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To Felix Browder, a mentor and close friend,
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Preface

This book has its roots in a course I taught for many years at the University of
Paris. It is intended for students who have a good background in real analysis (as
expounded, for instance, in the textbooks of G. B. Folland [2], A. W. Knapp [1],
and H. L. Royden [1]). I conceived a program mixing elements from two distinct
“worlds”: functional analysis (FA) and partial differential equations (PDEs). The first
part deals with abstract results in FA and operator theory. The second part concerns
the study of spaces of functions (of one or more real variables) having specific
differentiability properties: the celebrated Sobolev spaces, which lie at the heart of
the modern theory of PDEs. I show how the abstract results from FA can be applied
to solve PDEs. The Sobolev spaces occur in a wide range of questions, in both pure
and applied mathematics. They appear in linear and nonlinear PDEs that arise, for
example, in differential geometry, harmonic analysis, engineering, mechanics, and
physics. They belong to the toolbox of any graduate student in analysis.

Unfortunately, FA and PDEs are often taught in separate courses, even though
they are intimately connected. Many questions tackled in FA originated in PDEs (for
a historical perspective, see, e.g., J. Dieudonné [1] and H. Brezis—F. Browder [1]).
There is an abundance of books (even voluminous treatises) devoted to FA. There
are also numerous textbooks dealing with PDEs. However, a synthetic presentation
intended for graduate students is rare. and I have tried to fill this gap. Students who
are often fascinated by the most abstract constructions in mathematics are usually
attracted by the elegance of FA. On the other hand, they are repelled by the never-
ending PDE formulas with their countless subscripts. I have attempted to present
a “smooth” transition from FA to PDEs by analyzing first the simple case of one-
dimensional PDEs (i.e., ODEs—ordinary differential equations), which looks much
more manageable to the beginner. In this approach, I expound techniques that are
possibly too sophisticated for ODEs, but which later become the cornerstones of
the PDE theory. This layout makes it much easier for students to tackle elaborate
higher-dimensional PDEs afterward.

A previous version of this book, originally published in 1983 in French and fol-
lowed by numerous translations, became very popular worldwide, and was adopted
as a textbook in many European universities. A deficiency of the French text was the

vii



viii Preface

lack of exercises. The present book contains a wealth of problems. I plan to add even
more in future editions. I have also outlined some recent developments, especially
in the direction of nonlinear PDEs.

Brief user’s guide

1. Statements or paragraphs preceded by the bullet symbol e are extremely impor-
tant, and it is essential to grasp them well in order to understand what comes
afterward.

2. Results marked by the star symbol x can be skipped by the beginner; they are of
interest only to advanced readers.

3. In each chapter I have labeled propositions, theorems, and corollaries in a con-
tinuous manner (e.g., Proposition 3.6 is followed by Theorem 3.7, Corollary 3.8,
etc.). Only the remarks and the lemmas are numbered separately.

4. In order to simplify the presentation I assume that all vector spaces are over
R. Most of the results remain valid for vector spaces over C. I have added in
Chapter 11 a short section describing similarities and differences.

5. Many chapters are followed by numerous exercises. Partial solutions are pre-
sented at the end of the book. More elaborate problems are proposed in a separate
section called “Problems” followed by “Partial Solutions of the Problems.” The
problems usually require knowledge of material coming from various chapters.
I have indicated at the beginning of each problem which chapters are involved.
Some exercises and problems expound results stated without details or without
proofs in the body of the chapter.
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Chapter 1

The Hahn-Banach Theorems. Introduction to
the Theory of Conjugate Convex Functions

1.1 The Analytic Form of the Hahn-Banach Theorem: Extension
of Linear Functionals

Let E be a vector space over R. We recall that a functional is a function defined
on E, or on some subspace of E, with values in R. The main result of this section
concerns the extension of a linear functional defined on a linear subspace of E by a
linear functional defined on all of E.

Theorem 1.1 (Helly, Hahn—Banach analytic form). Let p : E — R be a function
satisfying!

@)) p(Ax) = Ap(x) Vx e E and VA >0,

@) p(x+y) = px)+py) Vx,yekE.

Let G C E be a linear subspace and let g - G — R be a linear functional such that
3) g(x) < p(x) VxegG.

Under these assumptions, there exists a linear functional f defined on all of E that
extends g, i.e., g(x) = f(x) Vx € G, and such that

4) f(x) = px) VxeE.

The proof of Theorem 1.1 depends on Zorn’s lemma, which is a celebrated and
very useful property of ordered sets. Before stating Zorn’s lemma we must clarify
some notions. Let P be a set with a (partial) order relation <. We say that a subset
Q C P is totally ordered if for any pair (a, b) in Q eithera < b or b < a (or both!).
Let Q C P be asubset of P; we say that ¢ € P is an upper bound for Q if a < c for
every a € Q. We say that m € P is a maximal element of P if there is no element

A function p satisfying (1) and (2) is sometimes called a Minkowski functional.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1
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2 1 The Hahn—-Banach Theorems. Introduction to the Theory of Conjugate Convex Functions

x € P such that m < x, except for x = m. Note that a maximal element of P need
not be an upper bound for P.

We say that P is inductive if every totally ordered subset Q in P has an upper
bound.

e Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal
element.

Zorn’s lemma follows from the axiom of choice, but we shall not discuss its
derivation here; see, e.g., J. Dugundji [1], N. Dunford-J. T. Schwartz [1] (Volume 1,
Theorem 1.2.7), E. Hewitt—K. Stromberg [1], S. Lang [1], and A. Knapp [1].

Remark 1. Zorn’s lemma has many important applications in analysis. It is a basic
tool in proving some seemingly innocent existence statements such as “every vector
space has a basis” (see Exercise 1.5) and “on any vector space there are nontrivial
linear functionals.” Most analysts do not know how to prove Zorn’s lemma; but it is
quite essential for an analyst to understand the statement of Zorn’s lemma and to be
able to use it properly!

Proof of Lemma 1.2. Consider the set

D(h) is a linear subspace of E,
P=1h:D(h)C E— R|hislinear, G C D(h),
h extends g, and h(x) < p(x) Vx € D(h)

On P we define the order relation
(hy < hy) & (D(hy) C D(hy) and hy extends hy) .

It is clear that P is nonempty, since g € P. We claim that P is inductive. Indeed, let
Q C P be atotally ordered subset; we write Q as Q = (h;);es and we set

D(h) = U D(h;), h(x)=h;(x) ifx € D(h;) for some .

iel

It is easy to see that the definition of & makes sense, that 4 € P, and that £ is
an upper bound for Q. We may therefore apply Zorn’s lemma, and so we have a
maximal element f in P. We claim that D(f) = E, which completes the proof of
Theorem 1.1.

Suppose, by contradiction, that D(f) # E.Letxg ¢ D(f);set D(h) = D(f) +
Rxp, and for every x € D(f), set h(x + txp) = f(x) + ta (t € R), where the
constant @ € R will be chosen in such a way that 4 € P. We must ensure that

fx)+ta < px+txg) VYxe D(f) and VreR.

In view of (1) it suffices to check that
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f&) +a =< plx+x0) VxeD(f),
f(x) —a < plx—x9) Vx e D(f).

In other words, we must find some « satisfying

sup {f(y) —p(y —x0)} <a =< inf {p(x+x0) — f(x)}
yeD(f) xeD(f)

Such an « exists, since
FO) —p(y—x) = plx+x)— fx) VxeD(f), VyeD(f)
indeed, it follows from (2) that
F&) + f() = plx+y) < plx+x0) + p(y — x0)-

We conclude that f < h; but this is impossible, since f is maximal and h # f.

We now describe some simple applications of Theorem 1.1 to the case in which
E is a normed vector space (n.v.s.) with norm || ||

Notation. We denote by E* the dual space of E, that is, the space of all continuous
linear functionals on E; the (dual) norm on E* is defined by

®) I flles = sup |f )] = Suplf(x)-
g

When there is no confusion we shall also write || f|| instead of || f]| g=.

Given f € E* and x € E we shall often write (f, x) instead of f(x); we say that
(, ) is the scalar product for the duality E*, E.

It is well known that E* is a Banach space, i.e., E* is complete (even if E is not);
this follows from the fact that R is complete.

e Corollary 1.2. Let G C E be a linear subspace. If g : G — R is a continuous
linear functional, then there exists f € E* that extends g and such that

I lles = sup lg()] = ligllG+-

xXe
lxl<1
Proof. Use Theorem 1.1 with p(x) = ||gllg*]lx]l-
e Corollary 1.3. For every xo € E there exists fy € E* such that
Il foll = llxoll and {fo. xo0) = llxolI>.

Proof. Use Corollary 1.2with G = Rxgand g(txg) = tllxol|3, sothat || g]lg+ = lIxoll-

Remark 2. The element f;y given by Corollary 1.3 is in general not unique (try
to construct an example or see Exercise 1.2). However, if E* is strictly con-
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vex2—for example if E is a Hilbert space (see Chapter 5) or if E = LP(2) with
1 < p < oo (see Chapter 4)—then fj is unique. In general, we set, for every xg € E,

Fo) = { fo € E* 1 foll = llxoll and (fo, o) = lxol}

The (multivalued) map xo — F (xp) is called the duality map from E into E*; some
of its properties are described in Exercises 1.1, 1.2, and 3.28 and Problem 13.

e Corollary 1.4. For every x € E we have

(6) lxll = sup [(f,x)| = max [(f, x)].
feE* feE
Ifi=t =<t

Proof. We may always assume that x # 0. It is clear that

sup [(f, x)| < llx]l.

feE*

Ifl=t

On the other hand, we know from Corollary 1.3 that there is some fy € E* such

that || foll = llx|l and (fo,x) = [x[|1*. Set fi = fo/lxll, so that || fi]| = 1 and
(f1,x) = llx]l.
Remark 3. Formula (5)—which is a definition—should not be confused with formula
(6), which is a statement. In general, the “sup” in (5) is not achieved; see, e.g.,
Exercise 1.3. However, the “sup” in (5) is achieved if E is a reflexive Banach space
(see Chapter 3); a deep result due to R. C. James asserts the converse: if E is a Banach

space such that for every f € E* the sup in (5) is achieved, then E is reflexive; see,
e.g., J. Diestel [1, Chapter 1] or R. Holmes [1].

1.2 The Geometric Forms of the Hahn-Banach Theorem:
Separation of Convex Sets

We start with some preliminary facts about hyperplanes. In the following, E denotes
an n.v.s.

Definition. An affine hyperplane is a subset H of E of the form
H={xeE; f(x)=«a},

where f is a linear functional® that does not vanish identically and « € R is a given
constant. We write H = [ f = «] and say that f = « is the equation of H.

2 A normed space is said to be strictly convex if ||tx + (1 —t)y| < 1,Vt € (0, 1), Vx, y with
lx]l = llyll = 1 and x # y; see Exercise 1.26.

3 We do not assume that f is continuous (in every infinite-dimensional normed space there exist
discontinuous linear functionals; see Exercise 1.5).
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Proposition 1.5. The hyperplane H = [ f = «] is closed if and only if f is contin-
uous.

Proof. It is clear that if f is continuous then H is closed. Conversely, let us assume
that H is closed. The complement H¢ of H is open and nonempty (since f does not
vanish identically). Let xo € H¢, so that f(xg) # «, for example, f(xg) < .

Fix r > 0 such that B(xg, r) C H¢, where

B(xo,r) ={x € E; [lx — xoll <r}.
We claim that
@) f(x) <a Vx € B(xg,r).

Indeed, suppose by contradiction that f(x;) > « for some x; € B(xg,r). The
segment
{xy, =0 —10)xo +tx1;t €[0,1]}

is contained in B(xo, r) and thus f(x;) # «, Vt € [0, 1]; on the other hand, f(x;) =

o forsomet € [0, 1], namely t = 7 (§ l(x] —*— acontradiction, and thus (7) is proved.

)—f(x0)°
It follows from (7) that
fxo+rz) <a Vze B,]1).
Consequently, f is continuous and || || < }(a — f(x0)).

Definition. Let A and B be two subsets of E. We say that the hyperplane H = [f =
o] separates A and B if

’f(X)SOé VxeA and f(x)>« VxeB.‘

We say that H strictly separates A and B if there exists some ¢ > 0 such that

]f(x)ga—e VxeAand f(x) > a+e VxeB.\

Geometrically, the separation means that A lies in one of the half-spaces deter-
mined by H, and B lies in the other; see Figure 1.
Finally, we recall that a subset A C E is convex if

tx+(l-nyeA Vx,yeA, Viel0 1]

e Theorem 1.6 (Hahn-Banach, first geometric form). Ler A C E and B C E be
two nonempty convex subsets such that AN B = (. Assume that one of them is open.
Then there exists a closed hyperplane that separates A and B.

The proof of Theorem 1.6 relies on the following two lemmas.

Lemma 1.2. Let C C E be an open convex set with 0 € C. For every x € E set
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H

Fig. 1

®) px) = inf{a > 0; alx e C}

(p is called the gauge of C or the Minkowski functional of C).
Then p satisfies (1), (2), and the following properties:

O] there is a constant M such that 0 < p(x) < M| x| Vx € E,
(10) C={xekE;pkx) <l}

Proof of Lemma 1.2. 1t is obvious that (1) holds.
Proof of (9). Let r > 0 be such that B(0, r) C C; we clearly have

1
p(x) = —lxll Vx € E.
r

Proof of (10). First, suppose that x € C; since C is open it follows that (14+¢)x € C
for & > 0 small enough and therefore p(x) < m < 1. Conversely, if p(x) < 1

there exists & € (0, 1) such thata~'x € C, and thus x = a(¢~'x) + (1 — )0 € C.

Proof of (2). Letx, y € E andlete > 0.Using (1) and (10) we obtain that
m € C. Thus

= — L0+ e find that -2 ¢ C. Using (1) and (10) once more, we
P)+p(y)+2e pxX)+p(y)+2¢

areledto p(x +y) < p(x) + p(y) + 2¢, Ve > 0.

()+8€C

+ U=y« Cforallt e [0, 1]. Choosing the value

and (x)+€ PO)+e

Lemma 1.3. Let C C E be a nonempty open convex set and let xo € E withxg ¢ C.
Then there exists f € E* such that f(x) < f(xo) Vx € C. In particular, the
hyperplane | f = f(x0)] separates {xo} and C.

Proof of Lemma 1.3. After a translation we may always assume that 0 € C. We
may thus introduce the gauge p of C (see Lemma 1.2). Consider the linear subspace
G = Ruxo and the linear functional g : G — R defined by
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gtxp) =t, teR.
It is clear that
g(x) = p(x) VxeG

(consider the two cases t > 0 and ¢t < 0). It follows from Theorem 1.1 that there
exists a linear functional f on E that extends g and satisfies

f(x) <pkx) VxeE.
In particular, we have f(x¢) = 1 and that f is continuous by (9). We deduce from
(10) that f(x) < 1 forevery x € C.

Proof of Theorem 1.6. Set C = A — B, so that C is convex (check!), C is open (since
C = UVGB(A —v)),and 0 ¢ C (because AN B = (J). By Lemma 1.3 there is some
f € E* such that

f(@) <0 VzeC,

that is,
fx)< f(y) Vxe A, VyeB.

Fix a constant « satisfying

sup f(x) < a < inf f(y).
yeEB

xeA
Clearly, the hyperplane [ f = «] separates A and B.

e Theorem 1.7 (Hahn-Banach, second geometric form). Let A C E and B C E
be two nonempty convex subsets such that A N\ B = (. Assume that A is closed and
B is compact. Then there exists a closed hyperplane that strictly separates A and B.

Proof. Set C = A — B, so that C is convex, closed (check!), and 0 ¢ C. Hence,
there is some r > 0 such that B(0,r) N C = . By Theorem 1.6 there is a closed
hyperplane that separates B(0, r) and C. Therefore, there is some f € E*, f £ 0,
such that

fx—=y)< f@z) VxeA, VyeB, VzeB(1).

It follows that f(x —y) < —r| fll Vx € A,Vy € B. Letting ¢ = %r||f|| > 0, we
obtain
fX)+e< f(y)—e VxeA, VyeB.

Choosing o such that

supf(x) +& < o < inf f(y) — e,
yeB

xeA
we see that the hyperplane [ f = o] strictly separates A and B.

Remark 4. Assume that A C E and B C E are two nonempty convex sets such that
AN B = . If we make no further assumption, it is in general impossible to separate
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A and B by a closed hyperplane. One can even construct such an example in which
A and B are both closed (see Exercise 1.14). However, if E is finite-dimensional one
can always separate any two nonempty convex sets A and B suchthat AN B =}
(no further assumption is required!); see Exercise 1.9.

We conclude this section with a very useful fact:

e Corollary 1.8. Let F C E be a linear subspace such that F # E. Then there
exists some [ € E*, f # 0, such that

(fi,x)y=0 VxeF.

Proof. Let xo € E with xq ¢ F. Using Theorem 1.7 witEA =Fand B = {x0}, we
find a closed hyperplane [ f = «] that strictly separates F and {xo}. Thus, we have

(f.x) <a < (fixo) Vx€F.
It follows that (f, x) =0 Vx € F, since A(f, x) < « forevery A € R.

e Remark 5. Corollary 1.8 is used very often in proving that a linear subspace F C E
is dense. It suffices to show that every continuous linear functional on E that vanishes
on F must vanish everywhere on E.

1.3 The Bidual E**. Orthogonality Relations

Let E be an n.v.s. and let E* be the dual space with norm

I fllgs = sup [(f, x)I.

xeE
lxll<1

The bidual E** is the dual of E* with norm

§lle= = sup [(§, f)I (5§ € E™).
fEE*
=1

There is a canonical injection J : E — E** defined as follows: given x € E, the
map f +— (f, x) is a continuous linear functional on E*; thus it is an element of
E**, which we denote by J x.* We have

(Jx, fYe=p»=(f.x)prE VYX€E, VfeE"

Itis clear that J is linear and that J is an isometry, thatis, || Jx || g» = || x| g; indeed,
we have

4 J should not be confused with the duality map F : E — E* defined in Remark 2.
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[Jxllg= = sup [{(Jx, f)I = sup [(f, x)| = Ix]
feE* feE*
fi=1 Ifl=<1
(by Corollary 1.4).

It may happen that J is not surjective from E onto E** (see Chapters 3 and 4).
However, it is convenient to identify E with a subspace of E** using J. If J turns
out to be surjective then one says that E is reflexive, and E** is identified with E
(see Chapter 3).

Notation. If M C E is a linear subspace we set

(MY ={(f € E% (fx)=0 VxeM).|

If N C E* is a linear subspace we set

IN'=(xeE:(fx)=0 YfeN)|

Note that—by definition—N is a subset of E rather than E**. It is clear that M+
(resp. N1) is a closed linear subspace of E* (resp. E). We say that M+ (resp. N1)
is the space orthogonal to M (resp. N).

Proposition 1.9. Let M C E be a linear subspace. Then

(o =]

Let N C E* be a linear subspace. Then
(NHLE o N.

Proof. 1t is clear that M C (MH1, and since (M1H)L is closed we have M C
(ML)L. Conversely, let us show that (M+)1 C M. Suppose by contradiction that
there is some xo € (M~+)L such that x ¢ M. By Theorem 1.7 there is a closed
hyperplane that strictly separates {xo} and M. Thus, there are some f € E* and
some « € R such that

(f,x) <a < {f,x)) VYVxeM.

Since M is a linear space it follows that (f, x) =0 Vx € M and also (f, xo) > O.
Therefore f € M~ and consequently (f, xo) = 0, a contradiction.

It is also clear that N C (N1)* and thus N c (N+)*.

Remark 6. Tt may happen that (N-1)* is strictly bigger than N (see Exercise 1.16).
It is, however, instructive to “try” to prove that (N L)L = N and see where the
argument breaks down. Suppose fo € E* is such that fo € (N1)* and fy ¢ N.
Applying Hahn-Banach in E*, we may strictly separate { fo} and N. Thus, there is
some £ € E* such that (£, fp) > 0. But we cannot derive a contradiction, since
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£ ¢ Nt—unless we happen to know (by chance!) that £ € E, or more precisely
that £ = Jx( for some xo € E. In particular, if E is reflexive, it is indeed true that
(NDHL = N.Inthe general case one can show that (N 1)L coincides with the closure
of N in the weak* topology o (E*, E) (see Chapter 3).

1.4 A Quick Introduction to the Theory of Conjugate Convex
Functions

We start with some basic facts about lower semicontinuous functions and convex
functions. In this section we consider functions ¢ defined on a set E with values in
(—o00, +00], so that ¢ can take the value +o0o (but —oo is excluded). We denote by
D(¢) the domain of ¢, that is,

’D((p) ={xekE; px) < +oo}.‘

Notation. The epigraph of ¢ is the set?
epip ={[x,A] € E xR; ¢(x) <A}
We assume now that E is a topological space. We recall the following.

Definition. A function ¢ : E — (—00, +00] is said to be lower semicontinuous
(Ls.c.) if for every A € R the set

l[p <Al={x € E; p(x) <A}
is closed.

Here are some well-known elementary facts about l.s.c. functions (see, e.g.,
G. Choquet, [1], J. Dixmier [1], J. R. Munkres [1], H. L. Royden [1]):

1. If ¢ is L.s.c., then epi ¢ is closed in E x R; and conversely.
2. If pisls.c., then for every x € E and for every ¢ > 0 there is some neighborhood
V of x such that
p(y) z o) —e VyeV;

and conversely.
In particular, if ¢ is Ls.c., then for every sequence (x;) in E such that x, — x,
we have

liminfe(x,) > ¢(x)
n— oo

and conversely if E is a metric space.
3. If ¢1 and ¢; are l.s.c., then @1 + ¢» is Ls.c.

5 We insist on the fact that R = (—o00, 00), so that A does not take the value co.
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4. If (¢i)ier is a family of L.s.c. functions then their superior envelope is also Ls.c.,
that is, the function ¢ defined by

@(x) = sup ¢; (x)

iel

is L.s.c.
5. If E is compact and ¢ is L.s.c., then inf g ¢ is achieved.

(If E is a compact metric space one can argue with minimizing sequences. For a
general topological compact space consider the sets [¢ < A] for appropriate values
of 1.)

We now assume that E is a vector space. Recall the following definition.

Definition. A function ¢ : E — (—00, +00] is said to be convex if

eix+ (1 —-1)y) <tex)+ 1 —-0e(y) Vx,yeE, Vte(,1).

We shall use some elementary properties of convex functions:

1. If ¢ is a convex function, then epi ¢ is a convex set in £ x R; and conversely.
2. If ¢ is a convex function, then for every A € R the set [¢p < A] is convex; but the
converse is not true.
. If 1 and ¢, are convex, then ¢; + ¢; is convex.
4. If (¢i)ics is a family of convex functions, then the superior envelope, sup; ¢;, is
convex.

(O8]

‘We assume hereinafter that E is an n.v.s.

Definition. Let ¢ : E — (—o00, +00] be a function such that ¢ # +oo (i.e.,
D(¢) # ). We define the conjugate function ¢* : E* — (—00, +00] to be®

9" (f) = sup{(f, x) — ()} (f € E").

xeE

Note that ¢* is convex and l.s.c. on E*. Indeed, for each fixed x € E the function
f = {f,x) — ¢(x) is convex and continuous (and thus l.s.c.) on E*. It follows that
the superior envelope of these functions (as x runs through FE) is convex and l.s.c.

Remark 7. Clearly we have the inequality
Y (fL.x)<ex)+¢"(f) VxeE, VfekE",

which is sometimes called Young s inequality. Of course, this fact is obvious with our
definition of ¢*! The classical form of Young’s inequality (see the proof of Theorem
4.6 in Chapter 4) asserts that

6 ¢* is sometimes called the Legendre transform of ¢.
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R
H
A=epi@
Mot o [x, Al =B
X, E
Fig. 2
1 1
(12) ab < —a? + —/bp Ya,b >0
p p

with1 < p < coand %—}— % = 1. Inequality (12) becomes a special case of (11) with
E =E*=Rand ¢(t) = %Itl”, P*(s) = §|s|l” (see Exercise 1.18, question (h)).
Proposition 1.10. Assume that ¢ : E — (—00, +00] is convex Ls.c. and ¢ # +0o0.

Then ¢* # +oo, and in particular, ¢ is bounded below by an affine continuous
function.

Proof. Let xo € D(¢p) and let Ag < ¢(xp). We apply Theorem 1.7 (Hahn—-Banach,
second geometric form) in the space E x R with A = epig and B = {[xo, Ao]}.
So, there exists a closed hyperplane H = [® = «] in E x R that strictly separates
A and B; see Figure 2. Note that the function x € E +— ®([x, 0]) is a continuous
linear functional on E, and thus ®([x,0]) = (f, x) for some f € E*. Letting
k = ®([0, 1]), we have

D([x,A]) = {(f,x)+kr V[x,A]€ E xR.
Writing that ® > @ on A and ® < « on B, we obtain
(f,x)+kr>a, V[x,A]€epigp,

and
(fs x0) +kro < .

In particular, we have
(13) (f,x) +ko(x) >a VYxe D(p)

and thus
(f, x0) + ko(xo) > o > (f, x0) + kXo.

It follows that k£ > 0. By (13) we have
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1 o
——fix)—9okx) <—— Vxe D(p)
k k
and therefore go*(—%f) < 4o00.

If we iterate the operation x, we obtain a function ¢** defined on E**. Instead, we
choose to restrict ¢** to E, that is, we define

9™ (x) = sup {(f,x) —@"(f)} (x€E).
feE*

e Theorem 1.11 (Fenchel-Moreau). Assume that ¢ : E — (—00, +00] is convex,
Ls.c., and ¢ # +00. Then ¢** = .

Proof. We proceed in two steps:
Step 1: We assume in addition that ¢ > 0 and we claim that ¢** = ¢.

First, it is obvious that ¢** < ¢, since (f, x) — ¢*(f) < ¢(x) Vx € E and
Vf € E*.In order to prove that ¢** = ¢ we argue by contradiction, and we assume
that ™ (xg) < @(xp) for some xg € E. We could possibly have ¢(xg) = 400, but
©**(x0) is always finite. We apply Theorem 1.7 (Hahn—-Banach, second geometric
form) in the space E x R with A = epi g and B = [xg, ¢**(x0)]. So, there exist, as
in the proof of Proposition 1.10, f € E*, k € R, and @ € R such that

(14) (fix)+kr>a V[x,A] €epigp,
(15) (f. x0) + k¢™(x0) < a.

It follows that k > 0 (fix some x € D(p) and let A — +o00in (14)). [Here we cannot
assert, as in the proof of Proposition 1.10, that k > 0; we could possibly have k = 0,
which would correspond to a “vertical” hyperplane H in E x R.]

Let ¢ > 0; since ¢ > 0, we have by (14),

(fix)+ (k+e)px) >a Vx e D(p).

7l S )o@
k+e)~ k+¢e

It follows from the definition of ¢**(x() that

- f . f f o
Z (XO)Z<—k+8,XO>—(ﬂ (_k—l—s) Z<—m,xo>+k+8.

Thus we have

Therefore

(f. x0) + (k+ )™ (x0) > Ve >0,

which contradicts (15).
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Step 2: The general case.
Fix some fy € D(¢*) (D(¢*) # @ by Proposition 1.10) and define
o(x) = p(x) — (fo, x) + ¢* (o),

so that @ is convex L.s.c., @ # 400, and ¢ > 0. We know from Step 1 that (p)** = .
Let us now compute (¢)* and (¢)**. We have

@ () =" (f + fo) — " (fo)

and

@)™ (@) = ™ (x) — (fo. x) + " (f0)

Writing that (¢)** = @, we obtain ¢** = ¢.
Let us examine some examples.

Example 1. Consider ¢(x) = ||x||. It is easy to check that

0 if I f) <1,

O e 1S 1

It follows that
@™ (x) = sup (f, x).
feE*
ifi<1
Writing the equality
Y =09,

we obtain again part of Corollary 1.4.

Example 2. Given a nonempty set K C E, we set

0 ifx e K,

I =
KO=1 100 ifx¢K

The function Ik is called the indicator function of K (and should not be confused
with the characteristic function, xx, of K, which is 1 on K and O outside K). Note
that /¢ is a convex function iff K is a convex set, and Ik is 1.s.c. iff K is closed. The
conjugate function (/g )* is called the supporting function of K.

Itiseasy to see thatif K = M is alinear subspace then (/y)* = I,1 and (Iyy)*™* =
I(prryL. Assuming that M is a closed linear space and writing that (1y)** = Iy, we
obtain (M1)1 = M. In some sense, Theorem 1.11 can be viewed as a counterpart
of Proposition 1.9.
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We conclude this chapter with another useful property of conjugate functions.

* Theorem 1.12 (Fenchel-Rockafellar). Let ¢, v : E — (—00, 400] be two con-
vex functions. Assume that there is some xo € D(¢) N\ DY) such that ¢ is continuous
at xqo. Then

Inf{p(x) + ¥ (0} = fsug*{ﬂo*(—f) - v ()
= max {—¢" (= f) =¥ (f)} = —fn;ig*{fﬂ*(—f) + ¥ (N}

feE*
The proof of Theorem 1.12 relies on the following lemma.

Lemma 1.4. Let C C E be a convex set, then Int C is convex. If, in addition,
Int C # 0, then

C =IntC.
For the proof of Lemma 1.4, see, e.g., Exercise 1.7.
Proof of Theorem 1.12. Set
a = inf {p(x) + ¥ (0)},
xeE
b= sup {—¢*(—f) =¥ ()}

feE*
It is clear that b < a. If a = —o0, the conclusion of Theorem 1.12 is obvious. Thus
we may assume hereinafter that a € R. Let C = epi ¢, so that Int C # ¢ (since ¢ is
continuous at xp). We apply Theorem 1.6 (Hahn—Banach, first geometric form) with
A =1IntC and
B={[x,\]€e ExXR; A <a-—v¢yx)}.

Then A and B are nonempty convex sets. Moreover, AN B = @J; indeed, if [x, A] € A,
then A > ¢(x), and on the other hand, ¢(x) > a — ¥ (x) (by definition of a), so that
[x, 1] ¢ B.

Hence there exists a closed hyperplane H that separates A and B. It follows that
H also separates A and B. But we know from Lemma 1.4 that A = C. Therefore,
there exist f € E*, k € R, and o € R such that the hyperplane H = [® = «] in
E x R separates C and B, where

D([x,A]) = (f,x) +kr V[x,A]€e E xR.
Thus we have

(16) (f,x)+kr>a Vx,AleC,
(17) (f,x)+kr <a Vx,A]l€B.

7 As usual, Int C denotes the interior of C.
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Choosing x = x¢ and letting . — +00 in (16), we see that k > 0. We claim that
(18) k > 0.

Assume by contradiction that k = 0; it follows that || /|| # O (since ® # 0). By (16)
and (17) we have

(f,x)>a Vxe D(p),
(f,.x) <a Vxe D).

But B(xo, €9) C D(¢p) for some g9 > 0 (small enough), and thus
(fixo+e0z) > Yz e B(0,1),

which implies that ( f, xo) > o + &o|| f||. On the other hand, we have (f, xo) < «,
since xo € D(y); therefore we obtain | f|| = 0, which is a contradiction and
completes the proof of (18).

From (16) and (17) we obtain

and

so that

o(f)v ()

On the other hand, from the definition of b, we have

o ()r (f) e
eree(4) - (})

Example 3. Let K be a nonempty convex set. We claim that for every xo € E we
have

We conclude that

(19) dist(xo, K) = inf |x — xoll = max {(f, x0) — I¥ ()}
xekK jfeHE"l
Ifl=

Indeed, we have
inf [|x — xol = inf {p(x) + ¥ (x)},
xekK xekE

with ¢(x) = ||x — x¢|| and ¥ (x) = Ik (x). Applying Theorem 1.12, we obtain (19).
In the special case that K = M is a linear subspace, we obtain the relation
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dist(xg, M) = inf ||x — xg|| = max (f, xo).
xeM feM+
=1

Remark 8. Relation (19) may provide us with some useful information in the case
that inf e [|x — xo]| is not achieved (see, e.g., Exercise 1.17). The theory of min-
imal surfaces provides an interesting setting in which the primal problem (i.e.,
infyeg{ep(x) + ¥(x)}) need not have a solution, while the dual problem (i.e.,
max e« {—¢*(—f) — ¥*(f)}) has a solution; see I. Ekeland-R. Temam [1].

Example 4. Let ¢ : E — R be convex and continuous and let M C E be a linear
subspace. Then we have

o0 = — min o ).
Inf ¢(x) jn ¢ Q)

It suffices to apply Theorem 1.12 with ¢ = Ijy.

Comments on Chapter 1

1. Generalizations and variants of the Hahn—Banach theorems.

The first geometric form of the Hahn—Banach theorem (Theorem 1.6) is still valid in
general topological vector spaces. The second geometric form (Theorem 1.7) holds in
locally convex spaces—such spaces play an important role, for example, in the theory
of distributions (see, e.g., L. Schwartz [1] and F. Treves [1]). Interested readers may
consult, e.g., N. Bourbaki [1], J. Kelley-I. Namioka [1], G. Choquet [2] (Volume 2),
A. Taylor-D. Lay [1], and A. Knapp [2].

2. Applications of the Hahn—Banach theorems.
The Hahn—Banach theorems have a wide and diversified range of applications. Here
are two examples:

(a) The Krein—-Milman theorem.

The second geometric form of the Hahn—Banach theorem is a basic ingredient in
the proof of the Krein—Milman theorem. Before stating this result we need some
definitions. Let £ be an n.v.s. and let A be a subset of E. The convex hull of A,
denoted by conv A, is the smallest convex set containing A. Clearly, conv A consists
of all finite convex combinations of elements in A, i.e.,

convA = {Ztiai; I finite, a; € AVi, t; > 0Vi, and Zti =1;.

iel iel

The closed convex hull of A, denoted by convA, is the closure of conv A. Given a
convex set K C E we say that a point x € K is extremal if x cannot be written
as a convex combination of two points xo, x; € K, i.e.,, x # (1 — t)xg + tx; with
t €(0,1),and xg # x1.
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e Theorem 1.13 (Krein—-Milman). Let K C E be a compact convex set. Then K
coincides with the closed convex hull of its extremal points.

The Krein—Milman theorem has itself numerous applications and extensions (such
as Choquet’s integral representation theorem, Bochner’s theorem, Bernstein’s theo-
rem, etc.). On this vast subject, see, e.g., N. Bourbaki [1], G. Choquet [2] (Volume 2),
R. Phelps [1], C. Dellacherie-P. A. Meyer [1] (Chapter 10), N. Dunford—J. T. Schwartz
[1] (Volume 1), W. Rudin [1], R. Larsen [1], J. Kelley—I. Namioka [1], R. Edwards
[1]. An interesting application to PDEs, due to Y. Pinchover, is presented in S. Agmon
[2]. For a proof of the Krein—-Milman theorem, see Problem 1.

(b) In the theory of partial differential equations.

Let us mention, for example, that the existence of a fundamental solution for a gen-
eral differential operator P (D) with constant coefficients (the Malgrange—Ehrenpreis
theorem) relies on the analytic form of Hahn—Banach; see, e.g., L. Hormander [1],
[2], K. Yosida [1], W. Rudin [1], F. Treves [2], M. Reed-B. Simon [1] (Volume 2).
In the same spirit, let us mention also the proof of the existence of the Green’s
function for the Laplacian by the method of P. Lax; see P. Lax [1] (Section 9.5)
and P. Garabedian [1]. The proof of the existence of a solution u € L°°(£2) for the
equation divu = f in Q@ C RY, given any f € LV (), relies on Hahn-Banach
(see J. Bourgain—H. Brezis [1], [2]). Surprisingly, the u obtained via Hahn—Banach
depends nonlinearly on f. In fact, there exists no bounded linear operator from L~
into L*° giving u in terms of f. This shows that the use of Zorn’s lemma (and the
underlying axiom of choice) in the proof of Hahn—Banach can be delicate and may
destroy the linear character of the problem. Sometimes there is no way to circumvent
this obstruction.

3. Convex functions.

Convex analysis and duality principles are topics which have considerably expanded
and have become increasingly popular in recent years; see, e.g., J. J. Moreau [1],
R. T. Rockafellar [1], [2], I. Ekeland-R. Temam [1], I. Ekeland-T. Turnbull [1],
F. Clarke [1], J. P. Aubin—I. Ekeland [1], J. B. Hiriart-Urutty—C. Lemaréchal [1].
Among the applications let us mention the following:

(a) Game theory, economics, optimization, convex programming; see J. P. Aubin [1],
[2], [3],J. P. Aubin-1. Ekeland [1], S. Karlin [1], A. Balakrishnan [1], V. Barbu—
L. Precupanu [1], J. Franklin [1], J. Stoer—C. Witzgall [1].

(b) Mechanics; see J. J. Moreau [2], P. Germain [1], [2], G. Duvaut-J. L. Lions
[1], R. Temam—G. Strang [1] and the comments by P. Germain following this
paper, H. D. Bui [1] and the numerous references therein. Note also the use
of (nonconvex) duality by J. F. Toland [1], [2], [3] (for the study of rotating
chains), by A. Damlamian [1] (for a problem arising in plasma physics), and by
G. Auchmuty [1].

(c) The theory of monotone operators and nonlinear semigroups; see H. Brezis [1],
F. Browder [1], V. Barbu [1], and R. Phelps [2].

(d) Variational problems involving periodic solutions of Hamiltonian systems and
nonlinear vibrating strings; see the recent works of F. Clarke, 1. Ekeland,
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J. M. Lasry, H. Brezis, J. M. Coron, L. Nirenberg (we refer, e.g., to F. Clarke—
I. Ekeland [1], H. Brezis—J. M. Coron-L. Nirenberg [1], H. Brezis [2], J. P. Aubin—
I. Ekeland [1], I. Ekeland [1], and their bibliographies).

(e) The theory of large deviations in probability; see, e.g., R. Azencott et al. [1],
D. W. Stroock [1].

(f) The theory of partial differential equations and complex analysis; see L. Hor-
mander [3].

4. Extensions of bounded linear operators.

Let E and F be two Banach spaces and let G C E be a closed subspace. Let
S : G — F be a bounded linear operator. One may ask whether it is possible to
extend S by a bounded linear operator T : E — F. Note that Corollary 1.2 settles
this question only when F = R. In general, the answer is negative (even if £ and F
are reflexive spaces; see Exercise 1.27), except in some special cases; for example,
the following:

(a) If dim F < oo. One may choose a basis in F' and apply Corollary 1.2 to each
component of S.

(b) If G admits a topological complement (see Section 2.4). This is true in particular
if dim G < oo or codim G < oo or if E is a Hilbert space.

One may also ask the question whether there is an extension T with the same norm,
ie, Tz, Fy = ISl G, F)- The answer is yes only in some exceptional cases; see
L. Nachbin [1], J. Kelley [1], and Exercise 5.15.

Exercises for Chapter 1

1.1 | Properties of the duality map.
Let E be an n.v.s. The duality map F is defined for every x € E by

F(x)={f € E*; |Ifll = llx| and (£, x) = [|x||*}.
1. Prove that
F(x) ={f € E* |Ifll < x|l and (£, x) = [|lx]|*}

and deduce that F(x) is nonempty, closed, and convex.
2. Prove that if E* is strictly convex, then F (x) contains a single point.
3. Prove that

1 1
F(x) = {fGE*; Ellyllz—EIIXIIZZ (fiy—x) VyGE}-

4. Deduce that
(F(x)— F(y), x—y)>0 Vx,ye€E,
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and more precisely that
(f—8x—y)=0 Vx,yeE, VfeF(x), VgeF(y).
Show that, in fact,
(f =g x=y =xll—llylD*> Vx,y€E, VfeF(x), V¥geF(Q).
5. Assume again that E™ is strictly convex and let x, y € E be such that
(F(x) —F(»), x—y)=0.

