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Ordinary Differential Equations

In this lecture, we will look at different options for coding simple

differential equations.  Start by considering bicycle riding as an

example.

Why does a bicycle move forward ?  Friction between the wheel

and the ground.  We will assume no relative motion (no sliding or

slipping), so no energy lost there.

No relative motion

Sources of energy loss:

• friction among parts

• wind resistance

• gravity (if going uphill)
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Bicycle Riding

Assuming flat terrain and no friction or wind resistance:

F

m
=
dv

dt

F is force provided by rider

m is mass of bicycle + rider

F is difficult to determine.  Easier to work with power.  Elite riders

can produce a steady 400W for an extended period (1 hour or so).

P =
dE

dt
E is the (kinetic) energy = 1/2mv2

P is the power provided by the rider = mv dv/dt
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Bicycle Riding

We assume P is a constant (not good approximation when first

get started, but once moving this is better).

 

P = mvv  or  
dv

dt
=
P

mv
 can write

vdv =
P

m
dt      integrating yields   

1

2
(v2 v0

2 ) =
P

m
(t t0 )

setting t0 = 0,  we have v =
2Pt

m
+ v0

2

Result is clearly nonsense - need friction

and wind resistance !



Winter Semester 2006/7 Computational Physics I Lecture 4   4

Bicycle Riding

Let’s see how we can code this.  On the computer, we go back to

the definition of the derivative as a limit of a ratio of differences:

dv

dt
= lim

t 0

v(t + t) v(t)

t

v(t + t) v(t)

t
where t  is the (usually constant) step size used in the computer

If we take v(t = 0) = v0  and use the notation vi = v(i t),  then

vi+1 = vi + f (v,t) t,   where  f (v,t) =
dv

dt

In our example:

vi+1 vi +
P

mvi
t vi

ti

Vi+1

ti+1

Use slope at ti to estimate v at later time.
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Bicycle Rider

Looking at the previous diagram, probably some thoughts arise:

• The smaller the time step, the better the approximation (but then

the amount of computer time will go up as T/ t)

• Maybe there are better ways to approximate the best slope for

the time interval.  We will look into this later.

Forging ahead with this simple algorithm (Called Euler algorithm):

t=1 s t=0.1 s
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Bicycle Rider

Let’s now add some friction and air resistance.  At large enough

speed, we can approximate the drag force as:

Fdrag Bv2

We ignore friction in the bike - it is usually a small effect compared

to air resistance.  The coefficient B can be broken down as

follows:

B =
1

2
C A     where

C is the 'drag coefficient' - number not too far from 1

 is the density of air

A is the effective frontal area 

Typical bike riding, C=0.9
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Bicycle Rider

Let’s add this drag force to our equations:

Fdrag = m
dv

dt
,     or  v =

Fdrag
m

t

Putting this together with out previous expression

v =
P

mv
t +

Fdrag
m

t,  or, on the computer

vi+1 = vi +
P

mvi
t

C Avi
2

2m
t

We take the following values: A = 0.33  m2

C = 0.9

m = 80 kg  (racer+bike)

=1
kg

m3
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Bicycle Rider

We can solve for the equilibrium speed by setting the derivative to

zero:

0 =
P

mv

C Av2

2m
      v3

=
2P

C A
      v = 13.9

m

s
= 50

km

h

Compare to numerical solution with Euler algorithm:

Terminal velocity is 50

km/h. This is very

close to actual max

speeds achieved by

professional riders.
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Error in Numerical Differentiation

To estimate the error from the algorithm to calculate the derivative

numerically, we compare to a Taylor series expansion:

  

f (x + h) f (x)
h

=

f (x) + h  f (x) +
h2

2
  f (x) + f (x)

h

                         =  f (x) +
h

2
  f (x) +

When we replace  f (x)
f (x + h) f (x)

h

We make an error of about h   f (x)

Assuming that h is small so that each term in the series is much

smaller than the previous one.
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Error in Numerical Differentiation

How does this compare with the round-off error of the computer ?

f

x

f

x

f

x
3 +

f (x)
h
2 See Scherer Lecture notes

So: want minimum h to minimize algorithm error, but small h can

lead  to large rounding error (they accumulate).  Optimal value

when errors comparable:

h

2
  f (x) =

f (x)
h
2
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Bicycle Rider Example

For our bicycle riding example :

dv

dt
=

P

mv

C Av2

2m

d2v

dt2 =
P

mv2 +
C Av

m
 

 

 

 

dv

dt
=

P2

m2v3

PC A

2m2 +
C2 2A2v3

2m2

Condition on previous page yields :  t2
= 4

v(t)

  v (t)

4 v(t)

  v (t)

t = = 3 10 4   for single precision, 

                 10 8    double precision

At small v,  want t

At large v,  can be much larger

(Because   v 0)
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More on Derivatives

We now look into different approaches to code derivatives.  We

use the Mean Value Theorem for guidance:

In calculus, the mean value theorem states, roughly, that given a section of a

smooth curve, there is a point on that section at which the derivative (slope) of the

curve is equal to the "average" derivative of the section. It is used to prove

theorems that make global conclusions about a function on an interval starting

from local hypotheses about derivatives at points of the interval. (Wikipedia)

Derivative at c is same

as average derivative

from a to b

How does this guide us ?
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Mean Value Theorem

Note that replacing dt t is equivalent to integration

               x =
dx

dt
dt

t
1

t
2

= x(t2) x(t1)

We can state the Mean Value Theorem as

              x(t + t) = x(t) +
dx

dt t
m

t   where tm  is between t1,t2

vi

ti

Vi+1

ti+1

Euler Approximation

In the Euler approximation, tm = t1

Error 
d2x

dt2

Look at some alternative choices
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More on Derivatives

