“If you get only one Java book, it should be
Sams Teach Yourself Java in 21 Days.”

Rogers Cadenhead —PC Magazine

Sixth Edition

Covers Java 7
and Android

SamsTeach Yourself

Java

in 21 Days

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

‘B E N

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335747
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335747
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335747
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335747
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335747/Free-Sample-Chapter

Rogers Cadenhead

Sams Teach Yourself

Java

(Covers Java 7 and Android)

in 21 Days

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself Java in 21 Days
(Covering Java 7 and Android)

Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33574-7
ISBN-10: 0-672-33574-3

Library of Congress Cataloging-in-Publication Data:
Cadenhead, Rogers.
Sams teach yourself Java in 21 days : covering Java 7 and Android /
Rogers Cadenhead.—6th ed.
p. cm.
ISBN 978-0-672-33574-7 (pbk.)
1. Java (Computer program language) 2. Android (Electronic resource)
L. Title.
QA76.73.J38C315 2013
005.13'3--dc23
2012022262

Printed in the United States of America

First Printing August 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the programs accompanying it.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international @pearsoned.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taber
Development Editor
Songlin Qiu
Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor

Gayle Johnson
Indexer

Tim Wright
Proofreader
Chrissy White,
Language Logistics,
LLC

Technical Editor
Boris Minkin
Editorial Assistant
Vanessa Evans
Cover Designer
Anne Jones

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction 1

WEEK 1: The Java Language

1 Getting Started with Java 9
2 The ABCs of Programming 37
3 Working with Objects 65
4 Lists, Logic, and Loops 91
5 Creating Classes and Methods 119
6 Packages, Interfaces, and Other Class Features 149
7 Exceptions and Threads 187

WEEK 2: The Java Class Library

8 Data Structures 221

9 Working with Swing 249
10 Building a Swing Interface 277
11 Arranging Components on a User Interface 305
12 Responding to User Input 339
13 Creating Java2D Graphics 367
14 Developing Swing Applications 391

WEEK 3: Java Programming

15 Working with Input and Output 419
16 Serializing and Examining Objects 447
17 Communicating Across the Internet 467
18 Accessing Databases with JDBC 4.1 and Derby 499
19 Reading and Writing RSS Feeds 521
20 XML Web Services 545
21 Writing Android Apps for Java 565
Appendixes
A Using the NetBeans Integrated Development Environment 595
B This Book’s Website 603
C Setting Up an Android Development Environment 605
D Using the Java Development Kit 613
E Programming with the Java Development Kit 635

Quiz Answers

Table of Contents

Introduction

WEEK 1: The Java Language

1

2

Getting Started with Java
The Java Language
History of the Language
Introduction to Java
Selecting a Development Tool
Object-Oriented Programming
Objects and Classes
Attributes and Behavior
Attributes of a Class of Objects
Behavior of a Class of Objects
Creating a Class
Running the Program
Organizing Classes and Class Behavior
Inheritance
Creating a Class Hierarchy
Inheritance in Action
Interfaces
Packages
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

The ABCs of Programming

Statements and Expressions

Variables and Data Types
Creating Variables

Naming Variables

10
10
11
12
13
14
17
17
18
19
23
25
25
27
29
31
32
32
33
34
34
34
35

37
38
38
39
40

3

Variable Types
Assigning Values to Variables
Constants

Comments

Literals
Number Literals
Boolean Literals
Character Literals
String Literals

Expressions and Operators
Arithmetic
More About Assignment
Incrementing and Decrementing
Comparisons
Logical Operators
Operator Precedence

String Arithmetic

Summary

Q&A

Quiz
Questions

Certification Practice

Exercises

Working with Objects
Creating New Objects
Using new
How Objects Are Constructed
A Note on Memory Management
Using Class and Instance Variables
Getting Values
Setting Values
Class Variables
Calling Methods
Formatting Strings
Nesting Method Calls
Class Methods

Table of Contents

41
43
43
45
46
47
48
49
50
51
51
53
54
56
57
58
60
61
62
62
62
63
63

65
66
66
68
69
70
70
70
72
73
75
75
76

vi Table of Contents

References to Objects 77
Casting Objects and Primitive Types 79
Casting Primitive Types 80
Casting Objects 81
Converting Primitive Types to Objects and Vice Versa 83
Comparing Object Values and Classes 84
Comparing Objects 85
Determining the Class of an Object 87
Summary 87
Q&A 88
Quiz 88
Questions 89
Certification Practice 89
Exercises 90
4 Lists, Logic, and Loops 921
Arrays 92
Declaring Array Variables 92
Creating Array Objects 93
Accessing Array Elements 94
Changing Array Elements 95
Multidimensional Arrays 97
Block Statements 98
If Conditionals 99
Switch Conditionals 101
The Ternary Operator 107
For Loops 108
While and Do Loops 111
While Loops 111
Do-While Loops 113
Breaking Out of Loops 114
Labeled Loops 114
Summary 115
Q&A 115
Quiz 116
Questions 116
Certification Practice 117

Exercises 117

Creating Classes and Methods
Defining Classes
Creating Instance and Class Variables
Defining Instance Variables
Class Variables
Creating Methods
Defining Methods
The this Keyword
Variable Scope and Method Definitions
Passing Arguments to Methods
Class Methods
Creating Java Applications
Helper Classes
Java Applications and Command-Line Arguments
Passing Arguments to Java Applications
Handling Arguments in Your Java Application
Creating Methods with the Same Name
Constructors
Basic Constructors
Calling Another Constructor
Overloading Constructors
Overriding Methods
Creating Methods That Override Existing Methods
Calling the Original Method
Overriding Constructors
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Packages, Interfaces, and Other Class Features
Modifiers

Access Control for Methods and Variables
Static Variables and Methods

Table of Contents

119
120
120
120
121
121
122
124
125
126
127
129
130
130
130
131
133
136
137
138
138
140
140
142
143
144
145
146
146
146
148

149
150
151
157

Vii

viii Table of Contents

Final Classes, Methods, and Variables 159
Variables 159
Methods 160
Classes 160

Abstract Classes and Methods 161

Packages 162
The import Declaration 163
Class Name Conflicts 165

Creating Your Own Packages 165
Picking a Package Name 165
Creating the Folder Structure 166
Adding a Class to a Package 166
Packages and Class Access Control 166

Interfaces 167
The Problem of Single Inheritance 167
Interfaces and Classes 168
Implementing and Using Interfaces 168
Implementing Multiple Interfaces 169
Other Uses of Interfaces 169

Creating and Extending Interfaces 170
New Interfaces 170
Methods Inside Interfaces 171
Extending Interfaces 172
Creating an Online Storefront 172

Inner Classes 179

Summary 181

Q&A 182

Quiz 183
Questions 183

Certification Practice 183

Exercises 185

7 Exceptions and Threads 187

Exceptions 188

Exception Classes 190

Table of Contents ix

Managing Exceptions 191
Exception Consistency Checking 191
Protecting Code and Catching Exceptions 192
The finally Clause 195

Declaring Methods That Might Throw Exceptions 198
The throws Clause 199
Which Exceptions Should You Throw? 200
Passing on Exceptions 201
throws and Inheritance 202

Creating and Throwing Your Own Exceptions 203
Throwing Exceptions 203
Creating Your Own Exceptions 204
Combining throws, try, and throw 204

When and When Not to Use Exceptions 205
When to Use Exceptions 205
When Not to Use Exceptions 206
Bad Style Using Exceptions 206

Threads 207
Writing a Threaded Program 207
A Threaded Application 209
Stopping a Thread 214

Summary 215

Q&A 215

Quiz 217
Questions 217

Certification Practice 217

Exercises 218

WEEK 2: The Java Class Library 219
8 Data Structures 221

Moving Beyond Arrays 222

Java Structures 222
Iterator 224
Bit Sets 225

Array Lists 228

X Table of Contents

10

Looping Through Data Structures
Stacks
Map
Hash Maps
Generics
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Working with Swing

Creating an Application
Creating an Interface
Developing a Framework
Creating a Component
Adding Components to a Container
Working with Components
Image Icons
Labels
Text Fields
Text Areas
Scrolling Panes
Check Boxes and Radio Buttons
Combo Boxes
Lists
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Building a Swing Interface
Swing Features
Standard Dialog Boxes
Using Dialog Boxes

231
233
235
236
241
245
245
246
246
246
247

249
250
251
254
255
256
258
259
261
262
263
265
266
269
271
273
273
274
274
274
275

277
278
278
283

11

12

Sliders
Scroll Panes
Toolbars
Progress Bars
Menus
Tabbed Panes
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Arranging Components on a User Interface

Basic Interface Layout
Laying Out an Interface
Flow Layout
Box Layout
Grid Layout
Border Layout
Mixing Layout Managers
Card Layout

Using Card Layout in an Application

Grid Bag Layout
Designing the Grid
Creating the Grid
Cell Padding and Insets
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Responding to User Input
Event Listeners

Setting Up Components
Event-Handling Methods

Table of Contents

286
288
289
292
295
299
301
301
302
302
303
304

305
306
306
307
309
311
314
316
317
319
325
327
329
334
335
335
336
336
337
338

339
340
341
342

Xi

Xii Table of Contents

13

Working with Methods
Action Events
Focus Events
Item Events
Key Events
Mouse Events
Mouse Motion Events
Window Events
Using Adapter Classes
Using Inner Classes
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Creating Java2D Graphics
The Graphics2D Class
The Graphics Coordinate System
Drawing Text
Improving Fonts and Graphics with Antialiasing
Finding Information About a Font
Color
Using Color Objects
Testing and Setting the Current Colors
Drawing Lines and Polygons
User and Device Coordinate Spaces
Specifying the Rendering Attributes
Creating Objects to Draw
Drawing Objects
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