Show that Fx = Fy.

n Let E be a vector space of dimension n and let (¢;)1<; <, be a basis of E. Given
x € E,writex =) ", xje; withx; € R; given f € E*, set f; = (f, &).

1. Consider on E the norm

n
Ixlh =Y lxl.
i=1

(a) Compute explicitly, in terms of the f;’s, the dual norm || f||g= of f € E*.
(b) Determine explicitly the set F'(x) (duality map) for every x € E.

2. Same questions but where E is provided with the norm

[Xlloc = max |x;|.
1<i<n

3. Same questions but where E is provided with the norm

n 1/2
Ixll2 = (Z |xl-|2> :

i=1

and more generally with the norm
n 1/p
Ixllp, = (Z Ixi|p> ,  where p € (1, 00).
i=1

1.3 |Let E = {u € C([0, 1]; R); u(0) = 0} with its usual norm

ul| = max |u(z)|.
lluell te[O,l]' (0]

Consider the linear functional
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1
fiueEw— f(u) :/ u(t)dt.
0

1. Show that f € E* and compute || f || g+.
2. Can one find some u € E such that |u|| = 1 and f(u) = || fllg+?

Consider the space E = ¢¢ (sequences tending to zero) with its usual norm
(see Section 11.3). For every element u = (u1, u2, u3, ...) in E define

=3 5
n=1

1. Check that f is a continuous linear functional on E and compute || f|| g+.
2. Can one find some u € E such that ||u|| = 1 and f(u) = || fllg+?

Let E be an infinite-dimensional n.v.s.

1. Prove (using Zorn’s lemma) that there exists an algebraic basis (e;);¢; in E such
that |le;|| = 1Vi € I.
Recall that an algebraic basis (or Hamel basis) is a subset (¢;);c; in E such that
every x € E may be written uniquely as

x =) xie; with J C I, J finite.
ie
2. Construct a linear functional f : E — R that is not continuous.

3. Assuming in addition that E is a Banach space, prove that I is not countable.
[Hint: Use Baire category theorem (Theorem 2.1).]

1.6|Let E be an n.v.s. and let H C E be a hyperplane. Let V C E be an affine
subspace containing H.

1. Prove thateither V= HorV = E.

2. Deduce that H is either closed or dense in E.

m Let E be an n.v.s. and let C C E be convex.

1. Prove that C and Int C are convex.
2. Given x € C_andy € Int C, show thattx + (1 —t)y e IntC Vr € (0, 1).
3. Deduce that C = Int C whenever Int C # (.

Let E be an n.v.s. with norm || ||. Let C C E be an open convex set such that
0 € C. Let p denote the gauge of C (see Lemma 1.2).

1. Assuming C is symmetric (i.e., —C = C) and C is bounded, prove that p is a
norm which is equivalent to || ||.
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2. Let E = C(]0, 1]; R) with its usual norm

ull = max |u(z)].
llut| te[ml (0]

1
C= {u € E; / lu()|?dt < 1}.
0

Check that C is convex and symmetric and that 0 € C. Is C bounded in E?

Compute the gauge p of C and show that p is a norm on E. Is p equivalent to
1?2

Let

Hahn—Banach in finite-dimensional spaces.

Let E be a finite-dimensional normed space. Let C C E be a nonempty convex
set such that 0 ¢ C. We claim that there always exists some hyperplane that separates
C and {0}.

[Note that every hyperplane is closed (why?). The main point in this exercise is
that no additional assumption on C is required.]

1. Let (x,)s>1 be a countable subset of C that is dense in C (why does it exist?).
For every n let

n n
C, =conv{xi,x3,...,Xp} = 3x = Ztixi; t; > 0Viand Zti = 1}.
i=1 i=1

Check that C,, is compact and that Uf,ozl C, isdensein C.
2. Prove that there is some f;,, € E* such that

I fzll=1and (f;,x) >0 Vx e C,.
3. Deduce that there is some f € E* such that
[flIl=1and(f x) =0 VxeC.

Conclude.
4. Let A, B C E be nonempty disjoint convex sets. Prove that there exists some
hyperplane H that separates A and B.

Let E be an n.v.s. and let / be any set of indices. Fix a subset (x;);.y in E and
a subset (¢;);7 in R. Show that the following properties are equivalent:
(A) There exists some f € E* such that (f, x;) = a; Vi € 1.

There exists a constant M > 0 such that for each finite subset

(B) J C I and for every choice of real numbers (8;);c, we have

| X Biei| < M| 3 Bixi]-
ieJ ieJ
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Note that in the proof of (B) = (A) one may find some f € E* with || f| gx < M.
[Hint: Try first to define f on the linear space spanned by the (x;);.7.]

Let E be an n.v.s. and let M > 0. Fix n elements (f1)1<;<, in E* and n real
numbers (¢;)1<i<n. Prove that the following properties are equivalent:

Y. 03 E such that
@) {8> x. € E such tha

xell =< M +eand (fi,xe) =c; Vi=12,....n

n n
(®) | Y B = M| Yo isi| VBB R
i=1 i=1
[Hint: For the proof of (B) = (A) consider first the case in which the f;’s are

linearly independent and imitate the proof of Lemma 3.3.]
Compare Exercises 1.10, 1.11 and Lemma 3.3.

Let E be a vector space. Fix n linear functionals (f;)1<i<, on E and n real
numbers (¢;)1<i<n. Prove that the following properties are equivalent:

(A) There exists some x € E suchthat fi(x) =«; Vi=1,2,...,n.

B) For any choice of real numbers 81, 82, . . ., B, such that
Y Bifi =0, onealsohas Y 7_, Bicy =0.

LetE = R" and let
P={xeR";, x;,>0 Vi=1,2,...,n}

Let M be a linear subspace of E such that M N P = {0}. Prove that there is some
hyperplane H in E such that

M C Hand HN P = {0}.

[Hint: Show first that M+ N Int P #0.]
Let E = £' (see Section 11.3) and consider the two sets

X={x=@un>1 € E; x0, =0Vn > 1}

and

1
Y = {y = (Yun=1 € E; you = o0 Y2n=1 Vn > 1}-

1. Check that X and Y are closed linear spaces and that X + Y = E.
2. Let ¢ € E be defined by
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con—1=0 vn > 1,
cznzzin Vn > 1.

Check thatc ¢ X +7Y.

3. Set Z = X — c and check that Y N Z = . Does there exist a closed hyperplane
in E that separates Y and Z?
Compare with Theorem 1.7 and Exercise 1.9.

4. Same questions in E = ¢7,1 < p < 00, and in E = ¢y.

Let E be an n.v.s. and let C C E be a convex set such that 0 € C. Set

A) C*={feE"; (f,x)<1 VxeC}
(B) C*={xekE; (f,x)<1 VfeC

1. Prove that C** = C.
2. What is C* if C is a linear space?

Let E = ¢!, so that E* = £ (see Section 11.3). Consider N = cg as a closed
subspace of E*.
Determine

Nt ={x€eE; (ffx)=0 VfeN)}
and
Nt ={feE* (f,x)=0 VxeN'}.

Check that N+ # N.

Let E be an n.v.s. and let f € E* with f # 0. Let M be the hyperplane
[f =0].

1. Determine M.

2. Prove that for every x € E, dist(x, M) = infyep ||x — y|| = 'ﬂ{ﬁ‘”.
[Find a direct method or use Example 3 in Section 1.4.]

3. Assume now that E = {u € C([0, 1]; R); u(0) = 0} and that

1
(f, u) :/ u(t)dt, uekE.
0

Prove that dist(u, M) = | [} u(t)dt| Vu € E.
Show that inf,cps ||lu — v|| is never achieved for any u € E\M.

Check that the functions ¢ : R — (—o00, 400] defined below are convex
L.s.c. and determine the conjugate functions ¢*. Draw their graphs and mark their
epigraphs.
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(a) o(x) =ax +b, where a, b € R.
(b) px) =e".
0 if x| <1,
C =
© #ex) 400 if [x] > 1.
0 ifx =0,
(d) px) = .
400 if x #0.
—logx ifx >0,
e =
€) =0 ifx < 0.
—(1—xHl2 if [x] <1,
f =
® =1 if x| > 1.
1 2 :
Lix| if x| < 1,
X) =
® e T
1
(h) p(x) = —|x|?, where 1 < p < o0.
p
@ @(x) = x* = max{x, 0}.
1.p :
. —-X if x > 0, where 1 < p < +o00,
x)=3"7
® 2 {+oo if x <O.
® ) —%xp if x > 0, where 0 < p < 1,
X) =
¢ if x <O.
1 +1p
) ox) = ;[(|x| - 177, where 1 < p < oo.

Let E be ann.v.s.

1. Let ¢, ¢ : E — (—00, +00] be two functions such that ¢ < 1. Prove that
Yt <o

2. Let F : R — (—o00, +00] be a convex l.s.c. function such that F(0) = 0 and
F(t) =0Vt e R. Set p(x) = F(||x|])-
Prove that ¢ is convex L.s.c. and that *(f) = F*(|| fl) Vf € E*.

Let E = ¢P with 1 < p < oo (see Section 11.3). Check that the functions
¢ : E —> (—00, 400] defined below are convex l.s.c. and determine ¢*. For x =
(X1, X2, ..., %Xy, ...)set

+ .
27 Kl if Y32 kla|* < oo,

+00 otherwise.

@ ol =

+00
0 e =) lult (Check that ¢(x) < oo for every x € E.)
k=2
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400 o0
|xk] it » x| < +o0,
© k)= ,; ,;
+00 otherwise.

LetE = E* = R? and let
C = {[x1, x2]; x1 =0, xo > 0}.

On E define the function

— /X% ifx € C,

YO =110 ifx ¢ cC.

1. Prove that ¢ is convex l.s.c. on E.

2. Determine ¢*.

3. Consider the set D = {[x1, x2]; x; = 0} and the function ¢ = Ip. Compute the
value of the expressions

Infip(x) +¥(x)} and sup {=" (=) =¥ (N}

feE*

4. Compare with the conclusion of Theorem 1.12 and explain the difference.

Let E be ann.v.s. and let A C E be a closed nonempty set. Let

p(x) = dist(x, A) = inf ||x — a].
acA

1. Check that |p(x) — @(¥)| < |lx — y|| Vx,y € E.

2. Assuming that A is convex, prove that ¢ is convex.

3. Conversely, assuming that ¢ is convex, prove that A is convex.

4. Prove that ¢* = (/4)* + Ip,. for every A not necessarily convex.

Inf-convolution.

Let E be an n.v.s. Given two functions ¢, ¥ : E — (—00, +00], one defines the
inf-convolution of ¢ and ¢ as follows: for every x € E, let

(pVY)(x) = yirelg{w(x =)+ vl

Note the following:

(i) (¢Vy)(x) may take the values £oo,
(1) (eVY)(x) < +o0iff x € D(p) + D).

1. Assuming that D(¢*) N D(y*) # @, prove that (9 V) does not take the value
—o¢ and that
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(V) =" + ¢y~
2. Assuming that D(¢) N D(y) # 0, prove that

(¢ +¥)" < (¢"Vy™) on E*.

3. Assume that ¢ and ¥ are convex and there exists xo € D(¢) N D(y) such that ¢
is continuous at xo. Prove that

(0 + V)" = (¢"Vy™) on E”.

4. Assume that ¢ and ¥ are convex and l.s.c., and that D(¢) N D(y) # @. Prove
that

(@*"Vy™)* = (p+y)onE.

Given a function ¢ : E — (—00, +00], set
epistp = {[x,A] € E X R; p(x) < A}.

5. Check that ¢ is convex iff epist ¢ is a convex subset of E x R.
6. Let g, ¥ : E — (—00, +00] be functions such that D(¢*) N D(y*) # @. Prove
that

epist(pVyr) = (epist ) + (epist ).

7. Deduce thatif ¢, Y : E — (—00, +00] are convex functions such that D(¢*) N
D*) # @, then (¢ V) is a convex function.

Regularization by inf-convolution.

Let E be ann.v.s. and let ¢ : E — (—00, +00] be a convex 1.s.c. function such
that ¢ #£ +4o00. Our aim is to construct a sequence of functions (¢,) such that we
have the following:

(i) Foreveryn, ¢, : E — (—00, +00) is convex and continuous.
(ii)) For every x, the sequence (¢, (x)), is nondecreasing and converges to ¢ (x).

For this purpose, let
@n(x) = inf {n]lx — yl + (M}
yeE

1. Prove that there is some N, large enough, such that forn > N, ¢, (x) is finite for
all x € E. From now on, one chooses n > N.
2. Prove that ¢, is convex (see Exercise 1.23) and that

lon(x1) — @n(x2)| < nllxy —x2ll Vx1,x2 € E.

(O8]

. Determine (¢p,)*.
4. Check that ¢, (x) < ¢(x) Vx € E,Vn.Prove that for every x € E, the sequence
(¢n(x))y is nondecreasing.
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5. Given x € D(gp), choose y, € E such that

1
on(x) < nllx = yull + 0n) < @u(x) + .

Prove that lim,,—, », ¥, = x and deduce that lim,,, o ¢, (x) = ¢ (x).
6. For x ¢ D(¢), prove that lim,_, 5 ¢, (x) = +o00.
[Hint: Argue by contradiction.]

A semiscalar product.

Let E be an n.v.s.
1. Letg : E — (—00, +00) be convex. Given x, y € E, consider the function

p(x +ty) — (x)

h(t) = ;

> 0.

Check that £ is nondecreasing on (0, 400) and deduce that

limh(t) = infh(t) exists in [—00, +00).
110 1>0
Define the semiscalar product [x, y] by

1
.yl = inf — tylI> = |Ix]%1.
[, ¥1 = inf [l + 1y = ]

2. Prove that |[x, y]| < [Ix[lllyll Vx,y € E.
3. Prove that

X, Ax + uyl = Alx > + wlx, y] Vx,y e E, VAeR, Vu>0

and
[Ax, wy]l =Au[x,y] Vx,ye E, VA>0, Vu=>0.

4. Prove that for every x € E, the function y +— [x, y] is convex. Prove that the
function G(x,y) = —[x, y]isls.c.on E x E.
5. Prove that
, vl = max (f, Vx,y € E,
[x, y] fem)<f y) Vx,y
where F' denotes the duality map (see Remark 2 following Corollary 1.3 and
Exercise 1.1).

[Hint: Set « = [x, y] and apply Theorem 1.12 to the functions ¢ and v defined
as follows:
1 R A
¢@) = Zlx +zlII” = Slxl"  z € E,
and
—ta whenz =ty and¢ > 0,
400 otherwise.]

1lf(z)={
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6. Determine explicitly [x, y], where E = R" with the norm ||x],, 1 < p < o0
(see Section 11.3).

[Hint: Use the results of Exercise 1.2.]

Strictly convex norms and functions.
Let E be an n.v.s. One says that the norm || || is strictly convex (or that the space
E is strictly convex) if
ltx+ (1 —t)yll <1, Vx,ye Ewithx #y, |x||=|yll=1, Vre(,]1).
One says that a function ¢ : E — (—00, +00] is strictly convex if
x4+ (1 —1y) <tpx)+ A —1t)e(y) Vx,ye Ewithx #y, Vte(0,1).

1. Prove that the norm || || is strictly convex iff the function ¢(x) = ||x I is strictly
convex.
2. Same question with ¢(x) = ||x||? and 1 < p < oo.

Let £ and F be two Banach spaces and let G C E be a closed subspace.
Let T : G — F be a continuous linear map. Thg aim is to show that sometimes, T
cannot be extended by a continuous linear map 7 : E — F. For this purpose, let E
be a Banach space and let G C E be a closed subspace that admits no complement
(see Remark 8 in Chapter 2). Let F = G and T = I (the identity map). Prove that
T cannot be extended.

[Hint: Argue by contradiction.]

Compare with the conclusion of Corollary 1.2.






Chapter 2

The Uniform Boundedness Principle and the
Closed Graph Theorem

2.1 The Baire Category Theorem

The following classical result plays an essential role in the proofs of Chapter 2.

e Theorem 2.1 (Baire). Let X be a complete metric space and let (Xp)n>1 be a
sequence of closed subsets in X. Assume that

IntX, =0 foreveryn > 1.

Then

00
Int (U X,,) = (.
n=1

Remark 1. The Baire category theorem is often used in the following form. Let X
be a nonempty complete metric space. Let (X,),>1 be a sequence of closed subsets

such that
o0
UJx.=x.
n=1

Then there exists some ng such that Int X,,, # @.

Proof. Set O, = X, so that O, is open and dense in X for every n > 1. Our aim is
to prove that G = (), O, is dense in X. Let @ be a nonempty open set in X; we
shall prove that w N G # @.
As usual, set
Bx,r)y={yeX; diy,x) <r}.

Pick any xp € w and rp > 0 such that
B(xp, r9) C w.

Then, choose x| € B(xg, rg) N O1 and r; > 0 such that

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 31
DOI 10.1007/978-0-387-70914-7 2, © Springer Science+Business Media, LLC 2011
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O0<rp <t

{B(xl, ) C B(xo.r0) N O,
2 9

which is always possible since O; is open and dense. By induction one constructs
two sequences (x,) and (r;) such that

B(xn-i-l»rn—H)CB(xn,rn)mon+l’ Vn > 0,
0<rup1 <.

It follows that (x,) is a Cauchy sequence; let x,, — £.
Since x,4p € B(xy, ry) for every n > 0 and for every p > 0, we obtain at the
limit (as p — 00),
L e B(x,,rp), Vn=>0.

In particular, £ € ® N G.

2.2 The Uniform Boundedness Principle

Notation. Let £ and F be two n.v.s. We denote by L(E, F) the space of continuous
(= bounded) linear operators from E into F equipped with the norm

T = sup ||[Tx|.
I ”.Z(E,F) eg
llxl=<1
As usual, one writes .Z(FE) instead of £ (E, E).

e Theorem 2.2 (Banach—Steinhaus, uniform boundedness principle). Let E and
F be two Banach spaces and let (T;)ic be a family (not necessarily countable) of
continuous linear operators from E into F. Assume that

@)) sup | Tix|| < oo Vx € E.
iel
Then
©)) sup | T; ”,Z(E,F) < 00.
iel

In other words, there exists a constant ¢ such that
ITix]| <clx|| VYxe€E, Viel.

Remark 2. The conclusion of Theorem 2.2 is quite remarkable and surprising. From
pointwise estimates one derives a global (uniform) estimate.

Proof. For every n > 1, let

Xp={xeE; Viel, |Tix| <n}
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so that X, is closed, and by (1) we have

It follows from the Baire category theorem that Int(X,,,) 7 @ for some ng > 1. Pick
xo € E and r > 0 such that B(xg, r) C X,,. We have

I1Ti(xo +r2)ll <no Viel, VzeB(O]1).
This leads to
r”TL ||[:(E,F) S nO + ”EX()”,
which implies (2).

Remark 3. Recall that in general, a pointwise limit of continuous maps need not be
continuous. The linearity assumption plays an essential role in Theorem 2.2. Note,
however, that in the setting of Theorem 2.2 it does not follow that || T, — T || z(g, F)
— 0.

Here are a few direct consequences of the uniform boundedness principle.

Corollary 2.3. Let E and F be two Banach spaces. Let (T,,) be a sequence of con-
tinuous linear operators from E into F such that for every x € E, T,x converges
(as n — o0) to a limit denoted by T x. Then we have

(a) sup, | T”|.,2”(E,F) = 00,
)T € L(E, F),
(© ”T“z(E,F) <liminf, o | Tull 2(E, F)-

Proof. (a) follows directly from Theorem 2.2, and thus there exists a constant ¢
such that
ITax|l < clixll Vn, VxeE.

At the limit we find
ITx] <cllx]| Vx€E.

Since T is clearly linear, we obtain (b).
Finally, we have

ITwx |l < |\ Tallce,mllxll Vx € E,

and (c) follows directly.

e Corollary 2.4. Let G be a Banach space and let B be a subset of G. Assume that
(3)  forevery f € G* the set f(B) = {{f, x); x € B} is bounded (in R).
Then

(@) B is bounded.
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Proof. We shall use Theorem 2.2 with E = G*, F = R, and I = B. For every
b € B, set

Ty(f)=(f.b), [feE=G",

so that by (3),

sup |[Tp(f)| <o VfekE.
beB

It follows from Theorem 2.2 that there exists a constant ¢ such that
D) <clfll YfeG" VbeB.
Therefore we find (using Corollary 1.4) that
bl <c VbeB.

Remark 4. Corollary 2.4 says that in order to prove that a set B is bounded it suffices
to “look™ at B through the bounded linear functionals. This is a familiar procedure
in finite-dimensional spaces, where the linear functionals are the components with
respect to some basis. In some sense, Corollary 2.4 replaces, in infinite-dimensional
spaces, the use of components. Sometimes, one expresses the conclusion of Corollary
2.4 by saying that “weakly bounded” <= “strongly bounded” (see Chapter 3).

Next we have a statement dual to Corollary 2.4:

Corollary 2.5. Let G be a Banach space and let B* be a subset of G*. Assume that
(5) forevery x € G the set (B*, x) = {{f, x); f € B*} is bounded (in R).
Then
6) B*  is bounded.
Proof. Use Theorem 2.2 with E = G, F = R, and I = B*. For every b € B* set
Tp(x) = (b,x) (x € G =E).
We find that there exists a constant ¢ such that
[(b, x)| <cl|x|| Vbe B* Vxeg.
We conclude (from the definition of a dual norm) that

bl <c Vbe B*.

2.3 The Open Mapping Theorem and the Closed Graph Theorem

Here are two basic results due to Banach.
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e Theorem 2.6 (open mapping theorem). Ler E and F be two Banach spaces and
let T be a continuous linear operator from E into F that is surjective (= onto). Then
there exists a constant ¢ > 0 such that

@) T(Bge(0,1)) D Br(0,¢).

Remark 5. Property (7) implies that the image under 7' of any open set in E is an
open setin F (which justifies the name given to this theorem!). Indeed, let us suppose
U is open in E and let us prove that 7(U) is open. Fix any point ygp € T(U), so
that yo = Txq for some xg € U. Let r > 0 be such that B(xg,7) C U, i.e.,
xo + B(0,r) C U. It follows that

yo+ T(B(,r)) C TU).
Using (7) we obtain
T(B(0,r)) D B(0,rc)

and therefore
B(yp,rc) C T(U).

Some important consequences of Theorem 2.6 are the following.

e Corollary 2.7. Let E and F be two Banach spaces and let T be a continuous linear
operator from E into F that is bijective, i.e., injective (= one-to-one) and surjective.
Then T~ is also continuous (from F into E).

Proof of Corollary 2.77. Property (7) and the assumption that 7 is injective imply that
if x € E is chosen so that | Tx|| < c, then ||x|| < 1. By homogeneity, we find that

1
xll = =IITx] VxeE
c

and therefore 7! is continuous.

Corollary 2.8. Let E be a vector space provided with two norms, || ||1 and || 2.
Assume that E is a Banach space for both norms and that there exists a constant
C > 0 such that

Ixll2 = Clixlli Vx € E.

Then the two norms are equivalent, i.e., there is a constant ¢ > 0 such that
[xlli <cllxll2 Vx € E.
Proof of Corollary 2.8. Apply Corollary 2.7 with
E=(E, 1), F=(E,ll2), and T =1.

Proof of Theorem 2.6. We split the argument into two steps:

Step 1. Assume that 7 is a linear surjective operator from E onto F. Then there
exists a constant ¢ > 0 such that
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8) T(B(0, 1)) D B(0, 2¢).

Proof. Set X;, = nT(B(0, 1)). Since T is surjective, we have UZOII X, = F,and by
the Baire category theorem there exists some n¢ such that Int(X,,,) # 9. It follows
that

Int [T (B(0, 1))] # 0.

Pick ¢ > 0 and yp € F such that

©) B(yo.4c) C T(B(0, 1)).
In particular, yo € T (B(0, 1)), and by symmetry,

(10) —y0 € T(B(0, 1)).

Adding (9) and (10) leads to

B(0,4c) C T(B(0, 1)) + T(B(0, 1)).

On the other hand, since T (B(0, 1)) is convex, we have

T(B(0,1))4+T(B(,1)) =2T(B(0, 1)),

and (8) follows.

Step 2. Assume T is a continuous linear operator from E into F that satisfies (8).
Then we have

an T(B(0, 1)) D B(0, c).
Proof. Choose any y € F with ||y|| < c. The aim is to find some x € E such that
x|l <1 and Tx =y.
By (8) we know that
(12) Ve >0 dz e E with |z] < %and ly —Tz| < e.
Choosing ¢ = ¢/2, we find some z; € E such that
Jaill <5 and Iy = Taill < 5.

2

By the same construction applied to y — Tz; (instead of y) with ¢ = ¢/4 we find
some z» € E such that

1 c
— and —Tz)—-T —.
llz2ll < 1 Iy 21) 2| < )

Proceeding similarly, by induction we obtain a sequence (z,) such that
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1 c
lznll < o and |ly—T(@zi+z2+-+z)ll < o vn.
It follows that the sequence x,, = z1 + z2 + - - - 4+ 2z, is a Cauchy sequence. Let
X, — x with, clearly, ||x|| < 1 and y = Tx (since T is continuous).

e Theorem 2.9 (closed graph theorem). Let E and F be two Banach spaces. Let T
be a linear operator from E into F. Assume that the graph of T, G(T), is closed in
E x F.Then T is continuous.

Remark 6. The converse is obviously true, since the graph of any continuous map
(linear or not) is closed.

Proof of Theorem 2.9. Consider, on E, the two norms
lxlly = llxlle + ITxlF and |xl2 = lxllg

(the norm || |1 is called the graph norm).

It is easy to check, using the assumption that G(T') is closed, that E is a Banach
space for the norm || ||;. On the other hand, E is also a Banach space for the norm
Il ll2and || ll2 < |l |l1. It follows from Corollary 2.8 that the two norms are equivalent
and thus there exists a constant ¢ > 0 such that ||x]|; < c|x||2. We conclude that
ITxllF <clxle.

* 2.4 Complementary Subspaces. Right and Left Invertibility of
Linear Operators

We start with some geometric properties of closed subspaces in a Banach space that
follow from the open mapping theorem.

* Theorem 2.10. Let E be a Banach space. Assume that G and L are two closed
linear subspaces such that G + L is closed. Then there exists a constant C > 0 such
that

(13) every 7 € G + L admits a decomposition of the form
z=x+ywithx € G,y € L, x|l = Clizlland |yl < Cliz|.

Proof. Consider the product space G x L with its norm

e, 1 =[xl 4+ [yl

and the space G + L provided with the norm of E.

The mapping T : G x L — G + L defined by T'[x, y] = x + y is continuous,
linear, and surjective. By the open mapping theorem there exists a constant ¢ > 0
such that every z € G + L with ||z|| < ¢ can be written as z = x + y with x € G,
y € L,and ||x|| + |||l < 1. By homogeneity every z € G + L can be written as
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z=x+y withxeG,yeL,and x|+ [yl = (I/o)llz].

* Corollary 2.11. Under the same assumptions as in Theorem 2.10, there exists a
constant C such that

14) dist(x, G N L) < C{dist(x, G) 4+ dist(x, L)} Vx € E.
Proof. Given x € E and ¢ > 0, there exista € G and b € L such that
lx —a| <dist(x, G) + ¢, ||x —b| <dist(x, L) + .
Property (13) applied to z = a — b says that there exist @’ € G and b’ € L such that
a—b=d+b, |ld'| <Clla=>bl, bl < Clla—b].
It follows thata — a’ € G N L and

distx, GNL) < |lx —(a—a)| < |x —al + |||
<lx—all+Clla—=>b|l <|lx —al +C(x —al + lx — bl
< (1 + C)dist(x, G) +dist(x, L) + (1 +2C)e.

Finally, we obtain (14) by letting ¢ — 0.

Remark 7. The converse of Corollary 2.11 is also true: If G and L are two closed
linear subspaces such that (14) holds, then G + L is closed (see Exercise 2.16).

Definition. Let G C E be a closed subspace of a Banach space E. A subspace
L C E is said to be a topological complement or simply a complement of G if

(1) L is closed,
) GNL={0}andG+ L =E.

We shall also say that G and L are complementary subspaces of E. If this holds,
then every z € E may be uniquely written as z = x + y withx € Gand y € L.
It follows from Theorem 2.10 that the projection operators z +— x and z +— y
are continuous linear operators. (That property could also serve as a definition of
complementary subspaces.)

Examples

1. Every finite-dimensional subspace G admits a complement. Indeed, let ej,
e, ...,e, be a basis of G. Every x € G may be written as x = Z?:l Xxie;.
Set ¢; (x) = x;. Using Hahn—Banach (analytic form)—or more precisely Corol-
lary 1.2—each ¢; can be extended by a continuous linear functional ¢; defined
on E. Itis easy to check that L = N7 1((2)})_1 (0) is a complement of G.

2. Every closed subspace G of finite codimension admits a complement. It suffices
to choose any finite-dimensional space L suchthat GNL ={0}and G+ L = E
(L is closed since it is finite-dimensional).
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Here is a typical example of this kind of situation. Let N C E* be a subspace of
dimension p. Then

G={x€E; (f,x)=0 VfeN}=N"

is closed and of codimension p. Indeed, let f1, f2, ..., f, be a basis of N. Then
there exist ey, ez, ..., e, € E such that

(f,',é‘j):(sij Vi,j= 1,2,...,[7.
[Consider the map ® : E — R? defined by

15) P (x) = ((f1. %), (f2, X), .o, (fp. X))

and note that @ is surjective; otherwise, there would exist—by Hahn—Banach
(second geometric form)—some o = (a1, a2, ..., ap) # 0 such that

14
o - d(x) =<Z(xifi,x> =0 VxekE,
i=1

which is absurd].

It is easy to check that the vectors (e;)1<; <) are linearly independent and that the
space generated by the e;’s is a complement of G. Another proof of the fact that
the codimension of N+ equals the dimension of N is presented in Chapter 11
(Proposition 11.11).

3. In a Hilbert space every closed subspace admits a complement (see Section 5.2).

Remark 8. It is important to know that some closed subspaces (even in reflexive
Banach spaces) have no complement. In fact, a remarkable result of J. Lindenstrauss
and L. Tzafriri [1] asserts that in every Banach space that is not isomorphic to a
Hilbert space, there exist closed subspaces without any complement.

Definition. Let T € L(E, F). A right inverse of T is an operator S € L(F, E) such
that T o S = Ip. A left inverse of T is an operator S € L(F, E) suchthat SoT = Ig.

Our next results provide necessary and sufficient conditions for the existence of
such inverses.

* Theorem 2.12. Assume that T € L(E, F) is surjective. The following properties
are equivalent:

(1) T admits a right inverse.
(ii) N(T) = T~1(0) admits a complement in E.

Proof.
(i) = (ii). Let S be a right inverse of T. It is easy to see (please check) that
R(S) = S(F) is a complement of N(T) in E.
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(i1) = (i). Let L be a complement of N(T'). Let P be the (continuous) projection
operator from E onto L. Given f € F, we denote by x any solution of the equation
Tx = f.Set Sf = Px and note that S is independent of the choice of x. It is easy
to check that S € L(F, E) andthat T o S = If.

Remark 9. In view of Remark 8 and Theorem 2.12, it is easy to construct surjective
operators T without a right inverse. Indeed, let G C E be a closed subspace without
complement, let F = E/G, and let T be the canonical projection from E onto F
(for the definition and properties of the quotient space, see Section 11.2).

* Theorem 2.13. Assume that T € L(E, F) is injective. The following properties
are equivalent:

(1) T admits a left inverse.
(i) R(T) = T (E) is closed and admits a complement in F.

Proof.

(1) = (i1). It is easy to check that R(T) is closed and that N (S) is a complement
of R(T) [write f =TSf 4+ (f —TSf)].

(i) = (). Let P be a continuous projection operator from F onto R(T). Let
f € F;since Pf € R(T), there exists a unique x € E such that Tx = Pf. Set
Sf = x.Itis clear that S o T = Ig; moreover, S is continuous by Corollary 2.7.

* 2.5 Orthogonality Revisited

There are some simple formulas giving the orthogonal expression of a sum or of an
intersection.

Proposition 2.14. Let G and L be two closed subspaces in E. Then

(16) GnL=(G"+LYH" ]

a17) GtnLt=G+0"

Proof of (16). It is clear that G N L C (G*+ + L1)*; indeed, if x € G N L and
f e Gt + L+ then (f,x) = 0. Conversely, we have G+ c G+ + L+ and thus
(G+ + LYt ¢ G = G (note that if Ny C N, then N3t C Nib); similarly
(Gt + LYY+ c L. Therefore (G+ + LYt c GN L.

Proof of (17). Use the same argument as for the proof of (16).
Corollary 2.15. Let G and L be two closed subspaces in E. Then

(18) (GNL)*>GL+ L1,
(19) (G*NLYHt =G +L.
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Proof. Use Propositions 1.9 and 2.14.
Here is a deeper result.

* Theorem 2.16. Let G and L be two closed subspaces in a Banach space E. The
following properties are equivalent:

(@) G + L is closed in E,

(b) G+ + L is closed in E*,
)G+ L=(G-nLHt
(d) G+ + L+ =G nL)*

Proof. (a) <= (c) follows from (19). (d) = (b) is obvious.
We are left with the implications (a) = (d) and (b) = (a).

(a) = (d). In view of (18) it suffices to prove that (GN L)+ c G* + L*. Given
f € (GNL)*, consider the functional ¢ : G+ L — R defined as follows. For every
xe€G+ Lwritex =a+bwitha e Gandb € L. Set

p(x) = (f,a).

Clearly, ¢ is independent of the decomposition of x, and ¢ is linear. On the other
hand, by Theorem 2.10 we may choose a decomposition of x in such a way that
lall < Cllx||, and thus

lpx)| < Clix|| Yxe G+ L.

Extend ¢ by a continuous linear functional ¢ defined on all of E (see Corollary 1.2).
So, we have

f=(—-¢+¢ with f—peGt and ¢gelLt.
(b) = (a). We know by Corollary 2.11 that there exists a constant C such that
(20) dist(f, Gt N LY) < C{dist(f, G1) +dist(f, LY)} Vf € E*.
On the other hand, we have

1) dist(f, GY) = sup (f,x) Vf e E*

xeG
lxl<1
[Use Theorem 1.12 with ¢(x) = Ip, (x) — (f, x) and ¥ (x) = Ig(x), where
Bg ={x € E; |lx|]| <1}]

Similarly, we have
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(22) dist(f, LY) = sup (f,x) VfeE*
xel
IxlI<1

and also (by (17))

(23) dist(f, Gt N LY) =dist(f, (G + L)Y) = sup (f,x) VfeE*

xeG+L
lxl=1

Combining (20), (21), (22), and (23) we obtain

24) sup (f,x) <C3 sup (f,x)+ sup (f, x) Vf eE".

xeG+L

xeG xeL
lxll<1 xl=1 [xl=1

It follows from (24) that

S
(25) BG +GL > =Bt

Indeed, suppose by contradiction that there existed some xo € G + L with ||xo] <
1/C and xo ¢ Bg + Br. Then there would be a closed hyperplane in E strictly
separating {xo} and Bg + Br. Thus, there would exist some fy € E* and some
a € R such that

(fo,x) <a < {(fo,x0) VYx € Bg+ BL.

Therefore, we would have

sup (fo, x) + sup {fo, x) <o < {fo, x0),
xeG xelL
[xl<1 [xl<1

which contradicts (24), and (25) is proved.

Finally, consider the space X = G x L with the norm

I L, y1II = max{[lxl, lIyll}

and the space Y = G + L with the norm of E. The map T : X — Y defined by
T ([x, y]) = x + y is linear and continuous. From (25) we know that

I 1
T(Bx) D —By.
(Bx) cBr

Using Step 2 from the proof of Theorem 2.6 (open mapping theorem) we con-
clude that

1
T(B — By.
(x)32C Y

It follows that T is surjective from X onto Y,ie., G+ L = G + L.
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2.6 An Introduction to Unbounded Linear Operators. Definition
of the Adjoint

Definition. Let £ and F be two Banach spaces. An unbounded linear operator
from E into F is a linear map A : D(A) C E — F defined on a linear subspace
D(A) C E with values in F. The set D(A) is called the domain of A.
One says that A is bounded (or continuous) if D(A) = E and if there is a constant
¢ > 0 such that
|Au|| < cllull Yu € E.

The norm of a bounded operator is defined by

_ | Aull
A ”f/(E,F) = Eilg Tal

Remark 10. It may of course happen that an unbounded linear operator turns out to
be bounded. This terminology is slightly inconsistent, but it is commonly used and
does not lead to any confusion.

Here are some important definitions and further notation:

] Graph of A = G(A) = {[u, Aul; u € D(A)} C E x F,

] Range of A = R(A) = {Au; u € D(A)} C F,

] Kernel of A = N(A) = {u € D(A); Au =0} C E\

A map A is said to be closed if G(A) is closed in E x F.

e Remark 11. In order to prove that an operator A is closed, one proceeds in general
as follows. Take a sequence (u,) in D(A) such that u, — u in E and Au,, — f in
F. Then check two facts:

(@) u € D(A),
®) f = Au.

Note that it does not suffice to consider sequences (u,) such that u, — O0in E
and Au, — f in F (and to prove that f = 0).

Remark 12. If A is closed, then N (A) is closed; however, R(A) need not be closed.

Remark 13. In practice, most unbounded operators are closed and are densely defined,
i.e., D(A) is dense in E.

Definition of the adjoint A*. Let A : D(A) C E — F be an unbounded linear
operator that is densely defined. We shall introduce an unbounded operator A* :
D(A*) C F* — E™* as follows. First, one defines its domain:

D(A*) = {v € F*; 3c > O such that |(v, Au)| < cllu]| Yu € D(A)}.
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It is clear that D(A*) is a linear subspace of F*. We shall now define A*v. Given
v € D(A™), consider the map g : D(A) — R defined by

g(u) = (v, Au) Yu € D(A).
We have
lg)| < cllull Vu € D(A).

By Hahn—Banach (analytic form; see Theorem 1.1) there exists a linear map f :
E — R that extends g and such that

|f@)] < cllull Vu € E.

It follows that f € E™*. Note that the extension of g is unique, since D(A) is dense
inE.
Set
A*v = f.

The unbounded linear operator A*: D(A*) C F* — E* is called the adjoint of
A. In brief, the fundamental relation between A and A* is given by

(v, Au)pr p = (A*v,u)pr g Yu € D(A), Vv e D(AY).

Remark 14. It is not necessary to invoke Hahn—Banach to extend g. It suffices to
use the classical extension by continuity, which applies since D(A) is dense, g is
uniformly continuous on D(A), and R is complete (see, e.g., H. L. Royden [1]
(Proposition 11 in Chapter 7) or J. Dugundji [1] (Theorem 5.2 in Chapter XIV).

* Remark 15. It may happen that D(A*) is not dense in F* (even if A is closed);
but this is a rather pathological situation (see Exercise 2.22). It is always true that if
A is closed then D(A*) is dense in F* for the weak* topology o (F*, F) defined in
Chapter 3 (see Problem 9). In particular, if F is reflexive, then D(A*) is dense in F*
for the usual (norm) topology (see Theorem 3.24).

Remark 16. If A is a bounded operator then A* is also a bounded operator (from F*
into E*) and, moreover,

|4 =

||$(F*,E") ZL(E,F)"

Indeed, it is clear that D(A*) = F*. From the basic relation, we have
[(A*v, u)] < [|A[l [lull vl Yu € E, YveF*,

which implies that ||[A*v]| < ||A] |lv|| and thus ||A*] < ||A].
We also have

[(v, Au)| < [IA*]| llull vl Vu € E, VveF,



2.6 An Introduction to Unbounded Linear Operators. Definition of the Adjoint 45

which implies (by Corollary 1.4) that || Au|| < ||A*|| |||l and thus ||A] < ||A*].

