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In the first part of this paper, we propose a generalization of cellular learning automata (CLA)
called irregular cellular learning automata (ICLA) which removes the restriction of rectangular grid
structure in traditional CLA. In the second part of the paper, based on the proposed model a
new clustering algorithm for sensor networks is designed. The proposed clustering algorithm is
fully distributed and the nodes in the network don’t need to be fully synchronized with each other.
The proposed clustering algorithm consists of two phases; initial clustering and reclustering. Unlike
existing methods in which the reclustering phase is performed periodically on the entire network,
reclustering phase in the proposed method is performed locally whenever it is needed. This results
in a reduction in the consumed energy for reclustering phase and also allows reclustering phase to
be performed as the network operates. The proposed clustering method in comparison to existing
methods produces a clustering in which each cluster has higher number of nodes and higher
residual energy for the cluster head. Local reclustering, higher residual energy in cluster heads
and higher number of nodes in each cluster results in a network with longer lifetime. To evaluate
the performance of the proposed algorithm several experiments have been conducted. The results
of experiments have shown that the proposed clustering algorithm outperforms existing clustering
methods in terms of quality of clustering measured by the total number of clusters, the number of
sparse clusters and the remaining energy level of the cluster heads. Experiments have also shown
that the proposed clustering algorithm in comparison to other existing methods prolongs the network
lifetime.

Keywords: Sensor Networks, Clustering, Learning Automata, Cellular Learning Automata.

1. INTRODUCTION

Cellular learning automata (CLA) which is introduced
recently,1�48�47 is a powerful mathematical model for
many decentralized problems and phenomena. CLA is
obtained by combining cellular automata (CA) and learn-
ing automata (LA). The basic idea of CLA is to utilize
learning automata to adjust the state transition probability
of stochastic CA. A CLA is a CA in which one learning
automaton is assigned to every cell. This model is superior
to CA because of its ability to learn and also is superior
to a single learning automaton because it is a collection
of learning automata, which can interact with each other
and solve a particular problem. CLA has found many appli-
cations such as image processing,6–9 rumor diffusion,10

∗Corresponding author; E-mail:

modeling of commerce networks,8 channel assignment in
cellular networks11 and VLSI placement,12 to mention
a few.

A wireless sensor network consists of many sensor
nodes. The sensors which are randomly deployed in the
environment of a phenomenon play the role of gathering
specific data from the environment, processing and finally
sending it to the base station (sink). Sensor networks have
critical applications in the scientific, medical, commercial,
and military domains. Wireless sensor networks can be
exposed to highly dynamic and hostile environments,50 and
therefore, they must be tolerant to the failure and loss of
connectivity of individual nodes. Clearly, algorithms for
wireless sensor networks must be distributed in order to
prevent single points of failure. Moreover, sensors in the
network are limited in power, computational capacity and
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memory, and they have only short-range radio transmis-
sion. Therefore in a given network, the sensor nodes must
be intelligent enough to make the network capable to self-
organizing and self-healing.

The major design goal in a power-aware communica-
tion protocol for wireless sensor networks is to minimize
energy consumption and maximize the system lifetime.
Clustering is one of the approaches for achieving such
design goal. The main idea of the clustering is based on
dynamically electing a cluster head among eligible active
nodes. In the clustering process, some of the sensor nodes
with a defined radio range make a cluster together choos-
ing a node as the cluster head (hereafter called head)
whose responsibility is to communicate with the heads of
other clusters. It is possible that in the future these clusters
are combined to create a bigger cluster. Usually, at the end
of a clustering algorithm, the nodes are organized into dis-
joint sets (clusters). Each cluster consists of a head which
manages the cluster and some followers (hereafter called
members) which are usually located within the communi-
cation radius of the head. Each node is a member of only
one cluster. The purpose of a clustering algorithm is to
find a suitable clustering with proper number of clusters
which cover the whole network.

Clustering sensor nodes has some advantages such as
data aggregation in order to reduce energy consumption
by sensors,15�42 facilitates queries on the sensor network,43

form an infrastructure for scalable routing,28�51 and efficient
network-wide broadcast.52 Clustering algorithms for sensor
networks fall into two categories, centralized clustering and
distributed clustering.53 Centralized clustering protocols
require the global network knowledge, introduce substan-
tial storage, communication and computation overheads
and thus are not desirable for resource-constrained sensor
nodes. Distributed clustering algorithms usually make deci-
sions based on localized information.54–56 In general, dis-
tributed clustering schemes introduce less communication
cost when compared with centralized schemes.

Clustering algorithms proposed in the literature usually
consist of two phases; initial clustering phase and reclus-
tering phase.15�27�45 Initial clustering is performed at the
network startup resulting in an infrastructure in which each
node of the network is either a head or a member. Using
this infrastructure, the normal operation of the network is
started. In many real scenarios, the normal operation of
the network is a simple data gathering scheme which is
performed as follows: members periodically gather data
from the environment, process the data and then send it out
to the heads. Heads periodically aggregate data received
from the members of their clusters and forward aggregated
data towards the sink using a multi-hop inter-cluster rout-
ing scheme. Heads consume lots of energy in such a data
gathering scenario because of two main reasons; Receiving
data from all of their members and inter-cluster commu-
nications which need higher transmission range than intra

cluster communications. Thus, to prevent heads from rapid
energy exhaustion, reclustering is performed in the net-
work from time to time to change the role of the nodes as
heads or members.

