 if for every x ∈ ∂� = � there
exist a neighborhood U of x in R

N and a bijective map H : Q → U such that

H ∈ C1(Q), H−1 ∈ C1(U), H(Q+) = U ∩Q, and H(Q0) = U ∩ �.
The map H is called a local chart.

Theorem 9.7. Suppose that � is of class C1 with � bounded (or else � = R
N+).

Then there exists a linear extension operator

P : W 1,p(�) → W 1,p(RN) (1 ≤ p ≤ ∞)

such that for all u ∈ W 1,p(�),
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Pu|� = u,(i)

‖Pu‖Lp(RN) ≤ C‖u‖Lp(�),(ii)

‖Pu‖W 1,p(RN) ≤ C‖u‖W 1,p(�),(iii)

where C depends only on �.

We shall begin by proving a simple but fundamental lemma concerning the ex-
tension by reflection.

Lemma 9.2. Given u ∈ W 1,p(Q+) with 1 ≤ p ≤ ∞, one defines the function u� on
Q to be the extension by reflection, that is,

u�(x′, xN) =
{
u(x′, xN) if xN > 0,

u(x′,−xN) if xN < 0.

Then u� ∈ W 1,p(Q) and

‖u�‖Lp(Q) ≤ 2‖u‖Lp(Q+), ‖u�‖W 1,p(Q) ≤ 2‖u‖W 1,p(Q+).

Proof. In fact, we shall prove that

(7)
∂u�

∂xi
=
(
∂u

∂xi

)�

for 1 ≤ i ≤ N − 1

and

(8)
∂u�

∂xN
=
(
∂u

∂xN

)�
,

where ( ∂u
∂xi
)� denotes the extension by reflection of ∂u

∂xi
and where we set, whenever

f is defined on Q+,

f�(x′, xN) =
{
f (x′, xN) if xN > 0,

−f (x′,−xN) if xN < 0.

We shall use a sequence (ηk) of functions in C∞(R) defined by

ηk(t) = η(kt), t ∈ R, k = 1, 2, . . . ,

where η is any fixed function, η ∈ C∞(R), such that

η(t) =
{

0 if t < 1/2,

1 if t > 1.

Proof of (7). Let ϕ ∈ C1
c (Q). For 1 ≤ i ≤ N − 1, we have
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(9)
∫

Q

u�
∂ϕ

∂xi
=
∫

Q+
u
∂ψ

∂xi
,

where ψ(x′, xN) = ϕ(x′, xN) + ϕ(x′,−xN). The function ψ does not in general
belong to C1

c (Q+), and thus it cannot be used as a test function (in the definition of
W 1,p). On the other hand, ηk(xN)ψ(x′, xN) ∈ C1

c (Q+) and thus
∫

Q+
u
∂

∂xi
(ηkψ) = −

∫

Q+

∂u

∂xi
ηkψ.

Since ∂
∂xi
(ηkψ) = ηk

∂ψ
∂xi

, we have

(10)
∫

Q+
uηk

∂ψ

∂xi
= −

∫

Q+

∂u

∂xi
ηkψ.

Passing to the limit in (10) as k → ∞ (by dominated convergence), we obtain

(11)
∫

Q+
u
∂ψ

∂xi
= −

∫

Q+

∂u

∂xi
ψ.

Combining (9) and (11), we are led to

∫

Q

u�
∂ ϕ

∂xi
= −

∫

Q+

∂u

∂xi
ψ = −

∫

Q

(
∂u

∂xi

)�

ϕ,

from which (7) follows.

Proof of (8). For every ϕ ∈ C1
c (Q) we have

(12)
∫

Q

u�
∂ ϕ

∂xN
=
∫

Q+
u
∂χ

∂xN
,

where χ(x′, xN) = ϕ(x′, xN)− ϕ(x′, −xN). Note that χ(x′, 0) = 0 and thus there
exists a constantM such that |χ(x′, xN)| ≤ M|xN | onQ. Since ηkχ ∈ C1

c (Q+), we
have

(13)
∫

Q+
u
∂

∂xN
(ηkχ) = −

∫

Q+

∂u

∂xN
ηkχ.

But

(14)
∂

∂xN
(ηkχ) = ηk

∂χ

∂xN
+ kη′(kxN)χ.

We claim that

(15)
∫

Q+
ukη′(kxN)χ → 0 as k → ∞.
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Indeed, we have
∣
∣
∣
∣

∫

Q+
ukη′(kxN)χ

∣
∣
∣
∣ ≤ kMC

∫

0<xN<1/k
|u|xNdx ≤ MC

∫

0<xN<1/k
|u|dx

with C = supt∈[0,1]|η′(t)|, from which (15) follows.
We deduce from (13), (14), and (15) that

∫

Q+
u
∂χ

∂xN
= −

∫

Q+

∂u

∂xN
χ.

Finally, we have

(16)
∫

Q+

∂u

∂xN
χ =

∫

Q

(
∂u

∂xN

)�
ϕ.

Combining (12) and (16), we obtain (8). This concludes the proof of Lemma 9.2.

The conclusion of Lemma 9.2 remains valid if Q+ is replaced by R
N+ (the proof

is unchanged). This establishes Theorem 9.7 for � = R
N+ .

� Remark 9. Lemma 9.2 gives a very simple construction of extension operators for
certain open sets � that are not of class C1. Consider, for example, the square

� = {x ∈ R
2; 0 < x1 < 1, 0 < x2 < 1}.

Let u ∈ W 1,p(�). By four successive reflections (see Figure 6) we obtain an exten-
sion ũ ∈ W 1,p(�̃) of u in

�̃ = {x ∈ R
2; −1 < x1 < 3, −1 < x2 < 3}.

3

Ω
4

2
1

Fig. 6
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Then fix any function ψ ∈ C1
c (�̃) such that ψ = 1 on �. Denote by Pu the

function ψũ extended to R
2 by 0 outside �̃. It is easily shown that the operator

P : W 1,p(�) → W 1,p(R2) satisfies (i), (ii), and (iii).

The next lemma is very useful.

Lemma 9.3 (partition of unity). Let � be a compact subset of R
N and let U1, U2,

. . . , Uk be an open covering of �, i.e., � ⊂ ⋃k
i=1 Ui . Then there exist functions θ0,

θ1, θ2, . . . , θk ∈ C∞(RN) such that

0 ≤ θi ≤ 1 ∀i = 0, 1, 2, . . . , k and
k∑

i=0

θi = 1 on R
N,(i)

{
supp θi is compact and supp θi ⊂ Ui ∀i = 1, 2, . . . ,

supp θ0 ⊂ R
N\�.(ii)

If � is an open bounded set and � = ∂�, then θ0|� ∈ C∞
c (�).

Proof. This lemma is classical; similar statements can be found, for example, in
S. Agmon [1], R. Adams [1], G. Folland [1], P. Malliavin [1].

Proof of Theorem 9.7. We “rectify” � = ∂� by local charts and use a partition of
unity.7 More precisely, since � is compact and of class C1, there exist open sets
(Ui)1≤i≤k in R

N such that � ⊂ ⋃k
i=1 Ui and bijective maps Hi = Q → Ui such

that

Hi ∈ C1(Q), H−1
i ∈ C1(Ui), Hi(Q+) = Ui ∩�, and Hi(Q0) = Ui ∩ �.

Consider the functions θ0, θ1, θ2, . . . , θk introduced in Lemma 9.3. Given u ∈
W 1,p(�), write

u =
k∑

i=0

θiu =
k∑

i=0

ui, where ui = θiu.

Now we extend each of the functions ui to R
N , distinguishing u0 and (ui)1≤i≤k.

(a) Extension of u0. We define the extension of u0 to R
N by

ū0(x) =
{
u0(x) if x ∈ �,
0 if x ∈ R

N\�.

7 In the following we shall often use this technique to transfer a result proved on R
N+ (orQ+) to the

same conclusion on a smooth open set �.
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Recall that θ0 ∈ C1(RN) ∩ L∞(RN), ∇θ0 ∈ L∞(RN), since ∇θ0 = −∑k
i=1 ∇θi

has compact support, and that supp θ0 ⊂ R
N\�. It follows (by Remark 4(ii)) that

ū0 ∈ W 1,p(RN) and
∂

∂xi
ū0 = θ0

∂u

∂xi
+ ∂θ0

∂xi
ū.

Thus
‖ū0‖W 1,p(RN) ≤ C‖u‖W 1,p(�).

(b) Extension of ui , 1 ≤ i ≤ k.
Consider the restriction of u toUi ∩� and “transfer” this function toQ+ with the

help ofHi . More precisely, set vi(y) = u(Hi(y)) for y ∈ Q+. We know (Proposition
9.6) that vi ∈ W 1,p(Q+). Then define the extension onQ by reflection of vi (Lemma
9.2); call it v�i . We know that v�i ∈ W 1,p(Q). “Retransfer” v�i to Ui using H−1

i and
call it wi :

wi(x) = v�i [H−1
i (x)] for x ∈ Ui.

Then wi ∈ W 1,p(Ui), wi = u on Ui ∩�, and

‖wi‖W 1,p(Ui)
≤ C‖u‖W 1,p(Ui∩�).

Finally, set for x ∈ R
N ,

ûi (x) =
{
θi(x)wi(x) if x ∈ Ui,
0 if x ∈ R

N\Ui,

so that ûi ∈ W 1,p(RN) (see Remark 4(ii)), ûi = ui on �, and

‖ûi‖W 1,p(RN) ≤ C‖u‖W 1,p(Ui∩�).

(c) Conclusion. The operatorPu = ū0+∑N
i=1 ûi possesses all the desired properties.

• Corollary 9.8 (density). Assume that � is of class C1, and let u ∈ W 1,p(�) with
1 ≤ p < ∞. Then there exists a sequence (un) from C∞

c (R
N) such that un|� → u

inW 1,p(�). In other words, the restrictions to� ofC∞
c (R

N) functions form a dense
subspace of W 1,p(�).

Proof. Suppose first that� is bounded. Then there exists an extension operatorP (by
Theorem 9.7). The sequence8 ζn(ρn �Pu) converges to Pu inW 1,p(RN) and thus it
answers the problem. When � is not bounded we start by considering the sequence
ζnu. Given ε > 0, fix n0 such that ‖ζn0u− u‖W 1,p < ε. One may then construct an
extension v ∈ W 1,p(RN) of ζn0u (since this only involves the intersection of � with
a large ball). We finally pick any w ∈ C∞

c (R
N) such that ‖w − v‖W 1,p(RN) < ε.

8 As usual, (ρn) is a sequence of mollifiers and (ζn) is a sequence of cut-off functions as in the proof
of Theorem 9.2.
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9.3 Sobolev Inequalities

In Chapter 8 we saw that if � has dimension 1, then W 1,p(�) ⊂ L∞(�) with
continuous injection, for all 1 ≤ p ≤ ∞. In dimension N ≥ 2 this inclusion is true
only for p > N ; when p ≤ N one may construct functions in W 1,p that do not
belong to L∞ (see Remark 16). Nevertheless, an important result, essentially due
to Sobolev, asserts that if 1 ≤ p < N then W 1,p(�) ⊂ Lp

�
(�) with continuous

injection, for some p� ∈ (p,+∞). This result is often called the Sobolev embedding
theorem. We begin by considering the following case:

A. The case � = RRR
N .

• Theorem 9.9 (Sobolev, Gagliardo, Nirenberg). Let 1 ≤ p < N . Then

W 1,p(RN) ⊂ Lp
�

(RN), where p� is given by
1

p�
= 1

p
− 1

N
,

and there exists a constant9 C = C(p,N) such that

(17) ‖u‖p� ≤ C‖∇u‖p ∀u ∈ W 1,p(RN).

Remark 10. The valuep� can be obtained by a very simple scaling argument (scaling
arguments, dear to the physicists, sometimes give useful information with a minimum
of effort). Indeed, assume that there exist constants C and q (1 ≤ q ≤ ∞) such that

(18) ‖u‖q ≤ C‖∇u‖p ∀u ∈ C∞
c (R

N).

Then necessarily q = p�. To see this, fix any function u ∈ C∞
c (R

N), and plug into
(18) uλ(x) = u(λx). We obtain

‖u‖q ≤ Cλ
(1+N

q
−N
p
)‖∇u‖p ∀λ > 0,

which implies 1+ N
q

− N
p

= 0, i.e., q = p� (provided u does not vanish identically).

The proof of Theorem 9.9 relies on the following lemma:

Lemma 9.4. Let N ≥ 2 and let f1, f2, . . . , fN ∈ LN−1(RN−1). For x ∈ R
N and

1 ≤ i ≤ N set

x̃i = (x1, x2, . . . , xi−1, xi+1, . . . , xN) ∈ R
N−1,

i.e., xi is omitted from the list. Then the function

f (x) = f1(x̃1)f2(x̃2) · · · fN(x̃N ), x ∈ R
N,

belongs to L1(RN) and

9 We can take C(p,N) = (N − 1)p/(N − p), but this constant is not optimal. The best constant
is known (but it is not simple!), see Th. Aubin [1], G. Talenti [1], and E. Lieb [1].



9.3 Sobolev Inequalities 279

‖f ‖L1(RN) ≤
N∏

i=1

‖fi‖LN−1(RN−1).

Proof. The case N = 2 is trivial (why?). Let us consider the case N = 3.
We have
∫

R

|f (x)|dx3 = |f3(x1, x2)|
∫

R

|f1(x2, x3)||f2(x1, x3)|dx3

≤ |f3(x1, x2)|
(∫

R

|f1(x2, x3)|2dx3

)1/2 (∫

R

|f2(x1, x3)|2dx3

)1/2

(by Cauchy–Schwarz). Applying Cauchy–Schwarz once more gives
∫

R3
|f (x)|dx ≤ ‖f3‖L2(R2)‖f1‖L2(R2)‖f2‖L2(R2).

The general case is obtained by induction—assuming the result for N and then
deducing it for N + 1. Fix xN+1 ∈ R; because of Hölder’s inequality,

∫

RN

|f (x)|dx1dx2 · · · dxN

≤ ‖fN+1‖LN(RN)
[∫

|f1f2 · · · fN |N ′
dx1dx2 · · · dxN

]1/N ′

(with N ′ = N/(N − 1)). Applying the induction assumption to the functions
|f1|N ′

, |f2|N ′
, . . . , |fN |N ′

, we obtain

∫

RN

|f1|N ′ · · · |fN |N ′
dx1 · · · dxN ≤

N∏

i=1

‖fi‖N ′
LN(RN−1)

,

from which it follows that

∫

RN

|f (x)|dx1 · · · dxN ≤ ‖fN+1‖LN(RN)
N∏

i=1

‖fi‖LN(RN−1).

Now vary xN+1. Each of the functions xN+1 
→ ‖fi‖LN(RN−1) belongs to LN(R),

1 ≤ i ≤ N . As a consequence, their product
∏N
i=1 ‖fi‖LN(RN−1) belongs to L1(R)

(see Remark 2 following Hölder’s inequality in Chapter 4) and

∫

RN+1
|f (x)|dx1dx2 · · · dxNdxN+1 ≤

N+1∏

i=1

‖fi‖LN(RN).

Proof of Theorem 9.9. We begin with the case p = 1 and u ∈ C1
c (R

N). We
have
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|u(x1, x2, . . . , xN)| =
∣
∣
∣
∣

∫ x1

−∞
∂u

∂x1
(t, x2, . . . , xN)dt

∣
∣
∣
∣

≤
∫ +∞

−∞

∣
∣
∣
∣
∂u

∂x1
(t, x2, . . . , xN)

∣
∣
∣
∣dt,

and similarly, for each 1 ≤ i ≤ N ,

|u(x1, x2, . . . , xN)| ≤
∫ +∞

−∞

∣
∣
∣
∣
∂u

∂xi
(x1, x2, . . . , xi−1, t, xi+1, . . . xN)

∣
∣
∣
∣dt

def≡ fi(x̃i).

Thus

|u(x)|N ≤
N∏

i=1

fi(x̃i).

We deduce from Lemma 9.4 that

∫

RN

|u(x)|N/(N−1)dx ≤
N∏

i=1

‖fi‖1/(N−1)
L1(RN−1)

=
N∏

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

1/(N−1)

L1(RN)

.

As a consequence, we have

(19) ‖u‖LN/(N−1)(RN) ≤
N∏

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

1/N

L1(RN)

.

This completes the proof of (17) when p = 1 and u ∈ C1
c (R

N). We turn now to the
case 1 < p < N , still with u ∈ C1

c (R
N). Let m ≥ 1; apply (19) to |u|m−1u instead

of u. We obtain

(20) ‖u‖mmN/(N−1) ≤ m

N∏

i=1

∥
∥
∥
∥ |u|m−1 ∂u

∂xi

∥
∥
∥
∥

1/N

1
≤ m‖u‖m−1

p′(m−1)

N∏

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

1/N

p

.

Then choose m such that mN/(N − 1) = p′(m − 1), which gives m =
(N − 1)p�/N (m ≥ 1 since 1 < p < N). We obtain

‖u‖p� ≤ m

N∏

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

1/N

p

,

and thus
‖u‖p� ≤ C‖∇u‖p ∀u ∈ C1(RN).

To complete the proof let u ∈ W 1,p(RN), and let (un) be a sequence from C1
c (R

N)

such that un → u inW 1,p(RN). One can also suppose, by extracting a subsequence
if necesary, that un → u a.e. We have

‖un‖p� ≤ C‖∇un‖p.
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It follows from Fatou’s lemma10 that

u ∈ Lp� and ‖u‖p� ≤ C‖∇u‖p.‘
• Corollary 9.10. Let 1 ≤ p < N . Then

W 1,p(RN) ⊂ Lq(RN) ∀q ∈ [p, p�]
with continuous injection.

Proof. Given q ∈ [p, p�], we write

1

q
= α

p
+ 1 − α

p�
for some α ∈ [0, 1].

We know (see Remark 2 in Chapter 4) that

‖u‖q ≤ ‖u‖αp‖u‖1−α
p� ≤ ‖u‖p + ‖u‖p�

(by Young’s inequality). Using Theorem 9.9, we conclude that

‖u‖q ≤ C‖u‖W 1,p ∀u ∈ W 1,p(RN).

• Corollary 9.11 (the limiting case p = N ). We have

W 1,p(RN) ⊂ Lq(RN) ∀q ∈ [N,+∞).

Proof. Assume u ∈ C1
c (R

N); applying (20) with p = N , we obtain

‖u‖mmN/(N−1) ≤ m‖u‖m−1
(m−1)N/(N−1)‖∇u‖N ∀m ≥ 1,

and thanks to Young’s inequality we have

(21) ‖u‖mN/(N−1) ≤ C(‖u‖(m−1)N/(N−1) + ‖∇u‖N) ∀m ≥ 1.

In (21) we choose first m = N ; it becomes

‖u‖N2/(N−1) ≤ C‖u‖W 1,N ,

and by the interpolation inequality (see Remark 2 in Chapter 4) we have

(22) ‖u‖q ≤ C‖u‖W 1,N

for all q with N ≤ q ≤ N2/(N − 1). Reiterating this argument with m = N + 1,
m = N + 2, etc., we arrive at

(23) ‖u‖q ≤ C‖u‖W 1,N ∀u ∈ C1(RN)

10 One can also conclude by noticing that (un) is a Cauchy sequence in Lp
�
.
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for all q ∈ [N , +∞), with a constant C depending on q and N .11 Inequality (23)
extends by density to W 1,N .

• Theorem 9.12 (Morrey). Let p > N . Then

(24) W 1,p(RN) ⊂ L∞(RN)

with continuous injection. Furthermore, for all u ∈ W 1,p(RN), we have

(25) |u(x)− u(y)| ≤ C|x − y|α‖∇u‖p a.e. x, y ∈ R
N,

where α = 1 − (N/p) and C is a constant (depending only on p and N).

Remark 11. Inequality (25) implies the existence of a function ũ ∈ C(RN) such that
u = ũ a.e. on R

N . (Indeed, letA ⊂ R
N be a set of measure zero such that (25) holds

for x, y ∈ R
N\A; since R

N\A is dense in R
N , the function u|RN\A admits a (unique)

continuous extension to R
N.) In other words, every function u ∈ W 1,p(RN) with

p > N admits a continuous representative. When it is useful, we replace u by its
continuous representative, and we also denote by u this continuous representative.

Proof. We begin by establishing (25) for u ∈ C1
c (R

N). Let Q be an open cube,
containing 0, whose sides—of length r—are parallel to the coordinate axes. For
x ∈ Q we have

u(x)− u(0) =
∫ 1

0

d

dt
u(tx)dt

and thus

(26) |u(x)− u(0)| ≤
∫ 1

0

N∑

i=1

|xi |
∣
∣
∣
∣
∂u

∂xi
(tx)

∣
∣
∣
∣dt ≤ r

N∑

i=1

∫ 1

0

∣
∣
∣
∣
∂u

∂xi
(tx)

∣
∣
∣
∣dt.

Set

ū = 1

|Q|
∫

Q

u(x)dx = (mean of u on Q).

Integrating (26) on Q, we obtain

|ū− u(0)| ≤ r

|Q|
∫

Q

dx

N∑

i=1

∫ 1

0

∣
∣
∣
∣
∂u

∂xi
(tx)

∣
∣
∣
∣dt

= 1

rN−1

∫ 1

0
dt

∫

Q

N∑

i=1

∣
∣
∣
∣
∂u

∂xi
(tx)

∣
∣
∣
∣dx

= 1

rN−1

∫ 1

0
dt

∫

tQ

N∑

i=1

∣
∣
∣
∣
∂u

∂xi
(y)

∣
∣
∣
∣
dy

tN
.

11 This constant “blows up” as q → +∞.
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Then, from Hölder’s inequality, we have

∫

tQ

∣
∣
∣
∣
∂u

∂xi
(y)

∣
∣
∣
∣dy ≤

(∫

Q

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

p)1/p

|tQ|1/p′

(since tQ ⊂ Q for t ∈ (0, 1)). We deduce from this that

|ū− u(0)| ≤ 1

rN−1 ‖∇u‖Lp(Q) rN/p′
∫ 1

0

tN/p
′

tN
dt = r1−(N/p)

1 − (N/p)
‖∇u‖Lp(Q).

By translation, this inequality remains true for all cubes Q whose sides—of length
r—are parallel to the coordinate axes. Thus we have

(27) |ū− u(x)| ≤ r1−(N/p)

1 − (N/p)
‖∇u‖Lp(Q) ∀x ∈ Q.

By adding these (and using the triangle inequality) we obtain

(28) |u(x)− u(y)| ≤ 2r1−(N/p)

1 − (N/p)
‖∇u‖Lp(Q) ∀x, y ∈ Q.

Given any two points x, y ∈ R
N , there exists such a cube Q with side r = 2|x − y|

containing x and y. This implies (25) when u ∈ C1
c (R

N). For a general function
u ∈ W 1,p(RN) we use a sequence (un) of C1

c (R
N) such that un → u in W 1,p(RN)

and un → u a.e.

We now prove (24). Let u ∈ C1
c (R

N), x ∈ R
N , and letQ be a cube of side r = 1

containing x. From (27) and Hölder’s inequality we have

|u(x)| ≤ |ū| + C‖∇u‖Lp(Q) ≤ C‖u‖W 1,p(Q) ≤ C‖u‖W 1,p(RN),

where C depends only on p and N . Thus

‖u‖L∞(RN) ≤ C‖u‖W 1,p(RN) ∀u ∈ C1
c (R

N).

For a general function u ∈ W 1,p(RN) we use a standard density argument.

Remark 12. We deduce from (24) that if u ∈ W 1,p(RN) with N < p < ∞, then

lim|x|→∞u(x) = 0.

Indeed, there exists a sequence (un) in C1
c (R

N) such that un → u inW 1,p(RN). By
(24), u is also the uniform limit on R

N of the un’s.

• Corollary 9.13. Let m ≥ 1 be an integer and let p ∈ [1,+∞). We have

Wm,p(RN) ⊂ Lq(RN), where
1

q
= 1

p
− m

N
if

1

p
− m

N
> 0,
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Wm,p(RN) ⊂ Lq(RN) ∀q ∈ [p,+∞) if
1

p
− m

N
= 0,

Wm,p(RN) ⊂ L∞(RN) if
1

p
− m

N
< 0,

and all these injections are continuous. Moreover, ifm−(N/p) > 0 is not an integer,
set12

k = [m− (N/p)] and θ = m− (N/p)− k (0 < θ < 1).

We have, for all u ∈ Wm,p(RN),

‖Dαu‖L∞(RN) ≤ C‖u‖Wm,p(RN) ∀α with |α| ≤ k

and13

|Dαu(x)−Dαu(y)| ≤ C‖u‖Wm,p(RN)|x − y|θ a.e. x, y ∈ R
N, ∀α with |α| = k.

In particular, Wm,p(RN) ⊂ Ck(RN).14

Proof. All of these results are obtained by repeated applications of Theorem 9.9,
Corollary 9.11, and Theorem 9.12.

Remark 13. The case p = 1 and m = N is special. We have WN,1 ⊂ L∞. (But
it is not true, in general, that Wm,p ⊂ L∞ for p > 1 and m = N/p.) Indeed, for
u ∈ C∞

c (R
N), we have

u(x1, x2, . . . , xN) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xN

−∞
∂Nu

∂x1∂x2 · · · ∂xN (t1, t2, . . . , tN )dt1dt2 · · · dtN

and thus

(29) ‖u‖L∞ ≤ C‖u‖WN,1 ∀u ∈ C∞
c (R

N).

The case of a general function u ∈ WN,1 follows by density.

Now let us turn to the following.

B. The case � ⊂ RRR
N .

We suppose here that � is an open set of class C1 with � bounded or else that
� = R

N+ .

• Corollary 9.14. Let 1 ≤ p ≤ ∞. We have

12 [ ] denotes the integer part.
13 This implies that Dαu is Lipschitz continuous for all α with |α| < k, i.e.,

|Dαu(x)−Dαu(y)| ≤ C‖u‖Wm,p |x − y| a.e. x, y ∈ R
N .

14 This is to be understood modulo the choice of a continuous representative.
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W 1,p(�) ⊂ Lp
�

(�), where
1

p�
= 1

p
− 1

N
, if p < N,

W 1,p(�) ⊂ Lq(�) ∀q ∈ [p,+∞), if p = N,

W 1,p(�) ⊂ L∞(�), if p > N,

and all these injections are continuous. Moreover, if p > N we have, for all u ∈
W 1,p(�),

|u(x)− u(y)| ≤ C‖u‖W 1,p |x − y|α a.e. x, y ∈ �,
with α = 1 − (N/p) and C depends only on�, p, andN . In particular,W 1,p(�) ⊂
C(�).15

Proof. Consider the extension operator

P : W 1,p(�) → W 1,p(RN)

(see Theorem 9.7) and then apply Theorem 9.9, Corollary 9.11, and Theorem 9.12.

• Corollary 9.15. The conclusion of Corollary 9.13 remains true if R
N is replaced

by �.16

Proof. By repeated application of Corollary 9.14.17

• Theorem 9.16 (Rellich–Kondrachov). Suppose that � is bounded and of class
C1. Then we have the following compact injections:

W 1,p(�) ⊂ Lq(�) ∀q ∈ [1, p�), where
1

p�
= 1

p
− 1

N
, if p < N,

W 1,p(�) ⊂ Lq(�) ∀q ∈ [p,+∞), if p = N,

W 1,p(�) ⊂ C(�), if p > N.

In particular, W 1,p(�) ⊂ Lp(�) with compact injection for all p (and all N).

Proof. The case p > N follows from Corollary 9.14 and Ascoli–Arzelà’s theorem.
The case p = N reduces to the case p < N . Therefore, we are left with the case
p < N .

Let H be the unit ball in W 1,p(�). Let P be the extension operator of Theorem
9.7. Set F = P(H), so that H = F|�. In order to show that H has compact closure

15 Once more, this is modulo the choice of a continuous representative.
16 To be precise, if m− (N/p) > 0 is not an integer, then

Wm,p(�) ⊂ Ck(�), where k = [m− (n/p)]
and Ck(�) = {u ∈ Ck(�); Dαu has a continuous extension on � for all α with |α| ≤ k}.
17 Alternatively, one could apply Corollary 9.13 together with an extension operator P :
Wm,p(�) → Wm,p(RN), but this would require an extra hypothesis: � would have to be of
class Cm to construct this extension operator.
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in Lq(�) for q ∈ [1, p�) we invoke Theorem 4.26. Since � is bounded, we may
always assume that q ≥ p. Clearly, F is bounded in W 1,p(RN) and thus it is also
bounded in Lq(RN) by Corollary 9.10. We have to check that

lim|h|→0
‖τhf − f ‖Lq(RN) = 0 uniformly in f ∈ F .

By Proposition 9.3 we have

‖τhf − f ‖Lp(RN) ≤ |h|‖∇f ‖Lp(RN) ∀f ∈ F .

Since p ≤ q < p�, we may write

1

q
= α

p
+ 1 − α

p�
for some α ∈ (0, 1].

Thanks to the interpolation inequality (see Remark 2 in Chapter 4) we have

‖τhf − f ‖Lq(RN) ≤ ‖τhf − f ‖α
Lp(RN)

‖τhf − f ‖1−α
Lp

∗
(Rn)

≤ |h|α‖∇f ‖α
Lp(RN)

(2‖f ‖Lp∗
(RN))

1−α ≤ C|h|α,

where C is independent of F (since F is bounded in W 1,p(RN)). The desired con-
clusion follows.

Remark 14. Theorem 9.16 is “almost optimal” in the following sense:

(i) If � is not bounded, the injection W 1,p(�) ⊂ Lp(�) is, in general, not com-
pact.18

(ii) The injection W 1,p(�) ⊂ Lp
�
(�) is never compact even if � is bounded and

smooth.

� Remark 15. Let � be a bounded open set of class C1. Then the norm

|||u||| = ‖∇u‖p + ‖u‖q
is equivalent to the W 1,p norm so long as

1 ≤ q ≤ p� if 1 ≤ p < N,

1 ≤ q < ∞ if p = N,

1 ≤ q ≤ ∞ if p > N.

� Remark 16 (the limiting case p = N ). Let � be a bounded open set of class C1

and let u ∈ W 1,N (�). Then in general, u /∈ L∞(�). For example, if

� = {x ∈ R
N ; |x| < 1/2},

the function
18 See the detailed discussion in R. Adams [1], p. 167 concerning the compactness of this injection
for unbounded domains.
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u(x) = (log 1/|x|)α with 0 < α < 1 − (1/N)

belongs to W 1,N (�), but it is not bounded because of the singularity at x = 0.
Nevertheless, we have Trudinger’s inequality

∫

�

e|u|N/(N−1)
< ∞ ∀u ∈ W 1,N (�)

(see, e.g., R. Adams [1] or D. Gilbarg–N. Trudinger [1]).

9.4 The Space W
1,p

0 (�)

Definition. Let 1 ≤ p < ∞; W 1,p
0 (�) denotes the closure of C1

c (�) in W 1,p(�).
Set19

H 1
0 (�) = W

1,2
0 (�).

The space W 1,p
0 , equipped with the W 1,p norm, is a separable Banach space; it is

reflexive if 1 < p < ∞.H 1
0 , equipped with theH 1 scalar product, is a Hilbert space.

� Remark 17. Since C1
c (R

N) is dense in W 1,p(RN), we have

W
1,p
0 (RN) = W 1,p(RN).

By contrast, if � ⊂ R
N and � 	= R

N , then in general, W 1,p
0 (�) 	= W 1,p(�).

However, if R
N\� is “sufficiently thin” and p < N , thenW 1,p

0 (�) = W 1,p(�). For
example, if � = R

N\{0} and N ≥ 2 one can show that H 1
0 (�) = H 1(�).

Remark 18. It is easy to check—using a sequence of mollifiers—thatC∞
c (�) is dense

in W 1,p
0 (�). In other words, C∞

c (�) could equally well have been used instead of

C1
c (�) in the definition of W 1,p

0 (�).

The functions in W 1,p
0 (�) are “roughly” those of W 1,p(�) that “vanish on � =

∂�.” It is delicate to make this precise, since a function u ∈ W 1,p(�) is defined only
a.e. (and the measure of� is zero!) and u need not have a continuous representative.20

The following characterizations suggest that we “really” have functions that are “zero
on �.” We begin with a simple fact:

Lemma 9.5. Letu ∈ W 1,p(�)with 1 ≤ p < ∞ and assume that supp u is a compact
subset of �. Then u ∈ W 1,p

0 (�).

Proof. Fix an open set ω such that supp u ⊂ ω ⊂⊂ � and choose α ∈ C1
c (ω) such

that α = 1 on supp u; thus αu = u. On the other hand (Theorem 9.2), there exists a

19 When there is ambiguity we shall write W 1,p
0 , H 1

0 instead of W 1,p
0 (�),H 1

0 (�).
20 Nevertheless, if u ∈ W 1,p(�) one can give a meaning to u|� (when � is regular) and one can
show, for example, that u|� ∈ Lp(�). This relies on the theory of traces (see the comments at the
end of this chapter).
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sequence (un) in C∞
c (R

N) such that un → u in Lp(�) and ∇un → ∇u in Lp(ω)N .

It follows that αun → αu inW 1,p(�). Thus αu belongs toW 1,p
0 (�), and so does u.

Theorem 9.17. Suppose that � is of class C1. Let21

u ∈ W 1,p(�) ∩ C(�) with 1 ≤ p < ∞.

Then the following properties are equivalent:

(i) u = 0 on �.
(ii) u ∈ W 1,p

0 (�).

Proof.
(i) ⇒ (ii). Suppose first that supp u is bounded.
Fix a function G ∈ C1(R) such that

|G(t)| ≤ |t | ∀t ∈ R and G(t) =
{

0 if |t | ≤ 1,

t if |t | ≥ 2.

Then un = (1/n)G(nu) belongs to W 1,p (by Proposition 9.5). It is easy to verify
(using dominated convergence) that un → u in W 1,p. On the other hand,

supp un ⊂ {x ∈ �; |u(x)| ≥ 1/n},

and thus supp un is a compact set contained in �. From Lemma 9.5, un ∈ W
1,p
0 ,

and it follows that u ∈ W
1,p
0 . In the general case in which supp u is not bounded,

consider the sequence (ζnu) (where (ζn) is a sequence of cut-off functions as in the
proof of Theorem 9.2). From the above, ζnu ∈ W 1,p

0 , and since ζnu → u in W 1,p,

we conclude that u ∈ W 1,p
0 .

(ii) ⇒ (i). Using local charts this is reduced to the following problem. Let u ∈
W

1,p
0 (Q+) ∩ C(Q+); prove that u = 0 on Q0.
Let (un) be a sequence in C1

c (Q+) such that un → u inW 1,p(Q+). We have, for
(x′, xN) ∈ Q+,

|un(x′, xN)| ≤
∫ xN

0

∣
∣
∣
∣
∂un

∂xN
(x′, t)

∣
∣
∣
∣dt,

and thus for 0 < ε < 1,

1

ε

∫

|x′|<1

∫ ε

0
|un(x′, xN)|dx′dxN ≤

∫

|x′|<1

∫ ε

0

∣
∣
∣
∣
∂un

∂xN
(x′, t)

∣
∣
∣
∣dx

′dt.

In the limit, when n → ∞ (ε > 0 fixed) we obtain

1

ε

∫

|x′|<1

∫ ε

0
|u(x′, xN)|dx′dxN ≤

∫

|x′|<1

∫ ε

0

∣
∣
∣
∣
∂u

∂xN
(x′, t)

∣
∣
∣
∣dx

′dt.

21 Recall that if p > N , then u ∈ W 1,p(�) ⇒ u ∈ C(�) (see Corollary 9.14).



9.4 The Space W 1,p
0 (�) 289

Finally, as ε → 0, we are led to
∫

|x′|<1
|u(x′, 0)|dx′ = 0

(since u ∈ C(Q+) and ∂u
∂xN

∈ L1(Q+)). Thus u = 0 on Q0.

Remark 19. In the proof of (i) ⇒ (ii) we have not used the smoothness of�. However,
the converse (ii) ⇒ (i) requires a smoothness hypothesis on� (consider for example
� = R

N\{0} with N ≥ 2 and p ≤ N ).

Here is another characterization of W 1,p
0 .

Proposition 9.18. Suppose � is of class C1. Let u ∈ Lp(�) with 1 < p < ∞. The
following properties are equivalent:

(i) u ∈ W 1,p
0 (�),

(ii) there exists a constant C such that
∣
∣
∣
∣

∫

�

u
∂ϕ

∂xi

∣
∣
∣
∣ ≤ C

∥
∥ϕ

∥
∥
Lp

′
(�)

∀ϕ ∈ C1
c (R

N), ∀i = 1, 2, . . . , N,

(iii) the function

ū(x) =
{
u(x) if x ∈ �,
0 if x ∈ R

N\�,
belongs to W 1,p(RN), and in this case ∂ū

∂xi
= ∂u

∂xi
.

Proof.
(i) ⇒ (ii). Let (un) be a sequence from C1

c (�) such that un → u in W 1,p. For
ϕ ∈ C1

c (R
N) we have

∣
∣
∣
∣

∫

�

un
∂ϕ

∂xi

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

∂un

∂xi
ϕ

∣
∣
∣
∣ ≤

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥
p

‖ϕ‖p′ .

Passing to the limit, we obtain (ii).

(ii) ⇒ (iii). Let ϕ ∈ C1
c (R

N); we have
∣
∣
∣
∣

∫

RN

ū
∂ϕ

∂xi

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

u
∂ϕ

∂xi

∣
∣
∣
∣ ≤ C

∥
∥ϕ

∥
∥
Lp

′
(�)

≤ C
∥
∥ϕ

∥
∥
Lp

′
(RN)

.

Thus ū ∈ W 1,p(RN) (by Proposition 9.3).

(iii) ⇒ (i). One can always assume that� is bounded (if not, consider the sequence
(ζnu)). By local charts and partition of unity this is reduced to the following problem.
Let u ∈ Lp(Q+) be such that the function

ū(x) =
{
u(x) if x ∈ Q, xN > 0,

0 if x ∈ Q, xN < 0,
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belongs to W 1,p(Q); prove that

αu ∈ W 1,p
0 (Q+) ∀α ∈ C1

c (Q).

Let (ρn) be a sequence of mollifiers such that

supp ρn ⊂
{

x ∈ R
N ; 1

2n
< xN <

1

n

}

;

one may choose, for example,

ρn(x) = nNρ(nx) and supp ρ ⊂ {x ∈ R
N ; (1/2) < xN < 1}.

Thus ρn � (αū) → αū inW 1,p(RN) (note that αū extended by 0 outsideQ belongs
to W 1,p(RN)). On the other hand,

supp(ρn � αū) ⊂ supp ρn + supp(αū) ⊂ Q+

for n large enough. It follows that

ρn � (αū) ∈ C1
c (Q+)

and thus αu ∈ W 1,p
0 (Q+).

Remark 20. The proof of Corollary 9.14 uses the extension operator, and because
of this fact one must assume that � is smooth. If W 1,p(�) is replaced by W 1,p

0 (�)

one can use the canonical extension by 0 outside �, which is valid for arbitrary
domains � (in the proof of Proposition 9.18, the implication (i) ⇒ (iii) does not
use any smoothness hypothesis on �). It follows, in particular, that the conclusion
of Corollary 9.14 is true for W 1,p

0 (�) with an arbitrary open set �. Similarly, the

conclusion of Theorem 9.16 is true forW 1,p
0 (�) with an arbitrary bounded open set

�. It can also be deduced from Theorem 9.9 that if � is an arbitrary open set and
1 ≤ p < N , then

(30) ‖u‖Lp� (�) ≤ C(p,N)‖∇u‖Lp(�) ∀u ∈ W 1,p
0 (�).

• Corollary 9.19 (Poincaré’s inequality). Suppose that 1 ≤ p < ∞ and � is a
bounded open set. Then there exists a constant C (depending on� and p) such that

‖u‖Lp(�) ≤ C‖∇u‖Lp(�) ∀u ∈ W 1,p
0 (�).

In particular, the expression ‖∇u‖Lp(�) is a norm on W 1,p
0 (�), and it is equivalent

to the norm ‖u‖W 1,p ; on H 1
0 (�) the expression

∑N
i=1

∫

�
∂u
∂xi

∂v
∂xi

is a scalar product
that induces the norm ‖∇u‖L2 and it is equivalent to the norm ‖u‖H 1 .

Remark 21. Poincaré’s inequality remains true if � has finite measure and also if �
has a bounded projection on some axis.
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Remark 22. For every integerm ≥ 1 and 1 ≤ p < ∞ one definesWm,p
0 (�) as being

the closure of Cmc (�) in Wm,p
0 (�). “Roughly,” a function u belongs to Wm,p

0 (�) if
u ∈ Wm,p(�) and if Dαu = 0 on � for all multi-indices α such that |α| ≤ m − 1.
It is important to notice the distinction betweenWm,p

0 (�) andWm,p(�)∩W 1,p
0 (�)

for m ≥ 2.

The Dual Space of W
1,p

0 (�)

Notation. We denote by W−1,p′
(�) the dual space of W 1,p

0 (�), 1 ≤ p < ∞, and
by H−1(�) the dual of H 1

0 (�). The dual of L2(�) is identified with L2(�), but
we do not identify H 1

0 (�) with its dual (see Remark 3 in Chapter 5). We have the
inclusions

H 1
0 (�) ⊂ L2(�) ⊂ H−1(�),

where these injections are continuous and dense.
If � is bounded then

W
1,p
0 (�) ⊂ L2(�) ⊂ W−1,p′

(�) if 2N/(N + 2) ≤ p < ∞,

with continuous and dense injections. If � is not bounded, the same holds, but only
for the range 2N/(N + 2) ≤ p ≤ 2.

The elements of W−1,p′
are completely described by the following result:

Proposition 9.20. LetF ∈ W−1,p′
(�). Then there exist functionsf0,f1,f2, . . . , fN ∈

Lp
′
(�) such that

〈F, v〉 =
∫

�

f0v +
N∑

i=1

∫

�

fi
∂v

∂xi
∀v ∈ W 1,p

0 (�),

and
‖F‖ = max

0≤i≤N ‖fi‖p′ .

If � is bounded we can take f0 = 0.

Proof. Adapt the proof of Proposition 8.14.

9.5 Variational Formulation of Some Boundary Value Problems

We are now going to use the previous setting in the study of some elliptic partial
differential equations (= PDEs) of second order.

Example 1 (homogeneous Dirichlet problem for the Laplacian). Let � ⊂ R
N be an

open bounded set. We are looking for a function u : � → R satisfying



292 9 Sobolev Spaces and the Variational Formulation of Elliptic BVPs in N Dimensions

(31)

{
−�u+ u = f in �,

u = 0 on � = ∂�,

where

�u =
N∑

i=1

∂2u

∂x2
i

= Laplacian of u,

and f is a given function on �. The boundary condition u = 0 on � is called the
(homogeneous) Dirichlet condition.

Definition. A classical solution of (31) is a function u ∈ C2(�) satisfying (31) (in
the usual sense). A weak solution of (31) is a function u ∈ H 1

0 (�) satisfying

(32)
∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ H 1
0 (�),

where ∇u · ∇v = ∑N
i=1

∂u
∂xi

∂v
∂xi

.

We carry out the program described in Chapter 8.

Step A: Every classical solution is a weak solution.
Indeed, u ∈ H 1(�) ∩ C(�) and u = 0 on �, so that u ∈ H 1

0 (�) by Theorem 9.17
(see also Remark 19). On the other hand, if v ∈ C1

c (�) we have
∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v,

and by density this remains true for all v ∈ H 1
0 (�).

Step B: Existence and uniqueness of a weak solution.
This is the content of the following basic result.

• Theorem 9.21 (Dirichlet, Riemann, Poincaré, Hilbert). Given any f ∈ L2(�),
there exists a unique weak solution u ∈ H 1

0 (�) of (31). Furthermore, u is obtained by

min
v∈H 1

0 (�)

{
1

2

∫

�

(|∇v|2 + |v|2)−
∫

�

f v

}

.

This is Dirichlet’s principle.

Proof. Apply Lax–Milgram in the Hilbert spaceH = H 1
0 (�)with the bilinear form

a(u, v) =
∫

�

(∇u · ∇v + uv)

and the linear functional ϕ : v 
→ ∫

�
f v.

Step C: Regularity of the weak solution.
This question is delicate. We shall address it in Section 9.6.
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Step D: Recovery of a classical solution.
Assume that the weak solution u ∈ H 1

0 (�) of (31) belongs to C2(�), and assume
that � is of class C1. Then u = 0 on � (by Theorem 9.17). On the other hand,
we have ∫

�

(−�u+ u)v =
∫

�

f v ∀v ∈ C1
c (�)

and thus −�u + u = f a.e. on � (by Corollary 4.24). In fact, −�u + u = f

everywhere on �, since u ∈ C2(�); thus u is a classical solution.

We describe now some other examples. In each case it is essential to specify
precisely the function space and the appropriate weak formulation.

Example 2 (inhomogeneous Dirichlet condition). Let � ⊂ R
N be a bounded open

set. We look for a function u : � → R satisfying

(33)

{
−�u+ u = f in �,

u = g on �,

where f is given on � and g is given on �. Suppose that there exists a function
g̃ ∈ H 1(�) ∩ C(�) such that22 g̃ = g on � and consider the set

K = {v ∈ H 1(�); v − g̃ ∈ H 1
0 (�)}.

It follows from Theorem 9.17 that K is independent of the choice of g̃ and depends
only on g. K is a nonempty closed convex set in H 1(�).

Definition. A classical solution of (33) is a function u ∈ C2(�) satisfying (33). A
weak solution of (33) is a function u ∈ K satisfying

(34)
∫

�

(∇u · ∇v + uv) =
∫

�

f v ∀v ∈ H 1
0 (�).

As above, any classical solution is a weak solution.

• Proposition 9.22. Given any f ∈ L2(�), there exists a unique weak solution
u ∈ K of (33). Furthermore, u is obtained by

min
v∈K

{
1

2

∫

�

(|∇v|2 + v2)−
∫

�

f v

}

.

Proof. We claim that u ∈ K is a weak solution of (33) if and only if we have

(35)
∫

�

∇u · (∇v − ∇u)+
∫

�

u(v − u) ≥
∫

�

f (v − u) ∀v ∈ K.
22 This assumption is satisfied, for example, if� is of classC1 and g ∈ C1(�). If� is regular enough
it is not necessary to suppose that g̃ ∈ C(�). Applying the theory of traces (see the comments at
the end of this chapter), it suffices to know that g̃ ∈ H 1(�), i.e., g ∈ H 1/2(�).
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Indeed, if u is a weak solution of (33) it is clear that (35) holds even with equality.
Conversely, ifu ∈ K satisfies (35) we choose v = u±w in (35) withw ∈ H 1

0 (�), and
(34) follows. We may then apply Stampacchia’s theorem (Theorem 5.6) to conclude
the proof.

The study of regularity and recovery of a classical solution follows the same pattern
as in Example 1.

Example 3 (general elliptic equations of second order). Let � ⊂ R
N be an open

bounded set. We are given functions aij (x) ∈ C1(�), 1 ≤ i, j ≤ N , satisfying the
ellipticity condition

(36)
N∑

i,j=1

aij (x)ξiξj ≥ α|ξ |2, ∀x ∈ �, ∀ξ ∈ R
N with α > 0.

A function a0 ∈ C(�) is also given. We look for a function u : � → R satisfying

(37)

⎧
⎪⎪⎨

⎪⎪⎩

−
N∑

i,j=1

∂

∂xj

(

aij
∂u

∂xi

)

+ a0u = f in �,

u = 0 on �.

A classical solution of (37) is a function u ∈ C2(�) satisfying (37) in the usual
sense. A weak solution of (37) is a function u ∈ H 1

0 (�) satisfying

(38)
∫

�

N∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+
∫

�

a0uv =
∫

�

f v ∀v ∈ H 1
0 (�).

As above, any classical solution is a weak solution. If a0(x) ≥ 0 on � then for all
f ∈ L2(�) there exists a unique weak solution u ∈ H 1

0 : just apply Lax–Milgram in
the space H = H 1

0 with the continuous bilinear form

a(u, v) =
∫

�

N∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+
∫

�

a0uv.

The coerciveness of a( , ) comes from the ellipticity assumption, the assumption
a0 ≥ 0, and Poincaré’s inequality. If the matrix (aij ) is also symmetric, then the form
a( , ) is symmetric and u is obtained by

min
v∈H 1

0

⎧
⎨

⎩

1

2

∫

�

( N∑

i,j=1

aij
∂v

∂xi

∂v

∂xj
+ a0v

2
)

−
∫

�

f v

⎫
⎬

⎭
.

We now consider a more general problem: find a function u : � → R satisfying
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(39)

⎧
⎪⎨

⎪⎩

−
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+
∑

i

ai
∂u

∂xi
+ a0u = f in �,

u = 0 on �,

where the functions (aij ) ∈ L∞(�) satisfy the ellipticity condition and the functions
(ai)0≤i≤N are given in L∞(�). A weak solution of (39) is a function u ∈ H 1

0 such
that

(40)
∫

�

∑

i,j

aij
∂u

∂xi

∂v

∂xj
+
∫

�

∑

i

ai
∂u

∂xi
v +

∫

�

a0uv =
∫

�

f v ∀v ∈ H 1
0 .

The associated continuous bilinear form is

(41) a(u, v) =
∫

�

∑

i,j

aij
∂u

∂xi

∂v

∂xj
+
∫

�

∑

i

ai
∂u

∂xi
v +

∫

�

a0uv.

In general this form is not symmetric;23 in certain cases it is coercive: one may then
use Lax–Milgram to obtain the existence and uniqueness of a weak solution. In the
general case—even without coerciveness—one still has the following.

Theorem 9.23. If f = 0, then the set of solutions u ∈ H 1
0 of (40) is a finite-

dimensional vector space, say of dimension d . Moreover, there exists a subspace
F ⊂ L2(�) of dimension d such that24

[(40) has a solution] ⇐⇒
[∫

�

f v = 0 ∀v ∈ F
]

.

Remark 23. Suppose that the homogeneous equation associated to (40), i.e., with
f = 0, has u = 0 as its unique solution. Then for every f ∈ L2 there exists a
unique solution u ∈ H 1

0 of (40).25 In particular, if a0 ≥ 0 on � one can show, by
a maximum-principle-type method, that f = 0 ⇒ u = 0. We thus deduce, under
only the hypothesis a0 ≥ 0 on � (and no assumption on ai , 1 ≤ i ≤ N), that for
every f ∈ L2 there exists a unique solution u ∈ H 1

0 of (40); see, e.g., D. Gilbarg–
N. Trudinger [1].

Proof. Fix λ > 0, large enough that the bilinear form

a(u, v)+ λ

∫

�

uv

is coercive on H 1
0 . For every f ∈ L2 there exists a unique u ∈ H 1

0 satisfying

23 In dimension N there is no known device, as there is in one dimension, to reduce it to the
symmetric case.
24 In other words, (40) has a solution iff f satisfies d orthogonality conditions.
25 Note the close relationship between existence and uniqueness of solutions in elliptic problems.
This remarkable relationship is a consequence of Fredholm’s alternative (Theorem 6.6).



296 9 Sobolev Spaces and the Variational Formulation of Elliptic BVPs in N Dimensions

a(u, ϕ)+ λ

∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 .

Set u = Tf , so that T : L2 → L2 is a compact linear operator (since � is bounded,
the injectionH 1

0 ⊂ L2 is compact; see Theorem 9.16 and Remark 20). Equation (40)
is equivalent to

(42) u = T (f + λu).

Set v = f + λu as a new unknown, and (42) becomes

(43) v − λT v = f.

The conclusion follows from Fredholm’s alternative.

Example 4 (homogeneous Neumann problem). Let � ⊂ R
N be a bounded domain

of class C1. We look for a function u : � → R satisfying

(44)

⎧
⎨

⎩

−�u+ u = f in �,

∂u

∂n
= 0 on �,

where f is given on �; ∂u
∂n

denotes the outward normal derivative of u, i.e., ∂u
∂n

=
∇u · n, where n is the unit normal vector to �, pointing outward. The boundary
condition ∂u

∂n
= 0 on � is called the (homogeneous) Neumann condition.

Definition. A classical solution of (44) is a function u ∈ C2(�) satisfying (44). A
weak solution of (44) is a function u ∈ H 1(�) satisfying

(45)
∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ H 1(�).

Step A: Every classical solution is a weak solution.
Recall that by Green’s formula we have

(46)
∫

�

(�u)v =
∫

�

∂u

∂n
vdσ −

∫

�

∇u · ∇v ∀u ∈ C2(�), ∀v ∈ C1(�),

where dσ is the surface measure on �. If u is a classical solution of (44), then
u ∈ H 1(�), and we have

∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ C1(�).

We conclude by density (Corollary 9.8) that
∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ H 1(�).
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Step B: Existence and uniqueness of the weak solution.

Proposition 9.24. For everyf∈L2(�), there exists a unique weak solutionu∈H1(�)

of (44). Furthermore, u is obtained by

min
v∈H 1(�)

{
1

2

∫

�

(|∇v|2 + v2)−
∫

�

f v

}

.

Proof. Apply Lax–Milgram in H = H 1(�).

Step C: Regularity of the weak solution.
This will be discussed in Section 9.6.

Step D: Recovery of a classical solution.
If u ∈ C2(�) is a weak solution of (44), we have from (46)

(47)
∫

�

(−�u+ u)v +
∫

�

∂u

∂n
vdσ =

∫

�

f v ∀v ∈ C1(�).

In (47) first choose v ∈ C1
c (�) to deduce

−�u+ u = f in �.

Then return to (47) with v ∈ C1(�); one obtains
∫

�

∂u

∂n
vdσ = 0 ∀v ∈ C1(�)

and therefore ∂u
∂n

= 0 on �.

Example 5 (unbounded domains). In the case that� is an unbounded open set in R
N

one imposes—in addition to the usual boundary conditions on� = ∂�—a boundary
condition at infinity, for example u(x) → 0 as |x| → ∞. This “translates,” at the
level of a weak solution, by the condition u ∈ H 1. Of course, one must first prove
that if u is a classical solution such that u(x) → 0 as |x| → ∞, then umust belong to
H 1 (see the discussion in Example 8 of Chapter 8). Here are a few typical examples:

(a) � = RRR
N ; given f ∈ L2(RN) the equation

−�u+ u = f in R
N

has a unique weak solution in the following sense:

u ∈ H 1(RN) and
∫

RN

∇u · ∇v +
∫

RN

uv =
∫

RN

f v ∀v ∈ H 1(RN).

(b) � = RRR
N+ ; given f ∈ L2(RN+) the problem
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{
−�u+ u = f in R

N+ ,
u(x′, 0) = 0 for x′ ∈ R

N−1,

has a unique weak solution in the following sense:

u ∈ H 1
0 (�) and

∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ H 1
0 (�).

(c) � = RRR
N+ ; given f ∈ L2(RN+) the problem

⎧
⎨

⎩

−�u+ u = f in R
N+ ,

∂u

∂xN
(x′, 0) = 0 for x′ ∈ R

N−1,

has a unique weak solution in the following sense:

u ∈ H 1(�) and
∫

�

∇u · ∇v +
∫

�

uv =
∫

�

f v ∀v ∈ H 1(�).

9.6 Regularity of Weak Solutions

Definition. We say that an open set � is of class Cm, m ≥ 1 an integer, if for every
x ∈ � there exist a neighborhoodU of x in R

N and a bijective mappingH : Q → U

such that

H ∈ Cm(Q), H−1 ∈ Cm(U), H(Q+) = U ∩�, H(Q0) = U ∩ �.
We say that � is of class C∞ if it is of class Cm for all m.

The main regularity results are the following.

• Theorem 9.25 (regularity for the Dirichlet problem). Let � be an open set of
class C2 with � bounded (or else � = R

N+). Let f ∈ L2(�) and let u ∈ H 1
0 (�)

satisfy

(48)
∫

�

∇u∇ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

Then u ∈ H 2(�) and ‖u‖H 2 ≤ C‖f ‖L2 , where C is a constant depending only on
�. Furthermore, if � is of class Cm+2 and f ∈ Hm(�), then

u ∈ Hm+2(�) and ‖u‖Hm+2 ≤ C‖f ‖Hm.

In particular, if f ∈ Hm(�)withm > N/2, then u ∈ C2(�). Finally, if� is of class
C∞ and if f ∈ C∞(�), then u ∈ C∞(�).
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Theorem 9.26 (regularity for the Neumann problem). With the same assumptions
as in Theorem 9.25 one obtains the same conclusions for the solution of the Neumann
problem, i.e., for u ∈ H 1(�) such that

(49)
∫

�

∇u · ∇ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1(�).

Remark 24. One would obtain the same conclusions for the solution of the Dirichlet
(or Neumann) problem associated to a general second-order elliptic operator, i.e., if
u ∈ H 1

0 (�) is such that

∫

�

∑

i,j

aij
∂u

∂xi

∂ϕ

∂xj
+
∫

�

∑

i

ai
∂u

∂xi
ϕ +

∫

�

a0uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�);

then26

[f ∈ L2(�), aij ∈ C1(�) and ai ∈ C(�)] ⇒ u ∈ H 2(�),

and for m ≥ 1,

[f ∈ Hm(�), aij ∈ Cm+1(�) and ai ∈ Cm(�)] ⇒ u ∈ Hm+2(�).

We shall prove only Theorem 9.25; the proof of Theorem 9.26 is entirely analo-
gous. The main idea of the proof is the following. We consider first the case� = R

N ,
then the case � = R

N+ . For a general domain � we proceed in two steps:

1. Interior regularity, i.e., u is regular on every domain ω ⊂⊂ �. Here, the proof
follows the same pattern as � = R

N.

2. Boundary regularity, i.e., u is regular on some neighborhood of the boundary.
Here, the proof resembles, in local charts, the case � = R

N+ .

We recommend that the reader study well the cases� = R
N and� = R

N+ before
tackling the general case. The plan of this section is the following:

A. The case � = R
N .

B. The case � = R
N+ .

C. The general case:
C1. Interior estimates.
C2. Estimates near the boundary.

The essential ingredient of the proof is the method of translations27 due to
L. Nirenberg.

A. The case � = RRR
N .

Notation. Given h ∈ R
N , h 	= 0, set

26 If � is not bounded we must also assume that Dαaij ∈ L∞(�) ∀α, |α| ≤ m + 1 and Dαai ∈
L∞(�) ∀α, |α| ≤ m.
27 Also called the technique of difference quotients.
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Dhu = 1

|h| (τhu− u), i.e., Dhu(x) = u(x + h)− u(x)

|h| .

In (48) take ϕ = D−h(Dhu). This is possible, since ϕ ∈ H 1(RN) (since u ∈
H 1(RN)); we obtain

∫

|∇Dhu|2 +
∫

|Dhu|2 =
∫

f D−h(Dhu)

and thus

(50) ‖Dhu‖2
H 1 ≤ ‖f ‖2‖D−h(Dhu)‖2.

On the other hand, recall (Proposition 9.3) that

(51) ‖D−hv‖2 ≤ ‖∇v‖2 ∀v ∈ H 1.

Using this with v = Dhu, we obtain

‖Dhu‖2
H 1 ≤ ‖f ‖2‖∇(Dhu)‖2,

and consequently
‖Dhu‖H 1 ≤ ‖f ‖2.

In particular,

(52)

∥
∥
∥
∥Dh

∂u

∂xi

∥
∥
∥
∥

2
≤ ‖f ‖2 ∀i = 1, 2, . . . , N.

Applying Proposition 9.3 once more, we see that ∂u
∂xi

∈ H 1 and thus u ∈ H 2.

We now prove that f ∈ H 1 ⇒ u ∈ H 3. We denote by Du any of the derivatives
∂u
∂xi
, 1 ≤ i ≤ N . We already know that Du ∈ H 1. We have to prove that Du ∈ H 2.

For this it suffices to verify that

(53)
∫

∇(Du) · ∇ϕ +
∫

(Du)ϕ =
∫

(Df )ϕ ∀ϕ ∈ H 1

(and then we may apply to Du the preceding analysis, which gives Du ∈ H 2).

If ϕ ∈ C∞
c (R

N) we may replace ϕ by Dϕ in (48); it becomes
∫

∇u · ∇(Dϕ)+
∫

uDϕ =
∫

fDϕ,

and thus
∫

∇(Du) · ∇ϕ +
∫

(Du)ϕ =
∫

(Df )ϕ ∀ϕ ∈ C∞
c (R

N).
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This implies (53), since C∞
c (R

N) is dense in H 1(RN) (Proposition 9.2).

To show that f ∈ Hm ⇒ u ∈ Hm+2 it suffices to argue by induction on m and
to apply (53).

B. The case � = RRR
N+ .

We use again translations, but only in the tangential directions, i.e., in a direction
h ∈ R

N−1 × {0}: we say that h is parallel to the boundary, and denote this by h ‖ �.
It is essential to observe that

u ∈ H 1
0 (�) ⇒ τhu ∈ H 1

0 (�) if h ‖ �.
In other words, H 1

0 (�) is invariant under tangential translations.
We choose h ‖ � and insert ϕ = D−h(Dhu) in (48); we obtain

∫

|∇(Dhu)|2 +
∫

|Dhu|2 =
∫

f D−h(Dhu),

i.e.,

(54) ‖Dhu‖2
H 1 ≤ ‖f ‖2‖D−h(Dhu)‖2.

We use now the the following lemma.

Lemma 9.6. We have

‖Dhv‖L2(�) ≤ ‖∇v‖L2(�) ∀v ∈ H 1(�), ∀h ‖ �.

Proof. Start with v ∈ C1
c (R

N) and follow the proof of Proposition 9.3 (note that
�+ th = � for all t and all h ‖ �). For a general v ∈ H 1(�) argue by density.

Combining (54) and Lemma 9.6, we obtain

(55) ‖Dhu‖H 1 ≤ ‖f ‖2 ∀h ‖ �.
Let 1 ≤ j ≤ N , 1 ≤ k ≤ N − 1, h = |h|ek , and ϕ ∈ C∞

c (�). We have

∫

Dh

(
∂u

∂xj

)

ϕ = −
∫

uD−h
(
∂ϕ

∂xj

)

and thanks to (55), ∣
∣
∣
∣

∫

uD−h
(
∂ϕ

∂xj

)∣
∣
∣
∣ ≤ ‖f ‖2 ‖ϕ‖2.

Passing to the limit as h → 0, this becomes

(56)

∣
∣
∣
∣

∫

u
∂2ϕ

∂xj ∂xk

∣
∣
∣
∣ ≤ ‖f ‖2 ‖ϕ‖2 ∀1 ≤ j ≤ N, ∀1 ≤ k ≤ N − 1.

Finally, we claim that
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(57)

∣
∣
∣
∣
∣

∫

u
∂2ϕ

∂x2
N

∣
∣
∣
∣
∣
≤ ‖f ‖2 ‖ϕ‖2 ∀ϕ ∈ C∞

c (�).

To prove (57) we return to equation (48) and deduce that

∣
∣
∣
∣
∣

∫

u
∂2ϕ

∂x2
N

∣
∣
∣
∣
∣
≤
N−1∑

i=1

∣
∣
∣
∣
∣

∫

u
∂2ϕ

∂x2
i

∣
∣
∣
∣
∣
+
∣
∣
∣
∣

∫

(f − u)ϕ

∣
∣
∣
∣ ≤ C‖f ‖2 ‖ϕ‖2

from (56). Combining (56) and (57), we end up with

∣
∣
∣
∣

∫

u
∂2ϕ

∂xj ∂xk

∣
∣
∣
∣ ≤ C‖f ‖2 ‖ϕ‖2 ∀ϕ ∈ C∞

c (�), ∀1 ≤ j, k ≤ N.

As a consequence, u ∈ H 2(�), since there exist functions fjk ∈ L2(�) such that

∫

u
∂2ϕ

∂xj ∂xk
=
∫

fjkϕ ∀ϕ ∈ C∞
c (�)

(as in the proof of Proposition 8.3).

We show finally that f ∈ Hm(�) ⇒ u ∈ Hm+2(�). By Du we mean any one
of the tangential derivatives Du = ∂u

∂xj
, 1 ≤ j ≤ N − 1. We first establish the

following result.

Lemma 9.7. Let u ∈ H 2(�) ∩ H 1
0 (�) satisfying (48). Then Du ∈ H 1

0 (�) and,
moreover,

(58)
∫

∇(Du) · ∇ϕ +
∫

(Du)ϕ =
∫

(Df )ϕ ∀ϕ ∈ H 1
0 (�).

Proof. The only delicate point consists in proving that Du ∈ H 1
0 (�), since (58) is

derived from (48) by choosingDϕ instead of ϕ (with ϕ ∈ C∞
c (�)) and then arguing

by density. Let h = |h|ej , 1 ≤ j ≤ N − 1, so that Dhu ∈ H 1
0 (since H 1

0 is invariant
under tangential translations). By Lemma 9.6 we have

‖Dhu‖H 1 ≤ ‖u‖H 2 .

Thus there exists a sequence hn → 0 such that Dhnu converges weakly to some g
in H 1

0 (since H 1
0 is a Hilbert space). In particular, Dhnu ⇀ g weakly in L2. For

ϕ ∈ C∞
c (�) we have ∫

(Dhu)ϕ =
∫

u(D−hϕ)

and in the limit, as hn → 0, we obtain
∫

gϕ = −
∫

u
∂ϕ

∂xj
∀ϕ ∈ C∞

c (�).
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Therefore, ∂u
∂xj

= g ∈ H 1
0 (�).

Proof of f ∈ Hm ⇒ u ∈ Hm+2. This is by induction on m. Assume the claim up
to order m, and let f ∈ Hm+1. We already know that u ∈ Hm+2; also Du (any
tangential derivative) belongs to H 1

0 (�) and satisfies (58). Applying the induction
assumption to Du and Df , we see that Du ∈ Hm+2. To conclude it suffices, for
example, to check that ∂2u

∂x2
N

∈ Hm+1. For this purpose we return once more to

equation (48), which we write

∂2u

∂x2
N

= −
N−1∑

i=1

∂2u

∂x2
i

+ u− f ∈ Hm+1.

C. The general case.
We prove only that f ∈ L2(�) ⇒ u ∈ H 2(�); the implication f ∈ Hm ⇒ u ∈
Hm+2 is done by induction on m as in Cases A and B. To simplify the presentation
we assume that � is bounded. We use a partition of unity and write u = ∑k

i=0 θiu

as in the proof of Theorem 9.7.

C1. Interior estimates.
We claim that θ0u ∈ H 2(�). Since θ0|� ∈ C∞

c (�), the function θ0u extended by 0
outside � belongs to H 1(RN) (see Remark 4(ii)). It is easy to verify that θ0u is a
weak solution in R

N of the equation

−�(θ0u)+ θ0u = θ0f − 2∇θ0 · ∇u− (�θ0)u
def≡ g,

with g ∈ L2(RN). We deduce from Case A that θ0u ∈ H 2(RN) and

‖θ0u‖H 2 ≤ C(‖f ‖2 + ‖u‖H 1) ≤ C′‖f ‖2

(since ‖u‖H 1 ≤ ‖f ‖2 by (48)).

C2. Estimates near the boundary.
We claim that θiu ∈ H 2(�) for 1 ≤ i ≤ k. Recall that we have a bijective map
H : Q → Ui such that

H ∈ C2(Q), J = H−1 ∈ C2(Ui), H(Q+) = �∩Ui, and H(Q0) = �∩Ui.
We write x = H(y) and y = H−1(x) = J (x). It is easy to verify that v = θiu ∈
H 1

0 (� ∩ Ui) and that v is a weak solution in � ∩ Ui of the equation

−�v = θif − θiu− 2∇θi · ∇u− (�θi)u
def≡ g,

with g ∈ L2(� ∩ Ui) and ‖g‖2 ≤ C‖f ‖2. More precisely, we have

(59)
∫

�∩Ui
∇v · ∇ϕdx =

∫

�∩Ui
gϕdx ∀ϕ ∈ H 1

0 (� ∩ Ui).
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We now transfer v|�∩Ui to Q+. Set

w(y) = v(H(y)) for y ∈ Q+,

i.e.,
w(Jx) = v(x) for x ∈ � ∩ Ui.

The following lemma—which is fundamental—shows that equation (59) becomes
a second-order elliptic equation for w on Q+.28

Lemma 9.8. With the above notation, w belongs to H 1
0 (Q+) and satisfies

(60)
N∑

k,�=1

∫

Q+
ak�

∂w

∂yk

∂ψ

∂y�
dy =

∫

Q+
g̃ψdy ∀ψ ∈ H 1

0 (Q+),

where29 g̃ = (g ◦H)|detJacH | ∈ L2(Q+) and the functions ak� ∈ C1(Q+) satisfy
the ellipticity condition (36).

Proof. Let ψ ∈ H 1
0 (Q+) and set ϕ(x) = ψ(Jx) for x ∈ � ∩ Ui . Then ϕ ∈

H 1
0 (� ∩ Ui) and

∂v

∂xj
=
∑

k

∂w

∂yk

∂Jk

∂xj
,

∂ϕ

∂xj
=
∑

�

∂ψ

∂y�

∂J�

∂xj
.

Thus
∫

�∩Ui
∇v · ∇ϕdx =

∫

�∩Ui

∑

j,k,�

∂Jk

∂xj

∂J�

∂xj

∂w

∂yk

∂ψ

∂y�
dx

=
∫

Q+

∑

j,k,�

∂Jk

∂xj

∂J�

∂xj

∂w

∂yk

∂ψ

∂y�
|detJacH |dy

from the usual change-of-variables formulas in an integral. As a consequence,

(61)
∫

�∩Ui
∇v · ∇ϕdx =

∫

Q+

∑

k,�

ak�
∂w

∂yk

∂ψ

∂y�
dy,

with ak� = ∑
j
∂Jk
∂xj

∂J�
∂xj

|detJacH |.

We note that ak� ∈ C1(Q+) and that the ellipticity condition is satisfied, since for
all ξ ∈ R

N , we have

28 More generally, if we start with an elliptic equation for v we end up with an elliptic equation for
w: the ellipticity condition is preserved under change of variables.
29 detJacH denotes the Jacobian determinant, i.e., the determinant of the Jacobian matrix JacH =
(
∂Hi
∂yj
).
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∑

k,�

ak�ξkξ� = |detJacH |
∑

j

∣
∣
∣
∣

∑

k

∂Jk

∂xj
ξk

∣
∣
∣
∣

2

≥ α|ξ |2

with α > 0, since the Jacobian matrices JacH and Jac J are not singular.
On the other hand, we have

(62)
∫

�∩Ui
gϕdx =

∫

Q+
(g ◦H)ψ |detJacH |dy.

Combining (59), (61), and (62) we obtain (60). This completes the proof of
Lemma 9.8.

We now return to the proof of the boundary estimates and show thatw ∈ H 2(Q+)
with30 ‖w‖H 2 ≤ C‖g̃‖2. This will imply, by returning to � ∩ Ui , that θiu belongs
to H 2(� ∩ Ui) and thus, in fact, to H 2(�) with ‖θiu‖H 2 ≤ C‖f ‖2.

As in Case B (� = R
N+), we use tangential translations. In (60) choose ψ =

D−h(Dhw) with h ‖ Q0, and |h| small enough that ψ ∈ H 1
0 (Q+).31 We obtain

(63)
∑

k,�

∫

Q+
Dh

(

ak�
∂w

∂yk

)
∂

∂y�
(Dhw) =

∫

Q+
g̃D−h(Dhw).

But

(64)
∫

Q+
g̃D−h(Dhw) ≤ ‖g̃‖2‖D−h(Dhw)‖2 ≤ ‖g̃‖2‖∇Dhw‖2

(by Lemma 9.6).
On the other hand, write

Dh

(

ak�
∂w

∂yk

)

(y) = ak�(y + h)
∂

∂yk
Dhw(y)+ (Dhak�(y))

∂w

∂yk
(y),

and as a consequence we have

(65)
∑

k,�

∫

Q+
Dh

(

ak�
∂w

∂yk

)
∂

∂y�
(Dhw) ≥ α‖∇(Dhw)‖2

2 − C‖w‖H 1‖∇Dhw‖2.

Combining (64) and (65), we obtain

(66) ‖∇Dhw‖2 ≤ C(‖w‖H 1 + ‖g̃‖2) ≤ C‖g̃‖2

(noting that because of (60) and Poincaré’s inequality, ‖w‖H 1 ≤ C‖g̃‖2). We deduce
from (66)—as in Case B—that

30 In the following we denote by C various constants depending only on ak�.
31 Recall that suppw ⊂ {(x′, xN ); |x′| < 1 − δ and 0 ≤ xN < 1 − δ} for some δ > 0.
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(67)

∣
∣
∣
∣

∫

Q+

∂w

∂yk

∂ψ

∂y�

∣
∣
∣
∣ ≤ C‖g̃‖2 ‖ψ‖2 ∀ψ ∈ C1

c (Q+), ∀(k, �) 	= (N,N).

To conclude that w ∈ H 2(Q+) (and ‖w‖H 2 ≤ C‖g̃‖2) it remains to show that

(68)

∣
∣
∣
∣

∫

Q+

∂w

∂yN

∂ψ

∂yN

∣
∣
∣
∣ ≤ C‖g̃‖2 ‖ψ‖2 ∀ψ ∈ C1

c (Q+).

For this purpose we return to the equation where we replace ψ by (1/aNN)ψ
(ψ ∈ C1

c (Q+)); this is possible, since aNN ∈ C1(Q+) and aNN ≥ α > 0. It
becomes
∫

aNN
∂w

∂yN

∂

∂yN

(
ψ

aNN

)

=
∫

g̃

aNN
ψ −

∑

(k,�)	=(N,N)

∫

ak�
∂w

∂yk

∂

∂y�

(
ψ

aNN

)

,

that is,

(69)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂w

∂yN

∂ψ

∂yN
=

∫
1

aNN

(
∂aNN

∂yN

)
∂w

∂yN
ψ +

∫
g̃

aNN
ψ

+
∑

(k,�)	=(N,N)

∫
∂w

∂yk

(
∂ak�

∂y�

)
ψ

aNN

−
∑

(k,�)	=(N,N)

∫
∂w

∂yk

∂

∂y�

(
ak�ψ

aNN

)

.

Combining (67)32 and (69), we obtain
∣
∣
∣
∣

∫

Q+

∂w

∂yN

∂ψ

∂yN

∣
∣
∣
∣ ≤ C(‖w‖H 1 + ‖g̃‖2)‖ψ‖2 ∀ψ ∈ C1

c (Q+).

This establishes (68) and completes the estimates near the boundary.

Remark 25. Let � be an arbitrary open set and let u ∈ H 1(�) be such that
∫

�

∇u · ∇ϕ =
∫

�

f ϕ ∀ϕ ∈ C∞
c (�).

We suppose that f ∈ Hm(�). Then θu ∈ Hm+2(�) for every θ ∈ C∞
c (�): we say

that u ∈ Hm+2
loc (�). To prove this it suffices to proceed as in Case C1 and to argue

by induction on m. In particular, f ∈ C∞(�) ⇒ u ∈ C∞(�).33

The same conclusion holds for a very weak solution in the sense that u ∈ L2(�)

is such that

32 We use (67) with (ak�aNN)ψ instead of ψ .
33 But in general, we cannot say that, for example, u ∈ C(�) (even if � and f are very smooth),
since no boundary condition has been prescribed.



9.7 The Maximum Principle 307

−
∫

�

u�ϕ =
∫

�

f ϕ ∀ϕ ∈ C∞
c (�).

(The proof is a little more delicate; see, e.g., S. Agmon [1].) We emphasize the local
nature of the regularity results in elliptic problems. More precisely, let f ∈ L2(�)

and let u ∈ H 1
0 (�) be the unique weak solution of

∫

�

∇u · ∇ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

Fix ω ⊂⊂ �; then u|ω depends on the values of f in all of �—and not only the
values of f in ω.34 By contrast, the regularity of u|ω depends only on the regularity
of f|ω. For example, f ∈ C∞(ω) ⇒ u ∈ C∞(ω) even if f is very irregular outside
ω. This property is called hypoellipticity.

Remark 26. From a certain point of view, the regularity results are a little surprising.
Indeed, an assumption made on�u, i.e., on the sum of the derivatives

∑
k
∂2u

∂x2
k

, forces

a conclusion of the same nature for all the derivatives ∂2u
∂xi∂xj

individually.

9.7 The Maximum Principle

The maximum principle is a very useful tool, and it admits a number of formulations.
We present here some simple forms.

Let � be a general open subset of R
N .

• Theorem 9.27 (maximum principle for the Dirichlet problem). Assume 35 that

f ∈ L2(�) and u ∈ H 1(�) ∩ C(�)
satisfy

(70)
∫

�

∇u · ∇ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

Then for all x ∈ �,

min{ inf
�
u, inf

�
f } ≤ u(x) ≤ max

{

sup
�

u, sup
�

f

}

.

(Here and in the following, sup = essential sup and inf = essential inf.)

Proof. We use Stampacchia’s truncation method. Fix a function G ∈ C1(R) such
that
34 For example, if f ≥ 0 in �, f = 0 in ω, and f > 0 in some open subset of �, then u > 0 in �
(and thus on ω); see the strong maximum principle in the comments at the end of this chapter.
35 If � is of class C1 one can remove the assumption u ∈ C(�) by invoking the theory of traces,
which gives a meaning to u|� (see comments at the end of this chapter); also if u ∈ H 1

0 (�) the
assumption u ∈ C(�) can be removed.
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(i) |G′(s)| ≤ M ∀s ∈ R,

(ii) G is strictly increasing on (0,+∞),

(iii) G(s) = 0 ∀s ≤ 0.

Set

K = max

{

sup
�

u, sup
�

f

}

and assume K < ∞ (otherwise there is nothing to prove). Let v = G(u−K).

We distinguish two cases:

(a) The case |�| < ∞.

Then v ∈ H 1(�) (from Proposition 9.5 applied to the function t 
→ G(t − K) −
G(−K)). On the other hand, v ∈ H 1

0 (�), since v ∈ C(�) and v = 0 on � (see
Theorem 9.17). Plug this v into (70) and proceed as in the proof of Theorem 8.18.

(b) The case |�| = ∞.

We have then K ≥ 0 (since f (x) ≤ K a.e. in � and f ∈ L2 imply K ≥ 0). Fix
K ′ > K . By Proposition 9.5 applied to the function t 
→ G(t − K ′) we see that
v = G(u−K ′) ∈ H 1(�). Moreover, v ∈ C(�) and v = 0 on �; thus v ∈ H 1

0 (�).
Plugging this v into (70) we have

(71)
∫

�

|∇u|2G′(u−K ′)+
∫

�

uG(u−K ′) =
∫

�

fG(u−K ′).

On the other hand, G(u−K ′) ∈ L1(�), since36

0 ≤ G(u−K ′) ≤ M|u|,
and on the set [u ≥ K ′] = {x ∈ �; u(x) ≥ K ′} we have

K ′
∫

[u≥K ′]
|u| ≤

∫

�

u2 < ∞.

We conclude from (71) that
∫

�

(u−K ′)G(u−K ′) ≤
∫

�

(f −K ′)G(u−K ′) ≤ 0.

It follows that u ≤ K ′ a.e. in� and thus u ≤ K a.e. in� (sinceK ′ > K is arbitrary).

• Corollary 9.28. Let f ∈ L2(�) and u ∈ H 1(�) ∩ C(�)37 satisfy (70). We have

[u ≥ 0 on � and f ≥ 0 in �] ⇒ [u ≥ 0 in �],(72)

‖u‖L∞(�) ≤ max{‖u‖L∞(�), ‖f ‖L∞(�)}.(73)

36 Because G(u−K ′)−G(−K ′) ≤ M|u| and G(−K ′) = 0 as −K ′ < 0.
37 As above, the assumption u ∈ C(�) can be removed in certain cases.
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In particular,

if f = 0 in �, then ‖u‖L∞(�) ≤ ‖u‖L∞(�),(74)

if u = 0 on �, then ‖u‖L∞(�) ≤ ‖f ‖L∞(�).(75)

Remark 27. If � is bounded and u is a classical solution of the equation

(76) −�u+ u = f in �

one can give another proof of Theorem 9.27. Indeed, let x0 ∈ � be a point such that
u(x0) = max� u.

(i) If x0 ∈ �, then u(x0) ≤ sup� u ≤ K .

(ii) If x0 ∈ �, then ∇u(x0) = 0 and ∂2u

∂x2
i

(x0) ≤ 0 for all 1 ≤ i ≤ N , so that

�u(x0) ≤ 0. From this, using equation (76) we have

u(x0) = f (x0)+�u(x0) ≤ f (x0) ≤ K.

This method has the advantage that it applies to general second-order elliptic
equations. For example, the conclusion of Theorem 9.27 holds for

(77) −
N∑

i,j=1

∂

∂xj

(

aij
∂u

∂xi

)

+
N∑

i=1

ai
∂u

∂xi
+ u = f in �.

Note that if x0 ∈ �, then

N∑

i,j=1

aij (x0)
∂2u

∂xi∂xj
(x0) ≤ 0;

indeed, by a change of coordinates (depending on x0) one can reduce this to the case
in which the matrix aij (x0) is diagonal. The conclusion of Theorem 9.27 remains
true for weak solutions of (77), but the proof is more delicate; see D. Gilbarg–
N. Trudinger [1].

Proposition 9.29. Suppose that the functions aij ∈ L∞(�) satisfy the ellipticity
condition (36), and that ai , a0 ∈ L∞(�) with a0 ≥ 0 in �. Let f ∈ L2(�) and
u ∈ H 1(�) ∩ C(�)38 be such that

(78)
∫

�

∑

i,j

aij
∂u

∂xi

∂ϕ

∂xj
+
∫

�

∑

i

ai
∂u

∂xi
ϕ +

∫

�

a0 uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

Then

(79) [u ≥ 0 on � and f ≥ 0 in �] ⇒ [u ≥ 0 in �].
38 As above, the assumption u ∈ C(�) can be removed in certain cases.
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Suppose that a0 ≡ 0 and that � is bounded. Then

(80) [f ≥ 0 in �] ⇒
[

u ≥ inf
�
u in �

]

and

(81) [f = 0 in �] ⇒
[

inf
�
u ≤ sup

�

u in �

]

.

Proof. We prove this result in the case ai ≡ 0, 1 ≤ i ≤ N ; the general case is more
delicate (see D. Gilbarg–N. Trudinger [1], Theorem 8.1). To establish (79) is the
same as showing that

(79′) [u ≤ 0 on � and f ≤ 0 in �] ⇒ [u ≤ 0 in �].
We choose ϕ = G(u) in (78) withG as in the proof of Theorem 9.27; we thus obtain

∫

�

∑

i,j

aij
∂u

∂xi

∂u

∂xj
G′(u) ≤ 0,

and so ∫

�

|∇u|2G′(u) ≤ 0.

Set H(t) = ∫ t
0 [G′(s)]1/2ds, so that

H(u) ∈ H 1
0 (�) and |∇H(u)|2 = |∇u|2G′(u) = 0.

It follows39 that H(u) = 0 in � and hence u ≤ 0 in �.

We now prove (80) in the following form:

(80′) [f ≤ 0 in �] ⇒
[

u ≤ sup
�

u in �

]

.

Set K = sup� u; then (u − K) satisfies (78), since a0 ≡ 0 and (u − K) ∈ H 1(�),
since � is bounded. Applying (79′), we obtain u−K ≤ 0 in �, i.e., (80′). Finally,
(81) follows from (80) and (80′).

Proposition 9.30 (maximum principle for the Neumann problem). Let f ∈
L2(�) and u ∈ H 1(�) be such that

∫

�

∇u · ∇ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ H 1(�).

39 Note that if f ∈ W 1,p
0 (�)with 1 ≤ p < ∞ and ∇f = 0 in�, then f = 0 in�. Indeed, let f̄ be

the extension of f by 0 outside�; then f̄ ∈ W 1,p(RN) and ∇f̄ = ∇f = 0 (see Proposition 9.18).
As a consequence, f̄ is constant (see Remark 7), and since f̄ ∈ Lp(RN), f̄ ≡ 0.
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Then we have, for a.e. x ∈ �,

inf
�
f ≤ u(x) ≤ sup

�

f.

Proof. Analogous to the proof of Theorem 9.27.

9.8 Eigenfunctions and Spectral Decomposition

In this section we assume that � is a bounded open set.

• Theorem 9.31. There exist a Hilbert basis (en)n≥1 of L2(�) and a sequence
(λn)n≥1 of reals with λn > 0 ∀n and λn → +∞ such that

en ∈ H 1
0 (�) ∩ C∞(�),(82)

−�en = λnen in �.(83)

We say that the λn’s are the eigenvalues of −� (with Dirichlet boundary condition)
and that the en’s are the associated eigenfunctions.

Proof. Given f ∈ L2(�) let u = Tf be the unique solution u ∈ H 1
0 (�) of the

problem

(84)
∫

�

∇u · ∇ϕ =
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

We consider T as an operator from L2(�) into L2(�). Then T is a self-adjoint
compact operator (repeat the proof of Theorem 8.21 and use the fact that H 1

0 (�) ⊂
L2(�) with compact injection). On the other hand, N(T ) = {0} and (Tf, f )L2 ≥ 0
∀f ∈ L2. We conclude (applying Theorem 6.11) that L2 admits a Hilbert basis (en)
consisting of eigenfunctions of T associated to eigenvalues (μn) with μn > 0 ∀n
and μn → 0. Thus we have en ∈ H 1

0 (�) and

∫

�

∇en · ∇ϕ = 1

μn

∫

�

enϕ ∀ϕ ∈ H 1
0 (�).

In other words, en is a weak solution of (83) with λn = 1/μn. From the regularity
results of Section 9.6 (see Remark 25) we know that en ∈ H 2(ω) for everyω ⊂⊂ �. It
follows that en ∈ H 4(ω) for everyω ⊂⊂ � and then en ∈ H 6(ω) for everyω ⊂⊂ �,
etc. Thus en ∈ ∩m≥1H

m(ω) for all ω ⊂⊂ �. As a consequence, en ∈ C∞(ω) for
all ω ⊂⊂ �, i.e., en ∈ C∞(�).