Proposition 2.17. Let A : D(A) C E — F be a densely defined unbounded linear
operator. Then A* is closed, i.e., G(A*) is closed in F* x E*.

Proof. Let v, € D(A*) be such that v, — v in F* and A*v, — f in E*. One has
to check that (a) v € D(A*) and (b) A*v = f.
We have
(Un, Au) = (A*v,, u) Yu € D(A).

At the limit we obtain
(v, Au) = (f,u) Yu € D(A).

Therefore v € D(A*) (since [(v, Au)| < || ] |lu|| Vu € D(A)) and A*v = f.

The graphs of A and A* are related by a very simple orthogonality relation:
Consider the isomorphism / : F* x E* — E* x F* defined by

I([U, f]) = [_f’ U].

Let A: D(A) C E — F be a densely defined unbounded linear operator. Then

I[G(A"] = G(A)™ .

Indeed, let [v, f] € F* x E*, then
[v, f1 € G(A*) < (f,u) = (v, Au) Yu € D(A)
< —(f,u) + (v, Au) =0 Vu € D(A)
— [—f,v] € G(A)™ .

Here are some standard orthogonality relations between ranges and kernels:

Corollary 2.18. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. Then

0] N(A) = R(AH*,
(i) N(A") = R(A)*,
(iif) N(A)* > R(A",
@iv) N(AH' = R(A).

Proof. Note that (iii) and (iv) follow directly from (i) and (ii) combined with Propo-
sition 1.9. There is a simple and direct proof of (i) and (ii) (see Exercise 2.18).
However, it is instructive to relate these facts to Proposition 2.14 by the following
device. Consider the space X = E X F , so that X* = E* x F*, and the subspaces
of X
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G=G(A) and L =FE x {0}.

It is very easy to check that

(26) N(A) x{0}=GNL,
(27) ExR(A =G+L,
(28) {0} x N(A*) =G+ nLt,
(29) R(A*) x F* =Gt + Lt

Proof of (1). By (29) we have

R(AHDT x {0} = (Gt +LHt =G NnL (by16)
= N(A) x {0} (by (26)).

Proof of (ii). By (27) we have

{0} x R(LAT =G+ L)y =GtnLt (by17)
= {0} x N(A*) (by (28)).

Remark 17. It may happen, even if A is a bounded linear operator, that N (A)+ #
R(A*) (see Exercise 2.23). However, it is always true that N (A)1 is the closure
of R(A*) for the weak* topology o (E*, E) (see Problem 9). In particular, if E is
reflexive then N(A)L = R(A*).

* 2.7 A Characterization of Operators with Closed Range.
A Characterization of Surjective Operators

The main result concerning operators with closed range is the following.

* Theorem 2.19. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(i) R(A) is closed,
(i) R(A*) is closed,
(iii) R(A) = N(A")4,
(iv) R(A*) = N(A)L.

Proof. With the same notation as in the proof of Corollary 2.18, we have

(i) & G + Lisclosed in X (see (27)),

(i) < Gt + Lt isclosed in X* (see (29)),
(ili) & G+ L = (G+ N L)L (see (27) and (28)),
(iv) & (G N L)Yt =Gt + L' (see (26) and (29)).

The conclusion then follows from Theorem 2.16.
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Remark 18. Let A : D(A) C E — F be a closed unbounded linear operator. Then
R(A) is closed if and only if there exists a constant C such that

dist(u, N(A)) < C||Au|| Yu € D(A);

see Exercise 2.14.

The next result provides a useful characterization of surjective operators.

* Theorem 2.20. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(a) A is surjective, i.e., R(A) = F,
(b) there is a constant C such that

vl < ClA*v|| Vv € D(AY),
(¢c) N(A*) = {0} and R(A*) is closed.

Remark 19. The implication (b) = (a) is sometimes useful in practice to establish
that an operator A is surjective. One proceeds as follows. Assuming that v satisfies
A*v = f, one tries to prove that ||v]| < C| f| (with C independent of f). This
is called the method of a priori estimates. One is not concerned with the question
whether the equation A*v = f admits a solution; one assumes that v is a priori given
and one tries to estimate its norm.

Proof.
(a) = (b). Set
B* ={v e D(A"); |A*v|| < 1}.

By homogeneity it suffices to prove that B* is bounded. For this purpose—in view
of Corollary 2.5 (uniform boundedness principle)—we have only to show that given
any fo € F the set (B*, fp) is bounded (in R). Since A is surjective, there is some
ug € D(A) such that Aug = fy. For every v € B* we have

(v, fo) = (v, Aug) = (A™v, ug)

and thus (v, fo)| < lluoll-

(b) = (c). Suppose f, = A*v, — f. Using (b) with v, — v, we see that (v,) is
Cauchy, so that v, — v. Since A* is closed (by Proposition 2.17), we conclude that
A*v = f.

(¢) = (a). Since R(A*) is closed, we infer from Theorem 2.19 that R(A) =
N(A*)*+ =F.

There is a “dual” statement.

* Theorem 2.21. Let A : D(A) C F be anunbounded linear operator that is densely
defined and closed. The following properties are equivalent:
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(a) A* is surjective, i.e., R(A*) = E*,
(b) there is a constant C such that

lull < CllAull Vu € D(A),
(c) N(A) = {0} and R(A) is closed.
Proof. Ttis similar to the proof of Theorem 2.20 and we shall leave it as an exercise.

Remark 20. If one assumes that either dim E < oo or that dim FF' < o0, then the
following are equivalent:

A surjective <& A* injective,

A” surjective < A injective,

which is indeed a classical result for linear operators in finite-dimensional spaces. The
reason that these equivalences hold is that R(A) and R(A*) are finite-dimensional
(and thus closed).

In the general case one has only the implications

A surjective = A* injective,

A* surjective = A injective.

The converses fail, as may be seen from the following simple example. Let E =
F = ¢2; for every x € 02 write x = (xn)n>1 and set Ax = (%xn)nﬂ. It is easy to
see that A is a bounded operator and that A* = A; A* (resp. A) is injective but A
(resp. A*) is not surjective; R(A) (resp. R(A*)) is dense and not closed.

Comments on Chapter 2

1. One may write down explicitly some simple closed subspaces without complement.
For example ¢ is a closed subspace of £°° without complement; see, e.g., C. DeVito
[1] (the notation ¢ and £°° is explained in Section 11.3). There are other examples
in W. Rudin [1] (a subspace of Ll), G. Kéthe [1], and B. Beauzamy [1] (a subspace
of €7, p # 2).

2. Most of the results in Chapter 2 extend to Fréchet spaces (locally convex spaces
that are metrizable and complete). There are many possible extensions; see, e.g.,
H. Schaefer [1], J. Horvath [1], R. Edwards [1], F. Treves [1], [3], G. Kothe [1].
These extensions are motivated by the theory of distributions (see L. Schwartz [1]),
in which many important spaces are not Banach spaces. For the applications to the
theory of partial differential equations the reader may consult L. Hérmander [1] or
F. Treves [1], [2], [3].

3. There are various extensions of the results of Section 2.5 in T. Kato [1].
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Exercises for Chapter 2

Continuity of convex functions.

Let E be a Banach space and let ¢ : E — (—00, +00] be a convex l.s.c. function.
Assume xg € IntD(¢).

1. Prove that there exist two constants R > 0 and M such that
¢(x) <M Vx e E with ||x — xo]| < R.
[Hint: Given an appropriate p > 0, consider the sets
Fo={x€E; |x—xol <pando(x) <n}]
2. Prove that Vr < R, 3L > 0 such that

l(x1) —@(x2)| < Lllxt — x2ll  Vx1,x2 € E with [lx; —xoll <7, i =1,2.

2[M—¢p(x0)]
7 .

More precisely, one may choose L = .

Let E be a vector space and let p : E — R be a function with the following
three properties:

(i) px +y) < p(x)+p(y) Vx,y € E,
(ii) for each fixed x € E the function A — p(Ax) is continuous from R into R,
(iii) whenever a sequence (y,) in E satisfies p(y,) — 0, then p(Ly,) — 0 for every
reR

Assume that (x,) is a sequence in E such that p(x,) — 0 and («;,) is a bounded
sequence in R. Prove that p(0) = 0 and that p(«a,x,) — 0.
[Hint: Given ¢ > 0 consider the sets

Fo={LeR; [pixp)| <&, Vk=n}]

Deduce that if (x,) is a sequence in E such that p(x, — x) — 0 for some x € E,
and (o) is a sequence in R such that o, — «, then p(o,x,) — p(ax).

Let E and F be two Banach spaces and let (7,,) be a sequence in L(E, F).
Assume that for every x € E, T,x converges as n — o0 to a limit denoted by Tx.
Show that if x,, — x in E, then T,x,, — Tx in F.

Let E and F be two Banach spaces and leta : E x F — R be a bilinear form
satisfying:

(i) for each fixed x € E, the map y — a(x, y) is continuous;
(i1) for each fixed y € F, the map x — a(x, y) is continuous.

Prove that there exists a constant C > 0 such that

la(x, I = Clx|l Iyl Yx € E, VyeF.
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[Hint: Introduce a linear operator T : E — F* and prove that T is bounded with
the help of Corollary 2.5.]

Let E be a Banach space and let ¢, be a sequence of positive numbers such
that lim ¢, = 0. Further, let (f;;) be a sequence in E™* satisfying the property

Ir >0, VxeFE withl]x| <r, 3C(x) € R such that
(fu, x) < énllfull + C(x) Vn.

Prove that (f;) is bounded.
[Hint: Introduce g,, = f,,/(1 + &, fulD).]

Locally bounded nonlinear monotone operators.
Let E be Banach space and let D(A) be any subset in E. A (nonlinear) map
A : D(A) C E — E* is said to be monotone if it satisfies

(Ax — Ay, x —y)>0 Vx,ye D(A).
1. Let xo € IntD(A). Prove that there exist two constants R > 0 and C such that
|Ax|| < C Vx € D(A) with ||x — xo|| < R.

[Hint: Argue by contradiction and construct a sequence (x,) in D(A) such that
X, — xo and || Ax,|| — oo. Choose r > 0 such that B(xg, r) C D(A). Use the
monotonicity of A at x,, and at (xo + x) with ||x|| < r. Apply Exercise 2.5.]

2. Prove the same conclusion for a point xg € Int[conv D(A)].

3. Extend the conclusion of question 1 to the case of A multivalued, i.e., for every
x € D(A), Ax is anonempty subset of E*; the monotonicity is defined as follows:

(f—g,x—y)=>0 Vx,ye D(A), VfeAx, VgeAy.

Leta = (o) be a given sequence of real numbers and let 1 < p < co. Assume
that Y |y ||xn| < oo for every element x = (x,) in £P (the space €7 is defined in
Section 11.3).

Prove that o € ¢7'.

Let E be a Banach space and let T : E — E* be a linear operator satisfying
(Tx,x)>0 VxekE.

Prove that T is a bounded operator.
[Two methods are possible: (i) Use Exercise 2.6 or (ii) Apply the closed graph
theorem. ]

Let E be a Banach space and let T : E — E* be a linear operator satisfying

(Tx,y)=(Ty,x) Vx,y€E.
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Prove that T is a bounded operator.
Let E and F be two Banach spaces and let T € L(E, F) be surjective.

1. Let M be any subset of E. Prove that T (M) is closed in F iff M + N(T) is closed
in E.

2. Deduce that if M is a closed vector space in E and dim N(T) < oo, then T (M)
is closed.

Let E be a Banach space, F = ¢ andlet T € L(E, F) be surjective. Prove
that there exists S € L(F, E) suchthat T o S = IF, i.e., S has a right inverse of T.

[Hint: Do not apply Theorem 2.12; try to define S explicitly using the canonical
basis of £1.]

Let E and F be two Banach spaces with norms || ||g and || ||r. Let T €
L(E, F) be such that R(T) is closed and dim N(7T) < oo. Let | | denote another
norm on E that is weaker than || || g, i.e., |x| < M||x||g Vx € E.

Prove that there exists a constant C such that

Ixlle < CUITx|lF +|x]) Vxe€E.
[Hint: Argue by contradiction.]
Let E and F be two Banach spaces. Prove that the set
Q ={T € L(E, F); T admits a left inverse}

isopenin L(E, F).
[Hint: Prove first that the set

O ={T € L(E, F); T is bijective}
isopenin L(E, F).]

Let E and F be two Banach spaces

1. Let T € L(E, F). Prove that R(T) is closed iff there exists a constant C such
that
dist(x, N(T)) < C||Tx| Vx €E.

[Hint: Use the quotient space E/N(T'); see Section 11.2.]
2. Let A: D(A) C E — F be aclosed unbounded operator.
Prove that R(A) is closed iff there exists a constant C such that

dist(u, N(A)) < C||Au| Vu € D(A).

[Hint: Consider the operator T : Eg — F, where Eg = D(A) with the graph
normand T = A.]



52 2 The Uniform Boundedness Principle and the Closed Graph Theorem

Let E, E>, and F be three Banach spaces. Let T} € L(Ej, F) and let
T, € L(E,, F) be such that

R(T)) N R(T») = {0} and R(Ty) + R(T») = F.

Prove that R(T7) and R(T>) are closed.
[Hint: Apply Exercise 2.10to the map T : E| x E, — F defined by

T (x1,x2) = Tix1 + Trxz.]

Let E be a Banach space. Let G and L be two closed subspaces of E. Assume
that there exists a constant C such that

dist(x, GNL) < Cdist(x, L), VxegG.

Prove that G + L is closed.

Let E = C([0, 1]) with its usual norm. Consider the operator A : D(A) C
E — FE defined by

d
D(A) = CY([0,1]) and Au=u = d—”t‘.

1. Check that D(A) = E.
2. Is A closed?
3. Consider the operator B : D(B) C E — E defined by

2 , du
D(B)=C“([0,1]) and Bu=u = e
Is B closed?

Let E and F be two Banach spaces and let A : D(A) C E — F be a densely
defined unbounded operator.
1. Prove that N(A*) = R(A)* and N(A) C R(A")*.
2. Assuming that A is also closed prove that N(A) = R(A%)L.
[Try to find direct arguments and do not rely on the proof of Corollary 2.18. For

question 2 argue by contradiction: suppose there is some u € R(A*)* such that
[1, 0] ¢ G(A) and apply Hahn—Banach.]

Let E be a Banach space and let A : D(A) C E — E™ be a densely defined
unbounded operator.

1. Assume that there exists a constant C such that
€))] (Au, u) > —C||Au||2 Yu € D(A).

Prove that N(A) C N(A*).
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2. Conversely, assume that N(A) C N(A*). Also, assume that A is closed and R(A)
is closed. Prove that there exists a constant C such that (1) holds.

Let E and F be two Banach spaces. Let T € L(E, F) andlet A : D(A) C
E — F be an unbounded operator that is densely defined and closed. Consider the
operator B : D(B) C E — F defined by

D(B)=D(A), B=A+T.

1. Prove that B is closed.
2. Prove that D(B*) = D(A*) and B* = A* + T*.

Let E be an infinite-dimensional Banach space. Fix an elementa € E,a # 0,
and a discontinuous linear functional f : E — R (such functionals exist; see
Exercise 1.5). Consider the operator A : E — E defined by

DA)=E, Ax=x-— f(x)a.

. Determine N(A) and R(A).

. Is A closed?

. Determine A* (define D(A*) carefully).

. Determine N(A*) and R(A*).

. Compare N(A) with R(A*)* as well as N(A*) with R(A)™L.
. Compare with the results of Exercise 2.18.

AN N B W=

The purpose of this exercise is to construct an unbounded operator A : D(A) C

E — E that is densely defined, closed, and such that D(A*) # E™*.
Let E = ¢!, so that E* = £°. Consider the operator A : D(A) C E — E
defined by

D(A) = [u = (un) € £'; (nuy) € z‘} and Au = (nuy).

1. Check that A is densely defined and closed.
2. Determine D(A*), A*, and D(A*).

Let E = ¢!, so that E* = £°°. Consider the operator T € L(E, E) defined by
1 .
Tu=|—-u, for every u = (uy),>1 in € .
n>1

Determine N(T), N(T)L, T*, R(T*), and R(T*).
Compare with Corollary 2.18.
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Let E, F, and G be three Banach spaces. Let A : D(A) C E — F bea
densely defined unbounded operator. Let 7 € L(F, G) and consider the operator
B:D(B) CE — Gdefinedby D(B)=D(A)and B=T o A.

1. Determine B*.
2. Prove (by an example) that B need not be closed even if A is closed.

Let E, F, and G be three Banach spaces.
1. Let T € L(E, F) and S € L(F, G). Prove that

SoT)Y =T o S".

2. AssumethatT € L(E, F)isbijective. Prove that T* is bijective and that (T*)~! =
(T H*.

Let E and F be two Banach spaces and let T € L(E, F). Let ¢ : F —
(—o0, +00] be a convex function. Assume that there exists some element in R(7')
where 1 is finite and continuous.
Set
ox)=v(Tx), xe€kE.

Prove that for every f € F*

" (T*f) = inf ) Y*(f —g = min ) V(= 8.

geN(T* geN(T*

Le E, F be two Banach spaces and let T € L(E, F). Assume that R(T) has
finite codimension, i.e., there exists a finite-dimensional subspace X of F such that
X+ R(T)=Fand X N R(T) = {0}.

Prove that R(T) is closed.



Chapter 3

Weak Topologies. Reflexive Spaces. Separable
Spaces. Uniform Convexity

3.1 The Coarsest Topology for Which a Collection of Maps
Becomes Continuous

We begin this chapter by recalling a well-known concept in topology. Suppose X is
a set (without any structure) and (Y;);¢; is a collection of fopological spaces. We are
given a collection of maps (¢;);es such that for every i € I, ¢; maps X into ¥; and
we consider the following:

Problem 1. Construct a topology on X that makes all the maps (¢;);ec; continuous.
If possible, find a topology 7 that is the most economical in the sense that it has the
fewest open sets.

Note that if we equip X with the discrete topology (i.e., every subset of X is
open), then every map ¢; is continuous; of course, this topology is far from being
the “cheapest”; in fact, it is the most expensive one! As we shall see, there is always
a (unique) “cheapest” topology .7 on X for which every map ¢; is continuous. It is
called the coarsest or weakest topology (or sometimes the initial topology) associated
to the collection (¢;)ic;.

If w; C Y; is any open set, then ¢, ! (w;) is necessarily an open set in 7. As w;
runs through the family of open sets of ¥; and i runs through / we obtain a family
of subsets of X, each of which must be open in the topology 7. Let us denote this
family by (U))ea - Of course, this family need not be a topology. Therefore, we are
led to the following:

Problem 2. Given a set X and a family (U,),eca of subsets in X, construct the
cheapest topology .7 on X in which U, is open for all > € A.

In other words, we must find the cheapest family .7 of subsets of X that is stable'
by Nfinite and Uarpitrary and with the property that Uy € Z for every . € A. The
construction goes as follows. First,consider finite intersections of sets in (Uy)xen,
i.e., Myer Uy where I' C A is finite. In this way we obtain a new family, called ®, of

1 Meaning that a finite intersection of sets in .% and an arbitrary union of sets in .Z both belong
to 7.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 55
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subsets of X which includes (U,)yca and which is stable under Ngpjre. However, it
need not be stable under Uybitrary. Therefore, we consider next the family . obtained
by forming arbitrary unions of elements from &. It is clear that .% is stable under
Uarbitrary- It is not clear whether % is stable under Ngpite; but indeed we have the
following result:

Lemma 3.1. The family .7 is stable under Ngpite.

The proof of Lemma 3.1—a delightful exercise in set theory—is left to the reader;
see e.g., G. Folland [2]. It is now obvious that the above construction gives the
cheapest topology with the required property.

Remark 1. One cannot reverse the order of operations in the construction of .% . It
would have been equally natural to start with Uypigrary and then to take Nfpice. The
outcome is a family that is stable under Ngpie; but it is not stable under Uypitrary-
One would have to consider once more Uyrpitrary and the process then stabilizes.

To summarize this discussion we find that the open sets of the topology .7 are
obtained by considering first Nnite Of sets of the form ¢, ! (w;) and then Uyrpitrary- It
follows that for every x € X, we obtain a basis of neighborhoods of x for the topology
7 by considering sets of the form Nepite o ! (Vi), where V; is a neighborhood of
@i (x) in Y;. Recall that in a topological space, a basis of neighborhoods of a point
x is a family of neighborhoods of x, such that every neighborhood of x contains a
neighborhood from the basis.

In what follows we equip X with the topology .7 that is the weakest topology
associated to the collection (¢; ); <. Here are two simple properties of the topology .7 .

e Proposition 3.1. Let (x,,) be a sequence in X. Then x, — x (in 7) if and only if
@i (xn) — @i(x) foreveryi € 1.

Proof. If x,, — x, then ¢; (x,) — ¢;(x) for each i, since each ¢; is continuous for
7. Conversely, let U be a neighborhood of x. From the preceding discussion, we
may always assume that U has the form U = N;¢ J(pi_l (V;) with J C [ finite. For
eachi € J there is some integer N; such that ¢; (x,,) € V; forn > N;. It follows that
x, € U forn > N = max;cjN;.

e Proposition 3.2. Let Z be a topological space and let  be a map from Z into X.
Then  is continuous if and only if ¢; o ¥ is continuous from Z into Y; for every
iel

Proof. 1f v is continuous then ¢; o 1 is also continuous for every i € I. Conversely,
we have to prove that ¥~ (U) is open (in Z) for every open set U (in X). But we
know that U has the form U = Uaitrary Nfinite @; l(a)l'), where w; is open in Y;.
Therefore

v = U 0 v lgiedl= U 0 @ioy) e,

arbitrary finite arbitrary finite

which is open in Z since every map ¢; o ¥ is continuous.
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3.2 Definition and Elementary Properties of the Weak Topology
o(E, E*)

Let E be a Banach space and let f € E*. We denote by ¢y : E — R the linear
functional ¢ (x) = (f, x). As f runs through E* we obtain a collection (¢ ) g+
of maps from E into R. We now ignore the usual topology on E (associated to || |)
and define a new topology on the set E as follows:

Definition. The weak topology o (E, E*) on E is the coarsest topology associated
to the collection (@) reg+ (in the sense of Section 3.1 with X = E, Y; = R, for
eachi,and I = E*).

Note that every map ¢ is continuous for the usual topology and therefore the
weak topology is weaker than the usual topology.

Proposition 3.3. The weak topology o (E, E*) is Hausdorff.

Proof. Given x1, x» € E with x| # x we have to find two open sets O1 and O;
for the weak topology o (E, E*) such that x; € O, x3 € Oz, and O1 N O = 0.
By Hahn—Banach (second geometric form) there exists a closed hyperplane strictly
separating {x} and {x,}. Thus, there exist some f € E* and some « € R such that

(fix1) <o < (f x2).

Set

O1={x € E; (f.x) <a) = ¢ (—00,)),
02 = {x € E; (f.x) > a) = ¢ (@, +00)) .

Clearly, O and O are open for o (E, E*) and they satisfy the required properties.

e Proposition 3.4. Let xg € E; given ¢ > 0 and a finite set { f1, f2, ..., fx} in E*
consider

V=V(fi, fooos fo &) ={x € E; [{fi,x —x0)| <& Vi=1,2,....k}.

Then V is a neighborhood of xq for the topology o (E, E*). Moreover, we obtain a
basis of neighborhoods of x( for o (E, E*) by varying ¢, k, and the f;’s in E*.

Proof. Clearly V = ﬂf.‘zl (p;l_l((a,' —¢,a; + ¢)), with a; = (fi, x0), is open for the
topology o (E, E*) and contains xg. Conversely, let U be a neighborhood of x¢ for
o (E, E*). From the discussion in Section 3.1 we know that there exists an open set W
containing xo, W C U, of the form W = ﬁﬁnitegﬂzl (wi), where w; is a neighborhood
(inR) of a; = (f;, x0). Hence there exists ¢ > 0 such that (a; — ¢, a; + ¢) C w; for
every i. It follows thatxo e V.C W C U.

Notation. If a sequence (x,) in E converges to x in the weak topology o (E, E*)
we shall write
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Xy — X.

i)

To avoid any confusion we shall sometimes say, “x, — x weakly in o (E, E*).
In order to be totally clear we shall sometimes emphasize strong convergence by
saying, “x, — x strongly,” meaning that ||x, — x| — O.

e Proposition 3.5. Let (x,) be a sequence in E. Then

@) [x, = x weaklyino (E, E*)] < [{f, xp) = (f,x) Vf € E*].
(i) If x,, — x strongly, then x, — x weakly in o (E, E™).
@iii) If x, — x weakly ino (E, E*), then (||x,||) is bounded and || x| < liminf ||x,||.
(iv) If x, = x weaklyino (E, E*) and if f, — f stronglyin E* (i.e., | f,— f | Ex —
0), then (fn, xn) — (f, x).

Proof.

(i) follows from Proposition 3.1 and the definition of the weak topology o (E, E*).

(@i1) follows from (i), since |{ f, x,,) — (f, x)| < | |l llx» — x||; it is also clear from
the fact that the weak topology is weaker than the strong topology.

(iii) follows from the uniform boundedness principle (see Corollary 2.4), since for

every f € E* theset ({f, x,)), is bounded. Passing to the limit in the inequality

[CF x| < ANl

we obtain
[(f, )] < If I liminf [x,]l,

which implies (by Corollary 1.4) that

Xl = ;UP [(f, x)] < liminf ||x, .
=1

(iv) follows from the inequality

[{frs Xn) = X0 < 1= X)) |[H I X0 =) < = I xR 1SS X0 =),
combined with (i) and (iii).

e Proposition 3.6. When E is finite-dimensional, the weak topology o (E, E*) and
the usual topology are the same. In particular, a sequence (x;) converges weakly if
and only if it converges strongly.

Proof. Since the weak topology has always fewer open sets than the strong topology,
it suffices to check that every strongly open set is weakly open. Let xo € E and let
U be a neighborhood of x( in the strong topology. We have to find a neighborhood
V of xg in the weak topology o (E, E*) such that V C U. In other words, we have
to find fi, f2,..., fr in E* and ¢ > 0 such that

V={xeE [(fiix—xo)<e Vi=12 ...,k cCU.
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Fix r > 0 such that B(xg,r) C U. Pick a basis e, es, ..., ¢, in E such that
lleill =1, Vi.Every x € E admits a decomposition x = Zf-;l x;e;, and the maps
X > x; are continuous linear functionals on E denoted by f;. We have

k
llx — xoll < > I(fir x — x0)| < ke

i=1
for every x € V. Choosing ¢ =r/k, weobtain V C U.

Remark 2. Open (resp. closed) sets in the weak topology o (E, E*) are always open
(resp. closed) in the strong topology. In any infinite-dimensional space the weak
topology is strictly coarser than the strong topology; i.e., there exist open (resp.
closed) sets in the strong topology that are not open (resp. closed) in the weak
topology. Here are two examples:

Example 1. The unit sphere S = {x € E; | x|| = 1}, with E infinite-dimensional, is
never closed in the weak topology o (E, E*). More precisely, we have

1) o B

= Bk,
where EG(E’E*) denotes the closure of S in the topology o (E, E*) and Bg (already
defined in Chapter 2) denotes the closed unit ball in E,

Bp ={x e E; |x]l = 1}.

First let us check that every xog € E with ||xg|| < 1 belongs to EG(E’E*). Indeed,
let V be a neighborhood of xq in o (E, E*). We have to prove that VNS # (. In
view of Proposition 3.4 we may always assume that V has the form

V={xekE; |{fi,x—x0)| <e Vi=1,2,...,k}
withe > O and f1, f2,..., fx € E*.Fix yo € E, yg # 0, such that
(fi,»v0) =0 Vi=1,2,... k.

[Such a yp exists; otherwise, the map ¢ : E — R* defined by ¢(x) =
({fi, x))1<i<k would be injective and ¢ would be an isomorphism from E onto
¢(E), and thus dim E < k, which contradicts the assumption that E is infinite-
dimensional.]? The function g (¢) = ||xo-+yo|| is continuous on [0, 0o) with g(0) < 1
and lim;_, ;o0 g(f) = +00. Hence there exists some 7y > Osuchthat ||xo+fyo|l = 1.
It follows that xg + foyp € V N §, and thus we have established that

Sc B cs”EE

2 The geometric interpretation of this construction is the following. When E is infinite-dimensional,
every neighborhood V of xq in the topology o (E, E*) contains a line passing through x¢, even a
“huge” affine space passing through x.
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In order to complete the proof of (1) it suffices to know that Bg is closed in the
topology o (E, E*). But we have

Be= () x € E: [(f.x)| <1},
fEE*
fl=1

which is an intersection of weakly closed sets.

Example 2. The unit ball U = {x € E; |x|| < 1}, with E infinite-dimensional, is
never open in the weak topology o (E, E*). Suppose, by contradiction, that U is
weakly open. Then its complement U¢ = {x € E; ||x|| > 1} is weakly closed. It
follows that S = B N U°€ is also weakly closed; this contradicts Example 1.

* Remark 3. In infinite-dimensional spaces the weak topology is never metrizable,
i.e., there is no metric (and a fortiori no norm) on E that induces on E the weak
topology o (E, E*); see Exercise 3.8. However, as we shall see later (Theorem 3.29),
if E* is separable one can define a norm on E that induces on bounded sets of E the
weak topology o (E, E*).

* Remark 4. Usually, in infinite-dimensional spaces, there exist sequences that con-
verge weakly and do not converge strongly. For example, if E* is separable or if E
is reflexive one can construct a sequence (x,) in E such that ||x,|| = 1 and x, — 0
weakly (see Exercise 3.22). However, there are infinite-dimensional spaces with the
property that every weakly convergent sequence is strongly convergent. For exam-
ple, ¢! has that unusual property (see Problem 8). Such spaces are quite “rare” and
somewhat “pathological.” This strange fact does not contradict Remark 2, which as-
serts that in infinite-dimensional spaces, the weak topology and the strong topology
are always distinct: the weak topology is strictly coarser than the strong topology.
Keep in mind that two metric (or metrizable) spaces with the same convergent se-
quences have identical topologies; however, if two topological spaces have the same
convergent sequences they need not have identical topologies.

3.3 Weak Topology, Convex Sets, and Linear Operators

Every weakly closed set is strongly closed and the converse is false in infinite-
dimensional spaces (see Remark 2). However, it is very useful to know that for
convex sets, weakly closed = strongly closed:

e Theorem 3.7. Let C be a convex subset of E. Then C is closed in the weak topology
o(E, E*) if and only if it is closed in the strong topology.

Proof. Assume that C is closed in the strong topology and let us prove that C is
closed in the weak topology. We shall check that the complement C¢ of C is open in
the weak topology. To this end, let xo ¢ C. By Hahn—-Banach there exists a closed
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hyperplane strictly separating {xo} and C. Thus, there exist some f € E* and some
a € R such that

(f,xo)<ot<(f,y) VyEC

Set
V={x€ekE; (f,x) <al;

sothatxg € V,VNC =0 (e, V C C° and V is open in the weak topology.

Corollary 3.8 (Mazur). Assume (x,) converges weakly to x. Then there exists a
sequence (y,) made up of convex combinations of the x,’s that converges strongly
1o x.

Proof. Let C = conv(US, {x,}) denote the convex hull of the x;,’s. Since x belongs
to the weak closure of U‘;":l {x,} it belongs a fortiori to the weak closure of C. By

Theorem 3.7, x € C, the strong closure of C, and the conclusion follows.

Remark 5. There are some variants of Corollary 3.8 (see Exercises 3.4 and 5.24).
Also, note that the proof of Theorem 3.7 shows that every closed convex set C
coincides with the intersection of all the closed half-spaces containing C.

e Corollary 3.9. Assume that ¢ : E — (—00 4+ o0] is convex and 1.s.c. in the strong
topology. Then ¢ is 1.s.c. in the weak topology o (E, E™).

Proof. For every A € R the set
A={x €eE; ¢p(x) <A}

is convex and strongly closed. By Theorem 3.7 it is weakly closed and thus ¢ is
weakly Ls.c.

e Remark 6. It may be rather difficult in practice to prove that a function is l.s.c. in
the weak topology. Corollary 3.9 is often used as follows:

¢ convex and strongly continuous = ¢ weakly l.s.c. ‘

For example, the function ¢(x) = ||x|| is convex and strongly continuous; thus it is
weakly l.s.c. In particular, if x, — x weakly, it follows that ||x|| < liminf ||x,|| (see
also Proposition 3.5).

Theorem 3.10. Let E and F be two Banach spaces and let T be a linear operator
from E into F. Assume that T is continuous in the strong topologies. Then T is
continuous from E weak o (E, E*) into F weak o (F, F*) and conversely.

Proof. In view of Proposition 3.2 it suffices to check that for every f € F* the map
x — (f, Tx)iscontinuous from E weak o (E, E*) into R. Butthe map x — (f, Tx)
is a continuous linear functional on E. Therefore, it is also continuous in the weak
topology o (E, E™).
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Conversely, suppose that T is continuous from E weak into F' weak. Then G(T')
is closed in E x F equipped with the product topology o (E, E*) x o (F, F*), which
is clearly the same as o (E x F, (E x F)*). It follows that G(T) is strongly closed
(any weakly closed set is strongly closed). We conclude with the help of the closed
graph theorem (Theorem 2.9) that T is continuous from E strong into F strong.

Remark 7. The argument above shows more: that if a linear operator 7' is continuous
from E strong into F' weak then T is continuous from E strong into F' strong. As
a consequence, for linear operators, the following continuity properties are all the
same: § —> S, W — W, S — W (§ = strong, W = weak). On the other hand,
very few linear operators are continuous W — §; this happens if and only if 7 is
continuous S — § and, moreover, dim R(T) < oo (see Exercise 6.7).

Also, note that in general, nonlinear maps that are continuous from E strong into
F strong are not continuous from E weak into F weak (see, e.g., Exercise 4.20).
This is a major source of difficulties in nonlinear problems.

3.4 The Weak* Topology o (E*, E)

So far, we have two topologies on E*:

(a) the usual (strong) topology associated to the norm of E*,
(b) the weak topology o (E*, E**), obtained by performing on E* the construction
of Section 3.3.

We are now going to define a third topology on E* called the weak* topology and
denoted by o (E*, E) (the « is here to remind us that this topology is defined only on
dual spaces). For every x € E consider the linear functional ¢, : E* — R defined
by f — ¢x(f) = (f, x). As x runs through E we obtain a collection (¢y)yefr of
maps from E* into R.

Definition. The weak* topology,o (E*, E), s the coarsest topology on E* associated
to the collection (¢y)ycg (in the sense of Section 3.1 with X = E*, ¥; = R, for all
i,and I = E).

Since E C E**, itis clear that the topology o (E*, E) is coarser than the topology
o (E*, E*); i.e., the topology o (E*, E) has fewer open sets (resp. closed sets) than
the topology o (E*, E**), which in turn has fewer open sets (resp. closed sets) than
the strong topology.

Remark 8. The reader probably wonders why there is such hysteria over weak topolo-
gies! The reason is the following: a coarser topology has more compact sets. For
example, the closed unit ball Bg» in E*, which is never compact in the strong topol-
ogy (unless dim E < 00; see Theorem 6.5), is always compact in the weak* topology
(see Theorem 3.16). Knowing the basic role of compact sets—for example, in exis-
tence mechanisms such as minimization—it is easy to understand the importance of
the weak* topology.
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Proposition 3.11. The weak* topology is Hausdorff.

Proof. Given f1, f» € E* with f| # f5 there exists some x € E such that { fi, x) #
(f2, x) (this does not use Hahn—Banach, but just the fact that f; # f>). Assume for
example that ( f1, x) < (f2, x) and choose « such that

(fi,x) <a < (fr,x).
Set
Oy =1{f € E* (f,x) <a} =g, (—00,a)),
Or={f € E* (f,x)>a}=¢; (&, +00)).

Then O; and O; are open sets in o (E*, E) such that f; € Oy, f € O, and
01N0Oy=0.

Proposition 3.12. Let fo € E*; given a finite set {x, x2, ..., xx} in E and e > 0,
consider

V=V@,x,... . x;8)={feESI(f—fooxi)l<e Vi=12...k}.

Then V is a neighborhood of fy for the topology o (E*, E). Moreover, we obtain a
basis of neighborhoods of fy for o (E*, E) by varying ¢, k, and the x;’s in E.

Proof. Same as the proof of Proposition 3.4.

Notation. If a sequence (f,) in E* converges to f in the weak* topology we shall
write

fo > f.

To avoid any confusion we shall sometimes emphasize “f, X fino(E*, E)
“fn N f in O'(E*’ E**),” and “fn — f Strongly.”

e Proposition 3.13. Let (f,,) be a sequence in E*. Then
@ [fy — fino(E*, E)] & [(fu.x) = (f,x), Vx € E].
(ii) If fn — f strongly, then f,, — f ino(E*, E*™).

If fo — fino(E*, E*™), then f, -~ f ino(E*, E).
i) If 1 X fino(E*, E) then (|| f,|) is bounded and || f|| < liminf || f,].
av) If f N fino(E*, E)and if x, — x strongly in E, then (f,,, x,) — ([, x).
Proof. Copy the proof of Proposition 3.5.

Remark 9. Assume f;, X f in o (E*, E) (or even f, — f in o(E*, E*™)) and
Xxp, = x in o (E, E*). One cannot conclude, in general, that { f;,, x,,) — (f, x) (itis
very easy to construct an example in Hilbert spaces).
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Remark 10. When E is a finite-dimensional space the three topologies (strong,
weak, weak*) on E* coincide. Indeed, the canonical injection J : E — E** (see
Section 1.3) is surjective (since dim E = dim E**) and therefore o (E*, E) =
o (E*, E*™).

» Proposition 3.14. Let ¢ : E* — R be a linear functional that is continuous for
the weak* topology. Then there exists some xo € E such that

p(f)=(f.x0) VfeE"
The proof relies on the following useful algebraic lemma:

Lemma 3.2. Let X be a vector space and let ¢, @1, @2, ..., px be (k + 1) linear
functionals on X such that

(2) l[pi(v) =0 Vi=1,2,...,k] = [¢p() =0].
Then there exist constants A1, A2, ..., Ay € R such that ¢ = Zf-‘zl Aigi.

Proof of Lemma 3.2. Consider the map F : X — R¥*! defined by

Fu) =[eW), p1(w), o2(u), ..., o (@)].

It follows from assumption (2) that a = [1, 0,0, ..., 0] does not belong to R(F).
Thus, one can strictly separate {a} and R(F) by some hyperplane in R**!; i.e., there
exist constants A, Ay, A, ..., Ax and « such that

k
A <o < io(u)+ Zkiwi(u) Yu e X.

i=1
It follows that

k
ho(u) + ) higi) =0 YueX
i=1

and also A < 0 (so that A # 0).

Proof of Proposition 3.14. Since ¢ is continuous for the weak™ topology, there exists
a neighborhood V of 0 for o (E*, E) such that

lp(Hl <1 VfeV.
We may always assume that
V=A{feES|{fixi)l<e Vi=1,2,...,k}
with x; € E and ¢ > 0. In particular,

[(fixi)=0 Vi=1,2,....k] = [e(f) =0].
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It follows from Lemma 3.2 that

k k
o(f) =Y Milfoxi) = <f, Z)»ixi> VfeE".
i=1 i=1

* Corollary 3.15. Assume that H is a hyperplane in E* that is closed in o (E*, E).
Then H has the form
H={f¢€E"(fx)=0a}

for some xog € E, xg # 0, and some o € R.

