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Abstract

This paper presents LAS: Language for the Analysis of Structures. It is a development environment and a
programming language for learning matrix structural analysis, dynamics of structures and the finite element
method. LAS is a flexible learning environment in which users must program their own solutions to solve finite
element static and dynamic problems. The language includes powerful operators, conditional expressions,
loop expressions, and several functions (matrix manipulations, linear algebra, direct stiffness assembly, modal
analysis, time domain dynamic analysis, frequency domain dynamic analysis). The development environment
includes a code editor, a matrix manager, a finite element post-processor and a Fourier-analysis tool.
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1. Introduction

LAS, which stands for Language for the Analy-
sis of Structure, was developed at the Université de
Sherbrooke with the objective of providing civil en-
gineering student with a complete learning environ-
ment, where they can ”program” solutions to com-
plex structural analysis problems in a smart text
editor and visualize the results in a graphical post-
processor. LAS is currently used at the university
level in both undergraduate (Structural analysis)
and graduate (Dynamics of structures, Finite El-
ement) courses. This paper presents the teaching
approach, the LAS programming language and de-
velopment environment as well as some applications
with examples related to static and dynamic anal-
ysis of structures.

2. Teaching approach in structural analysis

There is actually a widespread use of commer-
cial computer programs for structural analysis and
design in university curriculum. These commercial

programs are so easy to use that first-year engi-
neering students can develop 3D models without
any knowledge of structural analysis theory. How-
ever, results can be misleading, as there are large
numbers of potential errors in the input process for
inexperienced users or students. Moreover, they act
as black-box type programs. The user has little or
no control on the solution process. Hence, there
is still a need for students to understand the algo-
rithms involved in the direct stiffness method, in
the finite element method, in structural dynamics,
in modal analysis, etc.

The goal of the computer program presented
herein is not to create a finite element program
from scratch but to provide a large and powerful
set of commands that specifically handle matrix
manipulations and a rich set of functions used in
the solution process. Using such a tool, the en-
gineering student can develop a complete solution
for a wide range of static and dynamic structural
analysis problems. For example, a basic stiffness
method problem would include commands to carry
out the following operations : (1) enter nodal points
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and assign degrees-of-freedom for the structure; (2)
enter element connectivity; (3) create element stiff-
ness matrices; (4) assemble the global stiffness ma-
trix; (5) create and assemble the load vectors; (6)
solve the problem using any linear algebra solving
method; (7) retrieve important results such as the
displacements and internal forces; and (8) eventu-
ally visualize and interpret the results. The teacher
can focus on the algorithms and implications of key
modeling parameters, rather than on the actual
calculations and matrix manipulations (inversion,
Gauss elimination, eigenvalue calculations, etc.).

The CAL (Computer-Assisted Learning) pro-
gramming language was developed in FORTRAN
at Berkeley in the late 70s early 80s with these
objectives in mind. It was a text-based environ-
ment that provided a large set of matrix-related
commands, where users could program algorithms
for the direct stiffness method as well as some
structural-dynamics related commands, (Wilson,
1979; Wilson and Hoit, 1984). This program was
distributed freely and served as basis for further
development. In the late 80s, a graphical post-
processor (CALGR) was developed at the Univer-
sité de Sherbrooke using a graphical language that
was available for DOS and based on the FOR-
TRAN language. This was a separate program
that read and graphically interpreted results cal-
culated by an improved version of the CAL pro-
gram, (Paultre et al., 1991b,a). It provided users
with the ability to visualize solutions for the direct
stiffness method (including specific steps of the stiff-
ness matrix assembly) as well as results of modal
and time-history analysis (vibration mode shapes,
earthquake response, etc). This graphical program
was ported to C++ during the 90s and made avail-
able for Windows systems. This version, called
CALWIN, included a text editor with online help
for all matrix and structural analysis commands, as
well as a graphical post-processor, (Labbé, 2000). It
was successfully used in several civil engineering de-
partments around the world at the undergraduate
and graduate levels.

As the calculation engine was being developed
and new commands were added during those years,
the main shortcomings became more apparent, that
is the limitation of the CAL programming language
itself. The function syntax, the function-based ap-
proch for matrix manupulation and the fact that
the core of the program was in FORTRAN were
quickly becoming outdated. In the mid-nineties,
concepts were laid down for a new object-oriented

environment that would be built from scratch and
programmed in C++, (Carbonneau, 1994). This
first attempt provided the basis for the recent de-
velopments of LAS (now in Visual C# .Net), which
has become a full-fledged programming environ-
ment for static and dynamic structural analysis
Lapointe (2009). The program itself and its ap-
plications are described in the following sections.