Remark 28. Under the assumptions of Theorem 9.31, the sequence (en/
√
λn)

is a Hilbert basis of H 1
0 (�) equipped with the scalar product

∫

�
∇u · ∇v,

and (en/
√
λn + 1) is a Hilbert basis of H 1

0 (�) equipped with the scalar product∫

�
(∇u · ∇v + uv). Indeed, it is clear that the sequence (en/

√
λn) is orthonormal
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in H 1
0 (�) (use (83)). It remains to verify that the vector space spanned by the en’s

is dense in H 1
0 (�). So, let f ∈ H 1

0 (�) be such that (f, en)H 1
0

= 0 ∀n. We have to

prove that f = 0. From (83) we have λn
∫
enf = 0 ∀n and consequently f = 0

(since (en) is a Hilbert basis of L2(�)).

Remark 29. Under the hypotheses of Theorem 9.31 (for a general bounded domain
�) it can be proved that en ∈ L∞(�). On the other hand, if � is of class C∞ then
en ∈ C∞(�); this results easily from Theorem 9.25.

Remark 30. Let aij ∈ L∞(�) be functions satisfying the ellipticity condition (36)
and let a0 ∈ L∞(�). Then there exists a Hilbert basis (en) of L2(�) and there exists
a sequence (λn) of reals with λn → +∞ such that en ∈ H 1

0 (�) and

∫

�

∑

i,j

aij
∂en

∂xi

∂ϕ

∂xj
+
∫

�

a0enϕ = λn

∫

�

enϕ ∀ϕ ∈ H 1
0 (�).

Comments on Chapter 9

This chapter is an introduction to the theory of Sobolev spaces and elliptic equations.
The reader who wishes to dig deeper into this vast subject can consult an extensive
bibliography; we cite among others, S.Agmon [1], L. Bers–F. John–M. Schechter [1],
J.-L. Lions [1], J.-L. Lions–E. Magenes [1], A. Friedman [2], M. Miranda [1], G. Fol-
land [1], F. Treves [4], R. Adams [1], D. Gilbarg–N. Trudinger [1], G. Stampac-
chia [1], R. Courant–D. Hilbert [1] Vol. 2, H. Weinberger [1], L. Nirenberg [1],
E. Giusti [2], L. C. Evans [1], M. Giaquinta [1], E. Lieb–M. Loss [1], M. Taylor [1],
W. Ziemer [1], O. Ladyzhenskaya–N. Uraltseva [1], N. Krylov [1], [2], V. Maz’ja [1],
C. Morrey [1], Y. Z. Chen–L. C. Wu [1], E. DiBenedetto [1], Q. Han–F. H. Lin [1],
J. Jost [1], W. Strauss [1], and the references in these texts.

1. In Chapter 9 we have often supposed that � is of class C1; this excludes, for
example, the domains with “corners.” In various situations one can weaken this
hypothesis and replace it by somewhat “exotic” conditions: � is piecewise of class
C1, � is Lipschitz, � has the cone property, � has the segment property, etc.; see,
for example, R. Adams [1] and S. Agmon [1].

2. Theorem 9.7 (existence of an extension operator) can be adapted to the spaces
Wm,p(�) (� of classCm)with the help of a suitable generalization of the technique
of extension by reflection; see, e.g., R. Adams [1] and S. Agmon [1].

3. Some very useful inequalities involving the Sobolev norms.

• A. Poincaré–Wirtinger’s inequality. Let � be a connected open set of class C1

and let 1 ≤ p ≤ ∞. Then there exists a constant C such that

‖u− ū‖p ≤ C‖∇u‖p ∀u ∈ W 1,p(�), where ū = 1

|�|
∫

�

u.
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From this is deduced, because of the Sobolev inequality, that if p < N,

‖u− ū‖p� ≤ C‖∇u‖p ∀u ∈ W 1,p(�).

• B. Hardy’s inequality. Let � be a bounded open set of class C1 and let 1 < p

< ∞. Set d(x) = dist(x, �). There exists a constant C such that
∥
∥
∥
∥
u

d

∥
∥
∥
∥
p

≤ C‖∇u‖p ∀u ∈ W 1,p
0 (�).

Conversely,

[u ∈ W 1,p(�) and (u/d) ∈ Lp(�)] ⇒ [u ∈ W 1,p
0 (�)];

see J. L. Lions–E. Magenes [1].

• C. Interpolation inequalities of Gagliardo–Nirenberg. We mention only some
examples that are encountered frequently in the applications. For the general case
see L. Nirenberg [1] or A. Friedman [2].

To fix ideas, let � ⊂ R
N be a regular bounded open set.

Example 1. Let u ∈ Lp(�) ∩ W 2,r (�) with 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞. Then
u ∈ W 1,q(�), where q is the harmonic mean of p and r , i.e., 1

q
= 1

2 (
1
p

+ 1
r
), and

‖Du‖Lq ≤ C‖u‖1/2
W 2,r‖u‖1/2

Lp .

Particular cases:
(a) p = ∞, and thus q = 2r . We have

‖Du‖Lq ≤ C‖u‖1/2
W 2,r‖u‖1/2

L∞ .

This inequality can be used, among other things, to show that W 2,r ∩ L∞ is an
algebra, that is to say,

u, v ∈ W 2,r ∩ L∞ ⇒ uv ∈ W 2,r ∩ L∞

(this property remains true for Wm,r ∩ L∞ with m an integer, m ≥ 2).
(b) p = q = r . We have

‖Du‖Lp ≤ C‖u‖1/2
W 2,p‖u‖1/2

Lp ,

from which one deduces in particular that

‖Du‖Lp ≤ ε‖D2u‖Lp + Cε‖u‖Lp ∀ε > 0.

Example 2. Let 1 ≤ q ≤ p < ∞. Then

(85) ‖u‖Lp ≤ C‖u‖1−a
Lq ‖u‖a

W 1,N ∀u ∈ W 1,N (�), where a = 1 − (q/p).
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We note the particular case that is used frequently

N = 2, p = 4, q = 2, and a = 1/2,

that is to say,
‖u‖L4 ≤ C‖u‖1/2

L2 ‖u‖1/2
H 1 ∀u ∈ H 1(�).

We remark, in this connection, that we have also the usual interpolation inequality
(Remark 2 of Chapter 4)

‖u‖Lp ≤ ‖u‖1−a
Lq ‖u‖aL∞ with a = 1 − (q/p),

but it does not imply (85), since W 1,N is not contained in L∞.

Example 3. Let 1 ≤ q ≤ p ≤ ∞ and r > N . Then

(86) ‖u‖Lp ≤ C‖u‖1−a
Lq ‖u‖a

W 1,r ∀u ∈ W 1,r (�),

where a = ( 1
q

− 1
p
)/( 1

q
+ 1

N
− 1

r
).

• 4. The following property is sometimes useful. Let u ∈ W 1,p(�)with 1 ≤ p ≤ ∞
and � any open set. Then ∇u = 0 a.e. on the set {x ∈ �; u(x) = k}, where k is any
constant.

� 5. The functions in W 1,p(�) are differentiable in the usual sense a.e. in � when
p > N . More precisely, let u ∈ W 1,p(�)with p > N . Then there exists a setA ⊂ �

of measure zero such that

lim
h→0

u(x + h)− u(x)− h · ∇u(x)
|h| = 0 ∀x ∈ �\A.

This property is not valid when u ∈ W 1,p(�) and p ≤ N(N > 1). On this question
consult E. Stein [1] (Chapter 8).

6. Fractional Sobolev spaces.
One can define a family of spaces intermediate between Lp(�) andW 1,p(�). More
precisely, if 0 < s < 1 (s ∈ R) and 1 ≤ p < ∞, set

Ws,p(�) =
{

u ∈ Lp(�); |u(x)− u(y)|
|x − y|s+(N/p) ∈ Lp(�×�)

}

,

equipped with the natural norm. SetHs(�) = Ws,2(�). For studies of these spaces,
see, e.g., R. Adams [1], J.-L. Lions–E. Magenes [1], P. Malliavin [1], H. Triebel [1],
and L. Grafakos [1]. The spacesWs,p(�) can also be defined as interpolation spaces
between W 1,p and Lp, and also using the Fourier transform if p = 2 and � = R

N .
We define finally Ws,p(�) for s real, s not an integer, s > 1 as follows. Write

s = m+ σ with m = the integer part of s, and set

Ws,p(�) = {u ∈ Wm,p(�);Dαu ∈ Wσ,p(�) ∀α with |α| = m}.
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By local charts one also definesWs,p(�), where� is a smooth manifold (for example
the boundary of a regular open set). These spaces play an important role in the theory
of traces (see Comment 7).

• 7. Theory of traces.
Let 1 ≤ p < ∞. We begin with a fundamental lemma.

Lemma 9.9. Let � = R
N+ . There exists a constant C such that

(∫

RN−1
|u(x′, 0)|pdx′

)1/p

≤ C‖u‖W 1,p(�) ∀u ∈ C1
c (R

N).

Proof. Let G(t) = |t |p−1t and let u ∈ C1
c (R

N). We have

G(u(x′, 0)) = −
∫ +∞

0

∂

∂xN
G(u(x′, xN))dxN

= −
∫ +∞

0
G′(u(x′, xN))

∂u

∂xN
(x′, xN)dxN .

Thus

|u(x′, 0)|p ≤ p

∫ ∞

0
|u(x′, xN)|p−1

∣
∣
∣
∣
∂u

∂xN
(x′, xN)

∣
∣
∣
∣dxN

≤ C

(∫ ∞

0
|u(x′, xN)|pdxN +

∫ ∞

0

∣
∣
∣
∣
∂u

∂xN
(x′, xN)

∣
∣
∣
∣

p

dxN

)

,

and the conclusion follows by integration in x′ ∈ R
N−1.

It can be deduced from Lemma 9.9 that the map u 
→ u|� with � = ∂� =
R
N−1 × {0} defined from C1

c (R
N) into Lp(�) extends, by density, to a bounded

linear operator of W 1,p(�) into Lp(�). This operator is, by definition, the trace of
u on �; it is also denoted by u|�.

We remark that there is a fundamental difference betweenLp(RN+) andW 1,p(RN+):
the functions in Lp(RN+) do not have a trace on �. One can easily imagine—using
local charts—how to define the trace on � = ∂� for a function u ∈ W 1,p(�) when
� is a regular open set in R

N (for example, � of class C1 with � bounded). In this
case u|� ∈ Lp(�) (for the surface measure dσ). The most important properties of
the trace are the following:

(i) If u ∈ W 1,p(�), then in fact u|� ∈ W 1−(1/p),p(�) and

‖u|�‖W 1−(1/p),p(�) ≤ C‖u‖W 1,p(�) ∀u ∈ W 1,p(�).

Furthermore, the trace operator u 
→ u|� is surjective from W 1,p(�) onto
W 1−(1/p),p(�).

(ii) The kernel of the trace operator is W 1,p
0 (�), i.e.,

W
1,p
0 (�) = {u ∈ W 1,p(�); u|� = 0}.
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(iii) We have Green’s formula
∫

�

∂u

∂xi
v = −

∫

�

u
∂v

∂xi
+
∫

�

uv(
→
n · →

ei )dσ ∀u, v ∈ H 1(�),

where
→
n is the outward unit normal vector to �. Note that the surface integral has a

meaning, since u, v ∈ L2(�).
In the same way we can speak of ∂u

∂n
for a function u ∈ W 2,p(�): set ∂u

∂n
=

(∇u)|� · →
n , which has a meaning since (∇u)|� ∈ Lp(�)N , and ∂u

∂n
∈ Lp(�) (in fact

∂u
∂n

∈ W 1−(1/p),p(�)). Also Green’s formula holds:

−
∫

�

(�u)v =
∫

�

∇u · ∇v −
∫

�

∂u

∂n
vdσ ∀u, v ∈ H 2(�).

(iv) The operator u 
→ {u|� , ∂u
∂n

} is bounded, linear, and surjective fromW 2,p(�)

onto W 2−(1/p),p(�) ×W 1−(1/p),p(�). On these questions, see J.-L. Lions–E. Ma-
genes [1] for the case p = 2 (and the references cited therein for the case p 	= 2).

8. Operators of order 2m and elliptic systems.
The existence and regularity results proved in Chapter 9 extend to elliptic operators
of order 2m and to elliptic systems.40 One of the essential ingredients is Gård-
ing’s inequality. On these questions, see S. Agmon [1], J.-L. Lions–E. Magenes [1],
S. Agmon–A. Douglis–L. Nirenberg [1]. The operators of order 2m and certain sys-
tems play an important role in mechanics and physics. We point out, in particular, the
biharmonic operator �2 (theory of plates), the system of elasticity, and the Stokes
system (fluid mechanics); see for example Ph. Ciarlet [1], G. Duvaut–J.-L. Lions [1],
R. Temam [1], J. Nečas–L. Hlavaček [1], M. Gurtin [1].

9. Regularity in Lp and C0,α spaces.
The regularity theorems proved in Chapter 9 for p = 2 extend to the case p 	= 2.

• Theorem 9.32 (Agmon–Douglis–Nirenberg). Suppose that� is of class C2 with
� bounded. Let 1 < p < ∞. Then for all f ∈ Lp(�), there exists a unique solution
u ∈ W 2,p(�) ∩W 1,p

0 (�) of the equation

(87) −�u+ u = f in �.

Moreover, if � is of class Cm+2 and if f ∈ Wm,p(�) (m ≥ 1 an integer), then

u ∈ Wm+2,p(�) and ‖u‖Wm+2,p ≤ C‖f ‖Wm,p .

There is an analogous result if (87) is replaced by a second-order elliptic equation
with smooth coefficients. The proof of Theorem 9.32 is considerably more compli-
cated than the case p = 2 (Theorem 9.25). The “classical” approach rests essentially
on two ingredients:

40 But the maximum principle does not, except in very special cases.
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(a) A formula for an explicit representation of u using the fundamental solution.
For example, if � = R

3, then the solution of (87) is given by u = G � f , where
G(x) = c

|x|e
−|x|. So that formally, ∂2u

∂xi∂xj
= ∂2G

∂xi∂xj
� f ; “unfortunately” ∂2G

∂xi∂xj
does

not belong to L1(R3),41 because of the singularity at x = 0, and one cannot apply
elementary estimates on convolution products (such as Theorem 4.15).

(b) To overcome this difficulty one uses the theory of singular integrals in Lp

due to Calderón–Zygmund (see, for example, E. Stein [1] and L. Bers–F. John–
M. Schechter [1]).

Warning: the conclusion of Theorem 9.32 is false for p = 1 and p = ∞.

Another basic regularity result, in the framework Hölder spaces,42 is the following.

• Theorem 9.33 (Schauder). Suppose that � is bounded and of class C2,α with
0 < α < 1. Then for every f ∈ C0,α(�) there exists a unique solution u ∈ C2,α(�)

of the problem

(88)

{
−�u+ u = f in �,

u = 0 on �.

Furthermore, if � is of class Cm+2,α (m ≥ 1 an integer) and if f ∈ Cm,α(�), then

u ∈ Cm+2,α(�) with ‖u‖Cm+2,α ≤ C‖f ‖Cm,α .
An analogous result holds if (88) is replaced by a second-order elliptic oper-

ator with smooth coefficients. The proof of Theorem 9.33 rests—as does that of
Theorem 9.32—on an explicit representation of u and on the theory of singular
integrals in C0,α spaces due to Hölder, Korn, Lichtenstein, Giraud. On this sub-
ject, see S. Agmon–A. Douglis–L. Nirenberg [1], L. Bers–F. John–M. Schechter [1],
C. Morrey [1], D. Gilbarg–N. Trudinger [1]. A different approach, which avoids the
theory of singular integrals, has been devised by Campanato and Stampacchia (see,
e.g., Y. Z. Chen–L. C. Wu [1] and E. Giusti [2]). Other elementary techniques have
been developed by A. Brandt [1] (based solely on the maximum principle) and by
L. Simon [2].

Let � be a bounded regular open set and let f ∈ C(�). From Theorem 9.32
there exists u ∈ W 2,p(�) ∩ W

1,p
0 (�) (for all 1 < p < ∞) that is the unique

solution of (87). In particular, u ∈ C1,α(�) for all 0 < α < 1 (from Morrey’s

41 But almost!
42 Recall that with 0 < α < 1 and m an integer,

C0,α(�) =

⎧
⎪⎨

⎪⎩
u ∈ C(�); sup

x,y∈�
x 	=y

|u(x)− u(y)|
|x − y|α < ∞

⎫
⎪⎬

⎪⎭

and Cm,α(�) = {u ∈ C(�);Dβu ∈ C0,α(�) ∀β with |β| = m}.
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theorem (Theorem 9.12)). In general, u does not belong to C2, or even to W 2,∞.
This explains why one often avoids working in the spacesL1(�),L∞(�), andC(�),
spaces for which we do not have optimal regularity results.

Theorems 9.32 and 9.33 extend to elliptic operators of order 2m and to elliptic
systems; see S. Agmon–A. Douglis–L. Nirenberg [1]. We finally point out, in a dif-
ferent direction, that second-order elliptic equations with discontinuous coefficients
are the subject of much work. We cite, for example, the following celebrated result.

• Theorem 9.34 (De Giorgi, Nash, Stampacchia). Let � ⊂ R
N , with N ≥ 2, be

a bounded regular open set. Suppose that the functions aij ∈ L∞(�) satisfy the
ellipticity condition (36). Let f ∈ Lp(�) with p > N/2 and let u ∈ H 1

0 (�) be such
that ∫

�

∑

i,j

aij
∂u

∂xi

∂ϕ

∂xj
=
∫

�

f ϕ ∀ϕ ∈ H 1
0 (�).

Then u ∈ C0,α(�) for a certain 0 < α < 1 (which depends on �, aij and p).

On these questions, see G. Stampacchia [1], D. Gilbarg–N. Trudinger [1], O. Lady-
zhenskaya–N. Uraltseva [1], and E. Giusti [2].

10. Some drawbacks of the variational method and how to get around them!
The variational method gives the existence of a weak solution very easily. It is not
always applicable, but it can be completed. We indicate two examples. Let � ⊂ R

N

be a bounded regular open set.

(a) Duality method. Let f ∈ L1(�)—or even f a (Radon) measure on �—and
look for a solution of the problem

(89)

{
−�u+ u = f in �,

u = 0 on �.

As soon as N > 1, the linear functional ϕ 
→ ∫

�
f ϕ is not defined for every

ϕ ∈ H 1
0 (�), and as a consequence the variational method is ineffective. On the other

hand, one can use the following technique. We denote by T : L2(�) → L2(�) the
operator f 
→ u (where u is the solution of (89), which exists for f ∈ L2(�)).
We know that T is self-adjoint. On the other hand (Theorem 9.32), T : Lp(�) →
W 2,p(�) for 2 ≤ p < ∞, and because of the theorems of Sobolev and Morrey,
T : Lp(�) → C0(�) if p > N/2. By duality we deduce that

T � : M(�) = C0(�)
� → Lp

′
(�) if p > N/2.

Since T is self-adjoint inL2, T � is an extension of T : thus one can consider u = T �f

as a generalized solution of (89). In fact, if f ∈ L1(�), then u = T �f ∈ Lq(�) for
all q < N/(N − 2); u is the unique (very) weak solution of (89) in the following
sense:

−
∫

�

u�ϕ +
∫

�

uϕ =
∫

�

f ϕ ∀ϕ ∈ C2(�), ϕ = 0 on �.
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In the same spirit, one can study (89) for f given in H−m(�); see J.-L. Lions–
E. Magenes [1].

(b) Density method. Let g ∈ C(�) and look for a solution of the problem

(90)

{
−�u+ u = 0 in �

u = g on �.

In general, if g ∈ C(�), there does not exist a function g̃ ∈ H 1(�) such that
g̃|� = g (see Comment 7 and note that C(�) is not contained in H 1/2(�)). It is
thus not possible to look for a solution of (90) in H 1(�): the variational method is
ineffective. Nevertheless, we have the following result.

• Theorem 9.35. There exists a unique solution u ∈ C(�) ∩ C∞(�) of (90).

Proof. Fix g̃ ∈ Cc(RN) such that g̃|� = g; g̃ exists by the Tietze–Urysohn theorem
(see, e.g., J. Dieudonné [1], J. Dugundji [1], J. Munkres [1]). Let (g̃n) be a sequence
in C∞

c (R
N) such that g̃n → g uniformly on R

N . We set gn = g̃n|� . Applying the
variational method and regularity results, we see that there exists a classical solution
un ∈ C2(�) of the problem

{
−�un + un = 0 in �,

un = gn on �.

From the maximum principle (Corollary 9.28) we have

‖um − un‖L∞(�) ≤ ‖gm − gn‖L∞(�).

As a consequence, (un) is a Cauchy sequence in C(�) and un → u in C(�). It is
clear that we have

∫

�

u(−�ϕ + ϕ) = 0 ∀ϕ ∈ C∞
c (�)

and therefore u ∈ C∞(�) (see Remark 25). Thus u ∈ C(�)∩C∞(�) satisfies (90).
The uniqueness of the solution of (90) follows from the maximum principle (see
Remark 27).

� Remark 31. It is essential in Theorem 9.35 to suppose that � is smooth enough.
When � has a “pathological” boundary we run into questions of potential theory
(regular points, Wiener criterion, etc.).

Another approach to solving (90) is the Perron method, which is classical in
potential theory. Define

u(x) = sup {v(x); v ∈ C(�) ∩ C2(�),−�v + v ≤ 0 in � and v ≤ g on �},
and prove (directly) that u satisfies (90). A function v such that −�v + v ≤ 0 in �
and v ≤ g on � is called a subsolution of (90).
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11. The strong maximum principle.
We can strengthen the conclusion of Proposition 9.29 when u is a classical solution.
More precisely, let � be a connected, bounded, regular open set. Let aij ∈ C1(�)

satisfy the ellipticity condition (36), ai , a0 ∈ C(�) with a0 ≥ 0 on �.

Theorem 9.36 (Hopf). Let u ∈ C(�) ∩ C2(�) satisfy

(91) −
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+
∑

i

ai
∂u

∂xi
+ a0u = f in �.

Suppose that f ≥ 0 in �. If there exists x0 ∈ � such that u(x0) = min� u and if
u(x0) ≤ 0,43 then u is constant in � (and furthermore f = 0 in �).

For the proof, see, e.g., L. Bers–F. John–M. Schechter [1], D. Gilbarg–N. Tru-
dinger [1], M. Protter–H. Weinberger [1], and P. Pucci–J. Serrin [1].

Corollary 9.37. Let u ∈ C(�) ∩ C2(�) satisfy (91) with f ≥ 0 in �. Suppose that
u ≥ 0 on �. Then

• either u > 0 in �,
• or u ≡ 0 in �.

For other results connected to the maximum principle (Harnack’s inequality etc.),
see, e.g., G. Stampacchia [1], D. Gilbarg–N. Trudinger [1], M. Protter–H. Wein-
berger [1], R. Sperb [1], and P. Pucci–J. Serrin [1].

12. Laplace–Beltrami operators.
Elliptic operators defined on Riemannian manifolds (with or without boundary) and
in particular the Laplace–Beltrami operator play an important role in differential
geometry and physics; see, for example, Y. Choquet–C. Dewitt–M. Dillard [1].

13. Spectral properties. Inverse problems.
Eigenvalues and eigenfunctions of second-order elliptic operators enjoy a number
of remarkable properties. Here we cite some of them. Let � ⊂ R

N be a connected,
bounded, open regular set. Let aij ∈ C1(�) satisfy the ellipticity condition (36) and
a0 ∈ C(�). Let A be the operator

Au = −
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+ a0u

with homogeneous Dirichlet conditions (u = 0 on �). We denote by (λn) the se-
quence of eigenvalues of A arranged in increasing order, with λn → +∞ when
n → ∞. Then the first eigenvalue λ1 has multiplicity 1 (one says that λ1 is a simple
eigenvalue),44 and we can choose the associated eigenfunction e1 to have e1 > 0 in
�; this follows from the Krein–Rutman theorem (see the comments on Chapter 6

43 The hypothesis u(x0) ≤ 0 is unnecessary if a0 = 0.
44 In dimension N ≥ 2 the other eigenvalues can have multiplicity > 1.
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and Problem 41). Additionally, one can show that λn ∼ cn2/N when n → ∞ with
c > 0; see S. Agmon [1].

The relations that exist between the geometric properties45 of� and the spectrum
of A are the subject of intensive research; see, e.g., M. Kac [1], Marcel Berger [1],
R. Osserman [1], I. M. Singer [1], P. Bérard [1], I. Chavel [1]. The objective of
spectral geometry is to “recover” the maximum amount of information about �,
purely from the knowledge of the spectrum (λn).

A strikingly simple question is the following. Let �1 and �2 be two bounded
domains in R

2; suppose that the eigenvalues of the operator −� (with Dirichlet
boundary conditions) are the same for �1 and �2. Are �1 and �2 isometric? This
problem has been nicknamed by M. Kac: “Can one hear the shape of a drum?”46

One knows that the answer is positive if�1 is a disk. In 1991, C. Gordon–L. Webb–
S. Wolpert [1] gave a negative answer for domains with corners. The problem of Kac
is still open for smooth domains.

Another important class of “inverse problems” involves the determination of the
coefficients and parameters in a PDE, or the shape and characteristics of an internal
object, solely from measurements at the boundary (e.g., Dirichlet-to-Neumann map)
or at “infinity” (inverse scattering). These problems arise in many areas (medical
imaging, seismology, etc.); see, e.g., G. Uhlmann [1], C. B. Croke et al. [1].

14. Degenerate elliptic problems.
Consider problems of the form

⎧
⎪⎨

⎪⎩

−
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+
∑

i

ai
∂u

∂xi
+ a0u = f in �

+ boundary conditions on �, or on part of �,

where the functions aij do not satisfy the ellipticity condition (36) but only

(36′)
∑

i,j

aij (x)ξiξj ≥ 0 ∀x ∈ �, ∀ξ ∈ R
N.

Consult for example the works of J. Kohn–L. Nirenberg [1], M. S. Baouendi–
C. Goulaouic [1], O. Oleinik–E. Radkevitch [1].

15. Nonlinear elliptic problems.
This is an immense field of research motivated by innumerable questions in geometry,
mechanics, physics, optimal control, probability theory, etc. It has had some spec-
tacular development since the early work of Leray and Schauder at the beginning of
the 1930s. We distinguish some categories:

(a) Semilinear problems. This consists, for example, of problems of the form

45 Particularly when� is a Riemannian manifold without boundary and A is the Laplace–Beltrami
operator.
46 Because the harmonics of the vibration of a membrane attached to the boundary � are the func-
tions en(x) sin

√
λnt , where (λn, en) are the eigenvalues and eigenfunctions of −� with Dirichlet

boundary conditions.
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(92)

{
−�u = f (x, u) in �,

u = 0 on �,

where f (x, u) is a given function.
This category includes, among others, bifurcation problems, in which one studies

the structure of the set of solutions (λ, u) of the problem

(91′)
{

−�u = fλ(x, u) in �,

u = 0 on �,

with λ a variable parameter.

(b) Quasilinear problems. Consider problems of the form

(93)

⎧
⎪⎨

⎪⎩

−
∑

i,j

∂

∂xj

(

aij (x, u,∇u) ∂u
∂xi

)

= f (x, u,∇u) in �,

u = 0 on �,

where the functions aij (x, u, p) are elliptic, but possibly degenerate; we have for
example

∑

i,j

aij (x, u, p)ξiξj ≥ α(u, p)|ξ |2 ∀x ∈ �, ∀ξ ∈ R
N, ∀u ∈ R, ∀p ∈ R

N,

with α(u, p) > 0 ∀u ∈ R, ∀p ∈ R
N , but α(u, p) is not uniformly bounded below by

a constant α > 0. In particular, the celebrated equation of minimal surfaces falls in
this category with aij (x, u, p) = δij (1 + |p|2)−1/2. More generally, one considers
fully nonlinear elliptic problems of the form

(94) F(x, u,Du,D2u) = 0,

where the matrix ∂F
∂qij

(x, u, p, q) is elliptic (possibly degenerate). For example, the
Monge–Ampère equation fits into this category.

(c) Free boundary problems. It is a question of solving a linear elliptic equation
in an open set � that is not given a priori. The fact that � is unknown is often
“compensated for” by having two boundary conditions on �; for example Dirichlet
and Neumann. The problem consists in finding simultaneously an open set � and a
function u such that. . . .

Techniques:

(a) There are several techniques used for the problems (92) or (92′):

• Monotonicity methods, see F. Browder [1] and J. L. Lions [3].
• Topological methods (Schauder’s fixed-point theorem, Leray–Schauder de-

gree theory, etc.); see J. T. Schwartz [1], M. Krasnoselskii [1], and L. Niren-
berg [2], [3].
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• Variational methods (critical point theory, min-max techniques, Morse the-
ory, etc.); see P. Rabinowitz [1], [2], Melvyn Berger [1], M. Krasnoselskii [1],
L. Nirenberg [3], J. Mawhin–M. Willem [1], M. Willem [1], M. Struwe [1].

For a general survey, see, e.g., the books of A. Ambrosetti–G. Prodi [1] and
E. Zeidler [1].

(b) Solving problems of type (93) may involve elaborate techniques of estimates;47

see the works of E. De Giorgi, O. Ladyzhenskaya–N. Uraltseva [1], J. Serrin [1],
E. Bombieri [1] and D. Gilbarg–N. Trudinger [1]. Important progress on the
fully nonlinear equations and in particular on the Monge–Ampère equation has
also been made recently; see, e.g., S. T. Yau [1], L. Caffarelli–L. Nirenberg–
J. Spruck [1] and X. Cabré–L. Caffarelli [1].

(c) On the free boundary problems many new results have appeared in recent
years, often in connection with the theory of variational inequalities; see, e.g.,
D. Kinderlehrer–G. Stampacchia [1], C. Baiocchi–A. Capelo [1], A. Fried-
man [4], J. Crank [1] and L. Caffarelli–S. Salsa [1].

16. Geometric measure theory.
At the interface between geometry and PDE, this area has been extensively devel-
oped since the 1960s, starting with basic contributions by H. Federer, E. De Giorgi,
A. I. Volpert, and F. Almgren, in connection with questions arising in the calculus
of variations, isoperimetric inequalities, etc. It has numerous applications to phys-
ical problems, such as phase transitions, fractures in mechanics, edge detection in
image processing, line vortices in liquid crystals, superconductors and superfluids.
The space BV (functions of bounded variation) plays a distinguished role in these
questions. We refer, e.g., to L. Ambrosio–N. Fusco–D. Pallara [1], L. Simon [1],
L. C. Evans–R. Gariepy [1], and F. H. Lin–X. P. Yang [1].

47 This is the case, for example, for the minimal surface equation.





Chapter 10
Evolution Problems: The Heat Equation and the
Wave Equation

10.1 The Heat Equation: Existence, Uniqueness, and Regularity

Notation. Let � ⊂ R
N be an open set with boundary �. Set

Q = �× (0,+∞)

� = � × (0,+∞);
� is called the lateral boundary of the cylinder Q. See Figure 7.

Consider the following problem: find a function u(x, t) : � × [0,+∞) → R

such that

(1)
∂u

∂t
−�u = 0 in Q,

(2) u = 0 on �,

(3) u(x, 0) = u0(x) on �,

Q

x

t

Ω

Σ

Fig. 7
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where � = ∑N
i=1

∂2

∂x2
i

denotes the Laplacian in the space variables x, t is the time

variable, and u0(x) is a given function called the initial (or Cauchy) data.
Equation (1) is called the heat equation because it models the temperature dis-

tribution u in the domain � at time t . The heat equation and its variants occur in
many diffusion phenomena1 (see the comments at the end of this chapter). The heat
equation is the simplest example of a parabolic equation.2

Equation (2) is the (homogeneous) Dirichlet boundary condition; it could be
replaced by the Neumann condition

(2′) ∂u

∂n
= 0 on �

(n is the outward unit normal vector to �) or any of the boundary conditions en-
countered in Chapters 8 and 9. Condition (2) corresponds to the assumption that the
boundary � is kept at zero temperature; condition (2′) corresponds to the assump-
tion that the heat flux across � is zero. We solve problem (1), (2), (3) by viewing
u(x, t) as a function defined on [0,+∞) with values in a space H , where H is a
space of functions depending only on x: for example H = L2(�), or H = H 1

0 (�).
When we write just u(t), we mean that u(t) is an element ofH , namely the function
x 
→ u(x, t). This viewpoint allows us to solve very easily problem (1), (2), (3) by
combining the theorem of Hille–Yosida with the results of Chapters 8 and 9.

To simplify matters, we assume throughout Chapter 10 that� is of classC∞ with
� bounded (but this assumption may be considerably weakened if we are interested
only in weak solutions).

• Theorem 10.1. Assume u0 ∈ L2(�). Then there exists a unique function u(x, t)
satisfying (1), (2), (3) and

u ∈ C([0,∞); L2(�)) ∩ C((0,∞); H 2(�) ∩H 1
0 (�)),(4)

u ∈ C1((0,∞); L2(�)).(5)

Moreover,
u ∈ C∞(�× [ε,∞)) ∀ε > 0.

Finally, u ∈ L2(0,∞; H 1
0 (�)) and 3

(6)
1

2
|u(T )|2

L2(�)
+
∫ T

0
|∇u(t)|2

L2(�)
dt = 1

2
|u0|2L2(�)

∀T > 0.

Proof. We apply the Hille–Yosida theory in H = L2(�) (but other choices
are possible; see the proof of Theorem 10.2). Consider the unbounded operator

1 The diffusion of heat is only one example among many others.
2 Regarding the traditional classification of PDE into three categories, “elliptic,” “parabolic,” “hy-
perbolic,” see, e.g., R. Courant–D. Hilbert [1].
3 In line with the above discussion we use the following notation: |u(T )|L2(�) = ∫

�
|u(x, T )|2dx

and |∇u(t)|2
L2(�)

= ∑N
i=1

∫

�
| ∂u
∂xi
(x, t)|2dx.
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A: D(A) ⊂ H → H defined by
{
D(A) = H 2(�) ∩H 1

0 (�),

Au = −�u.
It is important to note that the boundary condition (2) has been incorporated in the

definition of the domain of A. We claim that A is a self-adjoint maximal monotone
operator. We may then apply Theorem 7.7 and deduce the existence of a unique
solution of (1), (2), (3) satisfying (4) and (5).

(i) A is monotone. For every u ∈ D(A) we have

(Au, u)L2 =
∫

�

(−�u)u =
∫

�

|∇u|2 ≥ 0.

(ii) A is maximal monotone. We have to check that R(I + A) = H = L2. But we
already know (see Theorem 9.25) that for every f ∈ L2 there exists a unique
solution u ∈ H 2 ∩H 1

0 of the equation u−�u = f .
(iii) A is self-adjoint. In view of Proposition 7.6 it suffices to verify that A is sym-

metric. For every u, v ∈ D(A) we have

(Au, v)L2 =
∫

�

(−�u)v =
∫

�

∇u · ∇v

and

(u,Av)L2 =
∫

�

u(−�v) =
∫

�

∇u · ∇v,
so that (Au, v) = (u,Av).

Next, it follows from Theorem 9.25 that D(A�) ⊂ H 2�(�), for every integer �,
with continuous injection. More precisely,

D(A�) = {u ∈ H 2�(�); u = �u = · · · = ��−1u = 0 on �}.
We know by Theorem 7.7 that the solution u of (1), (2), (3) satisfies

u ∈ Ck((0,∞); D(A�)) ∀k, ∀�
and therefore

u ∈ Ck((0,∞); H 2�(�)) ∀k, ∀�.
It follows (thanks to Corollary 9.15) that

u ∈ Ck((0,∞); Ck(�)) ∀k.
We now turn to the proof of (6). Formally, we multiply (1) by u and integrate on

� × (0, T ). However, one has to be careful, since u(t) is differentiable on (0,∞)

but not on [0,∞). Consider the function ϕ(t) = 1
2 |u(t)|2

L2(�)
. It is of class C1 on
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(0,∞) (by (5)) and, for t > 0,

ϕ′(t) =
(

u(t),
du

dt
(t)

)

L2
= (u(t), �u(t))L2 = −

∫

�

|∇u(t)|2.

Therefore, for 0 < ε < T < ∞, we obtain

ϕ(T )− ϕ(ε) =
∫ T

ε

ϕ′(t)dt = −
∫ T

ε

|∇u(t)|2
L2dt.

Finally we let ε → 0. Since ϕ(ε) → 1
2 |u0|2 (because u ∈ C([0,∞]; L2(�))), we

find that u ∈ L2(0,∞; H 1
0 (�)) and that (6) holds.

If we make additional assumptions on u0 the solution u becomes more regular
up to t = 0 (recall that away from t = 0, Theorem 10.1 always guarantees that u is
smooth, i.e., u ∈ C∞(�× [ε,∞)) ∀ε > 0).

Theorem 10.2.
(a) If u0 ∈ H 1

0 (�) then the solution u of (1), (2), (3) satisfies

u ∈ C([0,∞);H 1
0 (�)) ∩ L2(0,∞; H 2(�))

and
∂u

∂t
∈ L2(0,∞; L2(�)).

Moreover, we have

(7)
∫ T

0

∣
∣
∣
∣
∂u

∂t
(t)

∣
∣
∣
∣

2

L2(�)

dt + 1

2
|∇u(T )|2

L2(�)
= 1

2
|∇u0|2L2(�)

.

(b) If u0 ∈ H 2(�) ∩H 1
0 (�), then

u ∈ C([0,∞); H 2(�)) ∩ L2(0,∞; H 3(�))

and
∂u

∂t
∈ L2(0,∞; H 1

0 (�)).

(c) If u0 ∈ Hk(�) ∀k and satisfies the so-called compatibility conditions

(8) u0 = �u0 = · · · = �ju0 = · · · = 0 on �

for every integer j , then u ∈ C∞(�× [0,∞)).

Proof of (a). We work here in the space H1 = H 1
0 (�) equipped with the scalar

product

(u, v)H1 =
∫

�

∇u · ∇v +
∫

�

uv.

In H1 consider the unbounded operator A1 : D(A1) ⊂ H1 → H1 defined by
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{
D(A1) = {u ∈ H 3(�) ∩H 1

0 (�); �u ∈ H 1
0 (�)},

A1u = −�u.
We claim that A1 is maximal monotone and self-adjoint.

(i) A1 is monotone. For every u ∈ D(A1) we have

(A1u, v)H1 =
∫

�

∇(−�u) · ∇u+
∫

�

(−�u)u =
∫

�

|�u|2 +
∫

�

|∇u|2 ≥ 0.

(ii) A1 is maximal monotone. We know (by Theorem 9.25) that for every f ∈ H 1(�)

the solution u ∈ H 1
0 (�) of the problem

{
u−�u = f in �,

u = 0 on �,

belongs to H 3(�). If, in addition, f ∈ H 1
0 (�) then �u ∈ H 1

0 (�), and so
u ∈ D(A1).

(iii) A1 is symmetric. For every u, v ∈ D(A1) we have

(A1u, v)H1 =
∫

�

∇(−�u) · ∇v +
∫

�

(−�u)v

=
∫

�

�u�v +
∫

�

∇u · ∇v = (u, A1v)H1 .

Applying Theorem 7.7, we see that if u0 ∈ H 1
0 (�) there exists a solution u of

(1), (2), (3) (which coincides with the one obtained in Theorem 10.1 because of
uniqueness) such that

u ∈ C([0,∞); H 1
0 (�)).

Finally, set ϕ(t) = 1
2 |∇u(t)|2

L2(�)
. This function is C∞ on (0,∞) and

ϕ′(t) =
(

∇u(t), ∇ du
dt
(t)

)

L2
=
(

−�u(t), du
dt
(t)

)

L2
= −

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣

2

L2
.

It follows that for 0 < ε < T < ∞, we have

ϕ(T )− ϕ(ε)+
∫ T

ε

∣
∣
∣
∣
du

dt
(t)

∣
∣
∣
∣

2

L2
dt = 0.

As ε → 0, ϕ(ε) → 1
2 |∇u0|2L2 , and we conclude easily.

Proof of (b). We work here in the space H2 = H 2(�) ∩ H 1
0 (�) equipped with the

scalar product
(u, v)H2 = (�u, �v)L2 + (u, v)L2



330 10 Evolution Problems: The Heat Equation and the Wave Equation

(the corresponding norm is equivalent to the usual H 2 norm; why?). In H2 consider
the unbounded operator A2 : D(A2) ⊂ H2 → H2 defined by

{
D(A2) = {u ∈ H 4(�); u ∈ H 1

0 (�) and �u ∈ H 1
0 (�)},

A2u = −�u.

It is easy to show that A2 is a self-adjoint maximal monotone operator in H2.4 We
may therefore apply Theorem 7.7 to A2 in H2. Finally, we set ϕ(t) = 1

2 |�u(t)|2
L2 .

This function is C∞ on (0,∞) and

ϕ′(t) =
(

�u(t), �
du

dt
(t)

)

L2
= (�u(t), �2u(t))L2 = −|∇�u(t)|2

L2 .

Thus, for 0 < ε < T < ∞, we have

1

2
|�u(T )|2

L2 − 1

2
|�u(ε)|2

L2 +
∫ T

ε

|∇�u(t)|2
L2dt = 0.

In the limit, as ε → 0, we see that u ∈ L2(0,∞; H 3(�)) (why?) and (because of
equation (1)), du

dt
∈ L2(0,∞; H 1(�)).

Proof of (c). In the space H = L2(�), consider the operator A : D(A) ⊂ H → H

defined by {
D(A) = H 2(�) ∩H 1

0 (�),

Au = −�u.
Applying Theorem 7.5, we know that if u0 ∈ D(Ak), k ≥ 1, then

u ∈ Ck−j ([0,∞); D(Aj )) ∀j = 0, 1, . . . , k.

Assumption (8) says precisely that u0 ∈ D(Ak) for every integer k ≥ 1. Therefore
we have

u ∈ Ck−j ([0,∞); D(Aj )) ∀k ≥ 1, ∀j = 0, 1, . . . , k.

It follows (as in the proof of Theorem 10.1) that u ∈ C∞(�× [0,∞)).

• Remark 1. Theorem 10.1 shows that the heat equation has a strong smoothing effect
on the initial data u0. Note that the solution u(x, t) is C∞ in x for every t > 0 even
if the initial data is discontinuous. This effect implies, in particular, that the heat
equation is time irreversible. In general one cannot solve the problem

∂u

∂t
−�u = 0 in �× (0, T ),(9)

4 More generally, if A : D(A) ⊂ H → H is a self-adjoint maximal monotone operator one may
consider the Hilbert space H̃ = D(A) equipped with the scalar product (u, v)

H̃
= (Au,Av) +

(u, v). Then the operator Ã : D(Ã) ⊂ H̃ → H̃ defined by D(Ã) = D(A2) and Ãu = Au is a
self-adjoint maximal monotone operator in H̃ .
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u = 0 on � × (0, T ),(10)

with “final” data

u(x, T ) = uT (x) on �.(11)

We would necessarily have to assume that

uT ∈ C∞(�) and �juT = 0 on � ∀j ≥ 0.

But even with this assumption there need not be a solution of the backward problem
(9), (10), (11). This problem should not be confused with the problem (9′), (10),
(11), where

(9′) −∂u
∂t

−�u = 0 in �× (0, T ),

which always has a unique solution for any data uT ∈ L2(�) (change t into T − t

and apply Theorem 10.1).

Remark 2. The preceding results are also true—with some slight modifications—if
we replace the Dirichlet condition by the Neumann condition.

Remark 3. When� is bounded, problem (1), (2), (3) can also be solved by a decom-
position in a Hilbert basis of L2(�). For this purpose it is very convenient to choose
a basis (ei(x))i≥1 of L2(�) composed of eigenfunctions of −� (with zero Dirichlet
condition), i.e., {

−�ei = λiei in �,

ei = 0 on �

(see Section 9.8). We seek a solution u of (1), (2), (3) in the form of a series 5

(12) u(x, t) =
∞∑

i=1

ai(t)ei(x).

We see immediately that the functions ai(t) must satisfy

a′
i (t)+ λiai(t) = 0,

so that ai(t) = ai(0)e−λi t . The constants ai(0) are determined by the relation

(13) u0(x) =
∞∑

i=1

ai(0)ei(x).

In other words, the solution u of (1), (2), (3) is given by
5 For obvious reasons this method is also called the method of “separation of variables,” or Fourier
method. In fact, Fourier discovered the Fourier series while studying the heat equation in one space
variable.
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(14) u(x, t) =
∞∑

i=1

ai(0)e
−λi t ei(x),

where the constants ai(0) are the components of u0(x) in the basis (ei), i.e., ai(0) =∫

�
u0ei .

For the study of the convergence of this series (and also the regularity ofu obtained
in this way) we refer to H. Weinberger [1]. Note the analogy between this method
and the standard technique used in solving the linear system of differential equations

du
dt

+Mu = 0,

where u(t) takes its values in a finite-dimensional vector space, andM is a symmetric
matrix. Of course, the main difference comes from the fact that problem (1), (2), (3)
is associated with an infinite-dimensional system.

Remark 4. The compatibility conditions (8) look perhaps mysterious, but in fact they
are natural. These are necessary conditions in order to have a solution u of (1), (2), (3)
that is smooth up to t = 0, i.e., u ∈ C∞(�× [0,∞) (the assumption u0 ∈ C∞(�)
with u0 = 0 on ∂� does not guarantee smoothness up to t = 0). Indeed, suppose
u ∈ C∞(�× [0,∞)) satisfies (1), (2), (3). Then clearly,

(15)
∂ju

∂tj
= 0 on � × (0,∞) ∀j,

and by continuity, we also have

∂ju

∂tj
= 0 on � × [0,∞) ∀j.

On the other hand,
∂2u

∂t2
= �

(
∂u

∂t

)

= �2u in Q,

and by induction,
∂ju

∂tj
= �ju in Q ∀j.

By continuity once more we have

(16)
∂ju

∂tj
= �ju in �× [0,∞).

Comparing (15) and (16) on � × {0}, we obtain (8).

Remark 5. Of course, there are many variants of the regularity results for u near
t = 0 if we make assumptions that are intermediate between the cases (b) and (c) of
Theorem 10.2.
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10.2 The Maximum Principle

The main result is the following.

• Theorem 10.3. Assume u0 ∈ L2(�) and let u be the solution of (1), (2), (3). Then
we have, for all (x, t) ∈ Q,

min

{

0, inf
�
u0

}

≤ u(x, t) ≤ max

{

0, sup
�

u0

}

.

Proof. As in the elliptic case we use Stampacchia’s truncation method. Set

K = max

{

0, sup
�

u0

}

and assume thatK < +∞. Fix a functionG as in the proof of Theorem 9.27 and let

H(s) =
∫ s

0
G(σ)dσ, s ∈ R.

It easily checked that the function ϕ defined by

ϕ(t) =
∫

�

H(u(x, t)−K)dx

has the following properties:

ϕ ∈ C([0,∞); R), ϕ(0) = 0, ϕ ≥ 0 on [0,∞),(17)

ϕ ∈ C1((0,∞); R),(18)

and

ϕ′(t) =
∫

�

G(u(x, t)−K)
∂u

∂t
(x, t)dx =

∫

�

G(u(x, t)−K)�u(x, t)dx

= −
∫

�

G′(u−K)|∇u|2dx ≤ 0,

since G(u(x, t)−K) ∈ H 1
0 (�) for every t > 0. It follows that ϕ ≡ 0 and thus, for

every t > 0, u(x, t) ≤ K a.e. on �.

Corollary 10.4. Let u0 ∈ L2(�). The solution u of (1), (2), (3) has the following
properties:

(i) If u0 ≥ 0 a.e. on �, then u ≥ 0 in Q.
(ii) If u0 ∈ L∞(�), then u ∈ L∞(Q) and

(19) ‖u‖L∞(Q) ≤ ‖u0‖L∞(�).
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Corollary 10.5. Let u0 ∈ C(�) ∩ L2(�) with u0 = 0 on �.6 Then the solution u of
(1), (2), (3) belongs to C(Q).

Proof of Corollary 10.5. Let (u0n) be a sequence of functions in C∞
c (�) such that

u0n → u0 in L∞(�) and in L2(�) (the existence of such a sequence is easily
established). By Theorem 10.2 the solution un of (1), (2), (3) corresponding to the
initial data u0n belongs to C∞(Q). On the other hand (Theorem 7.7), we know that

|un(t)− u(t)|L2(�) ≤ |u0n − u0|L2(�) ∀t ≥ 0.

Because of (19) we have

‖un − um‖L∞(Q) ≤ ‖u0n − u0m‖L∞(�).

Therefore, the sequence (un) converges to u uniformly on Q, and so u ∈ C(Q).
As in the elliptic case, there is another approach to the maximum principle. For

simplicity we assume here that � is bounded. Let u(x, t) be a function satisfying7

u ∈ C(�× [0, T ]),(20)

u is of class C1 in t and of class C2 in x in �× (0, T ),(21)

∂u

∂t
−�u ≤ 0 in �× (0, T ).(22)

Theorem 10.6. Assume (20), (21), and (22). Then

(23) max
�×[0,T ]

u = max
P
u,

where P = (� × {0}) ∪ (� × [0, T ]) is called the “parabolic boundary” of the
cylinder �× (0, T ).

Proof. Set v(x, t) = u(x, t)+ ε|x|2 with ε > 0, so that

(24)
∂v

∂t
−�v ≤ −2εN < 0 in �× (0, T ).

We claim that
max

�×[0,T ]
v = max

P
v.

Suppose not. Then there is some point (x0, t0) ∈ �× [0, T ] such that (x0, t0) /∈ P
and

max
�×[0,T ]

v = v(x0, t0).

Since x0 ∈ � and 0 < t0 ≤ T , we have

6 If � is not bounded we also assume that u0(x) → 0 as |x| → ∞.
7 Note that we do not prescribe any boundary condition or any initial data.
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(25) �v(x0, t0) ≤ 0

and

(26)
∂v

∂t
(x0, t0) ≥ 0

(if t0 < T we have ∂v
∂t
(x0, t0) = 0, and if t0 = T we have ∂v

∂t
(x0, t0) ≥ 0).8

Combining (25) and (26), we obtain
(
∂v
∂t

−�v
)
(x0, t0) ≥ 0, a contradiction with

(24). Therefore we have

max
�×[0,T ]

v = max
P
v ≤ max

P
u+ εC,

where C = supx∈� |x|2. Since u ≤ v, we conclude that

max
�×[0,T ]

u ≤ max
P
u+ εC ∀ε > 0.

This completes the proof of (23).

10.3 The Wave Equation

Let � ⊂ R
N be an open set. As above, we set

Q = �× (0,∞) and � = � × (0,∞).

Consider the following problem: find a function u(x, t) : �×[0,∞) → R satisfying

(27)
∂2u

∂t2
−�u = 0 in Q,

(28) u = 0 on �,

(29) u(x, 0) = u0(x) on �,

(30)
∂u

∂t
(x, 0) = v0(x) on �,

where � = ∑N
i=1

∂2

∂x2
i

denotes the Laplacian in the space variables x, t is the time

variable, and u0, v0 are given functions.
Equation (27) is called the wave equation. The operator ( ∂

2

∂t2
−�) is often denoted

by � and is called the d’Alembertian. The wave equation is a typical example of a
hyperbolic equation.

8 To be safe one should work in �× (0, T ′) with T ′ < T and then let T ′ → T , since v is of class
C1 in t only in �× (0, T ).
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When N = 1 and � = (0, 1), equation (27) models the small9 vibrations of
a string in the absence of any exterior force. For each t , the graph of the function
x ∈ � 
→ u(x, t) represents the configuration of the string at time t . When N = 2
equation (27) models the small vibrations of an elastic membrane. For each t , the
graph of the function x ∈ � 
→ u(x, t) represents the configuration of the membrane
at time t . More generally, equation (27) models the propagation of a wave (acoustic,
electromagnetic, etc.) in some homogeneous elastic medium � ⊂ R

N.

Equation (28) is the (homogeneous) Dirichlet boundary condition; it could be
replaced by the Neumann condition or any of the boundary conditions encountered
in Chapter 8 or 9. The condition u = 0 on� means that the string (or the membrane)
is fixed on�, while the Neumann condition says that the string is free at its endpoints.

Equations (29) and (30) represent the initial state of the system: the initial config-
uration (one also says initial displacement) is described by u0, and the initial velocity
is described by v0. The data (u0, v0) are usually called the Cauchy data.

To simplify matters we assume throughout this section that� is of classC∞, with
� bounded.

• Theorem 10.7 (existence and uniqueness). Assume u0 ∈ H 2(�) ∩ H 1
0 (�) and

v0 ∈ H 1
0 (�). Then there exists a unique solution u of (27), (28), (29), (30) satisfying

(31) u ∈ C([0,∞);H 2(�)∩H 1
0 (�))∩C1([0,∞);H 1

0 (�))∩C2([0,∞);L2(�)).

Moreover,10

(32)

∣
∣
∣
∣
∂u

∂t
(t)

∣
∣
∣
∣

2

L2(�)

+ |∇u(t)|2
L2(�)

= |v0|2L2(�)
+ |∇u0|2L2(�)

∀t ≥ 0.

Remark 6. Equation (32) is a conservation law that asserts that the energy of the
system is invariant in time.

Before proving Theorem 10.7 let us mention a regularity result.

Theorem 10.8 (regularity). Assume that the initial data satisfy

u0 ∈ Hk(�), v0 ∈ Hk(�) ∀k,
and the compatibility conditions

�ju0 = 0 on � ∀j ≥ 0, j integer,

�jv0 = 0 on � ∀j ≥ 0, j integer.

Then the solution u of (27), (28), (29), (30) belongs to C∞(�× [0,∞)).

9 The full equation is a very difficult nonlinear equation; equation (27) is a linearized version of
this near an equilibrium.
10 We use the same notation as in the preceding sections, that is,

∣
∣ ∂u
∂t
(t)

∣
∣2
L2(�)

= ∫

�

∣
∣ ∂u
∂t
(x, t)

∣
∣2dx,

∣
∣∇u(t)∣∣2

L2(�)
= ∑N

i=1

∫

�

∣
∣ ∂u
∂xi
(x, t)

∣
∣2dx.
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Proof of Theorem 10.7. As in Section 10.1 we consider u(x, t) as a vector-valued
function defined on [0,∞); more precisely, for each t ≥ 0, u(t) denotes the map
x 
→ u(x, t). We write (27) in the form of a system of first-order equations:11

(33)

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− v = 0 in Q,

∂v

∂t
−�u = 0 in Q,

and we set U = ( uv ), so that (33) becomes

(34)
dU

dt
+ AU = 0,

where

(35) AU =
(

0 −I
−� 0

)

U =
(

0 −I
−� 0

)(
u

v

)

=
( −v

−�u
)

.

We now apply the Hille–Yosida theory in the space H = H 1
0 (�)×L2(�) equipped

with the scalar product

(U1, U2) =
∫

�

∇u1 · ∇u2dx +
∫

�

u1u2dx +
∫

�

v1v2dx,

where U1 = ( u1
v1 ) and U2 = ( u2

v2 ).
Consider the unbounded operator A : D(A) ⊂ H → H defined by (35) with

D(A) = (H 2(�) ∩H 1
0 (�))×H 1

0 (�).

Note that the boundary condition (28) has been incorporated in the space H . The
condition v = ∂u

∂t
= 0 on � is a direct consequence of (28).

We claim that A+ I is maximal monotone in H :

(i) A+ I is monotone; indeed, if U = ( uv ) ∈ D(A) we have

(AU,U)H + |U |2H
= −

∫

�

∇v · ∇u−
∫

�

uv +
∫

�

(−�u)v +
∫

�

u2 +
∫

�

|∇u|2 +
∫

�

v2

= −
∫

�

uv +
∫

�

u2 +
∫

�

v2 +
∫

�

|∇u|2 ≥ 0.

(ii)A+I is maximal monotone. This amounts to proving thatA+2I is surjective.
Given F = ( fg ) ∈ H , we must solve the equation AU + 2U = F , i.e., the system

11 This is the standard device, which consists in writing a differential equation of order k as a system
of k first-order equations.
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(36)

{
−v + 2u = f in �,

−�u+ 2v = g in �,

with
u ∈ H 2(�) ∩H 1

0 (�) and v ∈ H 1
0 (�).

It follows from (36) that

(37) −�u+ 4u = 2f + g.

Equation (37) has a unique solution u ∈ H 2(�) ∩H 1
0 (�) (by Theorem 9.25). Then

we obtain v ∈ H 1
0 (�) simply by taking v = 2u− f . This solves (36).

Applying Hille–Yosida’s theorem (Theorem 7.4) and Remark 7.7, we see that
there exists a unique solution of the problem

(38)

⎧
⎨

⎩

dU

dt
+ AU = 0 on [0,∞),

U(0) = U0,

with

(39) U ∈ C1([0,∞); H) ∩ C([0,∞); D(A)),
since U0 = ( u0

v0 ) ∈ D(A). From (39) we deduce (31).

In order to prove (32) it suffices to multiply (27) by ∂u
∂t

and to integrate on �.
Note that ∫

�

∂2u

∂t2

∂u

∂t
dx = 1

2

∂

∂t

∫

�

∣
∣
∣
∣
∂u

∂t
(x, t)

∣
∣
∣
∣

2

dx

and ∫

�

(−�u)∂u
∂t
dx =

∫

�

∇u · ∂
∂t
(∇u)dx = 1

2

∂

∂t

∫

�

|∇u|2dx.

Remark 7. When� is bounded we may use onH 1
0 (�) the scalar product

∫ ∇u1 ·∇u2
(see Corollary 9.19), and on H = H 1

0 (�)× L2(�) the scalar product

(U1, U2) =
∫

�

∇u1 · ∇u2 +
∫

�

v1v2, where U1 =
(
u1
v1

)

and U2 =
(
u2
v2

)

.

With this scalar product we have

(AU,U) = −
∫

�

∇v · ∇u+
∫

�

(−�u)v = 0 ∀U =
(
u

v

)

∈ D(A).

It is easy to check that:

(i) A and −A are maximal monotone,
(ii) A� = −A.
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As a consequence we may also solve the problem

dU

dt
− AU = 0 on [0,+∞), U(0) = U0,

or equivalently
dU

dt
+ AU = 0 on (−∞, 0], U(0) = U0

(just change t into −t).12 Relation (32) may be written as

|U(t)|H = |U0|H ∀t ∈ R.

One says that the one-parameter family {U(t)}t∈R is a group of isometries on H .

• Remark 8. The wave equation has no smoothing effect on the initial data, in contrast
with the heat equation. To convince oneself of this it suffices consider the case� = R.
Then there is a very simple explicit solution of (27), (28), (29), (30), namely

(40) u(x, t) = 1

2
(u0(x + t)+ u0(x − t))+ 1

2

∫ x+t

x−t
v0(s)ds.

In particular, if v0 = 0, we have

u(x, t) = 1

2
(u0(x + t)+ u0(x − t)).

Clearly u is not more regular than u0. We can be even more precise. Assume u0 ∈
C∞(R\{x0}). Then u(x, t) is C∞ on R × R, except on the lines x + t = x0 and
x − t = x0. These are called the characteristics passing through the point (x0, 0).
One says that singularities propagate along the characteristics.

Remark 9. When � is bounded, problem (27), (28), (29), (30) can be solved by de-
composition in a Hilbert basis, as was done for the heat equation. It is very convenient
to work in the basis (ei) of L2(�) composed of eigenfunctions of −� (with Dirich-
let condition), i.e., −�ei = λiei in �, ei = 0 on �; recall that λi > 0. We seek a
solution of (27), (28), (29), (30) in the form of a series

(41) u(x, t) =
∑

i

ai(t)ei(x).

We see immediately that the functions ai(t) must satisfy

a′′
i (t)+ λiai(t) = 0,

so that

ai(t) = ai(0) cos(
√
λit)+ a′

i (0)√
λi

sin(
√
λit).

12 In other words, time is reversible; from this viewpoint there is a basic difference between the
wave equation and the heat equation (for which time is not reversible).
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The constants ai(0) and a′
i (0) are determined by the relations

u0(x) =
∑

i

ai(0)ei(x) and v0(x) =
∑

i

a′
i (0)ei(x).

In other words, ai(0) and a′
i (0) are the components of u0 and v0 in the basis (ei).

For the study of the convergence of this series see, e.g., H. Weinberger [1].

Proof of Theorem 10.8. We use the same notation as in the proof of Theorem 10.7.
It is easy to see, by induction on k, that

D(Ak) =
{(
u

v

) ∣
∣
∣
∣

u ∈ Hk+1(�) and �ju = 0 on � ∀j, 0 ≤ j ≤ [k/2]
v ∈ Hk(�) and �jv = 0 on � ∀j, 0 ≤ j ≤ [(k + 1)/2] − 1

}

.

In particular, D(Ak) ⊂ Hk+1(�) × Hk(�) with continuous injection. Applying
Theorem 7.5, we see that if U0 = ( u0

v0 ) ∈ D(Ak), then the solution U of (38)
satisfies

U ∈ Ck−j ([0,∞);D(Aj )) ∀j = 0, 1, . . . , k.

Thus u ∈ Ck−j ([0,∞);Hj+1(�)) ∀j = 0, 1, . . . , k. We conclude with the help of
Corollary 9.15 that under the assumptions of Theorem 10.8 (i.e., U0 ∈ D(Ak) ∀k),
u ∈ Ck(�× [0,∞)) ∀k.

Remark 10. The compatibility conditions introduced in Theorem 10.8 are necessary
and sufficient in order to have a solution u ∈ C∞(�× [0,∞)) of the problem (27),
(28), (29), (30). The proof is the same as in Remark 4.

Remark 11. The techniques presented in Section 10.3 may also be used for solving
the Klein–Gordon equation

(27′) ∂2u

∂t2
−�u+m2u = 0 in Q, m > 0.

Note that (27′) cannot be reduced to (27) by a change of unknown such as v(x, t) =
eλtu(x, t).

Comments on Chapter 10

Comments on the heat equation

1. The approach of J.-L. Lions.
The following result allows us to prove, in a very general framework, the existence
and uniqueness of a weak solution for parabolic problems. This theorem can be
viewed as a parabolic counterpart of the Lax–Milgram theorem. Let H be a Hilbert
space with scalar product ( , ) and norm | |. The dual space H� is identified with H .
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Let V be another Hilbert space with norm ‖ ‖. We assume that V ⊂ H with dense
and continuous injection, so that

V ⊂ H ⊂ V �

(see Remark 5.1).
Let T > 0 be fixed; for a.e. t ∈ [0, T ] we are given a bilinear form a(t; u, v) :

V × V → R satisfying the following properties:

(i) For every u, v ∈ V the function t 
→ a(t; u, v) is measurable,
(ii) |a(t; u, v)| ≤ M‖u‖‖v‖ for a.e. t ∈ [0, T ], ∀u, v ∈ V ,

(iii) a(t; v, v) ≥ α‖v‖2 − C|v|2 for a.e. t ∈ [0, T ], ∀v ∈ V ,

where α > 0, M and C are constants.

Theorem 10.9 (J.-L. Lions). Given f ∈ L2(0, T ;V �) and u0 ∈ H , there exists a
unique function u satisfying

u ∈ L2(0, T ;V ) ∩ C([0, T ];H), du

dt
∈ L2(0, T ;V �)

〈
du

dt
(t), v

〉

+ a(t; u(t), v) = 〈f (t), v〉 for a.e. t ∈ (0, T ), ∀v ∈ V,

and
u(0) = u0.

For a proof see, e.g., J.-L. Lions–E. Magenes [1].
Application. H = L2(�), V = H 1

0 (�) and

a(t; u, v) =
∑

i,j

∫

�

aij (x, t)
∂u

∂xi

∂v

∂xj
dx +

∑

i

∫

�

ai(x, t)
∂u

∂xi
v +

∫

�

a0(x, t)uv dx

with aij , ai , a0 ∈ L∞(�× (0, T )) and

(42)
∑

i,j

aij (x, t)ξiξj ≥ α|ξ |2 for a.e. (x, t) ∈ �× (0, T ), ∀ξ ∈ R
N, α > 0.

In this way we obtain a weak solution of the problem

(43)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
−
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+
∑

i

ai
∂u

∂xi
+ a0u = f in �× (0, T ),

u = 0 on � × (0, T ),

u(x, 0) = u0(x) on �.

Under additional assumptions on the data, the solution of (43) has greater regularity;
see the following comments.
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2. C∞- regularity.
We assume here that� is bounded and of classC∞. Let aij , ai , a0 ∈ C∞(�×[0, T ])
satisfy (42).

Theorem 10.10. Assume u0 ∈ L2(�) and f ∈ C∞(�× [0, T ]). Then the solution
u of (43) belongs to C∞(� × [ε, T ]) for every ε > 0. If in addition u0 ∈ C∞(�)
and {f, u0} satisfy the appropriate compatibility conditions13 on � × {0}, then u ∈
C∞(�× [0, T ]).

For a proof, see, e.g., J.-L. Lions–E. Magenes [1], A. Friedman [1], [2], and
O. Ladyzhenskaya–V. Solonnikov–N. Uraltseva [1]; it is based on estimates very
similar to those presented in Chapter 7 and in Section 10.1.

Let us mention that there is also an abstract theory that extends the Hille–Yosida
theory to problems of the form du

dt
(t)+A(t)u(t) = f (t), where for each t , A(t) is a

maximal monotone operator. This theory has been developed by T. Kato, H. Tanabe,
P. E. Sobolevski, and others. It is technically more complicated to handle than the
Hille–Yosida theory; see A. Friedman [2], H. Tanabe [1], and K. Yosida [1].

3. Lp and C0,α-regularity.
Consider the problem14

(44)

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
−�u = f in �× (0, T ),

u = 0 on � × (0, T ),

u(x, 0) = u0(x) on �.

Assume, for convenience, that � is bounded and of class C∞. Let us start with a
simple result.

Theorem 10.11 (L2-regularity). Given f ∈ L2(� × (0, T )) and u0 ∈ H 1
0 (�),

there is a unique solution of (44) satisfying

u ∈ C([0, T ]; H 1
0 (�)) ∩ L2(0, T ; H 2(�) ∩H 1

0 (�))

and
∂u

∂t
∈ L2(0, T ; L2(�)).

The proof is easy; see, e.g., J.-L. Lions–E. Magenes [1]. More generally, in Lp

spaces, we have the following.

Theorem 10.12 (Lp-regularity). Given f ∈ Lp(�× (0, T )) with 1 < p < ∞ and
u0 = 0,15 there exists a unique solution of (44) satisfying

13 We do not write down explicitly these relations; they are the natural extensions of (8) (see also
Remark 4).
14 Of course, we could also prescribe an inhomogeneous Dirichlet condition u(x, t) = g(x, t) on
� × (0, T ), but for simplicity we deal only with the case g = 0.
15 To simplify matters.
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u,
∂u

∂t
,
∂u

∂xi
,

∂2u

∂xi∂xj
∈ Lp(�× (0, T )) ∀i, j.

Theorem 10.13 (Hölder regularity). Let 0 < α < 1.Assume that16 f ∈ Cα,α/2(�×
[0, T ]) and u0 ∈ C2+α(�) satisfy the natural compatibility conditions

u0 = 0 on � and −�u0 = f (x, 0) on �.

Then (44) has a unique solution u such that

u,
∂u

∂t
,
∂u

∂xi
,

∂2u

∂xi∂xj
∈ Cα,α/2(�× [0, T ]) ∀i, j.

The proofs of Theorems 10.12 and 10.13 are delicate, except for the case p = 2
of Theorem 10.12. As in the elliptic case (see the comments at the end of Chapter 9)
they rely on the following:

(i) an explicit representation formula for u involving the fundamental solution of
∂
∂t

−�. For example, if � = R
N and f = 0 then

(45) u(x, t) =
∫

RN

E(x − y, t)u0(y)dy = E � u0,

where � refers to convolution solely in the space variables x, and E is the heat
kernel, E(x, t) = (4πt)−N/2e−|x|2/4t ; see, e.g., G. Folland [1].

(ii) a technique of singular integrals.

On this topic see, e.g., O. Ladyzhenskaya–V. Solonnikov–N. Uraltseva [1], A. Fried-
man [1], N. Krylov [1], [2], P. Grisvard [1] (Section 9), D. Stroock–S. Varadhan [1].
A. Brandt [2], B. Knerr [1], and L. Simon [2] have devised more elementary argu-
ments for the Hölder regularity.

The general “philosophy” to keep in mind is the following: if u is the solution of
(44) with u0 = 0 then ∂u

∂t
and �u both have the same regularity as f .

Finally, we mention that the conclusions of Theorems 10.11, 10.12, and 10.13
still hold if � is replaced by

∑

i,j

∂

∂xj

(

aij (x, t)
∂u

∂xi

)

+
∑

i

ai(x, t)
∂u

∂xi
+ a0(x, t)u

with smooth coefficients such that

(46)
∑

i,j

aij (x, t)ξiξj ≥ ν|ξ |2 ∀x, t, ∀ξ ∈ R
N, ν > 0.

16 That is, |f (x1, t1)− f (x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)α/2 ∀x1, x2, t1, t2.
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In the case of irregular coefficients (i.e., aij ∈ L∞(� × (0, T )) satisfying (46)) a
difficult result of Nash–Moser asserts that there exists some α > 0 such that u ∈
Cα,α/2(�× [0, T ]); see, e.g., O. Ladyzhenskaya–V. Solonnikov–N. Uraltseva [1].

4. Some examples of parabolic equations.
Linear and nonlinear parabolic equations (and systems) occur in many fields: me-
chanics, physics, chemistry, biology, optimal control, probability, finance, image
processing etc. Let us mention some examples:

(i) The Navier–Stokes system:

∂ui

∂t
−�ui +

∑

j

uj
∂ui

∂xj
= fi + ∂p

∂xi
in �× (0, T ), 1 ≤ i ≤ N,(47)

div u =
N∑

i=1

∂ui

∂xi
= 0 on �× (0, T ),(48)

u = 0 on � × (0, T ),(49)

u(x, 0) = u0(x) on �,(50)

plays a central role in fluid mechanics; see, e.g., R. Temam [1] and its references.
(ii) Reaction–diffusion systems. These are nonlinear parabolic equations or systems

of the form
⎧
⎨

⎩

∂u
∂t

−M�u = f (u) in �× (0, T )

+ boundary conditions and initial data,

where u(x, t) takes its values in R
m,M is anm×m (diagonal) matrix, and f is

a nonlinear map from R
m into R

m. These systems are used to model phenomena
occurring in various fields: chemistry, biology, neurophysiology, epidemiology,
combustion, population genetics, ecology, geology, etc.; see, e.g., P. Fife [1] and
its numerous references. The solutions of reaction–diffusion equations display
a wide range of behaviors, including the formation of traveling waves and self-
organized patterns.

(iii) Free boundary problems. For example, the Stefan problem describes the evo-
lution of a mixture of ice and water; see, e.g., the expository paper of E. Ma-
genes [1] and the book of A. Friedman [4].

(iv) Diffusion equations play a central role in probability (Brownian motion, Markov
processes, diffusion processes, stochastic differential equations, etc.); see, e.g.,
D. Stroock–S. Varadhan [1].

(v) Many other examples of semilinear parabolic problems are presented in D. D.
Henry [1], Th. Cazenave–A. Haraux [1].

(vi) An interesting use of the heat equation has been made in connection with the
Atiyah–Singer index; see, e.g., P. Gilkey [1].

(vii) More sophisticated nonlinear diffusion equations are used in image processing
(variants of the Perona–Malik model). The recent solution by G. Perelman of
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the celebrated Poincaré conjecture relies on R. Hamilton’s careful study of the
Ricci flow, which is a kind of nonlinear heat equation.

5. For further results concerning the maximum principle for parabolic equations,
see, e.g., A. Friedman [1], M. Protter–H. Weinberger-[1], R. Sperb [1]. For example,
if u is the solution of (1), (2), (3) with u0 ≥ 0 and u0 	≡ 0, then u(x, t) > 0
∀x ∈ �, ∀t > 0. When � = R

N this follows easily from the explicit representation
formula (45).

Comments on the wave equation

6. Weak solutions of the wave equation.
There is a general abstract setting for the existence and uniqueness of a weak solution
of the wave equation. Let V andH be two Hilbert spaces such that V ⊂ H ⊂ V � (as
in Comment 1). For each t ∈ [0, T ] we are given a symmetric continuous bilinear
form a(t ; u, v) : V × V → R such that

(i) the function t 
→ a(t; u, v) is of class C1 ∀u, v ∈ V ,
(ii) a(t ; v, v) ≥ α‖v‖2 − C|v|2 ∀t ∈ [0, T ], ∀v ∈ V , α > 0.

Theorem 10.14 (J.-L. Lions). Given f ∈ L2(0, T ; H), u0 ∈ V , and v0 ∈ H , there
exists a unique function u satisfying

u ∈ C([0, T ];V ), du

dt
∈ C([0, T ];H), d2u

dt2
∈ L2(0, T ;V �),

〈
d2u

dt2
(t), v

〉

+ a(t; u(t), v) = 〈f (t), v〉 for a.e. t ∈ (0, T ), ∀v ∈ V,

u(0) = u0 and
du

dt
(0) = v0.

For a proof, see, e.g., J.-L. Lions–E. Magenes [1].

Application. Let H = L2(�), V = H 1
0 (�),

a(t; u, v) =
∫

�

∑

i,j

aij (x, t)
∂u

∂xi

∂v

∂xj
dx +

∫

�

a0(x, t) uvdx

with (42) and

aij ,
∂aij

∂t
, a0,

∂a0

∂t
∈ L∞(�× (0, T )), aij = aji ∀i, j.

Then there is a unique weak solution of the problem

⎧
⎪⎨

⎪⎩

∂2u

∂t2
−
∑

i,j

∂

∂xj

(

aij
∂u

∂xi

)

+ a0u = f in �× (0, T ),

(28), (29), (30).
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Note that the assumptions on the initial data (u0 ∈ H 1
0 (�) and v0 ∈ L2(�)) are

weaker than those made in Theorem 10.7. Under additional assumptions onf ,u0, and
v0 (regularity and compatibility conditions) as well as on aij , a0 one gains regularity
on u.

7. The Lp-theory for the wave equation is delicate and had been extensively studied
over the past 30 years. The Strichartz estimates are an important tool; see, e.g.,
S. Klainerman [1].

8. Maximum principle.
Some very special forms of the maximum principle hold for the wave equation; see,
e.g., M. Protter–H. Weinberger [1]. For example, let u be the solution of (27), (28),
(29), (30).

(i) If � = R, u0 ≥ 0 and v0 ≥ 0, then u ≥ 0.
(ii) If � = R

2, u0 = 0 and v0 ≥ 0, then u ≥ 0.

Assertion (i) follows from the representation formula (40). A similar but more com-
plicated formula holds in R

N ; see, e.g., S. Mizohata [1], G. Folland [1], H. Wein-
berger [1], R. Courant–D. Hilbert [1], and S. Mikhlin [1]. It implies (ii).

However, the reader is warned of the following:

(iii) If � = (0, 1), u0 ≥ 0, and v0 = 0, then in general one cannot infer that u ≥ 0.
(iv) If � = R

2, u0 ≥ 0, and v0 = 0, then in general one cannot infer that u ≥ 0.

An unusual form of maximum principle for the telegraph equation (which re-
sembles the wave equation) has recently been devised by J. Mawhin–R. Ortega–
A. M. Robles–Perez [1].

9. Domain of dependence. Wave propagation. Huygens’ principle.
There is a fundamental difference between the heat equation and the wave equation:

(i) For the heat equation, a small perturbation17of the initial data is immediately
felt everywhere, i.e., ∀x ∈ �, ∀t > 0. For example, we have seen that if u0 ≥ 0
and u0 	≡ 0, then u(x, t) > 0 ∀x ∈ �, ∀t > 0. One says that the heat propagates
at infinite speed. 18

(ii) For the wave equation, the situation is completely different. Assume for example
� = R. The explicit formula (40) shows that u(x̄, t̄) depends solely on the values
of u0 and v0 in the interval [x̄ − t̄ , x̄ + t̄]; see Figure 8.

One says that the interval [x̄− t̄ , x̄+ t̄] on the x-axis is the domain of dependence
of the point (x̄, t̄). The same holds for � = R

N(N ≥ 2) : u(x̄, t̄) depends only
on the values of u0 and v0 in the ball {x ∈ R

N ; |x − x̄| ≤ t̄}. This ball in the
hyperplane R

N × {0} is called the domain of dependence of the point (x̄, t̄).
Geometrically it is the intersection of the cone

17 That is, localized in a small region.
18 Physically this is not realistic! However, the representation formula (45) shows that a perturbation
on the initial data localized near x = x0 has negligible effects at the point (x, t) if t is small and
|x − x0| is large.
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{(x, t) ∈ R
N × R; |x − x̄| ≤ t̄ − t and t ≤ t̄}

with the hyperplane R
N×{0}. The physical interpretation is that waves propagate

at speed less than 1.19 A signal localized in the domain20 D at time t = 0 is felt at
the point x ∈ R

N only after time t ≥ dist(x,D)(u(x, t) = 0 for t < dist(x,D)).

When N > 1 is odd, for example N = 3, there is an even more striking effect:
u(x̄, t̄) depends only on the values of u0 and v0

21 on the sphere {x ∈ R
N ;

|x− x̄| = t}. This is Huygens’principle. Physically, it says that a signal localized
in the domain D at time t = 0 is observed at the point x ∈ R

N only during the
time [t1, t2] with t1 = infy∈D dist(x, y) and t2 = supy∈D dist(x, y). After the
time t2 the signal is not felt at the point x.

On the other hand, if the dimension N is even (for example N = 2) the signal
persists at x for all time t > t1.22

An application to music. A listener placed in R
3 at distance d from a musical

intrument23 hears at time t the note played at time (t − d) and nothing else!24

For more details on Huygens’ principle the reader may consult R. Courant–
D. Hilbert [1], G. Folland [1], P. Garabedian [1], and S. Mikhlin [1].

19 The speed 1 comes in because we have normalized the wave equation. Some readers may prefer

to work with the equation ∂2u
∂t2

− c2�u = 0.
20 That is, u0 and v0 have their supports in D.
21 And of some of their derivatives.
22 The effect is damped out with time but it does not vanish completely.
23 Of small dimension.
24 While in R

2 he would hear a weighted average of all notes played during the time [0, t − d].





Chapter 11
Miscellaneous Complements

This chapter contains various complements that have not been incorporated in the
main body of the book in order to keep the presentation more compact. They are
connected to Chapters 1–7. Some of the proofs are very sketchy. Several proofs have
been omitted, and the interested reader is invited to consult the references.

11.1 Finite-Dimensional and Finite-Codimensional Spaces

As is well known, every finite-dimensional spaceX of dimension p is isomorphic to
R
p. In particular, X is complete, all norms on X are equivalent, and the closed unit

ball BX is compact.

Proposition 11.1. Let E be a Banach space and let X ⊂ E be a finite-dimensional
space. Then X is closed.

Proof. Assume that (xn) is a sequence in X such that xn → x in E. Then (xn) is a
Cauchy sequence in X and thus (xn) converges to a limit in X. Hence x ∈ X.

Proposition 11.2. Assume that X is finite-dimensional and F is a Banach space.
Then every linear operator T : X → F must be bounded.

Proof. Let (ei) be a basis in X and write x = ∑p
i=1 xiei . Then T x = ∑p

i=1 xiT ei ,
so that ‖T x‖ ≤ ∑p

i=1 |xi | ‖T ei‖ ≤ (maxi‖T ei‖)∑p
i=1 |xi | ≤ C‖x‖.

In particular, all linear functionals on X are continuous. The dual space X� of a
finite-dimensional space X is also finite-dimensional, and dimX� = dimX. More
precisely, if (ei) is a basis of X then write x ∈ E as x = ∑p

i=1 xiei and set fi(x) =
xi, i = 1, 2, . . . , p. Clearly the functionals (fi) are linearly independent in X� and
they generateX�. Thus they form a basis ofX�. What is less obvious is the following:

Proposition 11.3. Assume that X is a Banach space (with dimX ≤ ∞) such that
X� is finite-dimensional. Then X is finite-dimensional and dimX = dimX�.
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Proof. We need Hahn–Banach, or more precisely Corollary 1.4. Let J : X → X��

be the canonical injection defined in Section 1.3. Since dimX� < ∞, we deduce
from the above discussion that dimX�� < ∞. But X is isomorphic to J (X) ⊂ X��,
and thus dimX ≤ dimX�� = dimX�. Therefore dimX < ∞, and we deduce (again
from the above discussion) that dimX� = dimX.

Proposition 11.4. Let E be a Banach space and let M ⊂ E be a closed subspace.
Assume that X ⊂ E is a finite-dimensional subspace. Then (M + X) is closed.
Moreover, (M +X) admits a complement in E if and only if M does.

[Warning: Recall that in general, the sum of two closed subspaces need not be
closed; see, e.g., Exercise 1.14.]

Proof. First, assume in addition thatM∩X = {0}. Write un = xn+yn with xn ∈ X,
yn ∈ M , and un → u in E. We claim that (xn) is bounded. If not, then ‖xnk‖ → ∞
for some subsequence nk → ∞. Passing to a further subsequence, we may assume
that

xnk‖xnk ‖ → ξ in X, with ‖ξ‖ = 1 (here we use the fact that dimX < ∞).

Thus
ynk‖xnk ‖ = unk‖xnk ‖ − xnk‖xnk ‖ → −ξ ; moreover, ξ ∈ M (since M is closed). Thus

ξ ∈ M ∩ X and we must have ξ = 0. Impossible. Hence we have shown that (xn)
is bounded. Passing to a subsequence, we may assume that xnk → x in X. Then
yn → u− x ∈ M (since M is closed). Therefore u ∈ (M +X), and this completes
the proof that (M +X) is closed when M ∩X = {0}.

In the general case, let X̃ be a complement of (M ∩ X) in X (this is finite-
dimensional stuff). Clearly X̃ is finite-dimensional, M ∩ X̃ = {0}, and M + X̃ =
M +X. We have already proved that (M + X̃) is closed, and so is (M +X).

Suppose now that M admits a complement, say N , in E. Let PM and PN be the
projections onto M and N . Since PN(X) has finite dimension, it has a complement,
say Ñ , in N (see Section 2.4). We claim that Ñ is a complement of (M +X) in E.

First we have
(M +X) ∩ Ñ = {0}.

Indeed, if ñ = m+ x with ñ ∈ Ñ , m ∈ M , and x ∈ X, then

ñ = PNñ = PN(m+ x) = PNx ∈ PN(X),
and thus ñ ∈ Ñ ∩ PN(X) = {0}.

Next, we have
(M +X)+ Ñ = E.

Indeed, any ξ ∈ E may be written as

ξ = PMξ + PNξ,

and PNξ may be further decomposed as

PNξ = PNx + ñ,
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for some x ∈ X and some ñ ∈ Ñ . But x = PMx + PNx, so that

PNξ = (x − PMx)+ ñ,

and therefore
ξ = PMξ + x − PMx + ñ ∈ (M +X)+ Ñ .

Conversely, assume that (M +X) admits a complement, say W , in E. Let X̃ be,
as above, a complement of (M ∩X) in X. We claim that (W + X̃) is a complement
of M .

First we have
(W + X̃) ∩M = {0}.

Indeed, if m ∈ M can be written as m = w + x̃ with w ∈ W and x̃ ∈ X̃, then
w = m−x̃, so thatw ∈ (M+X)∩W = {0}. Thereforem = x̃ ∈ (M∩X)∩X̃ = {0}.

Finally, we verify that
(W + X̃)+M = E.

Indeed, it suffices to check that

(M + X̃) = (M +X)

(since W + (M +X) = E). Clearly M + X̃ ⊂ M +X (since X̃ ⊂ X). Conversely,
any x ∈ X can be written as x = x1 + x̃ with x1 ∈ M ∩ X and x̃ ∈ X̃. Therefore
M +X ⊂ M + X̃.

Let M be a subspace of a Banach space E. Recall that M has finite codimension
if there exists a finite-dimensional space X ⊂ E such that M + X = E. We may
always assume that M ∩ X = {0} (otherwise choose a complement of M ∩ X in
X). The codimensionM, codimM , is by definition the dimension of such X (and is
independent of the special choice of X); it coincides with dim(E/M).

[Warning: A subspace of finite codimension need not be closed. For example, if
dimE = ∞, take any linear functional f on E that is not continuous (see Exer-
cise 1.5). Then M = f−1({0}) has codimension 1 but M is not closed (by Proposi-
tion 1.5); in fact, M is dense in E.]

Proposition 11.5. Let E be a Banach space and letM be a closed subspace of E of
finite codimension. Then any subspace M̃ of E containing M must be closed.

Proof. The spaceM admits an algebraic complement in M̃ , sayX. Clearly dimX <

∞, and M̃ = X +M . Applying Proposition 11.4, we see that M̃ is closed.

Proposition 11.6. Let E be a Banach space and letM be a closed subspace of E of
finite codimension. LetD be a dense subspace of E. Then there exists a complement
X of M with X ⊂ D.

Proof. Let d be the codimension ofM in E. If d = 0, we haveM = E and we may
take X = {0}. Hence we may assume that d ≥ 1. Fix any x1 ∈ D with x1 /∈ M; this
is possible, for otherwise D ⊂ M implies E = D ⊂ M 	= E; a contradiction. Let
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M1 = M + Rx1. Then M1 is closed (by Proposition 11.4) and codimM1 = d − 1.
Repeating this construction (d − 1) times yields a subspace X ⊂ D, of dimension
d, such that M +X = E and M ∩X = {0}.
Proposition 11.7. Let E be a Banach space and let G,L ⊂ E be closed subspaces.
Assume that there exist finite-dimensional spaces X1, X2 ⊂ E such that

G+ L+X1 = E,(1)

G ∩ L ⊂ X2.(2)

Then G (resp. L) admits a complement.

Proof. We divide the proof into two steps.

Step 1: The conclusion of Proposition 11.7 holds when X2 = {0}.
Let X̃1 be a complement of (G+L)∩X1 inX1. We already know by Proposition

11.4 that (L+ X̃1) is closed. We claim that (L+ X̃1) is a complement of G.
First, we have

G+ (L+ X̃1) = E.