345
345
346
349
351
352
352
357
357
359
362
362
363
363
363
365

367
368
369
370
372
372
375
375
376
377
3717
378
381
384
387
387
388
388
388
389

14

Developing Swing Applications
Java Web Start
Using Java Web Start
Creating a JNLP File
Supporting Web Start on a Server
Additional JNLP Elements
Improving Performance with SwingWorker
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

WEEK 3: Java Programming

15 Working with Input and Output

Introduction to Streams
Using a Stream
Filtering a Stream
Handling Exceptions

Byte Streams
File Streams

Filtering a Stream
Byte Filters

Character Streams
Reading Text Files
Writing Text Files

Files and Paths

Summary

Q&A

Quiz
Questions

Certification Practice

Exercises

Table of Contents

391
392
395
396
405
406
408
413
414
414
414
415
416

417

419
420
420
421
421
422
422
426
427
436
436
439
440
443
443
444
444
445
446

Xiii

Xiv Table of Contents

16

17

18

Serializing and Examining Objects
Object Serialization
Object Output Streams
Object Input Streams
Transient Variables
Checking an Object’s Serialized Fields
Inspecting Classes and Methods with Reflection
Inspecting and Creating Classes
Working with Each Part of a Class
Inspecting a Class
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Communicating Across the Internet
Networking in Java
Opening a Stream Over the Net
Sockets
Socket Servers
Testing the Server
The java.nio Package
Buffers
Channels
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Accessing Databases with JDBC 4.1 and Derby

Java Database Connectivity
Database Drivers
Examining a Database

Reading Records from a Database

447
448
449
452
455
456
457
457
459
461
463
463
464
464
465
465

467
468
468
473
476
479
481
481
485
495
496
496
496
497
498

499
500
501
501
503

19

20

Writing Records to a Database
Moving Through Resultsets
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

Reading and Writing RSS Feeds
Using XML
Designing an XML Dialect
Processing XML with Java
Processing XML with XOM
Creating an XML Document
Modifying an XML Document
Formatting an XML Document
Evaluating XOM
Summary
Q&A
Quiz
Questions
Certification Practice

Exercises

XML Web Services

Introduction to XML-RPC

Communicating with XML-RPC
Sending a Request
Responding to a Request

Choosing an XML-RPC Implementation

Using an XML-RPC Web Service

Creating an XML-RPC Web Service

Summary

Q&A

Quiz

Questions

Table of Contents

509
516
517
518
518
518
519
519

521
522
525
526
526
528
532
536
538
540
541
542
542
542
543

545
546
547
548
549
550
552
555
560
561
561
561

XV

XVi Table of Contents

Certification Practice

Exercises

21 Writing Android Apps for Java

The History of Android

Writing an Android App
Organizing an Android Project
Creating the Program
Using an Android Emulator
Creating a Debug Configuration

Running the App

Designing an Android App
Preparing Resources
Configuring a Manifest File
Designing the Graphical User Interface
Writing Code

Summary

Q&A

Quiz
Questions

Certification Practice

Exercises

Appendixes

A Using the NetBeans Integrated Development Environment
B This Book’s Website

C Setting Up an Android Development Environment

D Using the Java Development Kit

E Programming with the Java Development Kit

Quiz Answers

562
563

565
566
567
569
570
573
574
575
577
578
582
582
585
591
591
592
592
592
592

593

595

603

605

613

635

659

About the Author

Rogers Cadenhead is a programmer and author. He has written more than 20 books on
programming and web publishing, including Sams Teach Yourself Java in 24 Hours. He
also publishes the Drudge Retort and other websites that receive more than 20 million
visits a year. He maintains this book’s official website at www.java2ldays.com and a
personal weblog at http://workbench.cadenhead.org.

Dedication

To my mom, Gail Cadenhead. I'm disappointed you abandoned the beehive hairdo
you had in the *60s, but that’s the last time you ever disappointed me in the 45 years of my life.
Thank you for the room and board, for the love and support, and for introducing me to
Ryan’s Hope and One Life to Live when I was 8.

Acknowledgments

A book of this scope (and heft!) requires the hard work and dedication of numerous peo-
ple. Most of them are at Sams Publishing in Indianapolis, and to them I owe considerable
thanks—in particular, to Boris Minkin, Gayle Johnson, Songlin Qiu, Anne Goebel, and
Mark Taber. Most of all, thanks to my wife, Mary, and my sons, Max, Eli, and Sam.

I’d also like to thank readers who have sent helpful comments about corrections, typos,
and suggested improvements regarding this book and its prior editions. The list includes
the following people: Dave Barton, Patrick Benson, Ian Burton, Lawrence Chang, Jim
DeVries, Ryan Esposto, Kim Farr, Sam Fitzpatrick, Bruce Franz, Owen Gailar, Rich
Getz, Bob Griesemer, Jenny Guriel, Brenda Henry-Sewell, Ben Hensley, Jon Hereng,
Drew Huber, John R. Jackson, Bleu Jaegel, Natalie Kehr, Mark Lehner, Stephen
Loscialpo, Brad Kaenel, Chris McGuire, Paul Niedenzu, E.J. O’Brien, Chip Pursell,
Pranay Rajgarhia, Peter Riedlberger, Darrell Roberts, Luke Shulenburger, Mike Tomsic,
John Walker, Joseph Walsh, Mark Weiss, P.C. Whidden, Chen Yan, Kyu Hwang Yeon,
and J-F. Zurcher.

www.java21days.com
http://workbench.cadenhead.org

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: errata@informit.com

Mail: Addison-Wesley/Prentice Hall Publishing
ATTN: Reader Feedback
1330 Avenue of the Americas
35th Floor
New York, New York, 10019

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

Some revolutions catch the world by surprise. Twitter, the Linux operating system, and
Cupcake Wars all rose to prominence unexpectedly.

The remarkable success of the Java programming language, on the other hand, caught
nobody by surprise. Java has been a source of great expectations since its introduction
17 years ago. When Java was introduced in web browsers, a torrent of publicity wel-
comed the arrival of the new language.

Sun Microsystems cofounder Bill Joy proclaimed, “This represents the end result of
nearly 15 years of trying to come up with a better programming language and environ-
ment for building simpler and more reliable software.”

Sun, which created Java in 1991 and first released it to the public four years later, was
acquired by Oracle in 2010. Oracle, which has been committed to Java development
since its earliest years, has continued to support the language and produce new versions.

In the ensuing years, Java lived up to a considerable amount of its hype. The language
has become as strong a part of software development as the beverage of the same name.
One kind of Java keeps programmers up nights. The other kind enables programmers to
rest easier after they have developed their software.

Java was originally offered as a technology for enhancing websites with programs that
run in browsers. Today, it’s more likely to be found on servers, driving dynamic web
applications backed by relational databases on some of the web’s largest sites. It’s also
found on Android cell phones running popular apps such as Angry Birds and Words with
Friends.

Each new release of Java strengthens its capabilities as a general-purpose programming
language for a wide range of environments. Today, Java is being put to use in desktop
applications, Internet servers, personal digital assistants, mobile devices, and many other
environments. It’s even making a comeback in the browser with sophisticated applica-
tions created in Java that are deployed using the Google Web Toolkit.

Now in its eighth major release—Java 7—the Java language has matured into a full-
featured competitor to other general-purpose development languages, such as C++,
Python, Ruby, and Visual Basic.

Sams Teach Yourself Java in 21 Days

You might be familiar with Java programming tools such as Eclipse, Borland JBuilder,
and NetBeans. These programs make it possible to develop functional Java programs,
and you also can use Oracle’s Java Development Kit. The kit, which is available for free
on the Web at http://oracle.com/technetwork/java, is a set of command-line tools for
writing, compiling, and testing Java programs. NetBeans, another free tool offered by
Oracle, is an integrated development environment for the creation of Java programs. It
can be downloaded from http://netbeans.org.

This book introduces you to all aspects of Java software development using the most cur-
rent version of the language and the best available techniques in the Java Standard
Edition, the most widely used version of the language and Java Class Library. Programs
are prepared and tested using NetBeans, so you can quickly demonstrate the skills you
master each day.

Reading this book will help you understand why Java has become the most widely
employed programming language on the planet.

How This Book Is Organized

Sams Teach Yourself Java in 21 Days teaches you about the Java language and how to
use it to create applications for any computing environment and Android apps that run on
cell phones and other mobile devices. By the time you have finished the book, you’ll
have well-rounded knowledge of Java and the Java class libraries. Using your new skills,
you will be able to develop your own programs for tasks such as web services, database
connectivity, XML processing, and mobile programming.

You learn by doing in this book, creating several programs each day that demonstrate the
topics being introduced. The source code for all these programs is available on the
book’s official website at www.java2ldays.com, along with other supplemental material
such as answers to reader questions.

This book covers the Java language and its class libraries in 21 days, organized into three
weeks. Each week covers a broad area of developing Java programs.

In the first week, you learn about the Java language itself:

® Day 1 covers the basics—what Java is, why you should learn the language, and
how to create software using a powerful style of development called object-
oriented programming. You create your first Java application.

® On Day 2, you dive into the fundamental Java building blocks—data types,
variables, and expressions.

http://oracle.com/technetwork/java
http://netbeans.org
www.java21days.com

Introduction

Day 3 goes into detail about how to deal with objects in Java—how to create them,
use their variables, call their methods, and compare them.