One can ask what is the need for a new pro-
gramming language for matrix structural analy-
sis when structural packages such as CALFEM
for MatLab R©, (Dahlblom et al., 1986) and add-on
spreadsheets for Matcad R© (Cedeno-Rosete, 2007)
already exist. The main reasons for developing LAS

is that it is (i) a complete environment that includes
the code editor, the solver and the post-processor
(other solutions generally do not include visualiza-
tion capabilities that improve the learning experi-
ence); (ii) optimized for static and dynamic analy-
sis; (iii) free of charge; and (iv) portable as it can
fit on a USB key and executed at will without any
installation procedure on the host computer.

3. The Program

LAS is a single-executable and portable soft-
ware fully written in Visual C# .Net and com-
patible with any Windows R© operating system bun-
dled with Microsoft R© .Net framework 3.5 SP1. The
LAS software may be associated with the LAS doc-
ument filetype (*.las) during the installation proce-
dure which is done once when the program is first
launched.

Internally, the LAS software is split in two dis-
tinct modules : a calculator and a development
environment. The development environment is a
multiple document interface (MDI) used to create,
edit and run LAS documents. It adds data visual-
ization, graphics and finite element post-processing
capabilities to the calculator.

Figure 1 shows the user interface of the de-
velopment environment with two LAS documents
opened. The main window of the development envi-
ronment is mainly used as document windows man-
ager. Each created or opened LAS file is visually
represented by a document window that uses a tabs-
based interface to navigate through the provided
LAS code editor, output viewer, matrix manager,
finite element post-processor and Fourier-analysis
tool. A context-sensitive toolbar below the tabs
suggests appropriate user interactions.
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Figure 1: LAS Development Environment

Figure 2 illustrates the implementation of LAS

and how the data flows through the different com-
ponents of the calculator and development environ-
ments. The included code editor (or any ASCII
text editor) can be used to create a LAS document.
This type of document consists of a series of instruc-
tions written in the LAS programming language us-
ing ASCII characters. These instructions include
commands to create matrices, and to manipulate
them in order to solve a structural analysis prob-
lem. The compiler then transcodes the LAS doc-
ument into an object code. To accomplish the in-
terpretation of the text instructions into structured
expressions, the compiler parses the LAS code ac-
cording to the LAS syntax (defined functions, op-
erators and statements). The resulting object code
consists of a list of sequentially ordered commands.
An object code command can be an operator call,
a function call or a matrix variable push. The ex-

ecutor then carries-out each object code command.
The matrix, numerical and structural algorithms
are included in libraries linked to the executor. All
matrices created and manipulated by the executor
are stored in a dynamic array during run time of
the LAS application.

The LAS Code editor consist of an ASCII text
editor featuring lines numbering, syntax highlight-
ing, word auto-completion, on-demand help, mod-
ern monospaced font and automatic snippets inser-
tions. Snippets are predefined and reusable por-
tions of code that allow for easier coding of com-
plex algorithms and speed-up repetitive code writ-
ing. They are also a convenient way to help unex-
perienced programmers with the LAS syntax. The
program also includes an output viewer, where the
user can display matrices as well as debugging in-
formation.

A matrix manager lists all matrices resulting
3
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Figure 2: Flow of data through in LAS program

from the execution of an object code and lets the
user assign physical significance or usages to those
matrices (for example: displacement, forces, stiff-
ness matrices or mode shapes). This assignment of
usages is required by the graphical post-processor
and the Fourier-analysis tool to select the appropri-
ate matrices during data postprocessing and visu-
alization. A matrix viewer and a graphics plotter
are also included in the matrix manager and can be
used for visual investigation of matrices content.

4. Numerical analysis language

Although the main purpose of the LAS program-
ming language is the analysis of structures, it has
been designed as a general numerical analysis lan-
guage to offer flexibility and versatility in prob-
lem solving strategies. It provide a rich syntax
composed of variables, operators, statements and a
large set of procedures and functions capable of re-
turning single or multiple values. While developing
their own solutions to a problem, users can call any
of the currently 140 built-in functions, code their
own algorithms or even create user-defined func-
tions. These user-defined functions are developed
separately and can be called by other LAS codes as
a standard function with a defined number of argu-
ments and variable number of returned values. As
in the C language, arguments can be passed as copy
or by reference in these user-defined functions.