Indeed, any ξ ∈ E may be written as ξ = g+ �+h with g ∈ G, � ∈ L, h ∈ X1, and
hmay be further decomposed as h = h1 +h2 with h1 ∈ (G+L)∩X1 and h2 ∈ X̃1.
Hence ξ ∈ G+ L+ X̃1.

Next we have
G ∩ (L+ X̃1) = {0}.

Indeed, suppose that g = �+ x̃1 with g ∈ G, � ∈ L, and x̃1 ∈ X1. Then x̃1 = g− �,
so that x̃1 ∈ (G+ L) ∩ X̃1 = {0}. Hence g = � ∈ G ∩ L = {0} (this is assumed in
Step 1).

Step 2: The general case.
Let G̃ be a complement of (G ∩ L) in G and let L̃ be a complement of (G ∩ L)

in L (note that G̃ and L̃ exist, since G ∩ L is finite-dimensional; see Section 2.4).
We claim that

(3) (G̃+ L̃)+ (X1 +X2) = E

and

(4) (G̃ ∩ L̃) = {0}.
This will complete the proof of the proposition. Indeed, from Step 1 we deduce that
G̃ admits a complement. ThereforeG = G̃+ (G∩L) also admits a complement by
Proposition 11.4.

Verification of (3). Any ξ ∈ E may be written as

ξ = g + �+ x1 with g ∈ G, � ∈ L, and x1 ∈ X1.

But g = g̃ + h1 with g̃ ∈ G̃ and h1 ∈ G ∩ L; similarly � = �̃+ h2 with �̃ ∈ L̃ and
h2 ∈ G ∩ L. Therefore
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ξ = (g̃ + �̃)+ x1 + (h1 + h2) ∈ (G̃+ L̃)+ (X1 +X2).

Verification of (4). Assume that g ∈ G̃∩ L̃. Then g ∈ (G∩L)∩ L̃ (since G̃ ⊂ G

and L̃ ⊂ L). But (G ∩ L) ∩ L̃ = {0}.

11.2 Quotient Spaces

LetE be a Banach space and letM be a closed subspace. We consider an equivalence
relation on E defined by x ∼ y if x − y ∈ M . The set of all equivalence classes is a
vector space, denoted by E/M , and is called the quotient space of E (mod M). The
canonical map that associates to every x ∈ E its equivalence class [x] is denoted by
π : E → E/M . Clearly π is a surjective linear operator. The quotient space E/M
is equipped with the quotient norm

‖[x]‖E/M = ‖π(x)‖E/M = inf
y∈E
y∈[x]

‖y‖ = inf
m∈M ‖x −m‖.

It is clear that ‖[x]‖E/M is a norm on E/M (to check that ‖[x]‖E/M = 0 implies
[x] = 0, one uses the fact thatM is closed). Moreover, π : E → E/M is a bounded
operator and ‖π‖ ≤ 1. When there is no confusion we simply write ‖ ‖ instead of
‖ ‖E/M .

Proposition 11.8. The quotient space E/M equipped with the norm ‖ ‖E/M is a
Banach space.

Proof. Let (π(xk)) be a Cauchy sequence in E/M . We have to show that (π(xk))
converges, and since (π(xk)) is Cauchy, it suffices to prove that a subsequence
converges. Passing to a subsequence (still denoted by (xk)), we may assume that
‖π(xk+1)− π(xk)‖ < 1

2k
∀k (see the proof of Theorem 4.8). Hence there exists a

sequence (mk) inM such that ‖xk+1 −xk −mk‖ < 1
2k

. Writemk = μk+1 −μk with
μ1 = 0 and μk ∈ M ∀k. Since (xk − μk) is a Cauchy sequence in E, it converges
to a limit � in E. Therefore π(xk) = π(xk − μk) also converges (to π(�)) in E/M .

Proposition 11.9. Let M be a closed subspace of E and let π� : (E/M)� → E�

be the adjoint of π : E → E/M . Then R(π�) = M⊥, and more precisely, π� is
bijective from (E/M)� onto M⊥, with

‖π�(ξ)‖E� = ‖ξ‖(E/M)� ∀ξ ∈ (E/M)�.
In particular, (E/M)� is isomorphic and isometric to M⊥.

Proof. With ξ ∈ (E/M)� and x ∈ E, write

〈π�(ξ), x〉 = 〈ξ, π(x)〉.
If x ∈ M we have π(x) = 0 and thus 〈π�(ξ), x〉 = 0 ∀x ∈ M , i.e., π�(ξ) ∈ M⊥.

Conversely, let f ∈ M⊥; we need to show that f = π�(ξ) for some ξ ∈ (E/M)�.
Given y ∈ E/M , write y = π(x) for some x ∈ E and then define ξ(y) = 〈f, x〉.
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Note that this definition does not depend on the special choice of x, since f ∈ M⊥.
Clearly ξ is linear in y and we have |ξ(y)| ≤ ‖f ‖E�‖x − m‖ ∀m ∈ M . Taking
the inf over all m ∈ M gives |ξ(y)| ≤ ‖f ‖E�‖π(x)‖E/M = ‖f ‖E�‖y‖E/M . Hence
ξ ∈ (E/M)�, and clearly, 〈π�(ξ), x〉 = 〈ξ, π(x)〉 = 〈f, x〉 ∀x ∈ E, i.e., π�(ξ) = f .
Moreover, ‖ξ‖(E/M)� ≤ ‖f ‖E� = ‖π�(ξ)‖E� .

On the other hand, we know that

‖π�(ξ)‖E� ≤ ‖ξ‖(E/M)�,
since ‖π�‖ = ‖π‖ ≤ 1. Consequently,

‖π�(ξ)‖E� = ‖ξ‖(E/M)� ∀ξ ∈ (E/M)�.
Let F,G be Banach spaces and let T ∈ L(F,G). Consider the closed subspace

N(T ) of F , the quotient space F/N(T ), and the canonical map π : F → F/N(T ).
The operator T can be factored as T = T̃ ◦ π , where T̃ : F/N(T ) → G; indeed,
given y ∈ F/N(T ), write y = π(x) for some x ∈ F and set T̃ y = T x. Clearly T̃
is well defined independently of the choice of x, and bijective from F/N(T ) onto
R(T ); moreover, ‖T̃ ‖ = ‖T ‖.

Consider now a special case of this setting. Let M be a closed subspace of a
Banach space E. Let T : E� → M� be defined by

T (f ) = f|M ∀f ∈ E�.
Then N(T ) = M⊥ and (by Hahn–Banach) R(T ) = M�. Applying the above to
F = E� and G = M�, we obtain an operator T̃ : E�/M⊥ → M� that is bijective,
and such that T̃ ◦ π = T .

Proposition 11.10. For any Banach space E and any closed subspace M of E, the
operator T̃ is a bijective isometry from E�/M⊥ onto M�.

Proof. We have only to show that T̃ is an isometry. Given any f ∈ E�, consider
the functional f|M on M . By Corollary 1.2 we know that there exists a functional
f̃ ∈ E� such that f̃|M = f|M and ‖f̃ ‖E� = ‖f|M‖M� = ‖T (f )‖M�.

Since f − f̃ ∈ M⊥, we have

‖π(f )‖E�/M⊥ = dist(f,M⊥) ≤ ‖f − (f − f̃ )‖E� = ‖f̃ ‖E� = ‖Tf ‖M�.

Hence we have proved that

‖π(f )‖E�/M⊥ ≤ ‖Tf ‖M� ∀f ∈ E�.

But T = T̃ ◦ π , so that

‖π(f )‖E�/M⊥ ≤ ‖T̃ (π(f ))‖M� ∀f ∈ E�,
i.e.,
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‖y‖E�/M⊥ ≤ ‖T̃ (y)‖M� ∀y ∈ E�/M⊥.

On the other hand, it is clear that

‖(T̃ ◦ π)(f )‖M� = ‖T (f )‖M� ≤ ‖f ‖E� ∀f ∈ E�.
Replacing f by (f − g) with g ∈ M⊥ and taking the infimum over g ∈ M⊥ yields

‖T̃ (π(f ))‖M� ≤ ‖π(f )‖E�/M⊥ ∀f ∈ E�,
i.e.,

‖T̃ (y)‖M� ≤ ‖y‖E�/M⊥ ∀y ∈ E�/M⊥.

We conclude that T̃ is an isometry.

The quotient space E/M inherits many of the properties of the space E, e.g.,
reflexivity and uniform convexity.

Proposition 11.11. Assume that E is a reflexive Banach space and M is a closed
subspace. Then E/M is reflexive.

Proof. We know thatE� is reflexive (see Corollary 3.21) and thusM⊥ is also reflexive
(being a closed subspace of E�; see Proposition 3.20). On the other hand, M⊥ is
isomorphic to (E/M)� (by Proposition 11.9). Therefore (E/M)� is reflexive, and so
is E/M , again by Corollary 3.21.

Proposition 11.12. Assume that E is a uniformly convex Banach space and M is a
closed subspace. Then E/M is uniformly convex.

Proof. Let π(x), π(y) ∈ E/M be such that ‖π(x)‖ ≤ 1, ‖π(y)‖ ≤ 1, and ‖π(x)−
π(y)‖ > ε. Since E is reflexive, we know (see Corollary 3.23) that there exist
m1 ∈ M and m2 ∈ M such that ‖x − m1‖ ≤ 1 and ‖x − m2‖ ≤ 1. Moreover,
‖(x − y)−m‖ > ε ∀m ∈ M . The uniform convexity of E yields

∥
∥
∥
∥
(x −m1)+ (y −m2)

2

∥
∥
∥
∥ < 1 − δ,

and thus ∥
∥
∥
∥
π(x)+ π(y)

2

∥
∥
∥
∥ < 1 − δ.

Proposition 11.13. Let E be a Banach space and let M ⊂ E be a closed subspace.
Then

(a) dimM < ∞ if and only if codimM⊥ < ∞, and in that case

dimM = codimM⊥,

(b) codimM < ∞ if and only if dimM⊥ < ∞, and in that case

codimM = dimM⊥.
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Proof.

(a) We know by Proposition 11.10 that E�/M⊥ is always isomorphic to M�. Thus
dimM� < ∞ ⇔ dim(E�/M⊥) < ∞. By Proposition 11.3 we know that
dimM < ∞ ⇔ dimM� < ∞ and then dimM = dimM�. On the other hand,
dim(E�/M⊥) < ∞ ⇔ codimM⊥ < ∞. Hence dimM < ∞ ⇔ codimM⊥ <
∞ and dimM = dimM� = dim(E�/M⊥) = codimM⊥.

(b) Proposition 11.9 yields that dimM⊥ < ∞ ⇔ dim(E/M)� < ∞. Using once
more Proposition 11.3, this is equivalent to dim(E/M) < ∞, i.e., codimM <

∞. Then dimM⊥ = dim(E/M)� = dim(E/M) = codimM .

A “dual” statement is partially true.

Proposition 11.14. Let N ⊂ E� be a closed subspace. Then dimN < ∞ if and
only if codimN⊥ < ∞, and in that case dimN = codimN⊥. It is also true that
dimN⊥ ≤ codimN , but it may happen that dimN⊥ < codimN < ∞.

Proof. Recall that

N⊥ = {x ∈ E; 〈f, x〉 = 0 ∀f ∈ N}.
Clearly N ⊂ N⊥⊥; but it may happen that N 	= N⊥⊥ (see Remark 6 in Chapter 1).
For example, take ξ ∈ E�� with ξ /∈ E and let N = ξ−1({0}) = {f ∈ E�; 〈ξ, f 〉 =
0}. Then N is a closed subspace of E� of codimension 1 (i.e., N is a hyperplane).
However, N⊥ = {0} (because the orthogonal of N in E�� is Rξ by Lemma 3.2 and
thusN⊥, the orthogonal ofN inE, is reduced to {0}). In this caseN = N 	= N⊥⊥ =
E�, and dimN⊥ = 0, while codimN = 1.

We now return to the general case. Since N ⊂ N⊥⊥, we have codim N⊥⊥ ≤
codimN ≤ ∞. Set M = N⊥ ⊂ E. By Proposition 11.10 we have

codimM⊥ = dim(E�/M⊥) = dimM�,

and thus codimN⊥⊥ = dimM ≤ ∞. Therefore

dimN⊥ ≤ codimN ≤ ∞.

We now prove that dimN < ∞ ⇒ codimN⊥ < ∞ and codimN⊥ = dimN .
We first claim that N⊥⊥ = N . We already know that N ⊂ N⊥⊥. Let f1, f2, . . . , fp
be a basis of N and let f ∈ N⊥⊥. Since f = 0 on N⊥ = {x ∈ E; 〈fi, x〉 = 0 ∀i},
we may apply Lemma 3.2 and conclude that f = ∑

λifi . Therefore N⊥⊥ ⊂ N . As
above, set M = N⊥. Since dimM⊥ < ∞, we deduce from Proposition 11.13 that
codimM < ∞ and that codimM = dimM⊥, i.e., codimN⊥ = dimN .

Conversely, assume codimN⊥ < ∞, and set againM = N⊥, so that codimM <

∞. Applying Proposition 11.13 once more yields dimM⊥ < ∞, i.e., dimN⊥⊥ <

∞. Since N ⊂ N⊥⊥, we deduce that dimN < ∞ and we are back to the previous
situation. Hence dimN = codimN⊥.
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11.3 Some Classical Spaces of Sequences

Given a sequence x = (x1, x2, . . . , xk, . . . ), set

‖x‖p =
( ∞∑

k=1

|xk|p
)1/p

, 1 ≤ p < ∞,

‖x‖∞ = sup
k

|xk|

and consider the corresponding spaces

�p = {
x; ‖x‖p < ∞}

, 1 ≤ p < ∞,

�∞ = {x; ‖x‖∞ < ∞} ,
which are Banach spaces for the �p (resp. �∞) norms. This can be established directly
(and is quite easy); or one can rely on Theorem 4.8 applied to � = N equipped
with the counting measure, μ(E) = the number of points in a set E ⊂ N. Many
properties mentioned below are consquences of general results from Chapter 4. For
the convenience of the reader, we also present some direct proofs.

There are two interesting subspaces of �∞:

c =
{

x; lim
k→∞ xk exists

}

and

c0 =
{

x; lim
k→∞ xk = 0

}

.

They are both equipped with the �∞ norm. Clearly c0 ⊂ c ⊂ �∞ with c0 closed in
c, and c closed in �∞.

Hölder’s inequality takes the form

(5)

∣
∣
∣
∣
∣

∞∑

k=1

xk yk

∣
∣
∣
∣
∣
≤ ‖x‖p‖y‖p′ ∀x ∈ �p, ∀y ∈ �p′

with
1

p
+ 1

p′ = 1.

The space �2 is a Hilbert space equipped with the scalar product

(x, y) =
∞∑

k=1

xkyk.

It is clear that �p ⊂ c0 with

‖x‖∞ ≤ ‖x‖p ∀p, 1 ≤ p < ∞, ∀x ∈ �p,
and this yields �p ⊂ �q when 1 ≤ p ≤ q ≤ ∞, with
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‖x‖q ≤ ‖x‖p ∀x ∈ �p.
Proposition 11.15. The space �p is reflexive, and even uniformly convex, for
1 < p < ∞.

Proof. Apply Theorem 4.10 and Exercise 4.12 with � = N.

Proposition 11.16. The spaces c, c0, and �p, with 1 ≤ p < ∞, are separable.

Proof. Let

D = {x = (xk); xk ∈ Q ∀k, and xk = 0 for k sufficiently large} .
It is clear that D is countable; moreover, D is dense in �p when 1 ≤ p < ∞ and in
c0. The set D + λ(1, 1, 1, . . . ), with λ ∈ Q, is countable and dense in c.

Proposition 11.17. The space �∞ is not separable.

Proof. Assume that A ⊂ �∞ is countable. We will check that A cannot be dense
in �∞. Write A = (ak), where each ak ∈ �∞, so that ak = (ak1, a

k
2, . . . ). For each

integer k set

bk =
{
akk + 1 if |akk | ≤ 1,

0 if |akk | > 1.

Note that b = (bk) ∈ �∞ and |bk − akk | ≥ 1 ∀k. Therefore,

‖b − ak‖∞ ≥ |bk − akk | ≥ 1 ∀k,
and thus b /∈ A.

Proposition 11.18. Let 1 ≤ p < ∞. Given any φ ∈ (�p)�, there exists a unique
u ∈ �p′

such that

〈φ, x〉 =
∞∑

k=1

ukxk ∀x ∈ �p.

Moreover,
‖u‖p′ = ‖φ‖(�p)� .

Proof. Let ek = (0, 0, . . . , 1
(k)
, 0, 0, . . . ). Set uk = φ(ek). We claim that u = (uk) ∈

�p
′

and

(6) ‖u‖p′ ≤ ‖φ‖(�p)� .
Inequality (6) is clear when p = 1, since

|uk| ≤ ‖φ‖(�1)�‖ek‖1 ≤ ‖φ‖(�1)� ∀k.
We now turn to the case 1 < p < ∞. Fix an integer N . Then for every x =
(x1, x2, . . . , xN , 0, 0, . . . ) we have
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(7)
N∑

k=1

ukxk = φ

(
N∑

k=1

xkek

)

≤ ‖φ‖(�p)�‖x‖p.

Choosing xk = |uk|p′−2uk yields

(
N∑

k=1

|uk|p′
)1/p′

≤ ‖φ‖(�p)� .

As N → ∞ we see that u ∈ �p′
and (6) holds. Moreover,

φ(x) =
∞∑

k=1

uk xk ∀x ∈ D,

where D is defined in the proof of Proposition 11.16. Since D is dense in �p we
obtain

φ(x) =
∞∑

k=1

uk xk ∀x ∈ �p.

Hölder’s inequality yields

|φ(x)| ≤ ‖u‖p′ ‖x‖p ∀x ∈ �p,
and therefore ‖φ‖(�p)� ≤ ‖u‖p′ . Combining with (6), we obtain

‖φ‖(�p)� = ‖u‖p′ .

The uniqueness of u is obvious.

Proposition 11.19. Given any φ ∈ (c0)
�, there exists a unique u ∈ �1 such that

〈φ, x〉 =
∞∑

k=1

uk xk ∀x ∈ c0.

Moreover,
‖u‖1 = ‖φ‖(c0)� .

Proof. This is an easy adaptation of the proof of Proposition 11.18 (with p = ∞
and p′ = 1); the last part of the proof holds since D is dense in c0 (but not in �∞).

Proposition 11.20. Given φ ∈ (c)�, there exists a unique pair (u, λ) ∈ �1 × R such
that

〈φ, x〉 =
∞∑

k=1

uk xk + λ lim
k→∞xk ∀x ∈ c.

Moreover,
‖u‖1 + |λ| = ‖φ‖(c)� .

Proof. Applying Proposition 11.19 to φ|c0 , we find some u ∈ �1 such that
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φ(y) =
∞∑

k=1

ukyk ∀y ∈ c0.

If x ∈ c write x = y + ae, where e = (1, 1, 1, . . . ), a = limk→∞xk , and y ∈ c0.
Then

φ(x) =
∞∑

k=1

uk yk + aφ(e) =
∞∑

k=1

uk(xk − a)+ aφ(e) =
∞∑

k=1

uk xk + λa,

where λ = φ(e)− ∑∞
k=1 uk .

Conversely, given any u ∈ �1 and λ ∈ R, the functional

(8) φ(x) =
∞∑

k=1

uk xk + λ lim
k→∞xk, x ∈ c,

defines an element of (c)�. We claim that

(9) ‖φ‖(c)� = ‖u‖1 + |λ|.
It is clear that

(10) ‖φ‖(c)� ≤ ‖u‖1 + |λ|.
Choosing x = (xk) in (8), where N is a fixed integer and

xk =
{

sign (uk), 1 ≤ k ≤ N,

sign (λ), k > N,

yields

φ(x) =
N∑

k=1

|uk| + sign (λ)
∞∑

k=N+1

uk + |λ| ≤ ‖φ‖(c)� .

As N → ∞ we obtain
‖u‖1 + |λ| ≤ ‖φ‖(c)� ,

which, together with (10), gives (9).

Proposition 11.21. The spaces �1, �∞, c, and c0 are not reflexive.

Proof. From Propositions 11.19 and 11.18 we know that (c0)
� is �1 and (�1)� is �∞.

Therefore the identity map from c0 into �∞ corresponds to the canonical injection
J : c0 → (c0)

�� defined in Section 1.3. Since it is not surjective, we conclude that c0
is not reflexive. Applying Corollary 3.21, we deduce that �1 and �∞ are not reflexive.
Moreover, c cannot be reflexive; otherwise, c0, which is a closed subspace of c, would
be reflexive by Proposition 3.20.

The following table summarizes the main properties discussed above:
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Reflexive Separable Dual Space

�p with 1 < p < ∞ YES YES �p
′

�1 NO YES �∞

c0 NO YES �1

c NO YES �1 × R

�∞ NO NO Strictly bigger than �1

11.4 Banach Spaces over C: What Is Similar and What Is
Different?

Throughout this section we assume that E is a vector space over C. Of course we
may associate toE a vector space over R simply by considering the product λx with
λ restricted to R, and x ∈ E; the corresponding vector space over R will often be
denoted by ER to distinguish it from E.

A linear subspace M ⊂ E is a subset M satisfying λx ∈ M and x + y ∈ M

∀λ ∈ C, ∀x, y ∈ M . Of course a linear subspaceM of E is also a linear subspace of
ER. But the converse is not true. For example, a line L in R

2 containing 0 is a linear
subspace of R

2. However, if we identify C with R
2, the line L is no longer a linear

subspace of C because iL = L rotated by π/2, is not contained in L.
A norm on E is by definition a function E with values in [0,+∞) such that

‖x‖ = 0 ⇔ x = 0, ‖λx‖ = |λ| ‖x‖ ∀λ ∈ C, ∀x ∈ E, and ‖x + y‖ ≤ ‖x‖ + ‖y‖.
Clearly ‖ ‖ is also a norm on ER, but the converse is not true.

A linear functional on E is a map f : E → C such that f (λx) = λf (x) and
f (x + y) = f (x) + f (y) ∀λ ∈ C, ∀x, y ∈ E. The dual space E� is the space of
all continuous linear functionals on E; E� is a vector space over C and is equipped
with the norm

‖f ‖E� = sup
x∈E‖x‖≤1

|f (x)|.

The complex number f (x) is also denoted by 〈f, x〉, and we clearly have
〈λf,μx〉 = λμ〈f, x〉 ∀λ,μ ∈ C, ∀x ∈ E. The correspondence between the complex
dualE� and the real dualE�

R
is given by the following simple but illuminating result.

Proposition 11.22. The map

I : f ∈ E� 
→ Re f ∈ E�
R

is a bijective isometry from E� onto E�
R
.

Proof. Clearly,
| Re〈f, x〉| ≤ |〈f, x〉| ≤ ‖f ‖E�‖x‖

and thus

(11) ‖I (f )‖E�
R

≤ ‖f ‖E�.
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It is also clear that I is injective because Re〈f, x〉 = 0 ∀x ∈ E implies Re〈f, ix〉 = 0
∀x ∈ E, i.e., Im〈f, x〉 = 0 ∀x ∈ E, and thusf = 0. Next we claim that I is surjective.
Indeed, given ϕ ∈ E�

R
set

(12) f (x) = ϕ(x)− iϕ(ix) ∀x ∈ E
[warning: ϕ(ix) is not equal to iϕ(x), because both ϕ(x) and ϕ(ix) belong to R]. It
is easy to check that f ∈ E�, i.e., f (λx) = λf (x) ∀λ ∈ C, ∀x ∈ E (please verify!)
and that I (f ) = Re f = ϕ. From (11) we have ‖ϕ‖E�

R
≤ ‖f ‖E� . It is also clear

from (12) that

|f (x)| ≤
(
|ϕ(x)|2 + |ϕ(ix)|2

)1/2 ≤ √
2‖ϕ‖E�

R
‖x‖

(since ‖ix‖ = ‖x‖). But we can do better. Assume f (x) 	= 0 and set λ = f (x)
|f (x)| ∈ C.

Then

|f (x)| = 1

λ
f (x) = f

(x

λ

)
= ϕ

(x

λ

)
− iϕ

(
ix

λ

)

.

Since |f (x)| ∈ R, ϕ
(
x
λ

) ∈ R, and ϕ
(
ix
λ

) ∈ R, we see that ϕ
(
ix
λ

) = 0 and thus
|f (x)| = ϕ

(
x
λ

)
. Therefore

|f (x)| ≤ ‖ϕ‖E�
R

∥
∥
∥
x

λ

∥
∥
∥ = 1

|λ| ‖ϕ‖E�
R
‖x‖ = ‖ϕ‖E�

R
‖x‖.

Hence ‖f ‖E�
R

≤ ‖ϕ‖E�
R

= ‖I (f )‖E�
R

. Combining this with (11), we conclude that
I is an isometry.

Proposition 11.22 implies that there are very few changes in Chapters 1–5 when
we are dealing with vector spaces over C, except that we need to be a little careful
with Hahn–Banach (see below). A major change occurs in Chapter 6 when we deal
with eigenvalues and spectrum. This is already visible in finite dimension: any n×n
matrix M with entries in C admits eigenvalues in C; but it may have no eigenvalues
in R, even if the entries of M belong to R. We now describe chapter by chapter the
changes to be made.

Chapter 1. We select a few examples showing that some statements remain un-
changed while some others need slight modifications.

Proposition 11.23. Let G ⊂ E be a linear subspace. If g : G → C is a continuous
linear functional, then there exists f ∈ E� that extends g, and such that

‖f ‖E� = ‖g‖G�.
Proof. Set ψ = Re g, so that ψ is an element of G�

R
and ‖ψ‖G�

R
= ‖g‖G� . By

Corollary 1.2 there exists some ϕ ∈ E�
R

that extends ψ , and such that

‖ϕ‖E�
R

= ‖ψ‖G�
R
.
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Applying Proposition 11.22, we see that there exists f ∈ E� such that ϕ = Re f and
‖f ‖E� = ‖ϕ‖E�

R
= ‖ψ‖G�

R
= ‖g‖G� . In addition, we have ϕ = Re f = ψ = Re g

on G, i.e., Re f (x) = Re g(x) ∀x ∈ G; taking ix instead of x yields Im f (x) =
Im g(x) ∀x ∈ G, and thus f = g on G.

Next, we state one of the geometric forms of Hahn–Banach. A closed real hy-
perplane H in E is a set of the form

H = {x ∈ E; Re〈f, x〉 = α} = [Re f = α],
for some f ∈ E�, f 	= 0, and some α ∈ R. We again warn the reader that if α = 0,
then H is a linear subspace of ER, but it is not a linear subspace of E over C; for
example, in E = C, H is a line (and a line is not a linear subspace of E). We say
that H separates A,B ⊂ E if

Re〈f, x〉 ≤ α ∀x ∈ A and Re〈f, x〉 ≥ α ∀x ∈ B.
Proposition 11.24. Let A,B ⊂ E be two nonempty convex subsets of E such that
A∩B = ∅. Assume that one of them is open. Then there exists a closed real hyperplane
that separates A and B.

Proof. Applying Theorem 1.6 to ER yields a hyperplane H = [ϕ = α] for some
ϕ ∈ E�

R
that separates A and B in the usual sense. Then use Proposition 11.23 to

assert that ϕ = Re f for some f ∈ E�.
The definition of the orthogonal M⊥ of a linear subspace M of E is unchanged,

M⊥ = {f ∈ E�; 〈f, x〉 = 0 ∀x ∈ M},
and clearly we haveM⊥ = {f ∈ E�; Re〈f, x〉 = 0 ∀x ∈ M} (since we may take ix
in place of x). It is easily seen that M⊥⊥ = M .

Given a function ϕ : E → (−∞,+∞], we define its conjugate ϕ� on E� by

ϕ�(f ) = sup
x∈E

{Re〈f, x〉 − ϕ(x)}.

With obvious notation we have

ϕ�(f ) = ϕ�
R
(If ) ∀f ∈ E�.

Proposition 11.25. Assume that ϕ : E → (−∞,+∞] is convex, l.s.c., and ϕ 	≡
+∞. Then ϕ�� = ϕ.

Proof. There are two methods. Either one can apply Theorem 1.11 to ϕ̃ = ϕ viewed
on ER, in conjunction with Proposition 11.22. Or one can repeat the proof of The-
orem 1.11; when Hahn–Banach is used, one can separate the convex sets A and B
using a real hyperplane as above.

The definition of the indicator function IK is unchanged. IfM is a linear subspace
of E and ϕ = IM , then
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ϕ�(f ) = sup
x∈M

Re〈f, x〉 = IM⊥ .

Indeed if f ∈ M⊥ we have 〈f, x〉 = 0 ∀x ∈ M and thus ϕ�(f ) = 0. Otherwise, if
f /∈ M⊥ there exists some x0 ∈ M such that 〈f, x0〉 	= 0. Replacing x0 by ix0 if
needed we may assume that Re〈f, x0〉 	= 0. Replacing x0 by −x0 if needed we may
assume that Re〈f, x0〉 > 0 and then supλ>0〈f, λx0〉 = +∞.

Chapter 2. All the statements are unchanged (in Corollaries 2.4 and 2.5 replace R

by C). Some proofs rely on the R-structure (e.g., formula (21) in the proof Theo-
rem 2.16). They can easily be adapted to C; alternatively, the C-statement can be
established by applying the R-version to ER.

Chapter 3. All the statements are unchanged (in Lemmas 3.2 and 3.3 replace R by
C). Some proofs require obvious modifications (e.g., the proof of Proposition 3.11).

Chapter 4. Totally unchanged.

Chapter 5. A Hilbert space over C is a vector space over C equipped with a scalar
product (u, v) ∈ C. This is a map from H ×H into C satisfying

(u, v) = (v, u) ∀ (u, v) ∈ H,
for every v ∈ H, u 
→ (u, v) is linear,

(u, u) > 0 ∀u 	= 0.

In particular, we have

(λu, μv) = λμ(u, v) ∀λ,μ ∈ C, ∀u, v ∈ H.
The quantity |u| = (u, u)1/2 is a norm; we have

|u+ v|2 = |v|2 + 2 Re(u, v)+ |v|2 ∀u, v ∈ H,
and the Cauchy–Schwarz inequality becomes

|(u, v)| ≤ |u||v| ∀u, v ∈ H.
A typical example is L2(�; C) equipped with the scalar product

(u, v) =
∫

�

u(x)v(x)dμ.

The connection between Hilbert spaces over R and over C goes as follows. Sup-
poseH is a Hilbert space over C. ThenHR equipped with the scalar product Re(u, v)
becomes a Hilbert space over R. Therefore all the statements of Chapter 5 apply to
HR. Here are some examples.

Proposition 11.26. Let K ⊂ H be a nonempty closed convex set. Then for every
f ∈ H there exists a unique element u ∈ K such that
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|f − u| = min
v∈K |f − v| = dist(f,K).

Moreover, u is characterized by the property

u ∈ K and Re(f − u, v − u) ≤ 0 ∀v ∈ K.
Proposition 11.27. Given any ϕ ∈ H� there exists a unique f ∈ H such that

ϕ(u) = (u, f ) ∀u ∈ H.
Moreover,

|f | = ‖ϕ‖H�.

Proof. Applying Theorem 5.5 to Re ϕ in HR, we find some f ∈ H such that

Re ϕ(u) = Re(u, f ) ∀u ∈ H.
Applying this to iu yields Im ϕ(u) = Im(u, f ) and thus ϕ(u) = (u, f ) ∀u ∈ H .

Consider now a function a(u, v) : H ×H → C satisfying

∀v ∈ H, u 
→ a(u, v) is linear and ∀u ∈ H, v 
→ a(u, v) is linear,(13)

a is continuous, i.e., |a(u, v)| ≤ C|u||v| ∀uv ∈ H,(14)

a is coercive, i.e., Re a(u, u) ≥ α|u|2 ∀u ∈ H, for some α > 0.(15)

Proposition 11.28. Assume that a satifies (13), (14), and (15). LetK be a nonempty
closed convex set inH . Then given any ϕ ∈ H� there exists a unique u ∈ K such that

(16) Re a(u, v − u) ≥ Re〈ϕ, v − u〉 ∀v ∈ K.
Moreover, if a(v,w) = a(w, v) ∀v,w ∈ H , then u is characterized by the property

u ∈ K and
1

2
a(u, u)− Re〈ϕ, u〉 = min

v∈K

{
1

2
a(v, v)− Re〈ϕ, v〉

}

.

When K = H , (16) becomes a(u, v) = 〈ϕ, v〉 ∀v ∈ H . In particular, we deduce
that any operator T ∈ L(H) satisfying

(17) Re(T u, u) ≥ α|u|2 ∀u ∈ H, for some α > 0,

is bijective from H onto itself. There is a variant that looks slightly more general
(see, however, Remark 1 below).

Proposition 11.29 (Lax–Milgram). Assume that T ∈ L(H) satisfies

(18) |(T u, u)| ≥ α|u|2 ∀u ∈ H, for some α > 0.

Then T is bijective.
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Proof. See Remark 8 in Chapter 5.

Remark 1. Clearly (17) implies (18). Conversely, assume that (18) holds. Then there
exists some ξ ∈ C with |ξ | = 1 such that

(19) Re(ξT u, u) ≥ α|u|2 ∀u ∈ H.
Indeed, the numerical range

W(T ) = {(T u, u); u ∈ H, |u| = 1}
is a convex set (by Proposition 11.33 below). Moreover, by (18) we know that 0 /∈
W(T ), and in fact dist(0,W(T )) ≥ α. Let p denote the projection of 0 onto W(T )
(in C ! R

2). After a rotation in the plane (i.e., a multiplication by ξ ∈ C, |ξ | = 1)
bringing p to the point (0, |p|) on the x-axis, we conclude that (19) holds.

Chapter 6. Sections 6.1 and 6.2 are totally unchanged. The main difference occurs
in Section 6.3.

LetE be a Banach space over C and let T ∈ L(E). The resolvent set is defined by

ρ(T ) = {λ ∈ C; (T − λI) is bijective from E onto E}.
The spectrum is the complement of ρ(T ), i.e., σ(T ) = C \ ρ(T ). A number λ ∈ C

is an eigenvalue if the corresponding eigenspace N(T − λI) 	= {0} and the set of
all eigenvalues is denoted by EV (T ). Clearly EV (T ) ⊂ σ(T ). It may happen that
EV (T ) = ∅ (e.g., the right shift T u = (0, u1, u2, . . . )). However, σ(T ) is never
empty.

Proposition 11.30. The spectrum σ(T ) is a nonempty compact set and

σ(T ) ⊂ {λ ∈ C; |λ| ≤ ‖T ‖}.
Proof. The main novelty is that σ(T ) is nonempty. The proof relies on the theory of
analytic functions on C (more precisely Liouville’s theorem) and we will not present
it here. The interested reader may consult A. Taylor–D. Lay [1], W. Rudin [2], or
A. Knaap [2].

The estimate |λ| ≤ ‖T ‖ ∀λ ∈ σ(T ) is usually not sharp. For example, in C
2 the

operator T (u1, u2) = (u2, 0) satisfies σ(T ) = {0} and ‖T ‖ = 1. The optimal bound
is given in terms of the spectral radius. We already know (see Exercise 6.23) that for
every operator T ∈ L(E),

r(T ) = lim
n→∞‖T n‖1/n exists

and clearly r(T ) ≤ ‖T ‖; r(T ) is called the spectral radius.

Proposition 11.31. For every T ∈ L(E) we have

r(T ) = max{|λ|; λ ∈ σ(T )}.
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For the proof we refer again toA. Taylor–D. Lay [1], W. Rudin [2], orA. Knaap [2].
The argument relies heavily on the fact that E is a Banach space over C through the
theory of power series on C. When E is a Banach space over R we can say only
that max{|λ|; λ ∈ σ(T )} ≤ r(T ), and the inequality can be strict even if σ(T ) is
nonempty (see Exercise 6.23).

Another interesting difference between real and complex spaces concerns the so-
called spectral mapping theorem. Consider first the real case: letQ(t) = ∑p

k=0 ak t
k

be a polynomial with coefficients ak ∈ R and let T ∈ L(E), where E is a Banach
space over R. We know (see Exercise 6.22) that

(20) Q(EV (T )) ⊂ EV (Q(T )) and Q(σ(T )) ⊂ σ(Q(T )),

and these inclusions might be strict (except, e.g., in the case of a Hilbert space when
T � = T ). In the complex case these inclusions become equalities: Suppose Q(t) is
a polynomial with coefficients ak ∈ C and let T ∈ L(E), whereE is a Banach space
over C.

Proposition 11.32. We have

(21) Q(EV (T )) = EV (Q(T ))

and

(22) Q(σ(T )) = σ(Q(T )).

Proof. We already know that (20) holds (the argument is the same as in Exer-
cise 6.22). Assume by contradiction that the inclusions are strict. Then there exists
μ ∈ EV (Q(T )) such that μ /∈ Q(EV (T )). Write

Q(t)− μ = α(t − t1)(t − t2) · · · (t − tp),

with α 	= 0 and ti /∈ EV (T ) ∀i. In addition, we have some x 	= 0 such thatQ(T )x =
μx. Since (T − t1I ) is injective, we deduce that (T − t2I ) · · · (T − tpI )x = 0, and
repeating the same argument yields x = 0. Impossible.

Similarly, suppose μ ∈ σ(Q(T )) is such that μ /∈ Q(σ(T )). Write Q(t)− μ as
above with ti /∈ σ(T ) ∀i. Then Q(T )− μI can be written as a product of bijective
operators. Therefore Q(T )− μI is bijective, i.e., μ ∈ ρ(Q(T )). Impossible.

In Hilbert spaces, a useful tool in the study of the spectrum is the numerical range.
Let H be a Hilbert space over C; the numerical range of an operator T ∈ L(H) is
defined by

W(T ) = {(T u, u); u ∈ H and |u| = 1}.
Proposition 11.33. We have

σ(T ) ⊂ W(T ),

and more precisely, if λ /∈ W(T ), then λ ∈ ρ(T ) with
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(23) ‖(T − λI)−1‖ ≤ 1/ dist(λ,W(T )).

In addition, W(T ) is convex.

Proof. Assume that λ /∈ W(T ) and set α = dist(λ,W(T )). We have

|(T u, u)− λ| ≥ α ∀u ∈ H with |u| = 1.

Thus
|(T u− λu, u)| ≥ α|u|2 ∀u ∈ H.

Applying Lax–Milgram (Proposition 11.29), we conclude that (T − λI) is bijective
and that |T u− λu| ≥ α|u| ∀u ∈ H , i.e., ‖(T − λI)−1‖ ≤ 1/α.

The convexity of W(T ) is a counterintuitive fact due to Toeplitz and Hausdorff.
For the proof we refer to P. R. Halmos [2].

In general, the numerical range W(T ) can be much larger than the spectrum.
For example, with H = C

2 and T (u1, u2) = (u2, 0) we have EV (T ) = σ(T ) =
{0}, while W(T ) = {λ ∈ C; |λ| ≤ 1/2}. However, if T is self-adjoint, or more
generally normal (see below), then W(T ) = conv σ(T ), the convex hull of σ(T )
(see P. R. Halmos [2] and Remark 2 below).

When H is a Hilbert space over C and T ∈ L(H), a word of caution about the
concept of adjoint T � is necessary. Following a general procedure, the adjoint of an
operator T ∈ L(H) is defined via the relation

〈T �f, u〉H�,H = 〈f, T u〉H�,H ∀f ∈ H�, ∀u ∈ H,
and then T � ∈ L(H�) (we emphasize that T �(λf ) = λT �f ∀λ ∈ C and ∀f ∈ H�).
Moreover, (λT )� = λT � ∀λ ∈ C (because f : H → C is linear).

On the other hand, we may also identify H� with H (via the isomorphism in
Proposition 11.27), and view T � as an operator from H into itself defined through
the relation

(T u, v) = (u, T �v) ∀u, v ∈ H,
and we have T � ∈ L(H) (we emphasize that T �(λv) = λT �v ∀λ ∈ C and ∀v ∈ H ).
However, we now have

(24) (λT )� = λ̄T � ∀λ ∈ C

(as can be easily checked). This convention is commonly used, so that T � and T live
in the same world: one can compare T � and T , compose T � and T , etc.

We say that an operator T ∈ L(H) is self-adjoint (or Hermitian) if T � = T , i.e.,

(T u, v) = (u, T v) ∀u, v ∈ H.
If T is self-adjoint, then (T u, u) = (u, T u) = (T u, u) ∀u ∈ H , so that (T u, u) ∈ R

∀u ∈ H . In particular, the numerical rangeW(T ) is a subset of R and thus σ(T ) ⊂ R.
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The spectral decomposition of compact, self-adjoint operators is exactly the same as
in Chapter 6.

Proposition 11.34. LetH be a separable Hilbert space over C and letT be a compact
self-adjoint operator. Then there exists a Hilbert basis composed of eigenvectors of
T (and the corresponding eigenvalues are real).

We say that an operator T ∈ L(H) is normal if it satisfies T �◦T = T ◦T �.Various
properties of normal operators are discussed in Problem 43 when the underlying space
H is a Hilbert space over R; they still remain valid when H is a Hilbert space over
C. But we have now much more:

Proposition 11.35. LetH be a Hilbert space over C and let T be a normal operator.
Then

(25) max{|λ|; λ ∈ σ(T )} = ‖T ‖.
Proof. Since T is normal, we have

‖T p‖ = ‖T ‖p for every integer p ≥ 1.

This is proved in Problem 43 when H is a Hilbert space over R, and the same
argument remains valid when H is a Hilbert space over C (alternatively apply the
real result to T onHR). Therefore r(T ) = limn→∞‖T n‖1/n = ‖T ‖. Combining this
with Proposition 11.31 yields (25).

Proposition 11.36. LetH be a separable Hilbert space over C and letT be a compact
normal operator, then there exists a Hilbert basis composed of eigenvectors of T (but
the corresponding eigenvalues need not be real).

Proof. If T is normal, so is (T − λI) for any λ ∈ C. Therefore (as in Problem 43)
we have N(T − λI) = N((T − λI)�) = N(T � − λ̄I ). It follows that N(T − λI)

and N(T − μI) are orthogonal when λ 	= μ. We may then proceed exactly as in
the proof of Theorem 6.11. We obtain a compact normal operator T0 on F⊥ with
σ(T0) = {0}. Instead of invoking Corollary 6.10 to conclude that T0 = 0, we apply
instead Proposition 11.35 and derive that T0 = 0. It is here that we make use of the
fact that H is a space over C (the same conclusion fails in real spaces).

Remark 2. It is easy to deduce from Proposition 11.36 thatW(T ) = conv σ(T )when
T is a compact normal operator. Indeed, choose a basis (ei) as in Proposition 11.36.
Given u ∈ H with |u| = 1 write u = ∑

uiei and
∑ |ui |2 = 1. Then T u = ∑

λiuiei
and (T u, u) = ∑

λi |ui |2. It is still true that W(T ) = conv σ(T ) for any normal
operator T (not necessarily compact); see P. R. Halmos [2].

LetH be a Hilbert space over C. We say that an operator T ∈ L(H) is an isometry
if |T u| = |u| ∀u ∈ H , and T is a unitary operator if T is an isometry that is also
surjective. Various properties of isometries and unitary operators are discussed in
Problem 44 when the underlying space H is a Hilbert space over R; most of them
remain valid whenH is a Hilbert space over C, except a statement about the spectrum,
which needs to be modified as follows:
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Proposition 11.37. Let T be an isometry. Then

EV (T ) ⊂ S1 = {λ ∈ C; |λ| = 1}.
If T is a unitary operator, then

σ(T ) ⊂ S1,

and if T is not a unitary operator, then

σ(T ) = {λ ∈ C; |λ| ≤ 1}.
The proof is an easy adaptation of the one given in the solution of Problem 44,

question 6.

An operator T ∈ L(H) is said to be skew-adjoint (or antisymmetric) if T � = −T .
Clearly, T is skew-adjoint if and only if iT is self-adjoint (this follows from (24)).
Thus, for any skew-adjoint operator we have EV (T ) ⊂ σ(T ) ⊂ W(T ) ⊂ iR.

Chapter 7. Very little needs to be changed. In the definition of a monotone operator
replace the assumption (Av, v) ≥ 0 ∀v ∈ D(A) by Re(Av, v) ≥ 0 ∀v ∈ D(A).
Many computations in Sections 7.2, 7.3, and 7.4 rely on the following identity: if
ϕ ∈ C1([0,+∞);H), then |ϕ|2 ∈ C1([0,+∞); R) and d

dt
|ϕ|2 = 2 Re( dϕ

dt
, ϕ),

since
d

dt
|ϕ|2 = d

dt
(ϕ, ϕ) =

(
dϕ

dt
, ϕ

)

+
(

ϕ,
dϕ

dt

)

=
(
dϕ

dt
, ϕ

)

+
(
dϕ

dt
, ϕ

)

= 2 Re

(
dϕ

dt
, ϕ

)

.

Chapters 8 and 9. Interesting properties of the spectrum of second-order elliptic
operators that are not self-adjoint may be found in S. Agmon [1] (Section 16).
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In this section the formulas are numbered (S1), (S2), etc, in order to avoid any
confusion with formulas from the previous sections.

1.1

1. The equality 〈f, x〉 = ‖x‖2 implies that ‖x‖ ≤ ‖f ‖. Corollary 1.3 implies that
F(x) is nonempty. It is clear from the second form of F(x) that F(x) is closed
and convex.

2. In a strictly convex normed space any nonempty convex set that is contained in
a sphere is reduced to a single point.

3. Note that

〈f, y〉 ≤ ‖f ‖ ‖y‖ ≤ 1

2
‖f ‖2 + 1

2
‖y‖2.

Conversely, assume that f satisfies

(S1)
1

2
‖y‖2 − 1

2
‖x‖2 ≥ 〈f, y − x〉 ∀y ∈ E.

First choosey = λxwithλ ∈ R in (S1); by varyingλone sees that 〈f, x〉 = ‖x‖2.
Next choose y in (S1) such that ‖y‖ = δ > 0; it follows that

〈f, y〉 ≤ 1

2
δ2 + 1

2
‖x‖2.

Therefore we obtain

δ‖f ‖ = sup
y∈E

‖y‖=δ
〈f, y〉 ≤ 1

2
δ2 + 1

2
‖x‖2.

The conclusion follows by choosing δ = ‖x‖.
4. If f ∈ F(x) one has
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1

2
‖y‖2 − 1

2
‖x‖2 ≥ 〈f, y − x〉

and if g ∈ F(y) one has

1

2
‖x‖2 − 1

2
‖y‖2 ≥ 〈g, x − y〉.

Adding these inequalities leads to 〈f − g, x − y〉 ≥ 0. On the other hand, note
that

〈f − g, x − y〉 = ‖x‖2 + ‖y‖2 − 〈f, y〉 − 〈g, x〉
≥ ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖.

5. By question 4 we already know that ‖x‖ = ‖y‖. On the other hand, we have

〈F(x)− F(y), x − y〉 = [‖x‖2 − 〈F(x), y〉] + [‖y‖2 − 〈F(y), x〉],
and both terms in brackets are ≥ 0. It follows that ‖x‖2 = ‖y‖2 = 〈F(x), y〉 =
〈F(y), x〉, which implies thatF(x) ∈ F(y) and thusF(x) = F(y)by question 2.

1.2

1(a).
‖f ‖E� = max

1≤i≤n|fi |.
1(b). f ∈ F(x) iff for every 1 ≤ i ≤ n one has

fi =
{
(sign xi)‖x‖1 if xi 	= 0,

anything in the interval [−‖x‖1,+‖x‖1] if xi = 0.

2(a).

‖f ‖E� =
n∑

i=1

|fi |.

2(b). Given x ∈ E consider the set

I = {1 ≤ i ≤ n; |xi | = ‖x‖∞}.
Then f ∈ F(x) iff one has

(i) fi = 0 ∀i /∈ I ,
(ii) fixi ≥ 0 ∀i ∈ I and

∑
i∈I |fi | = ‖x‖∞.

3.

‖f ‖E� =
(

n∑

i=1

|fi |2
)1/2

and f ∈ F(x) iff one has fi = xi ∀i = 1, 2, . . . , n. More generally,
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‖f ‖E� =
(

n∑

i=1

|fi |p′
)1/p′

,

where 1/p + 1/p′ = 1, and f ∈ F(x) iff one has fi = |xi |p−2xi/‖x‖p−2
p

∀i = 1, 2, . . . , n.

1.3

1. ‖f ‖E� = 1 (note that f (tα) = 1/(1 + α) ∀α > 0).
2. If there exists such a u we would have

∫ 1
0 (1 − u)dt = 0 and thus u ≡ 1; absurd.

1.5

1. Let P denote the family of all linearly independent subsets of E. It is easy to see
that P (ordered by the usual inclusion) is inductive. Zorn’s lemma implies that P
has a maximal element, denoted by (ei)i∈I , which is clearly an algebraic basis.
Since ei 	= 0 ∀i ∈ I , one may assume, by normalization, that ‖ei‖ = 1 ∀i ∈ I .

2. Since E is infinite-dimensional one may assume that N ⊂ I . There exists a
(unique) linear functional on E such that f (ei) = i if i ∈ N and f (ei) = 0 if
i ∈ I\N.

3. Assume that I is countable, i.e., I = N. Consider the vector space Fn spanned by
(ei)i≤i≤n.Fn is closed (see Section 11.1) and, moreover,

⋃∞
n=1 Fn = E. It follows

from the Baire category theorem that there exists some n0 such that Int(Fn0) 	= ∅.
Thus E = Fn0 ; absurd.

1.7

1. Let x, y ∈ C, so that x = lim xn and y = lim yn with xn, yn ∈ C. Thus tx +
(1 − t)y = lim[txn + (1 − t)yn] and therefore tx + (1 − t)y ∈ C ∀t ∈ [0, 1].
Assume x, y ∈ IntC, so that there exists some r > 0 such that B(x, r) ⊂ C and
B(y, r) ⊂ C. It follows that

tB(x, r)+ (1 − t)B(y, r) ⊂ C ∀t ∈ [0, 1].
But tB(x, r)+ (1 − t)B(y, r) = B(tx + (1 − t)y, r) (why?).

2. Let r > 0 be such that B(y, r) ⊂ C. One has

tx + (1 − t)B(y, r) ⊂ C ∀t ∈ [0, 1],
and thereforeB(tx+(1− t)y, (1− t)r) ⊂ C. It follows that tx+(1− t)y ∈ IntC
∀t ∈ [0, 1).

3. Fix any y0 ∈ Int C. Given x ∈ C one has x = limn→∞[(1 − 1
n
)x + 1

n
y0]. But

(1 − 1
n
)x + 1

n
y0 ∈ IntC and therefore x ∈ IntC. This proves that C ⊂ IntC and

hence C ⊂ IntC.

1.8

1. We already know that
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p(λx) = λp(x) ∀λ > 0, ∀x ∈ E and p(x + y) ≤ p(x)+ p(y) ∀x, y ∈ E.
It remains to check that

(i) p(−x) = p(x) ∀x ∈ E, which follows from the symmetry of C.
(ii) p(x) = 0 ⇒ x = 0, which follows from the fact that C is bounded. More

precisely, let L > 0 be such that ‖x‖ ≤ L ∀x ∈ C. It is easy to see that

p(x) ≥ 1

L
‖x‖ ∀x ∈ E.

2. C is not bounded. Consider for example the sequence un(t) = √
n/(1 + nt) and

check that un ∈ C, while ‖un‖ = √
n. Here p(u) =

(∫ 1
0 |u(t)|2dt

)1/2
is a norm

that is not equivalent to ‖u‖.

1.9

1. Let

P =
{

λ = (λ1, λ2, . . . , λn) ∈ R
n; λi ≥ 0 ∀i and

n∑

i=1

λi = 1

}

,

so that P is a compact subset of R
n andCn is the image of P under the continuous

map λ 
→ ∑n
i=1 λixi .

2. Apply Hahn–Banach, second geometric form, toCn and {0}. Normalize the linear
functional associated to the hyperplane that separates Cn and {0}.

4. Apply the above construction to C = A− B.

1.10

(A) ⇒ (B) is obvious.
(B) ⇒ (A). Let G be the vector space spanned by the xi’s (i ∈ I ). Given x ∈ G

write x = ∑
i∈J βixi and set g(x) = ∑

i∈J βiαi . Assumption (B) implies that
this definition makes sense and that |g(x)| ≤ M‖x‖ ∀x ∈ G. Next, extend g to
all of E using Corollary 1.2.

1.11

(A) ⇒ (B) is again obvious.
(B) ⇒ (A). Assume first that the fi’s are linearly independent (1 ≤ i ≤ n). Set

α = (α1, α2, . . . , αn) ∈ R
n. Consider the map ϕ : E → R

n defined by

ϕ(x) = (〈f1, x〉, . . . , 〈fn, x〉) .
Let C = {x ∈ E; ‖x‖ ≤ M + ε}. One has to show that α ∈ ϕ(C). Suppose,
by contradiction, that α /∈ ϕ(C) and separate ϕ(C) and {α} (see Exercise 1.9).
Hence, there exists some β = (β1, β2, . . . , βn) ∈ R

n, β 	= 0, such that

β · ϕ(x) ≤ β · α ∀x ∈ C, i.e.,
〈∑

βifi, x
〉
≤
∑

βiαi ∀x ∈ C.
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It follows that (M+ε)‖∑βifi‖ ≤ ∑
βiαi . Using asumption (B) one finds that∑

βifi = 0. Since the fi’s are linearly independent one concludes that β = 0;
absurd.

In the general case, apply the above result to a maximal linearly independent
subset of (fi)1≤i≤n.

1.15

1. It is clear that C ⊂ C�� and that C�� is closed. Conversely, assume that x0 ∈ C��
and x0 /∈ C. One may strictly separate {x0} andC, so that there exist somef0 ∈ E�
and some α0 ∈ R such that

〈f0, x〉 < α0 < 〈f0, x0〉 ∀x ∈ C.
Since 0 ∈ C it follows that α0 > 0; letting f = (1/α0)f0, one has

〈f, x〉 < 1 < 〈f, x0〉 ∀x ∈ C.
Thus f ∈ C� and we are led to a contradiction, since x0 ∈ C��.

2. If C is a linear subspace then

C� = {f ∈ E�; 〈f, x〉 = 0 ∀x ∈ C} = C⊥.

1.18

ϕ�(f ) =
{

−b if f = a,

+∞ if f 	= a.
(a)

ϕ�(f ) =

⎧
⎪⎨

⎪⎩

f log f − f if f > 0,

0 if f = 0,

+∞ if f < 0.

(b)

ϕ�(f ) = |f |.(c)

ϕ�(f ) = 0.(d)

ϕ�(f ) =
{

+∞ if f ≥ 0,

−1 − log |f | if f < 0.
(e)

ϕ�(f ) = (1 + f 2)1/2.(f)

ϕ�(f ) =
{

1
2f

2 if |f | ≤ 1,

+∞ if |f | > 1.
(g)

ϕ�(f ) = 1

p′ |f |p′
with

1

p
+ 1

p′ = 1.(h)

ϕ�(f ) =
{

0 if 0 ≤ f ≤ 1,

+∞ otherwise.
(i)
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ϕ�(f ) =
{

1
p′ f p

′
if f ≥ 0,

0 if f < 0.
(j)

ϕ�(f ) =
{

+∞ if f ≥ 0,

− 1
p′ |f |p′

if f < 0.
(k)

ϕ�(f ) = |f | + 1

p′ |f |p′
.(l)

1.20 The conjugate functions are defined on �p
′

with 1
p

+ 1
p′ = 1 by

ϕ�(f ) =
{

1
4

∑∞
k=1

1
k
|fk|2 if

∑∞
k=1

1
k
|fk|2 < +∞,

+∞ otherwise.
(a)

ϕ�(f ) =
{∑+∞

k=2 ak|fk|k/(k−1) if
∑+∞
k=2 ak|fk|k/(k−1) < +∞,

+∞ otherwise,
(b)

with ak = (k − 1)

kk/(k−1)
.

ϕ�(f ) =
{

0 if ‖f ‖�∞ ≤ 1,

+∞ otherwise.
(c)

1.21

2. ϕ� = IA, where A = {[f1, f2]; f1 ≤ 0, f2 ≤ 0, and 4f1f2 ≥ 1}.
3. One has

inf
x∈E{ϕ(x)+ ψ(x)} = 0

and
ϕ� = ID⊥ , where D⊥ = {[f1, f2]; f2 = 0}.

It follows that
ϕ�(−f )+ ψ�(f ) = +∞ ∀f ∈ E�,

and thus
sup
f∈E�

{−ϕ�(−f )− ψ�(f )} = −∞.

4. The assumptions of Theorem 1.12 are not satisfied: there is no element x0 ∈ E

such that ϕ(x0) < +∞, ψ(x0) < +∞, and ϕ is continuous at x0.

1.22

1. Write that
‖x − a‖ ≤ ‖x − y‖ + ‖y − a‖.

Taking infa∈A leads to ϕ(x) ≤ ‖x − y‖ + ϕ(y). Then exchange x and y.
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2. Let x, y ∈ E and t ∈ [0, 1] be fixed. Given ε > 0 there exist some a ∈ A and
some b ∈ A such that

‖x − a‖ ≤ ϕ(x)+ ε and ‖y − b‖ ≤ ϕ(y)+ ε.

Therefore

‖tx + (1 − t)y − [ta + (1 − t)b]‖ ≤ tϕ(x)+ (1 − t)ϕ(y)+ ε.

But ta + (1 − t)b ∈ A, so that

ϕ(tx + (1 − t)y) ≤ tϕ(x)+ (1 − t)ϕ(y)+ ε ∀ε > 0.

3. Since A is closed, one has A = {x ∈ E;ϕ(x) ≤ 0}, and therefore A is convex if
ϕ is convex.

4. One has
ϕ�(f ) = sup

x∈E
{〈f, x〉 − inf

a∈A ‖x − a‖}
= sup
x∈E

sup
a∈A

{〈f, x〉 − ‖x − a‖}
= sup
a∈A

sup
x∈E

{〈f, x〉 − ‖x − a‖}
= (IA)

�(f )+ IBE� (f ).

1.23

1. Let f ∈ D(ϕ�) ∩D(ψ�). For every x, y ∈ E one has

〈f, x − y〉 − ϕ(x − y) ≤ ϕ�(f ),

〈f, y〉 − ψ(y) ≤ ψ�(f ).

Adding these inequalities leads to

(ϕ∇ψ)(x) ≥ 〈f, x〉 − ϕ�(f )− ψ(f ).

In particular, (ϕ∇ψ)(x) > −∞. Also, we have

(ϕ∇ψ)�(f ) = sup
x∈E

{〈f, x〉 − inf
y∈E[ϕ(x − y)+ ψ(y)]}

= sup
x∈E

sup
y∈E

{〈f, x〉 − ϕ(x − y)− ψ(y)}

= sup
y∈E

sup
x∈E

{〈f, x〉 − ϕ(x − y)− ψ(y)}

= ϕ�(f )+ ψ�(f ).

2. One has to check that ∀f, g ∈ E� and ∀x ∈ E,

〈f, x〉 − ϕ(x)− ψ(x) ≤ ϕ�(f − g)+ ψ�(g).
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This becomes obvious by writing

〈f, x〉 = 〈f − g, x〉 + 〈g, x〉.
3. Given f ∈ E�, one has to prove that

(S1) sup
x∈E

{〈f, x〉 − ϕ(x)− ψ(x)} = inf
g∈E�{ϕ

�(f − g)+ ψ�(g)}.

Note that

sup
x∈E

{〈f, x〉 − ϕ(x)− ψ(x)} = − inf
x∈E{ϕ̃(x)+ ψ(x)}

with ϕ̃(x) = ϕ(x) − 〈f, x〉. Applying Theorem 1.12 to the functions ϕ̃ and ψ
leads to

inf
x∈E{ϕ̃(x)+ ψ(x)} = sup

g∈E�
{−ϕ̃�(−g)− ψ�(g)},

which corresponds precisely to (S1).

4. Clearly one has

(ϕ�∇ψ�)�(x) = sup
f∈E�

{〈f, x〉 − inf
g∈E�[ϕ

�(f − g)+ ψ�(g)]}

= sup
f∈E�

sup
g∈E�

{〈f, x〉 − ϕ�(f − g)− ψ�(g)}

= sup
g∈E�

sup
f∈E�

{〈f, x〉 − ϕ�(f − g)− ψ�(g)}

= ϕ��(x)+ ψ��(x).

1.24

1. One knows (Proposition 1.10) that there exist some f ∈ E� and a constant C
such that ϕ(y) ≥ 〈f, y〉 − C ∀y ∈ E. Choosing n ≥ ‖f ‖, one has ϕn(x) ≥
−n‖x‖ − C > −∞.

2. The function ϕn is the inf-convolution of two convex functions; thus ϕn is convex
(see question 7 in Exercise 1.23). In order to prove that |ϕn(x1) − ϕn(x2)| ≤
n‖x1 − x2‖, use the same argument as in question 1 of Exercise 1.22.

3. (ϕn)� = InBE� + ϕ� (by question 1 of Exercise 1.23).
5. By question 1 we have ϕ(y) ≥ −‖f ‖ ‖y‖ − C ∀y ∈ E, which leads to

n‖x − yn‖ ≤ ‖f ‖ ‖yn‖ + C + ϕ(x)+ 1/n.

It follows that ‖yn‖ remains bounded as n → ∞, and therefore limn→∞
‖x − yn‖ = 0. On the other hand, we have ϕn(x) ≥ ϕ(yn) − 1/n, and since
ϕ is l.s.c. we conclude that lim infn→∞ ϕn(x) ≥ ϕ(x).

6. Suppose, by contradiction, that there exists a constant C such that ϕn(x) ≤ C

along a subsequence still denoted by ϕn(x). Choosing yn as in question 5 we see
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that yn → x. Moreover, ϕ(yn) ≤ C+ 1/n and thus ϕ(x) ≤ lim infn→∞ ϕ(yn) ≤
C; absurd.

1.25

4. For each fixed t > 0 the function

y 
→ 1

2t

[
‖x + ty‖2 − ‖x‖2

]

is convex. Thus the function y 
→ [x, y] is convex as a limit of convex functions.
On the other hand, G(x, y) = supt>0{− 1

2t [‖x + ty‖2 − ‖x‖2]} is l.s.c. as a
supremum of continuous functions.

5. One already knows (see question 3 of Exercise 1.1) that

1

2
‖x + ty‖2 − 1

2
‖x‖2 ≥ 〈f, ty〉

and therefore
[x, y] ≥ 〈f, y〉 ∀x, y ∈ E, ∀f ∈ F(x).

On the other hand, one has

ϕ�(f ) = 1

2
‖f ‖2 − 〈f, x〉 + 1

2
‖x‖2

and

ψ�(f ) =
{

0 if 〈f, y〉 + α ≤ 0,

+∞ if 〈f, y〉 + α > 0.

It is easy to check that infz∈E{ϕ(z) + ψ(z)} = 0. It follows from Theorem 1.12
that there exists some f0 ∈ E� such that ϕ�(f0)+ψ�(−f0) = 0, i.e., 〈f0, y〉 ≥ α

and 1
2‖f0‖2 − 〈f0, x〉 + 1

2‖x‖2 = 0. Consequently, we have ‖f0‖ = ‖x‖ and
〈f0, x〉 = ‖x‖2, i.e., f0 ∈ F(x).

6. (a) 1 < p < ∞, [x, y] =
∑ |xi |p−2xiyi

‖x‖p−2
p

.

(b) p = 1, [x, y] = ‖x‖1

[∑
xi 	=0(sign xi)yi + ∑

xi=0 |yi |
]
.

(c) p = ∞, [x, y] = maxi∈I {xiyi}, where I = {1 ≤ i ≤ n; |xi | = ‖x‖∞}.

1.27 Let T̃ : E → F be a continuous linear extension of T . It is easy to check that
E = N(T̃ )+G and N(T̃ ) ∩G = {0}, so that N(T̃ ) is a complement of G; absurd.

2.1 Without loss of generality we may assume that x0 = 0.

1. Let X = {x ∈ E; ‖x‖ ≤ ρ} with ρ > 0 small enough that X ⊂ D(ϕ). The sets
Fn are closed and

⋃∞
n=1 Fn = X. By the Baire category theorem there is some

n0 such that Int(Fn0) 	= ∅. Let x1 ∈ E and ρ1 > 0 be such that B(x1, ρ1) ⊂ Fn0 .
Given any x ∈ E with ‖x‖ < ρ1/2 write x = 1

2 (x1 + 2x)+ 1
2 (−x1) to conclude

that ϕ(x) ≤ 1
2n0 + 1

2ϕ(−x1).
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2. There exist some ξ ∈ E and some constant t ∈ [0, 1] such that ‖ξ‖ = R and
x2 = tx1 + (1 − t)ξ . It follows that

ϕ(x2) ≤ tϕ(x1)+ (1 − t)M

and consequently ϕ(x2) − ϕ(x1) ≤ (1 − t)[M − ϕ(x1)]. But x2 − x1 =
(1 − t)(ξ − x1) and thus ‖x2 − x1‖ ≥ (1 − t)(R − r). Hence we have

ϕ(x2)− ϕ(x1) ≤ ‖x2 − x1‖
R − r

[M − ϕ(x1)].

On the other hand, if x2 = 0 one obtains t‖x1‖ = (1 − t)R and therefore

(1 − t) = ‖x1‖
‖x1‖ + R

≤ 1

2
.

It follows that ϕ(0)−ϕ(x1) ≤ 1
2 [M−ϕ(x1)], so thatM−ϕ(x1) ≤ 2[M−ϕ(0)].

2.2 We have p(0) ≤ p(xn) + p(−xn) → 0, so that p(0) ≤ 0. On the other hand
p(0) ≤ 2p(0) by (i). Thus p(0) = 0.

Next we prove that p(αnxn) → 0. Argue by contradiction and assume that
|p(αnxn)| > 2ε along a subsequence, for some ε > 0. Passing to a further sub-
sequence we may assume that αn → α for some α ∈ R. For simplicity we still
denote (xn) and (αn) the corresponding sequences.

The sets Fn are closed and
⋃
n≥1Fn = R. Applying the Baire category theorem,

we find some n0 such that Int Fn0 	= ∅. Hence, there exist some λ0 ∈ R and some
δ > 0 such that |p((λ0 + t)xk)| ≤ ε ∀k ≥ n0, ∀t with |t | < δ. On the other hand,
note that

p(αkxk) ≤ p((λ0 + αk − α)xk)+ p((α − λ0)xk),

−p(αkxk) ≤ −p((λ0 + αk − α)xk)+ p((λ0 − α)xk).

Hence we obtain |p(αkxk)| ≤ 2ε for k large enough. A contradiction.
Finally, write

p(αnxn)− p(αx) ≤ p(αn(xn − x))+ p(αnx)− p(αx) → 0

and
p(αnx) ≤ p(αn(x − xn))+ p(αnxn),

so that

p(αnxn)− p(αx) ≥ −p(αn(xn − x))+ p(αnx)− p(αx) → 0.

2.4 By (i) there exists a linear operator T : E → F� such that a(x, y) =
〈T x, y〉F�,F ∀x, y. The aim is to show that T is a bounded operator, i.e., T (BE)
is bounded in F�. In view of Corollary 2.5 it suffices to fix y ∈ F and to check that
〈T (BE), y〉 is bounded. This follows from (ii).
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2.6

1. One has 〈Axn−A(x0+x), xn−x0−x〉 ≥ 0 and thus 〈Axn, x〉 ≤ εn‖Axn‖+C(x)
with εn = ‖xn − x0‖ and C(x) = ‖A(x0 + x)‖(1 + ‖x‖) (assuming εn ≤ 1 ∀n).
It follows from Exercise 2.5 that (Axn) is bounded; absurd.

2. Assume that there is a sequence (xn) inD(A) such thatxn → x0 and‖Axn‖ → ∞.
Choose r > 0 such that B(x0, r) ⊂ conv D(A). For every x ∈ E with ‖x‖ < r

write

x0 + x =
m∑

i=1

tiyi with ti ≥ 0 ∀i,
m∑

i=1

ti = 1, and yi ∈ D(A) ∀i

(of course ti , yi , and m depend on x). We have

〈Axn − Ayi, xn − yi〉 ≥ 0

and thus ti〈Axn, xn − yi〉 ≥ ti〈Ayi, xn − yi〉. It follows that

〈Axn, xn − x0 − x〉 ≥
m∑

i=1

ti〈Ayi, xn − yi〉,

which leads to
〈Axn, x〉 ≤ εn‖Axn‖ + C(x)

with εn = ‖xn − x0‖ and C(x) = ∑m
i=1 ti‖Ayi‖(1 + ‖x0 − yi‖).

3. Let x0 ∈ IntD(A). Following the same argument as in question 1, one shows that
there exist two constants R > 0 and C such that

‖f ‖ ≤ C ∀x ∈ D(A) with ‖x − x0‖ < R and ∀f ∈ Ax.
2.7 For every x ∈ �p set Tnx = ∑n

i=1 αixi , so that Tnx converges to a limit for
every x ∈ �p. It follows from Corollary 2.3 that there exists a constant C such that

|Tnx| ≤ C‖x‖�p ∀x ∈ �p, ∀n.
Choosing x appropriately, one sees that α ∈ �p′

and ‖α‖p′ ≤ C.

2.8 Method (ii). Let us check that the graph of T is closed. Let (xn) be a se-
quence in E such that xn → x and T xn → f . Passing to the limit in the inequality
〈T xn − Ty, xn − y〉 ≥ 0 leads to

〈f − Ty, x − y〉 ≥ 0 ∀y ∈ E.
Choosing y = x + tz with t ∈ R and z ∈ E, one sees that f = T x.

2.10

1. If T (M) is closed then M + N(T ) = T −1(T (M)) is also closed. Conversely,
assume thatM+N(T ) is closed. SinceT is surjective, one hasT ((M+N(T ))c) =
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(T (M))c. The open mapping theorem implies that T ((M +N(T ))c) is open and
thus T (M) is closed.

2. If M is any closed subspace and N is any finite-dimensional space then M + N

is closed (see Section 11.1).

2.11 By the open mapping theorem there is a constant c > 0 such that T (BE) ⊃
cBF . Let (en) denote the canonical basis of �1, i.e.,

en = (0, 0, . . . , 0, 1
(n)
, 0, . . . ).

There exists some un ∈ E such that ‖un‖ ≤ 1/c and T (un) = en. Given y =
(y1, y2, . . . , yn, . . . ) ∈ �1, set Sy = ∑∞

i=1yiei . Clearly the series converges and S
has all the required properties.

2.12 Without loss of generality we may assume that T is surjective (otherwise,
replaceE byR(T )). Assume by contradiction that there is a sequence (xn) inE such
that

‖xn‖E = 1 and ‖T xn‖F + |xn| < 1/n.

By the open mapping theorem there is a constant c > 0 such that T (BE) ⊃ cBF .
Since ‖T xn‖F < 1/n, there exists some yn ∈ E such that

T xn = Tyn and ‖yn‖E < 1/nc.

Write xn = yn + zn with zn ∈ N(T ), ‖yn‖E → 0 and ‖zn‖E → 1. On the other
hand, |xn| < 1/n; hence |zn| < (1/n)+|yn| ≤ (1/n)+M‖yn‖E , and consequently
|zn| → 0. This is impossible, since the norms ‖ ‖E and | | are equivalent on the
finite-dimensional space N(T ).

2.13 First, let T ∈ O so that T −1 ∈ L(F,E) (by Corollary 2.7). Then T +U ∈ O
for everyU ∈ L(E, F )with ‖U‖ small enough. Indeed, the equation T x+Ux = f

may be written as x = T −1(f − Ux); it has a unique solution (for every f ∈ F )
provided ‖T −1‖ ‖U‖ < 1 (by Banach’s fixed-point theorem; see Theorem 5.7).

Next, let T ∈ �. In view of Theorem 2.13, R(T ) is closed and has a complement
in F . Let P : F → R(T ) be a continuous projection. The operator PT is bijective
from E onto R(T ) and hence the above analysis applies. Let U ∈ L(E, F ) be such
that ‖U‖ < δ; the operator (PT + PU) : E → R(T ) is bijective if δ is small
enough and thus (PT + PU)−1 is well-defined as an element of L(R(T ), E). Set
S = (PT + PU)−1P . Clearly S ∈ L(F,E) and S(T + U) = IE .

2.14

1. Consider the quotient space Ẽ=E/N(T ) and the canonical surjection π :E→ Ẽ,
so that ‖πx‖Ẽ = dist(x,N(T )) ∀x ∈ E. T induces an injective operator T̃ on
Ẽ. More precisely, write T = T̃ ◦ π with T̃ ∈ L(Ẽ, F ), so that R(T ) = R(T̃ ).

On the other hand, Corollary 2.7 shows that R(T̃ ) is closed iff there is a constant
C such that
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‖y‖Ẽ ≤ C‖T̃ y‖ ∀y ∈ Ẽ,
or equivalently

‖πx‖Ẽ ≤ C‖T̃ πx‖ ∀x ∈ E.
The last inequality reads

dist(x,N(T )) ≤ C‖T x‖ ∀x ∈ E.
2.15 The operator T : E1 ×E2 → F is linear, bounded, and surjective. Moreover,
N(T ) = N(T1)×N(T2) (since R(T1)∩R(T2) = {0}). Applying Exercise 2.10 with
M = E1 ×{0}, one sees that T (M) = R(T1) is closed providedM+N(T ) is closed.
But M +N(T ) = E1 ×N(T2) is indeed closed.

2.16 Let π denote the canonical surjection from E onto E/L (see Section 11.2).
Consider the operator T : G → E/L defined by T x = πx for x ∈ G. We have

dist(x,N(T )) = dist(x,G ∩ L) ≤ C dist(x, L) = C‖T x‖ ∀x ∈ G.
It follows (see Exercise 2.14) that R(T ) = π(G) is closed. Therefore π−1[π(G)] =
G+ L is closed.

2.19 Recall that N(A�) = R(A)⊥.

1. Let u ∈ N(A) and v ∈ D(A); we have

〈A(u+ tv), u+ tv〉 ≥ −C‖A(u+ tv)‖2 ∀t ∈ R,

which implies that 〈Av, u〉 = 0. Thus N(A) ⊂ R(A)⊥.
2. D(A) equipped with the graph norm is a Banach space. R(A) equipped with the

norm of E� is a Banach space. The operator A : D(A) → R(A) satisfies the
assumptions of the open mapping theorem. Hence there is a constant C such that

∀f ∈ R(A), ∃v ∈ D(A) with Av = f and ‖v‖D(A) ≤ C‖f ‖.
In particular, ‖v‖ ≤ C‖f ‖. Given u ∈ D(A), the above result applied to f = Au

shows that there is some v ∈ D(A) such thatAu = Av and ‖v‖ ≤ C‖Au‖. Since
u− v ∈ N(A) ⊂ R(A)⊥, we have

〈Au, u〉 = 〈Av, u〉 = 〈Av, v〉 ≥ −‖Av‖ ‖v‖ ≥ −C‖Au‖2.

2.21

1. Distinguish two cases:

Case (i): f (a) = 1. Then N(A) = Ra and R(A) = N(f ).
Case (ii): f (a) 	= 1. Then N(A) = {0} and R(A) = E.

2. A is not closed. Otherwise the closed graph theorem would imply that A is
bounded and consequently that f is continuous.

3. D(A�) = {u ∈ E�; 〈u, a〉 = 0} and A�u = u ∀u ∈ D(A�).
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4. N(A�) = {0} and R(A�) = {u ∈ E�; 〈u, a〉 = 0}.
5. R(A)⊥ = {0} andR(A�)⊥ = Ra (note thatN(f ) is dense inE; see Exercise 1.6).

It follows that N(A�) = R(A)⊥ and N(A) ⊂ R(A�)⊥.
Observe that in Case (ii), N(A) 	= R(A�)⊥.

6. If A is not closed it may happen that N(A) 	= R(A�)⊥.

2.22

1. Clearly D(A) is dense in E. In order to check that A is closed let (uj ) be a
sequence in D(A) such that uj → u in E and Auj → f in E. It follows that

u
j
n −→
j→∞ un ∀n and nu

j
n −→
j→∞ fn ∀n.

Thus nun = fn ∀n, so that u ∈ D(A) and Au = f.

2.
D(A�) = {v = (vn) ∈ �∞; (nvn) ∈ �∞},
A�v = (nvn) and D(A�) = c0.

2.24

1. We have D(B�) = {v ∈ G�; T �v ∈ D(A�)} and B� = A�T �.

2. If D(A) 	= E and T = 0, then B is not closed. Indeed, let (un) be a sequence in
D(A) such that un → u with u /∈ D(A). Then Bun → 0 but u /∈ D(B).

2.25

2. By Corollary 2.7, T −1 ∈ L(F,E). Since T −1T = IE and T T −1 = IF , it follows
that T �(T −1)� = IE� and (T −1)�T � = IF� .

2.26 We have

ϕ�(T �f ) = sup
x∈E

{〈T �f, x〉−ϕ(x)} = sup
y∈R(T )

{〈f, y〉−ψ(y)} = − inf
y∈F{ψ(y)+ζ(y)},

where ζ(y) = −〈f, y〉 + IR(T )(y). Applying Theorem 1.12, we obtain

ϕ�(T �f ) = min
g∈F�{ζ

�(g)+ ψ�(−g)}.

But

ζ �(g) =
{

0 if f + g ∈ R(T )⊥,
+∞ if f + g /∈ R(T )⊥,

and thus
ϕ�(T �f ) = min

f+g∈N(T �) ψ
�(−g) = min

h∈N(T �) ψ
�(f − h).

2.27 Let G = E ×X and consider the operator

S(x, y) = T x + y : G → F.
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Applying the open mapping theorem, we know that S is an open map, and thus
S(E × (X \ {0})) = R(T )+ (X \ {0}) is open in F . Hence its complement, R(T ),
is closed.

3.1 Apply Corollary 2.4.

3.2 Note that 〈f, σn〉 = 1
n

∑n
i=1〈f, xi〉 ∀f ∈ E�. Since 〈f, xn〉 → 〈f, x〉, it

follows that 〈f, σn〉 → 〈f, x〉.
3.4

1. Set Gn = conv
(⋃∞

i=n{xi}
)
. Since xn ⇀ x for the topology σ(E,E�) it follows

that x ∈ Gn
σ(E,E�) ∀n. On the other hand, Gn being convex, its closure for

the weak topology σ(E,E�) and that for the strong topology are the same (see
Exercise 3.3). Hence x ∈ Gn ∀n (the strong closure of Gn) and there exists a
sequence (yn) such that yn ∈ Gn ∀n and yn → x strongly.

2. There exists a sequence (uk) inE such thatuk → x anduk ∈ conv
(⋃∞

i=1{xi}
) ∀k.

Hence there exists an increasing sequence of integers (nk) such that

uk ∈ conv

(
nk⋃

i=1

{xi}
)

∀k.

The sequence (zn) defined by zn = uk for nk ≤ n < nk+1 (and zn = x1 for
1 ≤ n < n1) has all the required properties.

3.7

1. Let x /∈ A+B. We shall construct a neighborhoodW of 0 for σ(E,E�) such that

(x +W) ∩ (A+ B) = ∅.
For every y ∈ B there exists a convex neighborhood V (y) of 0 such that

(x + V (y)) ∩ (A+ y) = ∅
(since A+ y is closed and x /∈ A+ y).
Clearly

B ⊂
⋃

y∈B

(

y − 1

2
V (y)

)

,

and since B is compact, there is some finite set I such that

B ⊂
⋃

i∈I

(

yi − 1

2
V (yi)

)

with yi ∈ B.

Set

W = 1

2

⋂

i∈I
V (yi).
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We claim that (x + W) ∩ (A + B) = ∅. Indeed, suppose by contradiction that
there exists some w ∈ W such that x +w ∈ (A+B). Hence there is some i ∈ I
such that

x + w ∈ A+ yi − 1

2
V (yi).

Since V (yi) is convex it follows that there exists some w′ ∈ V (yi) such that
x + w′ ∈ A+ yi . Consequently (x + V (yi)) ∩ (A+ yi) 	= ∅; absurd.

Remark. If E� is separable and A is bounded one may use sequences in order to
prove that A + B is closed, since the weak topology is metrizable on bounded
sets (see Theorem 3.29). This makes the argument somewhat easier. Indeed, let
xn = an+ bn be a sequence such that xn ⇀ x weakly σ(E,E�)with an ∈ A and
bn ∈ B. SinceB is weakly compact (and metrizable), there is a subsequence such
that bnk ⇀ b weakly σ(E,E�)with b ∈ B. Thus ank ⇀ x−b weakly σ(E,E�).
But A is weakly closed and therefore x − b ∈ A, i.e., x ∈ A+ B.

2. By question 1, (A−B) is weakly closed and therefore it is strongly closed. Hence
one may strictly separate {0} and (A− B).

3.8

1. Since Vk is a neighborhood of 0 for σ(E,E�), one may assume (see Proposi-
tion 3.4) that Vk has the form

Vk = {x ∈ E; |〈f, x〉| < εk ∀f ∈ Fk},
where εk > 0 and Fk is a finite subset of E�. Hence the set F = ⋃∞

k=1 Fk is
countable. We claim that any g ∈ E� can be written as a finite linear combination
of elements in F . Indeed, set

V = {x ∈ E; |〈g, x〉| < 1}.
Since V is neighborhood of 0 for σ(E,E�), there exists some integerm such that
{x ∈ E; d(x, 0) < 1/m} ⊂ V and consequently Vm ⊂ V . Suppose x ∈ E is
such that 〈f, x〉 = 0 ∀f ∈ Fm. Then tx ∈ Vm ∀t ∈ R and thus tx ∈ V ∀t ∈ R,
i.e., 〈g, x〉 = 0. Applying Lemma 3.2, we see that g is a linear combination of
elements in Fm.

2. Use the same method as in question 3 of Exercise 1.5.
3. If dimE� < ∞, then dimE�� < ∞; consequently dim E < ∞ (since there is a

canonical injection from E into E��).
4. Apply the following lemma (which is an easy consequence of Lemma 3.2): As-

sume that x1, x2, . . . , xk, y ∈ E satisfy

[f ∈ E�; 〈f, xi〉 = 0 ∀i] ⇒ [〈f, y〉 = 0].
Then there exist constants λ1, λ2, . . . , λk such that y = ∑k

i=1 λixi .

3.9

1. Apply Theorem 1.12 with
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ϕ(x) = 〈f0, x〉 + IBE (x) and ψ(x) = IM(x).

2. Note thatBE� is compact for σ(E�,E), whileM⊥ is closed for σ(E�,E) (why?).

3.11 It suffices to argue on sequences (why?). Assume xn → x strongly in E and
Axn 	⇀ Ax for σ(E�,E), i.e., there exists some y ∈ E such that 〈Axn, y〉 	→
〈Ax, y〉. We already know (by Exercise 2.6) that (Axn) is bounded. Hence, there is
a subsequence such that 〈Axnk , y〉 → � 	= 〈Ax, y〉. Applying the monotonicity of
A, we have

〈Axnk − A(x + ty), xnk − x − ty〉 ≥ 0.

Passing to the limit, we obtain

−t�+ t〈A(x + ty), y〉 ≥ 0,

which implies that � = 〈Ax, y〉; absurd.

3.12

1. Assumption (A) implies that ϕ�(f ) ≥ R‖f ‖ + 〈f, x0〉 − M ∀f ∈ E�. Con-
versely, assume that (B) holds and set ψ(f ) = ϕ�(f ) − 〈f, x0〉. We claim that
there exist constants k > 0 and C such that

(S1) ψ(f ) ≥ k‖f ‖ − C ∀f ∈ E�.
After a translation we may always assume thatψ(0) < ∞ (see Proposition 1.10).
Fix α > ψ(0). Using assumption (B) we may find some r > 0 such that

ψ(g) ≥ α ∀g ∈ E� with ‖g‖ ≥ r.

Given f ∈ E� with ‖f ‖ ≥ r write

ψ(tf ) ≤ tψ(f )+ (1 − t)ψ(0) with t = r/‖f ‖.
Since ‖tf ‖ = r , this leads to α−ψ(0) ≤ r

‖f ‖ (ψ(f )−ψ(0)), which establishes
claim (S1). Passing to the conjugate of (S1) we obtain (A).

2. The function ψ is convex and l.s.c. for the weak� topology (why?). Assumption
(B) says that for every λ ∈ R the set {f ∈ E�;ψ(f ) ≤ λ} is bounded. Hence, it
is weak� compact (by Theorem 3.16), and thus infE� ψ is achieved. On the other
hand,

inf
E�
ψ = − sup

f∈E�
{〈f, x0〉 − ϕ�(f )} = −ϕ��(x0) = −ϕ(x0).

Alternatively, one could also apply Theorem 1.12 to the functions ϕ and I{x0}
(note that ϕ is continuous at x0; see Exercise 2.1).

3.13

1. For every fixed p we have xp+n ∈ Kp ∀n. Passing to the limit (as n → ∞) we
see that x ∈ Kp sinceKp is weakly closed (see Theorem 3.7). On the other hand,
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let V be a convex neighborhood of x for the topology σ(E,E�). There exists an
integer N such that xn ∈ V ∀n ≥ N . Thus Kn ⊂ V ∀n ≥ N and consequently⋂∞
n=1Kn ⊂ V . Since this is true for any convex neighborhood V of x, it follows

that
⋂∞
n=1Kn ⊂ {x} (why?).

2. Let V be an open neighborhood of x for the topology σ(E,E�). Set K ′
n =

Kn ∩ (V c). Since Kn is compact for σ(E,E�) (why?), it follows that K ′
n is also

compact for σ(E,E�). On the other hand,
⋂∞
n=1K

′
n = ∅, and hence there is some

integer N such that K ′
N = ∅, i.e., KN ⊂ V .

3. We may assume that x = 0. Consider the recession cone

Cn =
⋂

λ>0

λKn.