On Day 4, you give Java programs some brainpower using conditionals and work
with arrays and loops.

Day 5 fully explores creating classes—the basic building blocks of any Java
program.

On Day 6, you discover more about interfaces and packages, which are useful for
grouping classes and organizing a class hierarchy.

Day 7 covers three powerful features of Java—exceptions, the ability to deal with
errors and threads, and the ability to run different parts of a program simultane-
ously.

Week 2 is dedicated to the most useful classes offered by Oracle for use in your own
Java programs:

Day 8 introduces data structures that you can use as an alternative to strings and
arrays—array lists, stacks, hash maps, and bit sets. It also describes a special for
loop that makes them easier to use.

Day 9 begins a five-day exploration of visual programming. You learn how to cre-
ate a graphical user interface using Swing classes for interfaces, graphics, and user
input. Your programs adopt the Nimbus look and feel introduced in Java 7.

Day 10 covers more than a dozen interface components you can use in a Java pro-
gram, including buttons, text fields, sliders, scrolling text areas, and icons.

Day 11 explains how to make a user interface look marvelous using layout man-
agers, a set of classes that determine how components on an interface are arranged.
Day 12 concludes the coverage of Swing with event-handling classes, which enable
a program to respond to mouse clicks and other user interactions.

On Day 13, you learn about drawing shapes and characters on user interface com-
ponents.

Day 14 demonstrates how to use Java Web Start, a technique that makes installing
a Java program as easy as clicking a web page link. It also describes SwingWorker,
a class that improves application performance by using threads.

Week 3 moves into advanced topics:

Day 15 covers input and output using streams, a set of classes that enable file
access, network access, and other sophisticated data handling.

Sams Teach Yourself Java in 21 Days

m Day 16 introduces object serialization, a way to make objects exist even when no
program is running. You learn how to save them to a storage medium such as a
hard disk, read them into a program, and then use them again as objects.

® On Day 17, you extend your knowledge of streams to write programs that commu-
nicate with the Internet, including socket programming, buffers, channels, and
URL handling.

m Day 18 shows you how to connect to relational databases using Java Database
Connectivity (JDBC) version 4.1. You learn how to exploit the capabilities of
Derby, the open source database that’s included with Java.

® Day 19 covers how to read and write RSS documents using the XML Object
Model (XOM), an open source Java class library. RSS feeds, one of the most popu-
lar XML dialects in use today, enable millions of people to follow site updates and
other new web content.

m Day 20 explores how to write web services clients with the language and the
Apache XML-RPC class library.

m Day 21 covers the fastest-growing area of Java programming: developing apps for
Android phones and mobile devices. Using Eclipse as a development environment
and a free Android development kit, you create apps that can be deployed and
tested on a phone.

Who Should Read This Book

This book teaches the Java language to three groups:

® Novices who are relatively new to programming
m People who have been introduced to earlier versions of Java

m Experienced developers in other languages, such as Visual C++, Visual Basic, or
Python

When you’re finished with this book, you’ll be able to tackle any aspect of the Java lan-
guage. You'll also be comfortable enough to tackle your own ambitious programming
projects, both on and off the Web.

If you’re somewhat new to programming or have never written a program, you might
wonder whether this is the right book for you. Because all the concepts in this book are
illustrated with working programs, you’ll be able to work your way through the subject
regardless of your experience level. If you understand what variables and loops are,

Introduction

you’ll be able to benefit from this book. You might want to read this book if any of the
following are true:

B You had some beginning programming lessons in school, you grasp what program-
ming is, and you’ve heard that Java is easy to learn, powerful, and cool.

B You’'ve programmed in another language for a few years, you keep hearing acco-
lades for Java, and you want to see whether it lives up to its hype.

® You’ve heard that Java is great for web application and Android programming.

If you’ve never been introduced to object-oriented programming, which is the style of
programming that Java embodies, don’t be discouraged. This book assumes that you
have no background in object-oriented design. You’ll get a chance to learn this develop-
ment methodology as you’re learning Java.

If you’re a complete beginner to programming, this book might move a little fast for you.
Java is a good language to start with, though, and if you take it slowly and work through
all the examples, you can still pick up Java and start creating your own programs.

Conventions Used in This Book

NOTE A Note presents an interesting, sometimes technical, piece of
information related to the discussion.

TIP A Tip offers advice, such as an easier way to do something.

CAUTION A Caution advises you of potential problems and helps you steer
clear of disaster.

Text that you type and text that appears onscreen is presented in a monospace font:

It looks like this.

This font represents how text looks onscreen. Placeholders for variables and expressions
appear in monospace italic.

Sams Teach Yourself Java in 21 Days

The end of each lesson offers several special features: answers to commonly asked ques-
tions about that day’s subject matter, a quiz to test your knowledge of the material, two
exercises that you can try on your own, and a practice question in case you’re preparing
for Java certification. Answers to the questions can be found at the end of the book.
Solutions to the exercises and the answer to the certification question can be found on
the book’s official website at www.java21days.com.

www.java21days.com

DAY 3
Working with Objects

Java is primarily an object-oriented programming language. When you do
work in Java, you use objects to get the job done. You create objects,
modify them, change their variables, call their methods, and combine
them with other objects. You develop classes, create objects out of those
classes, and use them with other classes and objects.

Today, you work extensively with objects as the following topics are
covered:

Creating objects

Testing and modifying their class and instance variables

Calling an object’s methods

Converting objects from one class to another

66

DAY 3: Working with Objects

Creating New Objects

When you write a Java program, you define a set of classes. As you learned during Day
1, “Getting Started with Java,” classes are templates used to create objects. These
objects, which also are called instances, are self-contained elements of a program with
related features and data. For the most part, you use the class merely to create instances
and then work with those instances. In this section, you learn how to create a new object
from any given class.

When using strings on Day 2, “The ABCs of Programming,” you learned that using a
string literal (a series of characters enclosed in double quotation marks) creates a new
instance of the class String with the value of that string.

The String class is unusual in that respect. Although it’s a class, it can be assigned a
value with a literal as if it were a primitive data type. This shortcut is unavailable for
other classes. To create instances for them, the new operator is used.

NOTE What about the literals for numbers and characters? Don’t they
create objects too? Actually, they don’t. The primitive data types
for numbers and characters create numbers and characters, but
for efficiency they actually aren’t objects. On Day 5, “Creating
Classes and Methods,” you learn how to use objects to represent
primitive values.

Using new

To create a new object, you use the new operator with the name of the class that should
be used as a template. The name of the class is followed by parentheses, as in these three
examples:

String name = new String("Hal Jordan");

URL address = new URL("http://www.java2idays.com");

VolcanoRobot robbie = new VolcanoRobot();

The parentheses are important and can’t be omitted. The parentheses can be empty, how-
ever, in which case the most simple, basic object is created. The parentheses also can
contain arguments that determine the values of instance variables or other initial qualities
of that object.

Creating New Objects 67

The following examples show objects being created with arguments:
Random seed = new Random(606843071);
Point pt = new Point(0, 0);

The number and type of arguments to include inside the parentheses are defined by the
class itself using a special method called a constructor. (You learn more about construc-
tors later today.) If you try to create a new instance of a class with the wrong number or
wrong type of arguments, or if you give it no arguments and it needs them, an error
occurs when the program is compiled.

Here’s an example of creating different types of objects with different numbers and types
of arguments. The StringTokenizer class in the java.util package divides a string into
a series of shorter strings called rokens.

You divide a string into tokens by applying a character or characters as a delimiter. For
example, the text "02/20/67" could be divided into three tokens—"02", "20", and
"67"—using the slash character (/) as a delimiter.

Today’s first project is a Java application that uses string tokens to analyze stock price
data. In NetBeans, create a new empty Java file for the class TokenTester, and enter the
code shown in Listing 3.1 as its source code. This program creates StringTokenizer
objects by using new in two different ways and then displays each token the objects
contain.

LISTING 3.1 The Full Text of TokenTester.java

1: import java.util.StringTokenizer;

2:

3: class TokenTester {

4:

5: public static void main(String[] arguments) {

6: StringTokenizer st1, st2;

7

8: String quotel = "GOOG 604.43 -0.42";

9: st1 = new StringTokenizer(quotel);

10: System.out.println("Token 1: " + sti.nextToken());
11: System.out.println("Token 2: " + sti.nextToken());
12: System.out.println("Token 3: " + sti.nextToken());
13:

14: String quote2 = "RHT@60.39@0.78";

15: st2 = new StringTokenizer(quote2, "@");

16: System.out.println("\nToken 1: " + st2.nextToken());

68

DAY 3: Working with Objects

LISTING 3.1 Continued

17: System.out.println("Token 2: " + st2.nextToken());
18: System.out.println("Token 3: " + st2.nextToken());
19: }

20: }

Save this file by choosing File, Save or clicking Save All on the NetBeans toolbar. Run
the application by choosing Run, Run File to see the output:

Output v

Token 1: GOOG
Token 2: 604.43
Token 3: -0.42

Token 1: RHT
Token 2: 60.39
Token 3: 0.78

Two different StringTokenizer objects are created using different arguments to the con-
structor.

The first object is created using new StringTokenizer() with one argument, a String
object named quote1 (line 9). This creates a StringTokenizer object that uses the
default delimiters, which are blank spaces, tabs, newlines, carriage returns, or formfeed
characters.