Code excerpt #1 shows the matrix declaration
and assignation procedures. Matrix variables must
be declared first and support integer and double
precision floating-point formats. Sparse matrices
can be defined manually while specific matrices
such as diagonal, identity, zero, full and random
matrices can be generated automatically. Several
advanced matrix manipulation functions are avail-
able. A straightforward implementation of matrix
indexing can also be used to directly assign or ex-
tract specific matrix elements or sub-matrices.

Code 1: Declaration and assignation of matrices

1 // I n t e g e r and doub l e numbers
2 I n t Number1 = 100
3 Dbl Number2 = 25 .4
4 Dbl Number3 = 4.3E−3
5
6 // 2x3 user−d e f i n e d mat r i x
7 Dbl Matr ix1 = [ 2 5 . 1 12 . 3 34 . 2
8 42 .7 55 . 2 8 7 . 3 ]
9

10 // 3x3 i d e n t i t y mat r i x
11 Dbl Matr ix2 = I d e n t i t y (3)

Table 1 lists all supported operators ordered by
precedence. The operators at the top of the table
are evaluated first. The standard arithmetic op-
erators are applied to whole matrices (matrix-wise
operators), while those beginning with the symbol
@ as well as the relational, conditional and equality
operators apply to individual element (element-wise
operators).

Code excerpt #2 shows how these operators can
be used with matrices.

Code 2: Using operators with matrices

1 // A r i t hme t i c o p e r a t i o n s wi th numbers
2 Dbl Number4 = 10 ∗ ( 3 − 1 .1 ) ˆ 4
3
4 // A r i t hme t i c o p e r a t i o n s wi th v a r i a b l e s
5 Dbl Matr ix3 = Matr ix1 ∗ Matr ix2 ∗ t ( Matr ix1 )

By including If...Else...EndIf conditional expres-
sions as well as conditional loop expressions such
as For...Next, While...EndWhile and Loop...Until, the
LAS programming language allows for comprehen-
sive coding of complex and iterative algorithms.

Linear algebra functions are provided to solve the
following problems: (i) linear systems of equations
(using LDLT decomposition, LU decomposition
or Gaussian elimination with backward or forward
substitution procedures); (ii) standard and gener-
alized eigenvalues problems; (iii) singular value de-
composition; (iv) inversion of square matrices; and
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Table 1: Precedence of operators

Category Operators

Matrix indexing ( )
Function call ( )

Incrementation ++ −−

Unary + − !

Power ∧ @∧

Multiplicative ∗ / @∗ @/

Additive + − @+ @−

Relational < > <= >=

Equality == ! =

Conditional AND &&

Conditional OR | |

Assignment += −= ∗=
/= ∧= =

(v) computation of matrix norms, rank and deter-
minant. Note that unlike modern optimized imple-
mentation of linear algebra algorithms such as LA-
PACK (Anderson et al., 1999), the vast majority of
linear algebra function in LAS are non-destructive
for user-defined variables and designed for an ed-
ucational purpose. Code excerpt #3 shows how
procedures and functions are called in the LAS lan-
guage. A procedure such as Print returns no value
and may accept a variable number of arguments. A
function such as LDLT may return multiple values.
Brackets are not required for functions that return
only one value.

Code 3: Using functions and procedures

1 // Square mat r i x
2 Dbl A = [ 2 −1 3 5
3 −1 2 −1 1
4 3 −1 4 2
5 5 1 2 5 ]
6
7 // LDLT Decompos i t ion
8 Dbl {L ,D} = LDLT(A)
9

10 // P r i n t ma t r i c e s to output
11 Pr i n t (A, L ,D)

Frequency domain functions are provided: (i)
to compute Fast Fourier Transforms (and their in-
verse) of real and complex vectors; (ii) to compute
the power spectral density of a given function; and
(iii) to create single-sided or double-sided amplitude
and phase spectra.