SinceCn ⊂ Kn we deduce that
⋂∞
n=1 Cn = {0}. LetSE = {x ∈ E; ‖x‖ = 1}. The

sequence (Cn ∩ S) is decreasing and
⋂∞
n=1(Cn ∩ S) = ∅. Thus, by compactness,

Cn0 ∩S = ∅ for some n0. Therefore Cn0 = {0} and consequentlyKn0 is bounded
(why?). Hence (xn) is bounded and we are reduced to question 2.

4. Consider the sequence xn = (0, 0, . . . , n
(n)
, 0, . . . ), when n is odd, and xn = 0

when n is even.

3.18

2. Suppose, by contradiction, that enk ⇀
k→∞ a in �1 for the topology σ(�1, �∞). Thus

we have 〈ξ, enk 〉 −→
k→∞ 〈ξ, a〉 ∀ξ ∈ �∞. Consider the element ξ ∈ �∞ defined by

ξ = (0, 0, . . . ,−1
(n1)
, 0, . . . , 1

(n2)
, 0, . . . ,−1

(n3)
, 0, . . . ).

Note that 〈ξ, enk 〉 = (−1)k does not converge as k → ∞; a contradiction.
3. Let E = �∞, so that �1 ⊂ E�. Set fn = en, considered as a sequence in E�.

We claim that (fn) has no subsequence that converges for σ(E�,E). Suppose, by

contradiction, that fnk
�
⇀ f in E� for σ(E�,E), i.e., 〈fnk , η〉 → 〈f, η〉 ∀η ∈ E.

Choosing η = ξ as in question 2, we see that 〈fnk , ξ 〉 = (−1)k does not con-
verge; a contradiction. Here, the set BE� , equipped with the topology σ(E�,E)
is compact (by Theorem 3.16), but it is not metrizable. Applying Theorem 3.28,
we may also say that E = �∞ is not separable (for another proof see Remark 8
in Chapter 4 and Proposition 11.17).

3.19

1. Note that if xn → x strongly in �p, then

∀ε > 0 ∃I such that
∞∑

i=I
|xni |p ≤ εp ∀n.

2. Apply Exercise 3.17.
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3. The space BE is metrizable for the topology σ(E,E�) (by Theorem 3.29). Thus
it suffices to check the continuity of A on sequences.

3.20

1. Consider the map T : E → C(K) defined by

(T x)(t) = 〈t, x〉 with x ∈ E and t ∈ BE� = K.

Clearly ‖T x‖ = supt∈K |(T x)(t)| = ‖x‖.
2. SinceK = BE� is metrizable and compact forσ(E�,E), there is a dense countable

subset (tn) in K . Consider the map S : E → �∞ defined by

Sx = (〈t1, x〉, 〈t2, x〉, . . . , 〈tn, x〉, . . . ).
Check that ‖Sx‖�∞ = ‖x‖.

3.21 Let (ai) be a dense countable subset of E. Choose a first subsequence such
that 〈fnk , a1〉 converges to a limit as k → ∞. Then, pick a subsequence out of (nk)
such that 〈fn′

k
, a2〉 converges, etc.

By a standard diagonal process we may extract a sequence (gk) out of the sequence
(fn) such that 〈gk, ai〉 −→

k→∞ �i ∀i. Since the set (ai) is dense in E, we easily obtain

that 〈gk, a〉 → �a ∀a ∈ E. It follows that gk converges for σ(E�,E) to some g (see
Exercise 3.16).

3.22

(a) BE is metrizable for σ(E,E�) (by Theorem 3.29) and 0 belongs to the closure
of S = {x ∈ E; ‖x‖ = 1} for σ(E,E�) (see Remark 2 in Chapter 3).

(b) Since dimE = ∞ there is a closed subspace E0 in E that is separable and
such that dimE0 = ∞ (why?). Note that E0 is reflexive and apply Case (a) (in
conjunction with Corollary 3.27).

3.25 Suppose, by contradiction, that C(K) is reflexive. Then E = {u ∈ C(K);
u(a) = 0} is also reflexive and supu∈BEf (u) is achieved.

On the other hand, we claim that supu∈BEf (u) = 1. Indeed, ∀N, ∃u ∈ E such
that 0 ≤ u ≤ 1 on K and u(ai) = 1 ∀i = 1, 2, . . . , N . (Apply, for example, the
Tietze–Urysohn theorem; see, e.g., J. Munkres [1].) Hence there exists some u ∈ BE
such that f (u) = 1. This leads to u(an) = 1 ∀n and u(a) = 0; absurd.

3.26

1. Given y ∈ BF , there is some integer n1 such that ‖y − an1‖ < 1/2. Since the set
1
2 (ai)i>n1 is dense in 1

2BF , there is some n2 > n1 such that

∥
∥
∥
∥y − an1 − 1

2
an2

∥
∥
∥
∥ <

1

4
.

Construct by induction an increasing sequence nk ↑ ∞ of integers such that
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y = an1 + 1

2
an2 + 1

4
an3 + · · · + 1

2k−1 ank + · · · .

2. Suppose, by contradiction, that S ∈ L(F, �1) is such that T S = IF . Let (yn) be
any sequence in F such that ‖yn‖ = 1 ∀n and yn ⇀ 0 weakly σ(F, F �). Thus
Syn ⇀ 0 for σ(�1, �∞) and consequently Syn → 0 strongly in �1 (see Problem
8). It follows that yn = T Syn → 0; absurd.

3. Use Theorem 2.12.
4. T � : F� → �∞ is defined by

T �v = (〈v, a1〉, 〈v, a2〉, . . . , 〈v, an〉, . . . ) .
3.27 BE� is compact and metrizable for σ(E�,E). Hence there exists a countable

subset of BE� that is dense for σ(E�,E).
1. Clearly ‖f ‖ ≤ ‖f ‖1 ≤ √

2‖f ‖ ∀f ∈ E�.
2. Set |f |2 = ∑∞

n=1
1

2n |〈f, an〉|2. Note that the norm | | is associated to a scalar
product (why?), and thus it is strictly convex, i.e., the function f 
→ |f |2 is
strictly convex. More precisely, we have ∀t ∈ [0, 1], ∀f, g ∈ E�,
(S1) |tf + (1 − t)g|2 + t (1 − t)|f − g|2 = t |f |2 + (1 − t)|g|2.
Consequently, the function f 
→ ‖f ‖2 + |f |2 is also strictly convex.

3. Same method as in question 2. Note that if 〈bn, x〉 = 0 ∀n, then x = 0 (why?).
4. Given x ∈ E set [x] = {∑∞

n=1
1

2n |〈bn, x〉|2}1/2, and let [f ] denote the dual norm
of [ ] on E�. Note that [f ] also satisfies the identity (S1). Indeed, we have

1

2
[tf + (1 − t)g]2 = sup

x∈E

{

〈tf + (1 − t)g, x〉 − 1

2
[x]2

}

,

1

2
[f − g]2 = sup

y∈E

{

〈f − g, y〉 − 1

2
[y]2

}

,

and thus

1

2
[tf + (1 − t)g]2 + 1

2
t (1 − t)[f − g]2

= sup
x,y

{

〈tf + (1 − t)g, x〉 + t (1 − t)〈f − g, y〉 − 1

2
[x]2 − 1

2
t (1 − t)[y]2

}

.

We conclude that (S1) holds by a change of variables x = tξ + (1 − t)η and
y = ξ − η. Applying question 3 of Exercise 1.23, we see that

‖f ‖2
2 = inf

h∈E�
{
‖f − h‖1 + [h]2

}
= min
h∈E�

{
‖f − h‖2

1 + [h]2
}
.

We claim that the function f 
→ ‖f ‖2
2 is strictly convex. Indeed, given f, g ∈ E�,

fix h1, h2 ∈ E� such that

‖f ‖2
2 = ‖f − h1‖2

2 + [h1]2,
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‖g‖2
2 = ‖g − h2‖2

1 + [h2]2.

For every t ∈ (0, 1) we have

‖tf + (1 − t)g‖2
2 ≤ ‖tf + (1 − t)g − (th1 + (1 − t)h2)‖2

1 + [th1 + (1 − t)h2]2

< t‖f ‖2
2 + (1 − t)‖g‖2

2,

unless f − h1 = g − h2 and h1 = h2, i.e., f = g.

3.28 SinceE is reflexive, supx∈BE 〈f, x〉 is achieved by some unique point x0 ∈ BE .
Then x = x0‖f ‖ satisfies f ∈ F(x).

Alternatively, we may also consider the duality map F� from E� into E��. The
set F�(f ) is nonempty (by Corollary 1.3). Fix any ξ ∈ F�(f ). Since E is reflexive
there exists some x ∈ E such that Jx = ξ (J is the canonical injection from E into
E��). We have

‖ξ‖ = ‖f ‖ = ‖x‖ and 〈ξ, f 〉 = ‖f ‖2 = 〈f, x〉.
Thus f ∈ F(x).
Uniqueness. Let x1 and x2 be such that f ∈ F(x1) and f ∈ F(x2). Then ‖x1‖ =
‖x2‖ = ‖f ‖, and therefore, if x1 	= x2 we have

∥
∥
∥
∥
x1 + x2

2

∥
∥
∥
∥ < ‖f ‖.

On the other hand, 〈f, x1〉 = 〈f, x2〉 = ‖f ‖2 and hence

‖f ‖2 =
〈

f,
x1 + x2

2

〉

< ‖f ‖2 if x1 	= x2.

3.29

1. Assume, by contradiction, that there exist M0 > 0, ε0 > 0, and two sequences
(xn), (yn) such that

‖xn‖ ≤ M, ‖yn‖ ≤ M, ‖xn − yn‖ > ε0,

and

(S1)

∥
∥
∥
∥
xn + yn

2

∥
∥
∥
∥

2

>
1

2
‖xn‖2 + 1

2
‖yn‖2 − 1

n
.

Consider subsequences, still denoted by (xn) and (yn), such that ‖xn‖ → a and

‖yn‖ → b. We find that a + b ≥ ε0 and 1
2a

2 + 1
2b

2 ≤ (
a+b

2

)2
. Therefore

a = b 	= 0.
Set
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x′
n = xn

‖xn‖ and y′
n = yn

‖yn‖ .

For n large enough we have ‖x′
n − y′

n‖ ≥ (ε0/a)+ o(1) (as usual, we denote by
o(1) various quantities—positive or negative—that tend to zero as n → ∞). By
uniform convexity there exists δ0 > 0 such that

∥
∥
∥
∥
x′
n + y′

n

2

∥
∥
∥
∥ ≤ 1 − δ0.

Thus ∥
∥
∥
∥
xn + yn

2

∥
∥
∥
∥ ≤ a(1 − δ0)+ o(1).

By (S1) we have
∥
∥
∥
∥
xn + yn

2

∥
∥
∥
∥

2

≥ a2 + o(1).

Hence a2 ≤ a2(1 − δ0)
2 + o(1); absurd.

3.32

1. The infimum is achieved since E is reflexive and we may apply Corollary 3.23.
The uniqueness comes from the fact that the space E is strictly convex and thus
the function y 
→ ‖y − x‖2 is strictly convex.

2. Let (yn) be a minimizing sequence; set dn = ‖x − yn‖ and d = infy∈C ‖x − y‖,
so that dn → d. Let (ynk ) be a sequence such that ynk ⇀ z weakly. Thus z ∈ C
and ‖x − z‖ ≤ d (why?). It follows that

x − ynk ⇀ x − z weakly and ‖x − ynk‖ → d = ‖x − z‖,
and therefore (see Proposition 3.32) ynk → z strongly. The uniqueness of the limit
implies that the whole sequence (yn) converges strongly to PCx. The argument
is standard and we will use it many times. We recall it for the convenience of
the reader. Assume, by contradiction, that (yn) does not converge to y = PCx.
Then there exist ε > 0 and a subsequence, (ymj ), such that ‖ymj − y‖ ≥ ε ∀j .
From (ymj ) we extract (by the argument above) a further subsequence, denoted
by (ynk ), such that ynk → PCx. Since (ynk ) is a subsequence of (ymj ), we have
‖ynk − y‖ ≥ ε ∀k and thus ‖PCx − y‖ ≥ ε. Absurd.

3 and 4. Assume, by contradiction, that there exist some ε0 > 0 and sequences
(xn) and (yn) such that

‖xn‖ ≤ M, ‖yn‖ ≤ M, ‖xn−yn‖ → 0, and ‖PCxn−PCyn‖ ≥ ε0 ∀n.
We have

‖xn − PCxn‖ ≤
∥
∥
∥
∥xn − PCxn + PCyn

2

∥
∥
∥
∥ ≤

∥
∥
∥
∥
xn + yn

2
− PCxn + PCyn

2

∥
∥
∥
∥+ o(1),

and similarly
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‖yn − PCyn‖ ≤
∥
∥
∥
∥
xn + yn

2
− PCxn + PCyn

2

∥
∥
∥
∥ + o(1).

It follows that

(S1)
1

2
‖xn−PCxn‖2+1

2
‖yn−PCyn‖2 ≤

∥
∥
∥
∥
xn + yn

2
− PCxn + PCyn

2

∥
∥
∥
∥

2

+o(1).

On the other hand, if we set an = xn − PCxn and bn = yn − PCyn, then
‖an − bn‖ ≥ ε0 + o(1) and ‖an‖ ≤ M ′, ‖bn‖ ≤ M ′. Using Exercise 3.29, we
know that there is some δ0 > 0 such that

∥
∥
∥
∥
an + bn

2

∥
∥
∥
∥

2

≤ 1

2
‖an‖2 + 1

2
‖bn‖2 − δ0,

that is,

(S2)

∥
∥
∥
∥
xn + yn

2
− PCxn + PCyn

2

∥
∥
∥
∥

2

≤ 1

2
‖xn−PCxn‖2 + 1

2
‖yn−PCyn‖2 −δ0.

Combining (S1) and (S2) leads to a contradiction.
5. Same argument as in question 1.
6. We have

(S3) n‖yn − x‖2 + ϕ(yn) ≤ n‖y − x‖2 + ϕ(y) ∀y ∈ D(ϕ).
Since ϕ is bounded below by an affine continuous function (see Proposition 1.10),
we see that (yn) remains bounded as n → ∞ (check the details). Let

(
ynk

)
be a

subsequence such that ynk ⇀ z weakly. Note that z ∈ D(ϕ) (why?). From (S3)
we obtain ‖z−x‖ ≤ ‖y−x‖ ∀y ∈ D(ϕ), and thus ∀y ∈ D(ϕ). Hence z = PCx,
where C = D(ϕ). Using (S3) once more leads to

lim sup
n→∞

‖yn − x‖ ≤ ‖y − x‖ ∀y ∈ D(ϕ), and in particular for y = z.

We conclude that ynk → z strongly, and finally the uniqueness of the limit shows
(as above) that the whole sequence (yn) converges strongly to PCx.

4.3

2. Note that hn = 1
2 (|fn − gn| + fn + gn) .

3. Note that fngn − fg = (fn − f )gn + f (gn − g) and that f (gn − g) → 0 in
Lp(�) by dominated convergence.

4.5

1. Recall thatL1(�)∩L∞(�) ⊂ Lp(�) and more precisely ‖f ‖pp ≤ ‖f ‖p−1∞ ‖f ‖1.
Since � is σ -finite, we may write � = ⋃

n�n with |�n| < ∞ ∀n. Given
f ∈ Lp(�), check that fn = χ�nTnf ∈ L1(�) ∩ L∞(�) and that fn −→

n→∞ f in
Lp(�).
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2. Let (fn) be sequence in Lp(�) ∩ Lq(�) such that fn → f in Lp(�) and
‖fn‖q ≤ 1. We assume (by passing to a subsequence) that fn → f a.e. (see
Theorem 4.9). It follows from Fatou’s lemma that f ∈ Lq(�) and that ‖f ‖q ≤ 1.

3. We already know, by question 2, that f ∈ Lq(�) and thus f ∈ Lr(�) for every r
between p and q. On the other hand, we may write 1

r
= α

p
+ 1−α

q
with 0 < α ≤ 1,

and we obtain

‖fn − f ‖r ≤ ‖fn − f ‖αp‖fn − f ‖1−α
q ≤ ‖fn − f ‖αp(2C)1−α.

4.6

1. We have ‖f ‖p ≤ ‖f ‖∞|�|1/p and thus lim supp→∞‖f ‖p ≤ ‖f ‖∞. On the
other hand, fix 0 < k < ‖f ‖∞, and let

A = {x ∈ �; |f (x)| > k}.
Clearly |A| 	= 0 and ‖f ‖p ≥ k|A|1/p. It follows that lim infp→∞‖f ‖p ≥ k and
therefore lim infp→∞‖f ‖p ≥ ‖f ‖∞.

2. Fix k > C and let A be defined as above. Then kp|A| ≤ ‖f ‖pp ≤ Cp and thus
|A| ≤ (C/k)p ∀p ≥ 1. Letting p → ∞, we see that |A| = 0.

3. f (x) = log |x|.

4.7 Consider the operator T : Lp(�) → Lq(�) defined by T u = au. We claim
that the graph of T is closed. Indeed, let (un) be a sequence in Lp(�) such that
un → u in Lp(�) and aun → f in Lq(�). Passing to a subsequence we may
assume that un → u a.e. and aun → f a.e. Thus f = au a.e., and so f = T u. It
follows from the closed graph theorem (Theorem 2.9) that T is bounded and so there
is a constant C such that

(S1) ‖au‖q ≤ C‖u‖p ∀u ∈ Lp(�).
Case 1: p < ∞. It follows from (S1) that

∫

|a|q |v| ≤ Cq‖v‖p/q ∀v ∈ Lp/q(�).

Therefore the map v 
→ ∫ |a|qv is a continuous linear functional on Lp/q(�) and
thus |a|q ∈ L(p/q)′(�).
Case 2: p = ∞. Choose u ≡ 1 in (S1).

4.8

1. X equipped with the norm ‖ ‖1 is a Banach space. For every n,Xn is a closed
subset of X (see Exercise 4.5). On the other hand, X = ⋃

nXn. Indeed, for every
f ∈ X there is some q > 1 such that f ∈ Lq(�). Thus f ∈ L1+1/n(�) provided
1 + (1/n) ≤ q, and, moreover,
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‖f ‖1+1/n ≤ ‖f ‖αn1 ‖f ‖1−αn
q with

1

1 + (1/n)
= αn

1
+ 1 − αn

q
.

It follows from the Baire category theorem that there is some integer n0 such that
IntXn0 	= ∅. Thus X ⊂ L1+1/n0(�).

2. The identity map I :X → Lp(�) is a linear operator whose graph is closed. Thus
it is a bounded operator.

4.9 For every t ∈ R we have

f (x)t ≤ j (f (x))+ j�(t) a.e. on �,

and by integration we obtain
(

1

|�|
∫

�

f

)

t ≤ 1

|�|
∫

�

j (f )+ j�(t).

Therefore

j

(
1

|�|
∫

�

f

)

= sup
t∈R

{(
1

|�|
∫

�

f

)

t − j�(t)

}

≤ 1

|�|
∫

�

j (f ).

4.10

1. Let u1, u2 ∈ D(J ) and let t ∈ [0, 1]. The function x 
→ j (tu1(x)+ (1− t)u2(x))

is measurable (since j is continuous). On the other hand, j (tu1 + (1 − t)u2) ≤
tj (u1)+ (1 − t)j (u2). Recall that there exist constants a and b such that j (s) ≥
as+b ∀s ∈ R (see Proposition 1.10). It follows that j (tu1 + (1+ t)u2) ∈ L1(�)

and that J (tu1 + (1 − t)u2) ≤ tJ (u1)+ (1 − t)J (u2).
2. Assume first that j ≥ 0.We claim that for everyλ ∈ R the set {u ∈ Lp(�); J (u) ≤
λ} is closed. Indeed, let (un) be a sequence in Lp(�) such that un → u in Lp(�)
and

∫
j (un) ≤ λ. Passing to a subsequence we may assume that un → u a.e. It

follows from Fatou’s lemma that j (u) ∈ L1(�) and that
∫
j (u) ≤ λ. Therefore

J is l.s.c. In the general case, let j̃ (s) = j (s)− (as + b) ≥ 0. We already know
that J̃ is l.s.c., and so is J (u) = J̃ (u)+ a

∫
u+ b|�|.

3. We first claim that

J �(f ) ≤
∫

j�(f ) ∀f ∈ Lp′
(�) such that j�(f ) ∈ L1(�).

Indeed, we have f u− j (u) ≤ j�(f ) a.e. on �, ∀u ∈ Lp(�), and thus

sup
u∈D(J )

{∫

f u− J (u)

}

≤
∫

j�(f ).

The proof of the reverse inequality is more delicate and requires some “regular-
ization” process. Assume first that 1 < p < ∞ and set
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jn(t) = j (t)+ 1

n
|t |p, t ∈ R.

We claim that

(S1) J �n (f ) =
∫

j�n(f ) ∀f ∈ Lp′
(�).

Indeed, let f ∈ Lp′
(�). For a.e. fixed x ∈ �,

sup
u∈R

{

f (x)u− j (u)− 1

n
|u|p

}

is achieved by some unique element u = u(x). Clearly we have

j (u(x))+ 1

n
|u(x)|p − f (x)u(x) ≤ j (0).

It follows that u ∈ Lp(�) and that j (u) ∈ L1(�) (why?).
We conclude that

J �n (f ) = sup
v∈D(J )

{∫

f v − Jn(v)

}

≥
∫ {

f u− j (u)− 1

n
|u|p

}

=
∫

j�n(f ).

Since we have already established the reverse inequality, we see that (S1) holds.
Next we let n ↑ ∞. Clearly, J ≤ Jn, so that J �n ≤ J �, i.e.,

∫
j�n(f ) ≤ J �(f ).

We claim that for every s ∈ R, j�n(s) ↑ j�(s) as n ↑ ∞. Indeed, we know that
j�n = j�∇ ( 1

n
| |p)� (see Exercise 1.23), and we may then argue as in Exercise 1.24.

We conclude by monotone convergence that if f ∈ D(J �), then

j�(f ) ∈ L1(�) and
∫

j�(f ) ≤ J �(f ).

Finally, if p = 1, the above method can be modified using, for example, jn(t) =
j (t)+ 1

n
t2.

4. Assuming first that f (x) ∈ ∂j (u(x)) a.e. on �, we have

j (v)− j (u(x)) ≥ f (x)(v − u(x)) ∀v ∈ R, a.e. on �.

Choosing v = 0, we see that j (u) ∈ L1(�) and thus

J (v)− J (u) ≥
∫

f (v − u) ∀v ∈ D(J ).

Conversely, assume that f ∈ ∂J (u). Then we have J (u) + J �(f ) = ∫
f u.

Thus j (u) ∈ L1(�), j�(f ) ∈ L1(�), and
∫ {j (u)+ j�(f )− f u} = 0. Since

j (u) + j�(f ) − f u ≥ 0 a.e., we find that j (u) + j�(f ) − f u = 0 a.e., i.e.,
f (x) ∈ ∂j (u(x)) a.e.
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4.11 Set f = uα , g = vα , and p = 1/α. We have to show that

(S1)

(∫

f

)p

+
(∫

g

)p

≤
[∫

(
f p + gp

)1/p
]p

.

Set a = ∫
f and b = ∫

g, so that we have

ap + bp =
∫

ap−1f + bp−1g ≤
∫

(ap + bp)1/p
′
(f p + gp)1/p

= (ap + bp)1/p
′
∫

(f p + gp)1/p.

It follows that (ap + bp)1/p ≤ ∫
(f p + gp)1/p, i.e., (S1).

4.12

1. It suffices to show that

inf
t∈[−1,+1]

{
(|t |p + 1)1−s(|t |p + 1 − 2

∣
∣ t+1

2

∣
∣p)s

|t − 1|p
}

> 0,

or equivalently that

inf
t∈[−1,+1]

{
|t |p + 1 − 2

∣
∣ t+1

2

∣
∣2

|t − 1|2
}

> 0.

But the function ϕ(t) = |t |p + 1 − 2
∣
∣ t+1

2

∣
∣p satisfies

ϕ(t) > 0 ∀t ∈ [−1,+1), ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

4.14

1 and 2. Let gn = χSn(α), so that gn → 0 a.e. and |gn| ≤ 1. It follows—by
dominated convergence (since |�| < ∞)—that

∫
gn → 0, i.e., |Sn(α)| → 0.

3. Given any integer m ≥ 1, we may apply question 2 with α = 1/m to find an
integer Nm such that |SNm(1/m)| < δ/2m. Letting �m = SNm(1/m), we obtain

|fk(x)− f (x)| ≤ 1

m
∀k ≥ Nm, ∀x ∈ �\�m.

Finally, set A = ⋃∞
m=1�m, so that |A| < δ. We claim that fn → f uniformly

on �\A. Indeed, given ε > 0, fix an integer m0 such that m0 > 1/ε. Clearly,

|fk(x)− f (x)| < ε ∀k ≥ Nm0 , ∀x ∈ �\�m0 ,

and consequently

|fk(x)− f (x)| < ε ∀k ≥ Nm0 , ∀x ∈ �\A.
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4. Given ε > 0, first fix some δ > 0 using (i) and then fix some A using question 3.
We obtain that

∫

A
|fn|p ≤ ε ∀n and fn → f uniformly on�\A. It follows from

Fatou’s lemma that
∫

A
|f |p ≤ ε and thus

∫

�

|fn−f |p =
∫

A

|fn−f |p +
∫

�\A
|fn−f |p ≤ 2pε+|�| ‖fn−f ‖pL∞(�\A).

4.15

1(iv). Note that
∫
fnϕ → 0 ∀ϕ ∈ Cc(�). Suppose, by contradiction, that fnk ⇀ f

weakly σ(L1, L∞). It follows that
∫
f ϕ = 0 ∀ϕ ∈ Cc(�) and thus (by Cor-

ollary 4.24) f = 0 a.e. Also
∫
fnk → ∫

f = 0; but
∫
fnk = ∫ nk

0 e−t dt → 1;
a contradiction.

2(iv). Note that
∫
gnϕ → 0 ∀ϕ ∈ Cc(�) and use the fact that Cc(�) is dense in

Lp
′
(�) (since p′ < ∞).

4.16

1. Let us first check that if a sequence (fn) satisfies

(S1) fn ⇀ f̃ weakly σ(Lp,Lp
′
)

and

(S2) fn → f a.e.

then f = f̃ a.e.

Indeed, we know from Exercise 3.4 that there exists a sequence (gn) inLp(�)
such that

(S3) gn ∈ conv {fn, fn+1, . . . },
and

(S4) gn → f̃ strongly in Lp(�).

It follows from (S2) and (S3) that gn → f a.e. On the other hand (by The-
orem 4.9), there is a subsequence

(
gnk

)
such that gnk → f̃ a.e. Therefore

f = f̃ a.e.

Let us now check, under the asumptions (i) and (ii), that fn ⇀ f weakly
σ(Lp,Lp

′
). There exists a subsequence

(
fnk

)
converging weakly σ(Lp,Lp

′
)

to some limit, say f̃ . From the preceding discussion we know that f = f̃ a.e.
The “uniqueness of the limit” implies that the whole sequence (fn) converges
weakly to f (fill in the details using a variant of the argument in Exercise
3.32).

3. First method. Write
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(S5) ‖fn − f ‖q ≤ ‖fn − Tkfn‖q + ‖Tkfn − Tkf ‖q + ‖Tkf − f ‖q .
Note that for every k > 0 we have

∫

|fn − Tkfn|q ≤
∫

[|fn|≥k]
|fn|q .

On the other hand, we have
∫ |fn|p ≤ Cp and thus kp−q ∫

[|fn|≥k] |fn|q ≤ Cp.

It follows that

(S6) ‖fn − Tkfn‖q ≤
(
Cp

kp−q

)1/q

∀n.

Passing to the limit (as n → ∞), with the help of Fatou’s lemma we obtain

(S7) ‖f − Tkf ‖q ≤
(
Cp

kp−q

)1/q

.

Given ε > 0, fix k large enough that (Cp/kp−q)1/q < ε. It is clear (by
dominated convergence) that ‖Tkfn−Tkf ‖q −→

n→∞ 0, and hence there is some

integer N such that

(S8) ‖Tkfn − Tkf ‖q < ε ∀n ≥ N.

Combining (S5), (S6), (S7), and (S8), we see that ‖fn − f ‖q < 3ε ∀n ≥ N .

Second method. By Egorov’s theorem we know that given δ > 0 there exists
some A ⊂ � such that |A| < δ and fn → f uniformly on �\A. Write

∫

�

|fn − f |q =
∫

�\A
+
∫

A

≤ ‖fn − f ‖qL∞(�\A)|�| + ‖fn − f ‖qp|A|1−(q/p)

≤ ‖fn − f ‖qL∞(�\A)|�| + (2C)qδ1−(q/p),

which leads to

lim sup
n→∞

∫

|fn − f |q ≤ (2C)qδ1−(q/p) ∀δ > 0.

4.17

1. By homogeneity it suffices to check that

sup
t∈[−1,+1]

{∣
∣|t + 1|p − |t |p − 1

∣
∣

|t |p−1 + |t |

}

< ∞.
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4.18

1. First, it is easy to check that
∫ b
a
un(t)dt → (b−a)f (for every a, b ∈ (0, 1)).

This implies that un ⇀ f weakly σ(Lp,Lp
′
) whenever 1 < p ≤ ∞ (since

p′ < ∞, step functions are dense in Lp
′
). When p = 1, i.e., f ∈ L1

loc(R),

there is a T -periodic function g ∈ L∞(R) such that 1
T

∫ T
0 |f −g| < ε (where

ε > 0 is fixed arbitrarily).

Set vn(x) = g(nx), x ∈ (0, 1) and let ϕ ∈ L∞(0, 1). We have
∣
∣
∣
∣

∫

unϕ − f

∫

ϕ

∣
∣
∣
∣ ≤ 3ε‖ϕ‖∞ +

∣
∣
∣
∣

∫

vnϕ − g

∫

ϕ

∣
∣
∣
∣

and thus lim supn→∞
∣
∣
∫
unϕ − f

∫
ϕ
∣
∣ ≤ 3ε‖ϕ‖∞ ∀ε > 0. It follows that

un ⇀ f weakly σ(L1, L∞).
2. limn→∞‖un − f ‖p =

[
1
T

∫ T
0 |f − f |p

]1/p
.

3. (i) un
�
⇀ 0 for σ(L∞, L1).

(ii) un
�
⇀ 1

2 (α + β) for σ(L∞, L1).

4.20

1. Let (un) be a sequence in Lp(�) such that un → u strongly in Lp(�).
There exists a subsequence such that unk (x) → u(x) a.e. and |unk | ≤ v ∀k
with v ∈ Lp(�) (see Theorem 4.9). It follows by dominated convergence that
Aunk → Au strongly inLq(�). The “uniqueness of the limit” implies that the
whole sequence (Aun) converges to Au strongly in Lq(�) (as in the solution
to Exercise 3.32).

2. Consider the sequence (un) defined in Exercise 4.18, question 3(ii). Note that
un ⇀

1
2 (α + β), while Aun ⇀ 1

2 (a(α)+ a(β)). It follows that

a

(
α + β

2

)

= 1

2
(a(α)+ a(β)) ∀α, β ∈ R,

and thus a must be an affine function.

4.21

1. Check that
∫

I
un(t)dt → 0 for every bounded interval I . Then use the density

of step functions (with compact support) in Lp
′
(R).

2. We claim once more that
∫

I
un(t)dt → 0 for every bounded interval I .

Indeeed, given ε > 0, fix δ > 0 such that δ(‖u0‖∞ + |I |) < ε. Set
E = [|u0| > δ] and write

∫

I

un(t)dt =
∫

(I+n)
u0(t)dt =

∫

(I+n)∩E
u0 +

∫

(I+n)∩Ec
u0.

Choose N large enough that |(I + n)∩E| < δ ∀n > N (why is it possible?).
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We obtain
∣
∣
∣
∣

∫

I

un(t)dt

∣
∣
∣
∣ ≤ δ‖u0‖∞ + δ|I | < ε ∀n ≥ N.

Then use the density of step functions (with compact support) in L1(R).
3. Suppose, by contradiction, that unk ⇀ u weakly σ(L1, L∞). Consider the

function f ∈ L∞(R) defined by

f =
∑

i

(−1)iχ(−ni ,−ni+1).

Note that
∫
unkf = (−1)k does not converge.

4.22

1. In order to prove that (B) ⇒ (A) use the fact that the vector space spanned
by the functions χE with E measurable and |E| < ∞ is dense in Lp

′
(�)

provided p′ < ∞ (why?).
2. Use the fact that the vector space spanned by the functions χE (with E ⊂ �

and E measurable) is dense in L∞(�) (why?).
4. Given ε > 0, fix some measurable subset ω ⊂ � such that |ω| < ∞ and

(S1)
∫

ωc
f < ε.

We have
∫

ωc
fn =

∫

ωc
f +

(∫

ω

f −
∫

ω

fn

)

+
(∫

�

fn −
∫

�

f

)

and therefore

(S2)
∫

ωc
fn =

∫

ωc
f + o(1) (by (b) and (c)).

On the other hand, we have
∫

F

fn =
∫

F∩ω
fn +

∫

F∩(ωc)
fn =

∫

F∩ω
f +

∫

F∩(ωc)
fn + o(1)

and thus

(S3)
∫

F

fn −
∫

F

f =
∫

F∩(ωc)
(fn − f )+ o(1).

Combining (S1), (S2), and (S3), we obtain
∣
∣
∣
∣

∫

F

fn −
∫

F

f

∣
∣
∣
∣ ≤ 2ε + o(1).
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It follows that
∫

F
fn → ∫

F
f . Finally, we use the fact that the vector space

spanned by the functions χF with F ⊂ �, F measurable and |F | ≤ ∞, is
dense in L∞(�) (why?).

4.23

1. Let (un) be a sequence inC such that un → u strongly inLp(�). There exists
a subsequence

(
unk

)
such that unk → u a.e. Thus u ≥ f a.e.

2. Assume that u ∈ L∞(�) satisfies
∫

uϕ ≥
∫

f ϕ ∀ϕ ∈ L1(�) such that f ϕ ∈ L1(�) and ϕ ≥ 0.

We claim that u ≥ f a.e. Indeed, write � = ⋃
n�n with |�n| < ∞ and set

�′
n = �n ∩ [|f | < n], so that

⋃
n�

′
n = �. Let A = [u < f ]. Choosing

ϕ = χA∩�′
n
, we find that

∫

A∩�′
n
|f − u| ≤ 0 and thus |A ∩ �′

n| = 0 ∀n. It
follows that |A| = 0.

3. Note that if ϕ ∈ L1(�) is fixed with f ϕ ∈ L1(�) then the set {u ∈
L∞(�); ∫ uϕ ≥ ∫

f ϕ} is closed for the topology σ(L∞, L1).

4.24

1. For every ϕ ∈ L1(RN) we have
∫

vnϕ =
∫

uζn(ρ̌n � ϕ) =
∫

uζn(ρ̌n � ϕ − ϕ)+
∫

uζnϕ

and thus
∣
∣
∣
∣

∫

vnϕ −
∫

vϕ

∣
∣
∣
∣ ≤ ‖u‖∞‖ρ̌n � ϕ − ϕ‖1 + ‖u‖∞‖(ζn − ζ )ϕ‖1.

The first term on the right side tends to zero by Theorem 4.22, while the second
term on the right side tends to zero by dominated convergence.

2. LetB = B(x0, R) and letχ denote the characteristic function ofB(x0, R+1).
Set ṽn = ρn � (ζnχu). Note that ṽn = vn on B(x0, R), since

supp(ṽn − vn) ⊂ B(0, 1/n)+ B(x0, R + 1)c.

On the other hand, we have
∫

B

|vn − v| =
∫

B

|ṽn − χv| ≤
∫

RN

|ṽn − χv|

≤
∫

RN

|ρn � (ζn − ζ )χ u| +
∫

RN

|(ρn � χv)− χv|

≤
∫

RN

|(ζn − ζ )χu| +
∫

RN

|(ρn � χv)− χv| → 0.
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4.25

1. Let u denote the extension of u by 0 outside �. Let

�n = {x ∈ �; dist(x, ∂�) > 2/n and |x| < n}.
Let ζn (resp. ζ ) denote the characteristic function of �n (resp. �), so that
ζn → ζ on R

N . Let vn = ρn � (ζnu). We know that vn ∈ C∞
c (�) and that∫

B
|vn − u| → 0 for every ball B (by Exercise 4.24). Thus, for every ball B

there is a subsequence (depending on B) that converges to u a.e. on B. By a
diagonal process we may construct a subsequence

(
vnk

)
that converges to u

a.e. on R
N .

4.26

1. Assume that A < ∞. Let us prove that f ∈ L1(�) and that ‖f ‖1 ≤ A. We
have ∣

∣
∣
∣

∫

f ϕ

∣
∣
∣
∣ ≤ A‖ϕ‖∞ ∀ϕ ∈ Cc(�).

LetK ⊂ � be any compact subset and let ψ ∈ Cc(�) be a function such that
0 ≤ ψ ≤ 1 andψ = 1 onK . Let u be any function inL∞(�). Using Exercise
4.25 we may construct a sequence (un) in Cc(�) such that ‖un‖∞ ≤ ‖u‖∞
and un → u a.e. on �. We have

∣
∣
∣
∣

∫

fψun

∣
∣
∣
∣ ≤ A‖u‖∞.

Passing to the limit as n → ∞ (by dominated convergence) we obtain
∣
∣
∣
∣

∫

fψu

∣
∣
∣
∣ ≤ A‖u‖∞ ∀u ∈ L∞(�).

Choosing u = sign(f ) we find that
∫

K
|f | ≤ A for every compact subset

K ⊂ �. It follows that f ∈ L1(�) and that ‖f ‖1 ≤ A.
2. Assume that B < ∞. We have

∫

f ϕ ≤ B‖ϕ‖∞ ∀ϕ ∈ Cc(�), ϕ ≥ 0.

Using the same method as in question 1, we obtain
∫

fψu ≤ B‖u‖∞ ∀u ∈ L∞(�), u ≥ 0.

Choosing u = χ[f>0] we find that
∫

K
f+ ≤ B.

4.27 Let us first examine an abstract setting. Let E be a vector space and let f, g
be two linear functionals on E such that f 	≡ 0. Assume that
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[ϕ ∈ E and f (ϕ) > 0] ⇒ [g(ϕ) ≥ 0].
We claim that there exists a constant λ ≥ 0 such that g = λf . Indeed, fix any ϕ0 ∈ E
such that f (ϕ0) = 1. For every ϕ ∈ E and every ε > 0, we have

f (ϕ − f (ϕ)ϕ0 + εϕ0) = ε > 0

and thus g(ϕ− f (ϕ)ϕ0 + εϕ0) ≥ 0. It follows that g(ϕ) ≥ λf (ϕ) ∀ϕ ∈ E, and thus
g = λf , with λ = g(ϕ0) ≥ 0.

Application. E = C∞
c (�), f (ϕ) = ∫

uϕ, and g(ϕ) = ∫
vϕ.

4.30

1 and 2. Note that 1
p′ + 1

q ′ + 1
r

= 1 and that (1 − α)r = p, (1 − β)r = q. For

a.e. x ∈ R
N write

|f (x − y)g(y)| = ϕ1(y)ϕ2(y)ϕ3(y)

with ϕ1(y) = |f (x − y)|α , ϕ2(y) = |g(y)|β , and ϕ3(y) = |f (x −
y)|1−α|g(y)|1−β . Clearly, ϕ1 ∈ Lq

′
(RN) and ϕ2 ∈ Lp

′
(RN). On the other

hand, |ϕ3(y)|r = |f (x − y)|p|g(y)|q . We deduce from Theorem 4.15 that
for a.e. x ∈ R

N the function y 
→ |ϕ3(y)|r is integrable. It follows from
Hölder’s inequality (see Exercise 4.4) that for a.e. x ∈ R

N , the function
y 
→ |f (x − y)g(y)| is integrable and that

∫

|f (x − y)| |g(y)|dy ≤ ‖f ‖αp‖g‖βq
(∫

|f (x − y)|p|g(y)|qdy
)1/r

.

Thus

|(f � g)(x)|r ≤ ‖f ‖αrp ‖g‖βrq
∫

|f (x − y)|p|g(y)|qdy,
and consequently

∫

|(f � g)(x)|rdx ≤ ‖f ‖αrp ‖g‖βrq ‖f ‖pp‖g‖qq = ‖f ‖rp‖g‖rq .

3. If 1 < p < ∞ and 1 < q < ∞, there exist sequences (fn) and (gn) inCc(RN)
such thatfn → f inLp(RN) andgn → g inLq(RN). Thenfn�gn ∈ Cc(RN),
and, moreover, ‖(fn � gn)− (f � g)‖∞ → 0. It follows that (f � g)(x) → 0
as |x| → ∞.

4.34 Given any ε > 0 there is a finite covering of F by balls of radius ε inLp(RN),

say F ⊂ ⋃k
i=1 B(fi, ε).

2. For each i there is some δi > 0 such that

‖τhfi − fi‖Lp(RN) < ε ∀h ∈ R
N with |h| < δi
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(see Lemma 4.3). Set δ = min1≤i≤k δi . It is easy to check that

‖τnf − f ‖p < 3ε ∀f ∈ F, ∀h ∈ R
N with |h| < δ.

3. For each i there is some bounded open set �i ⊂ R
N such that

‖fi‖Lp(RN\�i) < ε.

Set � = ⋃k
i=1�i and check that ‖f ‖Lp(RN\�) < 2ε ∀f ∈ F .

4.37

1. Write
∫

I

un(x)ϕ(x)dx =
∫ +n

−n
f (t)

(

ϕ

(
t

n

)

− ϕ(0)

)

dt + ϕ(0)
∫ +n

−n
f (t)dt

= An + Bn;

An → 0 by Lebesgue’s theorem and Bn → 0 since
∫ +∞
−∞ f (t)dt = 0.

2. Note that, for all δ > 0,

∫ δ

0
|un(x)|dx =

∫ nδ

0
|f (t)|dt →

∫ ∞

0
|f (t)|dt > 0.

3. Argue by contradiction. We would have
∫

I

uϕ = 0 ∀ϕ ∈ C([−1,+1])

and thus u ≡ 0 (by Corollary 4.24). On the other hand, if we choose ϕ = χ(0,1)
we obtain ∫

I

unϕ =
∫ n

0
f (t)dt →

∫ +∞

0
f (t)dt > 0.

Impossible.

4.38

2. Check that, ∀ϕ ∈ C1([0, 1]),
∫

I

unϕ =
∫

I

ϕ +O

(
1

n

)

, as n → ∞.

Then use the facts that ‖un‖1 is bounded and C1([0, 1]) is dense in C([0, 1]).
3. The sequence (un) cannot be equi-integrable since | supp un| → 0 and

1 =
∫

I

un =
∫

supp un
|un|.
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4. If unk ⇀ u weakly σ(L1, L∞) we would have, by question 2 and Corollary
4.24,u ≡ 1. Choose a further subsequence (un′

k
) such that

∑
k | supp un′

k
| < 1.

Let ϕ = χA where

A = I \
(
⋃

k

supp un′
k

)

,

so that |A| > 0. We have
∫

I

un′
k
ϕ = 0 ∀k

and thus 0 = ∫

I
ϕ = |A|. Impossible.

5. Consider a subsequence (unk ) such that

∑

k

| supp unk | < ∞.

LetBk = ⋃
j≥k(supp unj ) andB = ⋂

kBk . Clearly |Bk| → 0 as k → ∞, and
thus |B| = 0. If x /∈ B there exists some k0 such that unk (x) = 0 ∀k ≥ k0.

5.1

1. Using the parallelogram law with a = u + v and b = v leads to (u, 2v) =
2(u, v).

2. Compute (i) − (ii) + (iii).

3. Note that by definition of ( , ), the map λ ∈ R 
→ (λu, v) is continuous.

5.2 Let A be a measurable set such that 0 < |A| < |�|, and choose a measurable
set B such that A ∩ B = ∅ and 0 < |B| < |�|. Let u = χA and v = χB .
Assume first that 1 ≤ p < ∞. We have ‖u + v‖pp = ‖u − v‖pp = |A| + |B|
and thus ‖u + v‖2

p + ‖u − v‖2
p = 2(|A| + |B|)2/p. On the other hand, we have

2(‖u‖2
p + ‖v‖2

p) = 2(|A|2/p + |B|2/p). Finally, note that

(α + β)2/p > α2/p + β2/p ∀α, β > 0 if p < 2,

(α + β)2/p < α2/p + β2/p ∀α, β > 0 if p > 2.

Examine the case p = ∞ with the same functions u and v.

5.3 Check that

(S1) 2(tnun − tmum, un − um) = (tn + tm)|un − um|2 + (tn − tm)(|un|2 − |um|2),
which implies that

(tn − tm)(|un|2 − |um|2) ≤ 0 ∀m, n.
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1. Let n > m, so that tn ≥ tm and thus |un| ≤ |um|. (Note that if tn = tm, then
un = um in view of (S1)). On the other hand, we have for n > m,

(tn + tm)|un − um|2 ≤ (tn − tm)(|um|2 − |un|2) ≤ tn(|um|2 − |un|)2)
and thus

|un − um|2 ≤ |um|2 − |un|2.
It follows that |un| ↓ � as n ↑ ∞ and that (un) is a Cauchy sequence.

2. Let n > m, so that tm ≥ tn and |um| ≤ |un|. For n > m we have

(tn + tm)|un − um|2 ≤ (tm − tn)(|un|2 − |um|2) ≤ tm(|un|2 − |um|2)
and thus

|un − um|2 ≤ |un|2 − |um|2.
We now have the following alternative:

(i) either |un| ↑ ∞ as n ↑ ∞,

(ii) or |un| ↑ � < ∞ as n ↑ ∞ and then (un) is a Cauchy sequence.

On the other hand, letting vn = tnun and sn = 1/tn, we obtain

(snvn − smvm, vn − vm) ≤ 0,

and thus (vn) converges to a limit by question 1. It follows that if tn → t > 0
then (un) also converges to a limit. Finally if tn → 0, both cases (i) and (ii)
may occur. Take, for example, H = R, un = C/tn for (i), un = C for (ii).

5.4 Note that

|v − u|2 = |v − f |2 − |u− f |2 + 2(f − u, v − u).

5.5

1. LetK = ⋂
nKn. We claim that un → u = PKf . First, note that the sequence

dn = |f − un| = dist(f,Kn) is nondecreasing and bounded above. Thus
dn ↑ � < ∞ as n ↑ ∞. Next, using the parallelogram law (with a = f − un
and b = f − um), we obtain

∣
∣
∣
∣f − un + um

2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
un − um

2

∣
∣
∣
∣

2

= 1

2

(
|f − un|2 + |f − um|2

)
.

It follows that |un − um|2 ≤ 2(d2
m − d2

n) if m ≥ n. Thus (un) converges to
a limit, say u, and clearly u ∈ K . On the other hand, we have |f − un| ≤
|f − v| ∀v ∈ Kn and in particular |f − un| ≤ |f − v| ∀v ∈ K . Passing to
the limit, we obtain |f − u| ≤ |f − v| ∀v ∈ K .

2. Clearly K = ⋃
nKn is convex (why?). We claim that un → u = PKf . First,

note that the sequence dn = |f − un| = dist(f,Kn) is nonincreasing and
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thus dn → �. Next, we have (with the same method as above) |un − um|2 ≤
2
(
d2
n − d2

m

)
if m ≥ n. Thus (un) converges to a limit, say u, and clearly

u ∈ K . Finally, note that |f − um| ≤ |f − v| ∀v ∈ Kn provided m ≥ n.
Passing to the limit (as m → ∞) leads to |f − u| ≤ |f − v| ∀v ∈ ⋃

nKn,
and by density ∀v ∈ K .

The sequence (αn) is nonincreasing and thus it converges to a limit, say α. We
claim that α = infK ϕ. First, it is clear that infK ϕ ≤ αn and thus infK ϕ ≤ α.
On the other hand, let u be any element in K and let un = PKnu. Passing to
the limit in the inequality αn ≤ ϕ(un), we obtain α ≤ ϕ(u) (since un → u).
It follows that α ≤ infK ϕ.

5.6

1. Consider, for example, the case that ‖u‖ ≥ 1 and ‖v‖ ≤ 1. We have

‖T u− T v‖ =
∥
∥
∥
∥
u

‖u‖ − v

∥
∥
∥
∥ = ‖(u− v)+ (v − v‖u‖)‖

‖u‖
≤ ‖u− v‖ + ‖u‖ − 1 ≤ 2‖u− v‖,

since ‖u‖ ≤ ‖u− v‖ + ‖v‖ ≤ ‖u− v‖ + 1.
2. Let u = (1, 0) and v = (1, α). Then we have ‖T u− T v‖ = 2|α|/(1 + |α|),

while ‖u− v‖ = |α|. We conclude by choosing α 	= 0 and arbitrarily small.
3. T coincides with PBE . Just check that if ‖u‖ ≥ 1. then

(

u− u

‖u‖ , v − u

‖u‖
)

≤ 0 ∀v ∈ BE.

5.10

(i) ⇒ (ii). Write that

F(u) ≤ F ((1 − t)u+ tv) ∀t ∈ (0, 1), ∀v ∈ K,
which implies that

1

t
[F (u+ t (v − u))− F(u)] ≥ 0.

Passing to the limit as t → 0 we obtain (ii).
(ii) ⇒ (i). We claim that

F(v)− F(u) ≥ (
F ′(u), v − u

) ∀u, v ∈ H.
Indeed, the function t ∈ R 
→ ϕ(t) = F(u+ t (v−u)) is of classC1 and convex.
Thus ϕ(1)− ϕ(0) ≥ ϕ′(0).

5.12 T is surjective iff E is complete.

1. Transfer onto R(T ) the scalar product of E by letting
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((T (u), T (v))) = (u, v) ∀u, v ∈ E.
Note that |((f, g))| ≤ ‖f ‖E�‖g‖E� ∀f, g ∈ R(T ). The scalar product (( , )) can
be extended by continuity and density to R(T ), which is now equipped with the
structure of a Hilbert space.

2. Fix any f ∈ E�. The map g ∈ R(T ) 
→ 〈f, T −1(g)〉 is a continuous linear
functional onR(T ). It may be extended (by continuity) toR(T ). Using the Riesz–
Fréchet representation theorem in R(T ) we obtain some element h ∈ R(T ) such
that ((h, g)) = 〈f, T −1(g)〉 ∀g ∈ R(T ). Thus we have ((h, T (v))) = 〈f, v〉
∀v ∈ E. On the other hand, we have ((h, T v)) = 〈h, v〉 ∀h ∈ R(T ), ∀v ∈ E (this
is obvious when h ∈ R(T )). It follows that f = h and consequently f ∈ R(T ),
i.e., R(T ) = E�.

3. We have constructed an isometry T : E → E� with R(T ) dense in E�. Since E�

is complete, we conclude that (up to an isomorphism) E� is the completion of E.

5.13

1. We claim that the parallelogram law holds. Indeed, let f ∈ F(u) and let g ∈ F(v).
Then f ± g ∈ F(u± v) and so we have

〈f + g, u+ v〉 = ‖u+ v‖2 and 〈f − g, u− v〉 = ‖u− v‖2.

Adding these relations leads to

2(‖u‖2 + ‖v‖2) = ‖u+ v‖2 + ‖u− v‖2.

2. Let T : E → E� be the map introduced in Exercise 5.12. We claim that F(u) =
{T (u)}. Clearly, T (u) ∈ F(u). On the other hand, we know that E� is a Hilbert
space for the dual norm ‖ ‖E� . In particular, E� is strictly convex and thus (see
Exercise 1.1) F(u) is reduced to a single element.

5.14 The convexity inequality a(tu + (1 − t)v, tu + (1 − t)v) ≤ ta(u, u) +
(1 − t)a(v, v) is equivalent to t (1 − t)a(u− v, u− v) ≥ 0.

Consider the operator A ∈ L(H) defined by a(u, v) = (Au, v) ∀u, v ∈ H . Then
F ′(u) = Au+ A�u, since we have

F(u+ h)− F(u) = (Au+ A�u, h)+ a(h, h).

5.15 First, extendS by continuity into an operator S̃ : G → F . Next, letT = S̃◦PG,
where PG denotes the projection from H onto G.

5.18

(ii) ⇒ (i). Assumption (ii) implies that T is injective and that R(T ) is closed. Thus
R(T ) has a complement (sinceH is a Hilbert space). We deduce from Theorem
2.13 that T has a left inverse.
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(i) ⇒ (ii). Assumption (i) implies that T is injective and that R(T ) is closed. Then,
use Theorem 2.21.

5.19 Note that lim supn→∞ |un−u|2 = lim supn→∞(|un|2 −2(un, u)+|u|2) ≤ 0.

5.20

1. If u ∈ N(S) we have (Sv, v − u) ≥ 0 ∀v ∈ H ; replacing v by tv, we see that
(Sv, u) = 0 ∀v ∈ H . Conversely, if u ∈ R(S)⊥ we have (Sv − Su, v) ≥ 0 ∀v ∈
H ; replacing v by tv, we see that (Su, v) = 0 ∀v ∈ H . (See also Problem 16.)

2. Apply Corollary 5.8 (Lax–Milgram).
3. Method (a). Set ut = (I + tS)−1f .

If f ∈ N(S), then ut = f ∀t > 0.

If f ∈ R(S), write f = Sv, so that ut + S(tut − v) = 0. It follows that

(ut , tut − v) ≤ 0 and thus |ut | ≤ (1/t)|v|. Consequently ut → 0 as t → ∞.
By density, one can still prove that ut → 0 as t → ∞ for every f ∈ R(S) (fill in
the details).

In the general case f ∈ H , write f = f1 + f2 with f1 = PN(S)f and f2 =
PR(S)f .

Method (b). We have ut + tSut = f and thus |ut | ≤ |f |. Passing to a sub-
sequence tn → ∞ we may assume that utn ⇀ uweakly and that Su = 0 (why?),
i.e., u ∈ N(S). From question 1 we know that (Sut , v) = 0 ∀v ∈ N(S) and
thus (f − ut , v) = 0 ∀v ∈ N(S). Passing to the limit, we find that (f − u, v)

= 0 ∀v ∈ N(S). Thus u = PN(S)f and the “uniqueness of the limit” implies
that ut ⇀ u weakly as t → ∞. On the other hand, we have (Sut , ut ) ≥ 0, i.e.,
(f − ut , ut ) ≥ 0 and consequently lim supt→∞ |ut |2 ≤ (f, u) = |u|2. It follows
that ut → u strongly as t → ∞.

5.21

1. Set S = I − T and apply question 1 of Exercise 5.20.
2. Write f = u− T u and note that σn(f ) = 1

n
(u− T nu).

3. First, check that limn→∞σn(f ) = 0 ∀f ∈ R(I − T ). Next, split a general f ∈ H
as f = f1 +f2 with f1 ∈ N(I −T ) and f2 ∈ N(I −T )⊥ = R(I − T ). We then
have σn(f ) = σn(f1)+ σn(f2) = f1 + σn(f2).

4. Apply successively inequality (1) to u, Su, S2u, . . . , Siu, . . . , and add the result-
ing inequalities. Note that

|Snu− Sn+1u| ≤ |Siu− Si+1u| ∀i = 0, 1, . . . , n.

5. Writing f = u− T u = 2(u− Su), we obtain |μn(f )| ≤ 2|u|/√n+ 1.
6. Use the same method as in question 3.
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5.25

2. Let m > n. Applying Exercise 5.4 with f = um and v = PKun, one obtains

|PKun − PKum|2 ≤ |PKun − um|2 − |PKum − um|2
≤ |PKun − un|2 − |PKum − um|2.

Therefore, (PKun) is a Cauchy sequence.
3. We may assume that unk ⇀ u weakly. Recall now that (un − PKun, v − PKun)

≤ 0 ∀v ∈ K . Passing to the limit (along the sequence nk) leads to (u− �, v − �)

≤ 0 ∀v ∈ K . Since u ∈ K , we may take v = u and conclude that u = �. Once
more, the “uniqueness of the limit” implies that un ⇀ � weakly.

4. For every v ∈ K, limn→∞|un−v|2 exists and thus limn→∞(un, v−w) also exists
for every v,w ∈ K . It follows that ϕ(z) = limn→∞(un, z) exists for every z ∈ H .
Using the Riesz–Fréchet representation theorem we may write ϕ(z) = (u, z) for
some u ∈ H . Finally, note that (u− �, v − �) ≤ 0 ∀v ∈ K and thus � = PKu.

5. By translation and dilation we may always assume thatK = BH . Thus |un| ↓ α.

If α < 1, then un = PKun for n large enough (and we already know that PKun
converges strongly).

If α ≥ 1, then PKun = un/|un| converges strongly and so does un.
6. Recall that (un − PKun, v − PKun) ≤ 0 ∀v ∈ K and thus (un − �, v − �) ≤ εn

∀v ∈ K , with εn → 0 (εn depends on v). Adding these inequalities leads to
(σn−�, v−�) ≤ ε′n ∀v ∈ K , with ε′n → 0. Assuming that σnk ⇀ σ weakly, then
σ ∈ K satisfies (σ −�, v−�) ≤ 0 ∀v ∈ K . Therefore σ = � and the “uniqueness
of the limit” implies that σn ⇀ � weakly.

5.26

3. Note that
√
nun is bounded, and that for each fixed j, (

√
nun, ej ) → 0 asn → ∞.

5.27 Let F be the closure of the vector space spanned by the En’s. We know (see
the proof of Theorem 5.9) that

∑∞
n=1|PEnu|2 = |PFu|2 ∀u ∈ H , and thus |PFu| =

|u| ∀u ∈ D. It follows that |PFu|2 = |u|2 ∀u ∈ D and thereforePF⊥u = 0 ∀u ∈ D.
Consequently PF⊥u = 0 ∀u ∈ H , i.e., F⊥ = {0}, and so F = H .

5.28

1. V is separable by Proposition 3.25. Consider a dense countable subset (vn) of V
and conclude as in the proof of Theorem 5.11.

5.29

2. If 2 < p < ∞ use the inequality ‖u‖p ≤ ‖u‖1−2/p∞ ‖u‖2/p
2 . Note that every

infinite-dimensional Hilbert space (separable or not) admits an infinite orthonor-
mal sequence.

6. Integrating over �, we find that k ≤ M2|�|, which provides an upper bound for
the dimension of E.
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5.30

1. For every fixed t ∈ [0, 1] consider the function ut (s) = p(s)χ[0,t](s) and write
that

∑∞
n=1 |(ut , en)| ≤ ‖ut‖2

2.
2. Equality in (2) implies equality in (1) for a.e. t ∈ [0, 1].Thusut = ∑∞

n=1(ut , en)en
for a.e. t ∈ [0, 1], and hence ut ∈ E = the closure of the vector space spanned
by the en’s. It remains to check that the space spanned by the functions (ut ) is
dense in L2. Let f ∈ L2 be such that

∫ 1
0 f ut = 0 for a.e. t . It follows that

∫ t
0 fp = 0 ∀t ∈ [0, 1], and so fp = 0 a.e.

5.31 It is easy to check that (ϕi, ϕj ) = 0 for i 	= j . Let n = 2p+1 − 1. Let E
denote the space spanned by {ϕ0, ϕ1, . . . , ϕn} and let F denote the space spanned by
the characteristic functions of the intervals ( i

2p+1 ,
i+1
2p+1 ), where i is an integer with

0 ≤ i ≤ 2p+1 − 1. Clearly E ⊂ F, dimE = n + 1 = 2p+1, and dim F = 2p+1.
Thus E = F .

5.32

2. The function u = r1r2 is orthogonal to all the functions (ri)i≥0 and u 	= 0. Thus
(ri)i≥0 is not a basis.

3. It is easy to check that (wn)n≥0 is an orthonormal system and thatw0 = r0, w2� =
r�+1 ∀� ≥ 0. In order to prove that (wn)n≥0 is a basis one can use the same
argument as in Exercise 5.31.

6.2

3. Consider the sequence of functions defined on [0, 1] by

un(t) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ t ≤ 1
2 ,

n(t − 1
2 ) if 1

2 < t ≤ 1
2 + 1

n
,

1 if 1
2 + 1

n
< t ≤ 1.

Note that T (un) → f , but f /∈ T (BE), since f /∈ C1([0, 1]).

6.3 Argue by contradiction. If the conclusion fails, there exists some δ > 0 such
that ‖T u‖F ≥ δ‖u‖E ∀u ∈ E. Hence R(T ) is closed. Consider the operator
T0 : E → R(T ) defined by T0 = T . Clearly T0 is bijective. By Corollary 2.6,
T −1

0 ∈ L(R(T ), E). On the other hand, T0 ∈ K(E,R(T )). Hence BE is compact
and dimE < ∞.

6.5 Let T : V → �2 be the operator defined by

T u = (
√
λ1u1,

√
λ2u2, . . . ,

√
λnun, . . . ).

Clearly |T u|�2 = ‖u‖V ∀u ∈ V , and T is surjective from V onto �2. Since �2 is
complete, it follows that V is also complete.

Consider the operator Jn : V → �2 defined by
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Jnu = (u1, u2, . . . , un, 0, 0, . . . ).

It is easy to check that ‖Jn − I‖L(V ,�2) → 0 and thus the canonical injection from
V into �2 is compact.

6.7

1. Assume that T is continuous from E weak into F strong. Then for every ε > 0
there exists a neighborhood V of 0 in E weak such that x ∈ V ⇒ ‖T x‖ < ε. We
may assume that V has the form

V = {x ∈ E; |〈fi, x〉| < δ ∀i = 1, 2, . . . , n} ,
where f1, f2, . . . , fn ∈ E� and δ > 0.
Let M = {x ∈ E; 〈fi, x〉 = 0 ∀i = 1, 2, . . . , n}, so that T x = 0 ∀x ∈ M . On
the other hand, M has finite codimension (see Example 2 in Section 2.4). Thus
E = M+N with dimN < ∞. It follows thatR(T ) = T (N) is finite-dimensional.

2. Note that if un ⇀ u weakly in E then T un ⇀ T u weakly in F . On the other
hand, (T un) has compact closure inF (for the strong topology). Thus T un → T u

(see, e.g., Exercise 3.5).
6. Note that T � ∈ L(E�, (c0)

�). But (c0)
� = �1 (see Section 11.3). Since E� is

reflexive, it follows from question 5 that T � is compact. Hence (by Theorem 6.4)
T is compact.

6.8

1. There is a constant c such that BR(T ) ⊂ cT (BE) and thus the unit ball of R(T ) is
compact.

2. Let E0 be a complement of N(T ). Then T0 = T|E0 is bijective from E0 onto
R(T ). Thus dimE0 = dimR(T ) < ∞.

6.9

1. (A) ⇒ (B):
Let E0 be a complement of N(T ) and let P : E → N(T ) be an associated
projection operator. Then T0 = T|E0 is bijective from E0 onto R(T ). By the open
mapping theorem there exists a constant C such that

‖u‖E ≤ C‖T u‖F ∀u ∈ E0.

It follows that ∀u ∈ E,

‖u‖E ≤ ‖u− Pu‖E + ‖Pu‖E ≤ C‖T u‖F + ‖Pu‖E.
(C) ⇒ (A):
(i) To check that the unit ball in N(T ) is compact, let (un) be a sequence in

N(T ) such that ‖un‖E ≤ 1. Since (Q(un)) has compact closure in G, one
may extract a subsequence (Q(unk )) converging in G. Applying (C), we see
that (unk ) is Cauchy.
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(ii) Introducing a complement of N(T ) we may assume in addition that T is
injective. Let (un) be a sequence in E such that T un → f . Let us first check
that (un) is bounded. If not, set vn = un/‖un‖. Applying (C), we see that a
subsequence (vnk ) is Cauchy. Let vnk → v with v ∈ N(T ) and ‖v‖ = 1;
impossible. Therefore (un) is bounded and we may extract a subsequence
(Q(unk )) converging in G. Applying (C) once more, we find that (unk ) is
Cauchy.

To recover the result in Exercise 2.12 write

‖u‖E ≤ C(‖T u‖F + ‖Pu‖E) ≤ C(‖T u‖F + |Pu|),
since all norms on N(T ) are equivalent. Moreover,

|Pu| ≤ |u− Pu| + |u| ≤ C‖u− Pu‖E + |u| ≤ C‖T u‖F + |u|.
2. Note that

‖u‖E ≤ C(‖T u‖F + ‖Pu‖E) ≤ C(‖(T + S)u‖F + ‖Pu‖E + ‖Su‖F )
and consider the compact operatorQ : E → E × F defined byQu = [Pu, Su].

6.10

1. Note that ∀u ∈ E,
|Q(1)|‖u‖ ≤ ‖Q(1)u−Q(T )u‖ + ‖Q(T )u‖

= ‖Q̃(T )(u− T u)‖ + ‖Q(T )u‖
≤ C(‖u− T u‖ + ‖Q(T )u‖).

2. Proof of the implication N(I − T ) = {0} ⇒ R(I − T ) = E. Suppose by
contradiction that R(I − T ) = E1 	= E. Set En = (I − T )nE. Then (En) is a
decreasing sequence of closed subspaces. Choose un ∈ En such that ‖un‖ = 1
and dist(un, En+1) ≥ 1/2. Write

Q(T )un−Q(T )um=Q(T )un−Q(1)un+Q(1)un−Q(1)um+Q(1)um−Q(T )um.
Thus, for m > n, we have

‖Q(T )un −Q(T )um‖ ≥ |Q(1)|/2,
and this is impossible.
For the converse, follow the argument described in the proof of Theorem 6.6.

3. Using the same notation as in the proof of Theorem 6.6, write S = T + � ◦ P .
Here S /∈ K(E), but � ◦ P ∈ K(E). Thus Q(S) ∈ K(E) (why?). Then continue
as in the proof of Theorem 6.6.
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6.11

1. There exists an integer n0 ≥ 1 such that Int Fn0 	= ∅ and thus B(u0, ρ) ⊂ Fn0 .
For every u ∈ F and |λ| < ρ/‖u‖ we have u0 + λu ∈ Fn0 . Therefore

|λ| |u(x)− u(y)| ≤ |u0(x)− u0(y)| + n0d(x, y)
1/n0 ≤ 2n0d(x, y)

1/n0 .

It follows that

|u(x)− u(y)| ≤ 2n0

ρ
‖u‖d(x, y)1/n0 ∀x, y ∈ K.

2. The theorem of Ascoli–Arzelà implies that BF is compact.

6.13 Suppose, by contradiction, that there exist some ε0 > 0 and a sequence (un)
such that ‖un‖E = 1 and ‖T un‖F ≥ ε0 +n|un|. Then |un| → 0 and we may assume
that unk ⇀ u weakly. But the function u 
→ |u| is convex and continuous. Thus it is
l.s.c. for the weak topology and hence u = 0. It follows that T un → 0. Impossible.

6.15

1. If u = f + λ(T − λI)−1f , we have λu = T (u − f ) and hence |λ| ‖u‖ ≤
‖T ‖(‖u‖ + ‖f ‖).

2. By the proof of Proposition 6.7 we know that if μ ∈ R is such that |μ−λ| ‖(T −
λI)−1‖ < 1, then μ ∈ ρ(T ). Thus dist(λ, σ (T )) ≥ 1/‖(T − λI)−1‖.

4. (U − I )−1 = 1
2 (T − I ).

6. Note that the relation Uu− λu = f is equivalent to

T u− (λ+ 1)

(λ− 1)
u = 1

(λ− 1)
(f − Tf ).

6.16

2. (T − λI)−1 = 1
1−λn

∑n−1
i=0 λ

n−i−1T i .

3. (T − λI)−1 = −∑n−1
i=0 λ

−i−1T i.

4. (I − T )−1 = (I − T n)−1 ∑n−1
i=0 T

i .

6.18

1. ‖Sr‖ = ‖S�‖ = 1. Note that S� ◦ Sr = I and thus Sr /∈ K(E), S� /∈ K(E).
3. For every λ ∈ [−1,+1] the operator (Sr − λI) is not surjective: for example, if
f = (−1, 0, 0, . . . ) the equation Srx − λx = f has no solution x ∈ �2.

4. N(S� − λI) = R(1, λ, λ2, . . . ).

6. S�r = S� and S�� = Sr .
7. Writing Srx − λx = f , we have

|x| = |Srx| = |λx + f | ≤ |λ||x| + |f |.
Thus

|Srx − λx| ≥ (1 − |λ|)|x|,
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and hence R(Sr − λI) is closed. Applying Theorem 2.19 yields

R(Sr − λI) = N(S� − λI)⊥ =
{

x ∈ �2;
∞∑

i=1

λi−1xi = 0

}

and
R(S� − λI) = N(Sr − λI)⊥ = E.

8. We have R(Sr ± I ) = N(S� ± I )⊥ = E and R(S� ± I ) = N(Sr ± I )⊥ = E.
We already know (see question 3) that R(Sr ± I ) 	= E. On the other hand,
R(S�±I ) 	= E; otherwise, since S�±I is injective, we would have ±1 ∈ ρ(S�).
Impossible.

9. EV (Sr ◦M) = ∅ if αn 	= 0 ∀n and EV (Sr ◦M) = {0} if αn = 0 for some n.
10. We may always assume that α 	= 0; otherwise Sr ◦ M is compact and the

conclusion is obvious.
Let us show that (T − λI) is bijective for every λ with |λ| > |α|. Note that
M = αI +K , where K is a compact operator. Letting T = Sr ◦M , we obtain
T = αSr + K1 and (T − λI) = (αSr − λI) + K1 = J ◦ (I + K2), where
J = (αSr − λI) is bijective and K1,K2 are compact. Applying Theorem 6.6
(c), it suffices to check thatN(T −λI) = {0}. This has already been established
in question 9.
Let us show that (T −λI) is not bijective for |λ| ≤ |α|. Assume by contradiction
that (T −λI) is bijective. Write (Sr− λ

α
I ) = 1

α
(T −λI)− 1

α
K1 = J ′ ◦(I+K3),

where J ′ is bijective and K3 is compact. Applying once more Theorem 6.6 (c),
we see that

(

Sr − λ

α
I

)

injective ⇔
(

Sr − λ

α
I

)

surjective.

But we already know (from questions 2 and 3) that (Sr − λ
α
I ) is injective and

not surjective, for |λ| ≤ |α|. Impossible.
11. σ(Sr ◦ M) = [ − √|ab|,+√|ab|]. Indeed, if |λ| ≤ √|ab|, the operator

(Sr ◦M − λI) is not surjective, since (for example)

f = (−1, 0, 0, . . . ) /∈ R(Sr ◦M − λI).

On the other hand, if |λ| > √|ab|, the operator (Sr ◦M −λI) is bijective, since
(Sr ◦M)2 = abS2

r . Thus ‖(Sr ◦M)2‖ ≤ |ab| and we may apply Exercise 6.16,
question 4.

6.20

1. Note that
|T u(x)− T u(y)| ≤ |x − y|1/p′ ‖u‖p.

If 1 < p < ∞ we may applyAscoli-Arzelà to conclude that T (BE) has compact
closure in C([0, 1]) and a fortiori in Lp(0, 1). If p = 1, apply Theorem 4.26.

2. EV (T ) = ∅. Note first that 0 /∈ EV (T ). Indeed, the equation T u = 0 implies
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∫ 1

0
uχ[a,b] = 0 ∀a, b ∈ [0, 1].

If 1 < p < 1 we may use the density of step functions in Lp
′

to conclude that
u ≡ 0. When p = 1, we prove that

∫ 1

0
uϕ = 0 ∀ϕ ∈ C([0, 1])

by approximating uniformly ϕ by step functions. We conclude with the help of
Corollary 4.24 that u ≡ 0.

3. For λ 	= 0 and for f ∈ C([0, 1]), set u = (T −λI)−1f . Then v(x) = ∫ x
0 u(t)dt

satisfies:

v ∈ C1([0, 1]) and v − λv′ = f with v(0) = 0.

Therefore

u(x) = −1

λ
f (x)− 1

λ2

∫ x

0
e(x−t)/λf (t)dt.

The same formula remains valid for f ∈ Lp (argue by density).
4. (T �v)(x) = ∫ 1

x
v(t)dt.

6.22

2. Suppose, by contradiction, that there exists some μ ∈ Q(σ(T )) such that μ /∈
σ(Q(T )). Then μ = Q(λ)with λ ∈ σ(T ), andQ(T )−Q(λ)I = S is bijective.
We may write

Q(t)−Q(λ) = (t − λ)Q(t) ∀t ∈ R,

and thus
(T − λI)Q(T ) = Q(T )(T − λI) = S.

Hence T − λI is bijective and λ ∈ ρ(T ); impossible.
3. Take E = R

2, T = ( 0 1−1 0 ) and Q(t) = t2.

Then EV (T ) = σ(T ) = ∅ and EV (T 2) = σ(T 2) = {−1}.
4. T 2 + I is bijective by Lax–Milgram. Every polynomial of degree 2 without real

roots may be written (modulo a nonzero factor) as

Q(t) = t2 + at + b =
(
t + a

2

)2 + b − a2

4

with b − a2/4 > 0, and we may apply Lax–Milgram once more.
If a polynomialQ(t) has no real root, then its roots are complex conjugates. We
may then writeQ(t) = Q1(t)Q2(t) . . .Q�(t), where eachQi(t) is a polynomial
of degree 2 without real roots. SinceQi(T ) is bijective, the same holds forQ(T ).

5. (i) Suppose, by contradiction, that μ ∈ EV (Q(T )) and μ /∈ Q(EV (T )). Then
there exists u 	= 0 such that Q(T )u = μu. Write
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Q(t)− μ = (t − t1)(t − t2) · · · (t − tq)Q(t),

where the ti’s are the real roots of the polynomial Q(t) − μ and Q has no real
root. Then ti /∈ EV (T ) ∀i, since μ /∈ Q(EV (T )). We have

(T − t1I )(T − t2I ) · · · (T − tkI )Q(T )u = 0.

Since each factor in this product is injective, we conclude that u = 0. Impossible.

(ii) Argue as in (i).

6.23

3. In E = R
2 take T (u1, u2) = (u2, 0). Then T 2 = 0, so that r(T ) = 0, while

‖T ‖ = 1.
5. In E = R

3 take T (u1, u2, u3) = (u2,−u1, 0). Then σ(T ) = {0}. Using the fact
that T 3 = −T it is easy to see that r(T ) = 1.

Comment. If we work in Banach spaces over C the situation is totally different;
see Section 11.4. There, we always have r(T ) = max{|λ|; λ ∈ σ(T )}. Taking
E = C

3 in the current example we have σ(T ) = {0,+i,−i} and then r(T ) =
max{|λ|; λ ∈ σ(T )} = 1.

6. Assuming that the formula holds for T n, we have

(T n+1u)(t) = 1

(n− 1)!
∫ t

0
ds

∫ s

0
(s − τ)n−1u(τ)dτ

= 1

(n− 1)!
∫ t

0
u(τ)

[∫ t

τ

(s − τ)n−1ds

]

dτ

= 1

n!
∫ t

0
(t − τ)nu(τ)dτ.

7. Consider the functions f and g defined on R by

f (t) =
{

1
(n−1)! t

n−1 if 0 ≤ t ≤ 1,

0 otherwise,

g(t) =
{
u(t) if 0 ≤ t ≤ 1,

0 otherwise,

so that for 0 ≤ t ≤ 1, we have

(f � g)(t) =
∫ 1

0
(t − τ)u(τ)dτ = (T nu)(t).

We deduce that

‖f � g‖Lp(0,1) ≤ ‖f � g‖Lp(R) ≤ ‖f ‖L1(R)‖g‖Lp(R) = 1

n! ‖u‖Lp(0,1).
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8. Apply Stirling’s formula.

6.24

2. (v) ⇒ (vi). For every ε > 0, Tε = T + εI is bijective and σ(Tε) ⊂ [ε, 1 + ε].
Thus σ(T −1

ε ) ⊂ [ 1
1+ε ,

1
ε
]. Applying Proposition 6.9 to T −1

ε yields

(T −1
ε v, v) ≥ 1

1 + ε
|v|2 ∀v ∈ H,

i.e.,

(Tεu, u) ≥ 1

1 + ε
|Tεu|2 ∀u ∈ H.

3. Set U = 2T − I . Clearly (vii) is equivalent to

(vii′) |u| ≤ |Uu| ∀u ∈ H.
Applying Theorem 2.20, we see that (vii) ⇒ (−1,+1) ⊂ ρ(U) = 2ρ(T ) − 1.
Thus (vii) ⇒ (viii).

Conversely, (viii) ⇒ (−1,+1) ⊂ ρ(U). Thus σ(U) ⊂ (−∞,−1] ∪ [1,+∞)

and σ(U−1) ⊂ [−1,+1]. By Proposition 6.9 we know that ‖U−1‖ ≤ 1, i.e.,
(vii′) holds.

6.25 By construction we have

M ◦ (I +K) = I on X,

(I +K) ◦M = I on R(I +K).

Given any x ∈ E, write x = x1 + x2 with x1 ∈ X and x2 ∈ N(I +K). Then

M ◦ (I +K)(x) = M ◦ (I +K)(x1) = x1 = x − Px

where P is a projection onto N(I +K).
For any x ∈ E we have

(I +K) ◦ M̃(x) = (I +K) ◦M ◦Q(x) = Qx = x − P̃ x,

where P̃ is a finite-rank projection onto a complement of R(I +K) in E.

8.8

4. We have
u′
n = ζnu

′ + ζ ′
nu.

Clearly ζnu′ → u′ in Lp by dominated convergence. It remains to show that
ζ ′
nu → 0 in Lp. Note that
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‖ζ ′
nu‖pp ≤ C

∫ 2/n

1/n
np|u(x)|pdx,

where C = ‖ζ ′‖pL∞ .
When p = 1 we have, since u ∈ C([0, 1]) and u(0) = 0,

n

∫ 2/n

1/n
|u(x)|dx ≤ max

x∈[ 1
n
, 2
n
]
|u(x)| → 0 as n → ∞.

When p > 1 we have

np
∫ 2/n

1/n
|u(x)|pdx = np

∫ 2/n

1/n
xp

|u(x)|p
xp

dx ≤ 2p
∫ 2/n

1/n

|u(x)|p
xp

dx → 0

by question 1.

8.9

1. By question 1 in Exercise 8.8 we know that u
′(x)
x

∈ Lp. On the other hand,

u(x) =
∫ x

0
u′(t)dt = xu′(x)−

∫ x

0
u′′(t)tdt,

and thus
u(x)

x2 = u′(x)
x

− 1

x2

∫ x

0
u′′(t)tdt.

But
1

x2

∣
∣
∣
∣

∫ x

0
u′′(t)tdt

∣
∣
∣
∣ ≤ 1

x

∫ x

0
|u′′(t)|dt ∈ Lp,

as above.
2. We have v ∈ C1((0, 1)) and

v′(x) = −u(x)
x2 + u′(x)

x
∈ Lp,

by question 1.

Moreover,

v(x) = u(x)

x
= 1

x

∫ x

0
u′(t)dt → 0 as x → 0,

since u ∈ C1([0, 1]) and u′(0) = 0.
3. We need only to show that

‖ζ ′
nu

′‖p + ‖ζ ′′
n u‖p → 0 as n → 0.

But
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‖ζ ′
nu

′‖pp ≤ Cnp
∫ 2/n

1/n
|u′(x)|pdx ≤ 2pC

∫ 2/n

1/n

|u′(x)|p
xp

dx

and

‖ζ ′′
n u‖pp ≤ Cn2p

∫ 2/n

1/n
|u(x)|pdx ≤ 4pC

∫ 2/n

1/n

|u(x)|p
x2p dx,

and the conclusion follows since u′(x)
x

∈ Lp and u(x)

x2 ∈ Lp.

4. Let u ∈ Xm. Then u′ ∈ Xm−1 and u′(x)
xm−1 ∈ Lp(I) by the induction assumption.

Next, observe that
u(x)

xm
= 1

xm

∫ x

0

u′(t)
tm−1 t

m−1dt.

Applying once more Hardy’s inequality (see Problem 34, part C) we obtain

|u(x)|
xm

≤ 1

x

∫ x

0

|u′(t)|
tm−1 dt ∈ Lp(I).

In order to prove that u(x)

xm−1 ∈ X1, note that

D

(
u(x)

xm−1

)

= Du(x)

xm−1 − (m− 1)
u(x)

xm
∈ Lp(I),

and that

|u(x)|
xm−1 ≤ 1

xm−1

∫ x

0

|u′(t)|
tm−1 tm−1dt ≤

∫ x

0

|u′(t)|
tm−1 dt → 0 as x → 0,

since u′(t)
tm−1 ∈ Lp(I).

5. It suffices to check that D�v ∈ X1 for every integer � such that 0 ≤ � ≤ k − 1.

But D�v is a linear combination of functions of the form Dj+αu(x)
xm−j−k+�−α , where α is

an integer such that 0 ≤ α ≤ �. Then use question 4.
6. It suffices to show that (Dαζn)(Dβu) → 0 in Lp(I) when α + β = m and

1 ≤ α ≤ m. But |Dαζn(x)| ≤ Cnα and thus

∫ 1

0
|Dαζn(x)|p|Dβu(x)|pdx ≤ Cnαp

∫ 2/n

1/n

∣
∣
∣
Dβu(x)

xα

∣
∣
∣
p

xαpdx

≤ C

∫ 2/n

1/n

∣
∣
∣
Dβu(x)

xα

∣
∣
∣
p

dx → 0

since Dβu(x)
xα

∈ Lp(I) by question 4.
8. To prove that v ∈ C([0, 1]), note that v(x) = 1

x

∫ x
0 u

′(t)dt and that u′ ∈ C([0, 1])
with u′(0) = 0.
Next, we prove that v ∈ W 1,1(I ). Integrating by parts, we see that
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v′(x) = 1

x2

∫ x

0
u′′(t)tdt,

and a straightforward computation gives

‖v′‖1 ≤
∫ 1

0
|u′′(t)|(1 − t)dt ≤ ‖u′′‖1.

9. Set

u(x) =
∫ x

0
(1 + | log t |)−1dt.

It is clear that u ∈ W 2,1(I )with u(0) = u′(0) = 0, and, moreover, u
′(x)
x

/∈ L1(I ).
The relation

u(x)

x2 = u′(x)
x

− v′(x),

combined with question 8 shows that u(x)
x2 /∈ L1(I ).

8.10

4. Clearly, as n → ∞,

v′
n(x) = G′(nu(x))u′(x) → f (x) a.e.,

where

f (x) =
{

0 if u(x) 	= 0,

u′(x) if u(x) = 0.

6. We have ∫ 1

0
vnϕ

′ = −
∫ 1

0
v′
nϕ ∀ϕ ∈ C1

c (I ).

Passing to the limit as n → ∞ yields

∫ 1

0
f ϕ = 0 ∀ϕ ∈ C1

c (I ),

and therefore f = 0 a.e. on I, i.e., u′(x) = 0 a.e. on [u = 0].

8.12

1. Use Exercise 8.2 and the fact that

lim inf
n→∞ ‖u′

n‖Lp ≥ ‖u′‖Lp .

2. Consider the sequence (un) in Exercise 8.2.We have‖un‖L1 ≤ 1
2 and ‖u′

n‖L1 = 1.
Thus 2

3un ∈ B1. On the other hand, 2
3un → 2

3u in L1, where
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u(x) =
{

0 if x ∈ (0, 1/2),

1 if x ∈ (1/2, 1).

But u /∈ W 1,1. Thus B1 is not closed in L1.

8.16

2. R(A) = Lp(0, 1) and N(A) = {0}.
3. v ∈ D(A�) iff v ∈ Lp′

and there is a constant C such that
∣
∣
∣
∣

∫ 1

0
vu′

∣
∣
∣
∣ ≤ C‖u‖p ∀u ∈ D(A).

In particular, v ∈ D(A�) ⇒ v ∈ W 1,p′
, and then

(S1)

∣
∣
∣
∣u(1)v(1)−

∫ 1

0
uv′

∣
∣
∣
∣ ≤ C‖u‖p ∀u ∈ D(A).

We deduce from (S1) that

|u(1)| |v(1)| ≤ (C + ‖v′‖p′)‖u‖p ∀u ∈ D(A).
It follows that v(1) = 0, since there exists a sequence (un) in D(A) such that
un(1) = 1 and ‖un‖p → 0. Hence we have proved that

v ∈ D(A�) ⇒ v ∈ W 1,p′
and v(1) = 0.

It follows easily that

D(A�) = {v ∈ W 1,p′
and v(1) = 0},

with A�v = −v′.
4. We have

N(Ã) = {0}, R(Ã) =
{

f ∈ Lp;
∫ 1

0
f (t)dt = 0

}

,

and
(Ã)�v = −v′ with D((Ã)�) = W 1,p′

.

8.17 In the determination of D(A�) it is useful to keep in mind the following fact.
Let I = (0, 1) and 1 < p ≤ ∞. Assume that u ∈ Lp(I) satisfies

(S1)

∣
∣
∣
∣

∫

I

uϕ′
∣
∣
∣
∣ ≤ C‖ϕ‖p′ ∀ϕ ∈ C1

c (I ) such that
∫

I

ϕ = 0,

then u ∈ W 1,p(I ).
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Indeed, fix a function ψ0 ∈ C1
c (I ) such that

∫

I
ψ0 = 1. Let ζ be any function in

C1
c (I ). Inserting ϕ = ζ − (

∫

I
ζ )ψ0 into (S1), we obtain

∣
∣
∣
∣

∫

I

uζ ′
∣
∣
∣
∣ ≤ C‖ζ‖p′ + C′

∣
∣
∣
∣

∫

I

ζ

∣
∣
∣
∣ ,

where C′ depends only on u and ψ0. Therefore u ∈ W 1,p(I ) by Proposition 8.3.
When Au = u′′ − xu′ we have

A�v = v′′ + xv′ + v.

Note the following identity

A�(e−
x2
2 u) = e−

x2
2 Au ∀u ∈ H 2(I ),

which allows to compute N(A�) under the various boundary conditions.

8.19 Given f ∈ L2(0, 1), set F(x) = ∫ x
0 f (t)dt . Then

ϕ�(f ) =
{

1
2

∫ 1
0 F

2(x)dx if
∫ 1

0 f (t)dt = 0,

+∞ otherwise.