If any of these characters is contained in the string, it is used to divide the string.
Because the quote1 string contains spaces, these are used as delimiters dividing each
token. Lines 10-12 display the values of all three tokens: "G00G", "604.43", and
"-0.42".

The second StringTokenizer object in this example has two arguments when it is con-
structed in line 14—a String object named quote2 and an at-sign character (@). This
second argument indicates that the @ character should be used as the delimiter between
tokens. The StringTokenizer object created in line 15 contains three tokens: "RHT",
"60.39", and "0.78".

How Objects Are Constructed

Several things happen when you use the new operator. The new instance of the given class
is created, memory is allocated for it, and a special method defined in the given class is
called. This special method is called a constructor.

Creating New Objects 69

A constructor is a special way to create a new instance of a class. A constructor initial-
izes the new object and its variables, creates any other objects that the object needs, and
performs any additional operations the object requires to initialize itself.

A class can have several different constructors, each with a different number or type of
arguments. When you use new, you can specify different arguments in the argument list,
and the correct constructor for those arguments is called.

Multiple constructor definitions enable the TokenTester class to accomplish different
things with different uses of the new operator. When you create your own classes, you
can define as many constructors as you need to implement the behavior of the class.

No two constructors in a class can have the same number and type of arguments because
this is the only way constructors are differentiated from each other.

If a class defines no constructors, a constructor with no arguments is called by default
when an object of the class is created. The only thing this constructor does is call the 3
same constructor in its superclass.

A Note on Memory Management

If you are familiar with other object-oriented programming languages, you might wonder
whether the new statement has an opposite that destroys an object when it is no longer
needed.

Memory management in Java is dynamic and automatic. When you create a new object,
Java automatically allocates the proper amount of memory for that object. You don’t
have to allocate any memory for objects explicitly. Java does it for you.

Because Java memory management is automatic, you don’t need to deallocate the mem-
ory an object uses when you’re finished using the object. Under most circumstances,
when you are finished with an object you have created, Java can determine that the
object no longer has any live references to it. (In other words, the object isn’t assigned to
any variables still in use or stored in any arrays.)

As a program runs, the Java virtual machine periodically looks for unused objects and
reclaims the memory that those objects are using. This process is called garbage collec-
tion and occurs without any programming on your part. You don’t have to explicitly free
the memory taken up by an object; you just have to make sure that you’re not still hold-
ing onto an object you want to get rid of.

70

DAY 3: Working with Objects

Using Class and Instance Variables

At this point, you can create your own object with class and instance variables defined in
it, but how do you work with those variables? They’re used in largely the same manner
as the local variables you learned about yesterday. You can use them in expressions,
assign values to them in statements, and so on. You just refer to them slightly differently.

Getting Values
To get to the value of an instance variable, you use dot notation, a form of addressing in
which an instance or class variable name has two parts:

m A reference to an object or class on the left side of a dot operator (.)

®m A variable on the right side

Dot notation is how you refer to an object’s instance variables and methods.

For example, if you have an object named customer with a variable called orderTotal,
here’s how that variable could be referred to in a statement:

float total = customer.orderTotal;

This statement assigns the value of the customer object’s orderTotal instance variable
to a local floating-point variable named total.

Accessing variables in dot notation is an expression (meaning that it returns a value).
Both sides of the dot also are expressions. This means that you can chain instance vari-
able access.

Extending the preceding example, suppose the customer object is an instance variable of
the store class. Dot notation can be used twice, as in this statement:

float total = store.customer.orderTotal;

Dot expressions are evaluated from left to right, so you start with store’s instance vari-

able customer, which itself has an instance variable orderTotal. The value of this vari-
able is assigned to the total local variable.

Setting Values

Assigning a value to an instance variable with dot notation employs the = operator just
like local variables:

customer.layaway = true;

This example sets the value of a boolean instance variable named layaway to true.

Using Class and Instance Variables 71

The PointSetter application shown in Listing 3.2 tests and modifies the instance variables
in a Point object. Point, a class in the java.awt package, represents points in a coordi-
nate system with (x, y) values.

Create a new empty Java file in NetBeans with the class name PointSetter, and then
type the source code shown in Listing 3.2 and save the file.

LISTING 3.2 The Full Text of PointSetter.java

1: import java.awt.Point;

2:

3: class PointSetter {

4:

5: public static void main(String[] arguments) {

6: Point location = new Point(4, 13);

7

8: System.out.println("Starting location:"); 3
9: System.out.println("X equals " + location.x);
10: System.out.println("Y equals " + location.y);
11:

12: System.out.println("\nMoving to (7, 6)");

13: location.x = 7;

14: location.y = 6;

15:

16: System.out.println("\nEnding location:");

17: System.out.println("X equals " + location.x);
18: System.out.println("Y equals " + location.y);
19: }
20: }

When you run this application, the output is the following:

Output v

Starting location:
X equals 4
Y equals 13

Moving to (7, 6)
Ending location:

X equals 7
Y equals 6

In this application, you first create an instance of Point where x equals 4 and y equals 13
(line 6). These individual values are retrieved using dot notation.

72

DAY 3: Working with Objects

The value of x is changed to 7 and y to 6. Finally, the values are displayed again to show
how they have changed.

Class Variables

Class variables, as you have learned, are variables defined and stored in the class itself.
Their values apply to the class and all its instances.

With instance variables, each new instance of the class gets a new copy of the instance
variables that the class defines. Each instance then can change the values of those
instance variables without affecting any other instances. With class variables, only one
copy of that variable exists when the class is loaded. Changing the value of that variable
changes it for all instances of that class.

You define class variables by including the static keyword before the variable itself.
For example, consider the following partial class definition:
class FamilyMember {

static String surname = "Mendoza";

String name;
int age;

Each instance of the class FamilyMember has its own values for name and age, but the
class variable surname has only one value for all family members: Mendoza. If the value
of surname is changed, all instances of FamilyMember are affected.

NOTE Calling these static variables refers to one of the meanings of
the word “static”: fixed in one place. If a class has a static
variable, every object of that class has the same value for that
variable.

To access class variables, you use the same dot notation as with instance variables. To
retrieve or change the value of the class variable, you can use either the instance or the
name of the class on the left side of the dot operator. Both lines of output in this example
display the same value:

FamilyMember dad = new FamilyMember();

System.out.println("Family's surname is: " + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname);

Calling Methods 73

Because you can use an object to change the value of a class variable, it’s easy to
become confused about class variables and where their values are coming from.
Remember that the value of a class variable affects all objects of that particular class.

For this reason, it’s a good idea to use the name of the class when you refer to a class
variable. It makes your code easier to read and makes strange results easier to debug.

Calling Methods

Calling a method in an object also makes use of dot notation. The object whose method
is being called is on the left side of the dot, and the name of the method and its argu-
ments are on the right side:

customer.addToCart (itemNumber, price, quantity);
All method calls must have parentheses after them, even when the method takes no argu-
ments, as in this example: 3

customer.cancelOrder();

In Listing 3.3, the StringChecker application shows an example of calling some methods
defined in the String class. Strings include methods for string tests and modification.
Create this program in NetBeans as an empty Java file with the class name
StringChecker.

LISTING 3.3 The Full Text of StringChecker.java

1: class StringChecker {

2

3 public static void main(String[] arguments) {

4: String str = " Would you like an apple pie with that?";
5: System.out.println("The string is: " + str);

6: System.out.println("Length of this string: "

7 + str.length());

8: System.out.println("The character at position 6: "

9: + str.charAt(6));

10: System.out.println("The substring from 26 to 32: "

11: + str.substring(26, 32));

12: System.out.println("The index of the first 'a': "

13: + str.index0f('a'));

14: System.out.println("The index of the beginning of the "
15: + "substring \"IBM\": " + str.indexOf("IBM"));

16: System.out.println("The string in uppercase: "

17: + str.toUpperCase());

18: }

19: }

74

DAY 3: Working with Objects

Save and run the file to display this output:

Output v

The
Leng
The
The
The
The
The

string is: Would you like an apple pie with that?

th of this string: 38

character at position 6: y

substring from 26 to 32: e with

index of the first 'a': 15

index of the beginning of the substring "apple": 18

string in uppercase: WOULD YOU LIKE AN APPLE PIE WITH THAT?

In line 4, you create a new instance of String by using a string literal. The remainder of
the program simply calls different string methods to do different operations on that
string:

Line 5 prints the value of the string you created in line 4: “Would you like an apple
pie with that?”

Line 7 calls the 1ength() method in the new String object. This string has 38
characters.

Line 9 calls the charAt () method, which returns the character at the given position
in the string. Note that string positions start at position O rather than 1, so the char-
acter at position 6 is y.

Line 11 calls the substring() method, which takes two integers indicating a range
and returns the substring with those starting and ending points. The substring()
method also can be called with only one argument, which returns the substring
from that position to the end of the string.

Line 13 calls the index0f () method, which returns the position of the first instance
of the given character (here, 'a'). Character literals are surrounded by single quo-
tation marks; if double quotation marks had surrounded the 'a' in line 13, the lit-
eral would be considered a String.

Line 15 shows a different use of the index0f () method, which takes a string argu-
ment and returns the index of the beginning of that string.

Line 17 uses the toUppercCase () method to return a copy of the string in all
uppercase.

NOTE If you compare the output of the StringChecker application to

the characters in the string, you might be wondering how y could
be at position 6 when it is the seventh character in the string. All
of the methods look like they're off by one (except for length()).