5. The direct stiffness method

One of the main objectives of the LAS environ-
ment is to provide the student with tools to cre-
ate their own algorithms to apply the direct stiff-
ness method to a structural analysis problem. The
user can then create the appropriate matrices for
the structural system. Finite-element functions al-
low for the automatic generation of stiffness, mass,
transformation and force-displacement matrices for
truss elements, beam-column elements and 4-nodes
quadrilateral isoparametric elements. The latter
use a second order gaussian integration technique
instead of the exact solution. These finite element
functions require the definition of separate matri-
ces for nodal coordinates, degrees-of-freedom, el-
ement connectivity, element geometric properties
(area, inertia, etc.) and material properties (Young
modulus, Poisson’s ratio, ect.).

Assembly of the element matrices into the global
stiffness and mass matrices are carried out with di-
rect stiffness functions. These functions also allow
for the assembly of beam member loads vector (such
as concentrated or distributed loads) into the global
nodal loads vector. The assembly process is accom-
plished using the location matrix that is automat-
ically generated from the element connectivity and
the specified degrees-of-freedom. Functions related
to the beam element also feature rigid ends capa-
bility (which modifies the element stiffness matrices
accordingly).

Figure 3 illustrates how the finite element post-
processor can be used as a direct stiffness method
learning tool. By selecting individual elements, stu-
dents can investigate the assembly process of the
global stiffness matrix. Individual terms in the
global stiffness matrix that are influenced by the
currently selected element are highlighted in the
in the global stiffness matrix shown in the lower
panel. Additional information about the selected
post-processor item are listed in the left panel.
Nodes, finite elements, supports, static and dy-
namic degrees-of-freedom, nodal loads, beam mem-
ber loads and their corresponding numbering and
labels can be displayed in the main (center) panel.

6. Static analyses of structural systems

The solution of the linear static equilibrium equa-
tion (1), is carried out using direct stiffness func-
tions to create and assemble the global stiffness ma-
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Figure 3: Visual representation of the global stiffness matrix assembly

trix, K, and global load vector, F, and using any
of the linear algebra solving functions to determine
the displacement vector, u.

F = Ku (1)

Figure 4 illustrates the internal moment diagrams
of the two storeys frame subjected to earthquake
static equivalent forces. The finite element post-
processor can compute and display axial load dia-
grams, shear force diagrams and bending moment
diagrams. In addition to the minimum and maxi-
mum values displayed, symbols indicate compres-
sion and tension zones for axial load diagrams,
clockwise and counterclockwise shearing zones for
shear force diagrams and curvature for bending mo-
ment diagrams. These symbols have an added aca-
demic value and should lead to a better understand-
ing in the distribution of the deformation in the
analyzed structure.

The finite element post-processor can illustrate
the deformed shape corresponding to the calculated

displacements. Linear interpolation is used for
trusses and 4-Nodes quadrilateral elements while
cubic interpolation is used for beam elements. Mul-
tiple loading cases are supported.

7. Dynamic analyses of structural systems

The solution of the linear dynamic equilibrium
equation (2), is carried out: (i) in time domain
using step-by-step integration methods applied di-
rectly to equation (2); (ii) in modal space using
modal superposition; or (iii) in frequency domain
using Fourier transformation.

Mü(t) + Cu̇(t) + Ku(t) = F(t) (2)

where M is the mass matrix, C is the damping
matrix, u̇(t) and ü(t) are respectively the velocity
and acceleration vectors. The modal superposition
method requires the extraction of the appropriate
mode shapes and corresponding natural frequen-
cies, as well as the step-by-step integration method
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Figure 4: Internal force diagrams

when applied to uncoupled systems. Functions re-
lated to these dynamic analysis methods are pre-
sented in the following subsections.

Figure 5 illustrates the deformed shape of the
same two-storey building subjected to an earth-
quake ground motion. The displacement time-
histories of the dynamic degrees-of-freedom and the
forcing function are respectively plotted in the up-
per and lower part of the right panel. The deformed
shape can also be animated in the main panel of the
post-processor. When the animation is paused, the
post-processor can be used to investigate the model
(including the analysis result such as the dynamic
displacements) as described above in the case of
static analysis.