Proof. H may be written as
H={f€E" o(f) =al,

where ¢ is a linear functional on E*, ¢ # 0. Let fy ¢ H and let V be a neighborhood
of fo for the topology o (E*, E) such that V C H¢. We may assume that

V={feE"|(f— fo.xi)l<e Vi=12 ..k}

Since V is convex we find that either

3) o(f)<a YfeV
or
3" o(f)>a YfeV.

Assuming, for example, that (3) holds, we obtain

pg) <a—o(fo) YVeeW=V—fo,

and since —W = W we are led to

4 lp(@l < le —¢(fo)l VgeW.

It follows from (4) that ¢ is continuous at O for the topology o (E*, E) (since W is
a neighborhood of 0). Applying Proposition 3.14, we conclude that there is some
xo € E such that

p(f)=(f.x0) VfeE"

Remark 11. Assume that the canonical injection J : E — E™ is not surjective.
Then the topology o (E*, E) is strictly coarser than the topology o (E*, E**). For
example, let £ € E** with & ¢ J(E). Then the set

H={f€e€E" (§ f)=0}

is closed in o (E*, E**) but—in view of Corollary 3.15—itis not closed in o (E*, E).
We also learn from this example that convex sets that are closed in the strong topology
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need not be closed in the weak™ topology. There are two types of closed convex sets
in E*:
(a) the convex sets that are strongly closed (= closed in the topology o (E*, E**) by

Theorem 3.7),
(b) the convex sets that are closed in o (E*, E).

e Theorem 3.16 (Banach—Alaoglu-Bourbaki). The closed unit ball

Be«={f € E% IIfl =1}
is compact in the weak* topology o (E*, E).

Remark 12. The compactness of B+ is the most essential property of the weak*
topology; see also Remark 8.

Proof. Consider the Cartesian product ¥ = RE, which consists of all maps from
E into R; we denote elements of ¥ by w = (wy)xer With w, € R. The space
Y is equipped with the standard product topology (see, e.g., H. L. Royden [1],
J.R.Munkres [1], A. Knapp [1], orJ. Dixmier [1]), i.e., the coarsest topology on Y as-
sociated to the collection of maps @ +— w, (as x runs through E), which is, of course,
the same as the topology of pointwise convergence (see, e.g., J. R. Munkres [1]).
In what follows E* is systematically equipped with the weak* topology o (E*, E).
Since E* consists of special maps from E into R (i.e., continuous linear maps),
we may consider E* as a subset of Y. More precisely, let ® : E* — Y be the
canonical injection from E* into Y, so that ®(f) = (wy)rer With @y = (f, x).
Clearly, ® is continuous from E* into Y (use Proposition 3.2 and note that for
every fixed x € E the map f € E* — (®(f))x = (f, x) is continuous). The
inverse map ®~! is also continuous from ®(E*) equipped with the ¥ topology)
into E*: indeed, using Proposition 3.2 once more, it suffices to check that for ev-
ery fixed x € E the map w +—> (® Yw), x) is continuous on ®(E*), which is
obvious since (®~!(w), x) = w, (note that @ = ®(f) for some f € E* and
(@~ w), x) = (f, x) = wy). In other words, ® is a homeomorphism from E* onto
@ (E™). On the other hand, it is clear that ®(Bg+) = K, where K is defined by

K:{a)eY

In order to complete the proof of Theorem 3.16 it suffices to check that K is a compact
subset of Y. Write K as K = K| N K>, where

lwx| < llx]], Wx+y = Ox + ®y

and wy, = Aoy VAER, Vx,ye E|’

Ki={weY; |oy| < |lx]l Vxe€E}
and
K2={weY;a)x_s_y:a)x+a)yandw,\x=wa Vi e R, Vx,yeE}.

The set K1 may also be written as a product of compact intervals
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Ki=[Tt=lxl +lx]1.

xeE

Let us recall that (arbitrary) products of compact spaces are compact—a deep theo-
rem due to Tychonoff; see, e.g., H. L. Royden [1], G. B. Folland [2], J. R. Munkres
[1], A. Knapp [1], or J. Dixmier [1]. Therefore K; is compact. On the other hand,
K> is closed in Y; indeed, for each fixed . € R, x, y € E the sets

Ay ={w € Y;wxyy — wy —wy =0},
By x ={w € Y; wyx — Awy = 0},

are closed in Y (since the maps w — wy4y — wy — wy and ® > w;x — Awy are
continuous on Y) and we may write K, as

K> = [ N AM] N [ﬂBM].

x,yeE xeE
AeR

Finally, K is compact since it is the intersection of a compact set (K1) and a closed
set (K»).

3.5 Reflexive Spaces

Definition. Let E be a Banach space and let J : E — E™* be the canonical injection
from E into E** (see Section 1.3). The space E is said to be reflexive if J is surjective,
ie., J(E) = E™.

When E is reflexive, E** is usually identified with E.

Remark 13. Many important spaces in analysis are reflexive. Clearly, finite-dimen-
sional spaces are reflexive (since dim E = dim E* = dim E**). As we shall see in
Chapter 4 (see also Chapter 11), L? (and £7) spaces are reflexive for | < p < o0o.In
Chapter 5 we shall see that Hilbert spaces are reflexive. However, equally important
spaces in analysis are not reflexive; for example:

e L'and L™ (and ¢!, £°°) are not reflexive (see Chapters 4 and 11);
e (C(K), the space of continuous functions on an infinite compact metric space K,
is not reflexive (see Exercise 3.25).

* Remark 14. It is essential to use J in the above definition. R. C. James [1] has
constructed a striking example of a nonreflexive space with the property that there
exists a surjective isometry from E onto E**.

Our next result describes a basic property of reflexive spaces:

e Theorem 3.17 (Kakutani). Let E be a Banach space. Then E is reflexive if and
only if
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Bp={xeE; x| =1}
is compact in the weak topology o (E, E*).

Proof. Assume first that E is reflexive, so that J(Bg) = Bpg+«. We already know
(by Theorem 3.16) that B« is compact in the topology o (E**, E*). Therefore, it
suffices to check that J~! is continuous from E** equipped with o (E**, E*) with
values in E equipped with o (E, E*). In view of Proposition 3.2, we have only to
prove that for every fixed f € E* the map & — (f, J~'£) is continuous on E**
equipped with o (E**, E*). But (f, J~'&) = (&, f), and the map & — (£, f) is
indeed continuous on E** for the topology o (E**, E*). Hence we have proved that
B is compactin o (E, E*).

The converse is more delicate and relies on the following two lemmas:

Lemma 3.3 (Helly). Let E be a Banach space. Let fi, fa, ..., fx be given in E*
and let yy, y2, ..., Yk be given in R. The following properties are equivalent:

(i) Ve > 0 Ax, € E such that ||x¢|| < 1 and
[(fi,Xxe) —vyil<e Vi=1,2,...,k,
(i) | 25 Bivil < 15y Bifill B Bav ... Br e R
Proof. (i) = (ii). Fix By, B2, ..., BrinRand let S = Zle | Bi|. It follows from (i)

that ; .
> Bilfiixe) =Y Bivi
i=1 i=1

<eS

and therefore

< llxell + &8 < +e5.

k
Y Bifi

i=1

k
> Bifi

i=1

k
> Bivi
i=1

Since this holds for every ¢ > 0, we obtain (ii).

(i) = (). Set ¥y = (y1, 2, ..., y) € R¥ and consider the map ¢ : E — R¥
defined by
ex) = {(f1.x), ..., (fi, x)).

Property (i) says precisely that y € ¢(BEg). Suppose, by contradiction, that (i)
fails, so that y ¢ ¢(Bg). Hence {y} and ¢(BE) may be strictly separated in R by
some hyperplane; i.e., there exists some 8 = (81, B2, ..., Px) € R* and some o € R
such that

B-ox) <a<pB-y Vxe€Bg.
It follows that

k k
<Zﬂiﬁ,x> <a< Zﬁi}’i Vx € Bg,

i=1 i=1
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and therefore

k
Y Bifi
i=1

k
<a< Zﬂm,
i=1

which contradicts (ii).

Lemma 3.4 (Goldstine). Let E be any Banach space. Then J(Bg) is dense in Bpx+
with respect to the topology o (E**, E*), and consequently J(E) is dense in E** in
the topology o (E**, E™).

Proof. Let& € B« and let V be a neighborhood of £ for the topology o (E**, E*).
‘We must prove that V N J(Bg) # (. As usual, we may assume that V is of the form

V={neE™ |n—& fi)l <e ¥i=12.. .k

for some given elements f1, f2, ..., fr in E* and some ¢ > 0. We have to find some
x € Bg suchthat J(x) € V,i.e.,

[(fi.x) =&, fiYl<e Vi=1,2,... k.

Set y; = (&, fi). In view of Lemma 3.3 it suffices to check that

k k
> Bivi Y Bifi
i=1 i=1

<

’

which is clear since Zleﬁiy,' = <§, Zf-{=1.3iﬁ> and || €] < 1.

Remark 15. Note that J(BEg) is closed in Bg+ in the strong topology. Indeed, if
& = J(x,) — & we see that (x,) is a Cauchy sequence in Bg (since J is an
isometry) and therefore x,, — x, so that £ = Jx. It follows that J (Bg) is not dense
in Bgx in the strong topology, unless J(Bg) = Bg+, i.e., E is reflexive.

Remark 16. See Problem 9 for an alternative proof of Lemma 3.4 (based on a variant
of Hahn—Banach in E**).

Proof of Theorem 3.17, concluded. The canonical injection J : E — E** is always
continuous from o (E, E*) into o (E**, E*), since for every fixed f € E* the map
x = (Jx, f) = (f, x) is continuous with respect to o (E, E*). Assuming that Bg
is compact in the topology o (E, E*), we deduce that J(BE) is compact—and thus
closed—in E** with respect to the topology o (E**, E*). On the other hand, by
Lemma 3.4, J(BE) is dense in B« for the same topology. It follows that J(Bg) =
Bpw and thus J(E) = E**.

In connection with the compactness properties of reflexive spaces we also have
the following two results:

e Theorem 3.18. Assume that E is a reflexive Banach space and let (x,,) be a bounded
sequence in E. Then there exists a subsequence (x,,) that converges in the weak
topology o (E, E™).
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The converse is also true, namely the following.

» Theorem 3.19 (Eberlein-Smulian). Assume that E is a Banach space such
that every bounded sequence in E admits a weakly convergent subsequence (in
o (E, E)). Then E is reflexive.

The proof of Theorem 3.18 requires a little excursion through separable spaces
and will be given in Section 3.6. The proof of Theorem 3.19 is rather delicate and
is omitted; see, e.g., R. Holmes [1], K. Yosida [1], N. Dunford-J. T. Schwartz [1],
J. Diestel [2], or Problem 10.

Remark 17. In order to clarify the connection between Theorems 3.17,3.18, and 3.19
it is useful to recall the following facts:

(i) If X is a metric space, then
[X is compact] <> [every sequence in X admits a convergent subsequence].

(ii) There exist compact topological spaces X and some sequences in X without any
convergent subsequence. A typical example is X = Bg+, which is compact in
the topology o (E*, E); when E = £*° it is easy to construct a sequence in X
without any convergent subsequence (see Exercise 3.18).

(i) If X is a topological space with the property that every sequence admits a
convergent subsequence, then X need not be compact.

Here are some further properties of reflexive spaces.

e Proposition 3.20. Assume that E is a reflexive Banach space and let M C E be a
closed linear subspace of E. Then M is reflexive.

Proof. The space M—equipped with the norm of E—has a priori two distinct weak
topologies:

(a) the topology induced by o (E, E™*),
(b) its own weak topology o (M, M*).

In fact, these two topologies are the same (since, by Hahn—Banach, every continu-
ous linear functional on M is the restriction to M of a continuous linear functional on
E). In view of Theorem 3.17, we have to check that Bj; is compact in the topology
o (M, M*) or equivalently in the topology o (E, E*). However, Bg is compact in
the topology o (E, E*) and M is closed in the topology o (E, E*) (by Theorem 3.7).
Therefore By is compact in the topology o (E, E™*).

Corollary 3.21. A Banach space E is reflexive if and only if its dual space E* is
reflexive.

Proof. E reflexive = E™ reflexive. The idea of the proof is simple, since, roughly
speaking, we have that E** = E = E** = E*. More precisely, let J be the
canonical isomorphism from E into E**. Let ¢ € E™* be given. The map x +—>
(¢, Jx) is a continuous linear functional on E. Call it f € E*, so that
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(p, Jx) = (f,x) VxekE.

But we also have
(o, Jx)=(Jx, f) Vx€E.

Since J is surjective, we infer that

(0. 6) = (. f) VE€E™,

which means precisely that the canonical injection from E* into E*** is surjective.

E* reflexive = E reflexive. From the step above we already know that E** is
reflexive. Since J (E) is a closed subspace of E** in the strong topology, we conclude
(by Proposition 3.20) that J(E) is reflexive. Therefore, E is reflexive.’

e Corollary 3.22. Let E be a reflexive Banach space. Let K C E be a bounded,
closed, and convex subset of E. Then K is compact in the topology o (E, E*).

Proof. K is closed for the topology o (E, E*) (by Theorem 3.7). On the other hand,
there exists a constant m such that K C mBg, and m Bg is compactin o (E, E*) (by
Theorem 3.17).

e Corollary 3.23. Let E be a reflexive Banach space and let A C E be a nonempty,
closed, convex subset of E. Let ¢ : A — (—00, +00] be a convex 1.s.c. function such
that ¢ # +00 and

5) lin/} ¢(x) = 400  (no assumption if A is bounded).
(S

X
lx[|—o00

Then ¢ achieves its minimum on A, i.e., there exists some xog € A such that
= min @.
@ (xo0) un ¢
Proof. Fix any a € A such that ¢(a) < +o00 and consider the set
A={xe€4; p(x) < ga)}.

Then A is closed, convex, and bounded (by (5)) and thus it is compact in the topology
o (E, E*) (by Corollary 3.22). On the other hand, ¢ is also l.s.c. in the topology
o (E, E*) (by Corollary 3.9). It follows that ¢ achieves its minimum on A (see
property 5 following the definition of Ls.c. in Chapter 1), i.e., there exists xo € A
such that

¢(x0) < ¢(x) Vx € A.

Ifx e A\A, we have p(xo) < ¢(a) < ¢(x); therefore

p(xp) < @(x) Vx e A.

3 Itis clear that if E and F are Banach spaces, and T is a linear surjective isometry from E onto F,
then E is reflexive iff F is reflexive. Of course, there is no contradiction with Remark 14!
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Remark 18. Corollary 3.23 is the main reason why reflexive spaces and convex func-
tions are so important in many problems occurring in the calculus of variations and
in optimization.

Theorem 3.24. Let E and F be two reflexive Banach spaces. Let A : D(A) C E —
F be an unbounded linear operator that is densely defined and closed. Then D(A™)
is dense in F*. Thus A** is well defined (A** : D(A*) C E** — F**) and it may
also be viewed as an unbounded operator from E into F. Then we have

A = A.

Proof.

1. D(A*) is dense in F*. Let ¢ be a continuous linear functional on F* that
vanishes on D(A*). In view of Corollary 1.8 it suffices to prove that ¢ = 0 on F™*.
Since F is reflexive, ¢ € F and we have

(6) (w,0) =0 Yw e D(AY).

If ¢ # 0 then [0, ¢] ¢ G(A) in E x F. Thus, one may strictly separate [0, ¢] and
G (A) by aclosed hyperplane in E x F; i.e., there exist some [ f, v] € E* x F* and
some o € R such that

(fiu)+ (v, Au) <a < (v,9) VYu e D(A).

It follows that
(fyu)+ (v, Au) =0 VYu € D(A)

and

(v, ) #0.

Thus v € D(A*), and we are led to a contradiction by choosing w = v in (6).
2. A*™ = A. We recall (see Section 2.6) that
I[G(AM] = G(A)*

and
I[G(A™)] = G(A")* .

It follows that
G(A™) = G(A* = G(A),

since A is closed.

3.6 Separable Spaces

Definition. We say that a metric space FE is separable if there exists a subset D C E
that is countable and dense.
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Many important spaces in analysis are separable. Clearly, finite-dimensional
spaces are separable. As we shall see in Chapter 4 (see also Chapter 11), L? (and £7)
spaces are separable for 1 < p < o0. Also C(K), the space of continuous functions
on a compact metric space K, is separable (see Problem 24). However, L> and £*°
are not separable (see Chapters 4 and 11).

Proposition 3.25. Let E be a separable metric space and let F C E be any subset.
Then F is also separable.

Proof. Let (u,) be acountable dense subset of E. Let (r,,,) be any sequence of positive
numbers such that r,, — 0. Choose any point a,, , € B(uy, r,) N F whenever this
set is nonempty. The set (ay,,,) is countable and dense in F.

Theorem 3.26. Let E be a Banach space such that E* is separable. Then E is
separable.

Remark 19. The converse is not true. As we shall see in Chapter 4, E = L! is
separable but its dual space E* = L° is not separable.

Proof. Let (fy)n>1 be countable and dense in E*. Since

Ifull = sup (fu, x),
E

XE
lxl<1

we can find some x,, € E such that

X, 1l = Land (fy, xp) = %”fn”-
Letus denote by Ly the vector space over Q generated by the (x,,),>1;1.e., Lo consists
of all finite linear combinations with coefficients in Q of the elements (x,),>1.
We claim that Lq is countable. Indeed, for every integer n, let A, be the vector
space over Q generated by the (xx)1<k<n. Clearly, A, is countable and, moreover,
Lo = Unzl Anp.

Let L denote the vector space over R generated by the (x,),>1. Of course, Lg is a
dense subset of L. We claim that L is a dense subspace of E—and this will conclude
the proof (Lo will be a dense countable subset of E). Let f € E* be a continuous
linear functional that vanishes on L; in view of Corollary 1.8 we have to prove that
f =0.Given any ¢ > 0, there is some integer N such that || f — fy| < . We have

1

SN = Unoxw) = {fv = foxn) <&
(since (f, xn) = 0). It follows that || f|| < ||f — fnll + | fvll < 3e. Thus f = 0.
Corollary 3.27. Let E be a Banach space. Then

[E reflexive and separable] < [E* reflexive and separable].
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Proof. We already know (Corollary 3.21 and Theorem 3.26) that
[E™ reflexive and separable] = [E reflexive and separable].

Conversely, if E is reflexive and separable, so is E** = J(E); thus E™* is reflexive
and separable.

Separability properties are closely related to the metrizability of the weak topolo-
gies. Let us recall that a topological space X is said to be metrizable if there is a
metric on X that induces the topology of X.

Theorem 3.28. Let E be a separable Banach space. Then B+ is metrizable in the
weak* topology o (E*, E).
Conversely, if Bg« is metrizable in o (E*, E), then E is separable.

There is a “dual” statement.

Theorem 3.29. Let E be a Banach space such that E* is separable. Then Bg is
metrizable in the weak topology o (E, E*).
Conversely, if Bg is metrizable in o (E, E*), then E* is separable.

Proof of Theorem 3.28. Let (x,),>1 be a dense countable subset of Bg. For every
f € E*set

o0

1
[F1= 2 5 1l

n=1

Clearly, [ ]is a norm on E* and [f] < | f|l. Let d(f, g) = [f — g] be the
corresponding metric. We shall prove that the topology induced by d on Bg+ is the
same as the topology o (E*, E) restricted to Bgs.

(a) Let fo € Bg+ and let V be a neighborhood of fy for o (E*, E). We have to find
some r > ( such that

U=A{fe€Bgsd(f fo)<r}CV.
As usual, we may assume that V has the form
V={f€Be: l(f— fo.yi)dl<e Vi=12 ...k}

with e > 0 and y1, y2, ..., yx € E. Without loss of generality we may assume that
lyill < lforeveryi = 1,2, ..., k. Forevery i there is some integer n; such that

i = xn;ll < €/4

(since the set (x,),>1 is dense in Bg).
Choose r > 0 small enough that

Mr <g/2 Yi=1,2,...,k.

We claim that for such r, U C V. Indeed, if d(f, fo) < r, we have
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1 .
EHf—fo,xni)l <r Vi=1,2,...,k
and therefore, Vi = 1,2, ...k,
e ¢
[(f = Jo, yi)l = I{f — Jo, yi — xu;) + {f — Jo, xu;)| < 3 + 7

It follows that f € V.

(b) Let fo € Bg~. Given r > 0, we have to find some neighborhood V of fy for
o (E*, E) such that

V.CU={f € Bg; d(f, fo) <r}.
We shall choose V to be
V={fe€Bg; {(f — fo,xi)l <e Vi=1,2,...,k}
with ¢ and k to be determined in such a way that V C U. For f € V we have

k 0

1 1
d(f. fo) = Y 3ol = forwadl + D2 5o lf = fooxa)]
n=1 n=k+1
<e+2 Z o= ¢ + zkEI
n=k+1

Thus, it suffices to take ¢ = 5 and k large enough that zkl—,l <3

*xConversely, suppose Bg~ is metrizable in o (E*, E) and let us prove that E is
separable. Set
Un ={f € Bg~; d(f,0) <1/n}

and let V,, be a neighborhood of 0 in o (E*, E) such that V,, C U,,. We may assume
that V,, has the form

Vo ={f € Bes; {f, x)| <&n Vx € Dy}
with g, > 0 and ®,, is a finite subset of E. Set
D = U D,
n=1

so that D is countable.

We claim that the vector space generated by D is dense in E (which implies that
E is separable). Indeed, suppose f € E* is such that (f, x) =0 Vx € D. It follows
that f € V,, Vn and therefore f € U, Vn,sothat f = 0.

Proof of Theorem 3.29. The proof of the implication
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[E* separable] = [Bg is metrizable in o (E, E*)]

is exactly the same as above—just change the roles of £ and E*. The proof of the
converse is more delicate (find where the proof above breaks down); we refer to
N. Dunford-J. T. Schwartz [1] or Exercise 3.24.

Remark 20. One should emphasize again (see Remark 3) that in infinite-dimensional
spaces the weak topology o (E, E*) (resp. weak* topology o (E*, E)) on all of E
(resp. E™*) is not metrizable; see Exercise 3.8. In particular, the topology induced by
the norm [ ] on all of E* does not coincide with the weak* topology.

Corollary 3.30. Let E be a separable Banach space and let (f,) be a bounded
sequence in E*. Then there exists a subsequence (fy,) that converges in the weak*
topology o (E*, E).

Proof. Without loss of generality we may assume that || f,, || < 1 forall n. The set B+
is compact and metrizable for the topology o (E*, E) (by Theorems 3.16 and 3.28).
The conclusion follows.

We may now return to the proof of Theorem 3.18:

Proof of Theorem 3.18. Let M( be the vector space generated by the x,’s and let
M = M. Clearly, M is separable (see the proof of Theorem 3.26). Moreover, M
is reflexive (by Proposition 3.20). It follows that Bj; is compact and metrizable in
the weak topology o (M, M*), since M* is separable (we use here Corollary 3.27
and Theorem 3.29). We may thus find a subsequence (x,,) that converges weakly
o (M, M*), and hence (x,,) converges also weakly o (E, E*) (as in the proof of
Proposition 3.20).

3.7 Uniformly Convex Spaces

Definition. A Banach space is said to be uniformly convex if
Ve > 0 35 > O such that

xX+y
[x.y € E llx|l <1, |yl <land|x —y| > ¢] = = <1-=4].

The uniform convexity is a geometric property of the unit ball: if we slide a rule
of length ¢ > 0 in the unit ball, then its midpoint must stay within a ball of radius
(1 — §) for some § > 0. In particular, the unit sphere must be “round” and cannot
include any line segment.

Example 1. Let E = R%. The norm |x|l» = [|x1]* + |)cz|2]l/2 is uniformly convex,
while the norm ||x||; = |x{| + |x2| and the norm |x|lcc = max(|x{|, |x2|) are not
uniformly convex. This can be easily seen by staring at the unit balls, as shown in
Figure 3.
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Example 2. As we shall see in Chapters 4 and 5, the L? spaces are uniformly convex
for 1 < p < oo and Hilbert spaces are also uniformly convex.

e Theorem 3.31 (Milman—Pettis). Every uniformly convex Banach space is reflex-
ive.

Remark 21. Uniform convexity is a geometric property of the norm; an equivalent
norm need not be uniformly convex. On the other hand, reflexivity is a topological
property: a reflexive space remains reflexive for an equivalent norm. It is a striking
feature of Theorem 3.31 that a geometric property implies a topological property.
Uniform convexity is often used as a tool to prove reflexivity; but it is not the ul-
timate tool—there are some weird reflexive spaces that admit no uniformly convex
equivalent norm!

Proof. Let & € E* with ||£]| = 1. We have to show that & € J(Bg). Since J(BE)
is closed in E** in the strong topology, it suffices to prove that

7 Ve >0 3x € Bg suchthat & — J(x)|| < e.

Fix ¢ > 0 and let § > O be the modulus of uniform convexity. Choose some f € E*
such that || f]] = 1 and

®) (. f)>1-(0/2)

(which is possible, since ||£]| = 1). Set

V={neE™ |n—-E& f)l <8/2},

so that V' is a neighborhood of £ in the topology o (E**, E*). Since J (Bg) is dense
in B« with respect to o (E**, E*) (Lemma 3.4), we know that V N J(Bg) # ¢ and
thus there is some x € Bg such that J(x) € V. We claim that this x satisfies (7).
Suppose, by contradiction, that [|§ — Jx|| > ¢,i.e.,& € (Jx+eBg~)° = W.The
set W is also a neighborhood of & in the topology o (E**, E*) (since B+ is closed in
o (E**, E*)). Using Lemma 3.4 once more, we know that VW N J(BEg) # ¢, 1i.e.,
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there exists some y € Bg such that J(y) € V N W. Writing that J(x), J(y) € V,
we obtain

[{(f,x) = (& f)l <d/2
and

I(fy) = (&, f)l < 8/2.
Adding these inequalities leads to

26, f) < (fix+y)+8 < lx+yll+4.
Combining with (8), we obtain

xX+y

H>1—8.

It follows (by uniform convexity) that ||x — y|| < &; this is absurd, since J(y) € W
(e, llx =yl > é).

We conclude with a useful property of uniformly convex spaces.

Proposition 3.32. Assume that E is a uniformly convex Banach space. Let (x,,) be a
sequence in E such that x,, — x weakly o (E, E*) and

lim sup [|x, || < |Ix]|.

Then x, — x strongly.

Proof. We may always assume that x # 0 (otherwise the conclusion is obvious). Set
don = max(Ixa [, I1X1D, yu = A, 'xy, and y = x| 7,
so that A, — ||x|| and y,, — y weakly o (E, E*). It follows that
Iyl = liminf || (y, 4+ y)/2]

(see Proposition 3.5(iii)). On the other hand, || y|| = 1 and || y,|| < 1, so that in fact,
l(yn + ¥)/2|| = 1. We deduce from the uniform convexity that ||y, — y|| — 0 and
thus x,, — x strongly.

Comments on Chapter 3

1. The topologies o (E, E*), o (E*, E), etc., are locally convex topologies. As such,
they enjoy all the properties of locally convex spaces; for example, Hahn—Banach
(geometric form), Krein—Milman, etc., still hold; see, e.g., N. Bourbaki [1], A. Knapp
[2], and also Problem 9.
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2. Here is another remarkable property of the weak™ topology that is worth mention-
ing.

* Theorem 3.33 (Banach—Dieudonné—Krein—gmulian). Let E be a Banach space
and let C C E* be convex. Assume that for every integer n the set C N (nBg+) is
closed for the topology o (E*, E). Then C is closed for the topology o (E*, E).

The proof may be found in, e.g., N. Bourbaki [1], R. Larsen [1], R. Holmes [1],
N. Dunford-J. T. Schwartz [1], H. Schaefer[1], and Problem 11. The above references
also include much material related to the Eberlein—Smulian theorem (Theorem 3.19).

3. The theory of vector spaces in duality—which extends the duality (E, E*)—was
very popular in the late forties and early fifties, especially in connection with the
theory of distributions. One says that two vector spaces X and Y are in duality if
there is a bilinear form (, ) on X x Y that separates points (i.e., Vx 7% 0 3y such that
(x,y) # 0and Yy # 0 3x such that (x, y) # 0). Many topologies may be defined
on X (or Y) such as the weak topology o (X, Y), Mackey’s topology 7(X, Y), and
the strong topology B(X, Y). These topologies are of interest in spaces that are
not Banach spaces, such as the spaces used in the theory of distributions. On this
subject the reader may consult, e.g., N. Bourbaki [1], H. Schaefer [1], G. Kothe [1],
F. Treves [1], J. Kelley—I. Namioka [1], R. Edwards [1], J. Horvath [1], etc.

4. The properties of separability, reflexivity, and uniform convexity are also related
to the differentiability properties of the function x — ||x|| (see, e.g., J. Diestel [1],
B. Beauzamy [1], and Problem 13). The existence of equivalent norms with nice
geometric properties has been extensively studied. For example, how does one know
whether a Banach space admits an equivalent uniformly convex norm? how use-
ful is this information? (such spaces are called superreflexive; see, e.g., J. Diestel
[1] or B. Beauzamy [1]). The geometry of Banach spaces has flourished since the
early sixties and has become an active field associated with the names A. Dvoret-
zky, A. Grothendieck, R. C. James, J. Lindenstrauss, V. Milman, L. Tzafriri (and
their group in Israel), A. Pelczynski, P. Enflo, L. Schwartz (and his group including
G. Pisier, B. Maurey, B. Beauzamy), W. B. Johnson, H. P. Rosenthal, J. Bourgain,
D. Preiss, M. Talagrand, T. Gowers, and many others. On this subject the reader
may consult the books of B. Beauzamy [1], J. Diestel [1], [2], J. Lindenstrauss—
L. Tzafriri [2], L. Schwartz [2], R. Deville-G. Godefroy—V. Zizler [1], Y. Benyamini
and J. Lindenstrauss [1], F. Albiac and N. Kalton [1], A. Pietsch [1], etc.

Exercises for Chapter 3

3.1 |Let E be a Banach space and let A C E be a subset that is compact in the weak
topology o (E, E*). Prove that A is bounded.

Let E be a Banach space and let (x,) be a sequence such that x,, — x in the
weak topology o (E, E™*). Set



80 3 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity
1
op=—(x1 +x2+ -+ xp).
n

Prove that 0, — x in the weak topology o (E, E*).

Let E be a Banach space. Let A C E be a convex subset. Prove that the closure
of A in the strong topology and that in the weak topology o (E, E*) are the same.

Let E be a Banach space and let (x,) be a sequence in E such that x,, — x in
the weak topology o (E, E™*).

1. Prove that there exists a sequence (y;,) in E such that

(2) yn € conv (U{x,-}) Vn

i=n
and

(b) yn — x  strongly.

2. Prove that there exists a sequence (z,,) in E such that

(@) Zn € conv (U{x,-}> Vn

i=1
and

() Zyn — x  strongly.

Let E be a Banach space and let K C E be a subset of E that is compact in the
strong topology. Let (x,) be a sequence in K such that x, — x weakly o (E, E*).
Prove that x,, — x strongly.

[Hint: Argue by contradiction.]

Let X be a topological space and let E be a Banach space. Letu,v: X — E
be two continuous maps from X with values in E equipped with the weak topology
o(E, E®).

1. Prove that the map x — u(x) + v(x) is continuous from X into E equipped
with o (E, E*).

2. Leta : X — R be a continuous function. Prove that the map x — a(x)u(x) is
continuous from X into E equipped with o (E, E*).

Let E be a Banach space and let A C E be a subset that is closed in the weak
topology o (E, E*). Let B C E be a subset that is compact in the weak topology
o(E, E*).
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1. Prove that A + B is closed in o (E, E*).
2. Assume, in addition, that A and B are convex, nonempty, and disjoint. Prove that
there exists a closed hyperplane strictly separating A and B.

Let E be an infinite-dimensional Banach space. Our purpose is to show that E
equipped with the weak topology is not metrizable. Suppose, by contradiction, that
there is a metric d(x, y) on E that induces on E the same topology as o (E, E*).

1. For every integer k > 1 let Vj denote a neighborhood of 0 in the topology
o (E, E*), such that

1
Vi C {er; d(x,0)<%}.

Prove that there exists a sequence (f;,) in E* such that every g € E™* is a (finite)
linear combination of the f;,’s.
[Hint: Use Lemma 3.2.]

2. Deduce that E* is finite-dimensional.

[Hint: Use the Baire category theorem as in Exercise 1.5.]

Conclude.

4. Prove by a similar method that E* equipped with the weak* topology o (E*, E)
is not metrizable.

bt

Let E be a Banach space; let M C E be a linear subspace, and let fy € E™*.
Prove that there exists some ggp € M~ such that

inf || fo— gl = Il.fo — goll-
geM+

Two methods are suggested:

1. Use Theorem 1.12.
2. Use the weak™ topology o (E*, E).

Let E and F be two Banach spaces. Let T € Z(E, F), so that T* ¢
ZL(F*, E*). Prove that T* is continuous from F* equipped with o (F*, F) into
E* equipped with o (E*, E).

Let E be a Banach space and let A : E — E* be a monotone map defined on
D(A) = E; see Exercise 2.6. Assume that for every x, y € E the map

teR—> (A(x +ty), y)

is continuous at t = 0. Prove that A is continuous from E strong into E* equipped
with o (E*, E).

Let E be a Banach space and let xo € E. Let ¢ : E — (—00, +00] be a
convex l.s.c. function with ¢ # 400.
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1. Show that the following properties are equivalent:

(A) 3R,3IM < +oosuchthat p(x) < M, Vx € E with ||x —xp|| < R,

(B) lim {e*(f) = (f, x0)} = +00.
feE

Ifll—00

2. Assuming (A) or (B) prove that
inf {@*(f) — (f, x0)} 1is achieved.
feE*

[Hint: Use the weak™ topology o (E*, E) or Theorem 1.12.]
What is the value of this inf?

Let E be a Banach space. Let (x,) be a sequence in E and let x € E. Set
o
K, = conv (U{x,-}).
i=n

1. Prove that if x,, — x weakly o (E, E*), then

() Kn = (x).
n=1

2. Assume that E is reflexive. Prove that if (x,) is bounded and if ﬂ;’lil K, = {x},
then x, — x weakly o (E, E™*).

3. Assume that E is finite-dimensional and ﬂff: | K = {x}. Prove that x,, — x.
[Note that we do not assume here that (x,) is bounded.]

4. In £7,1 < p < oo (see Chapter 11), construct a sequence (x,) such that
N2, Ky = {x}, and (x,) is not bounded.
[I owe the results of questions 3 and 4 to Guy Amram and Daniel Baffet.]

Let E be a reflexive Banach space and let I be a set of indices. Consider a
collection (f;);e7 in E* and a collection («;);c; in R. Let M > 0.
Show that the following properties are equivalent:

) There exists some x € E with ||x|| < M such that (f;, x) = «;
foreveryi € I.

®) One has | Y ;; Biail < M| Y ;c; Bi fill for every collection (B;)ics
in R with J C I, J finite.

Compare with Exercises 1.10, 1.11 and Lemma 3.3.
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Center of mass of a measure on a convex set.

Let E be areflexive Banach space and let K C E be bounded, closed, and convex.
In the following K is equipped with o (E, E*), so that K is compact. Let F = C(K)
with its usual norm. Fix some p € F* with ||| = 1 and assume that x > 0 in the
sense that
(w,u) >0 VYueC(K), u>0onKk.

Prove that there exists a unique element xo € K such that

(H (, fik) = (fix0) VfekE"

[Hint: Find first some xg € E satisfying (1), and then prove that xg € K with the
help of Hahn—Banach.]

Let E be a Banach space.

1. Let (f,) be a sequence in (E™) such that for every x € E, {f,, x) converges to

a limit. Prove that there exists some f € E* such that f;, A fino(E*, E).

2. Assume here that E is reflexive. Let (x,,) be a sequence in E such that for every
f € E*, {f, x,) converges to a limit. Prove that there exists some x € E such
that x, — x ino (E, E*).

3. Construct an example in a nonreflexive space E where the conclusion of 2 fails.
[Hint: Take E = ¢( (see Section 11.3) and x,, = (1, 1, ..., (1), 0,0,...).]

n

3.17
1. Let (x™) be a sequence in £ with 1 < p < co. Assuming x* — x in o (€7, EP/)
prove that:
(a) (x") is bounded in £7,
(b) x! —— x; for every i, where x" = (x{,x5,...,x/',...) and x =
n—o0
(X1, X2, ooy Xiy o).

2. Conversely, suppose (x") is a sequence in £7 with 1 < p < co. Assume that (a)
and (b) hold (for some limit denoted by x;). Prove that x € £ and that x" — x
ino(LP,L7).

For every integer n > 1 let

e"=(0,0,...,1,0,...).

(n)

1. Prove that&” — 0 in £” weakly o (€7, £7") with 1 < p < 0.
n—>oo

2. Prove that there is no subsequence (¢*) that converges in £! with respect to
o (el ).

3. Construct an example of a Banach space E and a sequence (f;) in E* such
that || ;|| = 1 Vn and such that (f,) has no subsequence that converges in
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o (E™, E). Is there a contradiction with the compactness of Bg~ in the topology
o(E*, E)?
[Hint: Take E = £°°.]

[3.19|Let E = ¢7 and F = ¢4 with 1 < p < ooand 1 < g < co.Leta: R — R
be a continuous function such that

la(t)| < C|t|P? Vi e R.

Given
X =(X1,X2,...,%,...) €LP,

set
Ax = (a(xl), a(xy),...,a(x;), )

1. Prove that Ax € ¢9 and that the map x +— Ax is continuous from ¢” (strong)
into £9 (strong).

2. Prove that if (x") is a sequence in £” such that x" — x in o (£7, 61’/) then
Ax" — Axino (€4, 9.

3. Deduce that A is continuous from Bg equipped with o (E, E*) into F equipped
with o (F, F*).

Let E be a Banach space.

1. Prove that there exist a compact topological space K and an isometry from E
into C(K) equipped with its usual norm.
[Hint: Take K = Bg+ equipped with o (E*, E).]

2. Assuming that E is separable, prove that there exists an isometry from E into
£,

Let E be a separable Banach space and let (f,) be a bounded sequence
in E*. Prove directly—without using the metrizability of E*—that there exists a
subsequence ( f;, ) that converges in o (E*, E).

[Hint: Use a diagonal process.]

Let E be an infinite-dimensional Banach space satisfying one of the following
assumptions:

(a) E™ is separable,
(b) E is reflexive.

Prove that there exists a sequence (x,) in E such that

lx.l=1 Vn and x, — Oweaklyo(E, E).

The proof of Theorem 2.16 becomes much easier if E is reflexive. Find, in
particular, a simple proof of (b) = (a).
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The purpose of this exercise is to sketch part of the proof of Theorem 3.29,
i.e., if E is a Banach space such that B is metrizable with respect to o (E, E*), then
E™ is separable. Let d (x, y) be a metric on Bg that induces on Bg the same topology
aso(E, E*). Set

1
U, = {x € Bg; d(x,0) < —}.
n

Let V,, be a neighborhood of 0 for o (E, E*) such that V,, C U,. We may assume
that V,, has the form

Va={x e E;|[(f,x)l <& V[ Dy}
with e, > 0 and ®, C E™* is some finite subset. Let D = U2 | ®, and let F denote
the vector space generated by D. We claim that F is dense in E* with respect to the

strong topology. Suppose, by contradiction, that F # E*.