In the first part of this paper, we propose a general-
ization of cellular learning automata (CLA) called irregu-
lar cellular learning automata (ICLA) which removes the
restriction of rectangular grid structure in traditional CLA.
In the second part of the paper, based on the proposed
model we design a clustering algorithm for wireless sen-
sor networks. The proposed clustering algorithm is fully
distributed and the nodes do not need to be fully synchro-
nized with each other. The proposed clustering algorithm
consists of two phases; initial clustering and reclustering.
Unlike static reclustering schemes, the reclustering scheme
proposed in this paper is performed locally and adaptively
whenever it is needed. A local reclustering is only required
if a head consumes so much energy that cannot continue
its role as a head. In such a situation, a local reclustering
is initiated in the cluster managed by that head. The role
of the head is transferred to the newly elected head(s) at
the end of the local reclustering phase, thus normal oper-
ation of the network need not to be stopped during the
reclustering phase. Local reclustering reduces the amount
of energy consumed for changing the infrastructure of the
network. The proposed clustering method in comparison to
existing methods produces a clustering in which each clus-
ter has higher number of nodes and higher residual energy
for the cluster heads. Local reclustering, higher residual
energy in cluster heads and higher number of nodes in
each cluster results in a network with longer lifetime.
To evaluate the performance of the proposed algorithm
several experiments have been conducted. The results of
experiments have shown that the proposed clustering algo-
rithm outperforms existing clustering methods in terms
of quality of clustering measured by the total number of
clusters, the number of sparse clusters and the remain-
ing energy level of the cluster heads. Experiments have
also shown that the proposed clustering algorithm in com-
parison to other existing methods prolongs the network
lifetime.

The rest of this paper is organized as follows. In
Section 2 cellular automata, learning automata and cellular
learning automata are briefly reviewed and then irregular
cellular learning automata is introduced. Section 3 gives
an overview on clustering algorithms for wireless sensor
networks. The proposed ICLA based clustering algorithm
is described in Section 4. Simulation results are given in
Section 5. Section 6 is the conclusion.

2. CELLULAR LEARNING AUTOMATA

In this section we briefly review cellular automata, learning
automata, cellular learning automata and then introduce
irregular cellular learning automata.
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R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Esnaashari and Meybodi A Cellular Learning Automata Based Clustering Algorithm for Wireless Sensor Networks

2.1. Cellular Automata

Cellular automata are mathematical models for systems
consisting of large number of simple identical components
with local interactions. CA is a non-linear dynamical sys-
tem in which space and time are discrete. It is called cel-
lular because it is made up of cells like points in a lattice
or like squares of checker boards, and it is called automata
because it follows a simple rule.2 The simple components
act together to produce complicated patterns of behavior.
Cellular automata perform complex computations with a
high degree of efficiency and robustness. They are espe-
cially suitable for modeling natural systems that can be
described as massive collections of simple objects interact-
ing locally with each other.3�4 Informally, a d-dimensional
CA consists of an infinite d-dimensional lattice of iden-
tical cells. Each cell can assume a state from a finite set
of states. The cells update their states synchronously on
discrete steps according to a local rule. The new state of
each cell depends on the previous states of a set of cells,
including the cell itself, and constitutes its neighborhood.5

The state of all cells in the lattice is described by a con-
figuration. A configuration can be described as the state
of the whole lattice. The rule and the initial configuration
of the CA specify the evolution of CA that tells how each
configuration is changed in one step.

2.2. Learning Automata

Learning Automata are adaptive decision-making devices
that operate on unknown random environments. A learn-
ing Automaton has a finite set of actions to choose from
and at each stage, its choice (action) depends upon its
action probability vector. For each action chosen by the
automaton, the environment gives a reinforcement signal
with fixed unknown probability distribution. The automa-
ton then updates its action probability vector depend-
ing upon the reinforcement signal at that stage, and
evolves to some final desired behavior. A class of learn-
ing automata is called variable structure learning automata
and are represented by quadruple �����p�T � in which
� = ��1��2� � � � ��r� represents the action set of the
automata, � = ��1��2� � � � ��r� represents the input set,
p = �p1� p2� � � � � pr� represents the action probability set,
and finally p
n+ 1� = T 
�
n���
n��p
n�� represents the
learning algorithm. Let �i be the action chosen at time n,
then the recurrence equation for updating p is defined as

pi
n+1�= pi
n�+a · 
1−pi
n��
pj
n+1�= pj
n�−a ·pj
n� ∀ j j �= i (1)

for favorable responses, and

pi
n+1�= 
1−b� ·pi
n�

pj
n+1�= b

r−1
+ 
1−b�pj
n� ∀ j j �= i

(2)

for unfavorable ones. In these equations, a and b are
reward and penalty parameters respectively. If a= b, learn-
ing algorithm is called LR−P ,a if b� a, it is called LR�P ,b

and if b= 0, it is called LR−I .c For more information about
learning automata the reader may refer to Refs. [57, 58].

2.3. Cellular Learning Automata

Cellular learning automata, which is a combination of cel-
lular automata (CA) and learning automata (LA), is a
powerful mathematical model for many decentralized
problems and phenomena. The basic idea of CLA, which is
a subclass of stochastic CA, is to utilize learning automata
to adjust the state transition probability of stochastic CA.
A CLA is a CA in which a learning automaton is assigned
to every cell. The learning automaton residing in a par-
ticular cell determines its action (state) on the basis of its
action probability vector. Like CA, there is a rule that the
CLA operates under. The local rule of CLA and the actions
selected by the neighboring LAs of any particular LA
determine the reinforcement signal to the LA residing in a
cell. The neighboring LAs of any particular LA constitute
the local environment of that cell. The local environment
of a cell is nonstationary because the action probability
vectors of the neighboring LAs vary during evolution of
the CLA. The basic idea of CLA, which is a subclass of
stochastic CA, is to utilize learning automata to adjust the
state transition probability of stochastic CA. A CLA is
called synchronous if all LAs are activated at the same
time in parallel. A CLA is called asynchronous (ACLA) if
at a given time only some LAs are activated independently
from each other, rather than all together in parallel. The
LAs may be activated in either time-driven or step-driven
manner. In time-driven ACLA, each cell is assumed to
have an internal clock which wakes up the LA associated
to that cell while in step-driven ACLA; a cell is selected
in fixed or random sequence. CLA has found many appli-
cations such as image processing,6–9 rumor diffusion,10

modeling of commerce networks,8 channel assignment in
cellular networks11 and VLSI placement,12 to mention a
few. For more information about CLA the reader may refer
to Refs. [1, 10, 48, 49].