7.1. Modal analysis

The computation of the natural frequencies
and the mode shapes of a multi-degree-of-freedom
(MDOF) system is carried out by solving the fol-
lowing generalized eigenvalue problem:

KΦ = MΦΛ (3)

where Φ is the eigenvectors (mode shapes) ma-
trix and Λ is the eigenvalues (frequencies) matrix.
The included QR, HQRI or Jacobi method can be
used when information is required for the complete

modal space (all modes). If only a limited num-
ber of natural frequencies and mode shapes are re-
quired, the subspace iteration method can be used.
Additionally, the lowest and the highest frequencies
and their corresponding mode shapes can be ex-
tracted with the direct and inverse iteration meth-
ods respectively. The Jacobi method can also be
used to obtain rigid-body modes by solving the fol-
lowing standard eigenvalue problem:

KΦ = ΦΛ (4)

It has been shown that in some cases better re-
sults can be obtained by using load-dependent Ritz
vectors. Their generation can be carried out in LAS

by providing a user-defined load vector to the Ritz
function. In the case of earthquake loading, they
can be automatically generated.

7.2. Time domain analysis

In the case of uncoupled system, the piecewise
linear integration method should be used as it is
an exact method for piecewise linear forcing func-
tions. For general forcing function, the precision
of the results depends on the interpolation used to
represent the function. For educational purposes,
Duhamel numerical integration can also be carried
out using the rectangular trapezoidal or Simpson

7



Dynamic deformed shape Forcing function

Displacements of dynamic
 degrees of freedom

Deformed shape
information

Figure 5: Deformed shape, forcing function and displacement time-histories

quadrature formula. The modal superposition can
then be carried out.

Several integration schemes are available for cou-
pled system. The central difference and Newmark
linear acceleration methods are conditionally stable
and should be used with caution. The Newmark
constant acceleration method is unconditionally
stable. The Newmark linear accelaration method
does not introduce numerical damping. The family
of α integration schemes such as HHT-α, WBZ-
α and generalized-α methods are also included in
LAS. These integration schemes are unconditionally
stable, but introduce numerical damping. This nu-
merical damping is recommended to control high-
frequency responses that artefacts of the finite el-
ement model. Other integration schemes such as
Houbolt, collocation and Wilson-θ methods are also
included in LAS. This rich set of numerical integra-
tion method can be used effectively in a teaching
environment to study precision, stability, numeri-
cal damping of different integration schemes.

7.3. Frequency domain analysis

Dynamic analysis in the frequency domain can
be carried out with LAS. The forcing functions are
first transformed in the frequency domain, using
the Fast Fourier Transform, and then multiplied by
the frequency response function of the system under
consideration. The resulting frequency domain so-
lution can be transformed back in the time domain
using inverse Fast Fourier Transform.

LAS also includes specific functions to carry out
Response Spectrum Superposition (RSS). The spec-
tral accelerations corresponding to the natural fre-
quencies of a MDOF system can be interpolated
from a given response of design spectra. The modal
responses can then be combined in LAS using the
Square Root of the Sum of the Squares (SRSS)
method or the Complete Quadratic Combination
(CQC) method. The latter method is damping de-
pendant and will provide a more accurate combi-
nation for systems with closely-spaced natural fre-
quencies.

Working in the frequency domain can be chal-
8



lenging for students because the amplitude and
phase representation of a signal is not as intuitive
as a spatial coordinate system in time domain. The
Fourier-analysis tool in LAS can be used to visual-
ize the Fast Fourier Transform or Fourier series of
any discrete signal. In structural engineering, this
tool would most likely be used to visually investi-
gate the frequency content of a force function or of
a response history.

Figure 6 illustrates the Fourier analysis of a force
function. The interface of the Fourier tool in LAS

is composed of four graph panels arranged in quad-
rants. The original signal is always plotted in the
time domain in the upper left quadrant. The stu-
dent can select which plots are displayed in the
lower quadrants. These include the single-sided
amplitude and phase spectrums, the double-sided
amplitude and phase spectrums, the power spec-
tral density and the real and complex components
of a Fast Fourier Transform. The student can also
select individual harmonic components and the cor-
responding sine wave of the Fast Fourier Transform
or of the Fourier series is plotted in the upper right
quadrant. The Fourier tool can also be used to dis-
play and animate the superposition of sine waves up
to the specific harmonic (the fifth harmonic in the
case shown in Figure 6) in order to reconstruct the
original signal. This process gives a physical signif-
icance to the Fourier series in signal decomposition.