1. Prove that there exist some & € E** and some fp € E* such that

(6. fo) > 1, (5§ f)=0 VfeF, and |[§]=1

1
W= {x € Bg: [(fo.x)| < 5}-

Prove that there is some integer ng > 1 such that V,,;, C W.
3. Prove that there exists x; € Bg such that

(fox1) = & )] <eny VS € Dy,
1
(o k1) = (6. fol < 5

4. Deduce that x; € V,, and that ( fo, x1) >
5. Conclude.

1
3

Let K be a compact metric space that is not finite. Prove that C(K) is not
reflexive.

[Hint: Let (a,) be a sequence in K such that @, — a and a,, # a Vn. Consider
the linear functional f(u) = 2211 zinu(an), u € C(K), and proceed as in Exercises
1.3 and 1.4.]

Let F be a separable Banach space and let (a,) be a dense subset of Bf.
Consider the linear operator T : £! — F defined by

o0
Tx:ina,- with x = (x1,x2, ..., Xy, ...) cel.

i=1

1. Prove that T is bounded and surjective.
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In what follows we assume, in addition, that F is infinite-dimensional and that
F* is separable.

2. Prove that T has no right inverse.

[Hint: Use the results of Exercise 3.22 and Problem 8.]
3. Deduce that N(T') has no complement in 28
4. Determine E*.

Let E be a separable Banach space with norm || ||. The dual norm on E* is
also denoted by || ||. The purpose of this exercise is to construct an equivalent norm
on E that is strictly convex and whose dual norm is also strictly convex.

Let (a,) C Bpg be a dense subset of Bg with respect to the strong topology. Let
(bn) C B~ be acountable subset of Bg~ that is dense in Bg» for the weak* topology
o (E*, E). Why does such a set exist?

Given f € E*, set

1/2
Il = {nfn2 +Z—| [ an)| } :

1. Prove that || || is a norm equivalent to || ||.
2. Prove that || || is strictly convex.
[Hint: Use Exercise 1.26.]

Given x € E, set

00 172
1
||x||z={||x||%+§ 2—n|<bn,x>|2} :
n=1

where |lx 1 = supy s, <1 (f; x).
. Prove that || ||2 is a strictly convex norm that is equivalent to || ||.
4. Prove that the dual norm of || ||, is also strictly convex.
[Hint: Use the result of Exercise 1.23, question 3.]
5. Find another approach based on the results of Problem 4.

(O8]

Let E be a uniformly convex Banach space. Let F' denote the (multivalued)
duality map from E into E*, see Remark 2 following Corollary 1.3 and also Exer-
cise 1.1.

Prove that for every f € E* there exists a unique x € E such that f € Fx.
Let E be a uniformly convex Banach space.

1. Prove that VM > 0, Ve > 0, 3§ > 0 such that

xX+y
2
Vx,y€ E with |x|| <M, |yll<M and [x—yl>e.

1 2
‘ Ellxll ||y||
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[Hint: Argue by contradiction.]
2. Same question when || || is replaced by || ||” with I < p < oco.

Let E be a Banach space with norm || ||. Assume that there exists on E an
equivalent norm, denoted by | [, that is uniformly convex.

Prove that given any k > 1, there exists a uniformly convex norm ||| ||| on E such
that
Xl < lllxll < kllx]l  Vx € E.
[Hint: Set ||x[|> = |Ix||®> + «|x|> with @ > 0 small enough and use Exercise
3.29.]

Example: £ = R".
Let E be a uniformly convex Banach space.

1. Prove that :
Ve >0, Vae (O, 5) , 38 > 0 such that

ltx+ A=)yl <1-46
Vie[a,l —a], Vx,yeE withl|x|| <1, [yl <land|x—yl=>e.
[Hint: If ¢ <t < % write tx + (1 — 1)y = %(y +2).]

2. Deduce that E is strictly convex.

Projection on a closed convex set in a uniformly convex Banach space.
Let E be a uniformly convex Banach space and C C E anonempty closed convex
set.

1. Prove that for every x € E,
inf ||x —
yeC ” )’||

is achieved by some unique point in C, denoted by Pcx.
2. Prove that every minimizing sequence (y,) in C converges strongly to Pcx.
Prove that the map x +> Pcx is continuous from E strong into E strong.
4. More precisely, prove that Pc is uniformly continuous on bounded subsets of E.
[Hint: Use Exercise 3.29.]

W

Lety : E — (—00, +00] be a convex L.s.c. function, ¢ # +o0.
5. Prove that for every x € E and every integer n > 1,

inf {nllx = yI2 + o]
yeE

is achieved at some unique point, denoted by y,.
6. Prove that y, —— Pcx, where C = D(p).
n— o0







Chapter 4
L? Spaces

Let (2, M, ) denote a measure space, i.e., 2 is a set and

(i) Misao-algebrain Q,i.e., M is a collection of subsets of €2 such that:

(a) B e M,
b) Ae M= Ae M,
(¢) Upey An € M whenever A, € M Vn,

(ii) w is a measure,i.e., u : M — [0, oo] satisfies
(@ n@ =0,
o o0
) n < U A,,) = |J u(A,) whenever (A,) is a disjoint

n=1 n=1
countable family of members of M.
The members of M are called the measurable sets. Sometimes we shall
write |A| instead of w1 (A). We shall also assume—even though this is not
essential—that

(iii) 2 is o-finite, i.e., there exists a countable family (£2,) in M such that 2 =
Uo2, Q24 and 1(82,) < 00 Vn.

The sets E € M with the property that u(E) = 0 are called the null sets. We
say that a property holds a.e. (or for almost all x € ) if it holds everywhere on €2
except on a null set.

We assume that the reader is familiar with the notions of measurable functions
and integrable functions f : Q2 — R; see, e.g., H. L. Royden [1], G. B. Folland [2],
A.Knapp[1],D.L.Cohn[1],A. Friedman [3], W. Rudin [2], P. Halmos [1], E. Hewitt—
K. Stromberg [1], R. Wheeden—A. Zygmund [1], J. Neveu [1], P. Malliavin [1],
A.J. Weir [1], A. Kolmogorov—S. Fomin [1], I. Fonseca—G. Leoni [1]. We denote by
LY(Q, ), or simply L'(2) (or just L), the space of integrable functions from £
into R.

We shall often write [ f instead of | o f du, and we shall also use the notation

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 89
DOI 10.1007/978-0-387-70914-7 4, © Springer Science+Business Media, LLC 2011
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1f 1l = 1£ 1 =/Q|f|du=/|fl-

As usual, we identify two functions that coincide a.e. We recall the following basic
facts.

4.1 Some Results about Integration That Everyone Must Know

e Theorem 4.1 (monotone convergence theorem, Beppo Levi). Let (f,,) be a se-
quence of functions in L' that satisfy

@A L= fup1 Z---aeon
(b) sup, [ fn < oo.

Then f,(x) converges a.e. on 2 to a finite limit, which we denote by f(x); the
function f belongs to L' and || f, — f|1 — O.

e Theorem 4.2 (dominated convergence theorem, Lebesgue). Let (f,,) be a se-
quence of functions in L' that satisfy

@ f,(x) = f(x)ae. on%,
(b) there is a function g € L' such that for all n, | f,(x)| < g(x) a.e. on L.

Then f € L' and || f, — fll1 = O.
Lemma 4.1 (Fatou’s lemma). Let ( f;,) be a sequence of functions in L' that satisfy

(a) foralln, f, >0 a.e.
(b) sup, [ fn < oo.

For almost all x € Q we set f(x) = liminf, 0 f; (x) < 400. Then f € L' and

n—o0

f< liminf/fn.

A basic example is the case in which @ = RV, M consists of the Lebesgue
measurable sets, and p is the Lebesgue measure on RV,

Notation. We denote by C. (RM) the space of all continuous functions on RY with
compact support, i.e.,

C.(RV) = {f e C(RM); f(x)=0 Vxe RN\K, where K is compact}.
Theorem 4.3 (density). The space C.(RY) is dense in L'(RN); i.e.,
VfeL'RY) Ve >0 3f; € C.(RY) such that | f — fill1 < e.

Let (21, My, uy) and (22, M3 , o) be two measure spaces that are o -finite.
One can define in a standard way the structure of measure space (2, M , u) on the
Cartesian product 2 = Q1 x .
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Theorem 4.4 (Tonelli). Let F(x,y) : Q21 x Q2 — R be a measurable function
satisfying

(a) / |F(x,y)|lduy < oo forae.x € Q
Q)

and

(b) / dus / IF e, ldps < o0,
Q Q)

Then F € L'(Q1 x Q).

Theorem 4.5 (Fubini). Assume that F € L'($) x ). Then for ae. x € Q,
F(x,y) € L;(Qz) and sz F(x,y)du, € L}C(Ql). Similarly, for ae. y € Qa,

F(x,y) € Ly(Q1) and [g F(x, y)du; € Ly(Q).
Moreover, one has

/ dm/ F(x,y)dm:/ sz/ F(x, y)du =/f F(x, y)dpidp,.
Q) Q) Q) Q QI xQ)

4.2 Definition and Elementary Properties of L? Spaces

Definition. Let p € R with 1 < p < oo; we set
LP(Q) = {f : Q2 — R; f is measurable and | | € LI(SZ)}
with
1/p
1 £l = I£1p = [/Q lf(X)I”du} .

We shall check later on that || ||, is a norm.

Definition. We set

f is measurable and there is a constant C
L°°(Q)={f:§2—>R }

such that | f(x)] < C a.e.on Q

with
| fllLe = |l fllo =inf{C; |f(x)] < C a.e. on 2}.

The following remark implies that || ||~ is @ norm:

Remark 1. If f € L* then we have

| f] < I fllc ae.on 2.

Indeed, there exists a sequence C, such that C,, — || f||co and for each n, | f(x)| <
C, ae. on Q. Therefore |f(x)| < C, for all x € Q\E,, with |E,| = 0. We set
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E =U2 | E,, sothat |[E| = 0and
[f()] < Cy Vn, VxeQ\E;

it follows that | f(x)] < | fllee  Vx € Q\E.

Notation. Let 1 < p < oo; we denote by p’ the conjugate exponent,

e Theorem 4.6 (Holder’s inequality). Assume that f € L?P and g € L?" with
1 < p <oo. Then fg € L' and

n [ 1751 =151, gt

Proof. The conclusion is obvious if p = 1 or p = oo; therefore we assume that
1 < p < 0o. We recall Young’s inequality:'

1 1
2) ab < —aP + =b" Ya =0, Vb=0.
p p

Inequality (2) is a straightforward consequence of the concavity of the function
log on (0, 00):

1 | - 1 1 /
log (—a” + —/bp> > —log a’ + — log b¥ =log ab.
p p p p

We have
1 1 /
[f(x)g(x)| < ;|f(x)|p + ?Ig(x)V’ ae.x € Q.

It follows that fg € L! and

! py ] 4
3 [ 17l < Ll + el
Replacing f by Af (A > 0) in (3), yields
APl » 1 v
@ [ 17 < U1+ el
Choosing A = ||f||lj1 ||g||§,/p (so as to minimize the right-hand side in (4)), we

obtain (1).

!' It is sometimes convenient to use the form ab < ga? + Cgbf’/ with C, = g~ Vp=D,
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Remark 2. Ttis useful to keep in mind the following extension of Holder’s inequality:

Assume that f1, f2, ..., fr are functions such that
. . o1 1 1 1
fiell, 1<i<kwith—=—+4—+ ...+ —<1.
p P P2 Pk

Then the product f = f1 f>--- fi belongs to L” and

1Al < Wfillpi A2l - - L il -

Inparticular, if f € LPNLY with1 < p < g < oo,then f € L forallr,p <r <gq,
and the following “interpolation inequality” holds:

l—«o
q

1— 1 o
1l < WG], where — = "

see Exercise 4.4.
Theorem 4.7. L? is a vector space and || |, is a norm for any p, 1 < p < oo.

Proof. The cases p = 1 and p = oo are clear. Therefore we assume 1 < p < oo
and let f, g € LP. We have

L)+ g7 = (f )]+ 1g()D? =27 f ()17 + g()IP).

Consequently, f + g € L?. On the other hand,
||f+g||£=/|f+g|"—1|f+g| s/|f+g|"—1|f|+/|f+g|"—1|g|.

But |f +g|P ! e L?, and by Holder’s inequality we obtain

-1
If+glly < If +ellp Al +liglp).

ie, If+glp = Ifllp+1glp
e Theorem 4.8 (Fischer-Riesz). L? is a Banach space for any p, 1 < p < oo.

Proof. We distinguish the cases p = oo and 1 < p < co.

Case 1: p = oo. Let (f,) be a Cauchy sequence is L°°. Given an integer k > 1
there is an integer Ny such that || f;, — fulleo < Lform,n > Nr. Hence there is a
null set E; such that

1

%) [fm(x) = fu()l =~ Vx € Q\E, Vm,n = Ni.

Ll

Then we let E = Uk Er—so that E is a null set—and we see that for all x € Q\E,
the sequence f;, (x) is Cauchy (in R). Thus f,(x) — f(x) forall x € Q\E. Passing
to the limit in (5) as m — oo we obtain
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forall x € Q\E, Vn > N.

==

If ) = fa()] <

We conclude that f € L™ and || f — fulloo < % Vn > Ny; therefore f, — f
in L.

Case2:1 < p < oo. Let (f;;) be a Cauchy sequence in L”. In order to conclude,
it suffices to show that a subsequence converges in L”.
We extract a subsequence ( f;;, ) such that

1
| frgsr — Fuillp < 7% Vk > 1.

[One proceeds as follows: choose ny such that || f,, — fullp, < % Vm,n > ny;
then choose ny > np such that || f, — fullp < 21—2 Vm,n > np etc.] We claim that
fu, converges in L?. In order to simplify the notation we write f; instead of f,,, so

that we have

1
(©6) I ferr = fellp < 5 VA= 1.

Let .
g () =D | fir1(¥) — fi(x)l,
k=1
so that
lgallp < 1.

As a consequence of the monotone convergence theorem, g, (x) tends to a finite limit,
say g(x), a.e. on 2, with g € L?. On the other hand, for m > n > 2 we have

[fn () = fn O] = [ fn (X)) = fn—1 GO+ -+ fur1 () = fa ()] = (X)) = gn—1(x).

It follows that a.e. on 2, f,(x) is Cauchy and converges to a finite limit, say f (x).
We have a.e. on €2,

@) If () = fu(x)| < gx)  forn =2,

and in particular f € LP. Finally, we conclude by dominated convergence that
Il fu — fll, = O,since | f,(x) — f(x)|? — Oae.andalso |f, — f|¥ < gP € Ll

Theorem 4.9. Let (f;) be a sequence in L and let f € L? be such that || f, — |l
— 0.

Then, there exist a subsequence (fy,) and a function h € L? such that

@) fn,(x) > f(x)ae.onQ,
®) | fu, ()] < h(x) Vk, ae.on Q.

Proof. The conclusion is obvious when p = co. Thus we assume 1 < p < oo. Since
(f») 1s a Cauchy sequence we may go back to the proof of Theorem 4.8 and consider
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a subsequence ( f,,, )—denoted by ( fx)—satisfying (6), such that f; (x) tends a.e. to
a limit?> f*(x) with f* € LP. Moreover, by (7), we have | f*(x) — fr(x)] < g(x)
Vk, a.e. on Q with g € L?. By dominated convergence we know that fy — f* in
L? and thus f = f* a.e. In addition, we also have | fi(x)| < | f*(x)| + g(x), and
the conclusion follows.

4.3 Reflexivity. Separability. Dual of L?

We shall consider separately the following three cases:

A) 1 <p<oo,
B p=1,
(©) p=o0.

A. Study of L?(R) for1 < p < oo.
This case is the most “favorable”: L” is reflexive, separable, and the dual of L?
is L.

e Theorem 4.10. L7 is reflexive for any p, 1 < p < oc.

The proof consists of three steps:

Step 1 (Clarkson’s first inequality). Let 2 < p < oco. We claim that

P —
n H f . g

p

f+sg
(8) H —

|
=< E(Ilfllﬁ +lglp) Vfgel”
p

Proof of (8). Clearly, it suffices to show that

p p

a—>b
2

a+b
2

1
< E(Ialf’ +1b|") Va,beR.

First we note that
af + 7 < @+ BHP? VYa, >0

(by homogeneity, assume 8 = 1 and observe that the function
2+ P —xP —1

increases on [0, 00)). Choosing o = |#| and g = |%|, we obtain
P 2\ P12 2 \P?
< =5+ < 5(al"+1bI")

2 2
2 A priori one should distinguish f and f*: by assumption f, — f in L, and on the other hand,
S () = f*(x) ae.

P la—b

2

a+b
2

a+b
2

2 a—>b
2
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(the last inequality follows from the convexity of the function x — |x|P/? since
p=2).

Step 2: L? is uniformly convex, and thus reflexive for 2 < p < oo. Indeed, let
e>0andlet f,g € L? with | fll, <1, |Igll, <1,and || f — gll, > &. We deduce
from (8) that

P E\P
<1- (—)
2

=)

and thus ||%||,, < 1-=38withs = 1 —[1 — (§P]"/? > 0. Therefore, L? is
uniformly convex and thus reflexive by Theorem 3.31.

Step 3: L? is reflexive for 1 < p < 2.

Proof. Let1 < p < oo. Consider the operator T : L? — (LP/)* defined as follows:
Letu € L? be fixed; the mapping f € L? + [ uf is acontinuous linear functional
on L and thus it defines an element, say Tu, in (Lp/)* such that

(Tu,f)=/uf VfelLl.
We claim that
(9) ”Tu”(Lp/)* = ||14||p Yu e LP.

Indeed, by Holder’s inequality, we have

(Tu, £) < lull, £y ¥feLl

and therefore ||Tu||(L,,/)* < ullp.
On the other hand, set

foto) = u@P2u(x)  (folx) =0if u(x) =0).

Clearly we have

/ -1
foeL? N folly = [ul} ™ and (Tu, fo) = llul}p:
thus

(Tu, fo)

(10) ITull gy =
T Aol

= llullp-

Hence, we have shown that T is an isometry from L? into (LI’/)*, which implies that
T (L?) is a closed subspace of (L” )" (because L” is a Banach space).
Assume now 1 < p < 2. Since L? is reflexive (by Step 2), it follows that (Lp/)*
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is also reflexive (Corollary 3.21). We conclude, by Proposition 3.20, that T'(L?) is
reflexive, and as a consequence, L7 is also reflexive.

Remark 3. In fact, L? is also uniformly convex for 1 < p < 2.This is a consequence
of Clarkson’s second inequality, which holds for 1 < p < 2:

f+g
2

4 _
+Hf2g
P

4 1 p 1 » 1/(p—1) )
=(slneslel) et

This inequality is trickier to prove than Clarkson’s first inequality (see, e.g., Prob-
lem 20 or E. Hewitt—K. Stromberg [1]). Clearly, it implies that L? is uniformly convex
when 1 < p < 2; for another approach, see also C. Morawetz [1] (Exercise 4.12) or
J. Diestel [1].

e Theorem 4.11 (Riesz representation theorem). Ler 1 < p < oo and let ¢ €
(LP)*. Then there exists a unique function u € LP such that

<¢,f>=/ uf VfelLP.

Moreover,
el =@l 1oy

Remark 4. Theorem 4.11 is very important. It says that every continuous linear func-
tional on L? with 1 < p < oo can be represented “concretely” as an integral. The
mapping ¢ +— u, which is a linear surjective isometry, allows us to identify the
“abstract” space (L?)* with LY.

In what follows, we shall systematically make the identification

(LPY* = L7

Proof. We consider the operator T : L? — (LP)* defined by (Tu, f) = [uf

Vu € L,V f € LP. The argument used in the proof of Theorem 4.10 (Step 3)
shows that /
”Tu”(Lp)* = ||M||p’ Yu e L? .

We claim that T is surjective. Indeed, let E = T(Lp/). Since E is a closed subspace,
it suffices to prove that E is dense in (LP)*. Let h € (LP)** satisfy (h, Tu) = 0
Yu e L” . Since L? is reflexive, h € LP, and satisfies fuh =0VuelL”. Choosing
u = |h|P~2h, we see that h = 0.

Theorem 4.12. The space C.(RN) is dense in LP (RN) for any p, 1 < p < oo.
Before proving Theorem 4.12, we introduce some notation.

Notation. The truncation operation T,, : R — R is defined by
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r if [r] < n,
T,r = § nr

— if [r| > n.
|7

Given a set E C 2, we define the characteristic function3 XE to be

1 ifx e E,

X) =
XE() {o if x € Q\E.

Proof. First, we claim that given f € L?(RY) and ¢ > 0 there exist a function
g € L*(R") and a compact set K in R" such that g = 0 outside K and

(11) If = gllp <e.

Indeed, let x, be the characteristic function of B(0,n) and let f, = x,7,f. By
dominated convergence we see that || f, — fIl, — O and thus we may choose
g = fn with n large enough. Next, given § > 0 there exists (by Theorem 4.3) a
function g; € C.(R") such that

g — g1l <.

We may always assume that || g1 ||co < ||€]lco; Otherwise, we replace g by 7,,g1 with
n = ||g|lco- Finally, we have

1 1-(1 _
g —gill, < llg — g11y"” llg — g1l "? < 8P 2lIgla) =P
We conclude by choosing § > 0 small enough that
87 2lgllo)' =P <&

Definition. The measure space 2 is called separable if there is a countable family
(E,) of members of M such that the o-algebra generated by (E,) coincides with
M (i.e., M is the smallest o -algebra containing all the E},’s).

Example. The measure space Q = R” is separable. Indeed, we may choose for (E,,)
any countable family of open sets such that every open set in R" can be written as a
union of E,’s. More generally, if Q2 is a separable metric space and M consists of
the Borel sets (i.e., M is the o-algebra generated by the open sets in €2), then Q2 is a
separable measure space.

Theorem 4.13. Assume that Q is a separable measure space. Then LP(S2) is sepa-
rable for any p, 1 < p < oo.

We shall consider only the case Q2 = R¥, since the general case is somewhat
tricky. Note that as a consequence, L?(2) is also separable for any measurable
set @ C RY. Indeed, there is a canonical isometry from L”(£2) into LP(RY) (the

3 Not to be confused with the indicator function I introduced in Chapter 1.
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extension by 0 outside €2); therefore L?”(£2) may be identified with a subspace of
LP(RN) and hence L? () is separable (by Proposition 3.25).

Proof of Theorem 4.13 when Q@ = RY. Let R denote the countable family of sets
in RV of the form R = ]_[,ivzl(ak, by) with ay, by € Q. Let £ denote the vector
space over (Q generated by the functions (xg) gpeR., that is, £ consists of finite linear
combinations with rational coefficients of functions g, so that £ is countable.

We claim that £ is dense in L?(R"). Indeed, given f € LP(RV) and ¢ > 0,
there exists some fi € C.(RV) such that || f — f; l, <& Let R € R be any cube
containing supp f1 (the support of f1). Given § > 0 it is easy to construct a function
f>» € £ such that || fi — f2]lec < 8 and f> vanishes outside R: it suffices to split
R into small cubes of R where the oscillation (i.e., sup — inf) of fj is less than §.
Therefore we have || fi — f2ll, < lfi — f2lloolRI'/P < 8|R|'/P. We conclude that
I f — f2llp < 2e, provided § > 0 is chosen so that §|R|'/? < e.

B. Study of L1(%).
We start with a description of the dual space of L' ().

e Theorem 4.14 (Riesz representation theorem). Let ¢ € (L')*. Then there exists
a unique function u € L such that

<¢>,f>=/uf vielLl.

Moreover,
lulloo = ll@pllp1ys-

e Remark 5. Theorem 4.14 asserts that every continuous linear functional on L' can
be represented “concretely” as an integral. The mapping ¢ +— u, which is a linear
surjective isometry, allows us to identify the “abstract” space (L')* with L. In what
follows, we shall systematically make the identification

(LY* = L.

Proof. Let (£2;;) be a sequence of measurable sets in € such that Q = US|, and
|2,| <00 Vn.Set x, = xq,.
The uniqueness of u is obvious. Indeed, suppose u € L™ satisfies

/uf:O VielLl

Choosing f = x;, signu (throughout this book, we use the convention that sign 0 =
0), we see that u = 0 a.e. on 2, and thus u = 0 a.e. on Q.
We now prove the existence of u. First, we construct a function 8 € L*(S)
such that
O(x)>¢e,>0 VxeQ,.
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It is clear that such a function 6 exists. Indeed, we define 6 to be «w; on 21, ay
on 2\, ..., o, on 2,\2,_1, etc., and we adjust the constants ¢, > 0 in such a
way that 0 € L.

The mapping f € L*>(Q2) > (¢, 6f) is a continuous linear functional on L?(£2).
By Theorem 4.11 (applied with p = 2) there exists a function v € L?(2) such that

(12) (¢,0f) = / vf VfeLXQ).

Set u(x) = v(x)/0(x). Clearly, u is well defined since 6 > 0 on £2; moreover, u is
measurable and uy, € L?(X2). We claim that u has all the required properties. We
have

13) (. xn8) :/ang Vg € L*(Q) Vn.

Indeed, it suffices to choose f = x,g/6 in (12) (note that f € L?() since fis
bounded on 2, and f = 0 outside £2,,).
Next, we claim that u € L°°(£2) and that

(14) lulloo < ll@ll g1y
Fix any constant C > [[¢|| .1y~ and set
A={xeQux) > C}.

Let us verify that A is a null set. Indeed, by choosing g = x4 sign « in (13) we obtain

/ lul < Nl p1y1A N Ly
AN,
and therefore

CIAN Q| < 1@l z1) |4 N Q1.

It follows that |A N 2,| = 0 Vn, and thus A is a null set. This concludes the proof
of (14).
Finally, we claim that

(15) @Jﬁ:/@h Vh e L1(Q).

Indeed, it suffices to choose g = T,k (truncation of /) in (13) and to observe that
snTph — hin L1().

In order to complete the proof of Theorem 4.14 it remains only to check that
lulloo = ll@ll(r1)+- We have, by (15),

(@, )] < llullollilli VR € L'(Q),
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and therefore |||l (1)« < |[u|lco- We conclude with the help of (14).

e Remark 6. The space L' () is never reflexive except in the trivial case where
consists of a finite number of atoms—and then L' (2) is finite-dimensional. Indeed
suppose, by contradiction, that L! () is reflexive and consider two cases:

(i) Ve > 0 dw C @ measurable with 0 < p(w) < e.
(i) 3¢ > O such that u(w) > ¢ for every measurable set w C 2 with u(w) > 0.

In Case (i) there is a decreasing sequence (w,) of measurable sets such that
wu(w,) > 0 Vn and p(w,) — 0 [choose first any sequence (w;) such that 0 <
p(w)) < 1/2% and then set w, = | J52,, w}]-

Let x, = Xw, and define u, = x,/llxnll1. Since |lu,lly = 1 there is a
subsequence—still denoted by u,—and some u € L' such that u, — u in the
weak topology o (L', L) (by Theorem 3.18), i.e.,

(16) /ungb N /u¢ Vo € L.

On the other hand, for fixed j, and n > j we have f upx;j = 1. At the limit, as
n — oo, weobtain [ ux; = 1V;. Finally, we note (by dominated convergence) that
Juxj — 0as j - oco—a contradiction.

In Case (ii) the space 2 is purely atomic and consists of a countable union of
distinct atoms (a,) (unless there is only a finite number of atoms!). In that case
L'(Q) is isomorphic to £! and it suffices to prove that £! is not reflexive. Consider
the canonical basis:

en,=(0,0,...,1,0,0...).
(n)

Assuming ¢! is reflexive, there exist a subsequence (e, ) and some x € ¢! such that
en, — x in the weak topology o (LL, £%), ie.,

(@, en,) —> (@, x) Vo €L,
k— o0

Choosing
p=¢;=(0,0,...,1,1,1,...)
)

we find that {(¢;, x) = 1 Vj. On the other hand (¢;,x) — 0 as j — oo (since
x € £Y)—a contradiction.

C. Study of L*°.
We already know (Theorem 4.14) that L>® = (L')*. Being a dual space, L™
enjoys some nice properties. In particular, we have the following:

(i) The closed unit ball Bz is compact in the weak* topology o (L>, L) (by
Theorem 3.16).

(i) If 2 is a measurable subset in RY and ( fn) is a bounded sequence in L°°(R),
there exists a subsequence ( f,,,) and some f € L°(Q) such that f,;, — f in
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the weak* topology o (L, L) (this is a consequence of Corollary 3.30 and
Theorem 4.13).

However L*°(R2) is not reflexive, except in the trivial case where €2 consists of
a finite number of atoms; otherwise L'(2) would be reflexive (by Corollary 3.21)
and we know that L' is not reflexive (Remark 6). As a consequence, it follows that
the dual space (L*°)* of L> contains L' (since L>® = (L')*) and (L™®)* is strictly
bigger than L'. In other words, there are continuous linear functionals ¢ on L
which cannot be represented as

<¢sf)=/uf Vf e L®andsomeu € L.

In fact, let us describe a “concrete” example of such a functional. Let ¢y : C.(RY) —
R be defined by

$o(f) = f(0) for f € C.(RY).
Clearly ¢y is a continuous linear functional on C.(R") for the || || s norm. By Hahn—

Banach, we may extend ¢ into a continuous linear functional ¢ on L>®°(R") and
we have

a7 (¢, f) = f(0) VfeCcRY).

Let us verify that there exists no function u € L'(RY) such that

(18) (@, f) = fuf Ve L®®RY).

Assume, by contradiction, that such a function u exists. We deduce from (17) and
(18) that

/uf =0 VfeC(RY)and f(0) = 0.

Applying Corollary 4.24 (with @ = RV \{0}) we see that u = 0 a.e. on R\ {0} and
thus u = 0 a.e. on RY. We conclude (by (18)) that

(@, f)=0 YfeL®RY),

which contradicts (17).

* Remark 7. The dual space of L> does not coincide with L' but we may still ask
the question: what does (L°°)* look like? For this purpose it is convenient to view
L>°(Q2; C) as a commutative C*-algebra (see, e.g., W. Rudin [1]). By Gelfand’s
theorem L°°(£2; C) is isomorphic and isometric to the space C(K; C) of continuous
complex-valued functions on some compact topological space K (K is the spectrum
of the algebra L*°; K is not metrizable except when €2 consists of a finite number
of atoms). Therefore (L°°(2; C))* may be identified with the space of complex-
valued Radon measures on K and L*°(2; R)* may be identified with the space of



4.3 Reflexivity. Separability. Dual of L? 103

real-valued Radon measures on K; for more details, sese Comment 3 at the end of
this chapter, W. Rudin [1] and K. Yosida [1] (p. 118).

Remark 8. The space L°°(Q2) is not separable except when 2 consists of a finite
number of atoms. In order to prove this fact it is convenient to use the following.

Lemma 4.2. Let E be a Banach space. Assume that there exists a family (O;)icy
such that

(i) for eachi € I, O; is a nonempty open subset of E,
() 0N O, =Bifi #j,
(iii) I is uncountable.
Then E is not separable.

Proof of Lemma 4.2. Suppose, by contradiction, that E is separable. Let (#,),eN
denote a dense countable set in E. For each i € I, the set O; N (i) en # @ and we
may choose n(i) such that u,;y € O;. The mapping i — n(i) is injective; indeed,
if n(@) = n(j), then u,i) = uuy € O0; N O and thus i = j. Therefore, [ is
countable—a contradiction.

We now establish that L°°(2) is not separable. We claim that there is an un-
countable family (w;);e; of measurable sets in €2 which are all distinct, that is, the
symmetric difference w; A w; has positive measure for i # j. We then conclude by
applying Lemma 4.2 to the family (O;);¢; defined by

Oi ={f € L(); IIf = Xeylloo < 1/2}

(note that || X, — X' llco = 1 if w and @’ are distinct). The existence of an uncountable
family (w;) is clear when € is an open set in R" since we may consider all the balls
B(xg, r) with xg € Q and r > 0 small enough.

When €2 is a general measure space we split 2 into its atomic part 2, and its
nonatomic (= diffuse) part 24; then we distinguish two cases:

(i) 24 is not a null set.
(ii) 4 is a null set.

In Case (i), then for each real number 7, 0 < ¢t < u(24), there is a measurable
set w with w(w) = t; see, e.g., P. Halmos [1], A. J. Weir [1], or J. Neveu [1]. In this
way, we obtain an uncountable family of distinct measurable sets.

In Case (ii) 2 consists of a countable union of distinct atoms (a,) (unless €2
consists of a finite number of atoms). For any collection of integers, A C N, we define
wp = Un ea an- Clearly, (w4) is an uncountable family of distinct measurable sets.

The following table summarizes the main properties of the space L” (£2) when
is a measurable subset of RV :

Reflexive|Separable Dual space
L? with1 < p < co| YES YES LY
L' NO YES L
L NO NO  [Strictly bigger than L'
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4.4 Convolution and regularization

We first define the convolution product of a function f € L!(R") with a function
g € LP(RN).

e Theorem 4.15 (Young). Let f € L'(RY) and let g € LP(RN) with 1 < p < oc.
Then for a.e. x € RV the function y — f(x — y)g(y) is integrable on RN and we
define

(Feo = [ 7= gy

In addition f g € LP(RN) and

1 *gllp < 1£111 lgllp-

Proof. The conclusion is obvious when p = co. We consider two cases:

@ p=1,
(i) 1 < p < oo.

Case(i):p=1.Set F(x,y) = f(x —y)g(»).
For a.e. y € RV we have

/RN [F(x, y)ldx = |g(y) /RN If(x = »ldx =g 1 flIh < o0

and, moreover,

/ dy/ |F(x, y)ldx =gl I fllh < oo.
RV T JRY

We deduce from Tonelli’s theorem (Theorem 4.4) that F € L' (RN x RY). Applying
Fubini’s theorem (Theorem 4.5), we see that

/ |F(x, y)|ldy < oo forae. x € RV
RN

and, moreover,

‘éNdxAQ|FutWMy=iéNdyAQ|Futwwx=nfnmgm.

This is precisely the conclusion of Theorem 4.15 when p = 1.
Case (ii): 1 < p < oo. By Case (i) we know that for a.e. fivxed x € RV the
function y > | f(x — y)| |g(y)|? is integrable on R", that is,

Ifx = 0IYP1g(] € LYRY).

Since | f (x, y)|'/ re Lg, (RV), we deduce from Hélder’s inequality that
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|f = llgW = 1f & =PI = 01YPIg(y)] € Ly@®RY)

and

, 1/p
AN =gy < I£17 </R £ (e =)l |g(y>|1’dy> :

that is,
(NP < [ £ A f 151817 ).
We conclude, by Case (i), that f x g € LP(R") and

1 =gl < 1177 1]

P
p’
that is,

Ifxgllp <M fliliglp.

Notation. Given a function f on RY we set f x) = f(—x).

Proposition 4.16. Let f € L'(RY), g € LP(RN) and h € L' (RN). Then we have

/RN(f*g)h=/RNg(f*h).

Proof. The function F(x, y) = f(x — y)g(y)h(x) belongs to L' (RN x RV) since

/Ih(X)IdXI If (= I 1gldy < o0

by Theorem 4.15 and Holder’s inequality. Therefore we have

/(f*g)(x)h(x)dx :/dx/F(x,y)dy :/dy/F(x,y)dx

_ / ¢« dy.

Support and convolution. The notion of support of a function f is standard: supp f
is the complement of the biggest open set on which f vanishes; in other words supp f
is the closure of the set {x; f(x) # 0}. This notion is not adequate when dealing with
equivalence classes, such as the space L?. We need a definition which is intrinsic,
that is, supp f1 and supp f> should be the same (or differ by a null set) if f| = f> a.e.
The reader will easily admit that the usual notion does not make sense for f = xq
on R. In the following proposition we introduce the appropriate notion.

Proposition 4.17 (and definition of the support). Let f : RN — R be any function.
Consider the family (w;)ic; of all open sets on RN such that for eachi € I, f =0
a.e.on w;. Setw = J;¢; ;.

Then f =0 a.e. on w.
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By definition, supp f is the complement of w in RN .

Remark 9.

(a) Assume fi = f> a.e. on RV; clearly we have supp f; = supp f>. Hence we may
talk about supp f for a function f € LP—without saying what representative
we pick in the equivalence class.

(b) If f is a continuous function on RY it is easy to check that the new definition of
supp f coincides with the usual definition.

Proof of Proposition 4.17. Since the set I need not be countable it is not clear that
f = 0 a.e. on w. However we may recover the countable case as follows. There is
a countable family (0, of open sets in RV such that every open set on R is the
union of some O,’s. Write ; = (J,c4, On and @ = | J,,c g On Where B = ;¢ A;.
Since f = 0 a.e. on every set O, withn € B, we conclude that f = 0 a.e. on w.

e Proposition 4.18. Let f € L'(RY) and g € LP(RY) with 1 < p < oo. Then

]supp(f *g) Csupp f +suppg. ‘

Proof. Fix x € RY such that the function y — f(x — y)g(y) is integrable (see
Theorem 4.15). We have

(f*xg)(x) = / fx—y)gydy = / fx—y)g(y)dy.

(x—supp f)Nsupp g

If x ¢ supp f +supp g, then (x —supp f) Nsuppg = P and so (f xg)(x) = 0. Thus

(f xg)(x) =0 a.e.on (supp f + supp g)°.

In particular,

(f *)(x) =0 ae.on Int[(supp f + supp )]

and therefore
supp(f * g) C supp f + suppg.

e Remark 10. If both f and g have compact support, then f » g also has compact
support. However, f * g need not have compact support if only one of them has
compact support.

Definition. Let @ C RY be open and let 1 < p < oo. We say that a function
f : 2 — Rbelongs to L{(’)C(Q) if fxx € LP(R2) for every compact set K contained
in .

Note that if f € LY (), then f € L. (Q).

loc loc

Proposition 4.19. Let f € C.(RY) and g € L) (RN). Then (f % g)(x) is well
defined for every x € RN, and, moreover, (f x g) € C(RV).
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Proof. Note that for every x € RY the function y — f(x — y)g(y) is integrable on
R¥ and therefore (f  g)(x) is defined for every x € RV .

Let x, — x and let K be a fixed compact set in RY such that (x,, — supp f) C K
Vn. Therefore, we have f(x, —y) = 0Vn, Vy ¢ K. We deduce from the uniform
continuity of f that

1fGn— ) — f(x — )| < eaxk(y) Vn, VyeRM

with g, — 0. We conclude that
I(f %)) — (f ) ()] < en/ g)ldy —> 0.
K

Notation. Let @ C R" be an open set.
C(L2) is the space of continuous functions on €2.

C k(SZ) is the space of functions k times continuously differentiable on © (k > 1 is
an integer).

C®(Q) = Nk CH(Q).

C.(L2) is the space of continuous functions on 2 with compact support in €2, i.e.,
which vanish outside some compact set K C 2.

ck) =ck@Q)nc.().

CF () = C™(Q2) N C(),
(some authors write D(R2) or C3°(£2) instead of CZ°(£2)).

If f € C1(Q), its gradient is defined by
a 0 a
V= <_f o _f)

ax1’ dxa’ 7 dxn

If fe Ck(Q) and ¢ = (a1, o2, ..., o) is a multi-index of length || = o1 + a2 +
--- 4+ ay, less than k, we write
%l 9%2 XN

& —ay
dx; ' 0xy 0xy

DUf =

f.

e Proposition 4.20. Let f € CXRN)(k > 1) and let g € L} (RN). Then f x g €
CK@RN)Y and

DY(fxg) =(D*f)*xg Vo with|a| <k.