2.4. Irregular Cellular Learning Automata

An Irregular cellular learning automata (ICLA) (Fig. 1) is
a cellular learning automata (CLA) in which the restriction
of rectangular grid structure in traditional CLA is removed.
This generalization is expected because there are applica-
tions such as wireless sensor networks, immune network
systems, graph related applications, etc. that cannot be
adequately modeled with rectangular grids. An ICLA is

aLinear Reward-Penalty.
bLinear Reward epsilon Penalty.
cLinear Reward Inaction.
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Fig. 1. Irregular cellular learning automata.

defined as an undirected graph in which, each vertex repre-
sents a cell which is equipped with a learning automaton.
The learning automaton residing in a particular cell deter-
mines its state (action) on the basis of its action probability
vector. Like CLA, there is a rule that the ICLA operate
under. The rule of the CLA and the actions selected by
the neighboring LAs of any particular LA determine the
reinforcement signal to the LA residing in a cell. The
neighboring LAs of any particular LA constitute the local
environment of that cell. The local environment of a cell is
non-stationary because the action probability vectors of the
neighboring LAs vary during the evolution of the ICLA.

3. RELATED WORK

In this section, we will briefly overview some of the exist-
ing clustering algorithms for wireless sensor networks.
The very first attempt to clustering sensor networks is
the work of Nagpal and Coore44 in 1998. The algorithm
forms clusters with a maximum of two hops. Each node
in the network takes part in the cluster formation process
by choosing a random number from a fixed integer range.
Then it counts down from that number silently. If the count
down was not interrupted from any other neighboring node
and it reaches zero, it announces itself as a head and
broadcasts a recruit message. When a neighboring node
receives the recruit message that comes within two-hop
diameter boundary, it stops the count down, accepts the
invitation and joins the cluster. A similar attempt is done
by Bandyopadhyay and Coyle in Ref. [42]. In this method,
each node becomes a head with probability p. Any node
which resides within a maximum of k hops away from a
head can join the cluster managed by that head. An ana-
lytical paradigm is given to find optimum p and k in terms
of the whole energy consumption in the network.

Another pioneer attempt to make hierarchical infrastruc-
tures in wireless sensor networks is the one introduced28

in 2001. Primarily, a tree rooted at one of the nodes of
the network is created. Starting from leaves of this tree,
each node counts number of its children and assigns them
to different clusters based on a criterion which limits the
number of nodes in each cluster to a pre-specified range.
If number of children of a node doesn’t reach the required
amount for a cluster to be formed, it simply leaves clus-
tering to its parent.

One of the most famous clustering algorithms
introduced for sensor networks is the low energy adap-
tive clustering hierarchy (LEACH) algorithm.15 In LEACH
a predetermined fraction of nodes p, elect themselves as
heads by comparing a chosen random number with a pre-
defined threshold. After the heads have been elected, they
broadcast an advertisement message to the rest of the
nodes in the network that they are the new heads. Upon
receiving this advertisement, all the non-cluster head nodes
decide on the cluster to which they want to belong, based
on the signal strength of the advertisement. In Ref. [34] an
algorithm called CODA is presented which is based on the
mechanism of LEACH. The difference is that clustering
process is separately done in different distances (hop-based
distance) or tiers to the sink node. Number of clusters in
each tier is proportional to the distance of that tier to the
sink node.

There are clustering algorithms which elect heads based
on a certain criterion such as number of neighboring
nodes,16�17�37 or remaining energy of the nodes18 or both.45

In the algorithm presented in Refs. [19, 43], each node
waits for a random duration. After this period, if no mes-
sage is received from a certain head, the node states itself
as a new head. In Ref. [26] an algorithm called Hybrid
Energy-Efficient Approach (HEED) has been given. Before
a node starts executing HEED, it sets its probability of
becoming a head (CHprob) based on its residual energy.
Using this probability, each node decides to become a ten-
tative head or not. Tentative heads, declare themselves to
their neighbors using a cluster-head message, and double
their CHprob probability. Once CHprob in a node reaches 1,
that node becomes a final head. Nodes which are not head
(tentative or final), upon receiving a cluster-head message,
join to the declared cluster. In Ref. [27] an enhancement on
HEED algorithm is presented.

In some clustering algorithms,20�21�29–33 heads are known
a priory and may differ from other nodes of the net-
work. For such scenarios of pre-specified heads, Mhatre
and Rosenberg in Refs. [35, 36] solve the optimality prob-
lem of number of heads and transmission mode in each
cluster (single hop or multi-hop).

In Ref. [22], sink node is assumed to be a mobile node
which queries data from different parts of the network.
For this reason, it is required to have a dynamic clustering
algorithm which can adapt itself to the changing position
of the mobile sink, considering the overall energy con-
sumption in the network. In a slightly different approach,

4 Sensor Letters 6, 1–13, 2008
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Chen et al. in Ref. [38] propose a dynamic clustering
method which is used to track a mobile target. Heads
are known a priory and are always on, while other nodes
are in sleep mode. When a number of heads detect the
existence of a target, they first elect the nearest head to
the target. Elected head requests its surrounding nodes to
become active and sense the target. These nodes upon this
request become active and send information of the position
of the target to the elected head which then aggregates the
received data and sends it to the sink node.