8. The LAS set of commands

Figure 7 provides a list (or cheatsheet) of the com-
plete set of commands in the LAS programming en-
vironment. The Matrix group of commands is at
the core of this language and provides instructions
to create and manipulate matrices of real or integer
numbers. In a typical structural analysis problem,
students would first use these commands to create a
model (nodes, elements, degrees-of-freedom). The
Finite Element Method commands would then
be used to create elements matrices and to assemble
them. The Linear Algebra commands would then
be used in static or dynamic analysis to solve equa-
tions 1 and 2 expressed above. In a dynamic prob-
lem, Steb-by-step, Frequency-domain and/or
Dynamics commands would be used to compute
the response of a system subjected to a dynamic
load. The Math group of commands provides the
basic mathematical operators and functions that

can be used in structural analysis. LAS also pro-
vides Loop and Conditional expressions to de-
velop iterative algorithms such as the direct or in-
verse iteration method used to extract mode shapes.
Finally, students can create User-defined func-
tions to create new algorithms for specific problems.

9. Static and dynamic analyses examples

The complete LAS codes required to carry out
the analyses of the two-storey building illustrated
in the previous figures are presented below.

The complete listing for static analysis (presented
in figure 9) shows the commands used for direct
stiffness assembly (lines 5-30), displacement solving
(lines 34-38) and internal forces computation (lines
40-51).

The complete listing for dynamic analyses (pre-
sented in figure 9) shows the commands used for
the creation of the dynamic system matrices (lines
8-12 and 27-29), the modal analysis (lines 16-23)
and the linear time history analysis (lines 31-52).
Rotational degrees-of-freedom are reduced by static
condensation and a lumped-mass approach is used.
The Rayleigh damping matrix is generated using
the natural frequencies computed by modal anal-
ysis. Since the model geometry and the assembly
of the stiffness matrix were already coded for the
static analysis example, they are simply input at
the beginning of the dynamic analysis (line 4). The
input command is a powerful command that allows
a file to be separated into different pieces.

10. Conclusion

The LAS program was developed for civil and
mechanical engineering as a tool to learn static
and dynamic structural analysis. It is the result of
more than twenty years of teaching and has evolved
from a text-based set of matrix related commands
to a full-fledged programming environment with
a graphical post-processor that provides insight
to the procedures involved in the direct stiffness
method, the finite element method, as well as
time and frequency domain dynamic analysis.
Students can quickly write an algorithm without
having advanced programming skills (the language
is straightforward and intuitive) but also without
using a commercial analysis program in black-box

mode. After a semester in structural analysis,
students have a deeper understanding of the direct
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Figure 6: Fourier-analysis tool in LAS

stiffness method, and at the graduate level, it
is extensively used in structural dynamics and
finite element courses. The use of the program,
however, is not restricted to teaching as it can
most effectively be used in research for devel-
oping numerical algorithm or in the laboratory.
The program is currently used at Université
de Sherbrooke and can be freely downloaded at
www.civil.usherbrooke.ca/ppaultre/Software.html
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dévelopement destiné à l’apprentissage assisté par ordina-
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Dbl
Int

Matrix

Diagonal
Init
Identity
Pi
Random
Zero

Declaration :

Execution :

Comments : 

Properties :

Manipulation :

Generation :

Col
Combine
Delete
Determinant | Det
Diagonal
Export
Interpolation
Invert | Inv
Print
Resize
Rotate
Row
StoreDiag
SwitchCol
SwitchRow
Transpose | t

ColMax
ColMin
Cols
Colsum
Max
Min
Norm_Infinity
Norm_One
Norm_Two
Product
Rank
RowMax
RowMin
Rows
RowSum
Sum

Linear algebra

Math

Sinh
Cosh
Tanh

Hyperbolic : Number :

Abs
Even
Odd

Angle :

Deg
Rad

Rounding :

Ceil
Floor

ACos
ASin
ATan
Cos
Sin
Tan

Trigonometry : Base-Power :

Exp
Ln
Log
Sqrt

Finite Element Method

Beam_Make_FD
Beam_Make_K
Beam_Make_KG
Beam_Make_LM
Beam_Make_M
Beam_Make_T
Beam_Make_T_Rigid
Beam_Rigid_Joint

Beam element :

Gen_Elements
Gen_Equations
Gen_Nodes

Generation :

Assemble
Internal_Forces

Direct stiffness method :

Quad_Make_K
Quad_Make_LM
Quad_Make_M

Quadilateral element :