In particular; if f € C°(RN) and g € L. _(RN), then f x g € C*(RNV).

loc

Proof. By induction it suffices to consider the case k = 1. Given x € RY we claim
that f » g is differentiable at x and that

V(fxg)x) = (Vf)*gx).
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Let 1 € RN with || < 1. We have, for all y € RV,
lfG+h—=y)—fx—y)—h-Vf(x -yl

1
/0 -V f(x+sh—y)—h-Vf(x—ylds| < |hle(h])

with e(|h]) — 0 as |h] — 0 (since V f is uniformly continuous on R¥V).
Let K be a fixed compact set in RY large enough that x + B(0, 1) —supp f C K.
We have

fx+h—y)—f(x—y)—h-Vf(x—y)=0 Vy¢ K, VheB(0]1)
and therefore
|fx+h—y)—f(x—=y)—h-V f(x—y)| < |hle(lh)xkx (y) Vy € RV, Vi € B(0, 1).

We conclude that for 2 € B(0, 1),

I(f*xx+h)—(f*g)(x) —h-(Vf*xg))| = Ihle(lhl)/K lg(Mldy.

It follows that f % g is differentiable at x and V(f * g)(x) = (Vf) x g(x).

Mollifiers

Definition. A sequence of mollifiers (p,)n>1 is any sequence of functions on RN
such that

pr € CX®Y). suppp, C BO. /M. [ py=1.p, 2 00n R,

In what follows we shall systematically use the notation (p,) to denote a sequence
of mollifiers.

It is easy to generate a sequence of mollifiers starting with a single function
p € CX®(RN) such that suppp C B(0, 1), p > 0 on RV, and p does not vanish
identically—for example the function

p(x) = !/ (=1 if [x] < 1,
0 if [x| > 1.

We obtain a sequence of mollifiers by letting p, (x) = C n™N p(nx) with C = 1 / f 0.

Proposition 4.21. Assume f € C(RN). Then (p,* f) —> f uniformly on compact
sets of RN e
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Proof-* Let K C RN be a fixed compact set. Given ¢ > 0 there exists § > 0
(depending on K and ¢) such that

[ fx—y)— f(x)|<e VYxeK, VyeB(,SH).

We have, for x € RV,
(0% ) = ) = [17G=9) = F@Ipa)dy
= [ e = ey,
B(0,1/n)
Forn > 1/§ and x € K we obtain
(ur ) = fI e [ oo =e.
e Theorem 4.22. Assume f € LP(RN) with 1 < p < oco. Then (p, * f) v fin
LP(RM).

Proof. Given ¢ > 0, we fix a function f; € C.(RY) such that || f — Sfillp < € (see
Theorem 4.12). By Proposition 4.21 we know that (o, » fi) — f1 uniformly on
every compact set of RV . On the other hand, we have (by Proposition 4.18) that

supp(pn * f1) C B(0, 1/n) + supp fi C B(0, 1) + supp fi,

which is a fixed compact set. It follows that
lCon * f1) = fillp — 0.
n—oo
Finally, we write

(on* )= f =lon*(f = fOI+[on* f1) — il +[fi = f]

and thus
ICGon* )= fllp <20 = fillp + 1Gon > f1) — fillp
(by Theorem 4.15).
‘We conclude that

limsupl|(op * f) — fllp <2¢ Ve >0

n—oo

and therefore lim, oo || (0n * ) — fll, = 0.

e Corollary 4.23. Let Q@ C RY be an open set. Then C 2°(R2) is dense in LP () for
anyl < p < oo.

4 The technique of regularization by convolution was originally introduced by Leray and Friedrichs.
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Proof. Given f € L?(2) we set

fx) ifxeq,
0 if x e RM\Q,

sothat f € LP(RN).
Let (K,) be a sequence of compact sets in RY such that

o0
| Jk. =9 anddist(K,.Q) >2/n V.
n=1

[We may choose, _for example, K, = {x € RY: |x| < n and dist(x, 2€) > 2/n}.]
Set g, = xk,f and f, = pu * gn, so that

supp fn C B(0,1/n) + K, C Q.
It follows that f,, € C2°(£2). On the other hand, we have
|10 = Flivgy = 10 = Fll oy

< ”(pn * gn) — (on * f)‘|Lp(RN) + ”(IO” * f) - f”LP(RN)
< llgn = Fll Lo@ry + 1w ) = Fllo@n)-

Finally, we note that H gn— f || Lo@®N) 0 by dominated convergence and || (on *
f)— f”LP(]RN) — 0 by Theorem 4.22. We conclude that || f,, — fllLr@) — O.

Corollary 4.24. Let Q C RY be an open set and let u € Ll (Q) be such that

loc
/uf =0 VfeCXQ).

Thenu =0 a.e. on Q2.

Proof. Let g € L*®(R") be a function such that supp g is a compact set contained
in Q. Set g, = p, * g, so that g, € C°(2) provided n is large enough. Therefore
we have

(19) /ug,, =0 Vn.

Since g, — g in L'(R") (by Theorem 4.22) there is a subsequence—still de-
noted by g,—such that g, — g a.e.on R¥ (see Theorem 4.9). Moreover, we have
g ll ooy < [1gll o0 (rN)- Passing to the limit in (19) (by dominated convergence),
we obtain

(20) /ug =0.
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Let K be a compact set contained in 2. We choose as function g the function

sign u on K,
0 on RV\K.

We deduce from (20) that f x lul =0andthusu = 0 a.e. on K. Since this holds for
any compact K C €2, we conclude thatu = 0 a.e. on .

4.5 Criterion for Strong Compactness in L?

It is important to be able to decide whether a family of functions in L”(2) has
compact closure in L? (€2) (for the strong topology). We recall that the Ascoli—Arzela
theorem answers the same question in C(K), the space of continuous functions over
a compact metric space K with values in R.

e Theorem 4.25 (Ascoli-Arzela). Let K be a compact metric space and let H be a
bounded subset of C (K ). Assume that H is uniformly equicontinuous, that is,

21) Ve > 038 > Osuchthatd(x1,x3) <8 = |f(x1)— f(x)| <e VfeH.

Then the closure of H in C(K) is compact.

For the proof of the Ascoli-Arzela theorem, see, e.g., W. Rudin [1], [2], A. Knapp
[1], J. Dixmier [1], A. Friedman [3], G. Choquet [1], K. Yosida [1], H. L. Royden
[1], J. R. Munkres [1], G. B. Folland [2], etc.

Notation (shift of function). We set (t, f)(x) = f(x + h), x e RN, h e RV,

The following theorem and its corollary are “L”-versions” of the Ascoli—-Arzela
theorem.

e Theorem 4.26 (Kolmogorov—-M. Riesz—Fréchet). Let F be a bounded set in
LP(RNY with 1 < p < co. Assume that?

22) ”Hmoﬂrhf — fllp =0 uniformlyin f € F,

i.e, Ve > 036 > Osuchthat ||t f — fll, <eVfeF,Vhe RN with |h| < 8.
Then the closure of F|q in LP(2) is compact for any measurable set Q C RN
with finite measure.

[Here F|q denotes the restrictions to €2 of the functions in F.]

The proof consists of four steps:
Step 1: We claim that

(23) Con* )= fllppeyy <€ VfeF, V¥n>1/5.

5 Assumption (22) should be compared with (21). It is an “integral” equicontinuity assumption.
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Indeed, we have
[(on * )(x) — f(X)] < / [ f(x =)= f(O)lon(y)dy

l/p
< [/ [f(x —y)— f(X)I”pn(y)dy}

by Holder’s inequality.
Thus we obtain

/ [(on % F)(x) — FCO\Pdx < / / £ =) = FEOIP pa()dx dy
=/ pn(y)dy/If(x—y)—f(X)l”dx58”,
B(0,1/n)

provided 1/n < 6.

Step 2: We claim that
(24) ||10n * fHLOO(RN) S Cn ”f”Ll’(RN) vf € f
and

[Gon * f)(x1) = (o * f)(x2)| = Call fllplxr — x2]

(25)
VfeF, Vxi,xeRN,

where C,, depends only on 7.
Inequality (24) follows from Holder’s inequality with C,, = |0, || ;. On the other
hand, we have V(p, * f) = (Vp,) * f and therefore

IV (on * f)”LOO(]RN) = ||V/0n”Lp/(RN)”f”LP(]RN)'
Thus we obtain (25) with C,, = |V p, Lo my-

Step 3: Givene > 0and Q2 C R¥ of finite measure, there is a bounded measurable
subset w of Q such that

(26) Ifllerw <& YfelF.

Indeed, we write

”f”Ll’(Q\a)) <|f=ax 1) ”LP(RN) + |l on *f”LP(Q\w)'

In view of (24) it suffices to choose w such that |Q2\w| is small enough.

Step 4: Conclusion. Since L?(L2) is complete, it suffices (see, e.g., A. Knapp [1]
or J. R. Munkres [1], Section 7.3) to show that F|q is fotally bounded, i.e., given
any ¢ > 0 there is a finite covering of F|q by balls of radius ¢. Given ¢ > 0 we fix
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a bounded measurable set w such that (26) holds. Also we fix n > 1/§. The family
H = (pp x F)| satisfies all the assumptions of the Ascoli-Arzela theorem (by Step
2). Therefore H has compact closure in C(®); consequently H also has compact
closure in L? (w). Hence we may cover H by a finite number of balls of radius ¢ in
LP(w), say,

M c | JB(gi.e) with g; € LP ().

1

Consider the functions g; : £ — R defined by

__J& ono,
= 0 on Q\w,

and the balls B(g;, 3¢) in L?(R2).
We claim that they cover Fjq. Indeed, given f € F there is some i such that
” (pn * f) — &i ”Ll’(a)) <Eé&.
Since
”f_gi”,L)p(Q)zf |f|p+/|f_gi|p
Q\w w
we have, by (26),

“f_gi ”LP(Q) e+t Hf—g,' ||Ll’(w)
<&+ Hf - (Ion *f)”L”(RN) + H(,On *f) — &8i ”L”(w) < 3e.

We conclude that F|o has compact closure in L7 (£2).

Remark 11. When trying to establish that a family F in L? (£2) has compact closure
in LP(2), with 2 bounded, it is usually convenient to extend the functions to all of
RY, then apply Theorem 4.26 and consider the restrictions to 2.

Remark 12. Under the assumptions of Theorem 4.26 we cannot conclude in general
that F itself has compact closure in L? (R") (construct an example, or see Exercise
4.33). An additional assumption is required; we describe it next:

Corollary 4.27. Let F be a bounded set in LP (RN) with 1 < p < 0o. Assume (22)
and also

Ve >0 3IQ C RY, bounded, measurable such that

(27
Ifllrrno) <& VfeF.

Then F has compact closure in L? (RN).

Proof. Given ¢ > 0 we fix @ C R" bounded measurable such that (27) holds. By
Theorem 4.26 we know that F|q has compact closure in L” (£2). Hence we may cover
Flo with a finite number of balls of radius ¢ in L”(2), say
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Fia € | JB(i.e) withg € LP(<).

1

Set

5 (x) = gix)  ing,
S T on RM\ Q.

It is clear that F is covered by the balls B(g;, 2¢) in LP(RY).

Remark 13. The converse of Corollary 4.27 is also true (see Exercise 4.34). Therefore
we have a complete characterization of compact sets in L? (RY).

We conclude with a useful application of Theorem 4.26:
Corollary 4.28. Let G be a fixed function in L'(RN) and let
F=GxB,
where B is a bounded set in LP(RN) with 1 < p < oo. Then Fio has compact
closure in LP (Q2) for any measurable set Q2 with finite measure.
Proof. Clearly F is bounded in L? (R"). On the other hand, if we write f = G x u
with u € B we have

ltnf = fllp = 1(tnG = G) xull, < ClltaG = Gll1,

and we conclude with the help of the following lemma:

Lemma 4.3. Let G € LYRN) with 1 < g < oo.
Then
lim||z,G — G|l = 0.
h—0

Proof. Given ¢ > 0, there exists (by Theorem 4.12) a function G| € C, (RM) such
that |G — G1lly < &.
We write

IThG — Gllg < lIthG — tGilly + ItnG1 — Gillg + IG1 — Glig
<2+ |tyG1 — Gillg-

Since limy ||t G1 — G1llg = 0 we see that
limsup|lthG — Gllg <2¢ Ve > 0.

h—0

Comments on Chapter 4

1. Egorov’s theorem.
Some basic results of integration theory have been recalled in Section 4.1. One useful
result that has not been mentioned is the following.
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* Theorem 4.29 (Egorov). Assume that Q2 is a measure space with finite measure.
Let (f,,) be a sequence of measurable functions on 2 such that

fan(x) = f(x) a.e. on Q2 (with |f(x)] < oo a.e.).

Then Ve > 0 JA C Q2 measurable such that |Q\A| < ¢ and f, — f uniformly
on A.

For a proof, see Exercise 4.14, P. Halmos [1], G. B. Folland [2], E. Hewitt—
K. Stromberg [1], R. Wheeden—-A. Zygmund [1], K. Yosida [1], A. Friedman [3],
etc.

2. Weakly compact sets in L1,

Since L! is not reflexive, bounded sets of L' do not play an important role with
respect to the weak topology o (L', L°). The following result provides a useful
characterization of weakly compact sets of L.

* Theorem 4.30 (Dunford—Pettis). Let F be a bounded set in L' (2). Then F has
compact closure in the weak topology o (L', L) if and only if F is equi-integrable,
that is,

Ve >0 36 >0 such that

@) / |fl <& VYA C Q, measurable with |A| <68, VfeF
A
and
Ve > 0 dw C 2, measurable with || < oo such that
(b)

/ Ifl<e VfefF.
Q\w

For a proof and discussion of Theorem 4.30 see Problem 23 or N. Dunford-
J. T. Schwartz [1], B. Beauzamy [1], J. Diestel [2], I. Fonseca—G. Leoni [1], and
also J. Neveu [1], C. Dellacherie-P. A. Meyer [1] for the probabilistic aspects; see
also Exercise 4.36.

3. Radon measures.

As we have just pointed out, bounded sets of L! enjoy no compactness properties.
To overcome this lack of compactness it is sometimes very useful fo embed L' into
a large space: the space of Radon measures.

Assume, for example, that Q is a bounded open set of RY with the Lebesgue
measure. Consider the space E = C () with its norm |u| = sup,..g lu(x)|. Its
dual space, denoted by M (RQ), is called the space of Radon measures on Q2. The
weak* topology on M () is sometimes called the “vague” topology.

We shall identify L' (£2) with a subspace of M (). For this purpose we introduce
the mapping L' (Q) — M(Q) defined as follows. Given f € L'(), the mapping
ueCQ) fQ fu dx is a continuous linear functional on C (), which we denote
Tf, so that
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(Tf,M>E*,E=/fudx VYu € E.
Q

Clearly T is linear, and, moreover, T is an isometry, since

||Tf||M(§) = sup / fu=1|fll1 (seeExercise 4.26).
€E

u
flull<1

Using T we may identify L'(Q) with a subspace of M(Q). Since M(Q) is the
dual space of the separable space C(£2), it has some compactness properties in the
weak* topology. In particular, if ( f,,) is a bounded sequence in LY(), there exist a

subsequence ( f,,) and a Radon measure (v such that fy, X W in the weak* topology
o(E*, E), that is,

f faut = (u,u) Yu e C(Q).
Q

For example, a sequence in L' can converge to a Dirac measure with respect to
the weak* topology. Some futher properties of Radon measures are discussed in
Problem 24.

The terminology “measure” is justified by the following result, which connects
the above definition with the standard notion of measures in the set-theoretic sense:

Theorem 4.31 (Riesz representation theorem). Let 1 be a Radon measure on Q.
Then there is a unique signed Borel measure v on 2 (that is, a measure defined on
Borel sets of 2) such that

(w, u) =/;udv Yu € C(Q).
Q

It is often convenient to replace the space E = C(2) by the subspace

Eo = {f € C(Q); f = 0 on the boundary of Q}.

The dual of Ej is denoted by M () (as opposed to M (R2)). The Riesz repre-
sentation theorem remains valid with the additional condition that |v|(boundary of
Q) =0.

On this vast and classical subject, see, e.g., H. L. Royden [1], W. Rudin [2],
G. B. Folland [2], A. Knapp [1], P. Malliavin [1], P. Halmos [1], I. Fonseca—
G. Leoni [1].

4. The Bochner integral of vector-valued functions.

Let 2 be a measure space and let E be a Banach space. The space L” (2; E) consists
of all functions f defined on Q with values into E that are measurable in some
appropriate sense and such that fQ If)IPdu < oo (with the usual modification
when p = 00). Most of the properties described in Sections 4.2 and 4.3 still hold
under some additional assumptions on E. For example, if E isreflexiveand 1 < p <
00, then LP(L2; E) is reflexive and its dual space is L”,(Q; E™*). For more details,
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see K. Yosida [1], D. L. Cohn [1], E. Hille [1], B. Beauzamy [1], L. Schwartz [3].
The space LP(2; E) is very useful in the study of evolution equations when 2 is an
interval in R (see Chapter 10).

5. Interpolation theory.
The most striking result, which began interpolation theory, is the following.

Theorem 4.32 (Schur, M. Riesz, Thorin). Assume that Q2 is a measure space with
|| < oo, and that T : L' () — LY(Q) is a bounded linear operator with norm

My =Tz Ly

Assume, in addition, that T : L*(Q2) — L% () is a bounded linear operator
with norm
Moo = T (Lo, L)

Then T is a bounded operator from LP () into LP(2) forall 1 < p < o0, and its
norm M), satisfies

1/pas1/p
My, < M"P M.

Interpolation theory was originally discovered by I. Schur, M. Riesz, G. O. Thorin,
J. Marcinkiewicz, and A. Zygmund. Decisive contributions have been made by a
number of authors including J.-L. Lions, J. Peetre, A. P. Calderon, E. Stein, and
E. Gagliardo. It has become a useful tool in harmonic analysis (see, e.g., E. Stein—
G. Weiss [1], E. Stein [1], C. Sadosky [1]) and in partial differential equations
(see, e.g., J.-L. Lions—E. Magenes [1]). On these questions see also G. B. Folland
[2], N. Dunford-J. T. Schwartz [1] (Volume 1 p. 520), J. Bergh-J. Lofstrom [1],
M. Reed-B. Simon [1], (Volume 2, p. 27) and Problem 22.

6. Young’s inequality.
The following is an extension of Theorem 4.15.

Theorem 4.33 (Young). Assume f € LP(R) and g € LY(RN) with1 < p < oo,
lgqgooand%:%—i—é—lzo.
Then fxg € L"(RN) and || f x gll» < I fllpllgllq-

For a proof see, e.g., Exercise 4.30.

7. The notion of convolution—extended to distributions (see L. Schwartz [1] or
A. Knapp [2])—plays a fundamental role in the theory of partial differential equa-
tions. For example, the equation P(D)u = f in RY, where P (D) is any differential
operator with constant coefficients, has a solution of the form u = E » f, where E
is the fundamental solution of P(D) (theorem of Malgrange—Ehrenpreis; see also
Comment 2b in Chapter 1). In particular, the equation Ay = f in R? has a solution
of the form u = E * f, where E(x) = —(47|x|)~L.
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Exercises for Chapter 4

Except where otherwise stated, 2 denotes a o -finite measure space.

mLeta > 0 and 8 > 0. Set

£ = {141} {1 +loglxllf) ', x e RV,

Under what conditions does f belong to L? (RN)?
Assume ] < occandlet ] < p < g < oo. Prove that LY(2) C LP(2) with

continuous injection. More precisely, show that

11
Iflp 1QIP 2l fllg Yf e LY.
[Hint: Use Holder’s inequality. ]

1. Let f, g € LP(2) with 1 < p < oo. Prove that
h(x) = max {f(x), g(x)} € L7 ().

2. Let (f,) and (g,) be two sequences in L”(2) with 1 < p < oo such that
fu— fin LP(Q2) and g, — g in LP(L2). Set h,, = max{ f,, g,} and prove that
h, — hin LP(R2).

3. Let (f,) be a sequence in L”(2) with 1 < p < oo and let (g,) be a bounded
sequence in L°(2). Assume f, — f in LP(Q2) and g, — g a.e. Prove that
Jngn — fgin LP(Q2).

1. Let f1, f2, ..., fx be k functions such that f; € LPi(2) Vi with 1 < p; < 00
and Zle % <1.
Set

k
fo =]]f.
i=1

Prove that f € LP(Q) with & = >k - and that

k
L1 < [T0A -

i=1

[Hint: Start with k = 2 and proceed by induction.]
2. Deduce thatif f € LP(2Q) NLI(Q) with 1 < p <ocoand 1 < g < o0, then
f € L"(R2) for every r between p and g. More precisely, write
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1 l—«o .
- =—+—— witha €[0,1]
r q

and prove that

IrL, =< 10l

Letl§p<ooand1§q§oo.

1. Prove that L1 () N L*°() is a dense subset of L?(2).
2. Prove that the set

{felP@NLIQ); Ifllg <1}

is closed in L7 (L2).
3. Let (f,) be a sequence in LP(2) N L9(L2) and let f € L (L2). Assume that

fo— finLP(Q)and || fyllg < C.

Prove that f € L"(2) and that f,, — f in L"(2) for every r between p and
q.7 #q.

Assume Q2| < o0.

. Let f € L®(R). Prove that lim o0 || 1l = || f llo-
2. Let f € Ni<p<coL?(L2) and assume that there is a constant C such that

—

Ifllp,=C V1<p<oo.

Prove that f € L*°(Q).
3. Construct an example of a function f € Ni<p<ooL?(2) such that f ¢ L>(Q)
with = (0, 1).

Let1 < g < p < oo. Let a(x) be a measurable function on 2. Assume that
au € L9(R2) for every function u € LP(2).
Prove that a € L (Q2) with

rq
r=3pP—4¢
q

if p < o0,
if p = oo.
[Hint: Use the closed graph theorem.]
Let X C LY() be a closed vector space in L1(2). Assume that

XcC U L1(Q).

l1<g<oo
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1. Prove that there exists some p > 1 such that X C L”(2).

[Hint: For every integer n > 1 consider the set

X, = {f exnL+I/m (),

=n}]

2. Prove that there is a constant C such that

Ifllp, =Clflh YfeX.

Jensen’s inequality.

Assume |2| < co.Let j : R — (—o00, +00] be aconvex Ls.c. function, j # +oo.
Let f € L'(Q) be such that f(x) € D(j) a.e. and j(f) € L' (Q). Prove that

'<|9|/> |9|/’(f)

Convex integrands.

Assume |2] < co.Letl < p < ooandletj : R — R beaconvex and continuous
function. Consider the function J : LP(2) — (—o0, +00] defined by

/ Jw@)dx if ju) € LY(Q),
Q
+00 if j(u) ¢ LY(Q).

J(u) =

Prove that J is convex.
. Prove that J is L.s.c.

N

[Hint: Start with the case j > 0 and use Fatou’s lemma.]
3. Prove that the conjugate function J* : L? (2) — (—o0, +00] is given by

Joi*(f)dx if j*(f) € LY(Q),

J*(f) =
/) +o0 if j*(f) ¢ LY(RQ).

[Hint: When 1 < p < oo consider J, (1) = J (1) + % J |u|? and determine J,\.]
4. Let dj (resp. dJ) denote the subdifferential of j (resp. J) (see Problem 2). Let
u e LP(Q) and let f € L? (2); prove that

fedJu) < f(x) €dj(u(x)) ae.onf.

The spaces L*(2) with0 < o < 1.

LetO <a < 1. Set

LY¥(Q) = {u : Q2 — R; uismeasurable and |u|* € LI(Q)}
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1/a
[u]le = (/ |u|a> .

1. Check that L“ is a vector space but that [ ], is not a norm. More precisely,
prove that if u, v € L*(R2), u > 0 a.e. and v > 0 a.e., then

and

[ +vle = [uly + [v]a.
2. Prove that
[u+ 015 < [ul§ +[vly Yu,ve L*(Q).
LP? is uniformly convex for 1 < p < 2 (by the method of C. Morawetz).

1. Let 1 < p < oo. Prove that there is a constant C (depending only on p) such
that

b PN\ S
la —b|? < C(la|” +|b]")'~* <|a|”+|b|‘"—2 anr ) Va,b € R,

where s = p/2.
2. Deduce that L?(£2) is uniformly convex for 1 < p < 2.

[Hint: Use question 1 and Holder’s inequality.]

1. Check that
|la +b| —la| — |bl| <2|b] Va,beR.

2. Let (f,) be a sequence in LY() such that

D) fulx) > f(x)ae.,
(ii) (f,)is bounded in L' (Q)ie., || fulli <M Vn.

Prove that f € LY(Q) and that

nlggof{|fn|—|fn—f|}=/|f|.

[Hint: Use question 1 witha = f, — f and b = f, and consider the sequence
on = |Iful = 1fu = FI = 1£1]]
3. Let (f,,) be a sequence in L' () and let f be a function in L' () such that

@) falx) > f(x)ae,
G N fallt = 11

Prove that || f;, — f|l1 = 0.

The theorems of Egorov and Vitali.
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Assume [Q2| < oo. Let (f;) be a sequence of measurable functions such that
fn — fae. (with |f| < oo a.e.).

1. Let @ > 0 be fixed. Prove that

meas[| f, — f| > «a|]] — O.
n—0oo

2. More precisely, let
Su(@) = | JUfi = £1 > al.

k>n
Prove that |S,,(@0)] —> O.
n— o0
3. (Egorov). Prove that

Vs >0 3JA C Q2 measurable such that
|A| < éand f, — f uniformly on Q\A.

[Hint: Given an integer m > 1, prove with the help of question 2 that there
exists X, C €2, measurable, such that |X,,| < §/2" and there exists an integer
N, such that

|fe(x) = fOI < n% Vk = Ny, VxeQ\Xp.]

4. (Vitali). Let ( f,,) be a sequence in L?(2) with | < p < co. Assume that
(i) Ye > 0 36 > 0 such that fA |ful?P <& Vmnand VA C 2 measurable with
|A] < 6.
Gi) fn — f ae.

Prove that f € LP(Q2) and that f, — f in LP ().

[4.15]Let @ = (0, 1).

1. Consider the sequence ( f;,) of functions defined by f,,(x) = ne™"*. Prove that

i) fn — Oae.

(ii) f, is bounded in L'().
(iii) f, - 0in L'(Q) strongly.
(V) fn A Oweakly o (L', L*®).

More precisely, there is no subsequence that converges weakly o (L', L™).

2. Let1 < p < oo and consider the sequence (g,) of functions defined by g, (x) =
nl/Pe="* Prove that

(i) g — Oae.

(ii) (gn) is bounded in L?(2).
(iii) g, - 01in L?(2) strongly.
(iv) gn — 0 weakly o (L?, L?").
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Let 1 < p < oo. Let (f;;) be a sequence in L? (£2) such that

(1) fn is bounded in LP(2).
(i) f, — f ae.on .

1. Prove that f,, — f weakly o(Lp:VLP/).
[Hint: First show that if f, — f weakly o(L”, L?) and f, — f a.., then
f = f ae. (use Exercise 3.4).]

2. Same conclusion if assumption (ii) is replaced by

(i) Ifn = fllh = 0.

3. Assume now (i), (ii), and |2| < oo. Prove that || f;, — fll; — 0 for every ¢ with
1 <qg<np.
[Hint: Introduce the truncated functions 7} f;, or alternatively use Egorov’s the-
orem.]

Brezis—Lieb’s lemma.

Letl < p < o0.

1. Prove that there is a constant C (depending on p) such that
[la+ 1" —lal” = 16I7] < C (lal”~" bl + lal [bIP™")  Va.b € R.

2. Let (f,) be a bounded sequence in L?(£2) such that f,, — f a.e. on 2. Prove
that f € LP(L2) and that

nliy;o/Q{lnt”—lfn—flp}Z/Qlflp-

[Hint: Use question 1 witha = f,, — f and b = f. Note that by Exercise 4.16,
| f» — f| = O weakly in L? and | f, — f|P~' — 0 weakly in L? ]
3. Deduce that if (f},) is a sequence in L?(2) satisfying
@) fulx) > f(x) ae.,
Q) [ fallp = 11 ps

then || f — fllp — O.
4. Find an alternative method for question 3.

Rademacher’s functions.

Letl < p <ocandlet f € Lﬁ)C(R).Assumethat fisT-periodic,i.e., f(x+T) =
f(x) ae.x € R.
Set

_ 1 [T
f=7/0 f()dr.

Consider the sequence (u,) in L? (0, 1) defined by
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u,(x) = f(nx), x € (0,1).

1. Prove that u,, — f in LP(0, 1) with respect to the topology o (L7, LP).
2. Determine lim;, o0 |ly — fllp-
3. Examine the following examples:

(i) u,(x) =sinnx,

(1) u,(x) = f(nx) where f is 1-periodic and

a forx e (0,1/2),

Foo = !ﬂ for x € (1/2,1).

The functions of example (ii) are called Rademacher’s functions.

1. Let (f,) be asequence in L”(2) with 1 < p < coand let f € L?(£2). Assume
that

(i) fu — f weakly o(LP, L?"),
() I fullp = Nfllp.

Prove that f,, — f strongly in L?($2).
2. Construct a sequence ( fy) in LYo, 1), fn = 0, such that:

() f, — f weakly o (L, L),
G I fulli = £,
@) | fu— flli = 0.

Compare with the results of Exercise 4.13 and with Proposition 3.32.

Assume|§2| <oo.Letl <p<ooandl <g < o0.
Let a : R — R be a continuous function such that

la(t)| < C{|t|P/9 +1} Vi eR.
Consider the (nonlinear) map A : L?(Q2) — L9(€2) defined by
(Au)(x) = a(u(x)), x € Q.

1. Prove that A is continuous from L” (€2) strong into L9 (£2) strong.

2. Take 2 = (0, 1) and assume that for every sequence (u,) such that u, — u
weakly o (L7, LP/) then Au, — Au weakly o (L4, L1).
Prove that a is an affine function.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

Given a function ug : R — R, set u, (x) = ug(x + n).

1. Assume ug € LP(R) with 1 < p < oo. Prove that u, — 0 in L?(R) with
respect to the weak topology o (L7, L?").
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2. Assume ug € L°°(R) and that ug(x) — 0 as |x|] — oo in the following weak
sense:
for every § > O the set [|ug| > &] has finite measure.

Prove that u, — 0in L% (R) weak* o (L>, L).

3. Take ug = x0,1)-
Prove that there exists no subsequence (u,, ) that converges in LY(R) with respect
to o (L1, L™).

1. Let (f;,) be a sequence in L?(2) with 1 < p < oo andlet f € L? ().
Show that the following properties are equivalent:
(A) fu— fino(LP, L").
I fullp = C
B) and
Jg fa = [ f VE C Q, E measurable and |E| < oo.
2. If p =1 and |2] < oo prove that (A) < (B).
3. Assume p = 1 and |2| = oco. Prove that (A) = (B).
Construct an example showing that in general, (B) % (A).
[Hint: Use Exercise 4.21, question 3.]
4. Let (f,)beasequencein L' (Q) andlet f € L' (Q) with || = co. Assume that

(@ fr =0 Vnand f > 0a.e.on £,

®) fofn— Jof
©) [gfo— [pf YE C Q, E measurable and | E| < oo.

Prove that f, — fin L'(Q) weakly o (L', L*).
[Hint: Show that [ f, — [ f VF C Q, F measurable and | F| < c0.]

Let f : @ — R be a measurable function and let 1 < p < oo. The purpose
of this exercise is to show that the set

C={ueL”(Q); u>f a.e.}

is closed in L? (£2) with respect to the topology o (L?, L?).

1. Assume first that 1 < p < oo. Prove that C is convex and closed in the strong
LP topology. Deduce that C is closed in o (L?, L?").
2. Taking p = oo, prove that

up > Yo € L'(Q)
C = ueLOO(Q)‘/ v /f(p v
with f(peLl(Q) and ¢ >0 ae.

[Hint: Assume first that f € L°°(R); in the general case introduce the sets

on = [1f] <nl]
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3. Deduce that when p = o0, C is closed in o (L*°, Ll).
4. Let f1, fo € L*°(RQ) with f; < f> a.e. Prove that the set

C={uel™Q); fisu<fr ael
is compact in L°°(£2) with respect to the topology o (L>°, L1).
Letu € L®(RY). Let (pn) be a sequence of mollifiers. Let (&) be a sequence
in L>®(RY) such that
lEnlloo <1 Vn and ¢, — ¢ a.e.on RV,

Set
U, = ppx(Guu) and v = Su.

1. Prove that v, X vin L®(RN) weak* o (L, LY.
2. Prove that [, |v, — v| — 0 for every ball B.

Regularization of functions in L*°(Q2).
Let @  R" be open.

1. Letu € L*°(R2). Prove that there exists a sequence (u,) in CZ°(2) such that

@ llunlloo < llullew Vn,
(b) u, — u a.e.on 2,

(©) ty = uin L®(Q) weak* o (L®, L.
2. If u > 0 a.e. on 2, show that one can also take
(d) up, >0o0nQ Vn.
3. Deduce that C2°(2) is dense in L°°(£2) with respect to the topology o (L*°, LY.

Let @ C RN be open and let f € L] ().
1. Prove that f € L () iff

A=sup{/f<p; peC(), ol =< 1} < 00.

If f € L'(Q) show that A = || f]];.
2. Prove that f* e L1(Q) iff

B=Sup{/f<p; P eCe(), el =<1 andrpzo} < 00.

If f* e L1(Q) show that B = || f 1.
3. Same questions when C,(£2) is replaced by C°(€2).
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4. Deduce that
[/ﬂp =0 Vgpe C?(Q)] = [f=0 ae]

and
[ffwzo V¢€C3°(Q),<p20}:>[fzo ael].

Let Q@ ¢ RY be open. Letu, v € LIIOC(Q) with u # 0 a.e. on a set of positive
measure. Assume that

[cpeCfO(Q)and/u<p>0]:|:/v<p20i|.

Prove that there exists a constant A > 0 such that v = Au.

[4.28|Let p € L'(RV) with [ p = 1. Set p, (x) = n¥ p(nx). Let f € LP(RV) with

1 < p < oo. Prove that p, » f — f in LP(RV).

Let K C RY be a compact subset. Prove that there exists a sequence of

functions (1) in C° (R™) such that

(@ 0<u, <lonRV,

(b) up, =1onKk,

(c) suppu, C K + B(0, 1/n),

(d) |D%u,(x)| < Cen!®! vx € RN, ¥V multi-index o (where C,, depends only on o
and not on n).

[Hint: Let x, be the characteristic function of K + B(0, 1/2n); take u,, = p2n * xn-]

Young’s inequality.

Letl < p <o0,1 Sqfoobesuchthat%—i—
Set%=%+é—l,sothatl <r <oo.
Let f € LP(RY) and g € LI(RY).

1. Prove that fora.e. x € R, the function y — f(x —y) g(y) is integrable on RY .

L,
g >

[Hint: Seta = p/q’, B = q/p’ and write

| =gl =Ifx = nI*lgIF (|f<x - y>|1—“|g<y>|l—ﬂ) ]

2. Set
(P = [ 7= gy,

Prove that f » g € L"(R") and that || f = gll» < || flIpligll4-
3. Assume here that % + % = 1. Prove that

fxgeCRYYNL®RY)
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and, moreover, if 1 < p < oo then (f x g)(x) — 0O as [x| — oo.

Letf e LP(RN) with I < p < oo. For every r > 0 set

1
(X)) = ——— dy, x e RV,
Jr(x) BG] B(x’r)f(y) Y, X €

1. Prove that f, € LP(RY) N C(RY) and that f,(x) — 0 as |x| — oo (r being
fixed).
2. Prove that f, — fin L?(RV) asr — 0.

[Hint: Write f. = ¢, x f for some appropriate ¢;.]

1. Let f,g e L'RN) and let h € LP(RN) with 1 < p < oco. Show that f x g =
gxfand (frxg)xh= fx(gxh).

2. Let f € L'(RM). Assume that f xp =0 V¢ € C(RY). Prove that f = 0
a.e. on RV. Same question for f € L] (RV).

3. Leta € L'(RV) be a fixed function. Consider the operator 7, : L*>(RY) —
L>(RY) defined by

T,(u) = axu.

Check that 7, is bounded and that || Tl zz2) < llall 1 gy)- Compute T, o T),
and prove that T, o Ty, = Ty 0T, Va,b e L'(RY). Determine (T,)*, T, o (T,)*
and (T,)* o T,. Under what condition on a is (T,)* = T,?

Fix a function ¢ € C.(R), ¢ s 0, and consider the family of functions

F = Jten}.
n=1

where ¢, (x) = p(x +n),x € R.

1. Assume 1 < p < oo. Prove that Ve > 0 3§ > 0 such that
lznf — fllp <& VYf € FandVh € R with |h| < 6.
2. Prove that F does not have compact closure in L? (R).

Let1 < p < ooandlet F C L?(RY) be a compact subset of L? (RV).

1. Prove that F is bounded in L? (RV).
2. Prove that Ve > 0 3§ > 0 such that

ltnf — fll, <& Vf e FandVh e RY with |h| < §.

3. Prove thatVe > 0 3Q c RV bounded, open, such that
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Hf“LP(RN\Q) <e VfelF.

Compare with Corollary 4.27.

Fix a function G € LP(RN) with 1 < p < oo and let F = G % B, where B
is a bounded set in L' (RN).

Prove that F|q has compact closure in L?(2) for any measurable set @ C RV
with finite measure. Compare with Corollary 4.28.

Equi-integrable families.

A subset F C L(Q) is said to be equi-integrable if it satisfies the following
properties:®

(a) F is bounded in LI(Q),
®) Ve>0 35>0 suchthat [, |f|<e¢
VfelF, VE CSQ,E measurableand |E| < 4,
© Ve >0 dw C Q2 measurable with |w| < co
c
such that fQ\w|f| <e VfelF.

Let (£2,) be a nondecreasing sequence of measurable sets in Q with |2,| <
0o Vn and such that Q@ = |, Q.
1. Prove that F is equi-integrable iff

(d) lim sup f [fl=0
100 reFJNfI1>1]

and

(e) lim sup / |f1=0.
=00 re FJO\Q,

2. Prove that if F C L'(Q) is compact, then F is equi-integrable. Is the converse
true?

Fix a function f € L'(R) such that

“+o00 +o00
f(@)dt =0 and f®)dt > 0,
0

—00
and let u,(x) = nf(nx) forx e I = (—1, +1).

1. Prove that
lim /un(x)go(x)dx =0 VpeC(-1,+1)D.
n—o0 I

6 One can show that (a) follows from (b) and (c) if the measure space €2 is diffuse (i.e., 2 has no
atoms). Consider for example = R" with the Lebesgue measure.



130 4 LP? Spaces

2. Check that the sequence (u,) is bounded in L'(I). Show that no subsequence
of (u,) is equi-integrable.
3. Prove that there exists no function u € L'(I) such that

klim /unk(x)w(x)dx = /u(x)w(x)dx Yo € L),

along some subsequence (i, ).

4. Compare with the Dunford—Pettis theorem (see question A3 in Problem 23).

5. Prove that there exists a subsequence (u,,) such that u,, (x) — 0 a.e. on I as
k — oo.

[Hint: Compute f[ | |, (x)|dx and apply Theorem 4.9.]

n=1/2<|x|<1

Set I = (0, 1) and consider the sequence (i,,) of functions in L'(I) defined by

n—1,.
: FARYA 1
n ifxe U()(n,n—l-nQ),
/:

0 otherwise.

up(x) =
1. Check that | supp u,| = % and ||u, |1 = 1.
2. Prove that

lilf U, (x)p(x)dx = /q)(x)dx Yo € C([0, 1]).
I I

n—+0oo

[Hint: Start with the case ¢ € cLqo, 1.

hed

Show that no subsequence of (u,,) is equi-integrable.
4. Prove that there exists no function u € L1 (I) such that

klim funk(x)w(x)dx = /u(x)go(x)dx Yo € L),

along some subsequence (i, ).
[Hint: Use a further subsequence (un;) such that ) ", | supp un;(| < 1]

5. Prove that there exists a subsequence (u,, ) such that u,, (x) — 0 a.e. on I as
k — oo.



Chapter 5
Hilbert Spaces

5.1 Definitions and Elementary Properties. Projection onto a
Closed Convex Set

Definition. Let H be a vector space. A scalar product (u, v) is a bilinear form on
H x H with values in R (i.e., a map from H x H to R that is linear in both variables)
such that

(u,v) =(,u) Yu,ve H (symmetry),
(u,u) >0 Yue H (positive),
(u,u) #0 Yu #0 (definite).