Indeed, if
∫ 1

0 f (t)dt = 0, then
∫ 1

0 f v = ∫ 1
0 F

′v = − ∫ 1
0 Fv

′ ∀v ∈ H 1(0, 1), and

ϕ�(f ) = sup
v∈H 1

{∫ 1

0
f v − 1

2

∫ 1

0
v′2

}

= sup
v∈H 1

{

−
∫ 1

0
Fv′ − 1

2

∫ 1

0
v′2

}

= sup
w∈L2

{

−
∫ 1

0
Fw − 1

2

∫ 1

0
w2

}

= 1

2

∫ 1

0
F 2.

8.21

2. Let U be any function satisfying
{

−(pU ′)′ + qU = f on (0, 1),

U(1) = 0.

Then ∫ 1

0
f v0 = p(0)(U ′(0)− k0 U(0)).

Therefore, if
∫ 1

0 f v0 = 0, any such function U satisfies U ′(0) = k0 U(0). Since
U(0) can be chosen arbitrarily we see that the set of solutions is one-dimensional.

8.22

1. The function ρ(x) = x belongs to H 1(0, 1), but
√
ρ(x) = √

x /∈ H 1(0, 1).
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2. For every ρ ∈ H 1(0, 1), with ρ ≥ 0 on (0, 1), set γε = √
ρ + ε. Since the

function t 
→ √
t + ε is C1 on [0,+∞), we deduce that γε ∈ H 1(0, 1) and,

moreover,

γ ′
ε = 1

2

ρ′
√
ρ + ε

,

so that |γ ′
ε| ≤ μ on the set [ρ > 0]. On the other hand, we know that ρ′ = 0

a.e. on the set [ρ = 0] (see Exercise 8.10) and thus |γ ′
ε| ≤ μ a.e. on [ρ = 0].

Therefore |γ ′
ε| ≤ μ a.e. on (0, 1).

Consequently, if μ ∈ L2 we deduce that ‖γ ′
ε‖L2 ≤ C as ε → 0. Since γε → √

ρ,
as ε → 0, in C([0, 1]) and γ ′

ε → μ in L2(0, 1), we conclude (see Exercise 8.2)
that

√
ρ ∈ H 1(0, 1) and (

√
ρ)′ = μ.

Conversely, if
√
ρ ∈ H 1(0, 1), set γ = √

ρ, so that ρ = γ 2 and ρ′ = 2γ γ ′.
Hence μ = γ ′ a.e. on [ρ > 0] and, moreover, μ = γ ′ a.e. on [ρ = 0] since
γ ′ = 0 a.e. on [γ = 0] = [ρ = 0].

8.24

1. One may choose Cε = 1 + 1/ε.
2. The weak formulation is

{
u ∈ H 1(I ),

a(u, v) = ∫ 1
0 (u

′v′ + kuv)− u(1)v(1) = ∫ 1
0 f v ∀v ∈ H 1(I ).

Clearly a(u, v) is a continuous bilinear form on H 1(0, 1). By question 1 it is
coercive, e.g., if k > 2.

The corresponding minimization problem is

min
v∈H 1

{
1

2

∫ 1

0
(v′2 + kv2)− 1

2
v(1)2 −

∫ 1

0
f v

}

.

3. Let g ∈ L2(I ) and let v ∈ H 2(I ) be the corresponding solution of (1) (with f
replaced by g). We have

(Tf, g)L2 =
∫ 1

0
ug =

∫ 1

0
u(−v′′ + kv)

= −u(1)v′(1)+ u(0)v′(0)+ u′(1)v(1)− u′(0)v(0)

+
∫ 1

0
(−u′′ + ku)v

= −u(1)v(1)+ u(1)v(1)+
∫ 1

0
f v = (f, T g)L2 .

Therefore T is self-adjoint. It is compact since it is a bounded operator fromL2(I )

into H 1(I ), and H 1(I ) ⊂ L2(I ) with compact injection (see Theorem 8.8).
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4. By the results of Section 6.4 we know that there exists a sequence (un) in L2(I )

satisfying T un = μnun with ‖un‖L2 = 1, μn > 0 ∀n, and μn → 0. Thus we
have −u′′

n + kun = 1
μn
un, so that −u′′

n = ( 1
μn

− k)un on I .

5. The value λ = 0 is excluded (why?). If λ > 0 we have u(x) = A cos
√
λx +

B sin
√
λx, where the constants A and B are adjusted to satisfy the boundary

condition, i.e., B = 0 andA(cos
√
λ+√

λ sin
√
λ) = 0, so thatA 	= 0 iff

√
λ is a

solution of the equation tan t = −1/t (which has an infinite sequence of positive
solutions tn → ∞, as can be seen by inspection of the graphs). If λ < 0 we have
u(x) = Ae

√|λ|x + Be−
√|λ|x . Putting this together with the boundary conditions

gives A = B and A
√|λ|e

√|λ| − B
√|λ|e−

√|λ| = Ae
√|λ| + Be−

√|λ|. In order to
have some u 	≡ 0, λ must satisfy

√|λ|(e
√|λ| − e−

√|λ|) = e
√|λ| + e−

√|λ|, i.e.,
t = √|λ| is a solution of the equation e2t = t+1

t−1 . An inspection of the graphs
shows that there is a unique solution t0 > 1 and then λ = −t20 .

8.25

2. Assume by contradiction that there is a sequence (un) in H 1(I ) such that
a(un, un) → 0 and ‖un‖H 1(I ) = 1. Passing to a subsequence (unk ) we may
assume that u′

nk
⇀ u′ weakly in L2 and un → u strongly in L2. By lower

semicontinuity (see Proposition 3.5) we have lim inf
∫

I
(u′
nk
)2 ≥ ∫

I
(u′)2 and

therefore a(u, u) = 0, so that u = 0. But
∫

I
(u′
nk
)2 = 1 − ∫

I
u2
nk

and thus

a(unk , unk ) = ∫

I
(u′
nk
)2 + (

∫ 1
0 unk )

2 = 1 − ∫

I
u2
nk

+ (
∫ 1

0 unk )
2 → 1. Impossible.

4. We have ∫

I

u′v′ =
∫

I

gv ∀v ∈ H 1(I ),

where g = f − (
∫ 1

0 u)χ(0,1). Therefore u ∈ H 2(I ) and satisfies

{
−u′′ + (

∫ 1
0 u)χ(0,1) = f on I,

u′(0) = u′(2) = 0.

5. We have u ∈ C2(I ) iff
∫ 1

0 u = 0. This happens iff
∫

I
f = 0.

8. The eigenvalues of T are positive and if 1/λ is an eigenvalue, we must have a
function u 	≡ 0 satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−u′′ + ∫ 1
0 u = λu on (0, 1),

−u′′ = λu on (1, 2),

u′(0) = u′(2) = 0,

u(1−) = u(1+) and u′(1−) = u′(1+).
Therefore

u(x) = k

λ
+ A cos(

√
λx) on (0, 1),
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u(x) = A′ cos(
√
λ(x − 2)) on (1, 2),

where the constants k,A and A′ are determined using the relations
{
u(1−) = u(1+) and u′(1−) = u(1+),
k = ∫ 1

0 u.

We conclude that either sin(
√
λ) = 0, i.e., λ = n2π2 with n = 1, 2, . . . , or λ is

a solution of the equation tan(
√
λ) = 2

√
λ(1 − λ).

8.26

3. Set a(v, v) = ∫

I
pv′2 + qv2. We have (SNf − SDf, f ) = ∫

I
f (uN − uD). We

already know that 1
2a(uN, uN)−

∫

I
f uN ≤ 1

2a(uD, uD)−
∫

I
f uD . On the other

hand, a(uN, uN) = ∫

I
f uN and a(uD, uD) = ∫

I
f uD . Therefore

∫

I
f (uN −

uD) ≥ 0.
6. Set ai(v, v) = a(v, v) + kiv

2(0), i = 1, 2, and uk1 = u1, uk2 = u2. Since ui is
a minimizer of

( 1
2ai(v, v)− ∫

I
f v

)
on V = {v ∈ H 1(I ); v(1) = 0}, we have

1

2
a(u2, u2)+ 1

2
k2u

2
2(0)−

∫

I

f u2 ≤ 1

2
a(u1, u1)+ 1

2
k2u

2
1(0)−

∫

I

f u1.

On the other hand, we have

a(u1, u1)+ k1u
2
1(0) =

∫

I

f u1,

and

a(u2, u2)+ k2u
2
2(0) =

∫

I

f u2.

Therefore

−1

2

∫

I

f u2 ≤ 1

2

∫

I

f u1 + 1

2
(k2 − k1)u

2
1(0)−

∫

I

f u1,

so that

(
Sk2f − Sk1f, f

) =
∫

I

f (u2 − u1) ≥ (k1 − k2)u
2
1(0) ≥ 0.

8.27

4. The solution ϕ of {
−ϕ′′ + ϕ = 1 on I,

ϕ(−1) = ϕ(1) = 0,
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is given by ϕ(x) = 1 + A(ex + e−x), where A = −e/(e2 + 1) . By uniqueness
of ϕ we must have u = λu(0)ϕ. Therefore

λ0 = 1

ϕ(0)
= e2 + 1

(e − 1)2
.

5. Equation (1) becomes u = S(f +λu(0)) = Sf +λu(0)S1 = Sf +λu(0)ϕ. Thus
u(0)(1 − λϕ(0)) = (Sf )(0), i.e., u(0) = λ0(Sf )(0)

λ0−λ and u = Sf + λλ0(Sf )(0)ϕ
λ0−λ is

the desired solution.

6. When λ = λ0, the existence of a solution u implies (Sf )(0) = 0 (just follow the
computation in question 5). Conversely, assume that (Sf )(0) = 0. A solution of
(1) must have the form u = Sf +Aϕ for some constant A. A direct computation
shows that any such u satisfies −u′′+u = f +A. But u(0) = (Sf )(0)+ A

λ0
= A

λ0
.

Thus we have −u′′ + u = f + λ0u(0), i.e., (1) holds for any A. Therefore the set
of all solutions of (1) when λ = λ0 is Sf + Rϕ.

8.29

2. The existence and uniqueness of a solution u ∈ H 1(0, 1) comes from Lax–
Milgram. In particular, u satisfies

∫ 1

0
u′v′ =

∫ 1

0
(f − u)v ∀v ∈ H 1

0 (0, 1),

and therefore u′ ∈ H 1(0, 1), i.e., u ∈ H 2(0, 1); moreover, −u′′ + u = f on
(0, 1). Using the information that u ∈ H 2(0, 1), we may now write

a(u, v) =
∫ 1

0
(−u′′ + u)v + u′(1)v(1)− u′(0)v(0)

+ (u(1)− u(0))(v(1)− v(0))

=
∫ 1

0
f v ∀v ∈ H 1(0, 1).

Consequently,

(u′(1)+ u(1)− u(0))v(1)− (u′(0)+ u(1)− u(0))v(0) = 0 ∀v ∈ H 1(0, 1).

Since v(0) and v(1) are arbitrary, we conclude that

u′(1)+ u(1)− u(0) = 0 and u′(0)+ u(1)− u(0) = 0.

5. Using the same function G as in the proof of Theorem 8.19 we have, taking
v = G(−u), a(u,G(−u)) = ∫ 1

0 fG(−u) ≥ 0 since f ≥ 0 and G ≥ 0. On the
other hand,
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a(u,G(−u)) = −
∫ 1

0
u′2G′(−u)−

∫ 1

0
(−u)G(−u)

+ (u(1)− u(0))(G(−u(1))−G(−u(0)))

≤ −
∫ 1

0
(−u)G(−u),

since G is nondecreasing. It follows that

∫ 1

0
(−u)G(−u) ≤ 0,

and consequently −u ≤ 0.
7. Let 1/λ be an eigenvalue and let u be a corresponding eigenfunction. Then

⎧
⎪⎨

⎪⎩

−u′′ + u = λu on (0, 1),

u′(0) = u(0)− u(1),

u′(1) = u(0)− u(1).

Since a(u, u) = λ
∫ 1

0 u
2 ≥ ∫ 1

0 u
2, we see that λ ≥ 1. Moreover, λ = 1 is an

eigenvalue corresponding to u = const. Assume now λ > 1 and set α = √
λ− 1.

We must have
u(x) = A cosαx + B sin αx.

In order to satisfy the boundary condition we need to impose
{
Bα = A− A cosα − B sin α,

−Aα sin α + Bα cosα = A− A cosα − B sin α.

This system admits a nontrivial solution iff 2(1 − cosα) + α sin α = 0, i.e.,
sin(α/2) = 0 or (α/2)+ tan(α/2) = 0.

8.34

1. Let u be a classical solution. Then we have

−u′(1)v(1)+ u′(0)v(0)+
∫ 1

0
(u′v′ + uv) =

∫ 1

0
f v ∀v ∈ H 1(0, 1).

Let V = {v ∈ H 1(0, 1); v(0) = v(1)}. If v ∈ V we obtain

a(u, v) =
∫ 1

0
(u′v′ + uv) =

∫ 1

0
f v + kv(0).

The weak formulation is

u ∈ V and a(u, v) =
∫ 1

0
f v + kv(0) ∀v ∈ V.
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2. By Lax–Milgram there exists a unique weak solution u ∈ V , and the correspond-
ing minimization problem is

min
v∈V

{
1

2

∫ 1

0
(v′2 + v2)−

∫ 1

0
f v − kv(0)

}

.

3. Clearly, any weak solution u belongs to H 2(0, 1) and satisfies

−u′′ + u = f a.e. on (0, 1),

u′(1)v(1)− u′(0)v(0) = kv(0) ∀v ∈ V,
i.e.,

u′(1)− u′(0) = k.

5. The eigenvalues of T are given by λk = 1/μk , where μk corresponds to a non-
trivial solution of

{
−u′′ + u = μku a.e. on (0, 1),

u(1) = u(0), u′(1) = u′(0).

Therefore μk ≥ 1 and u is given by

u(x) = A sin
(√
μk − 1x

)
+ B cos

(√
μk − 1x

)

with
√
μk − 1 = 2πk, k = 0, 1, . . . .

8.38

2. Suppose that T u = λu with u ∈ H 2(R) and u 	≡ 0. Clearly λ 	= 0 and u satisfies

−u′′ + u = 1

λ
u on R.

If λ = 1, we have u(x) = Ax+B for some constantsA,B. Since u ∈ L2(R) we
deduce that A = B = 0. Therefore 1 /∈ EV (T ).
If ( 1

λ
− 1) > 0 we have u(x) = A sin αx + B cosαx, with α =

√
1
λ

− 1. The

condition u ∈ L2(R) yields again A = B = 0. Similarly, if ( 1
λ

− 1) < 0 we
have no solution, except u ≡ 0. Hence EV (T ) = ∅. T cannot be a compact
operator. Otherwise we would have σ(T ) = {0} by Theorem 6.8 and then T ≡ 0
by Corollary 6.10. But obviously T 	≡ 0 (otherwise any f in L2(R) would be
≡ 0).

3. If λ < 0, (T − λI) is bijective from H = L2(R) onto itself, for example by
Lax–Milgram and the fact that (Tf, f ) ≥ 0 ∀f ∈ H . Thus λ ∈ ρ(T ).

4. If λ > 1 ≥ ‖T ‖ we have λ ∈ ρ(T ) by Proposition 6.7.
6. T is not surjective, since R(T ) ⊂ H 2(R).
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7. T − I is not surjective. Indeed, if we try to solve Tf − f = ϕ for a given ϕ in
L2(R) we are led to −u′′ + u = f (letting u = Tf ) and u = f + ϕ. Therefore
u′′ = ϕ admits a solution u ∈ H 2. Suppose, for example, that suppϕ ⊂ [0, 1].
An immediate computation yields u(x) = 0 ∀x ≤ 0 and u(x) = 0 ∀x ≥ 1. Thus
u′(0) = u′(1) = 0. It follows that 0 = u′(1) − u′(0) = ∫ 1

0 ϕ. Therefore the

equation Tf − f = ϕ has no solution f ∈ L2(R) when
∫ 1

0 ϕ 	= 0. Hence T − I

cannot be surjective.
8. T − λI is not surjective. Indeed, if we try to solve Tf − λf = ϕ we are led

to −u′′ + u = f (letting u = Tf ) and u = λf + ϕ. Therefore −u′′ + u =
1
λ
(u−ϕ). Assume again that suppϕ ⊂ [0, 1]. We would have u′′ = −μ2u outside

[0, 1], with μ =
√

1
λ

− 1. Therefore u ≡ 0 outside [0, 1] and consequently

u(0) = u′(0) = u(1) = u′(1) = 0. The equation −u′′ + (1 − 1
λ
)u = − 1

λ
ϕ

implies that
∫ 1

0 ϕv = 0 for any solution v of −v′′ = μ2v on (0, 1); for example
∫ 1

0 ϕ(x) sinμx = 0. Therefore the equation Tf − λf = ϕ has no solution f ∈
L2(R) when

∫ 1
0 ϕ(x) sinμx 	= 0. Consequently (T − λI) is not surjective.

8.39

2. We have v2 ≤ 1
2v

4 + 1
2 ∀v ∈ R, and thus

ϕ(v) ≥ 1

2
‖v‖2

H 1 − 1

4
− ‖f ‖L2 ‖v‖H 1 .

Therefore ϕ(v) → ∞ as ‖v‖H 1 → ∞.
3. The uniqueness follows from the fact that ϕ is strictly convex on H 1(0, 1); this

is a consequence of the strict convexity of the function t 
→ t4 on R.
4. We have

ϕ(u+ εv) = 1

2

∫ 1

0
(u′2 + 2εu′v′ + ε2v′2)

+ 1

4

∫ 1

0
(u4 + 4εu3v + 6ε2u2v2 + 4ε3uv3 + ε4v4)

−
∫ 1

0
f (u+ εv).

Writing that ϕ(u) ≤ ϕ(u+ εv) gives

∫ 1

0
(u′v′ + u3v − f v)+ Aε ≥ 0,

where Aε → 0 as ε → 0. Passing to the limit as ε → 0 and choosing ±v yields

∫ 1

0
(u′v′ + u3v − f v) = 0 ∀v ∈ H 1(0, 1).
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6. From the convexity of the function t 
→ t4 we have

1

4
v4 − 1

4
u4 ≥ u3(v − u) ∀u, v ∈ R.

On the other hand, we clearly have

1

2
v′2 − 1

2
u′2 ≥ u′(v′ − u′) a.e. on (0, 1) ∀u, v ∈ H 1(0, 1).

Thus ∀u, v ∈ H 1(0, 1)

ϕ(v)− ϕ(u) ≥
∫ 1

0
u′(v′ − u′)+

∫ 1

0
u3(v − u)−

∫ 1

0
f (v − u).

If u is a solution of (3) we have

∫ 1

0
u′(v′ − u′)+

∫ 1

0
u3(v − u) =

∫ 1

0
f (v − u) ∀v ∈ H 1(0, 1),

and therefore ϕ(u) ≤ ϕ(v) ∀v ∈ H 1(0, 1).
9. We claim that ψ(v) → +∞ as ‖v‖H 1 → ∞. Indeed, this boils down to showing

that for every constant C the set {v ∈ H 1(0, 1); ψ(v) ≤ C} is bounded in
H 1(0, 1). If ψ(v) ≤ C write

∫ 1

0
f v =

∫ 1

0
f (v − v(0))+ v(0) ≤ ‖f ‖L2

(‖v′‖L2 + |v(0)|) ,

so that ‖v′‖L2 and |v(0)| are bounded (why?). Hence ‖v‖L2 ≤ ‖v′‖L2 + |v(0)|
is also bounded, so that ‖v‖H 1 is bounded. For the uniqueness of the minimizer
check that ψ(u1+u2

2 ) ≤ 1
2 (ψ(u1) + ψ(u2)), and equality holds iff u′

1 = u′
2, and

u1(0) = u2(0), i.e., u1 = u2.
We have

ψ(u+ εv) = 1

2

∫ 1

0
(u′2 + 2εu′v′ + ε2v′2)

+ 1

4

(
u4(0)+ 4εu3(0)v(0)+ · · · + ε4v4(0)

)
−
∫ 1

0
f (u+ εv).

If u is a minimizer of ψ we write ψ(u) ≤ ψ(u+ εv), and obtain

∫ 1

0
(u′v′ − f v)+ u3(0)v(0)+ Bε ≥ 0,

where Bε → 0 as ε → 0. Passing to the limit as ε → 0, and choosing ±v yields

(S1)
∫ 1

0
(u′v′ − f v)+ u3(0)v(0) = 0 ∀v ∈ H 1(0, 1).
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Consequently, u ∈ H 2(0, 1) satisfies

(S2) −u′′ = f a.e. on (0, 1).

Returning to (S1) and using (S2) yields

u′(1)v(1)− u′(0)v(0)+ u3(0)v(0) = 0 ∀v ∈ H 1(0, 1),

so that

(S3) u′(1) = 0, u′(0) = u3(0).

Conversely, any function u satisfying (S2) and (S3) is a minimizer of ψ : the
argument is the same as in question 6. In this case we have an explicit solution.
The general solution of (S2) is given by

u(x) = −
∫ x

0
(x − t)f (t)dt + Ax + B,

and then (S3) is equivalent to

A =
∫ 1

0
f (t)dt, with A = B3.

8.42

2. Differentiating the equation

(S1) v(x) = p1/4(t)u(t)

with respect to t gives

v′(x)p−1/2(t) = 1

4
p−3/4(t)p′(t)u(t)+ p1/4(t)u′(t).

Thus

(S2)
p(t)u′(t) = v′(x)p1/4(t)− 1

4
p′(t)u(t)

= v′(x)p1/4(t)− 1

4
p′(t)p−1/4(t)v(x).

Differentiating (S2) with respect to t gives

(S3) (pu′)′ = v′′(x)p−1/4(t)− 1

4
p′′(t)p−1/4(t)v(x)+ 1

16
p′(t)2p−5/4(t)v(x).

Combining (S3) with the equation −(pu′)′ + qu = μu on (0, 1) yields
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v′′(x)p−1/4(t)− 1

4
p′′(t)p−1/4(t)v(x)+ 1

16
p′(t)2p−5/4(t)v(x)

= (q(t)− μ)p−1/4(t)v(x).

(S4)

Hence v satisfies
−v′′ + a(x)v = μv on (0, L),

where

a(x) = q(t)+ 1

4
p′′(t)− 1

16
p′(t)2p−1(t).



Problems

The numbers in parentheses refer to the chapters in the book whose knowledge is
needed to solve the problem.

PROBLEM 1 (1, 4 only for question 9)

Extreme points; the Krein–Milman theorem

Let E be an n.v.s. and let K ⊂ E be a convex subset. A point a ∈ K is said to be
an extreme point if

tx + (1 − t)y 	= a ∀t ∈ (0, 1), ∀x, y ∈ K with x 	= y.

1. Check that a ∈ K is an extreme point iff the set K\{a} is convex.

2. Let a be an extreme point of K . Let (xi)1≤i≤n be a finite sequence in K and let
(αi)1≤i≤n be a finite sequence of real numbers such that αi > 0 ∀i, ∑αi = 1,
and

∑
αixi = a. Prove that xi = a ∀i.

In what follows we assume thatK ⊂ E is a nonempty compact convex subset
of E. A subsetM ⊂ K is said to be an extreme set ifM is nonempty, closed, and
whenever x, y ∈ K are such that tx + (1 − t)y ∈ M for some t ∈ (0, 1), then
x ∈ M and y ∈ M .

3. Let a ∈ K . Check that a is an extreme point iff {a} is an extreme set.

Our first goal is to show that every extreme set contains at least one extreme
point.

4. Let A ⊂ K be an extreme set and let f ∈ E�. Set

B =
{

x ∈ A; 〈f, x〉 = max
y∈A 〈f, y〉

}

.

Prove that B is an extreme subset of K .

435H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7, © Springer Science+Business Media, LLC 2011
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5. LetM ⊂ K be an extreme set ofK . Consider the collection F of all the extreme
sets of K that are contained in M; F is equipped with the following ordering:

A ≤ B if B ⊂ A.

Prove that F has a maximal element M0.

6. Prove that M0 is reduced to a single point.

[Hint: Use Hahn–Banach and question 4.]

7. Conclude.

8. Prove that K coincides with the closed convex hull of all its extreme points.

[Hint: Argue by contradiction and use Hahn–Banach.]

9. Determine the set E of all the extreme points of BE (= the closed unit ball of E)
in the following cases:

(a) E = �∞,
(b) E = c,
(c) E = c0,
(d) E = �1,
(e) E = �p with 1 < p < ∞,
(f) E = L1(R).

[For the notation see Section 11.3].

PROBLEM 2 (1, 2 only for question B4)

Subdifferentials of convex functions

Let E be an n.v.s. and let ϕ : E → (−∞, +∞] be a convex function such that
ϕ 	≡ +∞. For every x ∈ E the subdifferential of ϕ is defined by

{
∂ϕ(x) = {f ∈ E�;ϕ(y)− ϕ(x) ≥ 〈f, y − x〉 ∀y ∈ E} if x ∈ D(ϕ),
∂ϕ(x) = ∅ if x /∈ D(ϕ),

and we set
D(∂ϕ) = {x ∈ E; ∂ϕ(x) 	= ∅},

so that D(∂ϕ) ⊂ D(ϕ). Construct an example for which this inclusion is strict.

- A -

1. Show that ∂ϕ(x) is a closed convex subset of E�.

2. Let x1, x2 ∈ D(∂ϕ), f1 ∈ ∂ϕ(x1), and f2 ∈ ∂ϕ(x2). Prove that

〈f1 − f2, x1 − x2〉 ≥ 0.
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3. Prove that
f ∈ ∂ϕ(x) ⇐⇒ ϕ(x)+ ϕ�(f ) = 〈f, x〉.

4. Determine ∂ϕ in the following cases:

(a) ϕ(x) = 1
2‖x‖2,

(b) ϕ(x) = ‖x‖,
(c) ϕ(x) = IK(x) (the indicator function of K), where K ⊂ E is a nonempty

convex set (resp. a linear subspace),
(d) ϕ(x) is a differentiable convex function on E.

[Hint: In the cases (a), (b), ∂ϕ is related to the duality mapF defined in Remark 2
of Chapter 1; see also Exercise 1.1.]

5. Let ψ : E → (−∞,+∞] be another convex function such that ψ 	≡ +∞.
Assume that D(ϕ) ∩D(ψ) 	= ∅. Prove that

∂ϕ(x)+ ∂ψ(x) ⊂ ∂(ϕ + ψ)(x) ∀x ∈ E
(with the convention that A + B = ∅ if either A = ∅ or B = ∅). Construct an
example for which this inclusion is strict.

- B -

Throughout part B we assume that x0 ∈ E satisfies the assumption

(1) ∃M ∈ R and ∃R > 0 such that ϕ(x) ≤ M ∀x ∈ E with ‖x − x0‖ ≤ R.

1. Prove that ∂ϕ(x0) 	= ∅.
[Hint: Use Hahn–Banach in E × R.]

2. Prove that ‖f ‖ ≤ 1
R
(M − ϕ(x0)) ∀f ∈ ∂ϕ(x0).

3. Deduce that ∀r < R, ∃L ≥ 0 such that

|ϕ(x1)− ϕ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ E with ‖xi − x0‖ ≤ r, i = 1, 2.

[See also Exercise 2.1 for an alternative proof.]

4. Assume here that E is a Banach space and that ϕ is l.s.c. Prove that

IntD(∂ϕ) = IntD(ϕ).

5. Prove that for every y ∈ E one has

lim
t↓0

ϕ(x0 + ty)− ϕ(x0)

t
= max
f∈∂ϕ(x0)

〈f, y〉.
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[Hint: Look at Exercise 1.25, question 5.]

6. Let ψ : E → (−∞, +∞] be a convex function such that x0 ∈ D(ψ). Prove that

∂ϕ(x)+ ∂ψ(x) = ∂(ϕ + ψ)(x) ∀x ∈ E.
[Hint: Given f0 ∈ ∂(ϕ + ψ)(x), apply Theorem 1.12 to the functions ϕ̃(y) =
ϕ(y)− ϕ(x)− 〈f0, y − x〉 and ψ̃(y) = ψ(y)− ψ(x).]

- C -

1. Let ϕ : E → R be a convex function such that ϕ(x) ≤ k‖x‖ + C ∀x ∈ E, for
some constants k ≥ 0 and C. Prove that

|ϕ(x1)− ϕ(x2)| ≤ k‖x1 − x2‖ ∀x1, x2 ∈ E.
What can one say about D(ϕ�)?

2. Let A ⊂ R
n be open and convex. Let ϕ : A → R be a convex function. Prove

that ϕ is continuous on A.

- D -

Let ϕ : E → R be a continuous convex function and let

C = {x ∈ E; ϕ(x) ≤ 0}.
Assume that there exists some x0 ∈ E such that ϕ(x0) < 0. Given x ∈ C prove
that f ∈ ∂IC(x) iff there exists some λ ∈ R such that f ∈ λ∂ϕ(x) with λ = 0 if
ϕ(x) < 0, and λ ≥ 0 if ϕ(x) = 0.

PROBLEM 3 (1)

The theorems of Ekeland, Brönsted–Rockafellar,
and Bishop–Phelps; the ε-subdifferential

- A -

LetM be a nonempty complete metric space equipped with the distance d(x, y).
Let ψ : M → (−∞,+∞] be an l.s.c. function that is bounded below and such that
ψ 	≡ +∞. Our goal is to prove that there exists some a ∈ M such that

ψ(x)− ψ(a)+ d(x, a) ≥ 0 ∀x ∈ M.
Given x ∈ M set

S(x) = {y ∈ M; ψ(y)− ψ(x)+ d(x, y) ≤ 0}.

1. Check that x ∈ S(x), and that y ∈ S(x) ⇒ S(y) ⊂ S(x).



Problems 439

2. Fix any sequence of real numbers (εn) with εn > 0 ∀n and εn → 0. Given
x0 ∈ M , one constructs by induction a sequence (xn) as follows: once xn is
known, pick any element xn+1 satisfying

⎧
⎨

⎩

xn+1 ∈ S(xn),
ψ(xn+1) ≤ inf

x∈S(xn)
ψ(x)+ εn+1.

Check that S(xn+1) ⊂ S(xn) ∀n and that

ψ(xn+p)− ψ(xn)+ d(xn, xn+p) ≤ 0 ∀n, ∀p.
Deduce that (xn) is a Cauchy sequence, and so it converges to a limit, denoted
by a.

3. Prove that a satisfies the required property.

[Hint: Given x ∈ M , consider two cases: either x ∈ S(xn) ∀n, or ∃N such that
x /∈ S(xN).]

4. Give a geometric interpretation.

- B -

Let E be a Banach space and let ϕ : E → (−∞,+∞] be a convex l.s.c. function
such that ϕ 	≡ +∞. Given ε > 0 and x ∈ D(ϕ), set

∂εϕ(x) = {f ∈ E�; ϕ(x)+ ϕ�(f )− 〈f, x〉 ≤ ε}.
Check that ∂εϕ(x) 	= ∅.

Our purpose is to show that given any x0 ∈ D(ϕ) and any f0 ∈ ∂εϕ(x0) the
following property holds:

{
∀λ > 0, ∃x1 ∈ D(ϕ) and ∃f1 ∈ E� with f1 ∈ ∂ϕ(x1)

such that ‖x1 − x0‖ ≤ ε/λ and ‖f1 − f0‖ ≤ λ.

(The subdifferential ∂ϕ is defined in Problem 2; it is recommended to solve Problem 2
before this one.)

1. Consider the function ψ defined by

ψ(x) = ϕ(x)+ ϕ�(f0)− 〈f0, x〉.
Prove that there exists some x1 ∈ E such that ‖x1 − x0‖ ≤ ε/λ and

ψ(x)− ψ(x1)+ λ‖x − x1‖ ≥ 0 ∀x ∈ E.
[Hint: Use the result of part A on the set
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M = {x ∈ E;ψ(x) ≤ ψ(x0)− λ‖x − x0‖}.]

2. Conclude.

[Hint: Use the result of Problem 2, question B6.]

3. Deduce that
D(∂ϕ) = D(ϕ) and R(∂ϕ) = D(ϕ�),

where R(∂ϕ) = {f ∈ E�; ∃x ∈ D(∂ϕ) such that f ∈ ∂ϕ(x)}.

- C -

Let E be a Banach space and let C ⊂ E be a nonempty closed convex set.

1. Assuming that C is also bounded, prove that the set
{

f ∈ E�; sup
x∈C

〈f, x〉 is achieved

}

is dense in E�.

[Hint: Apply the results of part B to the function ϕ = IC .]

2. One says that a closed hyperplane H of E is a supporting hyperplane to C at a
point x ∈ C ifH separates C and {x}. Prove that the set of points in C that admit
a supporting hyperplane is dense in the boundary of C(= C \ IntC).

PROBLEM 4 (1)

Asplund’s theorem and strictly convex norms

Let E be an n.v.s. and let ϕ0, ψ0 : E → [0,∞) be two convex functions such
that ϕ0(0) = ψ0(0) = 0 and 0 ≤ ψ0(x) ≤ ϕ0(x) ∀x ∈ E. Starting with ϕ0 and ψ0
one defines by induction two sequences of functions (ϕn) and (ψn) as follows:

ϕn+1(x) = 1

2
(ϕn(x)+ ψn(x))

and

ψn+1(x) = 1

2
inf
y∈E{ϕn(x + y)+ ψn(x − y)} = 1

2
(ϕn∇ψn)(2x).

[Before starting this problem solve Exercise 1.23, which deals with the inf-convolu-
tion ∇.]

- A -

1. Check that 0 ≤ ψn(x) ≤ ϕn(x) ∀x ∈ E, ∀n and that ϕn(0) = ψn(0) = 0.
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2. Check that ϕn and ψn are convex.

3. Prove that the sequence (ϕn) is nonincreasing and that the sequence (ψn) is
nondecreasing. Deduce that (ϕn) and (ψn) have a common limit, denoted by θ ,
with ψ0 ≤ θ ≤ ϕ0, and that θ is convex.

4. Prove that ϕ�n ↑ θ�.
5. Prove that ψ�n+1 = 1

2 (ϕ
�
n + ψ�n), and deduce that ψ�n ↓ θ� when D(ψ�0 ) = E�.

6. Assume that there exists some x0 ∈ D(ϕ0) such that ϕ0 is continuous at x0. Prove
that ϕn and ψn are also continuous at x0.

[Hint: Apply question 2 of Exercise 2.1.]

Deduce that

ϕ�n+1(f ) = 1

2
inf
g∈E�{ϕ

�
n(f + g)+ ψ�n(f − g)}.

- B -

Let ϕ : E → [0,+∞) be a convex function that is homogeneous of order two,
i.e., ϕ(λx) = λ2ϕ(x) ∀λ ∈ R, ∀x ∈ E. Prove that

ϕ(x + y) ≤ 1

t
ϕ(x)+ 1

1 − t
ϕ(y) ∀x, y ∈ E, ∀t ∈ (0, 1).

Deduce that the function x 
→ √
ϕ(x) is a seminorm and conversely. Establish

also that

(1) 4ϕ(x) ≤ 1

t
ϕ(x + y)+ 1

1 − t
ϕ(x − y) ∀x, y ∈ E, ∀t ∈ (0, 1).

In what follows we assume, in addition, that ϕ0 andψ0 are homogeneous of order
two and that there is a constant C > 0 such that

ϕ0(x) ≤ (1 + C)ψ0(x) ∀x ∈ E.
1. Check that ϕn,ψn, and θ are homogeneous of order two.

2. Prove that for every n, one has

ϕn(x) ≤
(

1 + C

4n

)

ψn(x) ∀x ∈ E.

[Hint: Argue by induction and use (1).]

3. Assuming that either ϕ0 or ψ0 is strictly convex, prove that θ is strictly convex
(for the definition of a strictly convex function, see Exercise 1.26).
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[Hint: Use the inequality established in question B2. It is convenient to split ϕn
as ϕn = θn + 1

2n ϕ0, where θn is some convex function that one should not try to
write down explicitly. Note that

θn +
(

1

2n
− C

4n

)

ϕ0 ≤ θ ≤ θn + 1

2n
ϕ0.]

- C -

Assume that there exist on E two equivalent norms denoted by ‖ ‖1 and ‖ ‖2. Let
‖ ‖�1 and ‖ ‖�2 denote the corresponding dual norms on E�. Assume that the norms
‖ ‖1 and ‖ ‖�2 are strictly convex. Using the above results, prove that there exists a
third norm ‖ ‖, equivalent to ‖ ‖1 (and to ‖ ‖2), that is strictly convex as well as its
dual norm ‖ ‖�.

PROBLEM 5 (1, 2)

Positive linear functionals

Let E be an n.v.s. and let P be a convex cone with vertex at 0, i.e., λx +μy ∈ P ,
∀x, y ∈ P , ∀λ,μ > 0. Set F = P − P , so that F is a linear subspace. Consider the
following two properties:

(i) Every linear functional f onE such that f (x) ≥ 0 ∀x ∈ P , is continuous onE.
(ii) F is a closed subspace of finite codimension.

The goal of this problem is to show that (i) ⇒ (ii) and that conversely, (ii) ⇒ (i)
when E is a Banach space and P is closed.

- A -

Throughout part A we assume (i).

1. Prove that F is closed.

[Hint: Given any x0 /∈ F , construct a linear functional f onE such that f (x0) =
1 and f = 0 on F .]

2. LetM be any linear subspace of E such thatM ∩F = {0}. Prove that dimM <

+∞.

[Hint: Use Exercise 1.5.]

3. Deduce that (i) ⇒ (ii).

- B -

Throughout part B we assume that E is a Banach space and that P is closed.

1. Assume here in addition that

(iii) P − P = E.
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Prove that there exists a constant C > 0 such that every x ∈ E has a decompo-
sition x = y − z with y, z ∈ P, ‖y‖ ≤ C‖x‖ and ‖z‖ ≤ C‖x‖.

[Hint: Consider the set

K = {x = y − z with y, z ∈ P, ‖y‖ ≤ 1 and ‖z‖ ≤ 1}
and follow the idea of the proof of the open mapping theorem (Theorem 2.6).]

2. Deduce that (iii) ⇒ (i).

[Hint: Argue by contradiction and consider a sequence (xn) in E such that
‖xn‖ ≤ 1/2n and f (xn) ≥ 1. Then, use the result of question B1.]

3. Prove that (ii) ⇒ (i).

- C -

In the following examples determine F = P − P and examine whether (i) or (ii)
holds:

(a) E = C([0, 1]) with its usual norm and

P = {u ∈ E; u(t) ≥ 0 ∀t ∈ [0, 1]},
(b) E = C([0, 1]) with its usual norm and

P = {u ∈ E; u(t) ≥ 0 ∀t ∈ [0, 1], and u(0) = u(1) = 0},
(c) E = {u ∈ C1([0, 1]); u(0) = u(1) = 0} with its usual norm and

P = {u ∈ E; u(t) ≥ 0 ∀t ∈ [0, 1]}.

PROBLEM 6 (1, 2)

Let E be a Banach space and let A : D(A) ⊂ E → E� be a closed unbounded
operator satisfying

〈Ax, x〉 ≥ 0 ∀x ∈ D(A).

- A -

Our purpose is to show that the following properties are equivalent:

(i) ∀x ∈ D(A), ∃C(x) ∈ R such that 〈Ay, y − x〉 ≥ C(x) ∀y ∈ D(A),
(ii) ∃k ≥ 0 such that

|〈Ay, x〉| ≤ k(‖x‖ + ‖Ax‖)√〈Ay, y〉 ∀x, y ∈ D(A).
1. Prove that (ii) ⇒ (i).
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Conversely, assume (i).

2. Prove that there exist two constants R > 0 and M ≥ 0 such that

〈Ay, x − y〉 ≤ M ∀y ∈ D(A) and ∀x ∈ D(A) with ‖x‖ + ‖Ax‖ ≤ R.

[Hint: Consider the function ϕ(x) = supy∈D(A)〈Ay, x − y〉 and apply Exer-
cise 2.1.]

3. Deduce that

|〈Ay, x〉|2 ≤ 4M〈Ay, y〉 ∀y ∈ D(A) and ∀x ∈ D(A)with‖x‖+‖Ax‖ ≤ R.

4. Conclude.

- B -

In what follows assume that D(A) = E. Let α > 0.

1. Prove that the following properties are equivalent:

‖Ay‖ ≤ α
√〈Ay, y〉 ∀y ∈ E,(iii)

〈Ay, y − x〉 ≥ −1

4
α2‖x‖2 ∀x, y ∈ E.(iv)

[Hint: Use the same method as in part A.]

2. Let A� ∈ L(E��, E�) be the adjoint of A. Prove that (iv) is equivalent to

(iv�) 〈A�y, y − x〉 ≥ −1

4
α2‖x‖2 ∀x, y ∈ E.

3. Deduce that (iii) is equivalent to

(iii�) ‖A�y‖ ≤ α
√〈A�y, y〉 ∀y ∈ E.

PROBLEM 7 (1, 2)

The adjoint of the sum of two unbounded linear operators

Let E be a Banach space. Given two closed linear subspace M and N in E, set

ρ(M,N) = sup
x∈M‖x‖≤1

dist(x,N).

- A -

1. Check that ρ(M,N) ≤ 1; if, in addition, N ⊂ M with N 	= M , prove that
ρ(M,N) = 1.
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[Hint: Use Lemma 6.1.]

2. Let L,M , and N be three closed linear subspaces.
Set a = ρ(M,N) and b = ρ(N,L). Prove that ρ(M,L) ≤ a + b + ab.
Deduce that if L ⊂ M , a ≤ 1/3, and b ≤ 1/3, then L = M .

3. Prove that ρ(M,N) = ρ(N⊥,M⊥).

[Hint: Check with the help of Theorem 1.12 that ∀x ∈ E and ∀f ∈ E�

dist(x,N) = sup
g∈N⊥
‖g‖≤1

〈g, x〉 and dist(f,M⊥) = sup
y∈M
‖y‖≤1

〈f, y〉.]

- B -

LetE andF be two Banach spaces;E×F is equipped with the norm ‖[u, v]‖E×F =
‖u‖E+‖v‖F . Given two unbounded operatorsA : D(A) ⊂ E → F andB : D(B) ⊂
E → F that are densely defined and closed, set

ρ(A,B) = ρ(G(A),G(B)).

1. Prove that ρ(A,B) = ρ(B�,A�).

2. Prove that if D(A) ∩D(B) is dense in E, then

A� + B� ⊂ (A+ B)�.

[Recall that D(A+ B) = D(A) ∩D(B) and D(A� + B�) = D(A�) ∩D(B�).]
It may happen that the inclusion A� + B� ⊂ (A + B)� is strict—construct such
an example. Our purpose is to prove that equality holds under some additional
assumptions.

3. Assume

(H)

{
D(A) ⊂ D(B) and there exist constants k ∈ [0, 1) and C ≥ 0

such that ‖Bu‖ ≤ k‖Au‖ + C‖u‖ ∀u ∈ D(A).
Prove that A+ B is closed and that ρ(A,A+ B) ≤ k + C.

4. In addition to (H) assume also

(H�)

{
D(A�) ⊂ D(B�) and there exist constants k� ∈ [0, 1) and

C� ≥ 0 such that ‖B�v‖ ≤ k�‖A�v‖ + C�‖v‖ ∀v ∈ D(A�).
Let ε > 0 be such that ε(k + C) ≤ 1/3 and ε(k� + C�) ≤ 1/3.

Prove that A+ εB� = A� + εB�.
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5. Assuming (H) and (H�) prove that (A+ B)� = A� + B�.

[Hint: Use successive steps. Check that the following inequality holds ∀t ∈
[0, 1] :

‖Bu‖ ≤ k

1 − k
‖Au+ tBu‖ + C

1 − k
‖u‖ ∀u ∈ D(A).]

PROBLEM 8 (2, 3, 4 only for question 6)

Weak convergence in �1. Schur’s theorem.

Let E = �1, so that E� = �∞ (see Section 11.3). Given x ∈ E write

x = (x1, x2, . . . , xi, . . . ) and ‖x‖1 =
∞∑

i=1

|xi |,

and given f ∈ E� write

f = (f1, f2, . . . , fi, . . . ) and ‖f ‖∞ = sup
i

|fi |.

Let (xn) be a sequence in E such that xn ⇀ 0 weakly σ(E,E�). Our goal is to
show that ‖xn‖1 → 0.

1. Given f, g ∈ BE� (i.e., ‖f ‖∞ ≤ 1 and ‖g‖∞ ≤ 1) set

d(f, g) =
∞∑

i=1

1

2i
|fi − gi |.

Check that d is a metric on BE� and that BE� is compact for the corresponding
topology.

2. Given ε > 0 set

Fk = {f ∈ BE�; |〈f, xn〉| ≤ ε ∀n ≥ k}.
Prove that there exist some f 0 ∈ BE� , a constant ρ > 0, and an integer k0 such
that

[f ∈ BE� and d(f, f 0) < ρ] ⇒ [f ∈ Fk0 ].

[Hint: Use Baire category theorem.]

3. Fix an integer N such that (1/2N−1) < ρ. Prove that

‖xn‖1 ≤ ε + 2
N∑

i=1

|xni | ∀n ≥ k0.
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4. Conclude.

5. Using a similar method prove that if (xn) is a sequence in �1 such that for every
f ∈ �∞ the sequence (〈f, xn〉) converges to some limit, then (xn) converges to a
limit strongly in �1.

6. Consider E = L1(0, 1), so that E� = L∞(0, 1). Construct a sequence (un) in E
such that un ⇀ 0 weakly σ(E,E�) and such that ‖un‖1 = 1 ∀n.

PROBLEM 9 (1, 2, 3)

Hahn–Banach for the weak� topology and applications

Let E be a Banach space.

- A -

1. Let A ⊂ E� and B ⊂ E� be two nonempty convex sets such that A ∩ B = ∅.
Assume that A is open in the topology σ(E�,E). Prove that there exist some
x ∈ E, x 	= 0, and a constant α such that the hyperplane {f ∈ E�; 〈f, x〉 = α}
separates A and B.

2. Assume thatA ⊂ E� is closed in σ(E�,E) and B ⊂ E� is compact in σ(E�,E).
Prove that A+ B is closed in σ(E�,E).

3. Let A ⊂ E� and B ⊂ E� be two nonempty convex sets such that A ∩ B = ∅.
Assume that A is closed in σ(E�,E) and B is compact in σ(E�,E). Prove that
there exist some x ∈ E, x 	= 0, and a constantα such that the hyperplane {f ∈ E�;
〈f, x〉 = α} strictly separates A and B.

4. Let A ⊂ E� be convex. Prove that A
σ(E�,E)

, the closure of A in σ(E�,E), is
convex.

- B -

Here are various applications of the above results:

1. Let N ⊂ E� be a linear subspace. Recall that

N⊥ = {x ∈ E; 〈f, x〉 = 0 ∀f ∈ N}
and

N⊥⊥ = {f ∈ E�; 〈f, x〉 = 0 ∀x ∈ N⊥}.
Prove that N⊥⊥ = N

σ(E�,E)
.

What can one say if E is reflexive?

Deduce that c0 is dense in �∞ in the topology σ(�∞, �1).

2. Let ϕ : E → (−∞,+∞] be a convex l.s.c. function, ϕ 	≡ +∞. Prove that
ψ = ϕ� is l.s.c. in the topology σ(E�,E).
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Conversely, given a convex function ψ : E� → (−∞,+∞] that is l.s.c. for the
topology σ(E�,E) and such thatψ 	≡ +∞, prove that there exists a convex l.s.c.
function ϕ : E → (−∞,+∞], ϕ 	≡ +∞, such that ψ = ϕ�.

3. Let F be another Banach space and let A : D(A) ⊂ E → F be an unbounded
linear operator that is densely defined and closed. Prove that

(i) R(A�)
σ(E�,E) = N(A)⊥,

(ii) D(A�)
σ(F �,F ) = F�.

What can one say if E (resp. F ) is reflexive?

4. Prove—without the help of Lemma 3.3—that J (BE) is dense in BE�� in the
topology σ(E��, E�) (see Lemma 3.4).

5. Let A : BE → E� be a monotone map, that is,

〈Ax − Ay, x − y〉 ≥ 0 ∀x, y ∈ BE.

Set SE = {x ∈ E; ‖x‖ = 1}. Prove that A(BE) ⊂ convA(SE)
σ(E�,E)

.

PROBLEM 10 (3)

The Eberlein–Šmulian theorem

Let E be a Banach space and let A ⊂ E. Set B = A
σ(E,E�)

. The goal of this
problem is to show that the following properties are equivalent:

(P) B is compact in the topology σ(E,E�).

(Q) Every sequence (xn) in A has a weakly convergent subsequence.

Moreover, (P) (or (Q)) implies the following property:

(R)

{
For every y ∈ B there exists a sequence (yn) ⊂ A

such that yn ⇀ y weakly σ(E,E�).

- A -

Proof of the claim (P) ⇒ (Q).

1. Prove that (P) ⇒ (Q) under the additional assumption that E is separable.

[Hint: Consider a set (bk) in BE� that is countable and dense in BE� for the
topologyσ(E�,E) (why does such a set exist?). Check that the quantity d(x, y) =∑∞
k=1

1
2k

|〈bk , x − y〉| is a metric and deduce that B is metrizable for σ(E,E�).]

2. Show that (P) ⇒ (Q) in the general case.

[Hint: Use question A1.]
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- B -

For later purpose we shall need the following:

Lemma. Let F be an n.v.s. and let M ⊂ F� be a finite-dimensional vector space.
Then there exists a finite subset (ai)1≤i≤k in BF such that

max
1≤i≤k〈g, ai〉 ≥ 1

2
‖g‖ ∀g ∈ M.

[Hint: First choose points (gi)1≤i≤k in SM such that SM ⊂ ⋃k
i=1 B(gi, 1/4),

where SM = {g ∈ M; ‖g‖ = 1}.]
- C -

Let ξ ∈ E�� be such that ξ ∈ A
σ(E��,E�)

. Using assumption (Q) we shall prove
that ξ ∈ B and that there exists a sequence (yk) ⊂ A such that yk ⇀ ξ in σ(E,E�).

1. Set n1 = 1 and fix any f1 ∈ BE� . Prove that there exists some x1 ∈ A such that

|〈ξ, f1〉 − 〈f1, x1〉| < 1.

2. Let M1 = [ξ, x1] be the linear space spanned by ξ and x1. Prove that there exist
(fi)1<i≤n2 in BE� such that

max
1<i≤n2

〈η, fi〉 ≥ 1

2
‖η‖ ∀η ∈ M1.

Prove that there exists some x2 ∈ A such that

|〈ξ, fi〉 − 〈fi, x2〉| < 1

2
∀i, 1 ≤ i ≤ n2.

3. Iterating the above construction, we obtain two sequences (xk) ⊂ A and (fi) ⊂
BE� , and an increasing sequence of integers (nk) such that

max
nk<i≤nk+1

〈η, fi〉 ≥ 1

2
‖η‖ ∀η ∈ Mk = [ξ, x1, x2, . . . , xk],(a)

|〈ξ, fi〉 − 〈fi, xk+1〉| < 1

k + 1
∀i, 1 ≤ i ≤ nk+1.(b)

4. Deduce from (a) that

sup
i≥1

〈η, fi〉 ≥ 1

2
‖η‖ ∀η ∈

∞⋃

k=1

Mk = M

and then that

sup
i≥1

〈η, fi〉 ≥ 1

2
‖η‖ ∀η ∈ M,
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where M denotes the closure of M in E��, in the strong topology.

5. Using (b) and assumption (Q), prove that there exists some x ∈ B ∩M such that

〈ξ, fi〉 = 〈fi, x〉 ∀i ≥ 1.

Deduce that ξ = x and conclude.

- D -

1. Prove that (Q) ⇒ (P).
2. Prove that (Q) ⇒ (R).

PROBLEM 11 (3)

A theorem of Banach–Dieudonné–Krein–Šmulian

Let E be a Banach space and let C ⊂ E� be a convex set. Assume that for each
integer n, the set C ∩ (nBE�) is closed in the topology σ(E�,E). The goal of this
problem is to show that C is closed in the topology σ(E�,E).

- A -

Suppose, in addition, that 0 /∈ C. We shall prove that there exists a sequence (xn)
in E such that

(1) ‖xn‖ → 0 and sup
n

〈f, xn〉 > 1 ∀f ∈ C.

Let d = dist(0, C) and consider a sequence dn ↑ +∞ such that d1 > d . Set

Ck = {f ∈ C; ‖f ‖ ≤ dk}.
1. Check that the sets Ck are compact in the topology σ(E�,E). Prove that there

exists some f0 ∈ C such that d = ‖f0‖ > 0.

2. Prove that there exists some x1 ∈ E such that

〈f, x1〉 > 1 ∀f ∈ C1.

[Hint: Use Hahn–Banach for the weak� topology; see question A3 of Prob-
lem 9.]

3. SetA1 = {x1}. Prove that there exists a finite subsetA2 ⊂ E such thatA2 ⊂ 1
d1
BE

and supx∈A1∪A2
〈f, x〉 > 1 ∀f ∈ C2.

[Hint: For each finite subset A ⊂ E such that A ⊂ 1
d1
BE consider the set

YA =
{

f ∈ C2; sup
x∈A1∪A

〈f, x〉 ≤ 1

}

,
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and prove first that ∩A YA = ∅.]

4. Construct, by induction, a finite subset Ak ⊂ E such that

Ak ⊂ 1

dk−1
BE and sup

x∈∪ki=1Ai

〈f, x〉 > 1 ∀f ∈ Ck.

5. Construct a sequence (xn) satisfying (1).

- B -

1. Assume once more that 0 /∈ C. Prove that there exists some x ∈ E such that

〈f, x〉 ≥ 1 ∀f ∈ C.
[Hint: Let (xn) be a sequence satisfying (1). Consider the operator T : E� → c0
defined by T (f ) = (〈f, xn〉)n and separate (in c0) T (C) and the open unit ball of
c0.]

2. Conclude.

PROBLEM 12 (1, 2, 3)

Before starting this problem it is necessary to solve Exercise 1.23.

Let E be a reflexive Banach space and let ϕ,ψ : E → (−∞,+∞] be convex
l.s.c. functions such that D(ϕ) ∩D(ψ) 	= ∅. Set θ = ϕ�∇ψ�.

- A -

We claim that
D((ϕ + ψ)�) = D(ϕ�)+D(ψ�).

1. Prove that D(ϕ�)+D(ψ�) ⊂ D((ϕ + ψ)�).

2. Prove that θ maps E� into (−∞,+∞], θ is convex, D(θ) = D(ϕ�) + D(ψ�)

and θ� = ϕ + ψ .

3. Deduce that D((ϕ + ψ)�) = D(θ) and conclude.

- B -

Assume, in addition, that ϕ and ψ satisfy

(H)
⋃

λ≥0

λ(D(ϕ)−D(ψ)) = E.

We claim that

(ϕ + ψ)� = ϕ�∇ψ�,(i)
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inf
x∈E{ϕ(x)+ ψ(x)} = max

g∈E�{−ϕ
�(−g)− ψ�(g)},(ii)

D((ϕ + ψ)�) = D(ϕ�)+D(ψ�).(iii)

1. Prove that for every fixed f ∈ E� and α ∈ R the set

M = {g ∈ E�; ϕ�(f − g)+ ψ�(g) ≤ α}
is bounded.
[Hint: Use assumption (H) and Corollary 2.5.]

2. Let α ∈ R be fixed. Let (fn) and (gn) be two sequences in E� such that (fn) is
bounded and ϕ�(fn − gn)+ ψ�(gn) ≤ α. Prove that (gn) is bounded.

3. Deduce that θ is l.s.c.

4. Prove (i), (ii), and (iii).
Compare these results with question 3 of Exercise 1.23 and with Theorem 1.12.

PROBLEM 13 (1, 3)

Properties of the duality map. Uniform
convexity. Differentiability of the norm

Let E be a Banach space. Recall the definition of the duality map (see Remark 2
in Chapter 1): For every x ∈ E,

F(x) = {f ∈ E�; ‖f ‖ = ‖x‖ and 〈f, x〉 = ‖x‖2}.
Before starting this problem it is useful to solve Exercises 1.1 and 1.25.

- A -

Assume that E� is strictly convex, so that F(x) consists of a single element.

1. Check that

lim
λ→0

1

2λ
(‖x + λy‖2 − ‖x‖2) = 〈Fx, y〉 ∀x, y ∈ E.

[Hint: Apply a result of Exercise 1.25; distinguish the cases λ > 0 and λ < 0.]

2. Prove that for every x, y ∈ E, the map t ∈ R 
→ 〈F(x + ty), y〉 is continuous at
t = 0.

[Hint: Use the inequality 1
2 (‖v‖2 − ‖u‖2) ≥ 〈Fu, v − u〉 with u = x + ty and

v = x + λy.]

3. Deduce that F is continuous from E strong into E� weak�.

[Hint: Use the result of Exercise 3.11.]
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Prove the same result by a simple direct method in the case that E is reflexive or
separable.

4. Check that

〈Fx + Fy, x + y〉 + 〈Fx − Fy, x − y〉 = 2(‖x‖2 + ‖y‖2) ∀x, y ∈ E.
Deduce that

‖Fx + Fy‖ + ‖x − y‖ ≥ 2 ∀x, y ∈ E with ‖x‖ = ‖y‖ = 1.

5. Assume, in addition, thatE is reflexive and strictly convex. Prove thatF is bijective
from E onto E�. Check that F−1 coincides with the duality map of E�.

- B -

In this part we assume that E� is uniformly convex.

1. Prove that F is continuous from E strong into E� strong.

2. More precisely, prove that F is uniformly continuous on bounded sets of E.

[Hint: Argue by contradiction and apply question A4.]

3. Deduce that the function ϕ(x) = 1
2‖x‖2 is differentiable and that its differential

is F , i.e., for every x0 ∈ E we have

lim
x→x0
x 	=x0

ϕ(x)− ϕ(x0)− 〈Fx0, x − x0〉
‖x − x0‖ = 0.

- C -
Conversely, assume that for every x ∈ E, the set Fx consists of a single element

and that F is uniformly continuous on bounded sets ofE. Prove thatE� is uniformly
convex.

[Hint: Prove first the inequality

‖f + g‖ ≤ 1

2
‖f ‖2 + 1

2
‖g‖2 − 〈f − g, y〉+ sup

x∈E‖x‖≤1

{ϕ(x + y)+ ϕ(x − y)}

∀y ∈ E, ∀f, g ∈ E�.]

PROBLEM 14 (1, 3)

Regularization of convex functions by inf-convolution

LetE be a Banach space such thatE� is uniformly convex. Assume that ϕ : E →
(−∞,+∞] is convex l.s.c. and ϕ 	≡ +∞. The goal of this problem is to show that
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there exists a sequence (ϕn) of differentiable convex functions such that ϕn ↑ ϕ as
n ↑ +∞.

- A -

For each fixed x ∈ E consider the function 
x : E� → (−∞,+∞] defined by


x(f ) = 1

2
‖f ‖2 + ϕ�(f )− 〈f, x〉, f ∈ E�.

1. Check that there exists a unique element fx ∈ E� such that


x(fx) = inf
f∈E� 
x(f ).

Set Sx = fx .

2. Prove that the map x 
→ Sx is continuous from E strong into E� strong.

[Hint: Prove first that S is continuous from E strong into E� weak�.]

- B -

Consider the function ψ : E → R defined by

ψ(x) = ψ(x) = inf
y∈E

{
1

2
‖x − y‖2 + ϕ(y)

}

.

We claim that ψ is convex, differentiable, and that its differential coincides with S.

1. Check that ψ is convex and that

ψ(x) = − min
f∈E�

{
1

2
‖f ‖2 + ϕ�(f )− 〈f, x〉

}

∀x ∈ E,(i)

ψ�(f ) = 1

2
‖f ‖2 + ϕ�(f ) ∀f ∈ E�.(ii)

[Hint: Apply Theorem 1.12.]

2. Deduce that
ψ(x)+ ψ�(Sx) = 〈Sx, x〉 ∀x ∈ E

and that

|ψ(y)− ψ(x)− 〈Sx, y − x〉| ≤ ‖Sy − Sx‖ ‖y − x‖ ∀x, y ∈ E.

3. Conclude.

- C -

For each integer n ≥ 1 and every x ∈ E set
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ϕn(x) = inf
y∈E

{n

2
‖x − y‖2 + ϕ(y)

}
.

Prove that ϕn is convex, differentiable, and that for every x ∈ E, ϕn(x) ↑ ϕ(x) as
n ↑ +∞.

[Hint: Use the same method as in Exercise 1.24.]

PROBLEM 15 (1, 5 for question B6)

Center of a set in the sense of Chebyshev. Normal structure.
Asymptotic center of a sequence in the sense of Edelstein. Fixed points

of contractions following Kirk, Browder, Göhde, and Edelstein.

Before starting this problem it is useful to solve Exercise 3.29.

Let E be a uniformly convex Banach space and let C ⊂ E be a nonempty closed
convex set.

- A -

Let A ⊂ C be a nonempty bounded set. For every x ∈ E define

ϕ(x) = sup
y∈A

‖x − y‖.

1. Check that ϕ is a convex function and that

|ϕ(x1)− ϕ(x2)| ≤ ‖x1 − x2‖ ∀x1, x2 ∈ E.

2. Prove that there exists a unique element c ∈ C such that

ϕ(c) = inf
x∈C ϕ(x).

The point c is called the center of A and is denoted by c = σ(A).

3. Prove that if A is not reduced to a single point then

ϕ(σ(A)) < diamA = sup
x,y∈A

‖x − y‖.

- B -

Let (an) be a bounded sequence in C; set

An =
∞⋃

i=n
{ai} and ϕn(x) = sup

y∈An
‖x − y‖ for x ∈ E.

1. For every x ∈ E, consider ϕ(x) = limn→+∞ ϕn(x). Prove that this limit exists
and that ϕ is convex and continuous on E.
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2. Prove that there exists a unique element σ ∈ C such that

ϕ(σ) = inf
x∈C ϕ(x).

The point σ is called the asymptotic center of the sequence (an).

3. Let σn = σ(An) be the center of the set An in the sense of question A2. Prove
that

lim
n→∞ϕn(σn) = lim

n→∞ϕ(σn) = ϕ(σ),

and that σn ⇀ σ weakly σ(E,E�).

4. Deduce that σn → σ strongly.

[Hint: Argue by contradiction and apply the result of Exercise 3.29.]

5. Assume an → a strongly. Determine the asymptotic center of the sequence (an).

6. Assume here thatE is a Hilbert space and that an ⇀ aweaklyσ(E,E�). Compute
ϕ(x) and determine the asymptotic center of the sequence (an).
[Hint: Expand squares of norms.]

- C -

Assume that T : C → C is a contraction, that is,

‖T x − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.
Let a ∈ C be given and let an = T na be the sequence of its iterates. Assume that

the sequence (an) is bounded. Let σ be the asymptotic center of the sequence (an).

1. Prove that σ is a fixed point of T , i.e., T σ = σ .

2. Check that the set of fixed points of T is closed and convex.

PROBLEM 16 (2, 3)

Characterization of linear maximal monotone operators

Let E be a Banach space and let A : D(A) ⊂ E → E� be an unbounded linear
operator satisfying the monotonicity condition

(M) 〈Au, u〉 ≥ 0 ∀u ∈ D(A).
We denote by (P) the following property:

(P)

⎧
⎪⎨

⎪⎩

If x ∈ E and f ∈ E� are such that

〈Au− f, u− x〉 ≥ 0 ∀u ∈ D(A),
then x ∈ D(A) and Ax = f .
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- A -

1. Prove that if (P) holds then D(A) is dense in E.

[Hint: Show that if f ∈ E� and 〈f, u〉 = 0 ∀u ∈ D(A), then f = 0.]

2. Prove that if (P) holds then A is closed.

3. Prove that the function u ∈ D(A) 
→ 〈Au, u〉 is convex.

4. Prove that N(A) ⊂ R(A)⊥. Deduce that if D(A) is dense in E then N(A) ⊂
N(A�).

5. Prove that if D(A) = E, then (P) holds.

Throughout the rest of this problem we assume, in addition, that

(i) E is reflexive, E and E� are strictly convex,
(ii) D(A) is dense in E and A is closed,

so that A� : D(A�) ⊂ E → E� and D(A�) is dense in E (why?).

The goal of this problem is to establish the equivalence (P) ⇔ (M�), where (M�)
denotes the following property:

(M�) 〈A�v, v〉 ≥ 0 ∀v ∈ D(A�).

- B -

In this section we assume that (P) holds.

1. Prove that
〈A�v, v〉 ≥ 0 ∀v ∈ D(A) ∩D(A�).

2. Let v ∈ D(A�) with v /∈ D(A). Prove that ∀f ∈ E�, ∃u ∈ D(A) such that

〈Au− f, u− v〉 < 0.

Choosing f = −A�v, prove that 〈A�v, v〉 > 0. Deduce that (M�) holds.

3. Prove that N(A) = N(A�) and R(A) = R(A�).

- C -

In this part we assume that (M�) holds.

1. Check that the space D(A) equipped with the graph norm ‖u‖D(A) = ‖u‖E +
‖Au‖E� is reflexive.

2. Given x ∈ E and f ∈ E�, consider the function ϕ defined on D(A) by

ϕ(u) = 1

2
‖Au− f ‖2 + 1

2
‖u− x‖2 + 〈Au− f, u− x〉.
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Prove that ϕ is convex and continuous on D(A).
Prove that ϕ(u) → +∞ as ‖u‖D(A) → ∞.

3. Deduce that there exists some u0 ∈ D(A) such that ϕ(u0) ≤ ϕ(u) ∀u ∈ D(A).
What equation (involving A and A�) does one obtain by choosing u = u0 + tv

with v ∈ D(A), t > 0, and letting t → 0?

[Hint: Apply the result of Problem 13, part A.]

4. Prove that (M�) ⇒ (P).

5. Deduce that A� also satisfies property (P).

PROBLEM 17 (1, 3, 4)

- A -

Let E be a reflexive Banach space and let M be a closed linear subspace of E.
Let C be a convex subset of E�. For every u ∈ E set

ϕ(u) = sup
g∈C

〈g, u〉.

1. Prove that for every f ∈ M⊥ + C we have

ϕ(u) ≥ 〈f, u〉 ∀u ∈ M.
[Hint: Start with the case f ∈ M⊥ + C.]

2. Conversely, let f ∈ E� be such that

ϕ(u) ≥ 〈f, u〉 ∀u ∈ M.

Prove that f ∈ M⊥ + C.

[Hint: Use Hahn–Banach.]

3. Assuming that C is closed and bounded, prove that M⊥ + C is closed.

- B -

In this section we assume that E = Lp(�) with 1 < p < ∞,

M =
{

u ∈ Lp(�);
∫

ju = 0

}

,

and
C = {g ∈ Lp′

(�); |g(x)| ≤ k(x) a.e. x ∈ �},
where j and k ≥ 0 are given functions in Lp

′
(�).

1. Check that M is a closed linear subspace and that C is convex, closed, and
bounded.
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2. Determine M⊥.
3. Determine ϕ(u) for every u ∈ Lp(�).
4. Deduce that if f ∈ Lp′

(�) satisfies
∫

k|u| ≥
∫

f u ∀u ∈ M,

then there exist a constant λ ∈ R and a function g ∈ C such that f = λj + g.
5. Prove that the converse also holds.

- C -

LetM ⊂ L1(�) be a linear subspace. Let f , g ∈ L∞(�) be such that f ≤ g a.e.
on �. Prove that the following properties are equivalent:

∃ϕ ∈ M⊥ such that f ≤ ϕ ≤ g a.e. on �,(i)
∫

(f u+ − gu−) ≤ 0 ∀u ∈ M,(ii)

where u+ = max{u, 0} and u− = max{−u, 0}.
[Hint: Assuming (ii), check that

∫
(g + f )u ≤ ∫

(g − f )|u| ∀u ∈ M and apply
Theorem I.12 to find some ψ ∈ L∞(�) with |ψ | ≤ g− f , such that ψ − (g+ f ) ∈
M⊥. Take ϕ = 1

2 (g + f − ψ).]

PROBLEM 18 (3, 4)

Let � be a measure space with finite measure. Let 1 < p < ∞. Let g : R → R

be a continuous nondecreasing function such that

|g(t)| ≤ C(|t |p−1 + 1) ∀t ∈ R, for some constant C.

Set G(t) = ∫ t
0 g(s)ds.

1. Check that for every u ∈ Lp(�), we have g(u) ∈ Lp′
(�) and G(u) ∈ L1(�).

Let (un) be a sequence in Lp(�) and let u ∈ Lp(�) be such that

(i) un ⇀ u weakly σ(Lp,Lp
′
)

and

(ii) lim sup
∫

G(un) ≤
∫

G(u).

The purpose of this problem is to establish the following properties:

g(un) → g(u) strongly in Lq for every q ∈ [1, p′),(1)
{

Assuming, in addition, that g is increasing (strictly),

then un → u strongly in Lq for every q ∈ [1, p).(2)
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2. Check that G(a)−G(b)− g(b)(a − b) ≥ 0 ∀a, b ∈ R.

What can one say if G(a)−G(b)− g(b)(a − b) = 0?

3. Let (an) be a sequence in R and let b ∈ R be such that

lim[G(an)−G(b)− g(b)(an − b)] = 0.

Prove that g(an) → g(b).

4. Prove that
∫ |G(un)−G(u)− g(u)(un − u)| → 0.

Deduce that there exists a subsequence (unk ) such that

G(unk )−G(u)− g(u)(unk − u) → 0 a.e. on �

and therefore g(unk ) → g(u) a.e. on �.

5. Prove that (1) holds. (Check (1) for the whole sequence and not only for a subse-
quence.)

6. Prove that (2) holds.

In what follows, we assume, in addition, that there exist constants α > 0 and
C such that

(3) |g(t)| ≥ α|t |p−1 − C ∀t ∈ R.

7. Prove that g(un) → g(u) strongly in Lp
′
.

8. Can one reach the same conclusion without assumption (3)?

9. If, in addition, g is increasing (strictly) prove that un → u strongly in Lp.

PROBLEM 19 (3, 4)

Let E be the space L1(R) ∩ L2(R) equipped with the norm

‖u‖E = ‖u‖1 + ‖u‖2.

1. Check that E is a Banach space. Let f (x) = f1(x) + f2(x) with f1 ∈ L∞(R)
and f2 ∈ L2(R). Check that the mapping u 
→ ∫

R
f (x)u(x)dx is a continuous

linear functional on E.

2. Let 0 < α < 1/2; check that the mapping

u 
→
∫

R

1

|x|α u(x)dx

is a continuous linear functional on E.

[Hint: Split the integral into two parts: [|x| > M] and [|x| ≤ M].]
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3. Set

K =
{

u ∈ E; u ≥ 0 a.e. on R and
∫

R

u(x)dx ≤ 1

}

.

Check that K is a closed convex subset of E.

4. Let (un) be a sequence inK and let u ∈ K be such that un ⇀ uweakly inL2(R).
Check that u ∈ K and prove that

∫

R

1

|x|α un(x)dx →
∫

R

1

|x|α u(x)dx.

Consider the function J defined, for every u ∈ E, by

J (u) =
∫

R

u2(x)dx −
∫

R

1

|x|α u(x)dx.

5. Check that there is a constant C such that J (u) ≥ C ∀u ∈ K .

We claim that m = infu∈K J (u) is achieved.

6. Let (un) be a sequence inK such that J (un) → m. Prove that ‖un‖E is bounded.

7. Let (unk ) be a subsequence such that unk ⇀ u weakly in L2(R). Prove that
J (u) = m.

8. Is E a reflexive space?

PROBLEM 20 (4)

Clarkson’s inequalities. Uniform convexity of Lp

- A -
In this part we assume that 2 ≤ p < ∞ and we shall establish the following

inequalities:

|x + y|p + |x − y|p ≤ 2(|x|p′ + |y|p′
)p/p

′ ∀x, y ∈ R,(1)

2(|x|p′ + |y|p′
)p/p

′ ≤ 2p−1(|x|p + |y|p) ∀x, y ∈ R.(2)

1. Prove (2).

[Hint: Use the convexity of the function g(t) = |t |p/p′
.]

2. Set
f (x) = (1 + x1/p)p + (1 − x1/p)p, x ∈ (0, 1).

Prove that
f ′′(x) ≤ 0 ∀x ∈ (0, 1).

Deduce that
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(3) f (x) ≤ f (y)+ (x − y)f ′(y) ∀x, y ∈ (0, 1).

3. Prove that
f (x) ≤ 2(1 + xp

′/p)p/p
′ ∀x ∈ (0, 1).

[Hint: Use (3) with y = xp
′
.]

4. Deduce (1).

In what follows � denotes a σ -finite measure space.

- B -

In this part we assume again that 2 ≤ p < ∞.

1. Prove the following inequalities:

‖f + g‖pp + ‖f − g‖pp ≤ 2(‖f ‖p′
p + ‖g‖p′

p )
p/p′ ∀f, g ∈ Lp(�),(4)

2(‖f ‖p′
p + ‖g‖p′

p )
p/p′ ≤ 2p−1(‖f ‖pp + ‖g‖pp) ∀f, g ∈ Lp(�).(5)

2. Deduce Clarkson’s first inequality (see Theorem 4.10).

- C -

In this part we assume that 1 < p ≤ 2.

1. Establish the following inequality:

(6) ‖f + g‖p′
p + ‖f − g‖p′

p ≤ 2(‖f ‖pp + ‖g‖pp)p′/p ∀f, g ∈ Lp(�).
Inequality (6) is called Clarkson’s second inequality.

[Hint: There are two different methods:

(i) By duality from (4), observing that

sup
ϕ,ψ∈Lp′

{ ∫
(uϕ + vψ)

[‖ϕ‖p
p′ + ‖ψ‖p

p′ ]1/p

}

= (‖u‖p′
p + ‖v‖p′

p )
1/p′

.

(ii) Directly from (1) combined with the result of Exercise 4.11.]

2. Deduce that Lp(�) is uniformly convex for 1 < p ≤ 2.

PROBLEM 21 (4)

The distribution function. Marcinkiewicz spaces

Throughout this problem� denotes a measure space with finite measureμ. Given
a measurable function f : � → R, we define its distribution function α to be
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α(t) = |[|f | > t]| = meas{x ∈ �; |f (x)| > t} ∀t ≥ 0.

- A -

1. Check that α is nonincreasing. Prove that α(t + 0) = α(t) ∀t ≥ 0. Construct a
simple example in which α(t − 0) 	= α(t) for some t > 0.

2. Let (fn) be a sequence of measurable functions such that fn → f a.e. on �. Let
(αn) and α denote the corresponding distribution functions. Prove that

α(t) ≤ lim inf
n→∞ αn(t) ≤ lim sup

n→∞
αn(t) ≤ α(t − 0) ∀t > 0.

Deduce that αn(t) → α(t) a.e.

- B -

1. Let g ∈ L1
loc(R) be a function such that g ≥ 0 a.e. Set

G(t) =
∫ t

0
g(s)ds.

Prove that for every measurable function f ,
∫

�

G(|f (x)|)dμ < ∞ ⇐⇒
∫ ∞

0
α(t)g(t)dt < ∞

and that ∫

�

G(|f (x)|)dμ =
∫ ∞

0
α(t)g(t)dt.

[Hint: Use Fubini and Tonelli.]

2. More generally, prove that
∫

[|f |>λ]
G(|f (x)|)dμ = α(λ)G(λ)+

∫ ∞

λ

α(t)g(t)dt ∀λ ≥ 0.

3. Deduce that for 1 ≤ p < ∞,

f ∈ Lp(�) ⇐⇒
∫ ∞

0
α(t)tp−1 dt < ∞

and that
∫

[|f |>λ]
|f (x)|pdμ = α(λ)λp + p

∫ ∞

λ

α(t)tp−1dt ∀λ ≥ 0.

Check that if f ∈ Lp(�), then limt→+∞α(t)tp = 0.

- C -
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Let 1 < p < ∞. For every f ∈ L1(�) define

[f ]p = sup

{

|A|−1/p′
∫

A

|f |; A ⊂ � measurable, |A| > 0

}

≤ ∞,

and consider the set

Mp(�) = {f ∈ L1(�); [f ]p < ∞},
called the Marcinkiewicz space of order p. The spaceMp is also called the weak Lp

space, but this terminology is confusing because the word “weak” is already used in
connection with the weak topology.

1. Check that Mp(�) is a linear space and that [ ]p is a norm. Prove that

Lp(�) ⊂ Mp(�) and that [f ]p ≤ ‖f ‖p for every f ∈ Lp(�).

2. Prove that Mp(�), equipped with the norm [ ]p, is a Banach space.
Check that Mp(�) ⊂ Mq(�) with continuous injection for 1 < q ≤ p.

We claim that

[f ∈ Mp(�)] ⇐⇒
[

f is measurable and sup
t>0

tpα(t) < ∞
]

.

3. Prove that if f ∈ Mp(�) then tpα(t) ≤ [f ]pp ∀t > 0.

4. Conversely, let f be a measurable function such that

sup
t>0

tpα(t) < ∞.

Prove that there exists a constant Cp (depending only on p) such that

[f ]pp ≤ Cp sup
t>0

tpα(t).

[Hint: Use question B3 and write
∫

A

|f | =
∫

A∩[|f |>λ]
|f | +

∫

A∩[|f |≤λ]
|f |;

then vary λ.]

5. Prove that Mp(�) ⊂ Lq(�) with continuous injection for 1 ≤ q < p.

6. Let 1 < q < r < ∞ and θ ∈ (0, 1); set

1

p
= θ

q
+ 1 − θ

r
.
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Prove that there is a constant C—depending only on q, r , and θ—such that

‖f ‖p ≤ C[f ]θq [f ]1−θ
r ∀f ∈ Mr(�).

7. Set � = {x ∈ R
N ; |x| < 1}, equipped with the Lebesgue measure, and let

f (x) = |x|−N/p with 1 < p < ∞. Check that f ∈ Mp(�), while f /∈ Lp(�).

PROBLEM 22 (4)

An interpolation theorem (Schur, Riesz, Thorin, Marcinkiewicz)

Let � be a measure space with finite measure. Let

T : L1(�) → L1(�)

be a bounded linear operator whose norm is denoted by N1 = ‖T ‖L(L1,L1). We
assume that

T (L∞(�)) ⊂ L∞(�).

1. Prove that T is a bounded operator from L∞(�) into itself. Set

N∞ = ‖T ‖L(L∞,L∞).

The goal of this problem is to show that

T (Lp(�)) ⊂ Lp(�) for every 1 < p < ∞
and that T : Lp(�) → Lp(�) is a bounded operator whose norm Np =
‖T ‖L(Lp,Lp) satisfies the inequality Np ≤ 2N1/p

1 N
1/p′
∞ .

For simplicity, we assume first that N∞ = 1. Given a function u ∈ L1(�), we
set, for every λ > 0,

u = vλ + wλ with vλ = uχ[|u|>λ] and wλ = uχ[|u|≤λ],

f = T u, gλ = T vλ, and hλ = Twλ, so that f = gλ + hλ.

2. Check that

‖gλ‖1 ≤ N1

∫

[|u|>λ]
|u(x)|dμ and ‖hλ‖∞ ≤ λ ∀λ > 0.

3. Consider the distribution functions

α(t) = |[|u| > t]|, β(t) = |[|f | > t]|, γλ(t) = [|gλ| > t].
Prove that
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∫ ∞

0
γλ(t)dt ≤ N1[α(λ)λ+

∫ ∞

λ

α(t)dt] ∀λ > 0,

and that
β(t) ≤ γλ(t − λ) ∀λ > 0, ∀t > λ.

[Hint: Apply the results of Problem 21, part B.]

4. Assuming u ∈ Lp(�), prove that f ∈ Lp(�) and that

‖f ‖p ≤ 2N1/p
1 ‖u‖p.

5. Conclude in the general case, in which N∞ 	= 1.

Remark. By a different argument one can prove in fact that Np ≤ N
1/p
1 N

1/p′
∞ ;

see, e.g., Bergh–Löfström [1] and the references in the Notes on Chapter 1 of
their book.

PROBLEM 23 (3, 4)

Weakly compact subsets of L1 and equi-integrable families.
The theorems of Hahn–Vitali–Saks, Dunford–Pettis, and de la Vallée-Poussin.

Let � be a σ -finite measure space. We recall (see Exercise 4.36) that a subset
F ⊂ L1(�) is said to be equi-integrable if it satisfies the following properties:

F is bounded in L1(�),(a)
{

∀ε > 0 ∃δ > 0 such that
∫

A
|f | < ε ∀f ∈ F,

∀A ⊂ � with A measurable and |A| < δ,
(b)

{
∀ε > 0 ∃ω ⊂ � measurable with |ω| < ∞
such that

∫

�\ω |f | < ε.
(c)

The first goal of this problem is to establish the equivalence of the following
properties for a given set F in L1(�):
(i) F is contained in a weakly (σ (L1, L∞)) compact set of L1(�),

(ii) F is equi-integrable.

- A -

The implication (i) ⇒ (ii).

1. Let (fn) be a sequence in L1(�) such that
∫

A

fn → 0 ∀A ⊂ � with A measurable and |A| < ∞.

Prove that (fn) satisfies property (b).
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[Hint: Consider the subset X ⊂ L1(�) defined by

X = {χA with A ⊂ �,A measurable and |A| < ∞}.
Check that X is closed in L1(�) and apply the Baire category theorem to the
sequence

Xn =
{

χA ∈ X;
∣
∣
∣
∣

∫

A

fk

∣
∣
∣
∣ ≤ ε ∀k ≥ n

}

,

where ε > 0 is fixed.]

2. Let (fn) be a sequence in L1(�) such that
∫

A

fn → 0 ∀A ⊂ � with A measurable and |A| ≤ ∞.

Prove that (fn) satisfies property (c).

[Hint: Let (�i) be a nondecreasing sequence of measurable sets with finite mea-
sure such that � = ⋃

i �i . Consider on L∞(�) the metric d defined by

d(f, g) =
∑

i

1

2i |�i |
∫

�i

|f − g|.

Set Y = {χA withA ⊂ �, A measurable}. Check that Y is complete for the metric
d and apply the Baire category theorem to the sequence

Yn =
{

χA ∈ Y ;
∣
∣
∣
∣

∫

A

fk

∣
∣
∣
∣ ≤ ε ∀k ≥ n

}

,

where ε > 0 is fixed.]

3. Deduce that if (fn) is a sequence inL1(�) such that fn ⇀ f weakly σ(L1, L∞),
then (fn) is equi-integrable.

4. Prove that (i) ⇒ (ii).

[Hint: Argue by contradiction and apply the theorem of Eberlein–Šmulian; see
Problem 10.]

5. Take up again question 1 (resp. question 2) assuming only that
∫

A
fn converges

to a finite limit �(A) for every A ⊂ � with A measurable and |A| < ∞ (resp.
|A| ≤ ∞).

- B -

The implication (ii) ⇒ (i).

1. Let E be a Banach space and let F ⊂ E. Assume that

∀ε > 0 ∃Fε ⊂ E, Fε weakly (σ (E,E�)) compact such that F ⊂ Fε + εBE.
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Prove that F is contained in a weakly compact subset of E.

[Hint: Consider G = Fσ(E��,E�)
.]

2. Deduce that (ii) ⇒ (i).

[Hint: Consider the family (χωTnf )f∈F with |ω| < ∞ and Tn is the truncation
as in the proof of Theorem 4.12.]

- C -
Some applications.

1. Let (fn) be a sequence in L1(�) such that fn ⇀ f weakly σ(L1, L∞) and
fn → f a.e. Prove that ‖fn − f ‖1 → 0.

[Hint: Apply Exercise 4.14.]

2. Let u1, u2 ∈ L1(�) with u1 ≤ u2 a.e. Prove that the set K = {f ∈ L1(�);
u1 ≤ f ≤ u2 a.e.} is compact in the weak topology σ(L1, L∞).

3. Let (fn) be an equi-integrable sequence in L1(�). Prove that there exists a sub-
sequence (fnk ) such that fnk ⇀ f weakly σ(L1, L∞).

4. Let (fn) be a bounded1 sequence in L1(�) such that
∫

A
fn converges to a finite

limit, �(A), for every measurable set A ⊂ �. Prove that there exists some f ∈
L1(�) such that fn ⇀ f weakly σ(L1, L∞).

5. Let g : R → R be a continuous increasing function such that

|g(t)| ≤ C ∀t ∈ R.

SetG(t) = ∫ t
0 g(s)ds. Let (fn) be a sequence inL1(�) such that fn ⇀ f weakly

σ(L1, L∞) and lim sup
∫
G(fn) ≤ ∫

G(f ). Prove that ‖fn − f ‖1 → 0.

[Hint: Look at Problem 18.]

- D -

In this part, we assume that |�| < ∞. Let F ⊂ L1(�).

1. LetG : [0,+∞) → [0,+∞)be a continuous function such that limt→+∞G(t)/t =
+∞. Assume that there exists a constant C such that

∫

G(|f |) ≤ C ∀f ∈ F .

Prove that F is equi-integrable.

1 In fact, it is not necessary to assume that (fn) is bounded, but then the proof is more complicated;
see, e.g., R. Edwards [1] p. 276–277.
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2. Conversely, assume that F is equi-integrable. Prove that there exists a convex
increasing functionG : [0,+∞) → [0,+∞) such that limt→+∞G(t)/t = +∞
and

∫
G(|f |) ≤ C ∀f ∈ F , for some constant C.

[Hint: Use the distribution function; see Problem 21.]

PROBLEM 24 (1, 3, 4)

Radon measures
Let K be a compact metric space, with distance d, and let E = C(K) equipped

with its usual norm
‖f ‖ = max

x∈K |f (x)|.
The dual space E�, denoted by M(K), is called the space of Radon measures onK .
The space M(K) is equipped with the dual norm, denoted by ‖ ‖M or simply ‖ ‖.
The purpose of this problem is to present some properties of M(K).

- A -

We prove here that C(K) is separable. Given δ > 0, let
⋃
j∈JB(aj , δ/2) be a

finite covering of K . Set

qj (x) = max{0, δ − d(x, aj )}, j ∈ J, x ∈ K,
and

q(x) =
∑

j∈J
qj (x).