Calling Methods

The reason is that the methods are zero-based, which means they
begin counting with O instead of 1. So ‘W’ is at position O, ‘0’ at
position 1, ‘u’ at position 2 and so on. This is something you
encounter often in Java.

Formatting Strings

Numbers such as money often need to be displayed in a precise manner. There’s only
two places after the decimal (for the cents), a dollar sign ($), and commas.

This kind of formatting when displaying strings can be accomplished with the
System.out.format () method.

The method takes two arguments: the output format template and the string to display.
Here’s an example that adds a dollar sign and commas to the display of an integer:

int accountBalance = 5005;
System.out.format("Balance: $%,d%n", accountBalance);

This code produces the output Balance: $5,005.

The formatting string begins with a percent sign (%) followed by one or more flags. The
%,d code displays a decimal with commas dividing each group of three digits. The %n
code displays a newline character.

The next example displays the value of pi to 11 decimal places:

double pi = Math.PI;
System.out.format("%.11f%n", pi);

The output is 3.14159265359.

TIP Oracle’s Java site includes a beginner’s tutorial for printf-style
output that describes some of the most useful formatting codes:

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html

Nesting Method Calls

A method can return a reference to an object, a primitive data type, or no value at all. In
the StringChecker application, all the methods called on the String object str return

75

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html

76

DAY 3: Working with Objects

values that are displayed. The charAt () method returns a character at a specified posi-
tion in the string.
The value returned by a method also can be stored in a variable:

String label = "From";
String upper = label.toUpperCase();

In this example, the String object upper contains the value returned by calling
label.toUppercCase (), which is the text FROM, the uppercase version of From.

If the method returns an object, you can call the methods of that object in the same state-
ment. This makes it possible for you to nest methods as you would variables.

Earlier today, you saw an example of a method called with no arguments:
customer.cancelOrder();

If the cancelOrder () method returns an object, you can call methods of that object in
the same statement:

customer.cancelOrder().fileComplaint();

This statement calls the fileComplaint () method, which is defined in the object
returned by the cancelorder () method of the customer object.

You can combine nested method calls and instance variable references as well. In the
next example, the putOnLayaway () method is defined in the object stored by the
orderTotal instance variable, which itself is part of the customer object:

customer.orderTotal.putOnLayaway (itemNumber, price, quantity);

This manner of nesting variables and methods is demonstrated in a method you’ve used
frequently in the first several days of this book: System.out.println().

That method displays strings and other data to the computer’s standard output device.

The System class, part of the java.lang package, describes behavior specific to the com-
puter system on which Java is running. System.out is a class variable that contains an
instance of the class PrintStream representing the system’s standard output, which nor-
mally is the screen but can be a printer or file. PrintStream objects have a println()
method that sends a string to that output stream. The PrintStream class is in the
java.io package.

Class Methods

Class methods, like class variables, apply to the class as a whole and not to its
instances. Class methods commonly are used for general utility methods that might not
operate directly on an object of that class but do fit with that class conceptually.

References to Objects 77

For example, the String class contains a class method called valueOf (), which can take
one of many different types of arguments (integers, Booleans, objects, and so on). The
valueOf () method then returns a new instance of String containing the argument’s
string value. This method doesn’t operate directly on an existing instance of String, but
getting a string from another object or data type is behavior that makes sense to define in
the String class.

Class methods also can be useful for gathering general methods in one place. For exam-
ple, the Math class, defined in the java.lang package, contains a large set of mathemati-
cal operations as class methods. No objects can be created from the Math class, but you
still can use its methods with numeric or Boolean arguments.

For example, the class method Math.max () takes two arguments and returns the larger of

the two. You don’t need to create a new instance of Math; it can be called anywhere you

need it, as in the following:

int firstPrice = 225; 3

int secondPrice = 217;
int higherPrice = Math.max(firstPrice, secondPrice);

Dot notation is used to call a class method. As with class variables, you can use either an
instance of the class or the class itself on the left side of the dot. For the same reasons
noted earlier in the discussion of class variables, using the name of the class makes your
code easier to read.

The last two lines in this example both produce strings equal to “550™:

String s, s2;
s = "item";
s2 = s.valueOf(550);

s2 = String.valueOf(550);

References to Objects

As you work with objects, it’s important to understand references. A reference is an
address that indicates where an object’s variables and methods are stored.

You aren’t actually using objects when you assign an object to a variable or pass an
object to a method as an argument. You aren’t even using copies of the objects. Instead,
you’re using references to those objects.

To better illustrate the difference, the RefTester application shown in Listing 3.4 shows
how references work. Create an empty Java file for the class RefTester in NetBeans, and
enter the code shown in Listing 3.4 as the application’s source code.

78 DAY 3: Working with Objects

LISTING 3.4 The Full Text of RefTester.java

1: import java.awt.Point;

2:

3: class RefTester {

4 public static void main(String[] arguments) {

5: Point pt1, pt2;

6: pt1 = new Point (100, 100);

7 pt2 = pti;

8:

9: pti1.x = 200;

10: ptl.y = 200;

11: System.out.println("Point1: " + pt1i.x + ", " + ptl.y);
12: System.out.println("Point2: " + pt2.x + ", " + pt2.y);
13: }

14: }

Save and run the application. Here is the output:

Output v

Point1: 200, 200
Point2: 200, 200

The following takes place in the first part of this program:

m Line 5—Two Point variables are created.
m Line 6—A new Point object is assigned to pt1.

®m Line 7—The value of pt1 is assigned to pt2.

Lines 9-12 are the tricky part. The x and y variables of pt1 both are set to 200, and then
all variables of pt1 and pt2 are displayed onscreen.

You might expect pt1 and pt2 to have different values. However, the output shows this
not to be the case. As you can see, the x and y variables of pt2 also are changed, even
though nothing in the program explicitly changes them. This happens because line 7
creates a reference from pt2 to pt1, instead of creating pt2 as a new object copied
from pt1.

The variable pt2 is a reference to the same object as pt1, as shown in Figure 3.1. Either
variable can be used to refer to the object or to change its variables.

FIGURE 3.1 pt1 Point object

References to ~ Xx: 200
objects. pt2 —>| y:200

Casting Objects and Primitive Types

If you wanted pt1 and pt2 to refer to separate objects, you could use separate new
Point() statements on lines 6 and 7 to create separate objects, as shown here:

pt1 = new Point (100, 100);
pt2 = new Point (100, 100);

References in Java become particularly important when arguments are passed to
methods. You learn more about this later today.

NOTE

Java has no explicit pointers or pointer arithmetic, unlike C and
C++. By using references and Java arrays, you can duplicate most
pointer capabilities without many of their drawbacks.

Casting Objects and Primitive Types

One thing you discover quickly about Java is how finicky it is about the information it
will handle. Like Morris, the perpetually hard-to-please cat in the old 9Lives cat food

commercials, Java methods and constructors require things to take a specific form and
won’t accept alternatives.

When you send arguments to methods or use variables in expressions, you must use vari-

ables of the correct data types. If a method requires an int, the Java compiler responds
with an error if you try to send a float value to the method. Likewise, if you set up one
variable with the value of another, they must be of the same type.

NOTE

There is one area where Java’s compiler is decidedly flexible: the
String object. String handling in println() methods, assignment
statements, and method arguments is simplified by the + concate-
nation operator. If any variable in a group of concatenated vari-
ables is a string, Java treats the whole thing as a String. This
makes the following possible:

float gpa = 2.25F;
System.out.println("Honest, mom, my GPA is a " + (gpa + 1.5));

Using the concatenation operator, a single string can hold the text
representation of multiple objects and primitive data in Java.

79

80

DAY 3: Working with Objects

Sometimes you’ll have a value in your Java class that isn’t the right type for what you
need. It might be the wrong class or the wrong data type, such as a float when you need
an int.

In these situations, you can use a process called casting to convert a value from one type
to another.

Although the concept of casting is reasonably simple, the usage is complicated by the
fact that Java has both primitive types (such as int, float, and boolean) and object
types (String, Point, ZipFile, and the like). This section discusses three forms of casts
and conversions:

m Casting between primitive types, such as int to float or float to double

m Casting from an object of a class to an object of another class, such as from Object
to String

m Casting primitive types to objects and then extracting primitive values from those
objects

When discussing casting, it can be easier to think in terms of sources and destinations.
The source is the variable being cast into another type. The destination is the result.

Casting Primitive Types

Casting between primitive types enables you to convert the value of one type to another
primitive type. This most commonly occurs with the numeric types. But one primitive
type can never be used in a cast. Boolean values must be either true or false and cannot
be used in a casting operation.

In many casts between primitive types, the destination can hold larger values than the
source, so the value is converted easily. An example would be casting a byte into an int.
Because a byte holds values from —128 to 127 and an int holds from around -2,100,000
to 2,100,000, there’s more than enough room to cast a byte into an int.

Often you can automatically use a byte or char as an int; you can use an int as a long,
an int as a float, or anything as a double. In most cases, because the larger type pro-
vides more precision than the smaller, no loss of information occurs as a result. The
exception is casting integers to floating-point values. Casting an int or a long to a
float, or a long to a double, can cause some loss of precision.

Casting Objects and Primitive Types 81

NOTE A character can be used as an int because each character has a
corresponding numeric code that represents its position in the
character set. If the variable i has the value 65, the cast (char)
i produces the character value 'A'. The numeric code associated
with a capital A is 65 in the ASCII character set, which Java
adopted as part of its character support.