A number of different routing algorithms for sensor net-
works are surveyed in Refs. [23, 24]. One major class of
these algorithms is the hierarchical routing. In hierarchical
routing algorithms, at first a clustering scheme is applied
to form a kind of hierarchy and afterward, the process
of routing is divided into inter and intra-cluster phases.
Some examples of these algorithms are “Fixed size clus-
ter routing,” TEEN,d and APTEEN.e AIMRPf Ref. [25]
assumes that the sink node is placed in the center of the
network. In the setup phase, sink initiates a Tire message
to the nodes in the radius of a around itself. These nodes
constitute the first level. These nodes rebroadcast the Tier
message to the nodes in the radius of a around themselves.
This process continues until all nodes in the network find
their level in the hierarchy to the sink node.

Finally, two completely different clustering schemes
proposed recently in Refs. [46 and 47]. Youssef et al.
in Ref. [46] argue that although most of the published clus-
tering algorithms strive to generate the minimum number
of disjoint clusters, but guaranteeing some degree of over-
lap among clusters can facilitate many applications like
inter-cluster routing, topology discovery and node local-
ization and recovery from cluster head failure, etc. They
proposed MOCA,g a randomized, distributed Multi-hop
Overlapping Clustering Algorithm for organizing the sen-
sors into overlapping clusters. The goal of the clustering
process is to ensure that each node is either a head or
within k hops from at least one head, where k is a preset
cluster radius. Wang et al. in Ref. [47] promoted the idea
of clustering the WSN based on the queries and attributes
of the data. Clustering formation is started from sink node
for every different attribute requested by the application.
The result would be different clustering infrastructure for
different attributes requested by the sink.

4. PROPOSED ALGORITHM

The proposed clustering algorithm consists of two phases:
initial clustering and reclustering. In the initial clustering
phase which is performed when the network starts oper-
ating, all nodes of the network participate. At the end of

dThreshold-Sensitive Energy-Efficient Protocol.
eAdaptive Periodic TEEN.
fAddress-light Integrated MAC, and Reporting Protocol.
gMulti-hop Overlapping Clustering Algorithm.

this phase a fully clustered network is created. Reclus-
tering phase on the other hand, is initiated whenever the
energy level of a cluster head node in the network degrades
by a specified percent. In reclustering phase, only those
nodes which are members of the cluster whose head ini-
tiates reclustering participate. The result of this phase is
a new clustered infrastructure in that part of the network.
Before the initial clustering phase starts, a time-driven
asynchronous ICLA which is isomorphic to the sensor net-
work topology is created. Each node si in the sensor net-
work corresponds to the cell i in ICLA. Two cells i and j
in ICLA are adjacent to each other if si and sj in the sen-
sor network are close enough to hear each other’s signal.
The learning automaton in each cell i of ICLA, referred to
as LAi, has two actions a0 and a1. Action a1 is “declaring
the node si as a head” and action a0 is “declaring node si
as a member.” The probability of selecting each of these
actions is initially set to 0.5. In the rest of this section algo-
rithms for initial clustering phase and reclustering phase
are described in details.

4.1. Initial Clustering Phase

During initial clustering the role of each node which is
initially set to unspecified is changed to either head or
member. Each node in the network maintains an array
called NeighborsInfo including several pieces of informa-
tion about each of its neighbors: energy level, number of
its neighbors and the selected action by the corresponding
cell. NeighborsInfo array for a node is empty at the begin-
ning of the initial clustering phase and will be updated
every time the node receives a packet called ClusterADV
from any of its neighbors. ClusterADV packet will be
introduced later in this section.

Each cell of ICLA during the initial clustering phase is
activated asynchronously. The total number of times that
a cell is activated is bounded by MAX_ITERATION. The
nth activation of cell i occurs at time Ri+n∗ t where Ri is
a random number generated for cell i and t is a constant.
We call n the local iteration number for the cell. Delays
Ri are chosen randomly in order to reduce the probability
of collisions between neighboring nodes.

The clustering algorithm starts when a cell in ICLA is
activated. If cell i is activated then the following operations
are performed:
—If the activation of cell i of ICLA is its first activation
(local iteration 1) then the LAi decides whether to declare
node si in the sensor network as a head or as a member,
that is, the cell chooses one of its actions using its action
probability vector. Then the normal operation of the node
si in the sensor network is interrupted and a packet called
ClusterADV which contains action chosen by cell i, its
energy level, and the number of entries in NeighborsInfo
array (which is equal to the number of neighbors of node
si from which ClusterADV packet is received so far) is
created and transmitted to all of its neighbors

Sensor Letters 6, 1–13, 2008 5
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—If the activation of cell i is not its first activation (local
iteration n > 1) then

• The node si in the sensor network interrupts its
normal operation and computes the reinforcement signal
�i according to Eq. (3) using the information maintained
in its NeighborsInfo array.

�i
n�=



0! −�i
n� ·
(Ni
n�∑
j=1

�j
n�

)
+ 
1−�i
n��

·
(Ni
n�∑
j=1

�j
n�−1
)
≥ 0

1! Otherwise

(3)

In Eq. (3), Ni
n� is the number of neighbors of node si at
local iteration n and �i
n� is the selected action of LAi at
local iteration n. �j
n� is the last action selected by cell
j observed by node si (that is the action included in the
last ClusterADV packet sent by node sj and received by
node si)

• LAi updates its action probability vector using the
computed �i according to the following learning algorithm
with time varying parameters a
n� and b
n�.

pi
n+1�= pi
n�+a
n� · 
1−pi
n��
pj
n+1�= 1−pi
n+1�

(4)

pi
n+1�= 
1−b
n�� ·pi
n�
pj
n+1�= 1−pi
n+1�

(5)

Reward parameter a
n� and penalty parameter b
n� are
time varying parameters which vary according to Eqs. (6)
and (7). Values of these two parameters at time n at a
given cell depend on the current selected action by the
cell, current energy level and the number of the neighbors
of the corresponding node.

a
n�= �i
n� · 
# ·$i
n��+ 
1−�i
n�� · 
# · 
1−$i
n��� (6)

b
n�= �i
n� · 
% · 
1−$i
n���+ 
1−�i
n�� · 
% ·$i
n�� (7)

where

$i
n�=
Esi 
n�

MaxEnergyLevel
(8)

In Eqs. (6) and (7) �i
n� is the action selected by the
cell at time n and ' and % are two constants. It can be
shown that If the reward parameter a
n� and the penalty
parameter b
n� vary according to Eqs. (6) and (7) and #,
%< 1, then we have 0<a
n�< 1, 0<b
n�< 1 (Lemma 1
in appendix). In Eq. (8), Esi 
n� is the residual energy level
of the node si at time n and MaxEnergyLevel is the energy
level of a full battery charged node.