1. Check that the functions (qj )j∈J and q are continuous on K . Show that

q(x) ≥ δ/2 ∀x ∈ K.
2. Set

θj (x) = qj (x)

q(x)
, j ∈ J, x ∈ K.

Show that the functions (θj )j∈J are continuous on K ,

[θj (x) 	= 0] ⇐⇒ [d(x, aj ) < δ],
and ∑

j∈J
θj (x) = 1 ∀x ∈ K.

The collection of functions (θj )j∈J is called a partitition of unity (subordinate to
the open covering

⋃
j∈JB(aj , 2δ), because supp θj ⊂ B(aj , 2δ)).

3. Given f ∈ C(K), set
f̃ (x) =

∑

j∈J
f (aj )θj (x).

Prove that
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‖f − f̃ ‖ ≤ sup
x,y∈K
d(x,y)<δ

|f (x)− f (y)|.

4. Choosing δ = 1/n, the above construction yields a finite set J , now denoted by Jn,
a finite collection of points (aj )j∈Jn , and a finite collection of functions (θj )j∈Jn .
Show that the vector space spanned by the functions (θj ), j ∈ Jn, n = 1, 2, 3 . . . ,
is dense in C(K).

5. Deduce that C(K) is separable.

- B -

In this part we assume that K = �, where � is a bounded open set in R
N . It

is convenient to identify L1(�) with a subspace of M(�) through the embedding
T : L1(�) → M(�) defined by

〈T u, f 〉 =
∫

�

uf ∀u ∈ L1(�), ∀f ∈ C(�).

1. Check that ‖T u‖M = ‖u‖L1 ∀u ∈ L1(�).

[Hint: Use Exercise 4.26.]

2. Let (vn) be a bounded sequence in L1(�). Show that there exist a subsequence

(vnk ) and some μ ∈ M(�) such that vnk
�
⇀ μ in M(�) and

‖μ‖M ≤ lim inf
k→∞ ‖vnk‖L1 .

[Hint: Use Corollary 3.30.]

The aim is now to prove that given any μ0 ∈ M(�) there exists a sequence (un)
in C∞

c (�) such that

(1)
∫

�

unf → 〈μ0, f 〉 ∀f ∈ C(�)

and

(2) ‖un‖L1 = ‖μ0‖M ∀n.
Without loss of generality we may assume that ‖μ0‖M = 1 (why?).

Set
A = {u ∈ C∞

c (�); ‖u‖L1 ≤ 1}.
3. Prove that μ0 ∈ Aσ(E�,E).

[Hint: Apply Hahn–Banach inE� for the weak� topology σ(E�,E); see Problem
9. Then use Corollary 4.23.]

4. Deduce that there exists a sequence (vn) in A such that vn
�
⇀ μ0 in σ(E�,E).

Check that limn→∞‖vn‖L1 = 1.
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5. Conclude that the sequence un = vn/‖vn‖L1 satifies (1) and (2).

We say that μ ≥ 0 if

〈μ, f 〉 ≥ 0 ∀f ∈ C(�), f ≥ 0 on �.

6. Check that if μ ≥ 0, then 〈μ, 1〉 = ‖μ‖, where 1 denotes the function f ≡ 1.
7. Assume μ0 ∈ M(�), with μ0 ≥ 0 and ‖μ0‖ = 1 (such measures are called

probability measures). Construct a sequence (un) in C∞
c (�) satisfying (1), (2),

and, moreover,

(3) un(x) ≥ 0 ∀n, ∀x ∈ �.
8. Compute ‖u+ δa‖M , where u ∈ L1, and δa , with a ∈ �, is defined below.

- C -

We now return to the general setting and denote by δa the Dirac mass at a point
a ∈ K , i.e., the measure defined by

〈δa, f 〉 = f (a) ∀f ∈ C(K).
Set

D =
⎧
⎨

⎩
μ =

∑

j∈J
αj δaj ; J is finite, αj ∈ R, and the points aj ’s are all distinct

⎫
⎬

⎭
.

1. Show that if μ ∈ D then
‖μ‖ =

∑

j∈J
|αj |

and
[μ ≥ 0] ⇔ [αj ≥ 0 ∀j ].

Set
D1 = {μ ∈ D; ‖μ‖ ≤ 1}.

2. Show that any measure μ0 ∈ M(K) with ‖μ0‖ ≤ 1 belongs to D
σ(E�,E)

1 .

[Hint: Use the same technique as in part B.]

3. Deduce that given any measure μ0 ∈ M(�) there exists a sequence (νn) in D

such that νn
�
⇀ μ0 and ‖νn‖ = ‖μ0‖ ∀n .

4. Let μ0 be a probability measure. Prove that there exists a sequence (νn) of prob-

ability measures in D such that νn
�
⇀ μ0.

Remark. An alternative approach to question 4 is to show that the Dirac masses
are the extremal points of the convex set of probability measures; then apply
Krein–Milman (see Problem 1) in the weak� topology; for more details see, e.g.,
R. Edwards [1].
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- D -

The goal of this part is to show that every μ ∈ M(K) admits a unique decompo-
sition μ = μ1 − μ2 with μ1, μ2 ∈ M(K), μ1, μ2 ≥ 0, and ‖μ1‖ + ‖μ2‖ = ‖μ‖.
(The measures μ1 and μ2 are often denoted by μ+ and μ−.)

Given f ∈ C(K) with f ≥ 0, set

L(f ) = sup{〈μ, g〉; g ∈ C(K) and 0 ≤ g ≤ f on K}.
1. Check that 0 ≤ L(f ) ≤ ‖μ‖‖f ‖, L(λf ) = λL(f ) ∀λ ≥ 0, and

L(f1 + f2) = L(f1)+ L(f2) ∀f1, f2 ∈ C(K) with f1 ≥ 0 and f2 ≥ 0.

Given any f ∈ C(K), set

μ1(f ) = L(f+)− L(f−), where f+ = max{f, 0} and f− = max{−f, 0}.
2. Show that the mapping f 
→ μ1(f ) is linear on C(K) and that |μ1(f )| ≤

‖μ‖ ‖f ‖ ∀f ∈ C(K), so that μ1 ∈ M(K). Check that μ1 ≥ 0.
3. Set μ2 = μ1 − μ and check that μ2 ≥ 0. Show that ‖μ‖ = ‖μ1‖ + ‖μ2‖.
4. Let ν ∈ M(K) be such that ν ≥ 0 and ν ≥ μ (i.e., ν−μ ≥ 0). Show that ν ≥ μ1.

Similarly if ν ∈ M(K) and ν ≥ −μ, show that ν ≥ μ2. Deduce the uniqueness
of the decomposition.

- E -

Show that all the above results (except question B6) remain valid when the space
E = C(�) is replaced by the subspace

E0 = {f ∈ C(�); f = 0 on the boundary of �}.
The dual of E0 is often denoted by M(�) (as opposed to M(�)).

- F -

Dunford–Pettis revisited

Let (fn) be a sequence in L1(�). Recall that (fn) is said to be equi-integrable if
it satisfies the property

(4)

{
∀ε > 0 ∃δ > 0 such that

∫

A
|fn| < ε ∀n,

and ∀A ⊂ � with A measurable and |A| < δ.

The goal is to prove that every equi-integrable sequence (fn) admits a subsequence
(fnj ) such that fnj ⇀ f weakly σ(L1, L∞), for some function f ∈ L1(�).

1. Show that (fn) is bounded in L1(�).
2. Check that
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∫

�

|fn − Tkfn| ≤
∫

�[|fn|>k]

|fn| ∀n, ∀k,

where Tk denotes the truncation operation.
3. Deduce that ∀ε > 0 ∃k > 0 such that

∫

�

|fn − Tkfn| ≤ ε ∀n.

[Hint: Use (4); see also Exercise 4.36.]

Passing to a subsequence, still denoted by (fn), we may assume that fn
�
⇀ μ

weak� in M(�), for some measure μ ∈ M(�).
4. Prove that ∀ε > 0 ∃g = gε ∈ L∞(�) such that

‖μ− gε‖M ≤ ε.

[Hint: For fixed k, a subsequence of (Tkfn) converges to some limit g weak� in
σ(L∞, L1).]

5. Deduce that μ ∈ L1(�).

[Hint: Use a Cauchy sequence argument in L1(�).]
6. Prove that fn ⇀ μ weakly σ(L1, L∞).

[Hint: Given u ∈ L∞(�), consider a sequence (um) inC∞
c (�) such that um → u

a.e. on� and ‖um‖∞ ≤ ‖u‖∞ ∀m (see Exercise 4.25); then use Egorov’s theorem
(see Theorem 4.29 and Exercise 4.14).]

PROBLEM 25 (1, 5)

Let H be a Hilbert space and let C ⊂ H be a convex cone with vertex at 0, that
is, 0 ∈ C and λu+ μv ∈ C ∀λ, μ > 0, ∀u, v ∈ C. We assume that C is nonempty,
open, and that C 	= H .

Check that 0 /∈ C and that 0 ∈ C. Consider the set

� = {u ∈ H ; (u, v) ≤ 0 ∀v ∈ C}.
1. Check that � is a convex cone with vertex at 0, � is closed, and 0 ∈ �. Prove

that C = {v ∈ H ; (u, v) < 0 ∀u ∈ �\{0}} and deduce that � is not reduced to
{0}.
[Hint: Use Hahn–Banach.]

2. Let ω ∈ C be fixed and consider the set

K = {u ∈ �; (u, ω) = −1}.
Prove that K is a nonempty, bounded, closed, convex set such that 0 /∈ K and
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�\{0} =
⋃

λ>0

λK.

Draw a figure.

[Hint: Consider a ball centered at ω of radius ρ > 0 contained in C.]

3. Let a = PK0. Prove that a ∈ (−C) ∩�.

4. Prove directly, by a simple argument, that (−C) ∩� 	= ∅.

5. Let D ⊂ H be a nonempty, open, convex set and let x0 /∈ D. Prove that there
exists some w0 ∈ D such that

(w0 − x0, w − x0) > 0 ∀w ∈ D.
Give a geometric interpretation.

[Hint: Consider the set C = ∪μ>0 μ(D − x0).]

PROBLEM 26 (1, 5)

The Prox map in the sense of Moreau
LetH be a Hilbert space and let ϕ : H → (−∞,+∞] be a convex l.s.c. function

such that ϕ 	≡ +∞.

1. Prove that for every f ∈ H , there exists some u ∈ D(ϕ) such that

(P)
1

2
|f − u|2 + ϕ(u) = inf

v∈H

{
1

2
|f − v|2 + ϕ(v)

}

≡ I.

[Hint: Check first that I > −∞. Then use either a Cauchy sequence argument
or the fact that H is reflexive.]

2. Check that u satisfies (P) iff

(Q) u ∈ D(ϕ) and (u, v − u)+ ϕ(v)− ϕ(u) ≥ (f, v − u) ∀v ∈ D(ϕ).

3. Prove that if u and ū are solutions of (P) corresponding to f and f̄ , then |u− ū| ≤
|f − f̄ |. Deduce the uniqueness of the solution of (P).

4. Investigate the special case in which ϕ = IK is the indicator function of a closed
convex set K .

5. Let ϕ� be the conjugate function of ϕ and consider the problem

(P�)
1

2
|f − u�|2 + ϕ�(u�) = inf

v∈H

{
1

2
|f − v|2 + ϕ�(v)

}

= I �.

Prove that the solutions u of (P) and u� of (P�) satisfy



Problems 475

u+ u� = f and I + I � = 1

2
|f |2.

6. Given f ∈ H and λ > 0 let uλ denote the solution of the problem

(Pλ)
1

2
|f − uλ|2 + λϕ(uλ) = inf

v∈H

{
1

2
|f − v|2 + λϕ(v)

}

.

Prove that limλ→0 uλ = PD(ϕ)f = the projection of f on D(ϕ).

[Hint: Either start with weak convergence or use Exercise 5.3.]

7. Let K = {v ∈ D(ϕ); ϕ(v) = infH ϕ} and assume K 	= ∅.
Check that K is a closed convex set and prove that limλ→+∞ uλ = PKf .
What happens to (uλ) as λ → +∞ when K = ∅?

8. Prove that limλ→+∞ 1
λ
uλ = −PD(ϕ�)0.

[Hint: Start with the case where f = 0 and apply questions 5 and 6.]

PROBLEM 27 (5)

Alternate projections

LetH be a Hilbert space and letK ⊂ H be a nonempty closed convex set. Check
that

|PKu− PKv|2 ≤ (PKu− PKv, u− v) ≤ |u− v|2 ∀u, v ∈ H.
Let K1 ⊂ H and K2 ⊂ H be two nonempty closed convex sets. Set P1 = PK1

and P2 = PK2 . Given u ∈ H , define by induction the sequence (un) as follows:

u0 = u, u1 = P1u0, u2 = P2u1, . . . , u2n−1 = P1u2n−2, u2n = P2u2n−1, . . .

- A -

The purpose of this part is to prove that the sequence (u2n − u2n−1) converges to
PK0, where K = K2 −K1 (note that K is convex, why?).

1. Given v ∈ H consider the sequence (vn) defined by the same iteration as above
starting with v0 = v. Check that

|u2n − v2n|2 ≤ (u2n − v2n, u2n−1 − v2n−1) ≤ |u2n−1 − v2n−1|2

and that

|u2n+1 − v2n+1|2 ≤ (u2n+1 − v2n+1, u2n − v2n) ≤ |u2n − v2n|2.

2. Deduce that the sequence (|un − vn|) is nonincreasing and thus converges to a
limit, denoted by �.
Prove that limn→∞ |(u2n − v2n)− (u2n−1 − v2n−1)|2 = 0.
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3. Check that the sequence (|u2n − u2n−1|) is nonincreasing.

Set d = dist(K1,K2) = inf{|a1 − a2|; a1 ∈ K1 and a2 ∈ K2}.
We claim that limn→∞ |u2n − u2n−1| = d .

4. Given ε > 0, choose v ∈ K2 such that dist(v,K1) ≤ d + ε.

Prove that |v2n − v2n−1| ≤ d + ε ∀n.

5. Deduce that limn→∞ |u2n − u2n−1| = d .

Set z = PK0.

6. Check that |z| = d and that |z|2 ≤ (z, w) ∀w ∈ K2 −K1.

7. Prove that the sequence (u2n − u2n−1) converges to z.

[Hint: Estimate |z− (u2n − u2n−1)|2 using the above results.]

8. Give a geometric interpretation.

- B -

Throughout the rest of this problem we assume that z = PK0 ∈ K2 −K1. (This
assumption holds, for example, if one of the sets K1 or K2 is bounded, why?)

We claim that there exist a1 ∈ K1 and a2 ∈ K2 with a2 − a1 = z such that
u2n ⇀ a2 and u2n−1 ⇀ a1 weakly. Note that a1 and a2 may depend on the choice
of u0 = u. Draw a figure.

1. Consider the Hilbert space H = H ×H equipped with its natural scalar product.
Set K = {[b1, b2] ∈ H ; b1 ∈ K1, b2 ∈ K2 and b2 − b1 = z}.
Check that K is a nonempty closed convex set.

2. Let b = [b1, b2] ∈ K . Determine the sequence (vn) corresponding to v0 = b1.
Deduce that the sequences (|u2n−1 − b1|) and (|u2n − b2|) are nonincreasing.

3. Set xn = [u2n−1, u2n] and prove that the sequence (xn) satisfies the following
property:

(P)

{
For every subsequence (xnk ) that converges weakly to some

element x̄ ∈ H, then x̄ ∈ K.

4. Apply Opial’s lemma (see Exercise 5.25, question 3) and conclude.

PROBLEM 28 (5)

Projections and orthogonal projections

Let H be a Hilbert space. An operator P ∈ L(H) such that P 2 = P is called a
projection. Check that a projection satisfies the following properties:

(a) I − P is a projection,
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(b) N(I − P) = R(P ) and N(P ) = R(I − P),
(c) N(P ) ∩N(I − P) = {0},
(d) H = N(P )+N(I − P).

- A -

An operator P ∈ L(H) is called an orthogonal projection if there exists a closed
linear subspaceM such that P = PM (where PM is defined in Corollary 5.4). Check
that every orthogonal projection is a projection.

1. Given a projection P , prove that the following properties are equivalent:

(a) P is an orthogonal projection,
(b) P � = P ,
(c) ‖P ‖ ≤ 1,
(d) N(P ) ⊥ N(I − P),

where the notation X ⊥ Y means that (x, y) = 0 ∀x ∈ X, ∀y ∈ Y .

2. Let T ∈ L(H) be an operator such that

T � = T and T 2 = I.

Prove that P = 1
2 (I − T ) is an orthogonal projection. Prove the converse.

Assuming, in addition, that (T u, u) ≥ 0 ∀u ∈ H , prove that T = I .

- B -

Throughout this part, M and N denote two closed linear subspaces of H . Set
P = PM and Q = PN .

1. Prove that the following properties are equivalent:

(a) PQ = QP ,
(b) PQ is a projection,
(c) QP is a projection.

In this case, check that

(i) PQ is the orthogonal projection onto M ∩N ,
(ii) (P +Q− PQ) is the orthogonal projection onto M +N .

2. Prove that the following properties are equivalent:

(a) M ⊥ N ,
(b) PQ = 0,
(c) QP = 0,
(d) |Pu|2 + |Qu|2 ≤ |u|2 ∀u ∈ H ,
(e) |Pu| ≤ |u−Qu| ∀u ∈ H ,
(f) |Qu| ≤ |u− Pu| ∀u ∈ H ,
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(g) P +Q is a projection.

In this case, check that (P +Q) is the orthogonal projection onto M + N (note
that M +N is closed; why?).

3. Prove that the following properties are equivalent:

(a) M ⊂ N ,
(b) PQ = P ,
(c) QP = P ,
(d) |Pu| ≤ |Qu| ∀u ∈ H ,
(e) Q− P is a projection.

In this case, check that Q− P is the orthogonal projection onto M⊥ ∩N .

PROBLEM 29 (5)

Iterates of nonlinear contractions.
The ergodic theorems of Opial and Baillon

Let H be a Hilbert space and let T : H → H be a nonlinear contraction, that is,

|T u− T v| ≤ |u− v| ∀u, v ∈ H.
We assume that the set

K = {u ∈ H ; T u = u}
of fixed points is nonempty. Check that K is closed and convex. Given f ∈ H set

σn = 1

n
(f + Tf + T 2f + · · · + T n−1f )

and

μn =
(
I + T

2

)n

f.

The goal of this problem is to prove the following:

(A) Each of the sequences (σn) and (μn) converges weakly to a fixed point of T .
(B) If, in addition, T is odd, that is, T (−v) = −T v ∀v ∈ H , then (σn) and (μn)

converge strongly.

It is advisable to solve Exercises 5.22 and 5.25 before starting this problem. In
the special case that T is linear, see also Exercise 5.21.

- A -

Set
un = T nf.

1. Check that for every v ∈ K , the sequence (|un − v|) is nonincreasing. Deduce
that the sequences (σn) and (T σn) are bounded.
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2. Prove that

|σn − T σn| ≤ 1√
n
|f − T σn| ∀n ≥ 1.

[Hint: Note that |T σn − T ui |2 ≤ |σn − ui |2 and add these inequalities for
0 ≤ i ≤ n− 1.]

3. Deduce that the sequence (σn) satisfies property (P) of Exercise 5.25. Conclude
that σn ⇀ σ weakly, with σ ∈ K .

Set

S = 1

2
(I + T ).

4. Prove that

|(u− Su)− (v − Sv)|2 + |Su− Sv|2 ≤ |u− v|2 ∀u, v ∈ H.

5. Deduce that for every v ∈ K ,

∞∑

n=0

|μn − μn+1|2 ≤ |f − v|2

and consequently

|μn − Sμn| ≤ 1√
n+ 1

|f − v| ∀n.

6. Conclude that μn ⇀ μ weakly, with μ ∈ K .

- B -

Throughout the rest of this problem we assume that T is odd, that is,

T (−v) = −T v ∀v ∈ H.
1. Prove that for every integer p,

2|(u, v)− (T pu, T pv)| ≤ |u|2 + |v|2 − |T pu|2 − |T pv|2 ∀u, v ∈ H.
[Hint: Start with the inequality |T pu− T pv|2 ≤ |u− v|2 ∀u, v ∈ H .]

2. Deduce that for every fixed integer i ≥ 0,

�(i) = lim
n→∞(un, un+i ) exists.

Prove that this convergence holds uniformly in i, that is,

(1) |(un, un+i )− �(i)| ≤ εn ∀i and ∀n, with lim
n→∞ εn = 0.
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3. Similarly, prove that for every fixed integer i ≥ 0,

m(i) = lim
n→∞(μn, μn+i ) exists.

Prove that m(0) = m(1) = m(2) = · · · .

[Hint: Use the result of question A5.]

4. Deduce that μn → μ strongly.

We now claim that σn → σ strongly.

5. Set

Xp = 1

p

p−1∑

i=0

�(i).

Prove that

|(un, σn+p)−Xp| ≤ εn + 2n

p
|f |2 ∀n, ∀p.

[Hint: Use (1).]

6. Deduce that

(i) X = limp→∞Xp exists,
(ii) |(un, σ )−X| ≤ εn ∀n,

(iii) |σ |2 = X.

7. Prove that

|σn|2 ≤ 2

n2

n−1∑

i=0

(n− i)�(i)+ 2

n

n−1∑

i=0

εi .

8. Deduce that lim supn→∞ |σn|2 ≤ X and conclude.

PROBLEM 30 (3, 5)

Variants of Stampacchia’s theorem. The min–max theorem of von Neumann

Let H be a Hilbert space.

- A -

Let a(u, v) : H ×H → R be a continuous bilinear form such that

a(v, v) ≥ 0 ∀v ∈ H.
Let K ⊂ H be a nonempty closed convex set. Let f ∈ H . Assume that there exists
some v0 ∈ K such that the set

{u ∈ K; a(u, v0 − u) ≥ (f, v0 − u)}
is bounded.



Problems 481

1. Prove that there exists some u ∈ K such that

a(u, v − u) ≥ (f, v − u) ∀v ∈ K.
[Hint: Set fε = f + εv0 and consider the bilinear form aε(u, v) = a(u, v) +
ε(u, v), ε > 0. Then, pass to the limit as ε → 0 using Exercise 5.14.]

2. Recover Stampacchia’s theorem.

3. Give a geometric interpretation in the case that K is bounded and a(u, v) = 0
∀u, v ∈ H .

- B -

Let b(u, v) : H ×H → R be a bilinear form that is continuous and coercive. Let
ϕ : H → (−∞,+∞] be a convex l.s.c. function such that ϕ 	≡ +∞.

1. Prove that there exists a unique u ∈ D(ϕ) such that

b(u, v − u)+ ϕ(v)− ϕ(u) ≥ 0 ∀v ∈ D(ϕ).
[Hint: Apply the result of question A1 in the space H × R with K = epi ϕ,
f = [0,−1], a(U, V ) = b(u, v) with U = [u, λ] and V = [v, μ]. Note that a
is not coercive.]

2. Recover Stampacchia’s theorem.

- C -

LetH1 andH2 be two Hilbert spaces and let A ⊂ H1, B ⊂ H2 be two nonempty,
bounded, closed convex sets.

1. Let F(λ,μ) : H1 × H2 → R be a continuous bilinear form. Prove that there
exist λ ∈ A and μ ∈ B such that

(1) F(λ,μ) ≤ F(λ,μ) ≤ F(λ,μ) ∀λ ∈ A, ∀μ ∈ B.
[Hint: Apply question A1 with H = H1 × H2, K = A × B, and a(u, v) =
F(λ, μ)− F(λ,μ), where u = [λ,μ], v = [λ,μ].]

2. Deduce that

(2) min
λ∈A max

μ∈B F(λ, μ) = max
μ∈B min

λ∈A F(λ, μ).

Note that all min and max are achieved (why?).

[Hint: Check that without any further assumptions, max min ≤ min max; use
(1) to prove the reverse inequality.]
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3. Prove that (2) implies the existence of some λ ∈ A and μ ∈ B satisfying (1).

- D -

Let E and F be two reflexive Banach spaces; let A ⊂ E and B ⊂ F be two
nonempty, bounded, closed convex sets. LetK : E×F → R be a function satisfying
the following assumptions:

(a) For every fixed v ∈ B the function u 
→ K(u, v) is convex and l.s.c.
(b) For every fixed u ∈ A the function v 
→ K(u, v) is concave and u.s.c., i.e., the

function v 
→ −K(u, v) is convex and l.s.c.

Our goal is to prove that

min
u∈A max

v∈B K(u, v) = max
v∈B min

u∈A K(u, v).

We shall argue by contradiction and assume that there exists a constant γ such
that

max
v∈B min

u∈A K(u, v) < γ < min
u∈A max

v∈B K(u, v).

1. For every u ∈ A, set

Bu = {v ∈ B; K(u, v) ≥ γ }
and for every v ∈ B, set

Av = {u ∈ A; K(u, v) ≤ γ }.
Check that ∩u∈ABu = ∅ and ∩v∈BAv = ∅.

2. Choose u1, u2, . . . , un ∈ A and v1, v2, . . . , vm ∈ B such that ∩ni=1Bui = ∅ and
∩mj=1Avj = ∅ (justify). Apply the result of C1 with H1 = R

n, H2 = R
m,

A′ =
{

λ = (λ1, λ2, . . . , λn); λi ≥ 0 ∀i and
n∑

i=1

λi = 1

}

,

B ′ =
⎧
⎨

⎩
μ = (μ1, μ2, . . . , μm);μj ≥ 0 ∀j and

m∑

j=1

μj = 1

⎫
⎬

⎭
,

andF(λ,μ) = ∑
i,j λiμjK(ui, vj ). Set u = ∑

i λiui and v =∑
j μjvj . Prove

that

K(u, v�) ≤ K(uk, v) ∀k = 1, 2, . . . , n, ∀� = 1, 2, . . . , m.

3. Check that on the other hand,

min
k

K(uk, v) < γ and max
�

K(u, v�) > γ .

[Hint: Argue by contradiction.]
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4. Conclude.

PROBLEM 31 (3, 5)

Monotone operators. The theorem of Minty–Browder

Let E be a reflexive Banach space. A (nonlinear) mapping

A : D(A) ⊂ E → E�

is said to be monotone if it satisfies

〈Au− Av, u− v〉 ≥ 0 ∀u, v ∈ D(A)
(here D(A) denotes any subset of E).

- A -

LetA : D(A) ⊂ E → E� be a monotone mapping and letK ⊂ E be a nonempty,
bounded, closed convex set. Our goal is to prove that there exists some u ∈ K such
that

〈Av, u− v〉 ≥ 0 ∀v ∈ D(A) ∩K.
For this purpose, set, for each v ∈ D(A) ∩K ,

Kv = {u ∈ K; 〈Av, v − u〉 ≥ 0}.
We have to prove that ∩v∈D(A)∩KKv 	= ∅; we shall argue by contradiction and
assume that

∩
v∈D(A)∩K Kv = ∅.

1. Check that Kv is closed and convex.

2. Deduce that there exist v1, v2, . . . , vn ∈ D(A) ∩K such that

n∩
i=1

Kvi = ∅.

Set B = {λ = (λ1, λ2, . . . , λn); λi ≥ 0 ∀i and
∑n
i=1 λi = 1}, and consider the

bilinear form
F : R

n × R
n → R

defined by
F(λ,μ) = ∑n

i,j=1 λiμj 〈Avj , vi − vj 〉.
3. Check that F(λ, λ) ≤ 0 ∀λ ∈ R

n.

4. Prove that there exists some λ ∈ B such that F(λ,μ) ≤ 0 ∀μ ∈ B.

[Hint: Apply question C1 of Problem 30.]
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5. Set u = ∑
i=1 λivi and prove that

〈Avj , u− vj 〉 ≤ 0 ∀j = 1, 2, . . . , n.

6. Conclude.

- B -

Throughout the rest of this problem, we assume that D(A) = E, A : E → E� is
monotone, and A is continuous.

1. Let K ⊂ E be a nonempty, bounded, closed convex set. Prove that there exists
some u ∈ K such that 〈Au,w − u〉 ≥ 0 ∀w ∈ K .

[Hint: Consider vt = (1 − t)u+ tw with t ∈ (0, 1) and w ∈ K .]

2. Let K be a closed convex set containing 0 (K need not be bounded). Assume
that the set {u ∈ K; 〈Au, u〉 ≤ 0} is bounded. Prove that there exists some
u ∈ K such that

〈Au, v − u〉 ≥ 0 ∀v ∈ K.
[Hint: Apply B1 to the set KR = {v ∈ K; ‖v‖ ≤ R} with R large enough.]

3. Assume here that

lim‖v‖→∞
〈Av, v〉

‖v‖ = +∞.

Prove that A is surjective.

4. Assume here that E is a Hilbert space identified with E�. Prove that I + A is
bijective from E onto itself.

PROBLEM 32 (5)

Extension of contractions. The theorem of Kirszbraun–Valentine
via the method of Schoenberg

Let H be a Hilbert space and let I be a finite set of indices.

- A -

Let (yi)i∈I be elements of H and let (ci)i∈I be elements of R. Set

ϕ(u) = max
i∈I {|u− yi |2 − ci}, u ∈ H,

and
J (u) = {i ∈ I ; |u− yi |2 − ci = ϕ(u)}.

1. Check that infu∈H ϕ(u) is achieved by some unique element u0 ∈ H .
2. Prove that maxi∈J (u0)(v, u0 − yi) ≥ 0 ∀v ∈ H .
3. Deduce that
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(1) u0 ∈ conv

⎛

⎝
⋃

i∈J (u0)

{yi}
⎞

⎠ .

4. Conversely, if u0 ∈ H satisfies (1), prove that ϕ(u0) = infu∈H ϕ(u).
5. Extend this result to the case in which ϕ(u) = maxi∈I {fi(u)} and each fi :
H → R is a convex C1 function.

- B -

Let (xi)i∈I and (yi)i∈I be elements of H such that

|yi − yj | ≤ |xi − xj | ∀i, j ∈ I.
We claim that given any p ∈ H , there exists some q ∈ conv

(⋃
i∈I {yi}

)
such that

|q − yi | ≤ |p − xi | ∀i ∈ I.
1. Set P = {λ = (λi)i∈I ; λi ≥ 0 ∀i and

∑
i∈I λi = 1}.

Prove that for every p ∈ H and for every λ ∈ P ,

∑

j∈I
λj

∣
∣
∣
∣

(
∑

i∈I
λiyi

)

− yj

∣
∣
∣
∣

2

≤
∑

j∈I
λj |p − xj |2.

[Hint: Check that
∑
j∈I λj

∣
∣
∣
(∑

i∈I λiyi
) − yj

∣
∣
∣
2 = 1

2

∑
i,j∈I λiλj |yi − yj |2.]

2. Consider the function

ϕ(u) = max
i∈I {|u− yi |2 − |p − xi |2}.

Let u0 ∈ H be such that ϕ(u0) = infu∈H ϕ(u). Prove that ϕ(u0) ≤ 0.

[Hint: Apply questions A3 and B1.]

3. Conclude.

- C -

1. Extend the result of part B to the case that I is an infinite set of indices.

2. Let D ⊂ H by any subset of H and let S : D → H be a contraction, i.e.,

|Su− Sv| ≤ |u− v| ∀u, v ∈ D.
Prove that there exists a contraction T defined on all of H that extends S and
such that

T (H) ⊂ conv S(D).

[Hint: Use Zorn’s lemma and question C1.]
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PROBLEM 33 (4, 6)

Multiplication operator in Lp

Let� be a measure space (having finite or infinite measure). SetE = Lp(�)with
1 < p < ∞. Let a : � → R be a measurable function. Consider the unbounded
linear operator A : D(A) ⊂ E → E defined by

D(A) = {u ∈ Lp(�); au ∈ Lp(�)} and Au = au.

1. Prove that D(A) is dense in E.

[Hint: Given u ∈ E, consider the sequence un(x) = (1 + n−1|a(x)|)−1u(x).]

2. Show that A closed.

3. Prove that D(A) = E iff a ∈ L∞(�).

[Hint: Apply the closed graph theorem.]

4. Determine N(A) and N(A)⊥.

5. Determine D(A�),A�,N(A�), and N(A�)⊥.

6. Prove that A is surjective iff there exists α > 0 such that |a(x)| ≥ α a.e. on �.

[Hint: Use question 3.]

In what follows we assume that a ∈ L∞(�).

7. Determine the eigenvalues and the spectrum of A. Check that σ(A) ⊂ [inf� a,
sup� a] and that inf� a ∈ σ(A), sup� a ∈ σ(A). Here inf� and sup� refer to
the ess inf� and ess sup� (defined in Section 8.5).

8. In case � is an open set in R
N (equipped with the Lebesgue measure) and

a ∈ C(�) ∩ L∞(�), prove that σ(A) = a(�).

9. Prove that σ(A) = {0} iff a = 0 a.e. on �.

10. Assume that � has no atoms. Prove that A is compact iff a = 0 a.e. on �.

PROBLEM 34 (4, 6)

Spectral analysis of the Hardy operator T u(x) = 1
x

∫ x
0 u(t)dt

- A -

Let E = C([0, 1]) equipped with the norm ‖u‖ = supt∈[0,1] |u(t)|. Given u ∈ E
define the function T u on [0, 1] by

T u(x) =
{

1
x

∫ x
0 u(t)dt if x ∈ (0, 1],

u(0) if x = 0.
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Check that T u ∈ E and that ‖T u‖ ≤ ‖u‖ ∀u ∈ E, so that T ∈ L(E).
1. Prove that EV (T ) = (0, 1] and determine the corresponding eigenfunctions.

2. Check that ‖T ‖L(E) = 1. Is T a compact operator from E into itself?

3. Show that σ(T ) = [0, 1]. Give an explicit formula for (T − λI)−1 when λ ∈
ρ(T ). Prove that (T−λI) is surjective fromE ontoE for everyλ ∈ R,λ /∈ {0, 1}.
Check that T and (T − I ) are not surjective.

4. In this question we consider T as a bounded operator from E = C([0, 1]) into
F = Lq(0, 1) with 1 ≤ q < ∞. Prove that T ∈ K(E, F ).

[Hint: Consider the operator (Tεu)(x) = 1
x+ε

∫ x
0 u(t)dt with ε > 0 and estimate

‖Tε − T ‖L(E,F ) as ε → 0.]

- B -

In this part we set E = C1([0, 1]) equipped with the norm

‖u‖ = sup
t∈[0,1]

|u(t)| + sup
t∈[0,1]

|u′(t)|.

Given u ∈ C1([0, 1]) we define T u as in part A.

1. Check that if u ∈ C1([0, 1]), then T u ∈ C1([0, 1]) and ‖T u‖ ≤ ‖u‖ ∀u ∈ E.

2. Prove that EV (T ) = (0, 1
2 ] ∪ {1}.

3. Prove that σ(T ) = [0, 1
2 ] ∪ {1}.

- C -

In this part we set E = Lp(0, 1) with 1 < p < ∞. Given u ∈ Lp(0, 1) define
T u by

T u(x) = 1

x

∫ x

0
u(t)dt for x ∈ (0, 1].

Check that T u ∈ C((0, 1]) and that T u ∈ Lq(0, 1) for every q < p. Our goal is to
prove that T u ∈ Lp(0, 1) and that

(1) ‖T u‖Lp(0,1) ≤ p

p − 1
‖u‖Lp(0,1) ∀u ∈ E.

1. Prove that (1) holds when u ∈ Cc((0, 1)).

[Hint: Set ϕ(x) = ∫ x
0 u(t)dt ; check that |ϕ|p ∈ C1([0, 1]) and compute its

derivative. Estimate ‖T u‖Lp using the formula

∫ 1

0
|T u(x)|pdx =

∫ 1

0
|ϕ(x)|p dx

xp
= 1

p − 1

∫ 1

0
|ϕ(x)|pd

(

− 1

xp−1

)

and integrating by parts.]
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2. Prove that (1) holds for every u ∈ E.

In what follows we consider T as a bounded operator from E into itself.

3. Show that EV (T ) = (0, p
p−1 ).

4. Deduce that ‖T ‖L(E) = p
p−1 . Is T a compact operator from E into itself?

5. Prove that σ(T ) = [0, p
p−1 ].

6. Determine T �.

7. In this question we consider T as a bounded operator from E = Lp(0, 1) into
F = Lq(0, 1) with 1 ≤ q < p < ∞. Show that T ∈ K(E, F ).

PROBLEM 35 (6)

Cotlar’s lemma

Let H be a Hilbert space identified with its dual space.

- A -

Assume T ∈ L(H), so that T � ∈ L(H).

1. Prove that ‖T �T ‖ = ‖T ‖2.

2. Assume in this question that T is self-adjoint.
Show that

‖T N‖ = ‖T ‖N for every integer N.

3. Deduce that (for a general T ∈ L(H)),

‖(T �T )N‖ = ‖T ‖2N for every integer N.

- B -

Let (Tj ), 1 ≤ j ≤ m, be a finite collection of operators in L(H). Assume that
∀j, k ∈ {1, 2, . . . , m},

‖T �j Tk‖1/2 ≤ ω(j − k),(1)

‖TkT �j ‖1/2 ≤ ω(k − j),(2)

where ω : Z → [0,∞).
Set

σ =
m−1∑

i=−(m−1)

ω(i).



Problems 489

The goal of this problem is to show that

(3)

∥
∥
∥
∥

m∑

j=1

Tj

∥
∥
∥
∥ ≤ σ.

Set

U =
m∑

j=1

Tj

and fix an integer N .

1. Show that

‖T �j1
Tk1T

�
j2
Tk2 · · · T �jN TkN ‖

≤ σω(j1 − k1)ω(k1 − j2)ω(j2 − k2) · · ·ω(kN−1 − jN)ω(jN − kN),

for any choice of the integers j1, k1, . . . , jN , kN ∈ {1, 2, . . . , m}.
2. Deduce that

∑

j1

∑

k1

· · ·
∑

jN

∑

kN

‖T �j1
Tk1 · · · T �jN TkN ‖ ≤ mσ 2N,

where the summation is taken over all possible choices of the integers ji, ki ∈
{1, 2, . . . , m}.

3. Prove that
‖(U�U)N‖ ≤ mσ 2N

and deduce that (3) holds.

PROBLEM 36 (6)

More on the Riesz–Fredholm theory

Let E be a Banach space and let T ∈ K(E). For every integer k ≥ 1 set

Nk = N((I − T )k) and Rk = R((I − T )k).

1. Check that ∀k ≥ 1, Rk+1 ⊂ Rk,Rk is closed, T (Rk) ⊂ Rk , and (I − T )Rk ⊂
Rk+1.

2. Prove that there exists an integer p ≥ 1 such that
{
Rk+1 	= Rk ∀k < p (no condition if p = 1),

Rk+1 = Rk ∀k ≥ p.

3. Check that ∀k ≥ 1, Nk ⊂ Nk+1, dimNk < ∞, T (Nk) ⊂ Nk , and
(I − T )Nk+1 ⊂ Nk .
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4. Show that
codimRk = dimNk ∀k ≥ 1,

and deduce that
{
Nk+1 	= Nk ∀k < p (no condition if p = 1),

Nk+1 = Nk ∀k ≥ p.

5. Prove that {
Rp ∩Np = {0},
Rp +Np = E.

6. Prove that (I − T ) restricted to Rp is bijective from Rp onto itself.

7. Assume here in addition that E is a Hilbert space and that T is self-adjoint.
Prove that p = 1.

PROBLEM 37 (6)

Courant–Fischer min–max principle. Rayleigh–Ritz method

Let H be an infinite-dimensional separable Hilbert space. Let T be a self-adjoint
compact operator from H into itself such that (T x, x) ≥ 0 ∀x ∈ H . Denote by
(μk), k ≥ 1, its eigenvalues, repeated with their multiplicities, and arranged in
nonincreasing order:

μ1 ≥ μ2 ≥ · · · ≥ 0.

Let (ej ) be an associated orthonormal basis composed of eigenvectors. Let Ek be
the space spanned by {e1, e2, . . . , ek}. For x 	= 0 we define the Rayleigh quotient

R(x) = (T x, x)

|x|2 .

1. Prove that ∀k ≥ 1,
min
x∈Ek
x 	=0

R(x) = μk.

2. Prove that ∀k ≥ 2,
max
x∈E⊥

k−1
x 	=0

R(x) = μk,

and
max
x∈H
x 	=0

R(x) = μ1.

3. Let � be any k-dimensional subspace of H with k ≥ 1. Prove that

min
x∈�
x 	=0

R(x) ≤ μk.
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[Hint: If k ≥ 2, show that � ∩ E⊥
k−1 	= {0} and apply question 2.]

4. Deduce that ∀k ≥ 1,
max
�⊂H

dim�=k
min
x∈�
x 	=0

R(x) = μk.

5. Let � be any (k − 1)-dimensional subspace of H with k ≥ 2. Prove that

max
x∈�⊥
x 	=0

R(x) ≥ μk.

[Hint: Prove that �⊥ ∩ Ek 	= {0}.]
6. Deduce that ∀k ≥ 1,

min
�⊂H

dim�=k−1

max
x∈�⊥
x 	=0

R(x) = μk.

7. Assume here that N(T ) = {0}, so that R(x) 	= 0 ∀x 	= 0, or equivalently
μk > 0 ∀k. Show that ∀k ≥ 1,

min
�⊂H

dim�=k
max
x∈�
x 	=0

1

R(x)
= 1

μk
,

and

max
�⊂H

codim�=k−1

min
x∈�
x 	=0

1

R(x)
= 1

μk
,

where � and � are closed subspaces of H .
In particular, for k = 1,

min
x∈H
x 	=0

1

R(x)
= 1

μ1
;

and, moreover, ∀k ≥ 2,

min
x∈E⊥

k−1
x 	=0

1

R(x)
= 1

μk
.

8. Let V be a closed subspace ofH (finite- or infinite-dimensional). Let PV be the
orthogonal projection from H onto V and consider the operator S : V → V

defined by S = PV ◦ T|V . Check that S is a self-adjoint compact operator from
V into itself such that (Sx, x) ≥ 0 ∀x ∈ V .

9. Denote by (νk), k ≥ 1, the eigenvalues of S, repeated with their multiplicities
and arranged in nonincreasing order. Prove that ∀k with 1 ≤ k ≤ dim V ,

max
�⊂V

dim�=k
min
x∈�
x 	=0

R(x) = νk.
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Deduce that νk ≤ μk ∀k with 1 ≤ k ≤ dim V .

10. Consider now an increasing sequence V (n) of closed subspaces of H such that

⋃

n

V (n) = H.

Set S(n) = PV (n) ◦T|V (n) and let (ν(n)k ) denote the eigenvalues of S(n) arranged as

in question 9. Prove that for each fixed k the sequence n 
→ ν
(n)
k is nondecreasing

and converges, as n → ∞, to μk .

PROBLEM 38 (2, 6, 11)

Fredholm–Noether operators

Let E and F be Banach spaces and let T ∈ L(E, F ).

- A -

The goal of part A is to prove that the following conditions are equivalent:
{
(a) R(T ) is closed and has finite codimension in F,

(b) N(T ) admits a complement in E.
(1)

{
There exist S ∈ L(F,E) and K ∈ K(F, F ) such that

T ◦ S = IF +K.
(2)

{
There exist U ∈ L(F,E) and a finite-rank

projection P in F such that T ◦ U = IF − P.
(3)

Moreover, one can choose U and P such that dimR(P ) = codimR(T ).

1. Prove that (1) ⇒ (3)

[Hint: LetX be a complement ofN(T ) in E. Then T|X is bijective fromX onto
R(T ). Denote by U0 its inverse. Let Q be a projection from F onto R(T ) and
set U = U0 ◦Q.]

2. Prove that (2) ⇒ (3).

[Hint: Use Exercise 6.25.]

3. Prove that (3) ⇒ (1).

[Hint: To establish part (a) of (1) note that R(T ) ⊃ R(IF − P) and apply
Proposition 11.5. Similarly, show that R(U�) is closed and thus R(U) is also
closed. Finally, prove that there exist finite-dimensional spaces �1 and �2 in
E such that N(T ) + R(U) + �1 = E and N(T ) ∩ R(U) ⊂ �2. Then apply
Proposition 11.7.]

4. Conclude.
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- B -

Prove that the following conditions are equivalent:
{
(a) R(T ) is closed and admits a complement,

(b) dimN(T ) < ∞.
(4)

{
There exists S̃ ∈ L(F,E) and K̃ ∈ K(E,E) such that

S̃ ◦ T = IE + K̃.
(5)

{
There exist Ũ ∈ L(F,E) and a finite-rank

projection P̃ in E such that Ũ ◦ T = IE − P̃ .
(6)

- C -

One says that an operator T ∈ L(E, F ) is Fredholm (or Noether) if it satisfies

(FN)

{
(a) R(T ) is closed and has finite codimension,

(b) dimN(T ) < ∞.

(The property that R(T ) is closed can be deduced from the other assumptions; see
Exercise 2.27.)

The class of operators satisfying (FN) is denoted by 
(E,F). The index of T is
by definition

ind T = dimN(T )− codimR(T ).

1. Assume that T ∈ 
(E,F). Show that there exist U ∈ L(F,E) and finite-rank
projections P in F (resp. P̃ in E) such that

(7)

{
(a) T ◦ U = IF − P,

(b) U ◦ T = IE − P̃ ,

with dimR(P ) = codimR(T ), dimR(P̃ ) = dimN(T ).
[Hint: Use the operator U constructed in question A1.]

An operator V ∈ L(F,E) satisfying

(8)

{
(a) T ◦ V = IF +K,

(b) V ◦ T = IE + K̃,

with K ∈ K(F ) and K̃ ∈ K(E), is called a pseudoinverse of T (or an inverse
modulo compact operators).

2. Show that any pseudoinverse V belongs to 
(F,E).

3. Prove that an operator T ∈ L(E, F ) belongs to 
(E,F) iff R(T ) is closed,
dimN(T ) < ∞, and dimN(T �) < ∞. Moreover,
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ind T = dimN(T )− dimN(T �).

[Hint: Apply Propositions 11.14 and 2.18.]

4. Let T ∈ 
(E,F). Prove that T � ∈ 
(F�,E�) and that

ind T � = − ind T .

[Hint: Apply Proposition 11.13 and Theorem 2.19.]

5. Conversely, let T ∈ L(E, F ) be such that T � ∈ 
(F�,E�). Prove that T ∈

(E,F).

6. Assume that J ∈ L(E, F ) is bijective andK ∈ K(E, F ). Show that T = J +K
belongs to
(E,F) and ind T = 0. Conversely, if T ∈ 
(E,F) and ind T = 0,
prove that T can be written as T = J + K with J and K as above (one may
even choose K to be of finite rank).

[Hint: Applying Theorem 6.6, prove that IE +J−1 ◦K belongs to
(E,E) and
has index zero. For the converse, consider an isomorphism from N(T ) onto a
complement Y of R(T ).]

7. Let T ∈ 
(E,F) and K ∈ K(E, F ). Prove that T +K ∈ 
(E,F).
8. Under the assumptions of the previous question, show that

ind(T +K) = ind T .

[Hint: Set Ẽ = E × Y, F̃ = F ×N(T ), and T̃ : Ẽ → F̃ defined by T̃ (x, y) =
(T x +Kx, 0). Show that T̃ = J̃ + K̃ , where J̃ is bijective from Ẽ onto F̃ and
K̃ ∈ K(Ẽ, F̃ ). Then apply question 6.]

9. Let T ∈ 
(E,F). Prove that there exists ε > 0 (depending on T ) such that for
every M ∈ L(E, F ) with ‖M‖ < ε, we have T +M ∈ 
(E,F). Show that

ind(T +M) = ind T .

[Hint: Let V be a pseudoinverse of T . Then W = IE + (V ◦ M) is bijective
if ‖M‖ < ‖V ‖−1. Check that T + M = (T ◦ W)+ compact; then apply the
previous question.]

10. Let (Ht ), t ∈ [0, 1], be a family of operators in L(E, F ). Assume that t 
→ Ht is
continuous from [0, 1] into L(E, F ), and thatHt ∈ 
(E,F) ∀t ∈ [0, 1]. Prove
that ind Ht is constant on [0, 1].

11. LetE1, E2, andE3 be Banach spaces and let T1 ∈ 
(E1, E2), T2 ∈ 
(E2, E3).
Prove that T2 ◦ T1 ∈ 
(E1, E3).

12. With the same notation as above, show that
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ind(T2 ◦ T1) = ind T1 + ind T2.

[Hint: Consider the family of operators Ht : E1 × E2 → E2 × E3 defined in
matrix notation, for t ∈ [0, 1], by

Ht =
(
I 0
0 T2

)(
(1 − t)I tI

−tI (1 − t)I

)(
T1 0
0 I

)

,

where I is the identity operator in E2. Check that t 
→ Ht is continuous from
[0, 1] into L(E1 × E2, E2 × E3). Using the previous question, show that for
each t, Ht ∈ 
(E1 × E2, E2 × E3). Compute ind H0 and ind H1.]

13. Let T ∈ 
(E,F). Compute the index of any pseudoinverse V of T .

- D -

In this part we study two simple examples.

1. Assume dimE < ∞ and dim F < ∞. Show that any linear operator T from E

into F belongs to 
(E,F) and compute its index.

2. LetE = F = �2. Consider the shift operators Sr and S� defined in Exercise 6.18.
Prove that for every λ ∈ R, λ 	= +1, λ 	= −1, we have Sr − λI ∈ 
(�2, �2),
and S� − λI ∈ 
(�2, �2). Compute their indices.
Show that Sr ± I, S� ± I do not belong to 
(�2, �2).

[Hint: Use the results of Exercise 6.18.]

PROBLEM 39 (5, 6)

Square root of a self-adjoint nonnegative operator

Let H be a Hilbert space. Let S ∈ L(H); we say that S is nonnegative, and we
write S ≥ 0, if (Sx, x) ≥ 0 ∀x ∈ H . When S1, S2 ∈ L(H), we write S1 ≥ S2 (or
S2 ≤ S1) if S1 − S2 ≥ 0.

- A -

1. Let S ∈ L(H) be such that S� = S and 0 ≤ S ≤ I . Show that ‖S2‖ = ‖S‖2 ≤ 1,
and that 0 ≤ S2 ≤ S ≤ I .

[Hint: Use Exercise 6.24.]

2. LetS ∈ L(H) be such thatS� = S andS ≥ 0. LetP(t) = ∑
akt

k be a polynomial
such that ak ≥ 0 ∀k. Prove that [P(S)]� = P(S) and P(S) ≥ 0.

3. Let (Sn) be a sequence in L(H) such that S�n = Sn ∀n and Sn+1 ≤ Sn ∀n.
Assume that ‖Sn‖ ≤ M ∀n, for some constant M . Prove that for every x ∈ H ,
Snx converges as n → ∞ to a limit, denoted by Sx, and that S ∈ L(H) with
S� = S.
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[Hint: Let n ≥ m. Use Exercise 6.24 to prove that |Snx − Smx|2 ≤ 2M(Smx −
Snx, x).]

- B -

Assume that T ∈ L(H) satisfies T � = T , T ≥ 0, and ‖T ‖ ≤ 1. Consider the
sequence (Sn) defined by

Sn+1 = Sn + 1

2
(T − S2

n), n ≥ 0,

starting with S0 = I .

1. Show that S�n = Sn ∀n ≥ 0.

2. Show that

I − Sn+1 = 1

2
(I − Sn)

2 + 1

2
(I − T ),

and deduce that I − Sn ≥ 0 ∀n.
3. Prove that Sn ≥ 0 ∀n.

[Hint: Show by induction that I − Sn ≤ I using questions A.1 and B.2.]

4. Deduce that ‖Sn‖ ≤ 1 ∀n.
5. Prove that

Sn − Sn+1 = 1

2

[
(I − Sn)+ (I − Sn−1)

] ◦ (Sn−1 − Sn) ∀n

and deduce that Sn−1 − Sn ≥ 0 ∀n.
[Hint: Show by induction that (I−Sn) = Pn(I−T ) and (Sn−1−Sn) = Qn(I−T ),
where Pn and Qn are polynomials with nonnegative coefficients.]

6. Show that limn→∞Snx = Sx exists. Prove that S ∈ L(H) satisfies S� = S,
S ≥ 0, ‖S‖ ≤ 1, and S2 = T .

- C -

1. LetU ∈ L(H) be such thatU� = U andU ≥ 0. Prove that there existsV ∈ L(H)
such that V � = V, V ≥ 0, and V 2 = U .

[Hint: Apply the construction of part B to T = U/‖U‖.]

Next, we prove the uniqueness of V . More precisely, if W is any operator
W ∈ L(H) such thatW� = W ,W ≥ 0, andW 2 = U , thenW = V . The operator
V is called the square root of U and is denoted by U1/2.

2. Prove that the operator V constructed above commutes with every operator X
that commutes with U (i.e., X ◦ U = U ◦X implies X ◦ V = V ◦X).

3. Prove that W commutes with U and deduce that V commutes with W .
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4. Check that (V − W) ◦ (V + W) = 0 and deduce that V = W on R(V + W).
Show thatN(V ) = N(W) = N(U) = N(V +W). Conclude that V = W onH .

[Hint: Note that V = W on R(V +W) = N(U)⊥, and that V = W = 0 on
N(U).]

5. Show that ‖U1/2‖ = ‖U‖1/2.

6. Let U1, U2 ∈ L(H) be such that U�1 = U1, U�2 = U2, U1 ≥ 0, U2 ≥ 0, and
U1 ◦ U2 = U2 ◦ U1. Prove that U1 ◦ U2 ≥ 0.

[Hint: Introduce U1/2
1 and U1/2

2 .]

- D -

Let U ∈ K(H) be such that U� = U and U ≥ 0. Prove that its square root
V belongs to K(H). Assuming that H is separable, compute V on a Hilbert basis
composed of eigenvectors of U . Find the eigenvalues of V .

PROBLEM 40 (4, 5, 6)

Hilbert–Schmidt operators

- A -

Let E and F be separable Hilbert spaces, both identified with their dual spaces.
The norms on E and on F are denoted by the same symbol | |. Let T ∈ L(E, F ), so
that T � ∈ L(F,E).

1. Let (ek) (resp. (fk)) be any orthonormal basis of E (resp. F ). Show that∑∞
k=1 |T (ek)|2 < ∞ iff

∑∞
k=1 |T �(fk)|2 < ∞, and that

∞∑

k=1

|T (ek)|2 =
∞∑

k=1

|T �(fk)|2.

2. Let (ek) and (ẽk) be two orthonormal bases ofE. Show that
∑∞
k=1 |T (ek)|2 < ∞

iff
∑∞
k=1 |T (ẽk)|2 < ∞ and that

∞∑

k=1

|T (ek)|2 =
∞∑

k=1

|T (ẽk)|2.

One says that T ∈ L(E, F ) is a Hilbert–Schmidt operator and one writes T ∈
HS(E, F ) if there exists some orthonormal basis (ek) of E such that

∞∑

k=1

|T (ek)|2 < ∞.

3. Prove that HS(E, F ) is a linear subspace of L(E, F ) and that
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‖T ‖HS =
( ∞∑

k=1

|T (ek)|2
)1/2

defines a norm on HS(E, F ). Let ‖ ‖ denote the standard norm or L(E, F ).
Show that

‖T ‖ ≤ ‖T ‖HS ∀T ∈ HS(E, F ).

4. Prove that HS(E, F ) equipped with the norm ‖ ‖HS is a Banach space. Show
that in fact, it is a Hilbert space.

5. Show that HS(E, F ) ⊂ K(E, F ).

[Hint: Given x ∈ E, write x = ∑∞
k=1 xkek and set Tn(x) = ∑n

k=1 xkT (ek).
Show that ‖Tn − T ‖ → 0 as n → ∞.]

6. Show that any finite-rank operator from E into F belongs to HS(E, F ).

7. Let T ∈ L(E, F ). Prove that T ∈ HS(E, F ) iff T � ∈ HS(F,E) and that

‖T �‖HS(F,E) = ‖T ‖HS(E,F ).

8. Assume that T ∈ K(E,E) with T � = T , and let (λk) denote the sequence of
eigenvalues of T . Show that T ∈ HS(E,E) iff

∑∞
k=1 λ

2
k < ∞ and that

‖T ‖2
HS =

∞∑

k=1

λ2
k.

Construct an example of an operator T ∈ K(E,E) with E = �2 such that
T /∈ HS(E,E).

9. LetG be another separable Hilbert space. Let T1 ∈ L(E, F ) and T2 ∈ L(F,G).
Show that T2 ◦ T1 ∈ HS(E,G) if either T1 or T2 belongs to HS.

10. Let T ∈ HS(E,E) and assumeN(I +T ) = {0}. Show that (I +T ) is bijective
and that (I + T )−1 = I + S with S ∈ HS(E,E).

11. Let (ek) (resp. (fk)) be an orthonormal basis ofE (resp.F ). Consider the operator
Tk,� : E → F defined by

Tk,�(x) = (x, ek)f�.

Show that (Tk,�) is an orthonormal basis of HS(E, F ).

- B -

Assume that� is an open subset of R
N . In what follows we takeE = F = L2(�).

Let K ∈ L2(�×�), and consider the operator

(1) (T u)(x) =
∫

�

K(x, y)u(y)dy.
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1. Show that T ∈ L(E,E) and that

‖T ‖L(E,E) ≤ ‖K‖L2(�×�).

2. Show that T ∈ HS(E,E) and that

‖T ‖HS(E,E) ≤ ‖K‖L2(�×�).

[Hint: Let (ej ) be an orthonormal basis of L2(�). Check that the family
ej,k = ej ⊗ ek , where (ej ⊗ ek)(x, y) = ej (x)ek(y), is an orthonormal basis of
L2(�×�). Then write

‖T (ek)‖2
L2(�)

=
∞∑

j=1

|(T (ek), ej )|2 =
∞∑

j=1

|(K, ej ⊗ ek)|.]

3. Conversely, let T ∈ HS(E,E). Prove that there exists a unique function K ∈
L2(�×�) such that (1) holds. K is called the kernel of T .

[Hint: Let tj,k = (T ek, ej ) and check that
∑∞
j,k=1 |tj,k|2 < ∞. Define K =

∑∞
j,k=1 tj,kej ⊗ ek and prove that (1) holds.]

4. Assume that � = (0, 1), E = L2(�), and consider the operator

(T u)(x) =
∫ x

0
u(t)dt.

Show that T ∈ HS(E,E) and compute ‖T ‖HS .

PROBLEM 41 (1, 6)

The Krein–Rutman theorem

Let E be a Banach space and let P ⊂ E be a closed convex set containing 0.
Assume that P is a convex cone with vertex at 0, i.e., λx + μy ∈ P ∀λ > 0,
μ > 0, x ∈ P , and y ∈ P .

Assume that

(1) Int P 	= ∅
and

(2) P 	= E.

Let T ∈ K(E) be such that

(3) T (P \ {0}) ⊂ Int P.



500 Problems

- A -

1. Show that (Int P) ∩ (−P) = ∅.
[Hint: Use Exercise 1.7.]

In what follows we fix some u ∈ Int P .

2. Show that there exists α > 0 such that

‖x + u‖ ≥ α ∀x ∈ P.

[Hint: Argue by contradiction and deduce that −u ∈ P .]

3. Check that there exists r > 0 such that

T u− ru ∈ P.

4. Assume that some x ∈ P satisfies

T (x + u) = λx for some λ ∈ R.

Prove that λ ≥ r .

[Hint: It is convenient to introduce an order relation on E defined by y ≥ z if
y − z ∈ P . Show by induction that

(
λ
r

)n
x ≥ u, n = 1, 2,….]

5. Consider the nonlinear map

F(x) = T

(
x + u

‖x + u‖
)

, x ∈ P.

Show that F : P → P is continuous and F(P ) ⊂ K for some compact set
K ⊂ E. Deduce that there exists some x1 ∈ P such that

T (x1 + u) = λ1x1

with λ1 = ‖x1 + u‖ ≥ r .

[Hint: Apply the Schauder fixed-point theorem; see Exercise 6.26.]

6. Deduce that for every ε > 0 there exists xε ∈ P such that

T (xε + εu) = λεxε

with λε = ‖xε + εu‖ ≥ r .

7. Prove that there exist x0 ∈ Int P and μ0 > 0 such that

T x0 = μ0x0.
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[Hint: Show that (xε) is bounded. Deduce that there exists a sequence εn → 0
such that xεn → x0 and λεn → μ0 with the required properties.]

- B -

1. Given two points a ∈ Int P and b ∈ E, b /∈ P , prove that there exists a unique
σ ∈ (0, 1) such that

(1 − t)a + tb ∈ Int P ∀t ∈ [0, σ ),
(1 − σ)a + σb ∈ P,
(1 − t)a + tb /∈ P ∀t ∈ (σ, 1].

Then we set τ(a, b) = σ/(1 − σ), with 0 < τ(a, b) < ∞.

2. Let x ∈ P \ {0} be such that

T x = μx for some μ ∈ R.

Prove that μ = μ0 and x = mx0 for some m > 0, where μ0 and x0 have been
constructed in question A7.

[Hint: Suppose by contradiction that x 	= mx0, ∀m > 0. Show that μ > 0,
x ∈ Int P , and −x /∈ P . Set y = x0 − τ0x, where τ0 = τ(x0,−x). Compute
Ty and deduce that μ < μ0. Then reverse the roles of x0 and x.]

3. Let x ∈ E \ {0} be such that

T x = μx for some μ ∈ R.

Prove that either μ = μ0 and x = mx0 with m ∈ R,m 	= 0, or |μ| < μ0.

[Hint: In view of question 2 one may assume that x /∈ P and −x /∈ P . If μ > 0
consider τ(x0, x), and if μ < 0 consider both τ(x0, x) and τ(x0,−x).]

4. Deduce that N(T − μ0I ) = Rx0. In other words, the geometric multiplicity of
the eigenvalue μ0 is one.

5. Prove that N((T − μ0I )
k) = Rx0 for all k ≥ 2. In other words, the algebraic

multiplicity of the eigenvalue μ0 is also one.

[Hint: In view of Problem 36, it suffices to show that N((T − μ0I )
2) = Rx0.]

PROBLEM 42 (6)

Lomonosov’s theorem on invariant subspaces

Let E be an infinite-dimensional Banach space and let T ∈ K(E), T 	= 0. The
goal of part A is to prove that there exists a nontrivial, closed, invariant subspace Z
of T , i.e., T (Z) ⊂ Z, with Z 	= {0}, and Z 	= E.
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- A -

Set

A = span{I, T , T 2, . . . }

=
{
∑

i∈I
λiT

i, with λi ∈ R and I is a finite subset of {0, 1, 2, . . . }
}

.

For every y ∈ E, set Ay = {Sy; S ∈ A}. Clearly, y ∈ Ay and thus Ay 	= {0}
for every y 	= 0. Moreover, Ay is a subspace of E and T (Ay) ⊂ Ay , so that
T (Ay) ⊂ Ay . If Ay 	= E for some y 	= 0, then Ay is a nontrivial, closed, invariant
subspace of T . Therefore we can assume that

(1) Ay = E ∀y ∈ E, y 	= 0.

Since T 	= 0, we may fix some x0 ∈ E such that T x0 	= 0, and some r such that

0 < r ≤ ‖T x0‖
2‖T ‖ ≤ ‖x0‖

2
.

Set
C = {x ∈ E; ‖x − x0‖ ≤ r}.

1. Check that 0 /∈ C and that

‖T x − T x0‖ ≤ 1

2
‖T x0‖ ∀x ∈ C,

so that

‖T x‖ ≥ 1

2
‖T x0‖ ∀x ∈ C.

Deduce that 0 /∈ T (C).
2. Prove that for every y ∈ E, y 	= 0, there exists some S ∈ A, denoted by Sy ,

such that
‖Sy − x0‖ ≤ r

2
.

[Hint: Use assumption (1).]

3. Deduce that for every y ∈ E, y 	= 0, there exists some ε > 0 (depending on y),
denoted by εy , such that

‖Sz− x0‖ ≤ r ∀z ∈ B(y, ε),
where S is as in question 2.
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4. Consider a finite covering of T (C) by balls B(yj , 1
2εyj ) with j ∈ J, J finite.

Set, for j ∈ J and x ∈ E,

qj (x) = max{0, εyj − ‖T x − yj‖} and q(x) =
∑

j∈J
qj (x).

Check that the functions qj , j ∈ J , and q are continuous on E. Show that
∀x ∈ C,

q(x) ≥ min
j∈J

{
1

2
εyj

}

> 0.

Set

F(x) = 1

q(x)

∑

j∈J
qj (x)Syj (T x), x ∈ C.

5. Prove that F is continuous from C into E and that

‖F(x)− x0‖ ≤ r ∀x ∈ C.

[Hint: Use question 3.]

6. Prove that F(C) ⊂ K , where K is a compact subset of C. Deduce that there
exists ξ ∈ C such that F(ξ) = ξ .

[Hint: Apply the Schauder fixed-point theorem; see Exercise 6.26.]

7. Set

U = 1

q(x)

∑

j∈J
qj (ξ)(Syj ◦ T ),

with ξ as in question 6. Show that U ∈ K(E). Deduce that Z = N(I − U) is
finite-dimensional; check that ξ ∈ Z.

8. Prove that T (Z) ⊂ Z and conclude.

[Hint: Show that U ∈ A and deduce that T ◦ U = U ◦ T .]

9. Construct a linear operator T : R
2 → R

2 that has no invariant subspaces except
the trivial ones.

- B -

We now establish a stronger version of the above result. Assume that T ∈ K(E)
and T 	= 0. Let R ∈ L(E) be such that R ◦ T = T ◦ R. Prove that R admits a
nontrivial, closed, invariant subspace.

[Hint: Set B = span {I, R,R2, . . . } and By = {Sy; S ∈ B}. Check that all the
steps in part A still hold with A replaced by B and Ay by By .]
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PROBLEM 43 (2, 4, 5, 6)

Normal operators

Let H be a Hilbert space identified with its dual space. An operator T ∈ L(H) is
said to be normal if it satisfies

T ◦ T � = T � ◦ T .

1. Prove that T is normal iff it satisfies

|T u| = |T �u| ∀u ∈ H.

[Hint: Compute |T (u+ v)|2.]

Throughout the rest of this problem we assume that T is normal.

2. Assume that u ∈ N(T − λI) and v ∈ N(T − μI) with λ 	= μ. Show that
(u, v) = 0.

[Hint: Prove, using question 1, that N(T � − μI) = N(T − μI), and compute
(T u, v).]

3. Prove that R(T ) = R(T �) = N(T )⊥ = N(T �)⊥.

4. Let f ∈ R(T ). Check that there exists u ∈ R(T �) satisfying f = T u.

[Hint: Note that H = R(T )⊕N(T ).]

5. Consider a sequenceun ∈ R(T �) such thatun → u asn → ∞.Writeun = T �yn
for some yn ∈ H . Show that Tyn converges as n → ∞ to a limit z ∈ H that
satisfies T �z = f .

[Hint: Use question 1 and a Cauchy sequence argument.]

6. Deduce that R(T ) = R(T �).

[Hint: Use the fact that N(T ) = N(T �).]

7. Show that ‖T 2‖ = ‖T ‖2.

[Hint: Write |T u|2 ≤ |T �T u| |u| = |T 2u| |u|.]
8. Deduce that ‖T p‖ = ‖T ‖p for every integer p ≥ 1.

[Hint: Consider first the case p = 2k . For a general integer p, choose any k such
that 2k ≥ p and write ‖T ‖2k = ‖T 2k‖ = ‖T 2k−pT p‖.]

9. Prove that N(T 2) = N(T ) and deduce that N(T p) = N(T ) for every integer
p ≥ 1.

[Hint: Note that if T 2u = 0, then T u ∈ N(T ) ∩ R(T ).]
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PROBLEM 44 (5, 6)

Isometries and unitary operators. Skew-adjoint operators.
Polar decomposition and Cayley transform.

Let H be a Hilbert space identified with its dual space and let T ∈ L(H). One
says that

(i) T is an isometry if |T u| = |u| ∀u ∈ H ,
(ii) T is a unitary operator if T is an isometry that is also surjective,
(iii) T is skew-adjoint (or antisymmetric) if T � = −T .

- A -

1. Assume that T is an isometry. Check that ‖T ‖ = 1.

2. Prove that T ∈ L(H) is an isometry iff T � ◦ T = I .

3. Assume that T ∈ L(H) is an isometry. Prove that the following conditions are
equivalent:

(a) T is a unitary operator,
(b) T � is injective,
(c) T ◦ T � = I ,
(d) T � is an isometry,
(e) T � is a unitary operator.

4. Give an example of an isometry that is not a unitary operator.

[Hint: Use Exercise 6.18.]

5. Assume that T is an isometry. Prove that R(T ) is closed and that T ◦ T � =
PR(T ) = the orthogonal projection on R(T ).

6. Assume that T is an isometry. Prove that
either T is a unitary operator and then σ(T ) ⊂ {−1,+1},
or T is not a unitary operator and then σ(T ) = [−1,+1].

7. Assume that T ∈ K(H) is an isometry. Show that dimH < ∞.

8. Prove that T ∈ L(H) is skew-adjoint iff (T u, u) = 0 ∀u ∈ H .

9. Assume that T ∈ L(H) is skew-adjoint. Show that σ(T ) ⊂ {0}.
[Hint: Use Lax–Milgram.]

10. Assume that T ∈ L(H) is skew-adjoint. Set

U = (T + I ) ◦ (T − I )−1.

Check thatU is well defined, thatU = (T−I )−1◦(T+I ), and thatU◦T = T ◦U .
Prove that U is a unitary operator (U is called the Cayley transform of T ).
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11. Conversely, let T ∈ L(H) be such that 1 /∈ σ(T ). Assume that U = (T + I ) ◦
(T − I )−1 is an isometry. Prove that T is skew-adjoint.

- B -

We will say that an operator T ∈ L(H) satisfies property (1) if

(1) there exists an isometry J from N(T ) into N(T �).

The goal of part B is to prove that every operator T ∈ L(H) satisfying property
(1) can be factored as

T = U ◦ P,
whereU ∈ L(H) is an isometry andP ∈ L(H) is a self-adjoint nonnegative operator
(recall that nonnegative means (Pu, u) ≥ 0 ∀u ∈ H ). Such a factorization is called
a polar decomposition of T . In addition, P is uniquely determined on H , and U is
uniquely determined on N(T )⊥ (but not on H ).

1. Check that assumption (1) is satisfied in the following cases:

(i) T is injective,
(ii) dimH < ∞,
(iii) T is normal (see Problem 43),
(iv) T = I −K with K ∈ K(H).

2. Give an example in which (1) is not satisfied.

[Hint: Use Exercise 6.18.]

3. Assume that we have a polar decomposition T = U ◦P . Prove thatP 2 = T �◦T .

4. Deduce that P is uniquely determined on H .

[Hint: Use Problem 39.]

5. Let T = U ◦ P be a polar decomposition of T . Show that U is uniquely deter-
mined on N(T )⊥.

6. Assume that T admits a polar decomposition. Show that (1) holds.

[Hint: Set J = U|N(T ).]

7. Prove that every operatorT ∈ L(H) satisfying (1) admits a polar decomposition.

8. Assume that T satisfies the stronger assumption

(2) there exists an isometry J from N(T ) onto N(T �).

Show that T admits a polar decomposition T = U ◦ P , where U is a unitary
operator.

9. Deduce that every normal T ∈ L(H) admits a polar decomposition T = U ◦ P
where U is a unitary operator and U ◦ P = P ◦ U .
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10. Show that every operator T ∈ L(H) satisfying (2) can be factored as T =
P ◦ U , where U ∈ L(H) is a unitary operator and P ∈ L(H) is a self-adjoint
nonnegative operator.

[Hint: Apply question 8 to T �.]

11. Show that every operator T ∈ K(H) satisfying (1) admits a polar decomposition
T = U ◦ P , where P ∈ K(H).

12. Assume that H is separable and T ∈ K(H) (but T does not necessarily sat-
isfy (1)). Prove that there exist two orthonormal bases (en) and (fn) of H such
that

T u =
∞∑

n=1

αn(u, en)fn ∀u ∈ H,

where (αn) is a sequence such that αn ≥ 0 ∀n and αn → 0 as n → ∞. Compute
T �. Conversely, show that any operator of this form must be compact.

PROBLEM 45 (8)

Strong maximum principle

Consider the bilinear form

a(u, v) =
∫ 1

0
pu′v′ + quv,

where p ∈ C1([0, 1]), p ≥ α > 0 on (0, 1), and q ∈ C([0, 1]). We assume that a is
coercive on H 1

0 (0, 1) (but we make no sign assumption on q).

Given f ∈ L2(0, 1), let u ∈ H 2(0, 1) be the solution of

(1)

{
−(pu′)′ + qu = f on (0, 1),

u(0) = u(1) = 0.

Assume that f ≥ 0 a.e. on (0, 1) and f 	≡ 0. Our goal is to prove that

(2) u′(0) > 0, u′(1) < 0

and

(3) u(x) > 0 ∀x ∈ (0, 1).

1. Assume that ψ ∈ H 1(0, 1) satisfies

(4)

{
a(ψ, v) ≤ 0 ∀v ∈ H 1

0 (0, 1), v ≥ 0 on (0, 1),

ψ(0) ≤ 0, ψ(1) ≤ 0.

Prove that ψ ≤ 0 on (0, 1).
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[Hint: Take v = ψ+ in (4) and use Exercise 8.11.]

Consider the problem

(5)

{
−(pζ ′)′ + qζ = 0 on (0, 1),

ζ(0) = 0, ζ(1) = 1.

2. Show that (5) has a unique solution ζ and that ζ ≥ 0 on (0, 1).
3. Check that u ≥ 0 on (0, 1) and deduce that u′(0) ≥ 0 and u′(1) ≤ 0.
4. Prove that

(6) p(1)|u′(1)| =
∫ 1

0
f ζ.

[Hint: Multiply (1) by ζ and (5) by u.]

Set ϕ(x) = (
eBx − 1

)
, B > 0.

5. Check that if B is sufficiently large (depending only on p and q), then

(7) −(pϕ′)′ + qϕ ≤ 0 on (0, 1).

In what follows we fix B such that (7) holds.
6. Let A = (

eB − 1
)−1

. Prove that

ζ ≥ Aϕ on (0, 1).

[Hint: Apply question 1 to ψ = Aϕ − ζ . ]
7. Deduce that u′(1) < 0.

[Hint: Apply question 4.]
8. Check that u′(0) > 0.

[Hint: Change t into (1 − t).]
9. Fix δ ∈ (0, 1

2 ) so small that

u(x)

x
≥ 1

2
u′(0) ∀x ∈ (0, δ) and

u(x)

1 − x
≥ 1

2
|u′(1)| ∀x ∈ (1 − δ, 1).

Why does such δ exist? Let v be the solution of the problem
{

−(pv′)′ + qv = 0 on (δ, 1 − δ),

v(δ) = v(1 − δ) = γ,

where

γ = δ

2
min{u′(0), |u′(1)|}.

Show that u ≥ v ≥ 0 on (δ, 1 − δ).
10. Prove that v > 0 on (δ, 1 − δ).
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[Hint: Assume by contradiction that v(x0) = 0 for some x0 ∈ (δ, 1 − δ), and
apply Theorem 7.3 (Cauchy–Lipschitz–Picard) as in Exercise 8.33.]

11. Deduce that u(x) > 0 ∀x ∈ (0, 1).

Finally, we present a sharper form of the strong maximum principle.

12. Prove that there is a constant a > 0 (depending only on p and q) such that

u(x) ≥ ax(1 − x)

∫ 1

0
f (t)t (1 − t)dt.

[Hint: Start with the case where p ≡ 1 and q ≡ k2 is a positive constant;
use an explicit solution of (1). Next, consider the case where p ≡ 1 and no
further assumption is made on q. Finally, reduce the general case to the previous
situation, using a change of variable.]

PROBLEM 46 (8)

The method of subsolutions and supersolutions

Let h(t) : [0,+∞) → [0,+∞) be a continuous nondecreasing function. Assume
that there exist two functions v,w ∈ C2([0, 1]) satisfying

(1)

⎧
⎪⎨

⎪⎩

0 ≤ v ≤ w on I = (0, 1),

−v′′ + v ≤ h(v) on I, v(0) = v(1) = 0,

−w′′ + w ≥ h(w) on I, w(0) ≥ 0, w(1) ≥ 0,

(v is called a subsolution andw a supersolution). The goal is to prove that there exists
a solution u ∈ C2([0, 1]) of the problem

(2)

⎧
⎪⎨

⎪⎩

−u′′ + u = h(u) on I,

u(0) = u(1) = 0,

v ≤ u ≤ w on I.

Consider the sequence (un)n≥1 defined inductively by

(3)

{
−u′′

n + un = h(un−1) on I, n ≥ 1,

un(0) = un(1) = 0,

starting from u0 = w.

1. Show that v ≤ u1 ≤ w on I .

[Hint: Apply the maximum principle to (u1 − w) and to (u1 − v).]

2. Prove by induction that for every n ≥ 1,

v ≤ un on I and un+1 ≤ un on I.
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3. Deduce that the sequence (un) converges inL2(I ) to a limit u and that h(un) →
h(u) in L2(I ).

4. Show that u ∈ H 1
0 (I ), and that

∫ 1

0
u′ϕ′ +

∫ 1

0
uϕ =

∫ 1

0
h(u)ϕ ∀ϕ ∈ H 1

0 (I ).

5. Conclude that u ∈ C2([0, 1]) is a classical solution of (2).

In what follows we choose h(t) = tα , where 0 < α < 1. The goal is to prove
that there exists a unique function u ∈ C2([0, 1]) satisfying

(4)

⎧
⎪⎨

⎪⎩

−u′′ + u = uα onI,

u(0) = u(1) = 0,

u(x) > 0 ∀x ∈ I.
6. Let v(x) = ε sin(πx) and w(x) ≡ 1. Show that if ε is sufficiently small,

assumption (1) is satisfied. Deduce that there exists a solution of (4).

We now turn to the question of uniqueness. Let u be the solution of (4)
obtained by the above method, starting with u0 ≡ 1. Let ũ ∈ C2([0, 1]) be
another solution of (4).

7. Show that ũ ≤ 1 on I .

[Hint: Consider a point x0 ∈ [0, 1] where ũ achieves its maximum.]

8. Prove that the sequence (un)n≥1 defined by (3), starting with u0 ≡ 1, satisfies

ũ ≤ un on I,

and deduce that ũ ≤ u on I .
9. Show that ∫ 1

0
(ũαu− uαũ) = 0.

10. Conclude that ũ = u on I .

[Hint: Write ũαu− uαũ = uũ(ũα−1 − uα−1) and note that uα−1 ≤ ũα−1.]

We now present an alternative proof of existence. Set, for every u ∈ H 1
0 (I ),

F(u) = 1

2

∫ 1

0
(u′2 + u2)−

∫ 1

0
g(u),

where g(t) = 1
α+1 (t

+)α+1, 0 < α < 1, and t+ = max (t, 0).
11. Prove that there exists a constant C such that

F(u) ≥ 1

2
‖u‖2

H 1 − C‖u‖α+1
H 1 ∀u ∈ H 1

0 (I ).
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12. Deduce that
m = inf

v∈H 1
0 (I )

F (v) > −∞,

and that the infimum is achieved.

[Hint: Let (un) be a minimizing sequence. Check that a subsequence (unk )

converges weakly in H 1
0 (I ) to a limit u and that

∫ 1
0 g(unk ) → ∫ 1

0 g(u). The
reader is warned that the functional F is not convex; why?]

13. Show that m < 0.

[Hint: Prove that F(εv) < 0 for all v ∈ H 1
0 (I ) such that v+ 	≡ 0 and for all ε

sufficiently small.]

14. Check that
g(b)− g(a) ≥ (a+)α(b − a) ∀a, b ∈ R.

15. Let u ∈ H 1
0 (I ) be a minimizer of F on H 1

0 (I ). Prove that

∫ 1

0
(u′v′ + uv) =

∫ 1

0
(u+)αv ∀v ∈ H 1

0 (I ).

[Hint: Write that F(u) ≤ F(u+ tv), apply question 14, and let t → 0.]

16. Deduce that u ∈ C2([0, 1]) is a solution of

(5)

{
−u′′ + u = (u+)α on I,

u(0) = u(1) = 0.

Prove that u ≥ 0 on I and u 	≡ 0.
17. Conclude that u > 0 on I using the strong maximum principle (see Problem 45).

PROBLEM 47 (8)

Poincaré–Wirtinger’s inequalities

Let I = (0, 1).

- A -

1. Prove that

(1) ‖u− u‖L∞(I ) ≤ ‖u′‖L1(I ) ∀u ∈ W 1,1(I ), where u =
∫

I

u.

[Hint: Note that u = u(x0) for some x0 ∈ [0, 1].]
2. Show that the constant 1 in (1) is optimal, i.e.,

(2) sup{‖u− u‖L∞(I ); u ∈ W 1,1(I ), and ‖u′‖L1(I ) = 1} = 1.
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[Hint: Consider a sequence (un) of smooth functions on [0, 1] such that u′
n ≥ 0

on (0, 1) ∀n, un(1) = 1 ∀n, un(x) = 0 ∀x ∈ [0, 1 − 1
n
], ∀n.]

3. Prove that the sup in (2) is not achieved, i.e., there exists no function u ∈ W 1,1(I )

such that
‖u− u‖L∞(I ) = 1 and ‖u′‖L1(I ) = 1.

4. Prove that

(3) ‖u‖L∞(I ) ≤ 1

2
‖u′‖L1(I ) ∀u ∈ W 1,1

0 (I ).

[Hint: Write that |u(x)−u(0)| ≤ ∫ x
0 |u′(t)|dt and |u(x)−u(1)| ≤ ∫ 1

x
|u′(t)|dt .]

5. Show that 1
2 is the best constant in (3). Is it achieved?

[Hint: Fix a ∈ (0, 1) and consider a function u ∈ W 1,1
0 (I ) increasing on (0, a),

decreasing on (a, 1), with u(a) = 1.]

6. Deduce that the following inequalities hold:

(4) ‖u− u‖Lq(I) ≤ C‖u′‖Lp(I) ∀u ∈ W 1,p(I ).

and

(5) ‖u‖Lq(I) ≤ C‖u′‖Lp(I) ∀u ∈ W 1,p
0 (I )

with 1 ≤ q ≤ ∞ and 1 ≤ p ≤ ∞.
Prove that the best constants in (4) and (5) are achieved when 1 ≤ q ≤ ∞ and
1 < p ≤ ∞.

[Hint: Minimize ‖u′‖Lp(I) in the class u ∈ W 1,p(I ) such that ‖u− u‖Lq(I) = 1,

resp. u ∈ W 1,p
0 (I ) and ‖u‖Lq(I) = 1.]

- B -

The next goal is to find the best constant in (4) when p = q = 2, i.e.,

(6) ‖u− u‖L2(I ) ≤ C‖u′‖L2(I ) ∀u ∈ H 1(I ).

Set H = {f ∈ L2(I ); ∫
I
f = 0} and V = {v ∈ H 1(I ); ∫

I
v = 0}.

1. Check that for every f ∈ H there exists a unique u ∈ V such that
∫

I

u′v′ =
∫

I

f v ∀v ∈ V.
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2. Prove that u ∈ H 2(I ) and satisfies
{

−u′′ = f a.e. on I,

u′(0) = u′(1) = 0.

3. Show that the operator T : H → H defined by Tf = u is self-adjoint, compact,
and that

∫

I
f Tf ≥ 0 ∀f ∈ H .

4. Let λ1 be the largest eigenvalue of T . Prove that (6) holds with C = √
λ1 and

that
√
λ1 is the best constant in (6).

[Hint: Use Exercise 6.24.]
5. Compute explicitly the best constant in (6).

- C -

1. Prove that

(7) ‖u− u‖L1(I ) ≤ 2
∫

I

|u′(t)|t (1 − t)dt ∀u ∈ W 1,1(I ).

2. Deduce that

(8) ‖u− u‖L1(I ) ≤ 1

2
‖u′‖L1(I ) ∀u ∈ W 1,1(I ).

3. Show that the constant 1/2 in (8) is optimal, i.e.,

(9) sup{‖u− u‖L1(I ); u ∈ W 1,1(I ), and ‖u′‖L1(I ) = 1} = 1

2
.

4. Is the sup in (9) achieved?

PROBLEM 48 (8)

A nonlinear problem

Let j : [−1,+1] → [0,+∞) be a continuous convex function such that j ∈
C2((−1,+1)), j (0) = 0, j ′(0) = 0, and

lim
t↑+1

j ′(t) = +∞, lim
t↓−1

j ′(t) = −∞.

(A good example to keep in mind is j (t) = 1 − √
1 − t2, t ∈ [−1,+1].) Given

f ∈ L2(0, 1), define the function ϕ : H 1
0 (0, 1) → (−∞,+∞] by

ϕ(v) =
{

1
2

∫ 1
0 v

′2 + ∫ 1
0 j (v)− ∫ 1

0 f v if v ∈ H 1
0 (0, 1) and ‖v‖L∞ ≤ 1,

+∞ otherwise.



514 Problems

1. Check that ϕ is convex l.s.c. on H 1
0 (0, 1) and that lim‖v‖

H1
0
→+∞ ϕ(v) = +∞.

2. Deduce that there exists a unique u ∈ H 1
0 (0, 1) such that

ϕ(u) = min
v∈H 1(0,1)

ϕ(v).

The goal is to prove that if f ∈ L∞(0, 1) then ‖u‖L∞(0,1) < 1, u ∈ H 2(0, 1),
and u satisfies

(1)

{
−u′′ + j ′(u) = f on (0, 1),

u(0) = u(1) = 0.

3. Check that

j (t)− j (a) ≥ j ′(a)(t − a) ∀t ∈ [−1,+1], ∀a ∈ (−1,+1).

[Hint: Use the convexity of j .]

Fix a ∈ [0, 1).

4. Set v = min(u, a). Prove that v ∈ H 1
0 (0, 1) and that

v′ =
{
u′ a.e. on [u ≤ a],
0 a.e. on [u > a].