You must use an explicit cast to convert a value in a large type to a smaller type. Explicit
casts take the following form:

(typename) value

Here typename is the name of the primitive data type to which you’re converting, such as

short, int, or float. value is an expression that results in the value of the source type.

For example, in the following statement, the value of x is divided by the value of y, and 3
the result is cast into an int in the following expression:

int result = (int)(x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to
use parentheses here. Otherwise, first the value of x would be cast into an int, and then
it would be divided by y, which could easily produce a different result.

Casting Objects

Objects of classes also can be cast into objects of other classes when the source and des-
tination classes are related by inheritance and one class is a subclass of the other.

Some objects might not need to be cast explicitly. In particular, because a subclass con-
tains all the same information as its superclass, you can use an object of a subclass any-
where a superclass is expected.

For example, consider a method that takes two arguments, one of type Object and
another of type Component in the java.awt package.

You can pass an instance of any class for the Object argument because all Java classes
are subclasses of Object.

For the Component argument, you can pass in its subclasses, such as Button, Container,
and Label (all in java.awt).

This is true anywhere in a program, not just inside method calls. If you had a variable
defined as class Component, you could assign objects of that class or any of its subclasses
to that variable without casting.

82

DAY 3: Working with Objects

This also is true in the reverse, so you can use a superclass when a subclass is expected.
There is a catch, however: Because subclasses contain more behavior than their super-
classes, a loss of precision occurs in the casting. Those superclass objects might not have
all the behavior needed to act in place of a subclass object.

Consider this example: If you have an operation that calls methods in objects of the class
Integer, using an object of its superclass Number won’t include many methods specified
in Integer. Errors occur if you try to call methods that the destination object doesn’t
have.

To use superclass objects where subclass objects are expected, you must cast them
explicitly. You won’t lose any information in the cast, but you gain all the methods and
variables that the subclass defines. To cast an object to another class, you use the same
operation as for primitive types, which takes this form:

(classname) object

In this template, classname is the name of the destination class, and object is a refer-
ence to the source object. Note that casting creates a reference to the old object of the
type classname; the old object continues to exist as it did before.

The following example casts an instance of the class VicePresident to an instance of
the class Employee. VicePresident is a subclass of Employee with more information:
Employee emp = new Employee();

VicePresident veep = new VicePresident();

emp = veep; // no cast needed for upward use
veep = (VicePresident) emp; // must cast explicitly

As you’ll see when you begin working with graphical user interfaces during Week 2,
“The Java Class Library,” casting one object is necessary whenever you use Java2D
graphics operations. You must cast a Graphics object to a Graphics2D object before you
can draw onscreen. The following example uses a Graphics object called screen to cre-
ate a new Graphics2D object called screen2D:

Graphics2D screen2D = (Graphics2D) screen;

Graphics2D is a subclass of Graphics, and both belong to the java.awt package. You
explore this subject fully during Day 13, “Creating Java2D Graphics.”

In addition to casting objects to classes, you can cast objects to interfaces, but only if
an object’s class or one of its superclasses actually implements the interface. Casting an
object to an interface means that you can call one of that interface’s methods even if
that object’s class does not actually implement that interface.

Casting Objects and Primitive Types 83

Converting Primitive Types to Objects and
Vice Versa

One thing you can’t do under any circumstance is cast from an object to a primitive data
type, or vice versa.

Primitive types and objects are very different things in Java, and you can’t automatically
cast between the two.

As an alternative, the java.lang package includes classes that correspond to each primi-
tive data type: Float, Boolean, Byte, and so on. Most of these classes have the same
names as the data types, except that the class names begin with a capital letter (Short
instead of short, Double instead of double, and the like). Also, two classes have names
that differ from the corresponding data type: Character is used for char variables, and
Integer is used for int variables.

Using the classes that correspond to each primitive type, you can create an object that 3
holds the same value. The following statement creates an instance of the Integer class
with the integer value 7801:

Integer dataCount = new Integer(7801);

After you have created an object in this manner, you can use it as you would any object
(although you cannot change its value). When you want to use that value again as a
primitive value, there are methods for that as well. For example, if you wanted to get an
int value from a dataCount object, the following statement shows how that would work:

int newCount = dataCount.intValue(); // returns 7801

A common translation you need in programs is converting a String to a numeric type,
such as an integer. When you need an int as the result, this can be done by using the
parseInt() class method of the Integer class. The String to convert is the only argu-
ment sent to the method, as in the following example:

String pennsylvania = "65000";
int penn = Integer.parselnt(pennsylvania);

The following classes can be used to work with objects instead of primitive data types:
Boolean, Byte, Character, Double, Float, Integer, Long, Short, and Void. These
classes are commonly called object wrappers because they provide an object representa-
tion that contains a primitive value.

84

DAY 3: Working with Objects

CAUTION If you try to use the preceding example in a program, your program
won’t compile. The parseInt() method is designed to fail with a
NumberFormatException error if the argument to the method is
not a valid numeric value. To deal with errors of this kind, you
must use special error-handling statements, which are introduced
during Day 7, “Exceptions and Threads.”

Working with primitive types and objects that represent the same values is made easier
through autoboxing and unboxing, an automatic conversion process.

Autoboxing automatically converts a primitive type to an object, and unboxing converts
in the other direction.

If you write a statement that uses an object where a primitive type is expected, or vice
versa, the value is converted so that the statement executes successfully.

This feature was unavailable in the first several versions of the language.

Here’s an example of autoboxing and unboxing:

Float f1 = new Float(12.5F);
Float f2 = new Float(27.2F);
System.out.println("Lower number: " + Math.min(f1, f2));

The Math.min() method takes two float values as arguments, but the preceding exam-
ple sends the method two Float objects as arguments instead.

The compiler does not report an error over this discrepancy. Instead, the Float objects
automatically are unboxed into float values before being sent to the min () method.

CAUTION Unboxing an object works only if the object has a value. If no con-
structor has been called to set up the object, compilation fails
with an error.

Comparing Object Values and Classes

In addition to casting, you often will perform three other common tasks that involve
objects:

Comparing Object Values and Classes 85

m Comparing objects
m Finding out the class of any given object

m Testing to see whether an object is an instance of a given class

Comparing Objects

Yesterday, you learned about operators for comparing values—equal to, not equal, less
than, and so on. Most of these operators work only on primitive types, not on objects. If
you try to use other values as operands, the Java compiler produces errors.

The exceptions to this rule are the == operator for equality and the != operator for
inequality. When applied to objects, these operators don’t do what you might first expect.
Instead of checking whether one object has the same value as the other, they determine
whether both sides of the operator refer to the same object.

To compare objects of a class and have meaningful results, you must implement special 3
methods in your class and call those methods.

A good example of this is the String class. It is possible to have two different String
objects that represent the same text. If you were to employ the == operator to compare
these objects, however, they would be considered unequal. Although their contents
match, they are not the same object.

To see whether two String objects have matching values, a method of the class called
equals() is used. The method tests each character in the string and returns true if the
two strings have the same value. The EqualsTester application shown in Listing 3.5 illu-
strates this. Create the application with NetBeans and save the file, either by choosing
File, Save or by clicking the Save All toolbar button.

LISTING 3.5 The Full Text of EqualsTester.java

1: class EqualsTester {

2 public static void main(String[] arguments) {
3 String stri, str2;

4: str1 = "Free the bound periodicals.";

5: str2 = stri;

6.

7 System.out.println("Stringt1: " + stri1);
8: System.out.println("String2: " + str2);
9: System.out.println("Same object? " + (str1 == str2));
10:

11: str2 = new String(stri);

12:

86

DAY 3: Working with Objects

LISTING 3.5 Continued

13: System.out.println("Stringtl: " + stri);

14: System.out.println("String2: " + str2);

15: System.out.println("Same object? " + (str1 == str2));
16: System.out.println("Same value? " + stri.equals(str2));
17: }

18: }

Here’s the output:

Output v

Stringl: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? true

Stringl: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? false

Same value? true

The first part of this program declares two variables (str1 and str2), assigns the literal
“Free the bound periodicals.” to str1, and then assigns that value to str2 (lines 3-5). As
you learned earlier, str1 and str2 now point to the same object, and the equality test at
line 9 proves that.

In the second part of this program, you create a new String object with the same value
as str1 and assign str2 to that new String object.

Now you have two different string objects in str1 and str2, both with the same value.
Testing them to see whether they’re the same object by using the == operator (line 15)
returns the expected answer: false. They are not the same object in memory. Testing
them using the equals() method in line 16 also returns the expected answer of true,
which shows they have the same value.

NOTE Why can’t you just use another literal when you change str2,
instead of using new? String literals are optimized in Java. If you
create a string using a literal and then use another literal with the
same characters, Java knows enough to give you back the first
String object. Both strings are the same object; you have to go
out of your way to create two separate objects.

Summary 87

Determining the Class of an Object

Want to find out what an object’s class is? Here’s how you do so for an object assigned
to the variable key:

String name = key.getClass().getName();

The getClass() method is defined in the Object class, so it can be called in all objects.
It returns a Class object that represents the object’s class. That object’s getName ()
method returns a string holding the name of the class.

Another useful test is the instanceof operator, which has two operands: a reference to
an object on the left, and a class name on the right. The expression produces a Boolean
value: true if the object is an instance of the named class or any of that class’s sub-
classes, or false otherwise, as in these examples:

boolean checkl = "Texas" instanceof String; // true

Point pt = new Point (10, 10); 3
boolean check2 = pt instanceof String; // false

The instanceof operator also can be used for interfaces. If an object implements an
interface, the instanceof operator returns true when this is tested.