Let us recall that a scalar product satisfies the Cauchy—Schwarz inequality
@ v)] < w2, 0" Vu,v e H.

[It is sometimes useful to keep in mind that the proof of the Cauchy—Schwarz in-
equality does not require the assumption (u, u) # 0 Yu # 0.] It follows from the
Cauchy—-Schwarz inequality that the quantity

lu| = (u, u)'/?

is a norm—we shall often denote by | | (instead of || ||) norms arising from scalar
products. Indeed, we have

lu+ v = @+ v,u+v) = ul® + @) + @, u) + [v* < |ul® +2ul |v] + [v]?,

and thus | + v| < |u| + |v|.
Let us recall the classical parallelogram law:

2 2
a+b a—>b 1., )
1 = —(lal*+|b Va,b € H.
ey 5 5 5 lal” + 1617
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 131
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Definition. A Hilbert space is a vector space H equipped with a scalar product such
that H is complete for the norm | |.

In what follows, H will always denote a Hilbert space.

Basic example. L2(Q2) equipped with the scalar product
(u,v) = f u(x)v(x)du
Q

is a Hilbert space. In particular, £2 is a Hilbert space. The Sobolev space H ' studied
in Chapters 8 and 9 is another example of a Hilbert space; it is “modeled” on L?(£2).

e Proposition 5.1. H is uniformly convex, and thus it is reflexive.

Proof. Lete > 0and u, v € H satisfy |u| < 1, |v] <1, and |u — v| > €. In view of
the parallelogram law we have

2 2

s\ 172
Htv <1—%andthus <1—8With8=1—(1—8—> 0.

2

u-+v

4

e Theorem 5.2 (projection onto a closed convex set). Let K C H be a nonempty
closed convex set. Then for every f € H there exists a unique element u € K such
that

2) |f —u| =min|f —v| =dist(f, K).
vek

Moreover, u is characterized by the property

3) uek and (f —u,v—u) <0 VveKk.

Notation. The above element u is called the projection of f onto K and is denoted by

—
Inequality (3) says that the scalar product of the vector u f* with any vector u (ve
K) is < 0, i.e., the angle 0 determined by these two vectors is > 7/2; see Figure 4.

Proof. (a) Existence. We shall present two different proofs:

1. The function ¢(v) = | f — v| is convex, continuous and lim|y|— co@ (V) = +00.
It follows from Corollary 3.23 that ¢ achieves its minimum on K since H is
reflexive.

2. The second proof does not rely on the theory of reflexive and uniformly convex
spaces. It is a direct argument. Let (v,) be a minimizing sequence for (2), i.e.,
v, € K and

dy =|f —vy| > d=inf |f —v|.
vekK

We claim that (v,) is a Cauchy sequence. Indeed, the parallelogram law applied
witha = f —v, and b = f — v, leads to
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Fig. 4

2

2
Un — Unm

2

vy + vy
2

_l 2 2
|f - = 5(dy +dy).

But 5% € K and thus | f — 24% | > 4. It follows that

2
Un — Unm

2

1
< —
-2

(d?+d?) —d*and lim |v, — v,| =0.
m,n— 00

Therefore the sequence (v,) converges to some limitu € K withd = |f — u].

(b) Equivalence of (2) and (3).
Assume that u € K satisfies (2) and let w € K. We have

v=((_1—-NHu+tweK Vtel01]
and thus
If —ul <|f —[A —Du+rtw]| =|(f —u) —t(w—u)|.
Therefore
|f —ul? < If —ul? =26(f —u,w—u) +*|w —ul,
which implies that 2(f — u, w — u) < tlw —ul®> Vi € (0,1]. Ast — 0 we
obtain (3).
Conversely, assume that u satisfies (3). Then we have
|M—f|2—|U—f|2=2(f—u,v—u)—|u—v|250 Vv € K;
which implies (2).
(c) Uniqueness.

Assume that u1 and u» satisfy (3). We have

4) (f —u,v—u;) <0 Vvek,
5) (f —uz,v—up) <0 VvekKk.
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Choosing v = u3 in (4) and v = u in (5) and adding the corresponding inequalities,
we obtain |u; — uz|® < 0.

Remark 1. It is not surprising to find that a minimization problem is connected with
a system of inequalities. Let us recall a well-known example. Suppose F : R — R
is a differentiable function and suppose u € [0, 1] is a point where F achieves its
minimum on [0, 1]. Then either u € (0, 1) and F’'(u) = 0,0oru = 0 and F'(u) <0,
oru = 1 and F’(u) = 1. These three cases are summarized by saying that u € [0, 1]
and F/(u)(v —u) <0 Vv € [0, 1]; see also Exercise 5.10.

Remark 2. Let K C E be a nonempty closed convex set in a uniformly convex
Banach space E. Then for every f € E there exists a unique element u € E such
that

|f —ull =min || f —v| = dist(f, K);
vekK
see Exercise 3.32.

Proposition 5.3. Let K C H be a nonempty closed convex set. Then Pk does not
increase distance, i.e.,

Pk fi — Pk fal < 1fi— f2l VS, fo€H.
Proof. Setu; = Pk fi; and up = Pk f>. We have

(6) (fi—u,v—u;) <0 Yvek
(7) (fp —uz,v—uz) <0 Vvek.

Choosing v = u3 in (6) and v = u in (5) and adding the corresponding inequalities,
we obtain
luy — uzl* < (fi = fo. w1 — u2).

It follows that |u; — uz| < | fi — f2l.

Corollary 5.4. Assume that M C H is a closed linear subspace. Let f € H. Then
u = Py f is characterized by

®) ’ueM and (f —u,v)=0 VveM.‘

Moreover, Py is a linear operator, called the orthogonal projection.
Proof. By (3) we have
(f—u,v—u) <0 YveM

and thus
(f—u,tv—u) <0 YveM, VteR.

It follows that (8) holds.
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Conversely, if u satisfies (8) we have
(f—u,v—u)y=0 VYveM.

It is obvious that Py is linear.

5.2 The Dual Space of a Hilbert Space

It is very easy, in a Hilbert space, to write down continuous linear functionals. Pick
any f € H; then the map u +— (f, u) is a continuous linear functional on H. It
is a remarkable fact that all continuous linear functionals on H are obtained in this
fashion:

e Theorem 5.5 (Riesz—Fréchet representation theorem). Given any ¢ € H* there
exists a unique f € H such that

(p,u) =(f,u) Yu e H.

Moreover,
Lf1 = llellmr-

Proof. Once more we shall present two proofs:

1. The first one is almost identical to the proof of Theorem 4.11. Consider the map
T : H — H* defined as follows: given any f € H,the map u — (f,u)isa
continuous linear functional on H. It defines an element of H*, which we denote
by T f, so that

(Tf,u)=(f,u) VYueH.

It is clear that | T f ||z« = | f|. Thus T is a linear isometry from H onto T (H),
a closed subspace of H*. In order to conclude, it suffices to show that 7'(H) is
dense in H*. Assume that / is a continuous linear functional on H* that vanishes
on T (H). Since H is reflexive, h belongs to H and satisfies (Tf, h) =0V f € H.
It follows that (f, h) =0V f € H and thus h = 0.

2. The second proof is a more direct argument that avoids any use of reflexivity. Let
M = ¢~1({0}), so that M is a closed subspace of H. We may always assume that
M # H (otherwise ¢ = 0 and the conclusion of Theorem 5.5 is obvious—just
take f = 0). We claim that there exists some element g € H such that

lgl=1and (g,v) =0 Vv e M (and thus g ¢ M).
Indeed, let go € H with go ¢ M. Let g1 = Pygo. Then

g =(go—gv/Igo — g1l

satisfies the required properties.
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Given any u € H, set

v=1u—Ag with)\zz(p’u).

v, 8)

Note that v is well defined, since (¢, g) # 0, and, moreover, v € M, since (¢, v) = 0.
It follows that (g, v) = 0, i.e.,

(p,u) =(p, g)(g,u) Yuc€cH,

which concludes the proof with f = (¢, g)g.

e Remark 3. H and H*: to identify or not to identify? The triplet V. ¢ H c V*.

Theorem 5.5 asserts that there is a canonical isometry from H onto H*. It is
therefore “legitimate” to identify H and H*. We shall often do so but not always.
Here is a typical situation—which arises in many applications—where one should be
cautious with identifications. Assume that H is a Hilbert space with a scalar product
(, ) and a corresponding norm | |. Assume that V C H is a linear subspace that is
dense in H. Assume that V has its own norm || || and that V is a Banach space with
Il |I. Assume that the injection V. C H is continuous, i.e.,

lv] < Cllv]] YveV.

[For example, H = L*(0, 1) and V = L?(0, 1) with p > 2 or V = C([0, 1]).]
There is a canonical map 7' : H* — V™ that is simply the restriction to V of
continuous linear functionals ¢ on H, i.e.,

(To,v)vev = (@, V)H* H.
It is easy to see that T has the following properties:

@) ITellvx < Clplux Vo € H,
@ii) T is injective,
(iii) R(T) is dense in V* if V is reflexive.!

Identifying H* with H and using T as a canonical embedding from H* into V*,
one usually writes

©) VCH~H"CV*

>

where all the injections are continuous and dense (provided V is reflexive). One says
that H is the pivot space. Note that the scalar products (, )y« y and (, ) coincide
whenever both make sense, i.e.,

(fivyysv =(f,v) VfeH, VvelV.

! However, T is not surjective in general.
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The situation becomes more delicate if V turns out to be a Hilbert space with its
own scalar product ((, )) associated to the norm || ||. We could, of course, identify
V and V* with the help of ((, )). However, (9) becomes absurd. This shows that one
cannot identify simultaneously V and H with their dual spaces: one has to make a
choice. The common habit is to identify H* with H, to write (9), and not to identify
V* with V [naturally, there is still an isometry from V onto V*, but it is not viewed
as the identity map]. Here is a very instructive example.

Let
00
H=€2 = {M = (un)nzl; Zuﬁ < OO}

n=1

equipped with the scalar product (i, v) = Y 00| Unvy.

Let
o0
V= {u = Un)n>1; anuz < oo}
n=1

equipped with the scalar product ((u, v)) = Y oo, n2u, vy
Clearly V C H with continuous injection and V is dense in H. Here we identify
H* with H, while V* is identified with the space

=1
V= {f = (fudn=1: X:n—zfn2 < 00},
n=1

which is bigger than H. The scalar product (, )y+ v is given by
o
(f0)vev =) favn,
n=1
and the Riesz—Fréchet isomorphism 7 : V — V™ is given by
u= (un)nzl = Tu= (nzun)nzl-

Remark 4. 1t is easy to prove that Hilbert spaces are reflexive without invoking the
theory of uniformly convex spaces. It suffices to use twice the Riesz—Fréchet iso-
morphism (from H onto H* and then from H* onto H**).

Remark 5. Assume that H is a Hilbert space identified with its dual space H*. Let
M be a subspace of H. We have already defined M (in Section 1.3) as a subspace
of H*. We may now consider it as a subspace of H, namely

MLz{ueH;(u,v)zo Yv € M}.

Clearly we have MNM+ = {0}. Moreover, if M is closed we alsohave M+M~+ = H.
Indeed, every f € H may be written as

f=Fuf)+(f = Puf)
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and f — Py f € M~; more precisely, f — Py f = Pyif.

It follows that in a Hilbert space every closed subspace has a complement (in the
sense of Section 2.4).

5.3 The Theorems of Stampacchia and Lax-Milgram
Definition. A bilinear forma : H x H — R is said to be
(i) continuous if there is a constant C such that
la(u,v)| < Clu||v|] Yu,v e H,
(ii) coercive if there is a constant « > 0 such that
a(v,v) > alv]*> Vv e H.

Theorem 5.6 (Stampacchia). Assume that a(u, v) is a continuous coercive bilinear
formon H. Let K C H be a nonempty closed and convex subset. Then, given any
@ € H*, there exists a unique element u € K such that

(10) au,v—u) > (p,v—u) Vvek.

Moreover, if a is symmetric, then u is characterized by the property

(1) uekK and %a(u, u) — (e, u) = f}r‘lsllr(l {%a(v, v) — (o, v)} .

The proof of Theorem 5.6 relies on the following very classical result.

e Theorem 5.7 (Banach fixed-point theorem—the contraction mapping princi-
ple). Let X be a nonempty complete metric space and let S : X — X be a strict
contraction, i.e.,

d(Svy, Svp) <kd(vy,vy) Vv, vy € X withk < 1.
Then S has a unique fixed point, u = Su.
For a proof see, e.g., T. M. Apostol [1], G. Choquet [1], A. Friedman [3].

Proof of Theorem 5.6. From the Riesz—Fréchet representation theorem (Theorem 5.5)
we know that there exists a unique f € H such that

(p,v) =(f,v) VveH.

On the other hand, if we fix u € H, the map v — a(u, v) is a continuous linear
functional on H. Using once more the Riesz—Fréchet representation theorem we find
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some unique element in H, denoted by Au, such that a(u, v) = (Au,v) Vv € H.
Clearly A is a linear operator from H into H satisfying

(12) |Au| < Clu| Yu € H,
(13) (Au,u) > alul*> Yu e H.
Problem (10) amounts to finding some u € K such that
(14) (Au,v—u) > (f,v—u) Vvek.
Let p > 0 be a constant (to be determined later). Note that (14) is equivalent to
(15) (of —pAu+4+u—u,v—u) <0 Vvek,

ie.,
u=Pg(pf — pAu+u).

Forevery v € K,set Sv = Pk (pf —pAv+v). We claim thatif p > 01is properly
chosen then S is a strict contraction. Indeed, since Px does not increase distance (see
Proposition 5.3) we have

[Svr — Svz| < [(v1 — v2) — p(Avy — Avy)|
and thus

|Sv1 — Sva]*> = [v1 — v2|* — 20(Av) — Ava, v1 — v2) + p*|Av) — Avy|?
< |v1 — v2* (1 = 2pa + p*C?).

Choosing p > 0in such a way that k* =1-2pa+p3C? < 1(e.,0 < p <2a/C?
we find that S has a unique fixed point.?

Assume now that the form a(u, v) is also symmetric. Then a(u, v) defines a new
scalar product on H; the corresponding norm a(u, u)'/? is equivalent to the original
norm |u|. It follows that H is also a Hilbert space for this new scalar product. Using
the Riesz—Fréchet theorem we may now represent the functional ¢ through the new
scalar product, i.e., there exists some unique element g € H such that

(p,v) =a(g,v) YveH.
Problem (10) amounts to finding some u# € K such that
(16) a(g—u,v—u) <0 Vvek.

The solution of (16) is an old friend: u is simply the projection onto K of g for the
new scalar product a. We also know (by Theorem 5.2) that u is the unique element
K that achieves

2 1f one has to compute the fixed point numerically, it pays to choose p = «/C? in order to minimize
k and to accelerate the convergence of the iterates of S.
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mina(g — v, g — v/,
vekK

This amounts to minimizing on K the function

v a(@—v,g—v) =a(,v)—2a(g, v)+a(g, g) =a(,v) -2, v)+alg, g,

or equivalently the function
1
vV Ea(v, v) — (@, v).
Remark 6. It is easy to check that if a(u, v) is a bilinear form with the property
a(v,v) >0 VYve H

then the function v — a(v, v) is convex.

e Corollary 5.8 (Lax-Milgram). Assume that a(u, v) is a continuous coercive bi-
linear form on H. Then, given any ¢ € H*, there exists a unique element u € H
such that

(17) a(u,v) = (p,v) Vv e H.

Moreover, if a is symmetric, then u is characterized by the property

1 1
(18) ueH and Ea(u, u) — (o, u) = Ir)réllril {Ea(v, v) — (o, v)} .

Proof. Use Theorem 5.6 with K = H and argue as in the proof of Corollary 5.4.

Remark 7. The Lax—Milgram theorem is a very simple and efficient tool for solving
linear elliptic partial differential equations (see Chapters 8 and 9). It is interesting
to note the connection between equation (17) and the minimization problem (18).
When such questions arise in mechanics or in physics they often have a natural
interpretation: least action principle, minimization of the energy, etc. In the language
of the calculus of variations one says that (17) is the Euler equation associated with
the minimization problem (18). Roughly speaking, (17) says that “F’(u) = 0,” where
F is the function F (v) = %a(v, v) — (@, v).

Remark 8. There is a direct and elementary argument proving that (17) has a unique
solution. Indeed, this amounts to showing that

Vfe€eH 3Jue H uniquesuchthat Au = f,

i.e., A is bijective from H onto H. This is a trivial consequence of the following
facts:

(a) A is injective (since A is coercive),
(b) R(A) is closed, since a|v| < |Av| Yv € H (a consequence of the coerciveness),
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(c) R(A) is dense; indeed, suppose v € H satisfies
(Au,v) =0 VYu € H,

then v = 0.

5.4 Hilbert Sums. Orthonormal Bases

Definition. Let (E,),>1 be a sequence of closed subspaces of H. One says that H
is the Hilbert sum of the E,’s and one writes H = @&, E,, if

(a) the spaces E, are mutually orthogonal, i.e.,

(u,v)=0 VYuekE,, YveE,, m#“n,

(b) the linear space spanned by | Jo> | E, is dense in H 3
e Theorem 5.9. Assume that H is the Hilbert sum of the E,,’s. Givenu € H, set
u, = Pg,u

and
n

S, = Zuk.

k=1
Then we have
(19) lim S, =u
n—>oo

and

o0
(20) Z lug)? = |u)® (Bessel—Parseval’s identity).

k=1

It is convenient to use the following lemma.

Lemma 5.1. Assume that (v,) is any sequence in H such that

(21 (Um,vn) =0 Vm #n,
o

(22) D Il < oo
k=1

Set

3 The linear space spanned by the E,’s is understood in the algebraic sense, i.e., finite linear
combinations of elements belonging to the spaces (E,).
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n
S, = Z Vk.
k=1

Then

S= lim §, exists
n—oQ

and, moreover,
o0
(23) ISP =" |l
k=1
Proof of Lemma 5.1. Note that for m > n we have

m
1S — Sul> = Y luel.

k=n+1
It follows that S, is a Cauchy sequence and thus § = lim,,—, oo S, exists. On the other

hand, we have
n

2 2
M

k=1
As n — oo we obtain (23).

Proof of Theorem 5.9. Since u, = Pg,u, we have (by (8))
(24) u—u,,v)=0 YvekE,,

and in particular,
2
(u, up) = luyl”.

Adding these equalities, we find that

n
u, ) =Y luxl*.
k=1

But we also have
n
(25) D ol =181,
k=1

and thus we obtain
(u, Su) = |Sa|.

It follows that |S,| < |u| and therefore > ;_, lugl?> < |ul?.

Hence, we may apply Lemma 5.1 and conclude that § = lim,_, o, S, exists. Let
us identify S even without assumption (b). Let F be the linear space spanned by the
E,;’s. We claim that
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Indeed, we have
(u—3S8,,v) =0 Yve E,, m<n

just write u — S;, = (U — uy,) — uy). As n — oo we obtain
k#£m
(u—S,v)=0 YvekE,, Vm
and thus
(u—S,v)=0 VveF,

which implies that .
(u—S,v)=0 VvekF.

On the other hand_, S, € F Vn, and at the limit S € F. This proves (26). Of course,
if (b) holds, then F = H and thus S = u. Passing to the limit as # — o0 in (25) we
obtain (20).

Definition. A sequence (e,),>1 in H is said to be an orthonormal basis of H (or
a Hilbert basis* or simply a basis when there is no confusion)’ if it satisfies the
following properties:

(1) len| = 1Vnand (e, ep) =0Vm # n,
(ii) the linear space spanned by the ¢,’s is dense in H.

e Corollary 5.10. Let (ey,) be an orthonormal basis. Then for everyu € H, we have
oo n
u= I;(M, exer, ie,u= lim ];(u, ex)ex

and
o0
2 2
lul” = E [(u, ex)|”.
k=1

Conversely, given any sequence (a,) € £2, the series Y %o arex converges to some
element u € H such that (u, ex) = o Vk and |u|2 = Z,fil ot]%.

Proof. Note that H is the Hilbert sum of the spaces E, = Re, and that P, u =
(u, ey)e;,. Use Theorem 5.9 and Lemma 5.1.

Remark 9. In general, the series Y uy in Theorem 5.9 and the series ) (u, ex)ey in
Corollary 5.10 are not absolutely convergent, i.e., it may happen that Y o~ |ux| = 0o
orthat Y po | |(u, ex)| = o0.

e Theorem 5.11. Every separable Hilbert space has an orthonormal basis.

4 Not to be confused with an algebraic (= Hamel) basis, which is a family (e;);ecy in H such that
every u € H can be uniquely written as a finife linear combination of the ¢;’s (see Exercise 1.5).

5 Some authors say that (e,) is a complete orthonormal system.
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Proof. Let (v,) be a countable dense subset of H. Let Fi denote the linear space
spanned by {v1, v2, ..., vr}. The sequence (Fy) is anondecreasing sequence of finite-
dimensional spaces such that U,fil Fy is dense in H. Pick any unit vector e in F7.
If F», # Fi there is some vector e in F» such that {ej, e»} is an orthonormal basis
of F,. Repeating the same construction, one obtains an orthonormal basis of H.

Remark 10. Theorem 5.11 combined with Corollary 5.10 shows that all separable
Hilbert spaces are isomorphic and isometric with the space £2. Despite this seemingly
spectacular result it is still very important to consider other Hilbert spaces such as
L2(2) (or the Sobolev space H 1(€), etc.). The reason is that many nice linear (or
nonlinear) operators may look dreadful when they are written in a basis.

Remark 11. If H is a nonseparable Hilbert space—a rather unusual situation—one
may still prove (with the help of Zorn’s lemma) the existence of an uncountable or-
thonormal basis (e;);cr; see, e.g., W. Rudin [2], A. E. Taylor-D. C. Lay [1], G. B. Fol-
land [2], G. Choquet [1].

Comments on Chapter 5

1. Characterization of Hilbert spaces.

It is sometimes useful to know whether a given norm | || on a vector space E
is a Hilbert norm, i.e., whether there exists a scalar product (, ) on E such that
lull = (u, u)'/? Vu € E. Various criteria are known:

(a) Theorem 5.12 (Fréchet-von Neumann—Jordan). Assume that the norm || ||
satisfies the parallelogram law (1). Then || || is a Hilbert norm.
For a proof see K. Yosida [1] or Exercise 5.1.

(b) Theorem 5.13 (Kakutani [1]). Assume that E is a normed space with dim E >
3. Assume that every subspace F of dimension 2 has a projection operator of
norm 1 (i.e., there exists a bounded linear projection operator P : E — F such
that Pu = uNu € F and | P|| < 1).° Then || || is a Hilbert norm.

(¢c) Theorem 5.14 (de Figueiredo—Karlovitz [1]). Let E be a normed space with
dim E > 3. Consider the radial projection on the unit ball, i.e.,

u ifllull <1,
Tu = .
w/llull i flul > 1.

Assume’ that

6 Let us point out that every subspace of dimension 1 has always a projection operator of norm 1.
(Use Hahn—Banach.)

7 One can show that in an arbitrary normed space, T satisfies
|1Tu —Tv|| <2 |lu—v| Yu,veE

and the constant 2 cannot be improved; see Exercise 5.6.
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| Tu —Tv| < |lu—v| VYu,ve€E.
Then || || is a Hilbert norm.
Finally, let us recall a result that has already been mentioned (Remark 2.8).

(d) Theorem 5.15 (Lindenstrauss—Tzafriri [1]). Assume that E is a Banach space
such that every closed subspace has a complement.® Then E is Hilbertizable,
i.e., there exists an equivalent Hilbert norm.

2. Variational inequalities.

Stampacchia’s theorem is the starting point of the theory of variational inequalities
(see, e.g., D. Kinderlehrer—G. Stampacchia [1]), which has numerous applications
in mechanics and in physics (see, e.g., G. Duvaut-J. L. Lions [1]), in free boundary
value problems (see, e.g., C. Baiocchi—A. Capelo [1] and A. Friedman [4]), in op-
timal control (see, e.g., J.-L. Lions [2] and V. Barbu [2]), in stochastic control (see
A. Bensoussan-J.-L. Lions [1]).

3. Nonlinear equations associated with monotone operators.
The theorems of Stampacchia and Lax—Milgram extend to some classes of nonlinear
operators. Let us mention the following, for example.

Theorem 5.16 (Minty—Browder). Let E be a reflexive Banach space. Let A : E —
E* be a continuous nonlinear map such that

(Avi — Ava,v1 —v2) >0 Vv, m € E, v #y,

and
(Av, v)

im
lvl—o0 vl

Then for every f € E* there exists a unique solution u € E of the equation Au = f.

The interested reader will find in F. Browder [1] and J.-L. Lions [3] a proof of
Theorem 5.16 as well as many extensions and applications; see also Problem 31.

4. Special orthonormal bases. Fourier series. Wavelets.

In Chapter 6 we shall present a very powerful technique for constructing orthonor-
mal bases, namely by taking the eigenvectors of a compact self-adjoint operator. In
practice one very often uses special bases of L2(2) that consist of eigenfunctions of
differential operators (see Sections 8.6 and 9.8). The orthonormal basis on L2(O, )
defined by

en(x) =4/2/msinnx,n>1, or e,(x)=+/2/mcosnx,n>0,

is quite beloved, since it leads to Fourier series and harmonic analysis, a major field
in its own right; see, e.g., J. M. Ash [1], H. Dym-H. P. McKean [1], Y. Katznelson
[1], C. S. Rees—S. M. Shah—-C. V. Stanojevic [1].

8 It is equivalent to say that every closed subspace has a bounded projection operator P. Note that
here—in contrast to Theorem 5.13—we do not assume that || P|| < 1.
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Here is a question that puzzled analysts for decades. Givenu € L*(0, ), consider
its Fourier series S,, = ZZ:] (u, ex)ex. One knows (see Corollary 5.10) that S,, — u
in L2(0, 7). It follows that a subsequence S,, — u a.e.on (0, ) (see Theorem 4.9).
But can one say that the full sequence S, — u a.e. on (0, 7)? The answer is given
by the following very deep result:

Theorem 5.17 (Carleson [1]). If u € L?*(0, ) then S, — u a..

Other classical bases of L2(0, 1) or L2(R) are associated with the names of Bessel,
Legendre, Hermite, Laguerre, Chebyshev, Jacobi, etc. We refer the interested reader to
R. Courant-D. Hilbert [1], Volume 1, and R. Dautray-J.-L. Lions [1], Chapter VIII;
see also the comments at the end of Chapter 8 (spectral properties of the Sturm—
Liouville operator). Recently, there has also been much interest in the Haar and the
Walsh bases of L2(O, 1), which consist of step functions; see, e.g., Exercises 5.31,
5.32, G. Alexits [1], H. F. Harmuth [1].

The theory of wavelets provides a very important and beautiful new type of bases.
It is a powerful tool in decomposing functions, signals, speech, images, etc. The
interested reader may consult the recent books of Y. Meyer [1], [2], [3], R. Coifman
and Y. Meyer [1], I. Daubechies [1], G. David [1], C. K. Chui [1], M. B. Ruskai et
al. [1], J. J. Benedetto—M. W. Frazier [1], G. Kaiser [1], J. P. Kahane—P. G. Lemarié-
Rieusset [1], S. Mallat [1], G. Bachman-L. Narici—-E. Beckenstein [1], T. F. Chan—
J. Shen [1], P. Wojtaszczyk [1], E. Hernandez—G. Weiss [1], and their references.

5. Schauder bases in Banach spaces.

Let E be a Banach space. A sequence (e;),>1 is said to be a Schauder basis if for
every u € E there exists a unique sequence (¢, ),>1 in R such that u = 2130:1 o ek
(i.e., u = limy— 00 ) _y_; aker). Such bases play an important role in the geometry
of Banach spaces (see, e.g., B. Beauzamy [1], J. Lindenstrauss—L. Tzafriri [2], J. Di-
estel [2], R. C. James [2]). All classical (separable) Banach spaces used in analysis
have a Schauder basis (see, e.g., I. Singer [1]). This fact led Banach to conjecture
that every separable Banach space has a basis. After a few decades of unavailing
efforts a counterexample was discovered by P. Enflo [1]. One can even construct
closed subspaces of £7 (with 1 < p < oo, p # 2) without a Schauder basis (see
J. Lindenstrauss—L. Tzafriri [2]). A. Szankowski [1] has found another surprising
example: £ (H) (with its usual norm) has no Schauder basis when H is an infinite-
dimensional separable Hilbert space. In Chapter 6 we shall see that a related problem
for compact operators also has a negative answer.

Exercises for Chapter 5

In what follows, H will always denote a Hilbert space equipped with the scalar
product (, ) and the corresponding norm | |.

5.1|The parallelogram law.
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Suppose E is a vector space equipped with anorm | || satisfying the parallelogram
law, i.e.,
la+ 617 + lla = b1I* = 2(lla ]| + IbI*)  Va,b € E.

Our purpose is to show that the quantity defined by
1
(,v) = 2w+ =l = [oI*) w,veE,

is a scalar product such that (u, u) = ||u||>.

1. Check that
(u,v) = (v,u), (—u,v) = —(u, v) and (u, 2v) = 2(u,v) Vu,v € E.

2. Prove that
(u+v,w)=w,w)+ (v,w) Vu,v,wekE.

[Hint: Use the parallelogram law successively with (i) a = u, b = v; (ii)) a =
utw,b=v+w,and(iii)a =u+v+w,b = w.]

3. Prove that (Au, v) = A(u,v) VA € R, Vu,v € E.
[Hint: Consider first the case A € N, then A € @, and finally A € R.]

4. Conclude.

L? is not a Hilbert space for p # 2.

Let €2 be a measure space and assume that there exists a measurable set A C 2
such that 0 < |A| < |€2].

Prove that the || ||,, norm does not satisfy the parallelogram law forany 1 < p <
00, p # 2.

[Hint: Use functions with disjoint supports.]

Let (u,) be a sequence in H and let (#,) be a sequence in (0, co) such that

(tatty — tmlty, Up —Uy) <0 Vm, n.

1. Assume that the sequence (t,) is nondecreasing (possibly unbounded). Prove
that the sequence (u,) converges.
[Hint: Show that the sequence (|u,|) is nonincreasing.]

2. Assume that the sequence (1) is nonincreasing. Prove that the following alter-
native holds:

(i) either |u,| — oo,
(i1) or (u;) converges.

Ift, — t > 0O, prove that (u,) converges, and if #, — 0, prove that both cases
(i) and (ii) may occur.

Let K C H be a nonempty closed convex set. Let f € H andletu = Pk f.
Prove that
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w—u? <lv—fP>—lu—f*> Yvek.

Deduce that
lv—u| <|v— f|] VveKk.

Give a geometric interpretation.

1. Let (K,) be a nonincreasing sequence of closed convex sets in H such that
Nn Ky 7& @.
Prove that for every f € H the sequence u,, = P, f converges (strongly) to a
limit and identify the limit.

2. Let (K,) be a nondecreasing sequence of nonempty closed convex sets in H.

Prove that for every f € H the sequence u, = Pk, f converges (strongly) to a
limit and identify the limit.

Let ¢ : H — R be a continuous function that is bounded from below. Prove that
the sequence o, = infg, ¢ converges and identify the limit.

The radial projection onto the unit ball.
Let E be a vector space equipped with the norm || ||.
Set

u if flul <1,
u = .
w/llull i fluf > 1.

1. Prove that ||Tu — Tv|| <2|lu —v|| VYu,v e E.

2. Show that in general, the constant 2 cannot be improved.
[Hint: Take E = R? with the norm |ju|| = |u1| + |u2|.]

3. What happens if || || is a Hilbert norm?

Projection onto a convex cone.
Let K C H be a convex cone with vertex at 0, i.e.,

0eK and u+puveK Vi, u>0, Vu,veKk,;

assume in addition that K is closed.
Given f € H, prove that u = Pk f is characterized by the following properties:

uek, (f—u,v)<0 YveK and (f—u,u)=0.

Let Q2 be a measure space and let & : 2 — [0, 400) be a measurable function.
Let
K={ue L2(§2); lu(x)| < h(x) a.e.on Q}.

Check that K is a nonempty closed convex set in H = L?(2). Determine Pk .

Let A C H and B C H be two nonempty closed convex set such that ANB = ¢
and B is bounded.
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Set
C=A-B.

—_—

Show that C is closed and convex.
2. Setu = Pc0and write u = ag — by for some ay € A and by € B (this is possible
since u € C).
Prove that |ap — bg| = dist(A, B) = infseca pep la — b|.
Determine P4bgy and Pgag.
3. Suppose a; € A and b; € B is another pair such that |a; — b| = dist(A, B).
Prove that u = a1 — by.
Draw some pictures where the pair [ag, bo] is unique (resp. nonunique).
4. Find a simple proof of the Hahn—-Banach theorem, second geometric form, in
the case of a Hilbert space.

Let F : H — R be a convex function of class C'. Let K C H be convex and
let u € H. Show that the following properties are equivalent:

1 F(u) < F(w) Yvek,
(i) (F'(w),v—u)>0 VveKk.

Example: F(v) = |v — f|*> with f € H given.

Let M C H be a closed linear subspace that is not reduced to {0}. Let
feH feM

1. Prove that
m = JQL (f, u)
lul=1
is uniquely achieved.

2. Let ¢1, 92,93 € H be given and let E denote the linear space spanned by
{¢1, @2, 3}. Determine m in the following cases:

() M =E,
(i) M = E*+.

3. Examine the case in which H = L2(0, 1), ¢1(t) = 1, ¢2(t) = 12, and @3(t) = 1°.

Completion of a pre-Hilbert space.

Let E be a vector space equipped with the scalar product (, ). One does not
assume that E is complete for the norm |u| = (u, u)'/? (E is said to be a pre-Hilbert
space).

Recall that the dual space E*, equipped with the dual norm || f|| g+, is complete.
Let T : E — E* be the map defined by

(Tu,v)p«~ g = (u,v) Vu,veE.

Check that T is a linear isometry. Is 7" surjective?
Our purpose is to show that R(T') is dense in E* and that || || g+ is a Hilbert norm.
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1. Transfer to R(T) the scalar product of E and extend it to R(T). The resulting
scalar product is denoted by ((f, g)) with f, g € R(T).
Check that the corresponding norm ((f, f )1/2 coincides on m with || £l g+.
Prove that

(fivy=f,Tv)) YveE, VfeR).

2. Prove that R(T) = E*.
[Hint: Given f € E*, transfer f to a linear functional on R(T') and use the
Riesz—Fréchet representation theorem in R(7T').]
Deduce that E* is a Hilbert space for the norm || || g=.

3. Conclude that the completion of E can be identified with E*. (For the definition
of the completion see, e.g., A. Friedman [3].)

Let E be a vector space equipped with the norm || ||g. The dual norm is
denoted by || || g+. Recall that the (multivalued) duality map is defined by

F) ={f € E* | fllg+ = lullg and (f, u) = |lull7}.

1. Assume that F satisfies the following property:
Fu)+ Fv) C Flu4+v) VYu,veeE.

Prove that the norm || || g arises from a scalar product.
[Hint: Use Exercise 5.1.]
2. Conversely, if the norm || ||g arises from a scalar product, what can one say
about F'?
[Hint: Use Exercise 5.12 and 1.1.]

Leta: H x H — R be a bilinear continuous form such that
a(v,v) >0 VYveH.

Prove that the function v — F(v) = a(v, v) is convex, of class C!, and determine
its differential.

Let G C H be alinear subspace of a Hilbert space H; G is equipped with the
norm of H. Let F be a Banach space. Let S : G — F be a bounded linear operator.

Prove that there exists a bounded linear operator 7 : H — F that extends S and
such that

”T”,Z(H,F) = ”S”,Z(G,F)'

The triplet V. C H C V*.

Let H be a Hilbert space equipped with the scalar product (, ) and the corre-
sponding norm | |. Let V C H be a linear subspace that is dense in V. Assume that
V has its own norm || || and that V is a Banach space for || ||. Assume also that the
injection V C H is continuous, i.e., [v| < CJv]| Yv € V. Consider the operator
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T : H — V* defined by
(Tu,v)y»v =wm,v) Yue H, VYvelV.

Prove that ||Tu|ly+ < Clu|Vu € H.

Prove that T is injective.

Prove that R(T) is dense in V* if V is reflexive.

Given f € V*, prove that f € R(T) iff there is a constant @ > 0 such that
[{(f, v)v=v| <alv|VveV.

el

Let M, N C H be two closed linear subspaces.
Assume that (u, v) = 0Vu € M, Yv € N. Prove that M + N is closed.

Let E be a Banach space and let H be a Hilbert space. Let T € Z(E, H).
Show that the following properties are equivalent:

(i) T admits a left inverse,
(ii) there exists a constant C such that ||u|| < C|Tu|Vu € E.

Let (u,) be a sequence in H such that u, — u weakly. Assume that
lim sup |u,| < |ul|. Prove that u,, — u strongly without relying on Proposition 3.32.

Assume that S € £ (H) satisfies (Su,u) > 0Vu € H.

1. Prove that N(S) = R(S)~ .
2. Prove that I 4 ¢S is bijective for every ¢t > 0.
3. Prove that
lim (I +1S)"'f = Py f YfeH.
t—>—+00

[Hint: Two methods are possible:

(a) Consider the cases f € N(S) and f € R(S).
(b) Use weak convergence.]

Iterates of linear contractions. The ergodic theorem of Kakutani—Yosida.
Let T € Z(H) be such that ||T|| < 1. Given f € H and given an integer
n>1,set

on(f) = %(f+ TF+T2 4+ T f)

and

2

Our purpose is to show that
lim 0, (f) = lim u,(f) = Pna-1) f.
n— 00 n— 00

1. Check that N(I — T) = R(I — T)* .
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2. Assumethat f € R(I—T).Prove that there exists a constant C such that |0, (f)| <

C/nVn > 1.
3. Deduce that for every f € H, one has

lim 0,(f) = Pya-1) [
n—oo

1
4. Set § = 5(1 + T). Prove that

1) lu — Sul® + |Sul® < |u|*> Vu € H.
Deduce that

ZlSl —S*P? <u? YueH

and that
[S" (u — Su)| <

M vieH vas1.
_l’_

5. Assume that f € R(I — T). Prove that there exists a constant C such that

lun ()l < C//nVn = 1.
6. Deduce that for every f € H, one has

lim w,(f) = Pna-1)f-
n—oo

Let C C H be a nonempty closed convex set and let T : C — C be a
nonlinear contraction, i.e.,

|Tu —Tv| <|u—v| Vu,veC.
1. Let (u,) be a sequence in C such that
u, — u weakly and (v, — Tu,) — f strongly.

Prove thatu — Tu = f.
[Hint: Start with the case C = H and use the inequality ((u —Tu)— (v—Tv), u—
v) >0Vu,v.]
2. Deduce that if C is bounded and T'(C) C C, then T has a fixed point.
[Hint: Consider T,u = (1—¢&)Tu+¢ea witha € C being fixedande > 0, ¢ — 0.]

Zarantonello’s inequality.