[Hint: Write v = a − (a − u)+ and use Exercise 8.11.]

5. Prove that
1

2

∫

[u>a]
u′2 ≤

∫

[u>a]
(f − j ′(a))(u− a).

[Hint: Write that ϕ(u) ≤ ϕ(v), where v is defined in question 4. Then use
question 3.]

6. Choose a ∈ [0, 1) such that f (x) ≤ j ′(a) ∀x ∈ [0, 1] and prove that u(x) ≤ a

∀x ∈ [0, 1].
[Hint: Show that

∫ 1
0 w

′2 = 0, where w = (u− a)+ belongs toH 1
0 (0, 1); why?]

7. Conclude that ‖u‖L∞(0,1) < 1.

[Hint: Apply the previous argument, replacing u by −u, j (t) by j (−t), and f
by −f .]

8. Deduce that u belongs to H 2(0, 1) and satisfies (1).

[Hint: Write that ϕ(u) ≤ ϕ(u+ εv) with v ∈ H 1
0 (0, 1) and ε small.]

9. Check that u ∈ C2([0, 1]) if f ∈ C([0, 1]).
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10. Conversely, show that any function u ∈ C2([0, 1]) such that ‖u‖L∞(0,1) < 1,
and satisfying (1), is a minimizer of ϕ on H 1

0 (0, 1).

[Hint: Use question 3 with t = v(x) and a = u(x).]

Assume now that f ∈ L2(0, 1). Set fn = Tnf , where Tn is the truncation
operation (defined in Chapter 4 after Theorem 4.12). Let un be the solution of
(1) corresponding to fn.

11. Prove that ‖j ′(un)‖L2(0,1) ≤ C as n → ∞.

[Hint: Multiply (1) by j ′(un).]

12. Deduce that ‖un‖H 2(0,1) ≤ C.

13. Show that a subsequence (unk ) converges weakly in H 2(0, 1) to a limit u ∈
H 2(0, 1) with unk → u in C1([0, 1]). Prove that |u(x)| < 1 a.e. on (0, 1), and
j ′(u) ∈ L2(0, 1).

[Hint: Apply Fatou’s lemma to the sequence by j ′(unk )2.]

14. Show that j ′(unk ) converges weakly in L2(0, 1) to j ′(u) and deduce that (1)
holds.

[Hint: Apply Exercise 4.16.]

15. Deduce that ‖u‖L∞(0,1) < 1 if one assumes, in addition, that

lim inf
t↑1

j ′(t)(1 − t)1/3 > 0 and lim sup
t↓−1

j ′(t)(1 + t)1/3 < 0.

[Hint: Assume, by contradiction, that u(x0) = 1 for some x0 ∈ (0, 1).
Check that |u′(x)| ≤ |x − x0|1/2‖u′′‖L2 ∀x ∈ (0, 1) and |u(x) − 1| ≤
2
3 |x − x0|3/2‖u′′‖L2 ∀x ∈ (0, 1). Deduce that j ′(u) /∈ L2(0, 1).]

PROBLEM 49 (8)

Min–max principles for the eigenvalues of Sturm–Liouville operators

Consider the Sturm–Liouville operator Au = −(pu′)′ + qu on (0, 1) with
Dirichlet boundary condition u(0) = u(1) = 0. Assume that p ∈ C1([0, 1]),
p(x) ≥ α > 0 ∀x ∈ [0, 1], and q ∈ C([0, 1]). Set

a(u, v) =
∫ 1

0
(pu′v′ + quv) ∀u, v ∈ H 1

0 (0, 1).

Note that we make no further assumption on q, so that the bilinear form a need not
be coercive. Fix M sufficiently large that ã(u, v) = a(u, v) +M

∫ 1
0 uv is coercive

(e.g., M > − minx∈[0,1] q(x)). Let (λk) be the sequence of eigenvalues of A. The
space H = H 1

0 (0, 1) is equipped with the scalar product ã(u, v), now denoted by
(u, v)H , and the corresponding norm |u|H = ã(u, u)1/2. Given any f ∈ L2(0, 1),
let u ∈ H 1

0 (0, 1) be the unique solution of the problem
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ã(u, v) =
∫ 1

0
f v ∀v ∈ H 1

0 (0, 1).

Set u = Tf and consider T as an operator from H into itself.

1. Show that T is self-adjoint and compact.

[Hint: Recall that the identity map from H into L2(0, 1) is compact.]

2. Let (λk) be the sequence of eigenvalues ofA (in the sense of Theorem 8.22) with
corresponding eigenfunctions (ek), and let (μk) be the sequence of eigenvalues
of T . Check that μk > 0 ∀k and show that

λk = 1

μk
−M ∀k and T (ek) = μkek ∀k.

3. Prove that

(T w,w)H =
∫ 1

0
w2 ∀w ∈ H,

and deduce that

1

R(w)
= a(w,w)

∫ 1
0 w

2
+M ∀w ∈ H, w 	= 0,

where R is the Rayleigh quotient associated with T , i.e., R(w) = (T w,w)H
|w|2H

(see

Problem 37).

4. Prove that

(1) λ1 = min
w∈H 1

0
w 	=0

{
a(w,w)
∫ 1

0 w
2

}

,

and ∀k ≥ 2,

λk =

min

{
a(w,w)
∫ 1

0 w
2

;w ∈ H 1
0 (0, 1), w 	= 0 and

∫ 1

0
wej = 0 ∀j = 1, 2, . . . , k − 1

}

.

[Hint: Apply question 2 in Problem 37 and show that (w, ej )H = 0 iff
∫ 1

0 wej = 0.]

5. Prove that ∀k ≥ 1,

λk = min
�⊂H 1

0 (0,1)
dim�=k

max
u∈�
u	=0

{
a(u, u)
∫ 1

0 u
2

}

,

and
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λk = max
�⊂H 1

0 (0,1)
codim�=k−1

min
u∈�
u	=0

{
a(u, u)
∫ 1

0 u
2

}

,

where � and � are closed subspaces of H 1
0 (0, 1).

[Hint: Apply question 7 in Problem 37.]

6. Prove similar results for the Sturm–Liouville operator with Neumann boundary
conditions.

We now return to formula (1) and discuss further properties of the eigen-
functions corresponding to the first eigenvalue λ1. In particular, we will see that
there is a positive eigenfunction generating the eigenspace associated to λ1.

7. Let w0 ∈ H 1
0 (0, 1) be a minimizer of (1) such that

∫ 1
0 w

2
0 = 1. Show that

Aw0 = λ1w0 on (0, 1).

8. Set w1 = |w0|. Check that w1 is also a minimizer of (1) and deduce that

(2) Aw1 = λ1w1 on (0, 1).

[Hint: Use Exercise 8.11.]

9. Prove that w1 > 0 on (0, 1), w′
1(0) > 0, and w′

1(1) < 0.

[Hint: Apply the strong maximum principle to the operator A +M; see Prob-
lem 45.]

10. Assume that w ∈ H 1
0 (0, 1) satisfies

Aw = λ1w on (0, 1).

Prove that w is a multiple of w1.

[Hint: Recall that eigenvalues are simple; see Exercise 8.33. Find another proof
that does not rely on the simplicity of eigenvalues; use w2/w1 as test function
in (2).]

11. Show that any function ψ ∈ H 1
0 (0, 1) satisfying

Aψ = μψ on (0, 1), ψ ≥ 0 on (0, 1), and
∫ 1

0
ψ2 = 1,

for some μ ∈ R, must coincide with w1.

[Hint: If μ 	= λ1, check that
∫ 1

0 ψw1 = 0. Deduce that μ = λ1.]
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PROBLEM 50 (8)

Another nonlinear problem

Let q ∈ C([0, 1]) and consider the bilinear form

a(u, v) =
∫ 1

0
(u′v′ + quv), u, v ∈ H 1

0 (0, 1).

Assume that there exists v1 ∈ H 1
0 (0, 1) such that

(1) a(v1, v1) < 0.

1. Check that assumption (1) is equivalent to

(2) λ1(A) < 0,

where λ1(A) is the first eigenvalue of the operator Au = −u′′ + qu with zero
Dirichlet condition.

2. Verify that

(3) −∞ < m = inf
u∈H 1

0 (0,1)

{
1

2
a(u, u)+ 1

4

∫ 1

0
|u|4

}

< 0.

[Hint: Use u = εv1 with ε > 0 sufficiently small.]

3. Prove that the inf in (3) is achieved by some u0.

[Warning: The functional in (3) is not convex; why?]

Our goal is to prove that (3) admits precisely two minimizers.

4. Prove that u0 belongs to C2([0, 1]) and satisfies

(4)

{
−u′′ + qu+ u3 = 0 on (0, 1),

u(0) = u(1) = 0.

5. Set u1 = |u0|. Show that u1 is also a minimizer for (3). Deduce that u1 satis-
fies (4).

[Hint: Apply Exercise 8.11.]

6. Prove that u1(x) > 0 ∀x ∈ (0, 1), u′
1(0) > 0, and u′

1(1) < 0.

[Hint: Choose a constant a so large that −u′′
1 + a2u1 = f ≥ 0, f 	≡ 0. Then use

the strong maximum principle.]

7. Let u0 ∈ H 1
0 (0, 1) be again any minimizer in (3). Prove that either u0(x) > 0

∀x ∈ (0, 1), or u0(x) < 0 ∀x ∈ (0, 1).

[Hint: Check that |u0(x)| > 0 ∀x ∈ (0, 1).]
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8. Let U1 be any solution of (4) satisfying U1 ≥ 0 on [0, 1], and U1 	≡ 0. Set
ρ1 = U2

1 . Consider the functional


(ρ) =
∫ 1

0

(

|(√ρ)′|2 + qρ + 1

2
ρ2
)

defined on the set

K =
{
ρ ∈ H 1

0 (0, 1); ρ ≥ 0 on (0, 1) and
√
ρ ∈ H 1

0 (0, 1)
}
.

Prove that

(5) 
(ρ)−
(ρ1) ≥ 1

2

∫ 1

0
(ρ − ρ1)

2 ∀ρ ∈ K.

[Hint: Let u ∈ C1
c ((0, 1)). Note that

2
U ′

1uu
′

U1
≤ u′2 + U ′

1
2u2

U2
1

on (0, 1),

and deduce (using integration by parts) that

∫ 1

0
(u′2 − U ′

1
2) ≥ −

∫ 1

0

U ′′
1

U1
(u2 − U2

1 ) ∀u ∈ H 1
0 (0, 1).

Then apply equation (4) to establish (5).]

9. Deduce that there exists exactly one nontrivial solution u of (4) such that u ≥ 0
on [0, 1]. Denote it by U0.

[Comment: There exist in general many sign-changing solutions of (4).]

10. Prove that there exist exactly two minimizers for (3): U0 and −U0.

PROBLEM 51 (8)
Harmonic oscillator. Hermite polynomials.

Let p ∈ C(R) be such that p ≥ 0 on R. Consider the space

V =
{

v ∈ H 1(R);
∫ +∞

−∞
pv2 < ∞

}

equipped with the scalar product

(u, v)V =
∫ +∞

−∞
(u′v′ + uv + puv),

and the corresponding norm |u|V = (u, u)
1/2
V .

1. Check that V is a separable Hilbert space.
2. Show that C∞

c (R) is dense in V .



520 Problems

[Hint: Let ζn be a sequence of cut-off functions as in the proof of Theorem 8.7.
Given u ∈ V , consider ζnu and then use convolution.]

Consider the bilinear form

a(u, v) =
∫ +∞

−∞
u′v′ + puv, u, v ∈ V.

In what follows we assume that there exist constants δ > 0 and A > 0 such that

(1) p(x) ≥ δ ∀x ∈ R with |x| ≥ A.

3. Prove that a is coercive on V . Deduce that for every f ∈ L2(R) there exists a
unique solution u ∈ V of the problem

(2) a(u, v) =
∫ +∞

−∞
f v ∀v ∈ V.

4. Assuming that f ∈ L2(R) ∩ C(R), show that u satisfies

(3)

⎧
⎪⎨

⎪⎩

u ∈ C2(R),

−u′′ + pu = f on R,

u(x) → 0 as |x| → ∞.

5. Conversely, prove that any solution u of (3) belongs to V and satisfies (2).

[Hint: Multiply the equation −u′′ + pu = f by ζ 2
n u and use the fact that a is

coercive.]

In what follows we assume that

(4) lim|x|→∞p(x) = +∞.

6. Given f ∈ L2(R), set u = Tf , where u is the solution of (2). Prove that T :
L2(R) → L2(R) is self-adjoint and compact.

[Hint: Using Corollary 4.27 check that V ⊂ L2(R) with compact injection.]

7. Deduce that there exist a sequence (λn) of positive numbers with λn → ∞ as
n → ∞, and a Hilbert basis (en) of L2(R) satisfying

(5)

{
en ∈ V ∩ C2(R),

−e′′n + pen = λnen on R.

In what follows we take p(x) = x2.
8. Check that (5) admits a solution of the form en(x) = e−x2/2Pn(x), where λn =
(2n+ 1) and Pn(x) is a polynomial of degree n.



Partial Solutions of the Problems

Problem 1

5. In view of Zorn’s lemma (Lemma 1.1) it suffices to check that F is inductive. Let
(Ai)i∈I be a totally ordered subset of F . Set A = ⋂

i∈IAi and check that A is
nonempty,A is an extreme set ofK,A ∈ F , andA is an upper bound for (Ai)i∈I .

6. Suppose not, that there are two distinct points a, b ∈ M0. By Hahn–Banach
(Theorem 1.7) there exists some f ∈ E� such that 〈f, a〉 	= 〈f, b〉. Set

M1 =
{

x ∈ M0; 〈f, x〉 = max
y∈M0

〈f, y〉
}

.

Clearly M1 ∈ F and M0 ≤ M1. Since M0 is maximal, it follows that M1 = M0.
This is absurd, since the points a and b cannot both belong to M1.

8. Let K1 be the closed convex hull of all the extreme points of K . Assume, by
contradiction, that there exists some point a ∈ K such that a /∈ K1. Then there
exists some hyperplane strictly separating {a} and K1. Let f ∈ E� be such that

〈f, x〉 < 〈f, a〉 ∀ x ∈ K1.

Note that

B =
{

x ∈ K; 〈f, x〉 = max
y∈K 〈f, y〉

}

is an extreme set ofK such that B ∩K1 = ∅. But B contains at least one extreme
point of K; absurd.

9. (a) E = {x = (xi); |xi | = 1 ∀i},
(b) E = {x = (xi); |xi | = 1 ∀i, and xi is stationary for large i},
(c) E = ∅,
(d) E = {x = (xi); ∃j such that |xj | = 1, and xi = 0 ∀i 	= j},
(e) E = {x = (xi);∑ |xi |p = 1},
(f) E = ∅.
To see that E = ∅ in the case (f) let f ∈ L1(R) be any function such that

∫

R
|f | =

1. By a translation we may always assume that
∫ 0
−∞ |f | = ∫∞

0 |f | = 1/2. Then

521H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 
DOI 10.1007/978-0-387-70914-7, © Springer Science+Business Media, LLC 2011
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write f = (g + h)/2 with

g =
{

2f on (−∞, 0),

0 on (0,+∞),
and h =

{
0 on (−∞, 0),

2f on (0,+∞).

Problem 2

Determine ∂ϕ(x) for the function ϕ defined by ϕ(x) = −√
x for x ≥ 0 and

ϕ(x) = +∞ for x < 0.

-A-

4. (a) ∂ϕ(x) = F(x),
(b) ∂ϕ(x) = 1

‖x‖F(x) if x 	= 0 and ∂ϕ(0) = BE�,

(c) ∂ϕ(x) =
{

0 if x ∈ IntK,

outward normal cone at x if x ∈ Boundary of K,

∂ϕ(x) = K⊥ if K is a linear subspace,
(d) ∂ϕ(x) = Dϕ(x) = differential of ϕ at x.

5. Study the following example: In E = R
2 (equipped with the Euclidean norm),

ϕ = IC with C = {[x1, x2]; (x1 − 1)2 + x2
2 ≤ 1},

and
ψ = ID with D = {[x1, x2]; x1 = 0}.

- B -

1. Let C = epi ϕ. Apply Hahn–Banach (first geometric form) with A = IntC and
B = [x0, ϕ(x0)]. Note that A 	= ∅ (why?). Hence there exist some f ∈ E� and
some constants k and a such that ‖f ‖ + |k| 	= 0 and

〈f, x〉 + kλ ≥ a ≥ 〈f, x0〉 + kϕ(x0) ∀x ∈ D(ϕ), ∀λ ≥ ϕ(x).

Check that k > 0 and deduce that − 1
k
f ∈ ∂ϕ(x0).

6. Note that infE(ϕ̃+ ψ̃) = 0, and so there exists some g ∈ E� such that ϕ̃�(−g)+
ψ̃�(g) = 0. Check that f0 − g ∈ ∂ϕ(x), and that g ∈ ∂ψ(x); thus f0 ∈ ∂ϕ(x)+
∂ψ(x).

-C-

1. For every R > 0 and every x0 ∈ E we have

ϕ(x) ≤ k(‖x0‖ + R)+ C ≡ M(R) ∀x ∈ E with ‖x − x0‖ ≤ R.

Thus

‖f ‖ ≤ 1

R
(k‖x0‖ + kR + C − ϕ(x0)) ∀f ∈ ∂ϕ(x0).
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Letting R → ∞ we see that ‖f ‖ ≤ k ∀f ∈ ∂ϕ(x0) and consequently

ϕ(x)− ϕ(x0) ≥ −k‖x − x0‖ ∀x, x0 ∈ E.
We have D(ϕ�) ⊂ kBE� . Indeed, if f ∈ D(ϕ�), write

〈f, x〉 ≤ ϕ(x)+ ϕ�(f ) ≤ k‖x‖ + C + ϕ�(f ).

Choosing ‖x‖ = R, we obtain

R‖f ‖ ≤ kR + C + ϕ�(f ) ∀R > 0

and the conclusion follows by letting R → ∞.
2. Check, with the help of a basis of R

n, that every point x0 ∈ A satisfies assump-
tion (1).

-D-

The main difficulty is to show that if f ∈ ∂IC(x) with ϕ(x) = 0 and f 	= 0,
then there exists some λ > 0 such that f ∈ λ∂ϕ(x). Apply Hahn–Banach (first
geometric form) in E × R to the convex sets A = Int(epi ϕ) and B = {[y, 0] ∈
E × R; 〈f, y − x〉 ≥ 0} (check that A ∩ B = ∅). Thus, there exist some g ∈ E�
and some constant k such that ‖g‖ + |k| 	= 0 and

〈g, y〉 + kμ ≥ 〈g, z〉 ∀[y, μ] ∈ epi ϕ, ∀[z, 0] ∈ B.
It follows, in particular, that k ≥ 0 and that

〈g, y〉 + kϕ(y) ≥ 〈g, x〉 ∀y ∈ E.
In fact, k 	= 0 (since k = 0 would imply g = 0). Thus −g

k
∈ ∂ϕ(x) (since

ϕ(x) = 0). Moreover, g 	= 0 (why?). Finally, we have 〈g, x〉 ≥ 〈g, z〉 ∀[z, 0] ∈ B
and consequently 〈g, u〉 ≤ 0 ∀u ∈ E such that 〈f, u〉 ≥ 0. It follows that g = 0
on the set f−1({0}). We conclude that there is a constant θ < 0 such that g = θf

(see Lemma 3.2).

Problem 3

-A-

3. Either x ∈ S(xn) ∀n and then we have ψ(xn+1) ≤ ψ(x) + εn+1 ∀n. Passing to
the limit one obtains ψ(a) ≤ ψ(x) and a fortiori ψ(x) − ψ(a) + d(x, a) ≥ 0.
Or ∃N such that x /∈ S(xN) and then x /∈ S(xn) ∀n ≥ N . It follows that

ψ(x)− ψ(xn)+ d(x, xn) > 0 ∀n ≥ N.

Passing to the limit also yields ψ(x)− ψ(a)+ d(x, a) ≥ 0.
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-B-

1. The set M equipped with the distance d(x, y) = λ‖x − y‖ is complete (since ψ
is l.s.c.) and nonempty (x0 ∈ M). Note that ψ ≥ 0. By the result of part A there
exists some x1 ∈ M such that

ψ(x)− ψ(x1)+ λ‖x − x1‖ ≥ 0 ∀x ∈ M.
If x /∈ M we have ψ(x) > ψ(x0) − λ‖x0 − x‖ (by definition of M), while
ψ(x0)− λ‖x0 − x‖ ≥ ψ(x1)− λ‖x − x1‖ (since x1 ∈ M).
Combining the two cases, we see that

ψ(x)− ψ(x1)+ λ‖x − x1‖ ≥ 0 ∀x ∈ E.
On the other hand, since x1 ∈ M , we have ψ(x1) ≤ ψ(x0) − λ‖x0 − x1‖. But
ψ(x0) ≤ ε and ψ(x1) ≥ 0. Consequently ‖x0 − x1‖ ≤ ε/λ.

2. Consider the functions ω(x) = ψ(x) − ψ(x1) and θ(x) = λ‖x − x1‖, so that
0 ∈ ∂(ω+ θ)(x1). We know that ∂(ω+ θ) = ∂ω+ ∂θ and that ∂θ(x1) = λBE� .
It follows that 0 ∈ ∂ϕ(x1)− f + λBE� .

3. Let us check that D(ϕ) ⊂ D(∂ϕ). Given any x0 ∈ D(ϕ), we know, from the
previous questions, that ∀ε > 0, ∀λ > 0, ∃x1 ∈ D(∂ϕ) such that ‖x1−x0‖ < ε/λ.
Clearly R(∂ϕ) ⊂ D(ϕ�). Conversely, let us check that D(ϕ�) ⊂ R(∂ϕ). Given
any f0 ∈ D(ϕ�) we know that ∀ε > 0, ∃x0 ∈ D(ϕ) such that f0 ∈ ∂εϕ(x0), and
thus ∀λ > 0, ∃f1 ∈ R(∂ϕ) such that ‖f1 − f0‖ < λ.

-C-

1. Let f0 ∈ E�. Since (IC)�(f0) < ∞, we know that ∀ε > 0, ∃x0 ∈ C such
that f0 ∈ ∂εIC(x0). It follows that ∀λ > 0, ∃x1 ∈ C, ∃f1 ∈ ∂IC(x1) with
‖f1 − f0‖ ≤ λ. Clearly we have supx∈C〈f1, x〉 = 〈f1, x1〉.

2. Let x0 be a boundary point of C. Then ∀ε > 0, ∃a ∈ E, a /∈ C, such that
‖a − x0‖ < ε. Separating C and {a} by a closed hyperplane we obtain some
f0 ∈ E� such that f0 	= 0 and 〈f0, x − a〉 ≤ 0 ∀x ∈ C. Of course, we may
assume that ‖f0‖ = 1. Thus, we have 〈f0, x− x0〉 ≤ ε ∀x ∈ C and consequently
f0 ∈ ∂εIC(x0). Applying the result of part B with λ = √

ε we find some x1 ∈ C
and some f1 ∈ ∂IC(x1) such that ‖x1 − x0‖ ≤ √

ε and ‖f1 − f0‖ ≤ √
ε. Since

f1 	= 0 (provided ε < 1), we see that there exists a supporting hyperplane to C
at x1.

Problem 4

2. Argue by induction and apply question 7 of Exercise 1.23.
3. Note that x = 1

2 [(x + y)+ (x − y)], and so by convexity,

ψn(x) ≤
[

1

2
ψn(x + y)+ ψn(x − y)

]

≤ 1

2
[ϕn(x + y)+ ψn(x − y)] ∀x, y.
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Thus ψn(x) ≤ ψn+1(x). We have ϕn ↓ θ, ψn ↑ θ̃ and ϕn+1 = 1
2 (ϕn + ψn).

Therefore θ = θ̃ .

4. The sequence (ϕ�n) is nondecreasing and converges to a limit, denoted by ω.
Since θ ≤ ϕn, it follows that ϕ�n ≤ θ� and ω ≤ θ�. On the other hand, we have
〈f, x〉 − ϕn(x) ≤ ϕ�n(f ) ∀x ∈ E, ∀f ∈ E�. Thus 〈f, x〉 − θ(x) ≤ ω(f ) ∀x ∈ E,
∀f ∈ E�, that is, θ� ≤ ω. We conclude that ω = θ�.

5. Applying question 1 of Exercise 1.23, we see that ψ�n+1 = 1
2 (ϕ

�
n + ψ�n). The

sequence (ψ�n) is nonincreasing and thus it converges to a limit ζ such that ζ =
1
2 (θ

� + ζ ). It follows that ζ = θ� (since ζ < ∞).

-B-

From the convexity and the homogeneity of ϕ we obtain

ϕ(x + y) = ϕ

(

t
x

t
+ (1 − t)

y

1 − t

)

≤ tϕ
(x

t

)
+ (1 − t)ϕ

(
y

1 − t

)

= 1

t
ϕ(x)+ 1

1 − t
ϕ(y).

In order to establish (1) choose x = 1
2 (X + Y ) and y = 1

2 (X − Y ).

2. Using (1) we find that ∀x, y ∈ E, ∀t ∈ (0, 1),

ϕn+1(x) = 1

2
{ϕn(x)+ ψn(x)}

≤ 1

2

{
1

4t
ϕn(x + y)+ 1

4(1 − t)
ϕn(x − y)

+ 1

4t
ψn(x + y)+ 1

4(1 − t)
ψn(x − y)

}

.

Applying A1 and the induction assumption we have ∀x, y ∈ E and ∀t ∈ (0, 1),

ϕn+1(x) ≤ 1

2

{
2

4t
ϕn+1(x + y)+ 1

4(1 − t)

(

2 + C

4n

)

ψn(x − y)

}

.

Choosing t such that 2
4t = 1

4(1−t) (2+ C
4n ), that is, t = 1/2(1+ C

4n+1 ),we conclude
that

ϕn+1(x) ≤ 1

2

(

1 + C

4n+1

)

{ϕn(x + y)+ ψn(x − y)} ∀x, y ∈ E.

It follows that ϕn+1(x) ≤ 1
2 (1 + C

4n+1 )ψn+1(x) ∀x ∈ E.

3. With x 	= y and t ∈ (0, 1) write
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θ(tx + (1 − t)y) ≤ θn(tx + (1 − t)y)+ 1

2n
ϕ0(tx + (1 − t)y)

≤ tθn(x)+ (1 − t)θn(y)+ 1

2n
ϕ0(tx + (1 − t)y)

≤ tθ(x)+ (1 − t)θ(y)

+ 1

2n

[

ϕ0(tx + (1 − t)y)− tϕ0(x)− (1 − t)ϕ0(y)

+ C

2n
(tϕ0(x)+ (1 − t)ϕ0(y))

]

< tθ(x)+ (1 − t)θ(y),

for n large enough, since ϕ0 is strictly convex.

-C-

Take ϕ0(x) = 1
2‖x‖2

1 and ψ0(x) = 1
2α

2‖x‖2
2, with α > 0 sufficiently small. The

norm ‖ ‖ is defined through the relation θ(x) = 1
2‖x‖2.

Problem 5

-B-

1. It suffices to prove that there is a constant c > 0 such that B(0, c) ⊂ K . By (iii)
we have

⋃∞
n=1 (nK) = E and thus

⋃∞
n=1 (nK) = E. Applying Baire’s theorem,

one sees that Int(K) 	= ∅, and hence there exist some y0 ∈ E and a constant
c > 0 such that B(y0, 4c) ⊂ K . SinceK is convex and symmetric it follows that
B(0, 2c) ⊂ K .

We claim that B(0, c) ⊂ K . Fix x ∈ E with ‖x‖ < c. There exist y1, z1 ∈ P

such that ‖y1‖ ≤ 1/2, ‖z1‖ ≤ 1/2 and ‖x − (y1 − z1)‖ < c/2. Next, there exist
y2, z2 ∈ P such that ‖y2‖ ≤ 1/4, ‖z2‖ ≤ 1/4, and

‖x − (y1 − z1)− (y2 − z2)‖ < c/4.

Iterating this construction, one obtains sequences (yn) and (zn) in P such that
‖yn‖ ≤ 1/2n, ‖zn‖ ≤ 1/2n, and

∥
∥
∥
∥
∥
x −

n∑

i=1

(yi − zi)

∥
∥
∥
∥
∥
< c/2n.

Then write x = y − z with y = ∑∞
i=1yi and z = ∑∞

i=1z1, so that x ∈ K .
2. Write xn = yn − zn with yn, zn ∈ P , ‖yn‖ ≤ C/2n, and ‖zn‖ ≤ C/2n. Then

1 ≤ f (xn) ≤ f (yn). Set un = ∑n
i=1yi and u = ∑∞

i=1yi . On the one hand,
f (un) ≥ n, and on the other hand, f (u− un) ≥ 0. It follows that f (u) ≥ n ∀n;
absurd.

3. Consider a complement of F (see Section 2.4).
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-C-

(a) One has F = P − P = E; one can also check (i) directly: if f ≥ 0 on P , then
|f (u)| ≤ ‖u‖∞f (1) ∀u ∈ E.

(b) HereF = {u ∈ E; u(0) = u(1) = 0} is a closed subspace of finite codimension.
(c) One has F = E. Indeed, if u ∈ E there is a constant c > 0 such that |u(t)| ≤

ct (1 − t) ∀t ∈ [0, 1] and one can write u = v − w with w = ct (1 − t) and
v = u+ ct (1 − t).

Problem 7

-A-

2. Fix x ∈ M with ‖x‖ ≤ 1. Let ε > 0. Since dist(x,N) ≤ a, there exists some
y ∈ N such that ‖x − y‖ ≤ a+ ε, and thus ‖y‖ ≤ 1 + a + ε. On the other hand,
dist( y

‖y‖+ε , L) ≤ b and so dist(y, L) ≤ b(‖y‖ + ε) ≤ b(1 + a + 2ε). It follows
that dist(x, L) ≤ a + ε + b(1 + a + 2ε) ∀ε > 0.

-B-

In order to construct an example such that A� + B� 	= (A + B)� it suffices to
consider any unbounded operator A : D(A) ⊂ E → F that is densely defined,
closed, and such that D(A) 	= E. Then take B = −A. We have (A+ B)� = 0 with
D((A + B)�) = F�, while A� + B� = 0 with D(A� + B�) = D(A�). [Note that
D(A�) 	= F�; why?].

3. A+ B is closed; indeed, let (un) be a sequence in E such that un → u in E and
(A+ B)un → f in F . Note that

‖Bu‖ ≤ k‖Au+ Bu‖ + k‖Bu‖ + C‖u‖ ∀u ∈ D(A)
and thus

‖Bu‖ ≤ k

1 − k
‖Au+ Bu‖ + C

1 − k
‖u‖ ∀u ∈ D(A).

It follows that (Bun) is a Cauchy sequence. Let Bun → g, and so u ∈ D(B)

with Bu = g. On the other hand, Aun → f − Bu, and so u ∈ D(A) with
Au+ Bu = f . Clearly one has

ρ(A,A+ B) = sup
u∈D(A)

‖u‖+‖Au‖≤1

inf
v∈D(A){‖u− v‖ + ‖Au− (Av + Bv)‖}

≤ sup
u∈D(A)

‖u‖+‖Au‖≤1

‖Bu‖ ≤ k + C.

4. The same argument shows that under assumption (H�), one has

ρ(A�,A� + B�) ≤ k� + C�.
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[There are some minor changes, since the dual norm on E� × F� is given by
‖[f, g]‖E�×F� = max{‖f ‖E�, ‖g‖E�}.]

5. Let t ∈ [0, 1]. For every u ∈ D(A) one has

‖Bu‖ ≤ k‖Au‖ + C‖u‖ ≤ k(‖Au+ tBu‖ + t‖Bu‖)+ C‖u‖,
and thus

‖Bu‖ ≤ k

1 − k
‖Au+ tBu‖ + C

1 − k
‖u‖.

Fix any ε > 0 such that 1/ε = n is an integer, ε(k+C)1−k ≤ 1
3 , and ε(k�+C�)

1−k� ≤ 1
3 .

Set A1 = A+ εB, so that A�1 = A� + εB� and, moreover,

‖Bu‖ ≤ k

1 − k
‖A1u‖ + C

1 − k
‖u‖ ∀u ∈ D(A),

and also

‖B�v‖ ≤ k�

1 − k�
‖A�1v‖ + C�

1 − k�
‖v‖ ∀v ∈ D(A�).

It follows that (A1 + εB)� = A�1 + εB�, i.e., (A+ 2εB)� = A� + 2εB�, and so
on, step by step with Aj = A+ jεB and j ≤ n− 1.

Problem 8

1. Let T be the topology corresponding to the metric d. Since BE� equipped with
the topology σ(E,E�) is compact, it suffices to check that the canonical injection
(BE�, σ (E

�,E)) → (BE�, T ) is continuous. This amounts to proving that for
every f0 ∈ BE� and for every ε > 0 there exists a neighborhood V (f 0) of f 0 for
σ(E�,E) such that

V (f 0) ∩ BE� ⊂ {f ∈ BE�; d(f, f 0) < ε}.
Let (ei) be the canonical basis of �1. Choose

V (f 0) = {f ∈ E�; |〈f − f 0, ei〉| < δ ∀i = 1, 2, . . . , n}
with δ + (1/2n−1) < ε.

2. Note that (BE�, d) is a complete metric space (since it is compact). The sets Fk
are closed for the topology T , and, moreover,

⋃∞
k=1Fk = BE� (since 〈f, xn〉 → 0

for every f ∈ E�). Baire’s theorem says that there exists some integer k0 such
that Int(Fk0) 	= ∅.

3. Write f 0 = (f 0
1 , f

0
2 , . . . , f

0
i , . . . ) and consider the elements f ∈ BE� of the

form
f = (f 0

1 , f
0
2 , . . . , f

0
N,±1,±1,±1, . . . ),

so that
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d(f, f 0) ≤
∞∑

i=N+1

2

2i
< ρ.

Such f ’s belong to Fk0 and one has, for every n ≥ k0,

∣
∣〈f, xn〉∣∣ =

∣
∣
∣
∣

∞∑

i=1

fix
n
i

∣
∣
∣
∣ =

∣
∣
∣
∣

N∑

i=1

f 0
i x

n
i +

∞∑

i=N+1

(±xni )
∣
∣
∣
∣ ≤ ε.

It follows that

∞∑

i=N+1

|xni | ≤ ε +
N∑

i=1

|f 0
i | |xni | ≤ ε +

N∑

i=1

|xni |,

and thus
∞∑

i=1

|xni | ≤ ε + 2
N∑

i=1

|xni | ∀n ≥ k0.

4. The conclusion is clear, since for each fixed i the sequence xni tends to 0 as
n → ∞.

5. Given ε > 0, set

Fk = {f ∈ BE�; |〈f, xn − xm〉| ≤ ε ∀m, n ≥ k}.
By the same method as above one finds integers k0 and N such that

‖xn − xm‖1 ≤ ε + 2
N∑

i=1

|xni − xmi | ∀m, n ≥ k0.

It follows that (xn) is a Cauchy sequence in �1.
6. See Exercises 4.18 and 4.19.

Problem 9

-A-

1. A is open for the strong topology (since it is open for the topology σ(E�,E)).
Thus (by Hahn–Banach applied in E�) there exist some ξ ∈ E��, ξ 	= 0, and a
constant α such that

〈ξ, f 〉 ≤ a ≤ 〈ξ, g〉 ∀f ∈ A, ∀g ∈ B.
Fix f0 ∈ A and a neighborhood V of 0 for the topology σ(E�,E) such that
f0 + V ⊂ A. We may always assume that V is symmetric; otherwise, consider
V ∩ (−V ). We have 〈ξ, f0 + g〉 ≤ α ∀g ∈ V , and hence there exists a constant
C such that |〈ξ, g〉| ≤ C ∀g ∈ V . Therefore ξ : E� → R is continuous for the
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topology σ(E�,E). In view of Proposition 3.14 there exists some x ∈ E such
that 〈ξ, f 〉 = 〈f, x〉 ∀f ∈ E�.

2. See the solution of Exercise 3.7.
3. Let V be an open set for the topology σ(E�,E) that is convex, and such that

0 ∈ V and V ∩ (A− B) = ∅. Separating V and (A− B), we find some x ∈ E,
x 	= 0, and a constant α such that

〈f, x〉 ≤ α ≤ 〈g − h, x〉 ∀f ∈ V, ∀g ∈ A, ∀h ∈ B.
Since V is also a neighborhood of 0 for the strong topology, there exists some
r > 0 such that rBE� ⊂ V . Thus α ≥ r‖x‖ > 0, which leads to a strict separation
of A and B.

4. Let f, g ∈ Aσ(E�,E) and let V be a convex neighborhood of 0 for σ(E�,E). Then
(f + V ) ∩ A 	= ∅ and (g + V ) ∩ A 	= ∅. Thus (tf + (1 − t)g + V ) ∩ A 	= ∅
∀t ∈ [0, 1].

- B-

1. If E is reflexive, then N
σ(E�,E) = N = the closure of N for the strong topology,

since σ(E�,E) = σ(E�,E��) and N is convex. Let E = �1, so that E� = �∞;
taking N = c0 we have N⊥ = {0} and N⊥⊥ = �∞.

2. For everyx ∈ E, setϕ(x) = supf∈E�{〈f, x〉−ψ(f )}. Thenϕ : E → (−∞,+∞]
is convex and l.s.c. In order to show that ϕ 	≡ +∞ and that ϕ� = ψ , one may
follow the same arguments as in Proposition 1.10 and Theorem 1.11, except that
here one uses question A3 instead of the usual Hahn–Banach theorem.

3. (i) One knows (Corollary 2.18) that N(A) = R(A�)⊥ and thus N(A)⊥ =
R(A�)⊥⊥ = R(A�)

σ(E�,E)
. If E is reflexive, then N(A)⊥ = R(A�).

(ii) Argue as in the proof of Theorem 3.24 and apply question A3.
4. Suppose, by contradiction, that there exists some ξ ∈ BE�� such that ξ /∈
J (BE)

σ(E��,E�)
.Applying question A3 in E��, we may find some f ∈ E� and a

constant α such that

〈f, x〉 < α < 〈ξ, f 〉 ∀x ∈ BE.
Thus ‖f ‖ ≤ α < 〈ξ, f 〉 ≤ ‖f ‖; absurd.

5. Assume, by contradiction, that there exists some u0 ∈ E with ‖u0‖ < 1 and

Au0 /∈ convA(SE)
σ(E�,E)

. Applying question A3, we may find some x0 ∈ E and
a constant α such that

〈Au, x0〉 ≤ α < 〈Au0, x0〉 ∀u ∈ SE;
thus 〈Au− Au0, x0〉 < 0 ∀u ∈ SE . On the other hand, there is some t > 0 such
that ‖u0 + tx0‖ = 1, and by monotonicity, we have 〈A(u0 + tx0)−Au0, x0〉 ≥ 0;
absurd.
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Problem 10

- A -

1. BE� is compact and metrizable for the topology σ(E�,E) (see Theorem 3.28). It
follows, by a standard result in point-set topology, that there exists a subset inBE�
that is countable and dense for σ(E�,E). Let T denote the topology associated
to the metric d. It is easy to see that the canonical injection i: (BE, σ (E,E�)) →
(BE, T ) is continuous (see part (b) in the proof of Theorem 3.28). [Note that
in general, i−1 is not continuous; otherwise, BE would be metrizable for the
topology σ(E,E�) and E� would be separable (see Exercise 3.24). However,
there are examples in whichE is separable andE� is not, for instanceE = L1(�)

and E� = L∞(�).]
SinceB is compact for σ(E,E�), it follows (by Corollary 2.4) that B is bounded.
ThusB is a compact (metric) space for the topology T and, moreover, the topolo-
gies σ(E,E�) and T coincide on B.

2. Consider the closed linear space spanned by the xn’s.

- B -

For each i choose a1 ∈ BF such that 〈gi, ai〉 ≥ 3/4.

- C -

4. For each η ∈ E�� set h(η) = supi≥1〈η, fi〉; the function h : E�� → R is
continuous for the strong topology on E��, since we have |h(η1) − h(η2)| ≤
‖η1 − η2‖ ∀η1, η2 ∈ E��.

5. A subsequence of the sequence (xn) converges to x for σ(E,E�) (by assump-
tion (Q) and we have 〈ξ, fi〉 = 〈fi, x〉 ∀i ≥ 1.

On the other hand,x belongs to the closure of [x1, x2, . . . , xk, . . . ] for the topology
σ(E,E�) and thus also for the strong topology (by Theorem 3.7). In particular,
x ∈ M and consequently ξ − x ∈ M . It follows that ξ = x since

0 = sup
i≥1

〈ξ − x, fi〉 ≥ 1

2
‖ξ − x‖.

-D-

1. A is bounded by assumption (Q) and Corollary 2.4. It follows that A
σ(E��,E�)

is
compact for the topology σ(E��, E�) by Theorem 3.16. But the result of part C

shows that B = A
σ(E��,E�)

, or more precisely that J (B) = J (A)
σ(E��,E�)

.
Consequently J (B) is compact for the topology σ(E��, E�). Since the map
J−1 : J (E) → E is continuous from σ(E��, E�) to σ(E,E�), it follows that B
is compact for σ(E,E�).

2. Already established in question C4.
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Problem 11

-A-

2. Separating {0} and C1 we find some x1 ∈ E and a constant α such that 0 < α <

〈f, x1〉 ∀f ∈ C1. If needed, replace x1 by a multiple of x1.
3. One has to find a finite subset A ⊂ E such that A ⊂ (1/d1)BE and YA = ∅. We

first claim that
⋂
A∈FYA = ∅, where F denotes the family of all finite subsets A

in (1/d1)BE . Assume, by contradiction, that f ∈ ⋂
A∈FYA; we have

〈f, x1〉 ≤ 1 and 〈f, x〉 ≤ 1 ∀x ∈ (1/d1)BE.

Thus ‖f ‖ ≤ d1 and so f ∈ C1; it follows that 〈f, x1〉 > 1; absurd.
By compactness there is a finite sequenceA′

1, A
′
2, . . . , A

′
j such that

⋂j
i=1YA′

i
= ∅.

Set A′ = A′
1 ∪ A′

2, · · · ∪ A′
j . It is easy to check that YA′ = ∅.

4. For every finite subset A in (1/dk−1)BE consider the set

YA =
{

f ∈ Ck; sup

{

〈f, x〉; x ∈
(
k−1⋃

i=1

Ai

)

∪ A
}

≤ 1

}

.

One proves, as in question 3, that there is some A such that YA = ∅.
5. Write the set

⋃∞
k=1Ak as a sequence (xn) that tends to 0.

- B -

1. Applying Hahn–Banach in c0, there exist some θ ∈ �1(= (c0)
�; see Chapter 11)

with θ 	= 0, and a constant α such that

〈θ, ξ〉 ≤ α ≤ 〈θ, T (f )〉 ∀ξ ∈ c0 with ‖ξ‖ < 1, ∀f ∈ C.
It follows that

0 < ‖θ‖�1 ≤ α ≤
∑

θn〈f, xn〉 ∀f ∈ C.

Letting x = ∑
θnxn, we obtain

〈f, x〉 ≥ α > 0 ∀f ∈ C.
If needed, replace x by a multiple of x and conclude.

2. Fix any f0 /∈ C; set C̃ = C − f0. Then 0 /∈ C̃ and for each integer n the
set C̃ ∩ (nBE�) is closed for σ(E�,E). Hence, there is some x ∈ E such that
〈f, x〉 ≥ 1 ∀f ∈ C̃. The set V = {f ∈ E�; 〈f − f0, x〉 < 1} is a neighborhood
of f0 for σ(E�,E) and V ∩ C = ∅.
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Problem 12

- A -

2. Apply the results of questions 1, 7, and 4 in Exercise 1.23 to the functions ϕ�

and ψ�.
3. We have θ�� = (ϕ + ψ)�. Following the same argument as in the proof of

Theorem 1.11, it is easy to see that epi θ�� = epi θ (warning: in general, θ need
not be l.s.c.).

Therefore we obtain D(θ��) ⊂ D(θ), i.e., D((ϕ + ψ)�) ⊂ D(ϕ�)+D(ψ�).

-B-

1. It suffices to check that for every fixed x ∈ E the set 〈M,x〉 is bounded. In fact,
it suffices to check that 〈M,x〉 is bounded below (choose ±x). Given x ∈ E,
x 	= 0, write x = λ(a − b) with λ > 0, a ∈ D(ϕ), and b ∈ D(ψ). We have

〈f − g, a〉 ≤ ϕ(a)+ ϕ�(f − g),

〈g, b〉 ≤ ψ(b)+ ψ�(g),

and thus
−
〈
g,
x

λ

〉
≤ −〈f, a〉 + ϕ(a)+ ψ(b)+ α ∀g ∈ M.

Consequently 〈M,x〉 ≥ C, where C depends only on x, f , and α.
2. Use the same method as above.
3. Letα∈R be fixed and let (fn)be a sequence inE� such that θ(fn)≤α andfn→f .

Thus, there is a sequence (gn) inE� such that ϕ�(fn−gn)+ψ�(gn) ≤ α+(1/n).
Consequently, (gn) is bounded and we may assume that gnk ⇀ g for σ(E�,E).
Since ϕ� and ψ� are l.s.c. for σ(E�,E), it follows that ϕ�(f − g)+ψ�(g) ≤ α,
and so θ(f ) ≤ α.

4. (i) We have θ = θ�� = (ϕ + ψ)�.

(ii) Write that (ϕ + ψ)�(0) = (ϕ�∇ψ�)(0) and note that

inf
g∈E�{ϕ

�(−g)+ ψ�(g)}

is achieved by the result of question B1.

(iii) This is a direct consequence of (i).

Remark. Assumption (H) holds if there is some x0 ∈ D(ϕ) ∩ D(ψ) such that ϕ is
continuous at x0.

Problem 13

- A -

1. By question 5 of Exercise 1.25 we know that
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lim
λ→0
λ>0

1

2λ

(
‖x + λy‖2 − ‖x‖2

)
= 〈Fx, y〉.

If λ < 0 set μ = −λ and write

1

2λ

(
‖x + λy‖2 − ‖x‖2

)
= − 1

2μ

(
‖x + μ(−y)‖2 − ‖x‖2

)
.

2. Let tn → 0 be such that 〈F(x + tny), y〉 → �. We have

1

2

(
‖x + λy‖2 − ‖x + tny‖2

)
≥ 〈F(x + tny), (λ− tn)y〉.

Passing to the limit (with λ ∈ R fixed) we obtain 1
2

(‖x + λy‖2 − ‖x‖2
) ≥ λ�.

Dividing by λ (distinguish the cases λ > 0 and λ < 0) and letting λ → 0 leads
to 〈Fx, y〉 = �. The uniqueness of the limit allows us to conclude that

lim
t→0

〈F(x + ty), y〉 = 〈Fx, y〉

(check the details).
3. Recall that F is monotone by question 4 of Exercise 1.1.

Alternative proof. It suffices to show that if xn → x thenFxn ⇀ Fx forσ(E�,E).
Assume xn → x. If E is reflexive or separable there is a subsequence such that
Fxnk ⇀ f for σ(E�,E). Recall that 〈Fxn, xn〉 = ‖xn‖2 and ‖Fxn‖ = ‖xn‖.
Passing to the limit we obtain 〈f, x〉 = ‖x‖2 and ‖f ‖ ≤ ‖x‖. Thus f = Fx;
the uniqueness of the limit allows us to conclude that Fxn ⇀ Fx for σ(E�,E)
(check the details).

- B -

1. If xn → x, then Fxn ⇀ Fx for σ(E�,E) and ‖Fxn‖ = ‖xn‖ → ‖x‖ = ‖Fx‖.
It follows from Proposition 3.32 that Fxn → Fx.

2. Assume, by contradiction, that there are two sequences (xn), and (yn) such that
‖xn‖ ≤ M, ‖yn‖ ≤ M, ‖xn − yn‖ → 0, and ‖Fxn − Fyn‖ ≥ ε > 0. Passing to
a subsequence we may assume that ‖xn‖ → �, and ‖yn‖ → � with ε ≤ 2�, so
that � 	= 0. Set an = xn/‖xn‖ and bn = yn/‖yn‖. We have ‖an‖ = ‖bn‖ = 1,
‖an − bn‖ → 0, and ‖Fan − Fbn‖ ≥ ε′ > 0 for n large enough. Since E� is
uniformly convex there exists δ > 0 such that

∥
∥
∥
∥
Fan + Fbn

2

∥
∥
∥
∥ ≤ 1 − δ.

On the other hand, the inequality of question A4 leads to

2 ≤ ‖Fan + Fbn‖ + ‖an − bn‖;
this is impossible.
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3. We have
ϕ(x)− ϕ(x0) ≥ 〈Fx0, x − x0〉

and
ϕ(x0)− ϕ(x) ≥ 〈Fx, x0 − x〉.

It follows that

0 ≤ ϕ(x)− ϕ(x0)− 〈Fx0, x − x0〉 ≤ 〈Fx − Fx0, x − x0〉
and therefore

|ϕ(x)− ϕ(x0)− 〈Fx0, x − x0〉| ≤ ‖Fx − Fx0‖ ‖x − x0‖.
The conclusion is derived easily with the help of question B1.

-C -

Write

‖f + g‖ = sup
x∈E‖x‖≤1

〈f + g, x〉

= sup
x∈E‖x‖≤1

{〈f, x + y〉 + 〈g, x − y〉 + 〈g, x − y〉 − 〈f − g, y〉}

≤ 1

2
‖f ‖2 + 1

2
‖g‖2 − 〈f − g, y〉 + sup

x∈E‖x‖≤1

{ϕ(x + y)+ ϕ(x − y)}.

From the computation in question B3 we see that for every x, y ∈ E,

|ϕ(x + y)− ϕ(x)− 〈Fx, y〉| ≤ ‖F(x + y)− F(x)‖ ‖y‖
and

|ϕ(x − y)− ϕ(x)+ 〈Fx, y〉| ≤ ‖F(x − y)− F(x)‖ ‖y‖.
It follows that for every x, y ∈ E,

ϕ(x + y)+ ϕ(x − y) ≤ 2ϕ(x)+ ‖y‖(‖F(x + y)− F(x)‖ + ‖F(x − y)− F(x)‖).
Therefore, if ‖f ‖ ≤ 1 and ‖g‖ ≤ 1, we obtain for every y ∈ E,

‖f + g‖ ≤ 2 −〈f − g, y〉+‖y‖ sup
x∈E‖x‖≤1

{‖F(x+ y)−F(x)‖+‖F(x− y)−F(x)‖}.

Fix ε > 0 and assume that ‖f − g‖ > ε. Since F is uniformly continuous, there
exists some α > 0 such that for ‖y‖ ≤ α we have

sup
x∈E‖x‖≤1

{‖F(x + y)− F(x)‖ + ‖F(x − y)− F(x)‖} < ε/2.
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On the other hand, there exists some y0 ∈ E, y0 	= 0, such that 〈f −g, y0〉 ≥ ε‖y0‖,
and we may assume that ‖y0‖ = α. We conclude that

‖f + g‖ ≤ 2 − ε‖y0‖ + ε

2
‖y0‖ = 2 − ε

2
α.

Problem 14

- A -

2. Assume that xn → x in E and set fn = Sxn, so that ∀f ∈ E�,

(S1)
1

2
‖fn‖2 + ϕ�(fn)− 〈fn, xn〉 ≤ 1

2
‖f ‖2 + ϕ�(f )− 〈f, xn〉.

It follows that the sequence (fn) is bounded (why?) and thus there is a subsequence

such that fnk
�
⇀ g for σ(E�,E). Passing to the limit in (S1) (note that the function

f 
→ 1
2‖f ‖2 + ϕ�(f ) is l.s.c. for σ(E�,E)), we find that

1

2
‖g‖2 + ϕ�(g)− 〈g, x〉 ≤ 1

2
‖f ‖2 + ϕ�(f )− 〈f, x〉 ∀f ∈ E�

(one uses also Proposition 3.13). Thus g = Sx; the uniqueness of the limit implies

that fn
�
⇀ Sx (check the details). Returning to (S1) and choosing f = Sx, we

obtain lim sup‖fn‖2 ≤ ‖Sx‖2. We conclude with the help of Proposition 3.32
that fn → Sx.

- B -

1. The convexity of ψ follows from question 7 of Exercise 1.23. Equality (i) is
a consequence of Theorem 1.12, and equality (ii) follows from question 1 of
Exercise 1.24.

2. We have

〈Sx, y〉 ≤ ψ(y)+ ψ�(Sx) = ψ(y)+ 〈Sx, x〉 − ψ(x)

and thus
0 ≤ ψ(y)− ψ(x)− 〈Sx, y − x〉 ∀x, y ∈ E.

Changing x into y and y into x, we obtain

0 ≤ ψ(x)− ψ(y)− 〈Sy, x − y〉 ∀x, y ∈ E.
We conclude that

0 ≤ ψ(y)− ψ(x)− 〈Sx, y − x〉 ≤ 〈Sy − Sx, y − x〉.
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Problem 15

- A -

2. Note that ψ(x) ≥ ‖x‖ − ‖a‖ with a ∈ A being fixed and thus ψ(x) → +∞ as
‖x‖ → ∞; therefore c exists. In order to establish the uniqueness it suffices to
check that

ϕ2
(
c1 + c2

2

)

<
1

2
ϕ2(c1)+ 1

2
ϕ2(c2) ∀c1, c2 ∈ E with c1 	= c2.

Let c1, c2 ∈ E with c1 	= c2. Fix some 0 < ε < ‖c1 − c2‖. In view of Exer-
cise 3.29, and because A is bounded, there exists some δ > 0 such that

∥
∥
∥
∥
(c1 − y)+ (c2 − y)

2

∥
∥
∥
∥ ≤ 1

2
‖c1 − y‖2 + 1

2
‖c2 − y‖2 − δ ∀y ∈ A,

since ‖(c1 − y)− (c2 − y)‖ > ε. Taking supy∈A leads to

ϕ2
(
c1 + c2

2

)

≤ 1

2
ϕ2(c1)+ 1

2
ϕ2(c2)− δ.

3. We know that ϕ(σ(A)) < ϕ(x) ∀x ∈ C, x 	= σ(A). If A is not reduced to a
single point there exists some x0 ∈ A, x0 	= σ(A), and we have

ϕ(σ(A)) < ϕ(x0) = sup
y∈A

‖x0 − y‖ ≤ diamA.

- B -

1. Note that the sequence (ϕn(x)) is nonincreasing.
3. We have

ϕ(σ) ≤ ϕ(σn) ≤ ϕn(σn) ≤ ϕn(x) ∀x ∈ C.
Taking x = σ , we find that all the limits are equal. It is easy to see that the sequence
(σn) is bounded, and thus for a subsequence, σnk ⇀ σ̃ weakly σ(E,E�). Hence
we have

ϕ(σ̃ ) ≤ lim inf ϕ(σnk ) ≤ ϕ(x) ∀x ∈ C.
It follows that ϕ(σ̃ ) = infC ϕ and, by uniqueness, σ̃ = σ . The uniqueness of the
limit implies that σn ⇀ σ (check the details).

4. Assume, by contradiction, that there exist some ε > 0 and a subsequence (σnk )
such that ‖σnk − σ‖ > ε ∀k. Using once more Exercise 3.29 we obtain some
δ > 0 such that

ϕ2
nk

(
1

2
(σnk + σ)

)

≤ 1

2
ϕ2
nk
(σnk )+ 1

2
ϕ2
nk
(σ )− δ ∀k,

and since ϕ ≤ ϕnk , we deduce that
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ϕ2
(

1

2
(σnk + σ)

)

≤ 1

2
ϕ2
nk
(σnk )+ 1

2
ϕ2
nk
(σ )− δ ∀k.

This leads to a contradiction, since ϕ is l.s.c.
5. Note that ϕ(x) = ‖x − a‖ and thus σ = a.
6. Write

|x − an|2 = |x − a + a − an|2 = |x − a|2 + 2(x − a, a − an)+ |a − an|2,
and thus

ϕ2(x) = lim sup
n→∞

|x − an|2 = |x − a|2 + lim sup
n→∞

|an − a|2 = |x − a|2 + ϕ2(a).

It follows that σ = a.

- C -

1. We have ‖an+1 −T x‖ ≤ ‖an−x‖ ∀n, ∀x ∈ C, and therefore ϕn+1(T x) ≤ ϕn(x)

∀x ∈ C. Passing to the limit leads to ϕ(T x) ≤ ϕ(x) ∀x ∈ C. In particular
ϕ(T σ) ≤ ϕ(σ) and thus T σ = σ .

2. Let x, y ∈ C be fixed points of T ; set z = tx + (1 − t)y with t ∈ [0, 1]. We have

‖T z− x‖ ≤ (1 − t)‖y − x‖ and ‖T z− y‖ ≤ t‖y − x‖
and therefore ‖T z−x‖ = (1− t)‖y−x‖, ‖T z−y‖ = t‖y−x‖. The conclusion
follows from the fact that E is strictly convex. (Recall that uniform convexity
implies strict convexity; see Exercise 3.31).

Problem 16

- A -

1. We have 〈Au− f, u〉 ≥ 0 ∀u ∈ D(A) and using (P) we see that f = A0 = 0.
2. Let (un) be a sequence in D(A) such that un → x in E and Aun → f in E�.

We have 〈Au − Aun, u − un〉 ≥ 0 ∀u ∈ D(A). Passing to the limit we obtain
〈Au − f, u − x〉 ≥ 0 ∀u ∈ D(A). From (P) we deduce that x ∈ D(A) and
Ax = f .

3. It is easy to check that if t ∈ (0, 1), the convexity inequality

〈A(tu+ (1 − t)v), tu+ (1 − t)v〉 ≤ t〈Au, u〉 + (1 − t)〈Av, v〉
is equivalent to 〈Au− Av, u− v〉 ≥ 0.

4. Let u ∈ N(A); we have 〈Av, v − u〉 ≥ 0, ∀v ∈ D(A). Replacing v by λv, we
see that 〈Av, u〉 = 0 ∀v ∈ D(A); that is, u ∈ R(A)⊥.

- B -

1. Note that 〈A�v, v〉 = 〈Av, v〉 ∀v ∈ D(A) ∩D(A�).
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2. The first claim is a direct consequence of (P) and the assumption that v /∈ D(A).
Choosing f = −A�v, we have some u ∈ D(A) such that 〈Au+A�v, u− v〉 < 0
and consequently 〈A�v, v〉 > 〈Au, u〉 ≥ 0.

3. Applying question A4 to A� (this is permissible since A� is monotone), we see
that N(A�) ⊂ N(A��) = N(A); therefore N(A) = N(A�). We always have
R(A) = N(A�)⊥ (see Corollary 2.18), and since E is reflexive, we also have
R(A�) = N(A)⊥.

- C -

1. The map u ∈ D(A) 
→ [u,Au] is an isometry from D(A), equipped with the
graph norm, onto G(A), which is a closed subspace of E × E�.

2. Note that

〈Au− f, u− x〉 ≥ −‖Au‖ ‖x‖ − ‖f ‖ ‖u‖ + 〈f, x〉.
3. Using the properties below (see Problem 13)

lim
t→0

1

2t
(‖x + ty‖2 − ‖x‖2) = 〈Fx, y〉 ∀x, y ∈ E,

lim
t→0

1

2t
(‖f + tg‖2 − ‖f ‖2) = 〈g, F−1f 〉 ∀f, g ∈ E�,

we find that for all v ∈ D(A),
〈Av, F−1(Au0 − f )〉 + 〈F(u0 − x), v〉 + 〈Au0 − f, v〉 + 〈Av, u0 − x〉 = 0.

It follows that F−1(Au0 − f )+ u0 − x ∈ D(A�) and

(S1) A�[F−1(Au0 − f )+ u0 − x] + (Au0 − f )+ F(u0 − x) = 0.

4. Let x ∈ E and f ∈ E� be such that 〈Au− f, u− x〉 ≥ 0 ∀u ∈ D(A). One has to
prove that x ∈ D(A) and Ax = f . We know that there exists some u0 ∈ D(A)
satisfying (S1). Applying (M�) leads to

〈Au0 − f + F(u0 − x), F−1(Au0 − f )+ u0 − x〉 ≤ 0,

that is,

‖Au0 −f ‖2 +‖u0 −x‖2 +〈Au0 −f, u0 −x〉+〈F(u0 −x), F−1(Au0 −f )〉 ≤ 0.

It follows that

‖Au0 − f ‖2 + ‖u0 − x‖2 ≤ ‖u0 − x‖ ‖Au0 − f ‖;
therefore u0 = x and Au0 = f .

5. Apply to the operator A� the implication (M�) ⇒ (P).
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Problem 18

2. [G(a)−G(b)− g(b)(a − b) = 0] ⇔ [g(a) = g(b)].
3. Passing to a subsequence we may assume that ank → a (possibly ±∞). We have∫ a

b
(g(t)−g(b))dt = 0 and therefore g(a) = g(b). It follows that g(ank ) → g(b).

4. Note that

0 ≤
∫

|G(un)−G(u)−g(u)(un−u)| =
∫

G(un)−
∫

G(u)−
∫

g(u)(un−u)

and use assumption (ii). Then apply Theorem 4.9.
5. Since g(un) is bounded in Lp

′
(why?), we deduce (see Exercise 4.16) that

g(unk ) → g(u) strongly in Lq for every q ∈ [1, p′). The uniqueness of the
limit implies that g(un) → g(u).

6. If g is increasing then unk → u a.e., and using once more Exercise 4.16 we see
that unk → u strongly in Lq for every q ∈ [1, p).

7 and 9. Applying question 4 and Theorem 4.9, we know that there exists some
function f ∈ L1 such that

(S1) |G(unk )−G(u)− g(u)(unk − u)| ≤ f ∀k.
From (S1) and (3) we deduce that |unk |p ≤ f̃ for some other function f̃ ∈ L1.
The conclusion follows by dominated convergence.

8. I don’t know.

Problem 19

4. Note that the set K̃ = {u ∈ L2(R); u ≥ 0 a.e.} is a closed convex subset of
L2(R). Thus, it is also closed for the weak L2 topology. It remains to check that
u ∈ L1(R) and that

∫

R
u ≤ 1. Let A ⊂ R be any measurable set with finite

measure. We have
∫

A
un → ∫

A
u since χA ∈ L2(R) and thus

∫

A
u ≤ 1. It follows

that u ∈ L1(R) and that
∫

R
u ≤ 1. Next, write

∣
∣
∣
∣

∫
1

|x|α (un − u)

∣
∣
∣
∣ ≤

∫

[|x|>M]
1

|x|α |un − u| +
∣
∣
∣
∣

∫

[|x|≤M]
1

|x|α (un − u)

∣
∣
∣
∣

≤ 2

Mα
+
∣
∣
∣
∣

∫

[|x|≤M]
1

|x|α (un − u)

∣
∣
∣
∣ .

For each fixedM the last integral tends to 0 as n → ∞ (since un ⇀ u weakly in
L2(R)). We deduce that

lim sup
n→∞

∣
∣
∣
∣

∫
1

|x|α (un − u)

∣
∣
∣
∣ ≤ 2

Mα
∀M > 0.

5. Write
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∫
1

|x|α u(x)dx =
∫

[|x|>1]
1

|x|α u(x)dx +
∫

[|x|≤1]
1

|x|α u(x)dx

≤
∫

u(x)dx + C‖u‖2 ≤ 1 + C‖u‖2 ∀u ∈ K.

8. E is not reflexive. Assume, by contradiction, that E is reflexive and consider the
sequence un = χ[n,n+1]. Since (un) is bounded in E, there is a subsequence unk
such thatunk ⇀ uweaklyσ(E,E�). In particular,

∫
f unk → ∫

f u ∀f ∈ L∞(R)
and therefore

∫
f u = 0 for every f ∈ L∞(R) with compact support. It follows

that u = 0 a.e. On the other hand, if we choose f ≡ 1 we see that
∫
u = 1;

absurd.

Problem 20

- A -

2. Note that

f
′′
(x) =

(

1 − 1

p

)

x−2+(1/p)[(1 − x1/p)p−2 − (1 + x1/p)p−2] ≤ 0.

- B -

1. Replacing x by f (x) and y by g(x) in (1) and integrating over �, we obtain

‖f + g‖pp + ‖f − g‖pp ≤ 2
∫

(|f (x)|p′ + |g(x)|p′
)p/p

′
.

On the other hand, letting u(x) = |f (x)|p′
and v(x) = |g(x)|p′

and using the
fact that p/p′ ≥ 1, we obtain

∫

(u+ v)p/p
′ = ‖u+ v‖p/p′

p/p′ ≤ (‖u‖p/p′ + ‖v‖p/p′)p/p
′

= (‖f ‖p′
p + ‖g‖p′

p )
p/p′

.

Applying (2) with x = ‖f ‖p and y = ‖g‖p leads to (5).

- C -

1. Method (i). By Hölder’s inequality we have
∫

uϕ + vψ ≤ ‖u‖p‖ϕ‖p′ + ‖v‖p‖ψ‖p′

≤ (‖u‖p′
p + ‖v‖p′

p )
1/p′

(‖ϕ‖p
p′ + ‖ψ‖p

p′)1/p.

Moreover, equality holds when ϕ = |u|p−2u‖u‖αp and ψ = |v|p−2v‖v‖αp with
α = p′ − p. Applying the above inequality to u = f + g and v = f − g, we
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obtain

(‖f + g‖p′
p + ‖f − g‖p′

p )
1/p′ = sup

ϕ,ψ∈Lp′

{∫
f (ϕ + ψ)+ g(ϕ − ψ)

[‖ϕ‖p
p′ + ‖ψ‖p

p′ ]1/p

}

.

Using Hölder’s inequality we obtain
∫

f (ϕ + ψ)+ g(ϕ − ψ) ≤ ‖f ‖p‖ϕ + ψ‖p′ + ‖g‖p‖ϕ − ψ‖p′

≤ (‖f ‖pp + ‖g‖pp)1/p(‖ϕ + ψ‖p′
p′ + ‖ϕ − ψ‖p′

p′)1/p
′
.

On the other hand, inequality (4) applied with p′ in place of p says that

‖ϕ + ψ‖p′
p′ + ‖ϕ − ψ‖p′

p′ ≤ 2(‖ϕ‖p
p′ + ‖ψ‖p

p′)p
′/p,

and (6) follows.

Method (ii). Applying (1) with x → f (x), y → g(x) and p → p′, we obtain

|f (x)+ g(x)|p′ + |f (x)− g(x)|p′ ≤ 2(|f (x)|p + |g(x)|p)p′/p

and thus

(|f (x)+ g(x)|p′ + |f (x)− g(x)|p′
)p/p

′ ≤ 2p/p
′
(|f (x)|p + |g(x)|p).

Integrating over �, we obtain, with the notation of Exercise 4.11,

[|f + g|p′ + |f − g|p′ ]p/p′ ≤ 2(‖f ‖pp + ‖g‖pp)p′/p.

The conclusion follows from the fact that [u+ v]p/p′ ≥ [u]p/p′ + [v]p/p′ (since
p/p′ ≤ 1).

Problem 21

- A -

1. Use monotone convergence to prove that α(t + 0) = α(t). Note that if f = χω
with ω ⊂ � measurable, then α(1 − 0) = |ω|, while α(1) = 0.

2. Given t > 0, let ωn = [|fn| > t], ω = [|f | > t], χn = χωn , and χ = χω. It
is easy to check that χ(x) ≤ lim inf χn(x) for a.e. x ∈ � (distinguish the cases
x ∈ ω and x /∈ ω). Applying Fatou’s lemma, we see that

α(t) =
∫

�

χ ≤ lim inf
∫

�

χn = lim inf αn(t).

On the other hand, let δ ∈ (0, t) and write
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∫

�

χn =
∫

[|f |≤t−δ]
χn +

∫

[|f |>t−δ]
χn ≤

∫

[|f |≤t−δ]
χn + α(t − δ).

Since χn → 0 a.e. on the set [|f | ≤ t − δ], we have, by dominated convergence,∫

[|f |≤t−δ] χn → 0. It follows that lim sup
∫

�
χn ≤ α(t − δ) ∀δ ∈ (0, t).

- B -

1. Consider the measurable function H : �× (0,∞) → R defined by

H(x, t) =
{
g(t) if |f (x)| > t,

0 if |f (x)| ≤ t.

Note that ∫

�

H(x, t)dμ = α(t)g(t) for a.e. t ∈ (0,∞),

while
∫ ∞

0
H(x, s)ds =

∫ |f (x)|

0
g(s)ds = G(|f (x)|) for a.e. x ∈ �.

Then use Fubini and Tonelli.
2. Given λ > 0 consider the function f̃ : � → R defined by

f̃ (x) =
{
f (x) on [|f | > λ],
0 on [|f | ≤ λ],

so that its distribution function α̃ is given by

α̃(t) =
{
α(λ) if t ≤ λ,

α(t) if t > λ.

Apply to f̃ the result of question B1.

- C -

3. Use the inequality
∫

A
|f | ≤ |A|1/p′ [f ]p with A = [|f | > t] and note that∫

A
|f | ≥ tα(t).

4. Let C = supt>0 t
pα(t). We have

∫

A

|f | ≤ α(λ)λ+
∫ ∞

λ

α(t)dt+λ|A| ≤ C

(

1 + 1

p − 1

)

λ1−p+λ|A| ∀λ > 0.

Choose λ = |A|−1/p.

6. Write
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‖f ‖pp = p

∫ ∞

0
α(t)tp−1dt = p

∫ λ

0
α(t)tp−1dt + p

∫ ∞

λ

α(t)tp−1dt

≤ p[f ]qq
∫ λ

0

tp−1

tq
dt + p[f ]rr

∫ ∞

λ

tp−1

t r
dt

and choose λ appropriately.

Problem 22

1. Apply the closed graph theorem.
3. We know, by Problem 21, question B3, that ‖gλ‖1 = ∫∞

0 γλ(t)dt . Applying
question 2 and once more question B3 of Problem 21, we see that ‖gλ‖1 ≤
N1[α(λ)λ + ∫∞

λ
α(t)dt]. On the other hand, since ‖f − gλ‖∞ ≤ λ, we have

[|f | > t] ⊂ [|gλ| > t − λ].
4. By question 3 we know that

∫ ∞

λ

β(s)ds ≤ N1

[

α(λ)λ+
∫ ∞

λ

α(t)dt

]

∀λ > 0.

Multiplying this inequality by λp−2 and integrating leads to
∫ ∞

0
λp−2dλ

∫ ∞

λ

β(s)ds

≤ N1

[∫ ∞

0
α(λ)λp−1dλ+

∫ ∞

0
λp−2dλ

∫ ∞

λ

α(t)dt

]

,

that is,

1

p − 1

∫ ∞

0
β(s)sp−1ds ≤ N1

(

1 + 1

p − 1

)∫ ∞

0
α(λ)λp−1dλ.

From question B3 of Problem 21 we deduce that ‖f ‖pp ≤ pN1‖u‖pp; finally, we
note that p1/p ≤ e1/e ≤ 2 ∀p ≥ 1.

Problem 23

- A -

1. The setsXn are closed and
⋃
nXn = X. Hence, there is some integer n0 such that

Int(Xn0) 	= ∅. Thus, there exists A0 ⊂ � measurable with |A0| < ∞, and there
exists some ρ > 0 such that

[

χB ∈ X and
∫

�

|χB − χA0 | < ρ

]

⇒
[∣
∣
∣
∣

∫

B

fk

∣
∣
∣
∣ ≤ ε ∀k ≥ n0

]

.

We first claim that

(S1)
∫

A

|fk| ≤ 4ε ∀A ⊂ � measurable with |A| < ρ, and ∀k ≥ n0.
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Indeed, let A ⊂ � be measurable with |A| < ρ; consider the sets

B1 = A0 ∪ A and B2 = B1\A.
We have

∫

�

|χB1 − χA0 | ≤ |A| < ρ and
∫

�

|χB2 − χA0 | ≤ |A| < ρ,

and therefore
∣
∣
∣
∣

∫

B1

fk

∣
∣
∣
∣ ≤ ε and

∣
∣
∣
∣

∫

B2

fk

∣
∣
∣
∣ ≤ ε ∀k ≥ n0.

It follows that
∣
∣
∣
∣

∫

A

fk

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

B1

fk −
∫

B2

fk

∣
∣
∣
∣ ≤ 2ε ∀k ≥ n0.

Applying the preceding inequality with A replaced by A ∩ [fk > 0] and by
A ∩ [fk < 0], we are led to (S1). The conclusion of question 1 is obvious, since
there exists some ρ′ > 0 such that

∫

A

|fk| ≤ 4ε ∀A ⊂ � measurable with |A| < ρ′, ∀k = 1, 2, . . . , n0.

2. There is some integer n0 such that Int(Yn0) 	= ∅. Thus, there exists A0 ⊂ �

measurable and there exists some ρ > 0 such that

[χB ∈ Y and d(χB, χA) < ρ] ⇒
[∣
∣
∣
∣

∫

B

fk

∣
∣
∣
∣ ≤ ε ∀k ≥ n0

]

.

Fix an integer j such that 2−j < ρ. We claim that

(S2)
∫

A

|fk| ≤ 4ε ∀A ⊂ � measurable with A ∩�j = ∅, ∀k ≥ n0.

Indeed, let A ⊂ � be measurable with A ∩�j = ∅; consider the sets

B1 = A0 ∪ A and B2 = B1\A.
We have d(χB1 , χA0) ≤ 2−j < ρ and d(χB2 , χA0) ≤ 2−j < ρ; therefore
| ∫
B1
fk| ≤ ε and | ∫

B2
fk| ≤ ε, ∀k ≥ n0. We then proceed as in question 1.

4. Let us prove, for example, that (i) ⇒ (b). Suppose, by contradiction, that (b) fails.
There exist some ε0 > 0, a sequence (An) of measurable sets in�, and a sequence
(fn) in F such that |An| → 0 and

∫

An
|fn| ≥ ε0 ∀n. By the Eberlein–Šmulian

theorem there exists a subsequence such that fnk ⇀ f weakly σ(L1, L∞). Thus
(see question 3) (fnk ) is equi-integrable and we obtain a contradiction.
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5. Assume, for example, that
∫

A
fn → �(A) for every A ⊂ � with A measurable

and |A| < ∞. We claim that (b) holds.

Indeed, consider the sequence

Xn =
{

χA ∈ X;
∣
∣
∣
∣

∫

A

fj −
∫

A

fk

∣
∣
∣
∣ ≤ ε ∀j ≥ n, ∀k ≥ n

}

.

In view of the Baire category theorem there exist n0, A0 ⊂ � measurable with
|A0| < ∞, and ρ > 0 such that

[

χB ∈ X and
∫

�

|χB − χA0 | < ρ

]

⇒
[∣
∣
∣
∣

∫

B

fk − �(B)

∣
∣
∣
∣ ≤ ε ∀k ≥ n0

]

.

Let A ⊂ � be measurable with |A| < ρ; with the same method as in question 1
one obtains

∣
∣
∣
∣

∫

A

fk

∣
∣
∣
∣ ≤ 2ε + |�(B2)− �(B1)| ≤ 4ε +

∣
∣
∣
∣

∫

A

fn0

∣
∣
∣
∣ ∀k ≥ n0.

It follows that
∫

A

|fk| ≤ 8ε + 2
∫

A

|fn0 | ∀A measurable with |A| < ρ, ∀k ≥ n0,

and the conclusion is easy.

- B -

1. We have F ⊂ Fε + εBE ⊂ Fε + εBE�� . But Fε + εBE�� is compact for the
topology σ(E��, E�) (since it is a sum of two compact sets). It follows that G is
compact for σ(E��, E�). Also, since G ⊂ E + εBE�� ∀ε > 0, we deduce that
G ⊂ E. These properties imply that G is compact for σ(E,E�).

2. Given ε > 0 choose ω ⊂ � measurable with |ω| < ∞ such that
∫

�\ω |f | ≤ ε/2

∀f ∈ F , and choose n such that
∫

[|f |>n] |f | ≤ ε/2 ∀f ∈ F (see Exercise 4.36). Set
Fε = (χωTn(f ))f∈F . Clearly, Fε is bounded inL∞(ω) and thus it is contained in
a compact subset of L1(�) for σ(L1, L∞). On the other hand, for every f ∈ F ,
we have
∫

�

|f − χωTn(f )| ≤
∫

ω

|f − Tnf | +
∫

�\ω
|f | ≤

∫

[|f |>n]
|f | +

∫

�\ω
|f | ≤ ε.

Thus, F ⊂ Fε + εBE with E = L1(�).

- C -

4. Applying A5 we know that (fn) satisfies (b) and (c). In view of B2 the set (fn)
has a compact closure in the topology σ(L1, L∞). Thus (by Eberlein–Šmulian)
there is a subsequence such that fnk ⇀ f weakly σ(L1, L∞). It follows that
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�(A) = ∫

A
f ∀A measurable. The uniqueness of the limit implies that fn ⇀ f

weakly σ(L1, L∞) (check the details).

- D -

1. Apply Exercise 4.36.
2. Set


(t) = sup
f∈F

∫

[|f |>t]
|f |,

so that
 ≥ 0,
 is nonincreasing, and limt→∞
(t) = 0.We may always assume
that
(t) > 0 ∀t > 0; otherwise, there exists some T such that ‖f ‖∞ ≤ T , for all
f ∈ F , and the conclusion is obvious. Consider a function g : [0,∞) → (0,∞)

such that g is nondecreasing and limt→∞g(t) = ∞. SetG(t) = ∫ t
0 g(s)ds, t ≥ 0,

so that G is increasing, convex, and limt→∞G(t)/t = +∞. We recall (see
Problem 21) that for every f ,

∫

G(|f |) =
∫ ∞

0
α(t)g(t)dt and

∫

[|f |>t]
|f | = α(t)t +

∫ ∞

t

α(s)ds.

Set β(t) = ∫∞
t
α(s)ds, so that β(t) ≤ 
(t) and β ′(t) = −α(t). We claim that if

we choose g(t) = [
(t)]−1/2, then the corresponding functionG has the required
property. Indeed, for every f ∈ F , we have

∫

G(|f |) =
∫ ∞

0
α(t)g(t)dt ≤

∫ ∞

0
−β ′(t)[β(t)]−1/2dt

= 2[β(0)]1/2 = 2

[∫ ∞

0
α(s)ds

]1/2

= 2

[∫

|f |
]1/2

≤ C.

Problem 24

- B -

3. Clearly A is convex, and so is A
σ(E�,E)

(see Problem 9, question A4). Suppose

by contradiction that μ0 /∈ A
σ(E�,E)

. By Hahn–Banach (applied in E� with the
weak� topology) there exist f0 ∈ C(�) and β ∈ R such that

(S1)
∫

�

uf0 < β < 〈μ0, f0〉 ∀u ∈ A.

On the other hand, we have

(S2) sup
u∈A

∫

�

uf0 = ‖f0‖∞;

indeed, A is dense in the unit ball of L1(�) (by Corollary 4.23) and L∞ is the
dual of L1 (see Theorem 4.14). Combining (S1) and (S2) yields
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‖f0‖∞ ≤ β < 〈μ0, f0〉 ≤ ‖f0‖∞,

since ‖μ0‖ ≤ 1. This is impossible.
4. BE� is metrizable because E = C(�) is separable (see Theorem 3.28). Since

μ0 ∈ Aσ(E�,E) ⊂ BE� there exists a sequence (vn) inA such that vn
∗
⇀ μ0. Then

apply Proposition 3.13.

6. Clearly 〈μ, 1〉 ≤ ‖μ‖ ∀μ. On the other hand, if ‖f ‖∞ ≤ 1 and μ ≥ 0 we have
〈μ, f 〉 ≤ 〈μ, 1〉 and thus ‖μ‖ = sup‖f ‖∞≤1〈μ, f 〉 ≤ 〈μ, 1〉.

7. Set A+ = {u ∈ A; u(x) ≥ 0 ∀x ∈ �}. Repeat the same proof as in question 3
with A being replaced by A+; check that

sup
u∈A+

∫

�

uf0 = ‖f+
0 ‖∞

and that
〈μ0, f0〉 ≤ ‖f+

0 ‖∞.

8. We claim that ‖u + δa‖M = ‖u‖L1 + 1. Clearly ‖u + δa‖M ≤ ‖u‖L1 + 1. To
prove the reverse inequality, fix any ε > 0 and choose r > 0 sufficiently small
that

∫

B(a,r)
|u| < ε. Let ω = �\B(a, r) and pick ϕ ∈ Cc(ω) with ‖ϕ‖L∞(ω) ≤ 1

and ∫

ω

uϕ ≥ ‖u‖L1(ω) − ε.

Then let θ ∈ Cc(B(a, r)) be such that θ(a) = 1 and ‖θ‖L∞(�) ≤ 1. Check that
‖ϕ + θ‖L∞(�) ≤ 1 and

〈u+ δa, ϕ + θ〉 ≥ ‖u‖L1(�) − 2ε + 1.

-D-

1. Clearly L(f1) + L(f2) ≤ L(f1 + f2). For the reverse inequality, note that if
0 ≤ g ≤ f1 + f2, then one can write g = g1 + g2 with 0 ≤ g1 ≤ f1 and
0 ≤ g2 ≤ f2; take, for example, g1 = max{g − f2, 0} and g2 = g − g1.

2. If f = h+ k with h, k ∈ C(K), we have

f+ − f− = h+ − h− + k+ − k−,

so that
f+ + h− + k− = h+ + k+ + f−,

and thus

L(f+)+ L(h−)+ L(k−) = L(h+)+ L(k+)+ L(f−),

i.e.,
μ1(f ) = μ1(h)+ μ1(k).
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Note that L(f+) ≤ ‖μ‖ ‖f+‖ and L(f−) ≤ ‖μ‖ ‖f−‖. Thus |μ1(f )| ≤
‖μ‖ ‖f ‖. If f ≥ 0 we have μ1(f ) = L(f ) ≥ 0, so that μ1 ≥ 0.

3. If f ≥ 0, we have (taking g = f ) L(f ) ≥ 〈μ, f 〉, so that 〈μ1, f 〉 = L(f ) ≥
〈μ, f 〉, i.e., μ2 = μ1 − μ ≥ 0. Next, note that if g ∈ C(K) and 0 ≤ g ≤ 1, we
have −1 ≤ 2g − 1 ≤ 1 and thus

〈μ, 2g − 1〉 ≤ ‖μ‖.
Therefore

L(1) = sup{〈μ, g〉; 0 ≤ g ≤ 1} ≤ 1

2
(〈μ, 1〉 + ‖μ‖),

i.e.,
2〈μ1, 1〉 = 2L(1) ≤ 〈μ1, 1〉 − 〈μ2, 1〉 + ‖μ‖.

Thus
‖μ1‖ + ‖μ2‖ = 〈μ1 + μ2, 1〉 ≤ ‖μ‖

and consequently ‖μ‖ = ‖μ1‖ + ‖μ2‖.

-E-

One can repeat all the above proofs without modification. The only change occurs
in question D3, where we have used the function 1, which is no longer admissible.
We introduce, instead of 1, a sequence (θn) in E0 such that θn ↑ 1 as n ↑ ∞. Note
that for every ν ∈ M(�), ν ≥ 0, we have 〈ν, θn〉 ↑ ‖ν‖.

If g ∈ E0 and 0 ≤ g ≤ θn we have −θn ≤ 2g− θn ≤ θn and thus 〈μ, 2g− θn〉 ≤
‖μ‖. Hence

L(θn) = sup{〈μ, g〉; 0 ≤ g ≤ θn} ≤ 1

2
(〈μ, θn〉 + ‖μ‖)

i.e.,
2〈μ1, θn〉 = 2L(θn) ≤ 〈μ1, θn〉 − 〈μ2, θn〉 + ‖μ‖.

Letting n → ∞ yields ‖μ1‖ + ‖μ2‖ ≤ ‖μ‖.

Problem 25

1. Let v0 ∈ C and let u ∈ �\{0}; if B(v0, ρ) ⊂ C then (u, v0 + ρz) ≤ 0 ∀z ∈ H
with |z| < 1. It follows that (u, v0)+ ρ|u| ≤ 0. Conversely, let v0 ∈ H be such
that (u, v0) < 0 ∀u ∈ \{0}. In order to prove that v0 ∈ C, assume by contradiction
that v0 /∈ C and separate C and {v0}.

2. If u ∈ �, then (u, ω)+ ρ|u| ≤ 0; therefore ρ|u| ≤ 1 for every u ∈ K .
4. If (−C) ∩� = ∅ separate (−C) and �, and obtain a contradiction.
5. Since a ∈ (−C) ∩� we may write −a = μ(w0 − x0) with μ > 0 and w0 ∈ D.

On the other hand, since a ∈ �\{0} we have (a, v) < 0 ∀v ∈ C and thus
(a,w − x0) < 0 ∀w ∈ D. It follows that (x0 − w0, w − x0) < 0 ∀w ∈ D.
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Problem 26

1. By Proposition 1.10 there exist some g ∈ H and some constant C such that
ϕ(v) ≥ (g, v) + C ∀v ∈ H ; therefore I > −∞. Let (un) be a minimizing
sequence, that is, 1

2 |f − un|2 + ϕ(un) = In → I . Using the parallelogram law
we obtain
∣
∣
∣
∣f − un + um

2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
un − um

2

∣
∣
∣
∣

2

= 1

2

(
|f − un|2 + |f − um|2

)

= In + Im−ϕ(un)− ϕ(um) ≤ In + Im − 2ϕ

(
un + um

2

)

.

It follows that
∣
∣un−um

2

∣
∣2 ≤ In + Im − 2I .

2. If u satisfies (Q) we have

1

2
|f − v|2 + ϕ(v) ≥ 1

2
|f − u|2 + ϕ(u)+ 1

2
|u− v|2 ∀v ∈ H.

Conversely, if u satisfies (P) we have

1

2
|f − u|2 + ϕ(u) ≤ 1

2
|f − v|2 + ϕ(v) ∀v ∈ H ;

choose v = (1 − t)u+ tw with t ∈ (0, 1) and note that

1

2
|f − v|2 = 1

2
|f − u|2 + t (f − u, u− w)+ t2

2
|u− w|2,

and
ϕ(v) ≤ (1 − t)ϕ(u)+ tϕ(w).