Unlike other operators in Java, instanceof is not defined as some form of punctuation.
Instead, the instanceof keyword is the operator.

Summary

Now that you have spent three days exploring how object-oriented programming is
implemented in Java, you’re in a better position to decide how useful it can be in your
programming.

If you are a “glass half empty” kind of person, object-oriented programming is a level of
abstraction that gets in the way of using a programming language. You learn more about
why OOP is thoroughly ingrained in Java in the coming days.

If you are a “glass half full” kind of person, object-oriented programming is beneficial
because of its benefits: improved reliability, reusability, and maintenance.

Today, you learned how to deal with objects: creating them, reading their values and
changing them, and calling their methods. You also learned how to cast objects from one
class to another, cast to and from primitive data types and classes, and take advantage of
automatic conversions through autoboxing and unboxing.

88

DAY 3: Working with Objects

Q&A

Q

A

I’m confused about the differences between objects and the primitive data
types, such as int and boolean.

The primitive types (byte, short, int, long, float, double, boolean, and char)
are not objects, although in many ways they can be handled like objects. They can
be assigned to variables and passed in and out of methods.

Objects are instances of classes and as such usually are much more complex data
types than simple numbers and characters. They often contain numbers and charac-
ters as instance or class variables.

The 1ength() and charAt () methods in the StringChecker application (Listing
3.3) don’t appear to make sense. If 1ength() says that a string is 38 characters
long, shouldn’t the characters be numbered from 1 to 38 when charAt () is
used to display characters in the string?

The two methods look at strings differently. The length () method counts the char-
acters in the string, with the first character counting as 1, the second as 2, and so
on. The charAt () method considers the first character in the string to be located at
position number 0. This is the same numbering system used with array elements in
Java. Consider the string "Charlie Brown". It has 13 characters ranging from posi-
tion O (the letter C) to position 12 (the letter n).

If Java lacks pointers, how can I do something like linked lists, where there’s a
pointer from one node to another so that they can be traversed?

It’s incorrect to say that Java has no pointers; it just has no explicit pointers. Object
references are effectively pointers. To create something like a linked list, you could
create a class called Node, which would have an instance variable also of type
Node. To link node objects, assign a node object to the instance variable of the
object immediately before it in the list. Because object references are pointers,
linked lists set up this way behave as you would expect them to. (You work with
the Java class library’s version of linked lists on Day 8, “Data Structures.”)

Quiz
Review today’s material by taking this three-question quiz. Answers are at the end of
the book.

Certification Practice

Questions
1. Which operator do you use to call an object’s constructor and create a new object?
A+
B. new
C. instanceof

2. What kind of methods apply to all objects of a class rather than an individual
object?

A. Universal methods
B. Instance methods
C. Class methods

3. If you have a program with objects named obj1 and obj2, what happens when you
use the statement obj2 = obj1?

A. The instance variables in obj2 are given the same values as obj1.
B. obj2 and obj1 are considered to be the same object.
C. Neither A nor B.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class AyeAye {
int i = 40;
int j;

public AyeAye() {
)

setValue (i++);

}

void setValue(int inputValue) {
int i = 20;
j=1+1;
System.out.println("j = " + j);

89

90

DAY 3: Working with Objects

What is the value of the j variable at the time it is displayed inside the setVvalue()
method?

A. 42
B. 40
C. 21
D. 20

The answer is available on the book’s website at www.java2ldays.com. Visit the Day 3
page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that turns a birthday in MM/DD/YYY'Y format (such as
04/29/2013) into three individual strings.

2. Create a class with instance variables for height, weight, and depth, making each
an integer. Create a Java application that uses your new class, sets each of these
values in an object, and displays the values.

Where applicable, exercise solutions are offered on the book’s website at
www.java2ldays.com.

www.java21days.com
www.java21days.com

IndeXx

Symbols

(11, 98
{1, 38

& (ampersand), AND
operators, 57

[1 (brackets), 92

N (caret), XOR operator, 57

I command (jdb), 653

// comment notation, 46

<> (diamond operator), 244

= (equal sign)
assignment operator, 40, 43
equality operator (==), 56, 85

! (exclamation point), NOT
operator, 58

> (greater than), 56

> = (greater than or equal to
symbol), 56

< (less than), 56

< = (less than or equal to
symbol), 56

- (hyphen), decrement operator
(—), 55-56

= (inequality operator), 56, 85
- (minus signs), 47

-0 option (javac), 640

. (period), dot notation, 70

| (pipe character), OR
operators, 57

+ (plus sign)
concatenation operator (+), 60

increment operator (++),
55-56

; (semicolon), statement
termination character, 38

2D graphics

arcs, drawing, 382-383

coordinate spaces, 377-378

coordinate system, 369

ellipses, drawing, 381

lines, drawing, 381

Map applet, 384-387

polygons, drawing, 383-384

rectangles, drawing, 381

rendering attributes, 378
drawing strokes, 380
fill patterns, 378-379

A

abstract classes, 161-162
abstract methods, 161-162
final, 182
private, 182
abstract modifier, 161
access control, 151, 155
assessor methods, 156
default access, 151
inheritance, 155-156

666 access control

packages, 166
default access, 166
public access, 166-167

private access, 152-153

protected access, 154-155

public access, 153-154
accessing

array elements, 94-95

array list elements, 229

class variable values, 72

class variables, 72

databases, JDBC, 501

elements, Map interfaces, 235

instance variables, 70

methods, class, 157

MS-DOS, 618

Notepad, 622

variables, class, 157
accessor methods, 156

performance issues, 182

action events, event handling,
345-346

ActionListener event
listener, 340

actionPerformed() method, 342
acyclic gradients, 378

adapter classes, 357-359
add() method, 229, 256

addActionListener()
method, 345

adding
classes to packages, 166
components
to containers, 250, 256
to panels, 317
to toolbars, 290
elements, array lists, 229
stack elements, 234
additem() method, 269

AdjustmentListener event
listener, 340

afterLast() method, 517

aligning

components, 306-307
border layouts, 314-315
card layouts, 317-318
flow layouts, 307-309
grid bag layouts, 325-327
grid layouts, 312
panels, 317

labels, 261

AllCapsDemo.java application,
441-442

allocate() method, 482

allocating memory to
objects, 69

ampersand (&), AND
operators, 57

AND operators, 57
Android
apps
code, writing, 584-589
designing, 577
GUI, designing, 582-584

manifest files,
configuring, 581-582

resources, preparing,
578-580

running, 575-576

testing, 611

writing, 567-572
AVD, 573-574

debug configuration,
creating, 574-575

history of, 566-567
project, organizing, 569-570

Android plug-in for Eclipse,
installing, 608-611

Android SKD, installing, 607

animation, controlling with
threads, 207

Ant, 182

antialiasing, 372

Applnfo application, 642
Applnfo.html, 643-644
Applnfo.java, 642-643

Applinfo2 application, 645-647
Applet menu commands

Clone, 642

Info, 642

Reload, 641

Restart, 641

Start, 641

Stop, 641

Tag, 642

applet tag, attributes
(archive), 649

applets
background color, setting, 377
debugging, 653
Map, 384-387

appletviewer browser, 640

Applnfo sample
application, 642

Applnfo.html, 643-644
Applnfo.java, 642-643

Applet menu commands,
641-642

appletviewing browser, 643
applications, 129
AllCapsDemo, 441-442
Android
code, writing, 584-589
designing, 577
GUI, designing, 582-584

manifest files,
configuring, 581-582

resources, preparing,
578-580

running, 575-576

testing, 611

writing, 567-572
Applnfo, 642-644
Applnfo2, 645-647
arguments

handling, 131-132

passing to, 130
BufferDemo.java, 428-429
Buttons.java, 256-257

ChangeTitle, 343, 345
ChangeTitle.java, 343-344
ChooseTeam.java, 268-270
CopyArrayWhile java, 112
main() method, 112-113
output, 112
DayCounter.java, 103-104
debugging, 651-653
DigitalClock.java, 209
Finger.java, 475-476
Form.java, 263-264
HalfDollars
main() method, 97
source code, 95
HalfLoop.java, 110
helper classes, 130
HexRead.java, 196
Icons.java, 259-260
Info (dialog box), 283-284
ItemProp, 656

main() method,
signature, 129

multitasking, 207
RangeClass.java, 123
ReadBytes.java, 424
ReadPrimes.java, 435
ReadSource.java, 438
running, 637
Selectltem.java, 349-350
SimpleFrame.java, 254
Slider.java, 287
Storefront, 172
SumAuverage.java, 132
Swing, graphical, 251
SwingColorTest, 357
threaded

clock, 209

writing, 207-209
TimeServer client/server

designing, 477-479

testing, 479-480
Toolbar.java, 290

WordPad, 626

WriteBytes.java, 425-426
applications (Java), 130

creating, 129-130
Arc2D.Float class, 382-383

archive attribute (applet
tag), 649

archiving files, jar files,
648-650

arcs, drawing (Arc2D.Float
class), 382-383

ArgStream() method, 430
arguments

in applications, handling,
131-132

command line, 636
grouping, 131
objects, creating, 66
quotation marks in, 131
to applications, passing, 130
to methods, passing, 126-127
arguments (commands), 636
arithmetic, string, 60
arithmetic operators, 51-52
example, 52-53
Array class, 459
array elements, grids, 97
array lists, 223, 228-231
capacity, 228
creating, 228-229
elements, 229-230
looping through, 231-233
size, 228
sizing, 231