Let T : H — H be a (nonlinear) contraction. Assume that o, a2, ..., 0, € R
are such that o; > 0 Vi and Z;’zl o; = 1. Assume that uy, us, ..., u, € H and set

n
o = E oiu;.
i=1
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Prove that
n
‘TO‘ — Za,-Tu,-
i=1

[Hint: Write

2

1 n
< z ,Zlaiaj[lui — uj|2 — |Tu; — Tuj|2i|.
i,j=

2 n
= Z ajaj(To —Tu;,To —Tuj)
i,j=1

n
‘TU - Z o Tu;
i=1

and use the identity (a, b) = 3(la|* + [b|* — |a — b[?).]
What can one deduce when T is anisometry (i.e., |[Tu—Tv| = lu—v|Vu,v € H)?

The Banach—Saks property.

1. Assume that (u,) is a sequence in H such that u, — 0 weakly. Construct by
induction a subsequence (u,, j) such that u,,, = u1 and

1
(Gt tn)l < 2 V= 2andVj=1,2.... k1.

Deduce that the sequence (0,) defined by o, = % Z?:l up; converges strongly
to0as p — oo.
[Hint: Estimate |o|2.]

2. Assume that (u,) is a bounded sequence in H. Prove that there exists a subse-
quence (up;) such that the sequence o), = % Zj;l up; converges strongly to a
limit as p — oo.

Compare with Corollary 3.8 and Exercise 3.4.

Variations on Opial’s lemma.

Let K C H be a nonempty closed convex set. Let (#,) be a sequence in H such
that for each v € K the sequence (Ju, — v|) is nonincreasing.

1. Check that the sequence (dist(u,, K)) is nonincreasing.

2. Prove that the sequence (Pgu,) converges strongly to a limit, denoted by £.
[Hint: Use Exercise 5.4.]

3. Assume here that the sequence (u,,) satisfies the property

®) Whenever a subsequence (u,, ) converges weakly

to some limitu € H,thenu € K.

Prove that u;,, — ¢ weakly.

4. Assume here that [, _,A(K — K) = H.Prove that there exists some u € H such
that u,, — u weakly and Pxu = £.

5. Assume here thatInt K # (. Prove that there exists some u € H suchthatu, — u
strongly.
[Hint: Consider first the case that K is the unit ball and then the general case.]
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6. Set 0, = %(ul + us + --- + u,) and assume that the sequence (o,) satisfies
property (P). Prove that o,, — £ weakly.

Assume that (e,) is an orthonormal basis of H.

1. Check that e, — 0 weakly.

Let (a,) be a bounded sequence in R and set u,, = % Y
2. Prove that |u,| — 0.
3. Prove that \/n u,, — 0 weakly.

14ié€;.

Let D C H be a subset such that the linear space spanned by D is dense in H.
Let (E,)n>1 be a sequence of closed subspaces in H that are mutually orthogonal.
Assume that

o
Z |Pg,ul® = u|®> Vu e D.
n=1

Prove that H is the Hilbert sum of the E,;’s.

Assume that H is separable.

1. Let V C H be a linear subspace that is dense in H. Prove that V contains an
orthonormal basis of H.

2. Let (ey)n>1 be an orthonormal sequence in H, i.e., (¢;, ;) = §;;. Prove that there
exists an orthonormal basis of H that contains Uflozl {en}.

A lemma of Grothendieck.

Let 2 be ameasure space with |2] < 0o.Let E be aclosed subspace of L? (2) with
1 < p < 0o. Assume that £ C L®°(£2). Our purpose is to prove that dim £ < co.

1. Prove that there exists a constant C such that

lullo < Cllull, Yu€E.

[Hint: Use Corollary 2.8.]
2. Prove that there exists a constant M such that

lulloo < Mllullz Vu e E.

[Hint: Distinguish the cases | < p <2and2 < p < 00.]
3. Deduce that E is a closed subspace of L2().

In what follows we assume that dim £ = oo. Let (e;),>1 be an orthonormal
sequence of E (equipped with the L? scalar product).

4. Fix any integer k > 1. Prove that there exists a null set w C €2 such that

i P 172
Zaiei(x) <M (Za?) Vx € Q\w, Va=(aj,a2,...,q) € R,

i=1 i=1
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[Hint: Start with the case o € QF.]
5. Deduce that Y"¥_ |e;(x)|? < M2 Vx € Q\o.
6. Conclude.

Let (ex)n>1 be an orthonormal sequence in H = L2(0, 1). Let p(t) be agiven
function in H.

1. Prove that for every ¢ € [0, 1], one has

o0

(1) >

n=1

2 t
< /O |p(s)2ds.

t
/ p(s)en(s)ds
0

2. Deduce that

o 1
@) >
n=1 0

3. Assume now that (e,),>1 is an orthonormal basis of H.
Prove that (1) and (2) become equalities.

4. Conversely, assume that equality holds in (2) and that p(z) # 0 a.e. Prove that
(en)n>1 is an orthonormal basis.

2 1
dr < / pOP = 1.
0

t
/ p(s)e,(s)ds
0

Example: p = 1.

The Haar basis.

Given an integer n > 1, write n = k + 27, where p > 0 and k > 0 are integers
uniquely determined by the condition k¥ < 27 — 1. Consider the function defined on
(0, 1) by

1
2r/2 if k27 <t < (k+ 5)2—1’,
_ 1
Pn(t) =10 _20/2 if (k+ P2 <t <k+D27,
0 elsewhere.

Set ¢p = 1 and prove that (¢,),>0 is an orthonormal basis of L2(0, 1).

The Rademacher system and the Walsh basis.
For every integer i > 0 consider the function r;(¢) defined on (0, 1) by r;(7) =
(—1)[21’ 1 (as usual [x] denotes the largest integer < x).

1. Check that (7;);>¢ is an orthonormal sequence in L? (0, 1) (called the Rademacher
system).

2. Is (ri)i>0 an orthonormal basis?
[Hint: Consider the function u = ryr.]

3. Given an integer n > 0, consider its binary representation n = Zf:o ai2i with
a; € {0, 1}.



156 5 Hilbert Spaces

Set
)

wa(t) = [ [ripi 0.

i=0

Prove that (w,),>0 is an orthonormal basis of L?(0, 1) (called the Walsh basis).
Note that (r;);>0 is a subset of (wy),>0.



Chapter 6

Compact Operators. Spectral Decomposition of
Self-Adjoint Compact Operators

6.1 Definitions. Elementary Properties. Adjoint

Throughout this chapter, and unless otherwise specified, £ and F denote two Banach
spaces.

Definition. A bounded operator T € L(E, F) is said to be compact if T (Bg) has
compact closure in F (in the strong topology).

The set of all compact operators from E into F is denoted by K(E, F). For
simplicity one writes JC(E) = K(E, E).

Theorem 6.1. The set IC(E, F) is a closed linear subspace of L(E, F) (in the topol-
ogy associated to the norm || | z(g,F))-

Proof. Clearly the sum of two compact operators is a compact operator. Suppose
that (7},) is a sequence of compact operators and 7 is a bounded operator such that
T, — Tllze, 7y — 0. We claim that T is a compact operator. Since F' is complete
it suffices to check that for every ¢ > O there is a finite covering of 7 (Bg) with
balls of radius ¢ (see, e.g., J. R. Munkres [1], Section 7.3). Fix an integer n such that
7. —Tllze,Fy < €/2.Since T, (Bg) has compact closure, there is a finite covering
of T,,(Bg) by balls of radius ¢/2, say T,(Bg) C Uie,B(fi, g/2). It follows that
T(Bg) C UieIB(fi’ €).

Definition. An operator T € L(E, F) is said to be of finite rank if the range of T,
R(T), is finite-dimensional.

Clearly, any finite-rank operator is compact and thus we have the following.

Corollary 6.2. Let (T,,) be a sequence of finite-rank operators and let T € L(E, F)
be such that | T, — Tllgg,Fy — 0. Then T € K(E, F).

* Remark 1. The celebrated “approximation problem” (Banach, Grothendieck) deals
with the converse of Corollary 6.2: given a compact operator 7 does there always
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exist a sequence (7},) of finite-rank operators such that |7, — Tl zg,r) — 0? The
question was open for a long time until P. Enflo [1] discovered a counterexample
in 1972. The original construction was quite complicated, and subsequently simpler
examples were found, for example, with F being some closed subspace of £” (for
any 1 < p < 0o, p # 2). The interested reader will find a detailed discussion of
the approximation problem in J. Lindenstrauss—L. Tzafriri [2]. Note that the answer
to the approximation problem is positive in some special cases—for example if F
is a Hilbert space. Indeed, set K = T (Bg). Given ¢ > 0 there is a finite covering
of K with balls of radius ¢, say K C |J; <1B(fi,¢). Let G denote the vector space
spanned by the f;’s and set T, = PgT, so that T, is of finite rank. We claim that
IT: — Tllze Fy < 2¢. For every x € B there is some ip € I such that

(D ITx — fioll <e.
Thus

|PcTx — P fill < e,
that is,
2 1PcTx — fiyll <e.

Combining (1) and (2), one obtains
|PcTx — Tx| <2¢ Vx € Bg,

that is,
I Te — Tl Fy < 26.

[More generally, one sees that if ' has a Schauder basis, then the answer to the
approximation problem is positive for every space E and every compact operator
from E into F.]

In connection with the approximation problem, let us mention a technique that
is very useful in nonlinear analysis to approximate a continuous map (linear or
nonlinear) by nonlinear maps of finite rank. Let X be a topological space, let F
be a Banach space, and let 7 : X — F be a continuous map such that 7'(X) has
compact closure in F. We claim that for every ¢ > 0 there exists a continuous map
T, : X — F of finite rank such that

3) ITe(x) —T(x)|| <e VxelX.

Indeed, since K = T(X) is compact there is a finite covering of K, say K C

Ui B(fi, /2). Set
Y qi(x)fi

iel

Y gi(x)

iel

Te(x) = with ¢; (x) = max{e — [|Tx — fill, O}
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clearly T, satisfies (3).

This kind of approximation is very useful, for example, to deduce Schauder’s
fixed-point theorem from Brouwer’s fixed-point theorem (see, e.g., K. Deimling [1],
A. Granas—J. Dugundji[1], J. Franklin [1], and Exercise 6.26). A similar construction,
combined with the Schauder fixed-point theorem, has also been used in a surprising
way by Lomonosov to prove the existence of nontrivial invariant subspaces for a
large class of linear operators (see, e.g., C. Pearcy [1], N. Akhiezer—I. Glazman [1],
A. Granas—J. Dugundji [1], and Problem 42). Another linear result that has a simple
proof based on the Schauder fixed-point theorem is the Krein—Rutman theorem (see
Theorem 6.13 and Problem 41).

Proposition 6.3. Let E, F, and G be three Banach spaces. Let T € L(E, F) and
Sek(F, G)lresp. T e K(E, F)yand S € L(F, G)]. Then SoT € K(E, G).

The proof is obvious.
Theorem 6.4 (Schauder). If T € K(E, F), then T* € KC(F*, E*). And conversely.

Proof. We have to show that T*(Bp~) has compact closure in E*. Let (v,) be a
sequence in Bpx. We claim that (T*(v,)) has a convergent subsequence. Set K =
T (BEg); this is a compact metric space. Consider the set H C C(K) defined by

H={pp:x e Kr— (v, x);n=1,2,...}.

The assumptions of Ascoli—Arzela’s theorem (Theorem 4.25) are satisfied. Thus,
there is a subsequence, denoted by ¢y, , that converges uniformly on K to some
continuous function ¢ € C(K). In particular, we have

sup |(v,1k, Tu) — (p(Tu)’ — 0.
ueBg k—o00
Thus
sup |(vy., Tut) = (vn,., Tu)| — 0,
ueBg k,£—00

ie., |T*vy, — T*vy,||g» —> 0. Consequently T*v,, converges in E*.
i k,£— 00

Conversely, assume T* € K(F*, E*). We already know, from the first part,
that T** € K(E**, F**). In particular, 7**(Bg) has compact closure in F**. But
T(Bg) = T*(Bg) and F is closed in F**. Therefore T (Bg) has compact closure
in F.

Remark 2. Let E and F be two Banach spaces andlet T € K(E, F).If (u, ) converges
weakly to u in E, then (T'u,) converges strongly to Tu. The converse is also true if
E is reflexive (see Exercise 6.7).

6.2 The Riesz—Fredholm Theory

We start with some useful preliminary results.
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Lemma 6.1 (Riesz’s lemma). Let E be an n.v.s. and let M C E be a closed linear
space such that M # E. Then

Ve > 0 Ju € E such that |u|| = 1 and dist(u, M) > 1 —¢.
Proof. Letv € E withv ¢ M. Since M is closed, then
d = dist(v, M) > 0.
Choose any mo € M such that
d<|lv—moll =d/(1—e¢).
Then
v — mo

[ —mol

satisfies the required properties. Indeed, for every m € M, we have

— my

v
I [ | EIr= e
l[v —moll llv —moll

since mqg + ||[v — mg|lm € M.

Remark 3. If M is finite-dimensional (or more generally if M is reflexive) one can
choose ¢ = 0 in Lemma 6.1. But this is not true in general (see Exercise 1.17).

e Theorem 6.5 (Riesz). Let E be an n.v.s. with Bg compact. Then E is finite-
dimensional.

Proof. Assume, by contradiction, that E is infinite-dimensional. Then there is a
sequence (E,) of finite-dimensional subspaces of E such that E,,_; C E, and
E,_1 # E,. By Lemma 6.1 there is a sequence (u,) with u, € E, such that
llu,|l = 1 and dist(u,, E,—1) > 1/2. In particular, ||u, — uy| > 1/2 form < n.
Thus (u,) has no convergent subsequence, which contradicts the assumption that Bg
is compact.

e Theorem 6.6 (Fredholm alternative). Let T € KC(E). Then

(@) N(I — T) is finite-dimensional,

(d) R(I — T) is closed, and more precisely R(Il — T) = N(I — T4,
C©ONUI-T)={0} & R(I—-T)=E,

(D dimNUI —-T)=dimN{ —T%*).

Remark 4. The Fredholm alternative deals with the solvability of the equation
u — Tu = f.Itsays that

» cither for every f € E the equation ¥ — Tu = f has a unique solution,

* orthehomogeneous equation u —Tu = 0 admits n linearly independent solutions,
and in this case, the inhomogeneous equation u — Tu = f is solvable if and only
if f satisfies n orthogonality conditions, i.e.,
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feNUI—T""

Remark 5. Property (c) is familiar in finite-dimensional spaces. If dim E < oo, a
linear operator from E into itself is injective (= one-to-one) if and only if it is
surjective (= onto). However, in infinite-dimensional spaces a bounded operator
may be injective without being surjective and conversely, for example the right shift
(resp. the left shift) in £% (see Remark 6). Therefore, assertion (c) is a remarkable
property of the operators of the form I — 7 with T € KC(E).

Proof.

(a) Let Ey = N(I —T).Then Bg, C T(Bg) and thus Bg, is compact. By Theorem
6.5, E| must be finite-dimensional.

(b) Let f, = u, —Tu, — f.Wehavetoshowthat f € R(I—T).Setd, = dist(uy,
N(I —T)).Since N(I — T) is finite-dimensional, there exists v, € N(I — T)
such that d,, = ||u,, — v,||. We have

@) So =y —vy) — T (uy — vy).

We claim that ||u, — v, || remains bounded. Suppose not; then there is a subse-
quence such that [u,, — vy, || — oo. Set w, = (U, — vy)/||lup — vy ||. From (4)
we see that w,, — Tw,, — 0. Choosing a further subsequence (still denoted
by wy, for simplicity), we may assume that Tw,, — z. Thus w,, — z and
ze€ N(I —T), so that dist(wp,, N(/ — T)) — 0. On the other hand,

dist(un, N(I = T))

Ity — vyl

dist(wn, N(I = T)) =

(since v, € N(I — T)); a contradiction.

Thus ||u, — v, | remains bounded, and since T is a compact operator, we may
extract a subsequence such that T (u,, — v, ) converges to some limit £. From
(4) it follows that u,, —v,, — f +¢.Lettingg = f+£{,wehaveg —Tg = f,
i.e., f € R(I —T). This completes the proof of the fact that the operator (I — T')
has closed range. We may therefore apply Theorem 2.19 and deduce that

RI-T)=N(I—-T**, RUI-T*=NU-T)".
(c) We first prove the implication =. Assume, by contradiction, that
Ey=R(I-T)#E.

Then E; is a Banach space and T'(E1) C E;. Thus Tig, € K(Ey) and E; =
(I — T)(E) is a closed subspace of E1. Moreover, E> # E; (since (I — T) is
injective). Letting E, = (I —T)"(E), we obtain a (strictly) decreasing sequence
of closed subspaces. Using Riesz’s lemma we may construct a sequence (u,)
such that u,, € E,, |u,|| = 1 and dist(u,, E,4+1) > 1/2. We have

Tupy —Tuy = =y — Tuy) + Wy — Tuy) + (Up — ).
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Note thatif n > m, then E,,+1 C E, C E;+1 C E), and therefore
—(p — Tuy) + (m — Tuy) +uty € Eppg1.

It follows that | Tu;,, — Tuy, || > dist(usy,, En+1) = 1/2. This is impossible, since
T is a compact operator. Hence we have proved that R(/ — T) = E.
Conversely, assume that R(I —T) = E. By Corollary 2.18 we know that N (I —
T*) = R(I — T)* = {0}. Since T* € K(E*), we may apply the preceding step
to infer that R(/ — T*) = E*. Using Corollary 2.18 once more, we conclude
that N(I — T) = R(I — T*)* = {0}.

(d) Setd = dim N(I — T) and d* = dim N(I — T*). We will first prove that
d* < d. Suppose not, that d < d*. Since N(I — T) is finite-dimensional, it
admits a complement in E (see Section 2.4, Example 1). Thus there exists a
continuous projection P from E onto N({ — T'). On the other hand, R(/ —T) =
N(I — T*)* has finite codimension d* (see Section 2.4, Example 2) and thus it
has a complement (in E), denoted by F, of dimension d*. Since d < d*, there
is a linear map A : N(I — T) — F that is injective and not surjective. Set
S=T+ Ao P.Then S € K(E), since A o P has finite rank.

We claim that N (I — S) = {0}. Indeed, if

O=u—Su=w—Tu) — (Ao Pu),

then
u—Tu=0 and Ao Pu=0,

ie,ue€ N(I —T)and Au = 0. Therefore, u = 0.

Applying (c) to the operator S, we obtain that R(/ — §) = E. This is absurd, since
there exists some f € F with f ¢ R(A), and so the equation u — Su = f has no
solution.

Hence we have proved that d* < d. Applying this fact to 7*, we obtain

dim NI — T**) <dim N(I — T*) <dim N(I — T).

But N(I — T*) D N(I — T) and therefore d = d*.

6.3 The Spectrum of a Compact Operator

Here are some important definitions.

Definition. Let 7 € L(E).
The resolvent set, denoted by p(T), is defined by

p(T) = {} € R; (T — Al) is bijective from E onto E}.

The spectrum, denoted by o (T), is the complement of the resolvent set, i.e.,
o(T) = R\p(T). A real number A is said to be an eigenvalue of T if
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N(T — A1) # {0};

N(T — A) is the corresponding eigenspace. The set of all eigenvalues is denoted
by EV(T).!

It is useful to keep in mind that if A € p(T) then (T — AD™' e L(E) (see
Corollary 2.7).

Remark 6. It is clear that EV(T) C o (T). In general, this inclusion can be strict:2
there may exist some A such that

N(T —AI)={0} and R(T —Al)#E

(such a A belongs to the spectrum but is not an eigenvalue). Consider, for example,
in E = ¢2 the right shift, i.e., Tu = (0,uy,uz,...) withu = (uy,uz,u3,...).
Then 0 € o(T), while 0 ¢ EV(T). In fact, in this case EV(T) = @, while
o(T) = [—1, +1] (see Exercise 6.18). It may of course happen, in finite- or infinite-
dimensional spaces, that EV(T) = o(T) = @; consider, for example, a rotation
by 7 /2 in R2, or in £2 the operator Tu = (—up, uy, —ua, us,...). If we work in
vector spaces over C (see Section 11.4) the situation is fotally different; the study of
eigenvalues and spectra is much more interesting in spaces over C. As is well known,
in finite-dimensional spaces over C, EV(T) = o (T) # @ (these are the roots of the
characteristic polynomial). In infinite-dimensional spaces over C a nontrivial result
asserts that o (T) is always nonempty (see Section 11.4). However, it may happen
that EV (T) = () (take for example the right shift in £ = ).

Proposition 6.7. The spectrum o (T) of a bounded operator T is compact and
o(T) C[=ITI, +IT].

Proof. Let) € Rbesuchthat|A| > ||T||. We will show that T —A[ is bijective, which
implies that o (T) C [—||T ||, +|IT||]- Given f € E, the equation Tu — Au = f has
a unique solution, since it may be written as u = A~!(Tu — f) and the contraction
mapping principle (Theorem 5.7) applies.

We now prove that p(7T') is open. Let Ao € p(T). Given A € R (close to Ag) and
f € E, we try to solve

Q) Tu —Au = f.
Equation (5) may be written as

Tu — dou = f + (A — Ag)u,
ie.,

(©6) u= (T =27 '[f + O — roul.

1 Some authors write 0, (T) (= point spectrum) instead of EV (T).
2 Of course, if E is finite-dimensional, then EV(T) = o (T).
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Applying the contraction mapping principle once more, we see that (6) has a solu-
tion if
A= oll(T = 20D 7' < 1.

e Theorem 6.8. Let T € K(E) with dim E = oo, then we have:

(@) 0 eo(T),
() o (TH\{0} = EV(T)\{0},
(c) one of the following cases holds:
* o(I)={0},
e o(T)\{0} is a finite set,
e o (T)\{0} is a sequence converging to 0.

Proof.

(a) Suppose not, that 0 ¢ o (T). Then T is bijective and / = T o T~! is compact.
Thus Bg is compact and dim E < oo (by Theorem 6.5); a contradiction.

(b) Let A € o(T), A # 0. We shall prove that A is an eigenvalue. Suppose not, that
N(T — 1I) = {0}. Then by Theorem 6.6(c), we know that R(T — ALI) = E and
therefore A € p(T'); a contradiction.

For the proof of assertion (c) we shall use the following lemma.

Lemma 6.2. Let T € KC(E) and let (Ay)n>1 be a sequence of distinct real numbers

such that
Ap — A
and
An € o (TH\{0} Vn.
Then A = 0.

In other words, all the points of o (T')\{0} are isolated points.

Proof. We know that A, € EV(T); let e;, # 0 be such that (T — A, I)e, = 0. Let
E, be the space spanned by {e1, e2, ..., e,}. Weclaimthat E,, C E, 41, E, # Ent1
for all n. It suffices to check that for all n, the vectors eq, ea, ..., e, are linearly
independent. The proof is by induction on n. Assume that this holds up to n and
suppose that e,+1 = > i, a;e;. Then

n n
Tept1 = Zdikiei = Zdi?»nﬂei-
i=1 i=1

It follows that o;(A; — Ap41) = Ofori = 1,2,...,n and thus o; = O fori =
1,2,...,n; a contradiction. Hence we have proved that E,, C E,41, E;, # E,q1
for all n.

Applying Riesz’s lemma (Lemma 6.1), we may construct a sequence (i, ),>1 such
that u, € E,, ||u,|l = 1 and dist(up, E,—1) > 1/2foralln > 2. For2 <m < n
we have
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Em—l C Em C En—l C En-
On the other hand, it is clear that (T — A, I)E,, C E,_1. Thus we have

An Am

H Tu, Tu,, v
n— Um

(Tup — Anuy) _ (Tup — Amum) +
An Am

> dist(u,, E,—1) > 1/2.

If A, — X and 2 # 0 we have a contradiction, since (Tu,) has a convergent
subsequence.

Proof of Theorem 6.8, concluded. For every integer n > 1 the set
o(T)N{reR; A = 1/n}

is either empty or finite (if it had infinitely many distinct points we would have a
subsequence that converged to some A with |A| > 1/n—since o (T) is compact—
and this would contradict Lemma 6.2). Hence if o (7')\ {0} has infinitely many distinct
points we may order them as a sequence tending to 0.

Remark 7. Given any sequence (c,) converging to O there is a compact operator T
such that o (T) = (a,) U {0}. In £2 it suffices to consider the multiplication operator

T defined by Tu = (xjuy, aoua, ..., xlty, ...), Wwhere u = (uy, ua, ..., Uy, ...).
Note that T is compact, since 7 is a limit of finite-rank operators. More precisely, let
Tou = (quy, 02U, ..., duup, 0,0,...); then ||T,, — T|| — 0. In this example, we

also see that 0 may or may not belong to E'V (T'). On the other hand, if 0 € EV(T),
the corresponding eigenspace, i.e., N (T'), may be finite- or infinite-dimensional.

6.4 Spectral Decomposition of Self-Adjoint Compact Operators

In what follows we assume that £ = H is a Hilbert space and that T € L(H).
Identifying H* and H, we may view T* as a bounded operator from H into itself.

Definition. A bounded operator T € L(H) is said to be self-adjoint if T* =T, i.e.,

(Tu,v) = u, Tv) Yu,veH. \

Proposition 6.9. Let T € L(H) be a self-adjoint operator. Set

m = inf (Tu,u) and M = sup (Tu,u).
ueH

1 ueH
ul= luj=1

Theno(T) C [m,M],m € o(T),and M € o(T). Moreover, | T || = max{|m|, |M|}.
Proof. Let . > M; we will prove that A € p(T). We have

(Tu,u) < Mu|*> Yu e H,
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and therefore
(u — Tu,u) > (A — M)|ul*> = a|ul* Vu € H, witha > 0.

Applying Lax—Milgram’s theorem (Corollary 5.8), we deduce that A — T is bijective
and thus A € p(T). Similarly, any A < m belongs to p(T) and therefore o (T) C
[m, M].

We now prove that M € o (T') (the proof that m € o (T) is similar). The bilinear
form a(u, v) = (Mu — Tu, v) is symmetric and satisfies

a(v,v) >0 VYveH.
Hence, it satisfies the Cauchy—Schwarz inequality

1/261(11, v)l/2 Yu,v € H,

la(u, v)| < a(u, u)
ie.,
|(Mu — Tu,v)| < (Mu — Tu,u)/>(Mv — Tv,v)'/*> Vu,v € H.
It follows that

(7 IMu — Tu| < C(Mu — Tu,w)'> Yu € H.

By the definition of M there is a sequence (u,) such that |u,| = 1 and (Tu,, u,) —
M. From (7) we deduce that |[Mu, — Tu,| — 0 and thus M € o(T) (since if
M € p(T), thenu, = (MI —T)""(Mu, — Tu,) — 0, which is impossible).
Finally, we prove that ||T'|| = p, where u = max{|m|, |M|}. Write Vu, v € H,
(Tw+v),u+v)=(Tu,u)+ (Tv,v) +2(Tu, v),
(Twu—v),u—v)=Tu,u)+ (Tv,v) —2(Tu,v).
Thus
4(Tu,v) =T (wm+v),u+v)—(T(u—v),u —v)
|2

§M|u+v|2—m|u—v

and therefore
4(Tu, v)| < u(u+ v + lu — v*) = 2u(ul* + [v]*).

Replacing v by ov with @ > 0 yields

|u|? 2
4(Tu, v)| <2u +alv]© ).

o
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Next we minimize the right-hand side over «, i.e., choose o = |u|/|v|, and then we
obtain
[(Tu,v)| < plul lv] Vu,v, sothat |T] < u.

On the other hand, it is clear that [(Tu,u)| < ||T|| |u|2, so that |m| < |T| and
[M| < |IT||, and thus u < [T

Corollary 6.10. Let T € L(H) be a self-adjoint operator such that o (T) = {0}.
Then T = 0.

Our last statement is a fundamental result. It asserts that every compact self-adjoint
operator may be diagonalized in some suitable basis.

e Theorem 6.11. Let H be a separable Hilbert space and let T be a compact self-
adjoint operator. Then there exists a Hilbert basis composed of eigenvectors of T.

Proof. Let (1,),>1 be the sequence of all (distinct) nonzero eigenvalues of 7. Set
M=0, Ey=N(T), and E, = N(T —A,I).

Recall that
0<dim Eg <oco and 0 <dimE, < oo.

We claim that H is the Hilbert sum of the E,’s, n = 0, 1,2, ... (in the sense of
Section 5.4):

(1) The spaces (E},),>0 are mutually orthogonal.

Indeed, ifu € E,, and v € E,, with m # n, then

Tu=xiyu and Tv=A,v,

so that
(Tu,v) =rp(u,v) = (u, Tv) = Ay (u, v).

Therefore
(u,v) =0.

(ii) Let F be the vector space spanned by the spaces (E,),>0. We shall prove that
F is dense in H.
Clearly, T (F) C F.lItfollows that T (F Ly ¢ Ft;indeed, givenu € F L we have

(Tu,v) =, Tv)y=0 Vv eF,

so that Tu € F. The operator T restricted to F is denoted by Tp. This is a self-
adjoint compact operator on F+. We claim that o (Tp) = {0}. Suppose not; suppose
that some A # 0 belongs to o (Tp). Since L € EV (Tp), there is some u € F+ u # 0,
such that Tou = Au. Therefore, A is one of the eigenvalues of 7', say A = A, with
n>1.Thusu € E, C F.Sinceu € F+ N F, we deduce that u = 0; a contradiction.

Applying Corollary 6.10, we deduce that Ty = 0,i.e., T vanishes on F . It follows
that F- < N(T). On the other hand, N(T) C F and consequently F L c F. This
implies that F- = {0}, and so F is dense in H.
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Finally, we choose in each subspace (E,),>0 a Hilbert basis (the existence of such
a basis for E( follows from Theorem 5.11; for the other E,,’s, n > 1, this is obvious,
since they are finite-dimensional). The union of these bases is clearly a Hilbert basis
for H, composed of eigenvectors of 7.

Remark 8. Let T be a compact self-adjoint operator. From the preceding analysis we
may write any element u € H as

o
U= Zun with u, € E,.
n=0

Then Tu = ZZOII Antty. Given an integer k > 1, set

k
Tiu = Z Anly.
n=1

Clearly, T is a finite-rank operator and

Ty — T|| < sup |An| > 0 ask — oo.
n>k+1

Recall that in fact, in a Hilbert space, every compact operator—not necessarily self-
adjoint—is the limit of a sequence of finite-rank operators (see Remark 1).

Comments on Chapter 6

* 1. Fredholm operators.

Theorem 6.6 is the first step toward the theory of Fredholm operators. Given two
Banach spaces E and F, one says that A € L(E, F) is a Fredholm operator (or a
Noether operator)—one writes A € ®(E, F)—if it satisfies:

(i) N(A) is finite-dimensional,

(i) R(A) is closed and has finite codimension.>

The index of A is defined by
ind A = dim N(A) — codim R(A).

For example, A = I — T with T € K(E) is a Fredholm operator of index zero; this
follows from Theorem 6.6.
The main properties of Fredholm operators are the following:

3 Let A € L(E, F) be such that N (A) is finite-dimensional and R(A) has finite codimension (i.e.,
there is a finite-dimensional space G C F such that R(A) + G = F). Then it follows that R(A) is
closed (see Exercise 2.27).
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(a) The class of Fredholm operators @ (E, F) is an open subset of L(E, F') and the
map A — ind A is continuous; thus it is constant on each connected component
of ®(E, F).

(b) Every operator A € &(E, F) is invertible modulo finite-rank operators, i.e.,
there exists an operator B € L(F, E) such that

(Ao B — If)and (B o A — Ig) are finite-rank operators.

Conversely, let A € L(E, F) and assume that there exists B € L(F, E) such
that
AoB—Ir e K(F) and BoA—Ig e K(E).

Then A € ®(E, F).

() IfAe ®(E,F)and T € K(E, F)then A+ T € ®(E, F) and ind(A + T) =
indA.

(d) IfA € ®(E,F)and B € ®(F,G) then Bo A € ®(E, G) and ind(B o A) =
ind(A)+ind(B).

On this question, see, e.g., T. Kato [1], M. Schechter [1], S. Lang [1], A. E. Taylor—
D. C. Lay [1], P. Lax [1], L. Hérmander [2] (volume 3), and Problem 38.

* 2. Hilbert-Schmidt operators.

Let H be a separable Hilbert space. A bounded operator T € L(H) is called a
Hilbert—Schmidt operator if there is a Hilbert basis (e,) in H such that ||T||%_L S =
3 |Te,|? < 0o. One can prove that this definition is independent of the basis and
that || ||#s is a norm. Every Hilbert—Schmidt operator is compact. Hilbert—Schmidt
operators play an important role, in particular because of the following:

Theorem 6.12. Let H = L2(2) and K (x, y) € L%(Q x Q). Then the operator

u— (Ku)(x) = /Q K (x, y)u(y)dy

is a Hilbert—Schmidt operator.
Conversely, every Hilbert—Schmidt operator on L*>(Q) is of the preceding form
for some unique function K (x,y) € L2(§2 x ).

On this question, see, e.g., A. Balakrishnan [1], N. Dunford-J. T. Schwartz [1],
Volume 2, and Problem 40.

3. Multiplicity of eigenvalues.

LetT € K(E) andlet A € o(T)\{0}. One can show that the sequence N ((T — A5,
k=1,2,...,isstrictly increasing up to some finite p and then it stays constant (see,
e.g., A. E. Taylor-D. C. Lay [1], E. Kreyszig [1], and Problem 36). This integer p is
called the ascent of (T — AI). The dimension of N (T — A1) is called by some authors
the geometric multiplicity of A, and the dimension of N((T — AI)?) is called the
algebraic multiplicity of A; they coincide if E is a Hilbert space and T is self-adjoint
(see Problem 36).
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4. Spectral analysis.

Let H be a Hilbert space. Let T € L(H) be a self-adjoint operator, possibly not com-
pact. There is a construction called the spectral family of T that extends the spectral
decomposition of Section 6.4. It allows one in particular to define a functional cal-
culus, i.e., to give a sense to the quantity f(7") for any continuous function f. It also
extends to unbounded and non-self-adjoint operators, provided one assumes only
that T is normal, i.e., TT* = T*T. Spectral analysis is a vast subject, especially in
Banach spaces over C (see Section 11.4), with many applications and ramifications.
For an elementary presentation see, e.g., W. Rudin [1], E. Kreyszig [1], A. Fried-
man [3], and K. Yosida [1]. For a more complete exposition, see, e.g., M. Reed-B. Si-
mon [1], T. Kato [1], R. Dautray—J.-L. Lions [1], Chapters VIII and IX, N. Dunford—
J.T. Schwartz [1], Volume 2, N. Akhiezer-I. Glazman [1], A. E. Taylor-D. C. Lay [1],
J. Weidmann [1], J. B. Conway [1], P. Lax [1], and M. Schechter [2].

5. The min-max principle. The min-max formulas, due to Courant—Fischer, provide
a very useful way of computing the eigenvalues; see, e.g., R. Courant-D. Hilbert [1],
P. Lax [1], and Problem 37 . The monograph of H. Weinberger [2] contains numerous
developments on this subject.

6. The Krein—Rutman theorem.
The following result has useful applications in the study of spectral properties of
second-order elliptic operators (see Chapter 9).

* Theorem 6.13 (Krein—Rutman). Ler E be a Banach space and let P be a convex
cone with vertex at 0, i.e., Ax + uy € PVA > 0,Vu > 0, Vx € P, Vy € P.
Assume that P is closed, Int P # @, and P # E. Let T € K(E) be such that
T(P\{0}) C Int P. Then there exist some xo € Int P and some Ay > 0 such that
T xo = Aoxo, moreover, A is the unique eigenvalue corresponding to an eigenvector
of T in P, i.e, Tx = Ax withx € P and x # 0, imply . = Ao and x = mxq for
some m > 0. Finally,
ro = max{|Al; A € o(T)},

and the multiplicity (both geometric and algebraic) of A equals one.

The proof presented in Problem 41 is due to P. Rabinowitz [2]. Variants of the
above Krein—Rutman theorem may be found, e.g., in H. Schaefer [1], R. Nussbaum
[1], E. E. Bonsall [1], and J. F. Toland [4].

Exercises for Chapter 6

m Let E = ¢P with 1 < p < oo (see Section 11.3). Let (A,) be a bounded
sequence in R and consider the operator 7' € L(E) defined by

Tx = Ax1, A%, .oy ApXp,y o0 ),

where
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X =X1,X2, ..., Xp,y .. ).
Prove that T is a compact operator from E into E iff A, — 0.

Let E and F be two Banach spaces, and let T € L(E, F).

1. Assume that E is reflexive. Prove that T'(BEg) is closed (strongly).

2. Assume that E is reflexive and that 7 € K(E, F). Prove that T (Bg) is compact.

3. Let E=F = C([0,1]) and Tu(t) = fé u(s)ds. Check that T € K(E). Prove
that T (BEg) is not closed.

Let E and F be two Banach spaces, andlet T € K(E, F).Assumedim E = co.
Prove that there exists a sequence (i) in E such that |u,||g = 1 and ||Tu,||r — O.

[Hint: Argue by contradiction.]

Let 1 < p < oo. Check that £7 C c¢g with continuous injection (for the
definition of £7 and ¢, see Section 11.3).
Is this injection compact?

[Hint: Use the canonical basis (e,,) of £7.]

Let (1,,) be a sequence of positive numbers such that lim,_, o A, = +00. Let
V be the space of sequences (u,),>1 such that

00
Sl < oo,
n=1

The space V is equipped with the scalar product

(U, ) =Y hnity V.

n=1
Prove that V is a Hilbert space and that V C ¢2 with compact injection.

Let 1 < g < p < oo. Prove that the canonical injection from L?(0, 1) into
L7(0, 1) is continuous but not compact.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

Let E and F be two Banach spaces, and let T € L(E, F). Consider the
following properties:

For every weakly convergent sequence (u,) in E,
®) :
u, — u, then Tu,, — Tu strongly in F.

Q T is continuous from E equipped with the weak topology
o (E, E*) into F equipped with the strong topology.
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1. Prove that
(Q) & T is a finite-rank operator.

2. Provethat T € K(E, F) = (P).
3. Assume that either E = ¢! or F = ¢!. Prove that every operator T € L(E, F)
satisfies (P).

[Hint: Use a result of Problem 8.]
In what follows we assume that E is reflexive.

4. Provethat T € K(E, F) < (P).
. Deduce that every operator T € L(E, £') is compact.
6. Prove that every operator T € L(co, E) is compact.

9,1

[Hint: Consider the adjoint operator 7*.]

Let E and F be two Banach spaces, and let T € IC(E, F). Assume that R(T)
is closed.

1. Prove that T is a finite-rank operator.
[Hint: Use the open mapping theorem, i.e., Theorem 2.6.]

2. Assume, in addition, that dim N (T) < co. Prove that dim E < oo.

Let E and F be two Banach spaces, and let T € L(E, F).

1. Prove that the following three properties are equivalent:*
(A) dim N(T) < oo and R(T) is closed.

There are a finite-rank projection operator P € L(E)
(B) and a constant C such that
lule < CUITullr + 1Pullg) Yu € E.

There exist a Banach space G, an operator
© Q € K(E, G), and a constant C such that
lulle < CUITullr + |1Qullg) Vu € E.

[Hint: When dim N (T") < oo consider a complement of N (T'); see Section 2.4.]
Compare with Exercise 2.12.

2. Assume that T satisfies (A). Prove that (T + §) also satisfies (A) for every S €
K(E, F).

3. Prove that the set of all operators T € L(E, F) satisfying (A) isopenin L(E, F).

4. Let Fy be a closed linear subspace of F, and let S € IC(Fp, F).

Prove that (I + S)(Fp) is a closed subspace of F.

‘A projection operator is an operator P such that P2 =rp.
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Let Q(t) = Z,le axt* be a polynomial such that Q(1) # 0. Let E be a
Banach space, and let T € L(E). Assume that Q(T') € K(E).