• Cell i chooses one of its actions using its action
probability vector; that is declare the node si in the sensor
network as a head or as a member.

• Node si creates a ClusterADV packet and transmits
it to its neighbors.

—Node si resumes its normal operation.

Initial clustering phase for a node stops if either its local
iteration number exceeds MAX_ITERATION or if the role
of the node changes from unspecified to head or member.
A node becomes a head if the probability that the node
declares itself as a head exceeds a predetermined threshold
(UP_THRESHOLD) and becomes a member if it receives
a signal (contained in ClusterADV packet) from a node
which has already become a head.

If the clustering phase for a node is over because it’s
local iteration number exceeds MAX_ITERATION but its
role is still unspecified, then it polls all of its neighbors
whether or not any of them is a head. If there are such
neighbors, then the polling node becomes a member of
the cluster of one of those neighbors chosen at random.
Otherwise, the polling node itself becomes a head.

4.2. Reclustring Phase

Reclustering phase in many clustering algorithms reported
in the literatures is performed periodically for the entire
network.15�27�45 In such algorithms, in predetermined time
intervals, the normal operation of the network is inter-
rupted, the clustering algorithm is performed on the entire
network (producing a completely new clustered infrastruc-
ture) and then the normal operation of the network is res-
umed. Such periodical reclustering schemes has a number
of drawbacks. The very first problem with such schemes
is that they consume too much energy because the reclus-
tering is performed on the entire network. Another prob-
lem is that the normal operation of the network is delayed
until the reclustering phase is over. In many critical appli-
cations such as military domains, this delay is not accept-
able. Finally, such reclustering schemes are static and do
not receive any feedback from the network and the state of
its nodes. Periodical reclustering may change the role of a
node from a head to a member though it still has enough
residual energy to continue its role as a head. Unlike such
static reclustering schemes, the reclustering scheme pro-
posed in this paper is performed locally and adaptively
whenever it is needed. A local reclustering is only required
if a head consumes so much energy that cannot continue its
role as a head. In such a situation, a local reclustering is ini-
tiated in the cluster managed by that head. The role of the
head is transferred to the newly elected head(s) at the end
of the local reclustering phase, thus normal operation of the
network can be intermingled with the reclustering phase.

Reclustering phase is initiated by a head whenever its
energy level degrades to a specified percent (RECLUSTER-
ING_PERCENT) below the energy level at the time it was
selected as a head. Upon the initiation of a reclustering
phase by a node si whose role is a head, the following
operations are performed:
—si creates a packet called Recluster and transmits it to its
neighbors. This packet is just for informing the neighbors

6 Sensor Letters 6, 1–13, 2008
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of si the beginning of reclustering phase and contains no
other information.
—If the neighbor sj received the Recluster packet is a
head then neighbor sj creates a ClusterADV packet and
transmits it to its neighbors.
—If neighbor sk received the Recluster packet is a member
then

• If neighbor sk is a member of the cluster managed
by si then

• The action probability vector (p1, p2) of LAk is set
to (0.5, 0.5)

• Neighbor sk changes its role from a member to
unspecified

• Neighbor sk starts to execute the initial cluster-
ing phase algorithm with smaller value for parameter
MAX_ITERATION.

• If neighbor sk is not one of the members of the
cluster managed by si then

• Neighbor sk disregards the received Recluster
packet and continues its normal operation.

Once the reclustering phase is over, members of the
cluster whose energy was depleted may have become a
head or a member of an existing cluster or a member
of a newly formed cluster. During the reclustering phase,
previous head (node si) maintains its role as a head to
allow network performs its normal operation in parallel to
reclustering.

Some drawbacks and limitations of the proposed method
which may be considered for further studies are as follows:
—As the density of the network increases, the overhead
of receiving ClusterADV messages from neighbors in each
node increases.
—Although the proposed clustering algorithm can be uti-
lized in tracking or query based applications, but it seems
a more dynamic clustering method can better fit such
applications.
—The proposed clustering algorithm assumes that all of
the sensor nodes have the ability to change their trans-
mission ranges from Rc to 3Rc which is not always the
case.
—The proposed clustering algorithm assumes that the
links in the network are bidirectional but this assump-
tion due to hidden terminal problem59 or due to disparity
between the transmission power levels of the nodes at the
end of the links, may not hold.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed clustering
algorithm, a number of experiments have been conducted.
In these experiments, the results obtained from the pro-
posed algorithm are compared with the results obtained
from the LEACH,15 the basic HEED26 and its extension
(ExtendedHEED).27 In these experiments, we study the
quality of the proposed clustering algorithm in terms of

Number of clusters in the clustering infrastructure pro-
duced at the end of the clustering, Percentage of the sparse
clusters which is defined as the percentage of clusters hav-
ing only one head and one member, Mean energy level of
heads and Ratio of the mean energy level of heads to the
mean energy level of members defined by Eq. (9) where nh

is the number of heads and nm is the number of members.

) =
∑nh
i=1Esi∑nm
j=1Esj

(9)

In what follows, we first give the simulation scenario
used in our experiments and then give the simulation
results.