Backward_Substitution
Forward_Substitution
Row_Reduce_From_Buttom
Row_Reduce_From_Top
Solve

Gaussian elimination :

LU
SolveLU

LU Decomposition :

SVD

Singular value decomposition :

iFFT_Real or iFFT_Complex
FFT_Real or FFT_Complex

Fast Fourier Transform :

FFT_Spectrum_Single_Sided
FFT_Spectrum_Double_Sided
FFT_Spectrum_Power_Density
FFT_Spectrum_Complex_Components

Spectral analysis :

FSolve

Frequency response :

HQRI
Jacobi
Direct_Iteration
Inverse_Iteration
Subspace_Iteration

Eigenvalues problem :

LDLT
SolveLDLT

LDLT Decomposition :

Truss_Make_FD
Truss_Make_K
Truss_Make_KG
Truss_Make_LM
Truss_Make_M
Truss_Make_T

Truss element :

Step-by-step integration schemes

Duhamel_Rectangle
Duhamel_Simpson
Duhamel_Triangle
Piecewise_Linear

Uncoupled systems :

Average_Acceleration
Centered_Difference
Collocation
Generalized_Alpha
HHT_Alpha
Houbolt
Linear_Acceleration
WBZ_Alpha
Wilson_Theta

Coupled systems :

Dynamics

Caughey
Rayleigh

Damping :

CQC
SRSS

Combinaison methods :

Exact_displacement
Function
Pseudo_Spectrums

Varia :

Condense
Ritz

Coordinates reduction :

Loop expressions

While( condition )
   |
EndWhile

Loop
   |
Until( condition )

For( declaration ; condition ; incrementation )
   |
Next

If( condition )
   |
Else
   |
EndIf  

If( condition )
   |
EndIf  

Conditional expressions

Frequency domain analysis

General

User_Defined_Function
Get_Argument_ByCopy
Get_Argument_ByReference
Return

User-defined function

Input
End
Stop

Break
Time

// or \\

Figure 7: LAS programming language cheat sheet
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1 // CONTENT OF FILE : S amp l e S t a t i c s . LAS
2

3 // PART A : D i r e c t S t i f f n e s s Assembly
4

5 // Coo rd i n a t e s o f nodes (6 x2 )
6 Dbl XY = [ 0 0 ; 5 0 ; 0 3 ; 5 3 ; 0 6 ; 5 6 ]
7

8 // Beam c o n n e c t i v i t y (6 x2 )
9 Dbl Beam EL = [1 3 ; 2 4 ; 3 5 ; 4 6 ; 3 4 ; 5 6 ]

10

11 // Equat ion mat r i x (6 x3 ) : DOF o f each node ( tx , ty , r o t )
12 I n t EQ = [0 0 0 ; 0 0 0 ; 1 0 3 ; 1 0 4 ; 2 0 5 ; 2 0 6 ]
13

14 // Loca t i on Mat r i x (6 x6 )
15 I n t Beam LM = Beam Make LM( Beam EL , EQ)
16

17 // P r o p e r t i e s mat r i x [A As I E Nu Dn ]
18 // 300mm x 300mm beams & columns
19 Dbl P r o p e r t i e s = [ 0 . 3 ∗0 . 3 0 0.3ˆ4/12 25E9 0 0 ]
20

21 // G l oba l S t i f f n e s s mat r i x f o r each e l ement
22 Dbl KColumn = Beam Make K (1 ,XY, Beam EL , P r o p e r t i e s , ”G” )
23 Dbl KBeam = Beam Make K (5 ,XY, Beam EL , P r o p e r t i e s , ”G” )
24

25 // G l oba l s t i f f n e s s mat r i x as semb ly
26 Dbl K = Zero (6 )
27

28 // Add the e l ement s t i f f n e s s ma t r i c e s to the g l o b a l s t i f f n e s s mat r i x
29 Assemble ( K, KColumn , Beam LM , [ 1 , 4 ] )
30 Assemble ( K, KBeam , Beam LM , [ 5 , 6 ] )
31

32 // PART B : S t a t i c A n a l y s i s
33

34 // Nodal Force Vecto r :
35 Dbl F = [ 1 1 8 ; 8 2 ; 0 ; 0 ; 0 ; 0 ]
36

37 // So l v i n g d i s p l a c emen t F = Ku
38 Dbl U = So lve (K, F)
39

40 // Force−Disp lacement ma t r i c e s
41 Dbl FDColumn = Beam Make FD (1 ,XY, Beam EL , P r o p e r t i e s )
42 Dbl FDBeam = Beam Make FD (5 ,XY, Beam EL , P r o p e r t i e s )
43