3. Choose v = ū in (Q), v = u in (Q̄), and add.
5. By (Q) we have

(f − u, v)− ϕ(v) ≤ (f − u, u)− ϕ(u) ∀v ∈ H
and thus ϕ�(f − u) = (f − u, u)− ϕ(u). It follows that

1

2
|u|2 + ϕ�(f − u) = −1

2
|f − u|2 − ϕ(u)+ 1

2
|f |2.

Letting u� = f − u, one obtains

1

2
|f − u�|2 + ϕ�(u�) = −1

2
|f − u|2 − ϕ(u)+ 1

2
|f |2,

and one checks easily that

−1

2
|f − u|2 − ϕ(u)+ 1

2
|f |2 ≤ 1

2
|f − v|2 + ϕ�(v) ∀v ∈ H.
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(Recall that (u, v) ≤ ϕ(u)+ ϕ�(v).)

6. We have

(Pλ)
1

2
|f − uλ|2 + λϕ(uλ) ≤ 1

2
|f − v|2 + λϕ(v) ∀v ∈ H.

Using that fact that ϕ(uλ) ≥ (g, uλ) + C, it is easy to see that |uλ| remains
bounded as λ → 0. We may therefore assume that uλn ⇀ u0 weakly (λn → 0)
with u0 ∈ D(ϕ) (why?). Passing to the limit in (Pλn ) (how?), we obtain

1

2
|f − u0|2 ≤ 1

2
|f − v|2 ∀v ∈ D(ϕ),

and we deduce thatu0 =PD(ϕ)f . The uniqueness of the limit implies thatuλ ⇀ u0
weakly as λ → 0. To see that uλ → u0 we note that

1

2
lim sup
λ→0

|f − uλ|2 ≤ 1

2
|f − v|2 ∀v ∈ D(ϕ),

which implies that lim supλ→0|f − uλ| ≤ |f − u0| and the strong convergence
follows.

Alternative proof. Combining (Qλ) and (Qμ) we obtain

(
1

λ
(uλ − f )− 1

μ
(uμ − f ), uλ − uμ

)

≤ 0 ∀λ,μ > 0.

We deduce from Exercise 5.3, question 1, that (uλ − f ) converges strongly as
λ → 0 to some limit. In order to identify the limit one may proceed as above.

7. We have 1
2 |f − uλ|2 + λϕ(uλ) ≤ 1

2 |f − v|2 + λϕ(v) ∀v ∈ H , and in particular,
|f − uλ| ≤ |f − v| ∀v ∈ K . We may therefore assume that uλn ⇀ u∞ weakly
(λn → +∞) and we obtain |f − u∞| ≤ |f − v| ∀v ∈ K . On the other hand, we
have

ϕ(uλ) ≤ 1

2λ
|f − v|2 + ϕ(v) ∀v ∈ H,

and passing to the limit, we obtain ϕ(u∞) ≤ ϕ(v) ∀v ∈ H . Thus, u∞ ∈ K, u∞ =
PKf (why?), and uλ ⇀ u∞ weakly as λ → +∞ (why?). Finally, note that
lim supλ→+∞|f − uλ| ≤ |f − u∞|.
If K = ∅, then |uλ| → ∞ as λ → +∞ (argue by contradiction).

8. If f = 0 check that (1/λ)uλ = −u�1/λ ∀λ > 0. In the general case (in which
f 	= 0) denote by uλ and uλ the solutions of (Pλ) corresponding respectively to f
and to 0. We know, by question 3, that |uλ−uλ| ≤ |f | and thus | 1

λ
uλ− 1

λ
uλ| → 0

as λ → +∞.
Problem 27

- A -

3. By definition of the projection we have
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|u2n+2 − u2n+1| = |P2u2n+1 − u2n+1| ≤ |u2n − u2n+1|
(since u2n ∈ K2), and similarly

|u2n+1 − u2n| = |P1u2n − u2n| ≤ |u2n−1 − u2n|.
It follows that

|u2n+2 − u2n+1| ≤ |u2n − u2n−1|.

- B -

To see that a1 and a2 may depend on u0 take convex sets K1 and K2 as shown in
Figure 9.

K1 K2

Fig. 9

Problem 28

-A -

1. (a) ⇒ (b). Note that (u, Pv) = (Pu, Pv) = (Pu, v) ∀u, v ∈ H .

(b) ⇒ (c). We have |Pu|2 = (Pu, Pu) = (u, P 2u) = (u, Pu) ∀u ∈ H .

(c) ⇒ (d). From (c) we have ((u − Pu) − (v − Pv), u − v) ≥ 0 ∀u, v ∈ H

and therefore (u, u − v) ≥ 0 ∀u ∈ N(P ) and ∀v ∈ N(I − P).
Replacing u by λu, we obtain (d).

(d) ⇒ (a). Set M = N(I − P) and check that P = PM .

- B -

1. (b) ⇒ (c). Note that (PQ)2 = PQ and pass to the adjoints.
(c) ⇒ (a). QP is a projection operator and ‖QP ‖ ≤ 1. ThusQP is an orthog-

onal projection and therefore (QP )� = QP , that is, PQ = QP .



Partial Solutions of the Problems 553

(i) Check that N(I − PQ) = M ∩N .
(ii) Applying (i) to (I − P) and (I − Q), we see that (I − P)(I − Q) is the

orthogonal projection onto M⊥ ∩ N⊥. Therefore I − (I − P)(I − Q) =
P +Q− PQ is the orthogonal projection onto (M⊥ ∩N⊥)⊥ = M +N .

2. It is easy to check that

(a) ⇒ (b) ⇔ (c) ⇒ (d) ⇔ (e) ⇔ (f) ⇒ (a).

Clearly (b)+ (c) ⇒ (g). Conversely, we claim that (g) ⇒ (b)+ (c). Indeed, we
have PQ+QP = 0. Multiplying this identity on the left and on the right by P ,
we obtain PQ−QP = 0; thus, PQ = 0. Finally, apply case (ii) of question B1.

3. Replace N by N⊥ and apply question B2.

Problem 29

- A-

5. Note that
∑n
i=0|μi−μi+1|2 ≤ |f −v|2 and that |μn−μn+1| ≤ |μi−μi+1| ∀i =

0, 1, . . . , n.

- B -

2. Since 0 ∈ K , the sequence (|un|) is nonincreasing and thus it converges to some
limit, say a. Applying the result of B1 with u = un and v = un+i , we obtain

2|(un, un+i )− (un+p, un+p+i )| ≤ 2(|un|2 − |un+p+i |2)
≤ 2(|un|2 − a2).

Therefore �(i) = limn→∞(un, uu+i ) exists and we have

|(un, un+i )− �(i)| ≤ |un|2 − a2 ≡ εn.

3. Applying to S the above result, we see that

| (μn, μn+i )−m(i)| ≤ ε′n ∀i, ∀n.
In particular, we have

||μn|2 −m(0)| ≤ ε′n and | (μn, μn+1)−m(1)| ≤ ε′n

and therefore

|m(0)−m(1)| ≤ 2ε′n + |μn||μn − μn+1| → 0 as n → ∞.

It follows that m(0) = m(1) and similarly, m(1) = m(2), etc.
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4. We have established that | (μn, μn+i ) − m(0)| ≤ ε′n ∀i, ∀n. Passing to the limit
as i → ∞ we obtain |(μn, μ) − m(0)| ≤ ε′n and then, as n → ∞, we obtain
|μ|2 = m(0). Thus, |μn| → |μ| and consequently μn → μ strongly.

5. Applying (1) and adding the corresponding inequalities for i = 0, 1, . . . , p − 1,
leads to ∣

∣
∣
∣

(

un,
(n+ p)

p
σn+p − n

p
σn

)

−Xp

∣
∣
∣
∣ ≤ εn.

We deduce that

∣
∣
(
un, σn+p

) −Xp
∣
∣ ≤ εn + n

p
|un|

(|σn+p| + |σn|
) ≤ εn + 2n

p
|f |2

(since |un| ≤ |f | ∀n).
6. We have

|Xp −Xq | ≤ 2εn + 2n

(
1

p
+ 1

q

)

|f |2 + |(un, σn+p − σn+q)|

and thus lim supp,q→∞ |Xp −Xq | ≤ 2εn ∀n.
7. Write that

n2|σn|2 =
n−1∑

i=0

|ui |2 + 2
n−1∑

i=1

n−i−1∑

j=0

(uj , uj+i )

and apply (1).
8. Note that

∑n−1
i=0 (n − i)�(i) = ∑n

j=1jXj and use the fact that Xj → X as
j → ∞.

Problem 30

- C -

3. Choose λ̄ ∈ A and μ̄ ∈ B such that

min max
λ∈Aμ∈B F(λ, μ) = max

μ∈B F(λ̄, μ) and max min
μ∈B λ∈A F(λ, μ) = min

λ∈A F(λ, μ̄).

- D -

2. The sets Bu and Av are compact for the weak topology. Applying the convexity
of K in u and the concavity of K in v, we obtain

K

(
∑

i

λiui, vj

)

≤
∑

i

λiK(ui, vj )

and
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K

⎛

⎝ui,
∑

j

μjvj

⎞

⎠ ≥
∑

j

μjK(ui, vj ).

It follows that

∑

j

μjK

(
∑

i

λiui, vj

)

≤ F(λ,μ) ≤
∑

i

λiK

⎛

⎝ui,
∑

j

μjvj

⎞

⎠

and in particular

∑

j

μjK(ū, vj ) ≤ F(λ̄, μ) ∀μ ∈ B ′,

∑

i

λiK(ui, v̄) ≥ F(λ, μ̄) ∀λ ∈ A′.

Applying (1), we see that

∑

j

μjK(ū, vj ) ≤
∑

i

λiK(ui, v̄) ∀λ ∈ A′, ∀μ ∈ B ′.

Finally, choose λ and μ to be the elements of the canonical basis.

Problem 31

- A -

3. Note that
∑
i,j λiλj 〈Avj , vi − vj 〉 = 1

2

∑
i,j λiλj 〈Avj − Avi, vi − vj 〉.

- B -

2. For everyR> 0 there exists someuR ∈KR such that 〈AuR , v−uR〉≥ 0 ∀v ∈ KR .
Choosing v = 0 we see that there exists a constant M (independent of R) such
that ‖uR‖ ≤ M ∀R. Fix any R > M . Given w ∈ K , take v = (1 − t)uR + tw

with t > 0 sufficiently small (so that v ∈ KR).
3. Take K = E. First, prove that there exists some u ∈ E such that Au = 0. Then,

replace A by the map v 
→ Av − f (f ∈ E� being fixed).

Problem 32

2. For ε > 0 small enough we have

ϕ(u0) ≤ ϕ (u0 + εv) = max
i∈I {|u0 − yi |2 − ci + 2ε(v, u0 − ui)} +O(ε2)

= max
i∈J (u0)

{|u0 − yi |2 − ci + 2ε(v, u0 − yi)} +O(ε2)

≤ ϕ(u0)+ 2ε max
i∈J (u0)

{(v, u0 − yi)} +O(ε2).
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3. Argue by contradiction and apply Hahn–Banach.
4. Note that for every u, v ∈ H , we have

ϕ(v)− ϕ(u) ≥ max
i∈J (u){|v − yi |2 − |u− yi |2} ≥ 2 max

i∈J (u){(u− yi, v − u)}.

5. Condition (1) is replaced by 0 ∈ conv (
⋃
i∈J (u0)

{f ′(u0)}).

- B -

1. Letting σx = ∑
i∈I λixi and σy = ∑

i∈I λiyi , we obtain

∑

j∈I
λj |σy − yj |2 = −|σy |2 +

∑

j∈I
λj |yj |2 = 1

2

∑

i,j∈I
λiλj |yi − yj |2

≤ 1

2

∑

i,j∈I
λiλj |xi − xj |2 = −|σx |2 +

∑

j∈I
λj |xj |2

= −|σx − p|2 +
∑

j∈I
λj |xj − p|2.

2. Write u0 = ∑
i∈J (u0)

λj yj . By the result of B1 we have

∑

j∈J (u0)

λj |u0 − yj |2 ≤
∑

j∈J (u0)

λj |p − xj |2.

It follows that
∑
j∈J (u0)

λjϕ(u0) ≤ 0 and thus ϕ(u0) ≤ 0.

Remark. One could also establish the existence of q by applying the von Neumann
min–max theorem (see Problem 30, part D) to the function

K(λ,μ) =
∑

j∈I
μj

∣
∣
∣
∣
∣

(
∑

i∈I
λiyi

)

− yj

∣
∣
∣
∣
∣

2

−
∑

j∈I
μj |p − xj |2.

- C -

1. Set Ki = {z ∈ H ; |z − yi | ≤ |p − xi |} and K = conv
(⋃

i∈I {yi}
)
. One has to

show that
(⋂

i∈IKi
) 	= ∅. This is done by contradiction and reduction to a finite

set I .
2. Consider the ordered set of all contractions T : D(T ) ⊂ H → H that extend S

and such that T (D(T )) ⊂ conv S(D). By Zorn’s lemma it has a maximal element
T0 and D(T0) = H (why?).
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Problem 33

1. Note that |aun| ≤ n|u|, so that un ∈ D(A). Moreover, |un| ≤ |u| and un → u

a.e.
2. Let un → u and aun → f in Lp. Passing to a subsequence, we may assume

that un → u a.e. and aun → f a.e. Thus au = f .
3. If D(A) = E, the closed graph theorem (Theorem 2.9) implies the existence of

a constant C such that
∫

�

|au|p ≤ C

∫

�

|u|p ∀u ∈ Lp.

Hence the mapping v 
→ ∫

�
|a|pv is a continuous linear functional on L1. By

Theorem 4.14 there exists f ∈ L∞ such that
∫

�

|a|pv =
∫

�

f v ∀v ∈ L1.

Thus a ∈ L∞.
4. N(A) = {u ∈ Lp; u = 0 a.e. on [a 	= 0]} and N(A)⊥ = {f ∈ Lp′ ; f = 0 a.e.

on [a = 0]}.
To verify the second assertion, let f ∈ N(A)⊥. Then

∫

�
f u = 0 ∀u ∈ N(A).

Taking u = |f |p′−2f χ[a=0], we see that f = 0 a.e. on [a = 0].
5. D(A�) = {v ∈ Lp′ ; av ∈ Lp′ } and A�v = av.

Indeed, if v ∈ D(A�), there exists a constant C such that
∣
∣
∣
∣

∫

�

v(au)

∣
∣
∣
∣ ≤ C‖u‖p ∀u ∈ D(A).

The linear functional u ∈ D(A) 
→ ∫

�
v(au) can be extended by Hahn–Banach

(or by density) to a continuous linear functional on all ofLp. Hence, by Theorem
4.11, there exists some f ∈ Lp′

such that
∫

�

v(au) =
∫

�

f u ∀u ∈ D(A).

Given any ϕ ∈ Lp, take u = (1 + |a|)−1ϕ, so that
∫

�

av

1 + |a|ϕ =
∫

�

f

1 + |a|ϕ.

Thus f = av ∈ Lp′
.

6. Assume that there exists α > 0 such that |a(x)| ≥ α a.e. Then A is surjective,
since any f ∈ Lp can be written as au = f , where u = a−1f ∈ D(A).
Conversely, assume that A is surjective. Then a 	= 0 a.e. Moreover, ∀f ∈ Lp,
a−1f ∈ Lp. Applying question 3 to the function a−1, we see that a−1 ∈ L∞.
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7. EV (A) = {λ ∈ R; |[a = λ]| > 0},
ρ(A) = {λ ∈ R; ∃ε > 0 such that |a(x)− λ| ≥ ε a.e. on �},

and

σ(A) = {λ ∈ R; ∀ε > 0, |[|a − λ| < ε]| > 0}.
Set M = sup� a and let us show that M ∈ σ(A). By definition of M we
know that a ≤ M a.e. on � and ∀ε > 0 |[a > M − ε]| > 0. Thus, ∀ε > 0
|[|a −M| < ε]| > 0 and therefore M ∈ σ(A).
Note that σ(A) coincides with the smallest closed set F ⊂ R such that a(x) ∈ F
a.e. in�. (The existence of a smallest such set can be established as in Proposi-
tion 4.17.)

10. Let us show that σ(A) = {0}. Let λ ∈ σ(A) with λ 	= 0. Then λ ∈ EV (A) (by
Theorem 6.8) and thus

∣
∣[a = λ]∣∣ > 0. Set ω = [a = λ]. Then N(A − λI) is a

finite-dimensional space not reduced to {0}. On the other hand, N(A − λI) is
clearly isomorphic to Lp(ω). Then ω consists of a finite number of atoms (see
Remark 6 in Chapter 4) and it has at least one atom, since Lp(ω) is not reduced
to {0}. Impossible.

Problem 34

- A -

1. Clearly 0 /∈ EV (T ). Assume that λ ∈ EV (T ) and λ 	= 0. Let u be the corre-
sponding eigenfunction, so that

1

x

∫ x

0
u(t)dt = λu(x).

Thus u ∈ C1((0, 1]) and satisfies

u = λu+ λxu′.

Integrating this ODE, we see that u(x) = Cx−1+1/λ, for some constant C. Since
u ∈ C([0, 1]), we must have 0 < λ ≤ 1. Conversely, any λ ∈ (0, 1] is an
eigenvalue with corresponding eigenspace Cx−1+1/λ.

3. We already know that [0, 1] ⊂ σ(T ) ⊂ [−1,+1]. We will now prove that for any
λ ∈ R, λ /∈ {0, 1}, the equation

(S1) T u− λu = f ∈ E
admits at least one solution u ∈ E.

Assuming that we have a solution u, set ϕ(x) = ∫ x
0 u(t)dt . Then

ϕ − λxϕ′ = xf,
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and hence we must have

ϕ(x) = 1

λ
x1/λ

∫ 1

x

t−1/λf (t)dt + Cx1/λ,

for some constant C. Therefore

(S2) u(x) = ϕ′(x) = 1

λ2 x
−1+1/λ

∫ 1

x

t−1/λf (t)dt − 1

λ
f (x)+ C

λ
x−1+1/λ.

If λ < 0 or if λ > 1 we must choose

(S3) C = −1

λ

∫ 1

0
t−1/λf (t)dt

in order to make u continuous at x = 0, and then the unique solution u of (S1) is
given by

(S4) u(x) = (T − λI)−1f = − 1

λ2 x
−1+1/λ

∫ x

0
t−1/λf (t)dt − 1

λ
f (x),

with

u(0) = 1

1 − λ
f (0).

It follows that σ(T ) = [0, 1] and ρ(T ) = (−∞, 0) ∪ (1,∞).

When 0 < λ < 1, the function u given by

(S5) u(x) = 1

λ2 x
−1+1/λ

∫ 1

x

t−1/λf (t)dt − 1

λ
f (x),

with

u(0) = 1

1 − λ
f (0),

is still a solution of (S1). But the solution of (S1) is not unique, since we can add
to u any multiple of x−1+1/λ. Hence, for λ ∈ (0, 1), the operator (T − λI) is
surjective but not injective.

When λ = 0, the operator T is injective but not surjective. Indeed for every
u ∈ E, T u ∈ C1((0, 1]).
When λ = 1, (T − I ) is not injective and is not surjective. We already know
that N(T − I ) consists of constant functions. Suppose now that u is a solution
of T u − u = f . Then f (0) = u(0) − u(0) = 0 and therefore (T − I ) is not
surjective.

4. A direct computation gives

‖Tεu− T u‖Lq(0,1) ≤ ε1/q

(q − 1)1/q
‖u‖L∞(0,1) if q > 1,
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and

‖Tεu− T u‖L1(0,1) ≤ ε log(1 + 1/ε)‖u‖L∞(0,1).

Thus ‖Tε − T ‖L(E,F ) → 0. Clearly Tε ∈ K(E, F ) (why?), and we may then
apply Theorem 6.1 to conclude that T ∈ K(E, F ).

- B -

1. It is convenient to write

T u(x) = 1

x

∫ x

0
u(t)dt =

∫ 1

0
u(xs)ds

and therefore

(T u)′(x) =
∫ 1

0
u′(xs)sds.

2. Assume that λ ∈ EV (T ). By question A1 the corresponding eigenfunction must
beu(x) = Cx−1+1/λ. This function belongs toC1([0, 1]) only when 0 < λ ≤ 1/2
or λ = 1.

3. We will show that if λ /∈ [0, 1
2 ] ∪ {1}, then (T − λI) is bijective. Consider the

equation
T u− λu = f ∈ C1([0, 1]).

When λ < 0 or λ > 1 we know, by part A, that if a solution exists, it must be
given by (S4). Rewrite it as

u(x) = − 1

λ2

∫ 1

0
s−1/λf (xs)ds − 1

λ
f (x),

and thus u ∈ C1([0, 1]).
When 1 > λ > 1/2, we know from part A that (S1) admits solutions u ∈
C([0, 1]). Moreover, all solutions u are given by (S2). We will see that there is a
(unique) choice of the constant C in (S2) such that u ∈ C1([0, 1]).
Write

u(x) = x−1+1/λ
[

1

λ2

∫ 1

x

t−1/λ(f (t)− f (0))dt + f (0)

λ2 − λ
+ C

λ

]

− f (x)

λ
− f (0)

λ2 − λ
.

A natural choice for C is such that

1

λ2

∫ 1

0
t−1/λ(f (t)− f (0))dt + f (0)

λ2 − λ
+ C

λ
= 0,

and then u becomes
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u(x) = − 1

λ2 x
−1+1/λ

∫ x

0
t−1/λ(f (t)− f (0))dt − f (x)

λ
− f (0)

λ2 − λ
.

Changing variables yields

u(x) = − 1

λ2

∫ 1

0
s−1/λ(f (xs)− f (0))ds − f (x)

λ
− f (0)

λ2 − λ
.

Direct inspection shows that indeed u ∈ C1([0, 1]) with

u′(x) = − 1

λ2

∫ 1

0
s1−1/λf ′(xs)ds − f ′(x)

λ
.

- C -

1. We have
∫ 1

0
|T u(x)|pdx = − 1

p − 1
|ϕ(1)|p+ p

p − 1

∫ 1

0
|ϕ(x)|p−1(sign ϕ(x))ϕ′(x) dx

xp−1 ,

and therefore, by Hölder,

∫ 1

0
|T u(x)|pdx ≤ p

p − 1

[∫ 1

0

∣
∣
∣
∣
ϕ(x)

x

∣
∣
∣
∣

p

dx

] p−1
p

[∫ 1

0
|ϕ′(x)|pdx

] 1
p

,

i.e.,

‖T u‖pp ≤ p

p − 1
‖T u‖p−1

p ‖u‖p.
3. Clearly 0 /∈ EV (T ). Suppose that λ ∈ EV (T ) and λ 	= 0. As in part A we see

that the corresponding eigenfunction is u = Cx−1+1/λ. This function belongs to
Lp(0, 1) iff 0 < λ < p/(p − 1).

5. Assume that λ < 0. Let us prove that λ ∈ ρ(T ). For f ∈ C([0, 1]), let Sf be the
right-hand side in (S4). Clearly

|Sf (x)| ≤ 1

λ2

1

x

∫ x

0
|f (t)|dt + 1

λ
|f (x)|.

Therefore S can be extended as a bounded operator from Lp(0, 1) into itself.
Since we have

(T − λI)S = S(T − λI) = I on C([0, 1]),
the same holds on Lp(0, 1). Consequently λ ∈ ρ(T ).
Suggestion for further investigation: prove that for λ ∈ (0, p

p−1 ) the operator
(T −λI) is surjective from Lp(0, 1) onto itself. Hint: start with formula (S5) and
show that ‖u‖p ≤ C‖f ‖p using the same method as in questions C1 and C2.
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6. (T �v)(x) = ∫ 1
x
v(t)
t
dt.

7. Check that Tε is a compact operator from Lp(0, 1) into C([0, 1]) with the help
of Ascoli’s theorem. Then prove that

‖Tε − T ‖L(Lp,Lq) ≤ Cε
1
q
− 1
p .

Problem 35

- A -

1. Clearly ‖T �T ‖ ≤ ‖T ‖2. On the other hand,

|T x|2 = (T x, T x) = (T �T x, x) ≤ ‖T �T ‖ |x|2.
Thus ‖T ‖2 ≤ ‖T �T ‖.

2. By induction we have

‖T 2k‖ = ‖T ‖2k ∀ integer k.

Given any integer N , fix k such that N ≤ 2k .
Then

‖T ‖2k = ‖T 2k‖ = ‖T NT 2k−N‖ ≤ ‖T N‖ ‖T ‖2k−N,

and thus
‖T ‖N ≤ ‖T N‖.

- B -

Set
X = ‖T �j1

Tk1T
�
j2
Tk2 · · · T �jN TkN ‖.

By assumption (1) we have

X ≤ ω2(j1 − k1)ω
2(j2 − k2) · · ·ω2(jN − kN),

and by assumption (2),

X ≤ ‖T �j1
‖ω2(k1 − j2)ω

2(k2 − j3) · · ·ω2(kN−1 − jN)‖TkN ‖
≤ ω2(0)ω2(k1 − j2)ω

2(k2 − j3) · · ·ω2(kN−1 − jN),

since ‖Ti‖ = ‖T �i Ti‖1/2 ≤ ω(0).

Multiplying the above estimates, we obtain

X ≤ ω(0)ω(j1 − k1)ω(k1 − j2) · · ·ω(jN−1 − kN−1)ω(kN−1 − jN)ω(jN − kN).

Summing over kN , then over jN , then over kN−1, then over jN−1, . . . , then over k2,
then over j2, then over k1, yields a bound by σ 2N . Finally, summing over j1 gives
the bound mσ 2N .
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3. We have

‖(U�U)N‖ ≤
∑

j1

∑

k1

∑

j2

∑

k2

· · ·
∑

jN

∑

kN

‖T �j1
Tk1T

�
j2
Tk2 · · · T �jN TkN ‖ ≤ mσ 2N.

Therefore
‖U‖ ≤ m1/2Nσ,

and the desired conclusion follows by letting N → ∞.

Problem 36

1. To see that Rk is closed, note that (I − T )k = I − S for some S ∈ K(E) and
apply Theorem 6.6.

2. Suppose Rq+1 = Rq for some q ≥ 1. Then Rk+1 = Rk ∀k ≥ q. On the
other hand, we cannot have Rk+1 	= Rk ∀k ≥ 1 (see part (c) in the proof of
Theorem 6.6).

4. From Theorem 6.6(b) and (d) we have

Rk = N((I − T �)k)⊥

and thus

codimRk = dimN((I − T �)k) = dimN((I − T )k) = dimNk.

5. Let x ∈ Rp ∩ Np. Then x = (I − T )pξ for some ξ ∈ E and (I − T )px = 0. It
follows that ξ ∈ N2p = Np and thus x = 0. On the other hand,

codimRp = dimNp;
combining this with the fact thatRp∩Np = {0}, we conclude thatE = Rp+Np.

6. (I − T )Rp = Rp+1 = Rp. Theorem 6.6(c) applied in the space Rp allows us to
conclude that (I − T ) is also injective on Rp.

7. It suffices to show that N2 = N1. Let x ∈ N2. Then (I − T )2x = 0 and thus
|(I − T )x|2 = ((I − T )x, (I − T )x) = ((I − T )2x, x) = 0.

Problem 37

10. From question 9 we know that ν(n)k is nondecreasing in n and ν(n)k ≤ μk ∀k ≥ 1
and ∀n. Thus it suffices to prove that

(S1) lim inf
n→∞ ν

(n)
k ≥ μk.

In fact, using question 9, one has, ∀k < n,

max
�⊂V (n)
dim�=k

min
x∈�
x 	=0

R(x) = ν
(n)
k .
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Note that from the assumption on V (n),

(S2) lim
n→∞PV (n) (x) = x ∀x ∈ H.

Thus PV (n) (e1), …, PV (n) (ek) are linearly independent for n ≥ Nk sufficiently
large (depending on k, but recall that k is fixed); this implies

(S3) ν
(n)
k ≥ min

x∈E(n,k)
x 	=0

R(x),

where E(n, k) is the space spanned by {PV (n) (e1), …, PV (n) (ek)}. However, it is
clear from (S2) that

(S4) lim
n→∞ min

x∈E(n,k)
x 	=0

R(x) = min
x∈Ek
x 	=0

R(x).

Inequality (S1) follows from (S3), (S4), and question 1.

Problem 38

- A -

2. Use Exercise 6.25 or apply question 1 to the operator (IF +K), that satisfies (1)
(why?). Then write

T ◦ (S ◦M) = IF − P.

3. Clearly R(IF −P) is closed and codimR(IF −P) is finite. By Proposition 11.5
we know that any spaceX ⊃ R(IF −P) is also closed and has finite codimension.
In particular, (1)(a) holds.

Next, we have
U� ◦ T � = IF� − P �,

where P � is a compact operator (since P is). Thus we may argue as above and
conclude that R(U�) is closed. From Theorem 2.19 we infer that R(U) is also
closed.

We now prove thatN(T )+R(U)+�1 = E for some finite-dimensional space�1.
Given any x ∈ E, write x = x1+x2 with x1 = x−U(T x) and x2 = U(T x). Note
that T x1 = T x − (T ◦ U)(T x) = P(T x) by (3). Therefore x1 ∈ T −1(R(P )) =
N(T ) + �1, where �1 is finite-dimensional, since R(P ) is. Consequently, any
x ∈ E belongs to N(T )+ R(U)+�1.

Finally, we prove that N(T ) ∩ R(U) ⊂ �2 with �2 finite-dimensional. Indeed,
let x ∈ N(T )∩R(U). Then x = Uy for some y ∈ F and T x = (T ◦U)(y) = 0.
Thus, by (3), y−Py = 0 and therefore y ∈ R(P ). Consequently x ∈ U(R(P )) =
�2, which is finite-dimensional, since R(P ) is. Applying Proposition 11.7, we
conclude that N(T ) admits a complement in E.
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- B -

(4) ⇒ (6). Let U0 be as in question 1 of part A. Then U0 ◦ T = I on X. Given
any x ∈ E write x = x1 + x2 with x1 ∈ X and x2 ∈ N(T ). Then

(U0 ◦ T )(x) = (U0 ◦ T )(x1) = x1 = x − x2 = x − P̃ x,

where P̃ is a finite-rank projection onto N(T ).

(5) ⇒ (6). Use Exercise 2.26.

(6) ⇒ (4). From (6) it is clear that dimN(T ) < ∞. Also, since T � ◦ (Ũ)� =
IE� − (P̃ )�, we may apply part A ((2) ⇒ (1)) to T � in E� and deduce that R(T �) is
closed in E�. Therefore R(T ) is closed in F .

As in question 3 of part A, we construct finite-dimensional spaces �3 and �4 in
F such that

N(Ũ)+ R(T )+�3 = F,

N(Ũ) ∩ R(T ) ⊂ �4,

and we conclude (using Proposition 11.7) that R(T ) admits a complement.

- C -

1. Note that Q ◦ T = T and thus U ◦ T = U0 ◦Q ◦ T = U0 ◦ T = I − P̃ .
2. Use (2) ⇒ (1) and (5) ⇒ (4).
3. Let Z ⊂ F be a closed subspace. From Proposition 11.13 we know that Z has

finite codimension iff Z⊥ is finite-dimensional, and then codimZ = dimZ⊥.
Apply this to Z = R(T ), with Z⊥ = N(T �) (by Proposition 2.18).

4. We already know that dimN(T �) = codimR(T ) < ∞. Next, we have
dimN(T ) < ∞, and thus codimN(T )⊥ < ∞ (by Proposition 11.13). But
N(T )⊥ = R(T �) (by Theorem 2.19). Therefore codimR(T �) < ∞ and, more-
over, codimR(T �) = dimN(T ).

5. From Theorem 2.19 we know that R(T ) is closed. Since N(T �) = R(T )⊥
is finite-dimensional, Proposition 11.11 yields that codimR(T ) < ∞. Since
R(T �) = N(T )⊥ and codimR(T �) < ∞, we deduce from Proposition 11.11
that dimN(T ) < ∞.

6. Write T = J (IE + J−1 ◦K). By Theorem 6.6 we know that (IE + J−1 ◦K) ∈

(E,E) and ind(IE + J−1 ◦K) = 0. Thus T ∈ 
(E,F) and ind T = 0, since
J is an isomorphism.
Conversely, assume that T ∈ 
(E,F) and ind T = 0. Let X be a complement
of N(T ) in E and let Y be a complement of R(T ) in F . Since ind T = 0, we
have dimN(T ) = dim Y . Let � be an isomorphism from N(T ) onto Y . Given
x ∈ E, write x = x1 + x2 with x1 ∈ X and x2 ∈ N(T ). Set Jx = T x1 +�x2.
Clearly J is bijective and T x = T x1 = Jx −�x2 is a desired decomposition.

7. Use a pseudoinverse.
8. LetX and Y be as in question 6. Set Ẽ = E× Y and F̃ = F ×N(T ). Consider

the operator T̃ : Ẽ → F̃ defined by
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T̃ (x, y) = (T x +Kx, 0).

Clearly
R(T̃ ) = R(T +K)× {0},
N(T̃ ) = N(T +K)× Y.

Thus T̃ ∈ 
(Ẽ, F̃ ) and

codimR(T̃ ) = codimR(T +K)+ dimN(T ),

dimN(T̃ ) = dimN(T +K)+ dim Y = dimN(T +K)+ codimR(T ).

We claim that T̃ = J̃+K̃ , where J̃ is bijective from Ẽ onto F̃ , and K̃ ∈ K(Ẽ, F̃ ).
Indeed, writing x = x1 + x2, with x1 ∈ X and x2 ∈ N(T ), we have

T̃ (x, y) = (T x1 +Kx, 0) = J̃ (x, y)+ K̃(x, y),

where
J̃ (x, y) = (T x1 + y, x2)

and
K̃(x, y) = (Kx, 0)− (y, x2).

Clearly J̃ is bijective and K̃ is compact (since y and x2 are finite-dimensional
variables). Applying question 6, we see that

ind T̃ = 0 = dimN(T̃ )− codimR(T̃ ).

It follows that

ind(T +K) = dimN(T +K)− codimR(T +K) = dimN(T )− codimR(T ).

9. Let V be a pseudoinverse of T and set ε = ‖V ‖−1 (any ε > 0 if V = 0). From
(8)(b) we have

V ◦ (T +M) = IE + (V ◦M)+ K̃.

If ‖M‖ < ε we see that ‖V ◦M‖ < 1, and thusW = IE + (V ◦M) is bijective
from E onto E (see Proposition 6.7). Multiplying the equation

V ◦ (T +M) = W + K̃

on the left by T and using (8)(a) yields

T +M = (T ◦W)+ (T ◦ K̃)−K ◦ (T +M).

Since W is bijective, it is clear (from the definition of 
(E,F)) that T ◦W ∈

(E,F) and ind(T ◦W) = ind T . Applying the previous question, we conclude
that T +M ∈ 
(E,F) and ind(T +M) = ind(T ◦W) = ind T .

11. Check that V1 ◦ V2 is a pseudoinverse for T2 ◦ T1.
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12. Note that H0(x2, x2) = (T1x1, T2x2), so that indH0 = ind T1 + ind T2. On the
other hand, H1(x2, x2) = (x2,−T2(T1x1)), so that indH1 = ind(T2 ◦ T1).

13. ind V = − ind T by (8), questions 6 and 12.

- D -

1. ind T = dimE−dim F , since dimR(T ) = dimE−dimN(T ) and codimR(T ) =
dim F − dimR(T ).

2. When |λ| < 1, ind(Sr − λI) = −1 and ind(S� − λI) = +1. When |λ| > 1,
(Sr−λI) and (S�−λI) are bijective; thus ind(Sr−λI) = 0 and ind(S�−λI) = 0.

Problem 41

- A -

1. Assume by contradiction that a ∈ (Int P) ∩ (−P). From Exercise 1.7 we have
0 = 1

2a + 1
2 (−a) ∈ Int P and this implies P = E.

2. Suppose not; then there exists a sequence (xn) in P such that xn + u → 0. Since
(xn+u)−u = xn ∈ P , we obtain at the limit −u ∈ P . This contradicts question 1.

3. Clearly u 	= 0 (since 0 /∈ Int P by (2)). From (3) we have T u ∈ IntC and thus
B(T u, ρ) ⊂ C for some ρ > 0. Then choose 0 < r < ρ/‖u‖.

4. Since λx = T (x + u) ≥ T u ≥ ru, we have λ
r
x ≥ u. Assuming ( λ

r
)nx ≥ u, we

obtain ( λ
r
)nT x ≥ T u and thus ( λ

r
)n(λx−T u) ≥ T u ≥ ru. Hence ( λ

r
)nλx ≥ ru,

i.e., ( λ
r
)n+1x ≥ u. On the other hand, λx = T (x + u) ∈ Int P , which implies

that λ > 0 (by question 1). If we had 0 < λ < r we could pass to the limit as
n → ∞ and obtain −u ∈ P , which is impossible (again by question 1).

5. The map x 
→ (x + u)/‖x + u‖ is clearly continuous on P (by question 2).
F(P ) ⊂ T (BE) ⊂ K since T ∈ K(E).

6. When replacing u by εu, the constant α in question 2 may change, but the constant
r in question 3 remains unchanged.

7. We have λε‖xε‖ = ‖T (xε + εu)‖ ≤ ‖T ‖ ‖xε + εu‖ and therefore ‖xε‖ ≤ ‖T ‖.
Hence λε ≤ ‖T ‖ + ε‖u‖. Passing to a subsequence εn → 0, we may assume
that λεn → μ0 and T xεn → � (since T ∈ K(E)). Hence xεn → x0 with
x0 ∈ P, μ0 = ‖x0‖ ≥ r and T x0 = μ0x0, so that x0 ∈ Int P by (3).

- B -

1. The set � = {s ∈ [0, 1]; (1 − s)a + sb ∈ P } is a closed interval (since P is
convex and closed). Then σ = max {s; s ∈ �} has the required properties by
Exercise 1.7.

2. We cannot have μ = 0 (otherwise, 0 ∈ Int P ) and we cannot have μ < 0
(otherwise, −x ∈ (Int P) ∩ (−P)). Thus μ > 0, and then x ∈ Int P , which
implies−x /∈ P . Note thatx0 andx play symmetric roles:x0, x ∈ Int P ,−x0 /∈ P ,
−x /∈ P , T x0 = μ0x0 withμ0 > 0, and T x = μx withμ > 0. Set y = x0 −τ0x,
where τ0 = τ(x0,−x). Then y ∈ P (from the definition of σ and τ ). Moreover,
y 	= 0 (otherwise x = mx0 with m = 1/τ0). Thus Ty ∈ Int P . But
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Ty = T x0 − τ0T x = μ0x0 − τ0μx.

Hence x0 + τ0μ
μ0
(−x) ∈ Int P . From the definition of τ0 we deduce that τ0μ

μ0
< τ0

and therefore μ < μ0. Reversing the roles of x0 and x yields μ0 < μ. Hence we
obtain a contradiction. Therefore x = mx0 for some m > 0 and then μ = μ0.

3. If x ∈ P or −x ∈ P we deduce the first part of the alternative from question 2.
We may thus assume that x /∈ P and −x /∈ P . We will then show that |μ| < μ0. If
μ = 0 we are done. Suppose that μ > 0 and let τ0 = τ(x0, x). Set y = x0 + τ0x,
so that y ∈ P . We have y 	= 0 (otherwise −x ∈ P ) and thus

Ty = μ0x0 + τ0μx ∈ Int P.

Hence x0 + τ0μ
μ0
x ∈ Int P . From the definition of τ0 we deduce that τ0μ

μ0
< τ0,

and thus μ < μ0.
Suppose now thatμ < 0. Let τ0 = τ(x0, x) and τ̃0 = τ(x0,−x). Set y = x0+τ0x

and ỹ = x0 − τ̃0x, so that y, ỹ ∈ P and y 	= 0, ỹ 	= 0. As above, we obtain

x0 + τ0μ

μ0
x ∈ Int P and x0 − τ̃0μ

μ0
x ∈ Int P.

Thus

x0 + τ0|μ|
μ0

(−x) ∈ Int P and x0 + τ̃0|μ|
μ0

x ∈ Int P.

From the definition of τ0 and τ̃0 we deduce that

τ0|μ|
μ0

< τ̃0 and
τ̃0|μ|
μ0

< τ0.

Therefore |μ|
μ0

< min

{
τ̃0

τ0
,
τ0

τ̃0

}

≤ 1.

4. Using question 3 with μ = μ0 yields N(T − μ0I ) ⊂ Rx0.
5. In view of the results in Problem 36 it suffices to show that N((T − μ0I )

2) =
N(T −μ0I ). Let x ∈ E be such that (T −μ0I )

2x = 0. Using question 4 we may
write T x − μ0x = αx0 for some α ∈ R. We need to prove that α = 0. Suppose
not, that α 	= 0. Set y = x

α
, so that Ty−μ0y = x0. Then T 2y = μ0Ty+T x0 =

μ2
0y + 2μ0x0. By induction we obtain T ny = μn0y + nμn−1

0 x0 for all n ≥ 1,
which we may write as

T n
(
x0 − μ0y

n

)
= −μ

n+1
0

n
y.

Since x0 ∈ Int P , we may choose n sufficiently large that x0 − μ0y
n

∈ P . Since
T n(P ) ⊂ P , we conclude that −y ∈ P . Thus T n(−y) ∈ P . Returning to the
equation T ny = μn0y + nμn−1

0 x0 ∀n ≥ 1, we obtain −y − n
μ0
x0 ∈ P , i.e.,

−x0 − μ0
n
y ∈ P . As n → +∞ we obtain −x0 ∈ P . Impossible.
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Thus we have established that the geometric multiplicity of μ0 (i.e., dim(N −
μ0I )) is one, but also that the algebraic multiplicity is one.

Problem 42

1. We have, ∀x ∈ C,

‖T x − T x0‖ ≤ ‖T ‖ ‖x − x0‖ ≤ ‖T ‖r ≤ 1

2
‖T x0‖,

and by the triangle inequality,

‖T x0‖ − ‖T x‖ ≤ ‖T x − T x0‖ ≤ 1

2
‖T x0‖.

Thus ‖y‖ ≥ 1
2 ‖T x0‖ ∀y ∈ T (C), and therefore also ∀y ∈ T (C). Since T x0 	= 0,

we see that 0 /∈ T (C).
2. By assumption (1), Ay is dense in E, and consequently Ay ∩ B(x0, r/2) 	= ∅,

i.e, there exists S ∈ A such that ‖Sy − x0‖ < r/2.
3. We have, ∀z ∈ B(y, ε),

‖Sz− x0‖ ≤ ‖S(z− y)‖ + ‖Sy − x0‖ ≤ ‖S‖ε + r

2
.

Then choose ε = r
2‖S‖ .

4. If x ∈ C, then T x ∈ B(yj , 1
2 εyj ) for some j ∈ J . Therefore qj (x) ≥ 1

2 εyj and

thus q(x) ≥ minj∈J { 1
2 εyj }.

5. The functions qj are continuous on E and the function 1/q is continuous on C.
Thus F is continuous on C. Write

F(x)− x0 = 1

q(x)

∑

j∈J
qj (x)

[
Syj (T x)− x0

]
.

Note that qj (x) ≥ 0 ∀x ∈ E and qj (x) > 0 implies ‖T x − yj‖ < εyj . Using the
result of question 2 with z = T x and y = yj yields

‖Syj (T x)− x0‖ ≤ r.

Therefore

qj (x)‖Syj (T x)− x0‖ ≤ qj (x)r ∀x ∈ E, ∀j ∈ J,
and thus

‖F(x)− x0‖ ≤ r.

6. Let Q = T (C), so that Q is compact. Thus Rj = Syj (Q) is compact, and
so is [0, 1]Rj (since it is the image of [0, 1] ×Rj under the continuous map
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(t, x) 
→ tx). Finally,
∑
j∈J [0, 1]Rj is also compact (being the image under the

map (x1, x2, . . . ) 
→ ∑
j∈J xj of a product of compact sets).

7. Each operator Syj ◦ T is compact by Proposition 6.3. Since K(E) is a subspace
(see Theorem 6.1), we see that U ∈ K(E) (qj (ξ) is a constant). From Theorem
6.6 we know that F = N(I − U) is finite-dimensional.
Writing that F(ξ) = ξ gives

1

q(ξ)

∑

j∈J
qj (ξ)Syj (T ξ) = ξ,

and by definition of U ,

U(ξ) = 1

q(ξ)

∑

j∈J
qj (ξ)Syj (T ξ) = ξ.

8. We need to show that T a = U(T a) ∀a ∈ Z. Note that Syj ∈ A (by the construc-
tion of question 2; thus Syj ◦T ∈ A andU ∈ A. From the definition of A it is clear
that U ◦ T = T ◦U . Let a ∈ Z, so that a = Ua. Then T a = T (Ua) = U(T a).

The space Z is finite-dimensional and thus Z 	= E (this is the only place where
we use the fact that E is infinite-dimensional). Clearly Z is closed and Z 	= {0},
since ξ ∈ Z (and ξ ∈ C implies ξ 	= 0 by question 1). Thus Z is a nontrivial
closed invariant subspace of T .

9. Nontrivial subspaces have dimension one. Thus the only nontrivial invariant sub-
spaces are of the form Rx0 with x0 	= 0 andT x0 = αx0 for someα ∈ R. Therefore
it suffices to choose any T with no real eigenvalue, for example a rotation by π/2.

Problem 43

1. |T (u+v)|2 = |T u|2+|T v|2+2(T �T u, v) and |T �(u+v)|2 = |T �u|2+|T �v|2+
2(T T �u, v).

3. By Corollary 2.18 (and since H is reflexive) we always have R(T ) = N(T �)⊥
and R(T �) = N(T )⊥.

4. Since f ∈ R(T ), we have f = T v for some v ∈ H . Using question 3 we may
decompose v = v1 + v2 with v1 ∈ R(T ) and v2 ∈ N(T ). Then f = T v = T v1
and we choose u = v1.

5. We have by question 1 |un − um| = |T ∗(yn − ym)| = |T (yn − ym)| → 0
as m, n → ∞. Thus Tyn is a Cauchy sequence; let z = limn→∞Tyn. Then
T �T yn = T T �yn with T T �yn = T un → T u = f and T �T yn → T �z. Thus
T �z = f .

6. In question 5 we have proved that R(T ) ⊂ R(T �). Applying this inclusion to T �

(which is also normal) gives R(T �) ⊂ R(T ).
7. Clearly ‖T 2‖ ≤ ‖T 2‖. For the reverse inequality write |T u|2 = (T �T u, u) ≤

|T �T u| |u|. Since T is normal, we have |T �T u| = |T T u| ≤ ‖T 2‖ |u|. Therefore

‖T ‖2 = sup u	=0
|T u|2
|u|2 ≤ ‖T 2‖.
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8. When p = 2k we argue by induction on k. Indeed, ‖T 2k+1‖ = ‖S2‖, where
S = T 2k . Since S is normal, we have ‖S2‖ = ‖S‖2. But ‖S‖ = ‖T ‖2k from the
induction assumption. Therefore ‖T 2k+1‖ = ‖T ‖2k+1

.

For a general integer p, choose any k such that 2k ≥ p. We have

‖T ‖2k = ‖T 2k‖ = ‖T 2k−pT p‖ ≤ ‖T 2k−p‖ ‖T p‖ ≤ ‖T ‖2k−p‖T p‖.
Thus ‖T ‖p ≤ ‖T p‖, and since ‖T p‖ ≤ ‖T ‖p, we obtain ‖T p‖ = ‖T ‖p.

9. Let u ∈ N(T 2). Then T u ∈ N(T ) ∩ R(T ) ⊂ N(T ) ∩ N(T )⊥ by question 2.
Therefore T u = 0 and u ∈ N(T ). The same argument shows that N(T p) ⊂
N(T p−1) for p ≥ 2, and thus N(T p) ⊂ N(T ). Clearly N(T ) ⊂ N(T p) and
therefore N(T p) = N(T ).

Problem 44

- A -

2. Clearly T �◦T = I implies |T u| = |u| ∀u ∈ H . Conversely, write |T (u+v)|2 =
|u+ v|2 and deduce that (T u, T v) = (u, v) ∀u, v ∈ H , so that T � ◦ T = I .

3. (a) ⇒ (b). T � ◦ T = I and T bijective imply that T � = T −1, so that T � is
also bijective.

(b) ⇒ (c). T � ◦ T = I implies that T � is surjective. If T � is also injective,
then T � is bijective and T = (T �)−1. Hence T ◦ T � = I .

(c) ⇒ (d). Obvious.
(d) ⇒ (e). T � ◦ T = I implies that T � is surjective. If T � is an isometry, it

must be a unitary operator.
(e) ⇒ (a). Apply (a) ⇒ (e) to T �.

4. In H = �2 the right shift Sr defined by Sr(x1, x2, x3, . . . ) = (0, x1, x2, . . . ) is
an isometry that is not surjective.

5. Let fn ∈ R(T ) with fn → f . Write fn = T un and |un − um| = |fn − fm|,
so that (un) is Cauchy sequence and un → u with f = T u. Given v ∈ H , set
g = T T �v. Then g ∈ R(T ) and we have ∀x ∈ H ,

(v − g, T x) = (v, T x)− (T T �v, T x) = (v, T x)− (v, T T �T x) = 0,

since T � ◦ T = I . Thus v − g ∈ R(T )⊥ and consequently g = PR(T )v.
6. Assume that T is an isometry. Write (T − λI) = (I − λT ∗) ◦ T . Assume

|λ| < 1. Then ‖λT �‖ < 1 and thus (I − λT �) is bijective. When T is a unitary
operator we deduce that (T − λI) is bijective; therefore (−1,+1) ⊂ ρ(T )

and hence σ(T ) ⊂ (−∞,−1] ∪ [+1,+∞), so that σ(T ) ⊂ {−1,+1} (since
σ(T ) ⊂ [−1,+1]). On the other hand, if T is not a unitary operator and |λ| < 1,
we see that (T − λI) cannot be bijective; therefore (−1,+1) ⊂ σ(T ), so that
σ(T ) = [−1,+1] (since σ(T ) is closed and σ(T ) ⊂ [−1,+1]).
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7. T is an isometry from H onto T (H). If T ∈ K(H) then T (BH ) = BT (H) is
compact. Hence dim T (H) < ∞ by Theorem 6.5. Since T is bijective from H

onto T (H), it follows that dimH < ∞.
8. IfT is skew-adjoint then (T u, u) = (u, T �u) = −(u, T u) and thus (T u, u) = 0.

Conversely, write 0 = (T (u+ v), (u+ v)) = (T u, v)+ (T v, u) ∀u, v ∈ H , so
that T u+ T �u = 0 ∀u ∈ H .

9. Assumeλ 	= 0. Then (T−λI) = −λ(I− 1
λ
T ), and the operator (I− 1

λ
T ) satisfies

the conditions of the Lax–Milgram theorem (Corollary 5.8). Thus (T − λI) is
bijective.

10. From question 9 we know that 1 /∈ σ(T ), and thus (T − I )−1 is well defined.
From the relation (T − I ) ◦ (T + I ) = (T + I ) ◦ (T − I ) we deduce that
U = (T − I )−1 ◦ (T + I ). Similarly U ◦ T = (T − I )−1 ◦ (T + I ) ◦ T =
T ◦(T+I )◦(T−I )−1 = T ◦U because (T+I )◦T ◦(T−I ) = (T−I )◦T ◦(T+I ).
Next, we have U� = (T � − I )−1 ◦ (T � + I ) and thus U� ◦ U = (T � − I )−1 ◦
(T �+I )◦(T +I )◦(T −I )−1 = I , since (T �+I )◦(T +I ) = (T �−I )◦(T −I )
because T � + T = 0.
Thus U is an isometry. On the other hand, U = (T + I ) ◦ (T − I )−1 is bijective
since −1 ∈ ρ(T ) by question 9.

11. By assumption we have U� ◦ U = I . Thus (T � − I )−1 ◦ (T � + I ) ◦ (T + I ) ◦
(T − I )−1 = I . This implies (T � + I ) ◦ (T + I ) = (T � − I ) ◦ (T − I ), i.e.,
T � + T = 0.

- B -

1. (i) Trivial.
(ii) If dimH < ∞, standard linear algebra gives dimN(T ) = dimN(T �).

(iii) If T is normal, then N(T ) = N(T �).
(iv) dimN(T ) = dimN(T �) < ∞ by Theorem 6.6.

2. If T = S�, a left shift, then dimN(T ) = 1 and T � = Sr satisfies N(T �) = {0}.
3. We have T � = P ◦U� and thus T � ◦T = P ◦U� ◦U ◦P = P 2 by question A.2.
4. From the results of Problem 39 we know that P must be a square root of T � ◦T ,

and that P is unique.
5. Suppose that T = U ◦ P = V ◦ P are two polar decompositions. Then U = V

onR(P ) and by continuityU = V onR(P ). But P 2 = T � ◦T impliesN(P ) =
N(T ). Thus R(P ) = N(P �)⊥ = N(P )⊥ = N(T )⊥ (since P � = P ).

6. From the relation T = U ◦ P we see that U(R(P )) ⊂ R(T ). In fact, we have
U(R(P )) = R(T ); indeed, given f ∈ R(T ) write f = T x for some x ∈ H ,
and then U(Px) = f , so that f ∈ U(R(P )).
By continuity U maps R(P ) = N(T )⊥ into R(T ) = N(T �)⊥. Since U is an
isometry, the spaceU(N(T )⊥) is closed (by the standard Cauchy sequence argu-
ment). But U(N(T )⊥) ⊃ R(T ) and therefore U(N(T )⊥) = R(T ) = N(T �)⊥.
Using the property (Ux,Uy) = (x, y) ∀x, y ∈ H we find that (Ux,Uy) =
0 ∀x ∈ N(T )⊥, ∀y ∈ N(T ). Thus U(y) ∈ N(T �)⊥⊥ = N(T �) ∀y ∈ N(T ).
Consequently J = U|N(T ) is an isometry from N(T ) into N(T �).
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7. LetP be the square root of T �◦T . We now construct the isometryU . First define
U0 : R(P ) → R(T ) as follows. Given f ∈ R(P ), there exists some u ∈ H (not
necessarily unique) such that f = Pu. We set

U0f = T u.

This definition makes sense; indeed, if f = Pu = Pu′, then u− u′ ∈ N(P ) =
N(T ), so that T u = T u′. Moreover,

|U0f | = |T u| = |Pu| = |f | ∀f ∈ R(P ).
In addition we have U0(R(P )) = R(T ). Indeed, we already know that
U0(R(P )) ⊂ R(T ). The reverse inclusion follows from the identity U0(Pu) =
T u ∀u ∈ H .

Let Ũ0 be the extension by continuity of U0 to R(P ). Then Ũ0 is an isometry
fromR(P ) = N(T )⊥ intoR(T ) = N(T �)⊥. ButR(Ũ0) ⊃ R(U0) = R(T ) and
therefore (as above) R(Ũ0) ⊃ R(T ) = N(T �)⊥. Hence Ũ0 is an isometry from
N(T )⊥ onto N(T �)⊥.

Finally, we extend Ũ0 to all of H as follows. Given x ∈ H , write

x = x1 + x2

with x1 ∈ N(T )⊥ and x2 ∈ N(T ). Set

Ux = Ũ0x1 + Jx2.

Then

|Ux|2 = |Ũ0x1|2 + 2(Ũ0x1, J x2)+ |Jx2|2 = |x1|2 + |x2|2 = |x|2,
since Ũ0x1 ∈ N(T �)⊥ and x2 ∈ N(T �) (by (1)).

Clearly U(Pu) = U0(Pu) = T u ∀u ∈ H , and therefore we have constructed a
polar decomposition of T .

8. The construction of question 7 shows that R(U) = N(T �)⊥ ⊕ R(J ). Thus
R(U) = H if R(J ) = N(T �), and then U is a unitary operator.

9. If T is a normal operator then N(T ) = N(T �) (see Problem 43). Thus (2) is
satisfied and we may apply question 8. Next, we have T � = P ◦ U�, and since
T is normal we can write

(P ◦ U�) ◦ (U ◦ P) = T � ◦ T = T ◦ T � = (U ◦ P) ◦ (P ◦ U�),
which implies that

P 2 = U ◦ P 2 ◦ U�,
and thus

P 2 ◦ U = U ◦ P 2.
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Applying the result of question C2 in Problem 39 we deduce thatP ◦U = U ◦P .
10. We have P 2 = T � ◦ T ∈ K(H). This implies that P ∈ K(H). Indeed, let (un)

be a sequence in H with |un| ≤ 1. Passing to a subsequence (still denoted by
un), we may assume that un ⇀ u and P 2un → P 2u. Then |P(un − u)|2 =
(P 2(un − u), un − u) → 0, so that Pun → Pu. Hence P ∈ K(H).

11. We have T � ◦ T ∈ K(H), since T ∈ K(H) and its square root P is compact
(see part D in Problem 39).

12. Let (en) be an orthonormal basis of H consisting of eigenvectors of T �T , with
corresponding eigenvalues (λn), so that λn ≥ 0 ∀n and λn → 0 as n → ∞. Let
I = {n ∈ N; λn > 0}. Consider the isometry U0 defined on R(P ) with values
in R(T ) constructed in question 7; we have U0 ◦ P = T on H .
Set fn = U0(en) for n ∈ I ; this is well defined, since Pen = √

λnen, so that
en ∈ R(P ) when n ∈ I . Then (fn)n∈I is an orthonormal system in H (but it is
not a basis ofH , since fn ∈ R(U0) ⊂ R(T ) 	= H in general). Choose any basis
ofH , still denoted by (fn)n∈N, containing the system (fn)n∈I . For u ∈ H , write

u =
∑

n∈N

(u, en)en,

so that
Pu =

∑

n∈N

√
λn(u, en)en =

∑

n∈I

√
λn(u, en)en,

and then

T u = U0(Pu) =
∑

n∈I

√
λn(u, en)fn =

∑

n∈N

√
λn(u, en)fn.

Clearly
T �v =

∑

n∈N

√
λn(v, fn)en.

Set

TNu =
N∑

n=1

αn(u, en)fn,

so that TN ∈ K(H) (since it is a finite-rank operator). Then ‖TN − T ‖ ≤
maxn≥N+1|αn|, so that ‖TN − T ‖ → 0 as N → ∞, provided αn → 0 as
n → ∞; thus T ∈ K(H) by Corollary 6.2.

Problem 45

12. Consider the equation
{

−u′′ + k2u = f on (0, 1),

u(0) = u(1) = 0.

The solution is given by
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u(x) = sinh(kx)

k sinh k

∫ 1

0
f (s) sinh(k(1 − s))ds − 1

k

∫ x

0
f (s) sinh(k(x − s))ds.

A tedious computation shows that

u(x) ≥ k

sinh k
x(1 − x)

∫ 1

0
f (s)s(1 − s)ds.

Next, suppose that p ≡ 1 and u satisfies
{

−u′′ + qu = f on (0, 1),

u(0) = u(1) = 0.

Write
−u′′ + k2u = f + (k2 − q)u.

We already know that u ≥ 0. Choosing the constant k sufficiently large we have
f + (k2 − q)u ≥ f , and we are reduced to the previous case.

In the general case, consider the new variable

y = 1

L

∫ x

0

1

p(t)
dt, where L =

∫ 1

0

1

p(t)
dt.

Set v(y) = u(x). Then

ux(x) = vy(y)
1

Lp(x)

and

(p(x)ux)x = vyy(y)
1

L2p(x)
.

Therefore the problem
{

−(pu′)′ + qu = f on (0, 1),

u(0) = u(1) = 0

becomes
{

−vyy(y)+ L2p(x)q(x)v(y) = L2p(x)f (x) on (0, 1),

v(0) = v(1) = 0,

and we are reduced to the previous case, noting that x(1 − x) ∼ y(1 − y).

Problem 46

12. Let (un) be a minimizing sequence i.e., F(un) → m. We have
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F(un) = 1

2

∫ 1

0
(u′
n

2 + u2
n)−

∫ 1

0
g(un) ≤ C.

On the other hand we may use Young’s inequality (see (2) in Chapter 4, and the
corresponding footnote) with a = (t+)α+1 and p = 2/(α + 1), so that p > 1
since α < 1. We obtain

g(un) ≤ εu2
n + Cε ∀ε > 0.

Choosing, e.g., ε = 1/4 we see that (un) is bounded in H 1
0 (I ). Therefore we

may extract a subsequence (unk ) converging weakly in H 1
0 (I ), and strongly in

C(I) (by Theorem 8.8), to some limit u ∈ H 1
0 (I ). Therefore

lim inf
k→∞

∫ 1

0
(u′
nk

2 + u2
nk
) ≥

∫ 1

0
(u′2 + u2)

and

lim
k→∞

∫ 1

0
g(unk ) =

∫ 1

0
g(u).

Consequently F(u) ≤ m, and thus F(u) = m.

Problem 47

- A -

2. Choose a sequence (un) proposed in the hint. We have

un =
∫ 1

1− 1
n

un(x)dx

and thus |un| ≤ 1/n. On the other hand

‖un − un‖L∞(I ) ≥ un(1)− un ≥ 1 − 1

n
,

and

‖u′
n‖L1(I ) =

∫ 1

0
u′
n(x)dx = un(1)− un(0) = 1.

3. Suppose, by contradiction, that the sup is achieved by some function u ∈
W 1,1(I ), i.e.,

‖u− u‖L∞(I ) = 1 and ‖u′‖L1(I ) = 1.

We may assume, e.g., that there exists some x0 ∈ [0, 1] such that

(S1) u(x0)− u = +1.

On the other hand,
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(S2) u =
∫ 1

0

(

u(x)− min[0,1] u
)

dx + min[0,1] u ≥ min[0,1] u = u(y0),

for some y0 ∈ [0, 1]. Combining (S1) and (S2) we obtain

u(x0)− u(y0) ≥ 1.

But

u(x0)− u(y0) ≤
∫ 1

0
|u′(x)|dx = 1.

Therefore all the inequalities become equalities, and in particular u ≡ min[0,1] u.
This contradicts (S1).

6. Set
m = inf{‖u′‖Lp(I); u ∈ W 1,p(I ) and ‖u− u‖Lq(I) = 1},

and let (un) be a minimizing sequence, i.e., ‖u′
n‖Lp(I) → m and ‖un − un‖Lq(I)

= 1. Without loss of generality we may assume that un = 0. Therefore (un) is
bounded in W 1,p(I ). We may extract a subsequence (unk ) converging weakly in
W 1,p(I ) when p < ∞ (and (u′

nk
) converges weak� in L∞(I ) when p = ∞) to

some limit u ∈ W 1,p(I ). By Theorem 8.8 we may also assume that unk → u in
C(I) (since p > 1). Clearly we have

‖u′‖Lp(I) ≤ m, u = 0, and ‖u‖Lq(I) = 1.

- B -

1. Apply Lax–Milgram in V equipped with the H 1-norm, to the bilinear form
a(u, v) = ∫

I
u′v′. Note that a is coercive (e.g., by question A6).

2. Let w ∈ C1
c (I ). Choosing v = (w − w) we obtain

∫

I

u′w′ =
∫

I

f (w − w) =
∫

I

fw ∀w ∈ C1
c (I ).

We deduce that u ∈ H 2(I ) and −u′′ = f . Similarly we have
∫

I

u′w′ =
∫

I

fw ∀w ∈ H 1(I )

and thus u′(0) = u′(1) = 0 (since w(0) and w(1) are arbitrary).
4. We have σ(T /λ1) ⊂ [0, 1]. Applying Exercise 6.24 ((v) ⇒ (vi)) we know that

λ1(Tf, f ) ≥ |Tf |2 ∀f ∈ H
and we deduce that

λ1

∫ 1

0
u′2 ≥

∫ 1

0
u2 ∀u ∈ W,

where



578 Partial Solutions of the Problems

W =
{

u ∈ H 2(0, 1); u′(0) = u′(1) = 0 and
∫ 1

0
u = 0

}

.

On the other hand, given any u ∈ V , there exists a sequence un ∈ W such that
un → u in H 1. (Indeed let ϕn ∈ C1

c (I ) be a sequence such that ϕn → u′ in
L2(I ) and set un(x) = ∫ x

0 ϕn(t)dt + cn, where the constant cn is adjusted so that
∫ 1

0 un = 0.) Therefore we obtain

‖u‖L2(I ) ≤ √
λ1‖u′‖L2(I ) ∀u ∈ V.

Choosing an eigenfunction e1 of T corresponding to λ1, and letting u1 = T e1 we
obtain

‖u1‖L2(I ) = √
λ1‖u′

1‖L2(I ).

The eigenvalues of T are given by λk = 1
k2π2 , k = 1, 2, . . . . Therefore the best

constant in (6) is 1/π .

- C -

1. Write, for u ∈ W 1,1(I ),

∫ 1

0
|u(x)− u|dx =

∫ 1

0
|u(x)−

∫ 1

0
u(y)dy|dx ≤

∫ 1

0

∫ 1

0
|u(x)− u(y)|dxdy

≤
∫ 1

0
dx

∫ x

0
dy

∫ x

y

|u′(t)|dt +
∫ 1

0
dx

∫ 1

x

dy

∫ y

x

|u′(t)|dt

= 2
∫ 1

0
|u′(t)|t (1 − t)dt

by Fubini.
3. Choose a function u ∈ W 1,1(I ) such that u(x) = − 1

2 ∀x ∈ (
0, 1

2 − ε
)
, u(x) =

+ 1
2 ∀x ∈ ( 1

2 + ε, 1
)
, u = 0 and u′ ≥ 0, where ε ∈ (

0, 1
2

)
is arbitrary. Then

‖u′‖L1 = 1 and ‖u‖L1 ≥ 1
2 − ε.

4. There is no function u ∈ W 1,1(I ) such that ‖u− u‖L1(I ) = 1
2 and ‖u′‖L1(I ) = 1.

Suppose, by contradiction, that such a function exists. Then

1

2
= ‖u− u‖L1(I ) ≤ 2

∫

I

|u′(t)|t (1 − t)dt ≤ 1

2

∫

I

|u′(t)|dt = 1

2
,

since 2t (1 − t) ≤ 1
2 ∀t ∈ (0, 1). All the inequalities become equalities and

therefore
( 1

4 − t (1 − t)
) |u′(t)| = 0 a.e. Hence u′ = 0 a.e. Impossible.

Problem 49

7. We have
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λ1 = a(w0, w0) ≤ a(w0 + tv, w0 + tv)

‖w0 + tv‖2
L2

∀v ∈ H 1
0 (0, 1), ∀t sufficiently small.

Therefore we obtain

λ1

(

1 + 2t
∫ 1

0
w0v + t2

∫ 1

0
v2
)

≤ λ1 + 2ta(w0, v)+ t2a(v, v),

and consequently

λ1

∫ 1

0
w0v = a(w0, v) ∀v ∈ H 1

0 (0, 1),

i.e., Aw0 = λ1w0 on (0, 1).
8. We know from Exercise 8.11 that w1 = |w0| ∈ H 1

0 (0, 1) and |w′
1| = |w′

0| a.e.
Therefore a(w1, w1) = a(w0, w0), and thus w1 is also a minimizer for (1). We
may then apply question 7.

10. Here is another proof which does not rely on the fact that all eigenvalues are
simple. (This proof can be adapted to elliptic PDE’s in dimension> 1.) It is easy
to see (using question 9) that w2/w1 belongs to H 1

0 (0, 1). Therefore we have

∫ 1

0
(Aw1)

w2

w1
= λ1

∫ 1

0
w2 =

∫ 1

0
(Aw)w.

Integrating by parts we obtain

∫ 1

0
pw′

1

(
2ww′

w1
− w2

w2
1

w′
1

)

+ qw2 =
∫ 1

0
pw′2 + qw2,

and therefore ∫ 1

0
p

(

w′ − w′
1w

w1

)2

= 0.

Consequently ( w
w1
)′ = 1

w1
(w′ − w′

1w

w1
) = 0, and therefore w is a multiple of w1.

Problem 50

2. Note that

∫ 1

0
|q|u2 ≤

(∫ 1

0
q2
)1/2 (∫ 1

0
u4
)1/2

≤ ε

∫ 1

0
u4 + Cε

∫ 1

0
q2.

Choosing ε = 1/8 we deduce that, ∀u ∈ H 1
0 (0, 1),

1

2
a(u, u)+ 1

4

∫ 1

0
u4 ≥ 1

2

∫ 1

0
u′2 + 1

8

∫ 1

0
u4 − C.
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3. Let (un) be a minimizing sequence, i.e., 1
2a(un, un)+ 1

4

∫ 1
0 u

4
n → m. Clearly (un)

is bounded in H 1
0 (0, 1). Passing to a subsequence, still denoted by un, we may

assume that un ⇀ u0 weakly in H 1
0 (0, 1) and un → u0 in C([0, 1]). Therefore

lim infn→∞
∫ 1

0 u
′
n

2 ≥ ∫ 1
0 u

′
0

2,
∫ 1

0 qu
2
n → ∫ 1

0 qu
2
0 and

∫ 1
0 u

4
n → ∫ 1

0 u
4
0. Conse-

quently a(u0, u0)+ 1
4

∫ |u0|4 ≤ m, and thus u0 is a minimizer.
4. We have

1

2
a(u0, u0)+ 1

4

∫ 1

0
u4

0 ≤ 1

2
a(u0 + tv, u0 + tv)+ 1

4

∫ 1

0
(u0 + tv)4

= 1

2
a(u0, u0)+ ta(u0, v)+ 1

4

∫ 1

0
(u4

0 + 4u3
0tv)+O(t2).

Taking t > 0 we obtain

a(u0, v)+
∫ 1

0
u3

0v ≥ O(t).

Letting t → 0 and choosing ±v we are led to

a(u0, v)+
∫ 1

0
u3

0v = 0 ∀v ∈ H 1
0 (0, 1).

6. Recall that u1 	≡ 0 since 1
2a(u1, u1) + 1

4

∫ 1
0 u

4
1 = m < 0. On the other hand we

have
−u′′

1 + a2u1 = (a2 − q − u2
1)u1 = f ≥ 0

and f 	≡ 0 (provided a2 − q − u2
1 > 0). We deduce from the strong maximum

principle (see Problem 45) that u1 > 0 on (0, 1), u′
1(0) > 0, and u′

1(1) < 0.
8. Let u ∈ C1

c ((0, 1)); we have, using integration by parts,

−
∫ 1

0
U ′′

1
u2

U1
=
∫ 1

0
U ′

1

(
2uu′

U1
− u2U ′

1

U2
1

)

≤
∫ 1

0
u′2,

and therefore

(S1)
∫ 1

0
u′2 − U ′

1
2 ≥ −

∫ 1

0

U ′′
1

U1
(u2 − U2

1 ) = −
∫ 1

0
(q + U2

1 )(u
2 − U2

1 ).

By density, inequality (S1) holds for every u ∈ H 1
0 (0, 1). Assume ρ ∈ K and set

u = √
ρ. Then u ∈ H 1

0 (0, 1), and we have


(ρ)−
(ρ1) =
∫ 1

0
u′2 + qu2 + 1

2
u4 − U ′

1
2 − qU2

1 − 1

2
U4

1 .

Using (S1) we see that
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(ρ)−
(ρ1) ≥
∫ 1

0
−
(
q + U2

1

) (
u2 − U2

1

)
+ qu2 + 1

2
u4 − qU2

1 − 1

2
U4

1

=
∫ 1

0

1

2
u4 + 1

2
U4

1 − U2
1u

2 = 1

2

∫ 1

0

(
u2 − U2

1

)2
.

Problem 51

1. The mapping v 
→ T v = (v′, v,√pv) is an isometry from V into L2(R)3. It
is easy to check that T (V ) is a closed subspace of L2(R)3, and therefore V is
complete. V is separable since L2(R)3 is separable.

3. Let u ∈ C∞
c (R). We have ∀x ∈ [−A,+A],

(S1) |u(x)− u(−A)| ≤
∫ +A

−A
|u′(t)|dt ≤ √

2A‖u′‖L2(R).

On the other hand u2(−A) = 2
∫ −A
−∞ uu′ and therefore

(S2)

|u(−A)|2 ≤
∫ −A

−∞
|u|2 +

∫ +∞

−∞
|u′|2 ≤ 1

δ

∫ +∞

−∞
p|u|2 +

∫ +∞

−∞
|u′|2 ≤ Ca(u, u).

Combining (S1) and (S2) we obtain

(S3) |u(x)| ≤ Ca(u, u)1/2 ∀x ∈ [−A,+A],
and consequently

∫ +A

−A
|u|2 ≤ Ca(u, u).

Next, write that
∫ +∞

−∞
|u|2 ≤

∫

|x|≤A
|u|2 +

∫

|x|≥A
|u|2dx ≤ Ca(u, u).

Since ∫ +∞

−∞
|u′|2 ≤ a(u, u) and

∫ +∞

−∞
p|u|2 ≤ a(u, u),

we conclude that a(u, u) ≥ α‖u‖2
V ∀u ∈ C∞

c (R), for some α > 0.
4. It is clear that u ∈ H 2(I ) for every bounded open interval I and u satisfies

−u′′ + pu = f a.e. on I . Since p, u and f are continuous on I we deduce that
u ∈ C2(I ). On the other hand, u(x) → 0 as |x| → ∞ by Corollary 8.9 (recall
that V ⊂ H 1(R)).

5. We have

(S4)
∫

R

u′(2ζ ′
nζnu+ ζ 2

n u
′)+

∫

R

pζ 2
n u

2 =
∫

R

f ζ 2
n u.
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But

a(ζnu, ζnu) =
∫

R

(ζnu
′ + ζ ′

nu)
2 +

∫

R

pζ 2
n u

2 =
∫

R

f ζ 2
n u+

∫

R

ζ ′
n

2u2 by (S4).

Thus (since |ζn| ≤ 1)

a(ζnu, ζnu) ≤ ‖f ‖L2(R)‖ζnu‖L2(R) + C

n2

∫

n≤|x|≤2n
u2.

Since u(x) → 0 as |x| → ∞ we see that 1
n2

∫

n≤|x|≤2nu
2 → 0 as n → ∞. Using

the fact that a is coercive on V we conclude that ‖ζnu‖V ≤ C. It follows easily
that u ∈ V . Returning to (S3) we obtain

a(u, v) =
∫ +∞

−∞
f v ∀v ∈ C∞

c (R),

and by density the same relation holds ∀v ∈ V .
6. Let F = {u ∈ V ; ‖u‖V ≤ 1}. We need to show that F has compact closure in
L2(R). For this purpose we apply Corollary 4.27. Recall (see Proposition 8.5)
that

‖τhu− u‖L2(R) ≤ |h|‖u′‖L2(R)

and therefore

lim|h|→0
‖τhu− u‖L2(R) = 0 uniformly in u ∈ F .

On the other hand, given any ε > 0 we may fix a bounded interval I such that
|p(x)| > 1

ε2 ∀x ∈ R \ I . Therefore

∫

R\I
|u|2 ≤ ε2

∫

R

p|u|2 ≤ ε2‖u‖2
V ≤ ε2 ∀u ∈ F .



Notation

General notations

Ac complement of the set A
E� dual space
〈 , 〉 scalar product in the duality E�,E
[f = α] = {x; f (x) = α}
B(x0, r) open ball of radius r centered at x0
BE = {x ∈ E; ‖x‖ ≤ 1}
epi ϕ = {[x, λ];ϕ(x) ≤ λ}
ϕ� conjugate function
L(E, F ) space of bounded linear operators from

E into F
M⊥ orthogonal of M
D(A) domain of the operator A
G(A) graph of the operator A
N(A) kernel (= null space) of the operator A
R(A) range of the operator A
σ(E,E�) weak topology on E
σ(E�,E) weak� topology on E�

⇀ weak convergence
J canonical injection from E into E��

p′ conjugate exponent of p, i.e., 1
p

+ 1
p′ = 1

a.e. almost everywhere
|A| measure of the set A
supp f support of the function f
f � g convolution product of f with g
ρn sequence of mollifiers
(τhf )(x) = f (x + h) shift of the function f
ω ⊂⊂ � ω strongly included in �, i.e., ω is compact

and ω ⊂ �

PK projection onto the closed convex set K
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| | Hilbert norm
ρ(T ) resolvent set of the operator T
σ(T ) spectrum of the operator T
EV (T ) the set of eigenvalues of the operator T
Jλ = (I + λA)−1 resolvent of the operator A
Aλ = AJλ Yosida approximation of the operator A

∇u =
(
∂u
∂x1
, ∂u
∂x2
, . . . , ∂u

∂xN

)
gradient of the function u

Dαu = ∂ |α|u
∂x

α1
1 ∂x

α2
2 ∂x

αN
N

, α = (α1, α2, . . . , αN), |α| = ∑N
i=1 αi

�u =
N∑

i=1

∂2u

∂x2
i

Laplacian of u

R
N+ = {x = (x′, xN) ∈ R

N−1 × R; xN > 0}
Q = {x = (x′, xN) ∈ R

N × R; |x′| < 1 and |xN | < 1}
Q+ = Q ∩ R

N+
Q0 = {x ∈ Q; xN = 0}
(Dhu)(x) = 1

|h| (u(x + h)− u(x))

∂u

∂n
outward normal derivative

Function spaces

� ⊂ R
N open set in R

N

∂� = � boundary of �
Lp(�) = {u : � → R: u is measurable and

∫

�
|u|p < ∞}, 1 ≤ p < ∞

L∞(�) = {u : � → R: u is measurable and |u(x)| ≤ C a.e. in � for some
constant C}

Cc(�) space of continuous functions with compact
support in �

Ck(�) space of k times continuously differentiable
functions on �, k ≥ 0

C∞(�) = ∩
k≥0
Ck(�)

Ck(�) functions in Ck(�) such that
for every multi-index α with |α| ≤ k,
the function x 
→ Dαu(x) admits a continuous
extension to �

C∞(�) = ∩
k≥0
Ck(�)

C0,α(�) =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ C(�); sup
x,y∈�
x 	=y

|u(x)− u(y)|
|x − y|α < ∞

⎫
⎪⎪⎬

⎪⎪⎭

with 0 < α < 1

Ck,α(�) = {u ∈ Ck(�);Dju ∈ C0,α(�) ∀j, |j | ≤ k}
W 1,p(�),W

1,p
0 (�),Wm,p(�),H 1(�),H 1

0 (�),H
m(�) Sobolev spaces
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of a Hilbert space, 135
of L1, 99
of L∞, 102
of Lp , 1 < p < ∞, 97
of W 1,p

0
in dimension 1, 219
in dimension N , 291

problem, 17
space, 3

duality map, 4

eigenfunction, 231, 311
eigenspace, 163
eigenvalue, 162, 231, 311

multiplicity of, 169, 234
simplicity of, 253

ellipticity condition, 294
embedding, 212, 278
epigraph, 10
equation

elliptic, 294
Euler, 140
heat, 325

Cauchy data for, 326
initial data for, 326

hyperbolic, 335
Klein–Gordon, 340
minimal surface, 322
parabolic, 326
reaction–diffusion, 344
Sturm–Liouville, 223
wave, 335

Cauchy data for, 336
initial data for, 336

equi-integrable, 129, 466
estimates
C0,α

for an elliptic equation, 316
for the heat equation, 342
Lp

for an elliptic equation, 316
for the heat equation, 342

a priori, 47
exponential formula, 197
extension operator

in dimension 1, 209
in dimension N , 272

Fredholm
alternative, 160
operator, 168, 492

free boundary problem, 322, 344
function

absolutely continuous, 206

characteristic, 14, 98
conjugate, 11
convex, 11
distribution, 462
domain of, 10
indicator, 14
integrable, 89
lower semicontinuous (l.s.c), 10
measurable, 89
of bounded variation, 207, 269
Rademacher, 123
shift of, 111
support of, 105
supporting, 14
test, 202, 264

fundamental solution, 117, 317

gauge of a convex set, 6
graph norm, 37
Green’s formula, 296, 316

heat equation, 325
Cauchy data for, 326
initial data for, 326

Hilbert sum, 141
Huygens’ principle, 347
hyperplane, 4

indicator function, 14
inductive, 2
inequality

Cauchy–Schwarz, 131
Clarkson

first, 95, 462
second, 97, 462

Gagliardo–Nirenberg interpolation
in dimension 1, 233
in dimension N , 313

Hardy
in dimension 1, 233
in dimension N , 313

Hölder, 92
interpolation, 93

Gagliardo–Nirenberg, 233, 313
Jensen, 120
Morrey, 282
Poincaré

in dimension 1, 218
in dimension N , 290

Poincaré–Wirtinger
in dimension 1, 233, 511
in dimension N , 312

Sobolev, 212, 278
Trudinger, 287
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Young, 92
inf-convolution, 26, 27

regularization by, 27, 453
initial data

for the heat equation, 326
for the wave equation, 336

injection
canonical, 8
compact, 213, 285
continuous, 213, 285

interpolation
inequalities, 93, 233, 313
theory, 117, 465

inverse operator
left, 39
right, 39

irreversible, 330
isometry, 8, 369, 505

Laplacian, 292
lateral boundary, 325
lemma

Brezis–Lieb, 123
Fatou, 90
Goldstine, 69
Grothendieck, 154
Helly, 68
Opial, 153
Riesz, 160
Zorn, 2

linear functional, 1
local chart, 272
lower semicontinuous (l.s.c), 10

maximal, 1
maximum principle

for elliptic equations
in dimension 1, 229
in dimension N , 307, 310

for the heat equation, 333
strong, 320, 507

measures (Radon), 115, 469
method

of translations (Nirenberg), 299
of truncation (Stampacchia), 229, 307

metrizable, 74
min–max

principle (Courant–Fischer), 490, 515
theorem (von Neumann), 480

mollifiers, 108
monotone operator

linear, 181, 456
nonlinear, 483

multiplicity of eigenvalues, 169, 234

normal derivative, 296
null set, 89
numerical range, 366

operator
accretive, 181
bijective, 35
bounded, 43
closed, 43

range, 46
compact, 157
dissipative, 181
domain of, 43
extension

in dimension 1, 209
in dimension N , 272

finite-rank, 157
Fredholm–Noether, 168, 492
Hardy, 486
Hilbert–Schmidt, 169, 497
injective, 35
inverse

left, 39
right, 39

maximal monotone, 181
monotone

linear, 181, 456
nonlinear, 483

normal, 369, 504
projection, 38, 476
resolvent, 182
self-adjoint, 165, 193, 368
shift, 163, 175
skew-adjoint, 370, 505
square root of, 496
Sturm–Liouville, 234
surjective, 35
symmetric, 193
unbounded, 43
unitary, 505

orthogonal
of a linear subspace, 9
projection, 134, 477

orthonormal, 143

parabolic equation, 326
partition of unity, 276
primal problem, 17
projection

on a convex set, 132
operator, 38, 476
orthogonal, 134, 477

quotient space, 353
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Radon measures, 115, 469
reaction diffusion, 344
reflexive, 67
regularity

in Lp and C0,α , 316, 342
of weak solutions, 221, 298

regularization
by convolution, 108
by inf-convolution, 27, 453
Yosida, 182

resolvent
operator, 182
set, 162

scalar product, 131
self-adjoint, 165, 193, 368
semigroup, 190, 197
separable, 72
separation of convex sets, 5
shift

of function, 111
operator, 163, 175

simplicity of eigenvalues, 253
smoothing effect, 330
Sobolev embedding, 212, 278
spaces

dual, 3
fractional Sobolev, 314
Hilbert, 132
Lp , 91
Marcinkiewicz, 462, 464
pivot, 136
quotient, 353
reflexive, 67
separable, 72
Sobolev

fractional, 314
in dimension 1, 202
in dimension N , 263

strictly convex, 4, 29
uniformly convex, 76
W 1,p , 202, 263
W

1,p
0 , 217, 287

Wm,p , 216, 271
W
m,p
0 , 219, 291

spectral
analysis, 170
decomposition, 165
mapping theorem, 367
radius, 177, 366

spectrum, 162, 366
Stefan problem, 344
strictly convex

function, 29

norm, 4, 29
Sturm–Liouville

equation, 223
operator, 234

support of a function, 105
supporting function, 14

theorem
Agmon–Douglis–Nirenberg, 316
Ascoli–Arzelà, 111
Baire, 31
Banach fixed-point, 138
Banach–Alaoglu–Bourbaki, 66
Banach–Dieudonné–Krein–Šmulian, 79,

450
Banach–Steinhaus, 32
Beppo Levi, 90
Brouwer fixed-point, 179
Carleson, 146
Cauchy–Lipschitz–Picard, 184
closed graph, 37
De Giorgi–Nash–Stampacchia, 318
dominated convergence, 90
Dunford–Pettis, 115, 466, 472
Eberlein–Šmulian, 70, 448
Egorov, 115, 121, 122
Fenchel–Moreau, 13
Fischer–Riesz, 93
Friedrichs, 265
Fubini, 91
Hahn–Banach, 1, 5, 7
Helly, 1, 214, 235
Hille–Yosida, 185, 197
Kakutani, 67
Kolmogorov–Riesz–Fréchet, 111
Krein–Milman, 18, 435
Krein–Rutman, 170, 499
Lax–Milgram, 140
Lebesgue, 90
Mazur, 61
Meyers–Serrin, 267
Milman–Pettis, 77
Minty–Browder, 145, 483
monotone convergence, 90
Morrey, 282
open mapping, 35
Rellich–Kondrachov, 285
Riesz representation, 97, 99, 116
Schauder, 159, 179, 317
Schur, 446
Schur–Riesz–Thorin–Marcinkiewicz, 117,

465
Sobolev, 278
spectral mapping, 367
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Stampacchia, 138
Tonelli, 91
Vitali, 121, 122
von Neumann, 480

trace, 315
triplet V,H, V �, 136
truncation operation, 97, 229, 307

uniform boundedness principle, 32
uniformly convex, 76

vibration
of a membrane, 336
of a string, 336

wave

equation, 335
Cauchy data for, 336
initial data for, 336

propagation, 336
wavelets, 146
weak

convergence, 57
topology, 57

weak solution, 221, 292
regularity of, 221, 298

weak�

convergence, 63
topology, 62

Yosida approximation, 182
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