5.1. Simulation Scenario

In the simulation scenario used in our experiments, the
clustering algorithm is performed first to determine the
role of each node of the network as a head or as a mem-
ber. In the clustering algorithm, nodes communicate with
each other using Rc as their transmission range. Then, the
normal operation of the network which is assumed to be a
simple monitoring application is started. A simple moni-
toring application is defined to be an application in which
members of each cluster periodically obtain data from the
environment and send it to the head of the cluster. The
head of each cluster periodically aggregate data received
from its members and then send the aggregated data
towards the sink using a multi-hop inter-cluster routing
scheme. Inter-cluster communications are performed using
transmission range of 3Rc. In such an application, a data
gathering round is defined to be the time during which the
sink node receives one single packet from each head of
the network. It can be shown that in such applications, the
optimum number of clusters in order to minimize the total
energy consumption of the network at each data gather-
ing round is k = d
1−d�·

Efs −Ens −ER�/
Efs +ER��+1/
d−1�−1/ ln
d�+2

where d is the averaged branching factor of the routing
tree used for routing, EfS and EnS are the amount of energy
consumed for sending a data packet using transmission
range of 3Rc and Rc respectively and ER is the amount of
energy consumed for receiving a data packet (Theorem 1
in the appendix).

For the normal operation of the network to be performed
correctly, heads must be able to communicate with each
other. It can be shown that using the transmission range of
3Rc for inter-cluster communications, a connected graph of
all heads in the network is produced by the proposed clus-
tering algorithm asymptotically almost surely (Theorem 2
in the appendix).

The network operation continues until the time at which
a node in the network dies. In other words, network life-
time is defined to be the time elapsed from the net-
work startup to the time at which a node in the network
dies.19

Sensor Letters 6, 1–13, 2008 7
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5.2. Simulation Results

In the simple monitoring application considered in our
experiments, nodes periodically report 525 bytes of data to
the sink node. Directed diffusion41 is used as the multi-hop
inter-cluster routing protocol. All simulations have been
implemented using NS2 simulator. We use IEEE 802.11
as the MAC layer protocol. Nodes are placed randomly
on a 2 dimensional area of size 100(m)× 100(m). In all
experiments, initial random delay Ri is selected uniformly
and randomly in the range [0.06, 0.09] (s), t is set to
10 (s), MAX_ITERATION is set to 50, ' is set to .8, %
is set to 0.2, Rc is set to 20(m), MaxEnergyLevel is set
to 2.0(J) and RECLUSTERING_PERCENT is set to 85%.
MAX_ITERATION for reclustering phase is set to 10 and
initial energy level of nodes is selected uniformly and
randomly in range [1.5, 2.0] (J). First order radio model
specified in Ref. [15] is used for estimating the amount
of energy consumed for packet transmissions. All pack-
ets except for data packets, which are 525 bytes long,
are assumed to be 8 bytes. For the sake of simplicity
we assume that energy consumption in idle states is zero.
Simulations are performed for 50, 100, 200, 300, 400,
and 500 nodes. The results are averaged over 50 runs.

Experiment 1. In this experiment, we compare the qual-
ity of the clustering infrastructure produced using the pro-
posed method, LEACH, HEED and ExtendedHEED in
terms of number of clusters, percentage of sparse clusters,
mean energy level of heads and ratio of the mean energy
level of heads to the mean energy level of members ()).
Figure 2 compares the number of generated clusters using
the proposed method and the existing methods with the
optimum number of clusters (Theorem 1). As it is shown
the number of clusters in the infrastructure resulted from
the proposed clustering algorithm is very close to the opti-
mum number of clusters. Figures 3, 4 and 5 compares the
proposed algorithm with the other algorithms in terms of
percentage of sparse clusters, mean energy level of heads
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Fig. 2. Comparison of the number of clusters resulted from the cluster-
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Fig. 4. Comparison of clustering methods with respect to Mean energy
level of heads.

and ) , respectively. These figures show that the cluster-
ing infrastructure formed by the proposed method is bet-
ter than the other three methods in terms of all of these
parameters.

Experiment 2. This experiment whose result is given
in Figure 6 compares the network lifetime for the pro-
posed algorithm with LEACH, HEED and ExtendedHEED
algorithms. Figure 6 shows that the network lifetime
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Fig. 7. Comparison of clustering methods with respect to the Ratio of
the energy consumed by the clustering algorithm to the total energy con-
sumed by the network

for the proposed algorithm is higher than that for other
algorithms.

Experiment 3. In this experiment we study the proposed
clustering algorithm in terms of energy consumption. For
this purpose, we compare the ratio of the energy consumed
by the clustering algorithm to the total energy consumed
by the network for the proposed clustering algorithm and
existing algorithms. Figure 7 gives the result of this com-
parison. As it is shown, the proposed clustering algorithm
performs worse than the existing methods in terms of the
energy consumption. But careful inspection of the results
given by Figure 7, shows that in the worst case the amount
of energy consumed during the clustering phase in com-
parison to the total energy dissipated during the network
lifetime is negligible. The amount of energy consumed
during the clustering phase is about 0.0004 of the total
energy dissipated during the network lifetime.

6. CONCLUSIONS

In this paper, we first propose a generalization of cellular
learning automata (CLA) called irregular cellular learning
automata (ICLA) and then a new clustering algorithm for
sensor networks based on ICLA was proposed. To eval-
uate the performance of the proposed method, several

experiments were conducted using the proposed cluster-
ing algorithm and the results obtained were compared with
the results obtained for LEACH, the basic HEED and its
extension (ExtendedHEED) in terms of Number of clus-
ters in the clustering infrastructure produced at the end
of the clustering, percentage of the sparse clusters, mean
energy level of heads and ratio of the mean energy level of
heads to the mean energy level of members. Experiments
showed that the proposed clustering algorithm outperforms
the existing clustering algorithms.

APPENDIX

Lemma 1. If the reward parameter a
n� and the penalty
parameter b
n� vary according to Eqs. (6) and (7) and #,
% < 1, then we have 0< a
n� < 1 and 0< b
n� < 1.