44 // I n t e r n a l f o r c e s
45 Dbl Beam IF= Zero ( 6 , 4 )
46 Beam IF (1 , 1 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 1 )
47 Beam IF (1 , 2 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 2 )
48 Beam IF (1 , 3 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 3 )
49 Beam IF (1 , 4 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 4 )
50 Beam IF (1 , 5 ) = Beam In t e r n a l Fo r c e s (FDBeam ,U, Beam LM , Beam EL , 5 )
51 Beam IF (1 , 6 ) = Beam In t e r n a l Fo r c e s (FDBeam ,U, Beam LM , Beam EL , 6 )

Figure 8: Code for static analysis including direct stiffness assembly
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1 // CONTENT OF FILE : S amp l e S t a t i c s . LAS
2

3 // PART A : D i r e c t S t i f f n e s s Assembly
4

5 // Coo rd i n a t e s o f nodes (6 x2 )
6 Dbl XY = [ 0 0 ; 5 0 ; 0 3 ; 5 3 ; 0 6 ; 5 6 ]
7

8 // Beam c o n n e c t i v i t y (6 x2 )
9 Dbl Beam EL = [1 3 ; 2 4 ; 3 5 ; 4 6 ; 3 4 ; 5 6 ]

10

11 // Equat ion mat r i x (6 x3 ) : DOF o f each node ( tx , ty , r o t )
12 I n t EQ = [0 0 0 ; 0 0 0 ; 1 0 3 ; 1 0 4 ; 2 0 5 ; 2 0 6 ]
13

14 // Loca t i on Mat r i x (6 x6 )
15 I n t Beam LM = Beam Make LM( Beam EL , EQ)
16

17 // P r o p e r t i e s mat r i x [A As I E Nu Dn ]
18 // 300mm x 300mm beams & columns
19 Dbl P r o p e r t i e s = [ 0 . 3 ∗0 . 3 0 0.3ˆ4/12 25E9 0 0 ]
20

21 // G l oba l S t i f f n e s s mat r i x f o r each e l ement
22 Dbl KColumn = Beam Make K (1 ,XY, Beam EL , P r o p e r t i e s , ”G” )
23 Dbl KBeam = Beam Make K (5 ,XY, Beam EL , P r o p e r t i e s , ”G” )
24

25 // G l oba l s t i f f n e s s mat r i x as semb ly
26 Dbl K = Zero (6 )
27

28 // Add the e l ement s t i f f n e s s ma t r i c e s to the g l o b a l s t i f f n e s s mat r i x
29 Assemble ( K, KColumn , Beam LM , [ 1 , 4 ] )
30 Assemble ( K, KBeam , Beam LM , [ 5 , 6 ] )
31

32 // PART B : S t a t i c A n a l y s i s
33

34 // Nodal Force Vecto r :
35 Dbl F = [ 1 1 8 ; 8 2 ; 0 ; 0 ; 0 ; 0 ]
36

37 // So l v i n g d i s p l a c emen t F = Ku
38 Dbl U = So lve (K, F)
39

40 // Force−Disp lacement ma t r i c e s
41 Dbl FDColumn = Beam Make FD (1 ,XY, Beam EL , P r o p e r t i e s )
42 Dbl FDBeam = Beam Make FD (5 ,XY, Beam EL , P r o p e r t i e s )
43

44 // I n t e r n a l f o r c e s
45 Dbl Beam IF= Zero ( 6 , 4 )
46 Beam IF (1 , 1 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 1 )
47 Beam IF (1 , 2 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 2 )
48 Beam IF (1 , 3 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 3 )
49 Beam IF (1 , 4 ) = Beam In t e r n a l Fo r c e s (FDColumn ,U, Beam LM , Beam EL , 4 )
50 Beam IF (1 , 5 ) = Beam In t e r n a l Fo r c e s (FDBeam ,U, Beam LM , Beam EL , 5 )
51 Beam IF (1 , 6 ) = Beam In t e r n a l Fo r c e s (FDBeam ,U, Beam LM , Beam EL , 6 )

Figure 9: Code for dynamic analyses
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