If we look at what we have done, basically, we estimate the

derivative over the interval t with the derivative at the start of the

interval.

vi

ti

Vi+1

ti+1

We can do better by trying to find an average derivative:

vi

ti

Vi+1

ti+1

We look at options for

finding this average

derivative
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Runge-Kutta Method

2nd order Runge-Kutta construction:

x(t + t) = x(t) + f (  x ,  t ) t     where   
dx

dt
= f (x,t)

 x = x(t) +
1
2

f (x(t),t) t        t = t +
1
2

t

so, 
dx

dt t
m

  is approximated by f (  x ,  t )  where

 t  is at the middle of the time interval, and

 x  is the Euler approximation for x at the midpoint

To see the accuracy of a particular method, we compare to a

Taylor series expansion:

  

x(t + t) = x(t) +
dx

dt
t +
1
2
d2x

dt2
( t)2 +

1
6
d3x

dt3
( t)3 + =

x(n )(t)
n!n=0

( t)n
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Runge-Kutta Method

  

x(t + t) = x(t) +
dx

dt
t +
1
2
d2x

dt2
( t)2 +

1
6
d3x

dt3
( t)3 +Taylor Series:

The Euler Method is of O( t), because that is highest order term

2nd order R-K: x(t + t) = x(t) + f (  x ,  t ) t = x(t) +
d  x 

d  t 
t

d  x = dx +
1
2

f (x,t)
x

dx t +
1
2

f (x,t)
t

dt t

d  t = dt

so,

x(t + t) = x(t) +
dx

dt
+

1
2

f (x,t)
x

dx

dt
t +

1
2

f (x,t)
t

t 

  

 

  
t

              = x(t) +
dx

dt
t +

1
2

d2x

dt2 ( t)2
O( t)2
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Runge-Kutta Method

Let’s try it out on the bike riding example:

dv

dt
= f (v,t) =

P

mv

C Av2

2m
v(t + t) = v(t) + f (  v ,  t ) t

 v = v(t) +
1
2

f (v,t) t = v(t) +
1
2

P

mv

C Av2

2m

 

 
 

 

 
 t

 t = t +
1
2

t

v(t + t) = v(t) +
p

m  v 

C A  v 2

2m

 

 
 

 

 
 t
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Runge-Kutta Method

Euler method

Exact

2nd order Runge-Kutta

4th order Runge-Kutta

For this comparison, we

take the same time step

in all methods (1s).
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Runge-Kutta Method

4th order Runge-Kutta:

x(t + t) = x(t) +
1
6

f (  x 1,  t 1) + 2 f (  x 2,  t 2) + 2 f (  x 3,  t 3) + f (  x 4,  t 4 )[ ] t

with

x1 = x(t)                                    t1 = t

x2 = x(t) +
1
2

f (x1 ,  t1 ) t         t2 = t +
1
2

t

x3 = x(t) +
1
2

f (x2 ,  t2 ) t         t3 = t +
1
2

t

x4 = x(t) +
1
2

f (x3 ,  t3 ) t         t4 = t + t

Good to ( t)4
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Graphical Representation

True curve

Take big time step (2s) to

see effect of algorithm

clearly
Euler method

2nd order R-K

4th order R-K
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Centered Difference Method (Verlet)

  

dx

dt

x(t + t
2) x(t t

2)

t
    Centered Difference Method

x(t + t
2) x(t t

2)

t
=

x(t) +  x t
2 +

1
2

  x ( t
2)2

+ x(t)  x t
2 +

1
2

  x ( t
2)2 

  

 

  

t

                                      

dx

dt
t +

1
24

d3x

dt3 ( t)3

t
=

dx

dt
+

1
24

d3x

dt3 ( t)2

i.e., good to O( t)2.  Optimal step width from
( t)2

24
   f (x) = f (x)

2
t

The Euler & R-K methods ‘look forward’ to try to estimate x at a

later t.  Can also symmetrize, in that we look forward and

backward:

x(t + t) = x(t t) + 2 f (x,t) t   with redefinition of t
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Centered Difference Method

Practical issue with this method is - how to get started ?  To

evaluate x1, need not only x0 but also x-1.  Use Euler method of R-

K to get x1, then can proceed.

Euler method

Exact

2nd order Runge-Kutta

Centered difference method
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Graphical Representation

Red arrows show the derivative

dv/dt at a particular v.

Centered difference unstable

because:

vi+ 2 = vi + 2
dvi+1

dt
t

If vi > veq ,  and vi+1 < veq  then 
dvi+1

dt
> 0

Similarly for vi < veq
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Extrapolation Methods

Extrapolation Methods (Romberg):

Here, we try to guess the true value of the derivative by taking

smaller and smaller step sizes and extrapolating to zero step size.

  

Define D0 = D( t),   D1 = D
t

2
 

 

 

 
,    ...

Fit polynomial p( t) = a + b t + c( t)2
+    to D( t)

Estimate D = a

Example: extrapolated centered difference method:

Di (h) =
x(t + h) x(t h)

2h
    h =

t

2i
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Exercises

1. Work out the terminal velocity for a bicyclist when not travelling

on flat terrain (assume a 10% slope, which is quite steep), and

compare to the Euler and 4th order Runge-Kutta approaches.

Investigate the effect of different step sizes.

2. Steadily diminish the step size in the example of the bicyclist

travelling on flat terrain with air resistance until you find no

further improvement (compare to the analytic result).  Compare

your final step size with expression on P.10.