Proof. Using Eq. (8) and knowing the fact that Esi 
n� ≤
MaxEnergyLevel for every node si, then we have $i
n� ≤
1. Using Eqs. (6) and (7) and knowing the fact that �i
n�
is either 0 or 1, $i
n�≤ 1, and #, % < 1 we can conclude
that a
n� < 1 and b
n� < 1.

Lemma 2. Assume that the normal operation of the net-
work is a simple monitoring application which is per-
formed using a multi-hop inter-cluster routing scheme.
Also assume that the routing scheme uses a routing tree
rooted at the sink node, spanned throughout the network
and has a branching factor of d on average. Then on aver-
age each head in this routing tree relays , = 
d2 − 
1+

1−d� ·
logkd−2�� ·k�/
k ·
1−d�2� packets of other heads
where k is the number of clusters in the network.

Proof. Consider the routing tree depicted in Figure 8.
The root of the tree is the sink and other nodes are head

nodes. Any level of this tree relays the packets received
from the levels beneath it. Assuming that each node has
an average branching factor of d then the average number
of packets relayed at level i of this tree (-i) and the total
average number of packets relayed in the network (ATPR)
are given by Eqs. (10) and (11), respectively.

di+1 −dL+1

1−d = di+1 +di+2 +· · ·+dL = -i (10)

ATPR=
L∑
i=1

-i =
d2 − 
1+ 
1−d� · 
L−1�� ·dL+1


1−d�2 (11)

Fig. 8. Routing tree used for inter-cluster routing.
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Using Eq. (11) the average number of packets relayed
by each node in the routing tree is then computed using
Eq. (12) given below

, = ATPR

k
= d2 − 
1+ 
1−d� · 
L−1�� ·dL+1

k · 
1−d�2 (12)

where k is the number of clusters in the network. Replac-
ing L by logkd−1 in Eq. (12) we get

, = d2 − 
1+ 
1−d� · 
logkd−2�� ·k
k · 
1−d�2 (13)

Theorem 1. Assume that the normal operation of a net-
work to be a simple monitoring application and the
energy consumption for reclustering phase is zero. Then
if the transmission range for intra-cluster communica-
tion and inter-cluster communication are Rc and 3Rc,
respectively then the optimum number of clusters (k)
in order to minimize the total energy consumed by
the network at each round of data gathering is k =
d
1−d�·

E

f
s −Ens −ER�/
Efs +ER��+1/
d−1�−1/ ln
d�+2, where d is the

average branching factor of the routing tree, EfS and EnS are
the amount of energy consumed for sending a data packet
using transmission range of 3Rc and Rc respectively and
ER is the amount of energy consumed for receiving a data
packet.

Proof. Let Ech be the amount of energy consumed by a
head and Ecm be the amount of energy consumed by a
member at each round of data gathering. Since the amount
of energy consumed in reclustering phase is assumed to
be zero, Ech can be expressed using Eq. (14).

Ech =
(
N

k
−1

)
·ER+EfS +, · 
ER+EfS � (14)

Ech consists of three terms; 

N/k�− 1� · ER is the
amount of energy consumed for receiving data from the
members of the head (number of members in a cluster is

N/k�− 1 on average), EfS is the amount of energy con-
sumed for sending aggregated data towards the sink, and
, · 
ER+EfS � is the amount of energy consumed for relay-
ing messages received from other heads. , is the average
number of packets relayed by each head (Lemma 2). The
amount of energy consumed for aggregating data packets
received from members is neglected.

A member only sends its reading to the head of its clus-
ter using Rc as its transmission range and hence, Ech =EnS .
Therefore the total energy dissipated in the network at each
round of data gathering (E
k�) can be given by Eq. (15)
where k is the number of clusters.

E
k� = k ·Ech + 
N −k� ·Ecm

= k ·
[(
N

k
−1

)
·ER+EfS +, ·ER+, ·EfS

]
+ 
N −k� · 
EnS � (15)

To find the number of clusters which minimize E
k� we
set the derivative of E
k� with respect to k to zero, that is

dE
k�

dk
= 0 (16)

Since the transmission range for intra-cluster commu-
nication and inter-cluster communication are Rc and 3Rc
respectively then ER, EfS and EnS are constants and hence
we have

dE
k�

dk
= EfS −EnS −ER+ 
ER+Efs � ·

d
k ·,�
dk

= 0 (17)

From Eq. (13), we have

d
k ·,�
dk

= d

dk

(
d2 − 
1+ 
1−d� · 
logkd−2�� ·k


1−d�2
)

(18)

or

d
k ·,�
dk

= 1
d−1

·
(

1
1−d + 1

ln
d�
+ 
logkd−2�

)
(19)

After replacing d
k ·,�/dk from Eq. (19) in Eq. (17)
we have

dE
k�

dk
= EfS −EnS −ER+


ER+Efs �
d−1

·
(

1
1−d + 1

ln
d�
+ 
logkd−2�

)
= 0 (20)

Solving the above equation for k we obtain

k = d
1−d�·

Efs −Ens −ER�/
Efs +ER��+1/
d−1�−1/ln
d�+2 (21)

Lemma 3. At the termination of the initial clustering
phase of the proposed algorithm, a node is either tagged
as a head or as a member.

Proof. Initial clustering in a node stops either when the
number of iterations reaches MAX_ITERATION or when
the role of the node changes from unspecified to a head
or a member. In the former case, the role of the node is
still unknown. Such a node then polls all of its neighbors
whether or not any of them is a head. If there are such
neighbors, then the polling node becomes a member of the
cluster of one of those neighbors chosen at random. Other-
wise, the polling node itself becomes a head. So, at the end
of the initial clustering phase of the proposed algorithm,
a node is either tagged as a head or as a member.

Lemma 4. Assume that N nodes are uniformly and inde-
pendently dispersed at random in an area R = 
0�L�d for
d = 1�2�3 and assume that RdcN = aLd lnL for some con-
stant a > 0, with Rc � L and N 
 1. If a > d · ad, or
a = d · ad and Rc 
 1, then limL→� Pconn
L� = 1, where
ad = 2ddd/2 and Pconn
L� denotes the probability that the
communication graph is connected.

Proof. The proof of the above lemma is given in
Ref. [40].
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Corollary 1. If the conditions of Lemma 4 hold for a 2
dimensional network area, then each cell of size Rc/

√
2×

Rc/
√

2 contains at least one node a.a.s.

Proof. The proof is trivial from Lemma 4.

Theorem 2. Assume that the conditions of Lemma 4 hold.
Then, if transmission range of 3Rc is used for inter-cluster
communications, a connected graph of all heads in the
network is produced by the proposed algorithm asymptot-
ically almost surely.

Proof. Assume that the proposed clustering algorithm pro-
duces two connected sub-graphs of heads G1 = 
V1�E1�
and G2 = 
V2�E2�, such that any v1 ∈ V1 cannot communi-
cate with any v2 ∈ V2 using transmission range of 3Rc. We
prove the theorem by showing that such a situation cannot
happen. Assume that v1 and v2 are the two nearest heads
in G1 and G2. Since v1 and v2 cannot communicate with
each other, their distance is more than 3Rc. Now consider a
square S of size 
Rc/

√
2�× 
Rc/

√
2� centered on the mid-

dle of the line passes through v1 and v2 and its edges are
parallel to the edges of the area R (Fig. 9). It is clear that
the nearest point on square S to v1 is on the nearest edge of
S to v1 (edge AB in Fig. 9). Two cases can be considered:

Case 1: when the perpendicular line from v1 to AB
crosses AB in a point within AB (point E in Fig. 9(a)),
then E is the nearest point to v1 and therefore d
v1�E�,
the distance between points v1 and E, is given by Eq. (28)

d
v1�E�=
√
d2
v1�O�−d2
O�G�−d
E�G� (28)

Using Eq. (28) and the fact thatd
v1� v2�≥ 3Rc we get

d
v1�E�=
√

9R2
c

4
−d2
O�G�− Rc

2
√

2
(29)

(a)

(b)

Fig. 9. v1 and v2 are two heads in two disconnected graphs of heads
and square S is centered on O which is in the middle of the line v1v2.
(a) The nearest point on square S to v1 is E, (b) The nearest point on
square S to v1 is B.

To obtain the minimum of d
v1�E�, we let d
O�G� to
have its maximum value which is Rc/
2

√
2�. Therefore

we get

d
v1�E�≥
√

17−1

2
√

2
·Rc ≥ Rc (30)

Case 2: when the perpendicular line from v1 to AB
doesn’t cross AB in a point within AB (Fig. 9(b)), then
the nearest point to v1 is either A or B (B in Fig. 9) and
therefore d
v1�B�, the distance between points v1 and B,
can be calculated using law of cosines as follows:

d
v1�B�

=
√
d2
v1�O�+d2
O�B�−2 ·d
v1�O�·d
O�B�·cos
B̂Ov1�

(31)

To obtain the minimum of d
v1�B� we set angle B̂Ov1

to 0�. Therefore we get

d
v1�B�≥ Rc (32)

Since in the proposed clustering algorithm, members of
a cluster can communicate with the head of the cluster
using transmission range of Rc (i.e., members of a cluster
are within the distance of at most Rc from the head of the
cluster), the above two cases immediately imply that no
point on square S can be a member of v1. Using the same
argument, it can be shown that no point on S can be a
member of v2 as well. This means that any sensor node
within the square S cannot be a member of either v1 or v2.

On the other hand, assuming that the conditions of
Lemma 4 hold, using Corollary 1 we conclude that at least
one node say node si exists in square S a.a.s. As si located
within square S, it cannot be a member of either v1 or v2.
Thus according to Lemma 3, si is either a head or a mem-
ber of another cluster managed by a head say v3 (Fig. 10).
We next show that si cannot be a head or a member of a
cluster managed by v3.

If si is a head, then either si ∈ V1 or si ∈ V2. Without loss
of generality, assume si ∈ V1. Since, si located on square S,
it is clear that d
si� v2� < d
v1� v2�. This contradicts with
the assumption that v1 and v2 are the two nearest heads in
G1 and G2 and hence si cannot be a head.

Fig. 10. A sensor node si in square S must be either a head or a member
of a cluster managed by a head say v3.
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If si is a member of a cluster managed by v3, then
either v3 ∈ V1 or v3 ∈ V2. Without loss of generality, assume
v3 ∈ V1. We can show that d
v3� v2�<d
v1� v2� which con-
tradicts with the assumption that v1 and v2 are the two
nearest heads in G1 and G2. d
v3, v2� can be calculated
using the following equation:

d
v3� v2�

=
√
d2
v3�O�+d2
O�v2�−2 ·d
v3�O�·d
O�v2�·cos
 ̂v3Ov2�

(33)

Having the fact that d
v3�O� < 
3/2�Rc and consider-
ing d
v1� v2� = 3Rc+� for some � > 0, d
v3� v2� can be
computed as

d
v3� v2�

≤
√

9
4
R2
c+

3Rc+��2

4
−3Rc

(
3Rc+�

2

)
· cos
 ̂v3Ov2�

(34)

To obtain the maximum of d
v3� v2� we set the anglêv3Ov2 to 180�. Therefore we get

d
v3� v2�≤ 3Rc+
�

2
(35)

Inequality (35) shows that d
v3� v2� < d
v1� v2�. Thus,
no head like v3 can be found which manages a cluster to
which the node si is assigned.

If si is not a head or a member, then the status of si
is unspecified which is in contradiction with the result of
Lemma 3. Therefore G1 and G2 are connected a.a.s. and
hence the theorem.
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