ArraylndexOutofBounds
exception, 190

ArraylList class, 223, 228-231
arrays, 92, 222
boundaries, 94
creating, 95
elements
accessing, 94-95
changing, 95-97
data types, 94

beforeFirst() method

HalfDollars.java
application, 96

implementing, 92
limitations, 222
modifying, 95
multidimensional, 97
objects, creating, 93-94
primitive types, 458
references, 95
sample program

main() method, 97

source code, 95
subscripts, 94
troubleshooting, 95
variables, declaring, 92-93

ASCII text, 627

assigning variable values,
40,43

overflow, 62
assignment operators, 53-54
equal sign (=), 40
associating

components with event
listeners, 341-342

filters, 421
attributes

applet tag, archive, 649

classes, 17-18

defining, 18

objects, defining, 18
@author tag (javadoc), 645
AUTOEXEC.BAT, editing, 622

AVD (Android Virtual Device),
573-574

avoiding exceptions, 206

background color, setting, 377
base-16 numbering system, 47
base-8 numbering system, 47

beforeFirst() method, 517

How can we make this index more useful? Email us at indexes@samspublishing.com

667

668

behavior

behavior

classes, 18-19

organizing, 25-32

shared, 31-32
bits, 223-228
BitSet class, 223-228
block statements, 38
blocks, 98-99

try and catch, 192

try...catch, example, 193-194
boolean data type, 42
Boolean literals, 48-49
Boolean values, 42
border layout manager, 315

creating, 314-315
BorderLayout() method, 314
boundaries, arrays, 94
braces (braces), 98
brackets ([]), 92
break keyword, 114
breaking loops, 114
breakpoints, 651

deleting, 652-653

setting, 652

browser (appletviewer),
640, 643

ApplInfo sample
application, 642

Applnfo.html, 643-644
Applnfo.java, 642-643

Applet menu commands,
641-642

BufferConverter sample
application, 486-488

BufferDemo.java application,
428-429

buffered streams, 427
creating, 427-428
reading, 427
writing to, 428-430

BufferedInputStream()
method, 427

BufferedOutputStream()
method, 428

BufferedReader objects, 468
BufferedReader() method, 437
BufferedWriter() method, 440
buffers, 427, 481-483

byte buffers, 483-484

transforming to/from
character buffers, 485

buffers, 485. See also
channels

buildRect() method, 134
built-in fonts, 371
ButtonGroup object, 267
buttons, event handling
action events, 345-346
item events, 349-350
Buttons.java, 256-257
byte buffers, 483-484

transforming to/from
character buffers, 485

byte data type, 42
byte filters, 427

byte streams, 420-422, 448.
See also streams

file input streams, 422-423
file output streams, 425-426
bytecode, running, 637
bytes
multiple, writing, 425
reading from channels, 486

C

calling
constructor methods, 136

constructors from another
constructor, 138

methods, 19, 73-74
class methods, 77
constructors, 143
of objects, 76
start(), 641
stop(), 641
in superclasses, 143

calls, method (nesting), 75-76
capacity, array lists, 228
card layout manager, 317
creating, 318
CardLayout() method, 318
caret ("), XOR operator, 57
case-sensitivity, 41
casting. See also converting
boolean values, 80
datatypes, 80-81
definition of, 80
destinations, 80
objects, 79-80
to classes, 81-82
to interfaces, 82, 170
primitive types, 79-81
sources, 80
superclasses, 82
variables, 80-81
casts, explicit, 81

catch blocks, Exception
classes in, 194

catch clauses, empty, 206

catch command (jdb), 654

catching exceptions, 190-192
finally statement, 195-196
try and catch blocks, 192-194

cd command, 628

CD command (MS-DOS), 619

ChangeTitle application,
343-345

ChangeTitle.java application,
343-344

changing array elements,
95-97

channel() method, 491
channels, 485-488

BufferConverter sample
application, 486-488

nonblocking 1/0, 488-495
reading bytes, 486
char data type, 42

character buffers, transforming
to/from byte buffers, 485

character encodings, list of, 484

character literals, 49. See also
Unicode character set

escape codes, 49-50
character sets, 484-485
creating, 484
Unicode, 41
escape codes, 49

character streams, 436, 448.
See also streams

reading text files, 436-439
writing text files, 439-440
charAt() method, 74
Charset class, 484
CharsetDecoder class, 484
CharsetEncoder class, 484
charWidth() method, 373
check boxes, 266-267
event handling
action events, 345-346
item events, 349-350
nonexclusive, 267

checkTemperature()
method, 25

ChooseTeam.java, 268-270
choosing
port numbers, 477
text editors, 625-626
‘WordPad, 626

XML-RPC implementation,
550-551

XML-RPC web service,
552-555

Class class, 457-459
.class extensions, 637
class files, specifying, 638
class keyword, 120
class methods, 19, 76-77, 127
accessing, 157
availability, 128
calling, 77
defining, 128

Class not found error, 630
class types, 43
class variables, 18, 39, 70, 121
accessing, 157
defining, 40, 72
troubleshooting, 73
values
accessing, 72
initial values, 40
mod, 72
modifying, 72
versus instance variables, 72

classes, 119. See also
packages

abstract, 161-162
adding to packages, 166
Arc2D.Float, 382-383
Array, 459
ArrayList, 223, 228-231
as subclasses, defining, 26
attributes, 17-18
behavior, 18-19

organizing, 25-32
BitSet, 223-228
BufferConverter, 486-488
Charset class, 484
CharsetDecoder class, 484
CharsetEncoder class, 484
Class, 457-459
CodeKeeper, 232
CodeKeeper2, 243-244
Color, 375
ColorSpace, 375
ComicBooks, 239-240
constants, 43

declaring, 44
Constructor, 459

creating, 19-22, 457-459,
598-599

instance variables, 21
defining, 15, 120
Dictionary, 223

classes

Dimension, 252
efficiency, increasing, 160
Ellipse2D.Float, 381
Error, 190
exception, 190-193

in catch blocks, 194

constructors, 204
Field, 459
FileInputStream, 485
FileOutputStream, 485
FilterInputStream, 426
FilterOutputStream, 426
final, 159

subclassing, 160
final classes, 160-161
FingerServer, 492-495
FlowLayout, 306-307
FontMetrics, 373-375
functionality, 25
Giftshop, 177-178
Graphics2D, 368-369
grouping, 32
HashMap, 223, 236-241
helper classes, 130
hierarchies, 26

creating, 27-29

designing, 28-29
HolidaySked, 226-227
HttpUrlConnection, 472
identifying, 162
importing, 163
InetSocketAddress, 489
inheritance, 29-30

multiple, 167

overview, 27

single, 31, 167-168
inner, 180
inner classes, 179, 388

advantages, 181

naming, 181

scope, 181
InputStream, 422

How can we make this index more useful? Email us at indexes@samspublishing.com

669

classes

inspecting, 457-463
InstanceCounter, 158-159
instances of, creating, 16
versus interfaces, 168
IOException, 191
Item, 173-174
Java 2 Class Library, 16
javax.swing.JButton, 17
javax.swing.JComponent, 258
JCheckBox, 266
JComboBox, 269
JOptionPane, 278

confirm dialog boxes, 279

input dialog boxes,
280-281

message dialog
boxes, 281

option dialog boxes,
282-283

JPanel, 368
JProgressBar, 293
JRadioButton, 266
JScrollPane, 288-289
JSlider, 286
constructors, 286
methods, 286-287

Slider.java sample
application, 287

JToolBar, 289-290
Line2D.Float, 381
Map, 384-386
Method, 459-460
MethodInspector, 461
methods, 19
Modifier, 459
modifying, 208
MyRect, 133
buildRect() method, 134
definition, 135
MyRect2, 139
name conflicts, 165
NamedPoint, 144
Object, 26

object-oriented
programming, 15

inheritance, 25-26
ObjectInputStream, 452-455

ObjectOutputStream,
449-451

ObjectReader, 454-455
objects to, casting, 81-82
ObjectWriter, 451-452
of objects, determining, 87
organization, 150
organizing, 25-32, 162
packages, 32

adding, 166

creating, 638
PassByReference, 126
PrintClass, 141
protecting, 162
Random(), enabling, 69
Reader, 463
Rectangle2D.Double, 381
Rectangle2D.Float, 381
reflection, 457, 461-463
reflection classes, 459-461
ScrollPaneConstants, 265
SelectionKey, 490-491
ServerSocket, 476-477
Socket, 473
SocketImpl, 477
SquareTool, 180
Stack, 223, 233-235
Storefront, 176-177
StringTokenizer, 67
subclasses, 25
subclassing, 27
superclasses, 25

indicating, 120

modifying, 27
SwingConstants, 261, 286
TextFrame, 373-374
Thread, 207
Throwable, 190

TimeServer, 478-479
top-level, 179
defining, 181
variables
class variables, 121

instance variables,
120-121

Vector, 231
‘WebReader, 469-470
wrapper classes, 128
‘Writer, 463

classes (object-oriented
programming), 14

classes command (jdb), 654
CLASSPATH variable (MS-DOS)

Windows 2000/XP, 632-633

Windows 9x/Me, 630-631
clauses, catch (empty), 206
clear command (jdb), 652
clear() method, 230, 237
client-side sockets

closing, 474

instantiating, 473

opening, 473

reading/writing, 473

clock, threaded
application, 209

Clone command (Applet
menu), 642

close() method, 421
closePath() method, 384
closing

ODBC data source
connections, 507

socket connections, 474
CoalTotals.java, 508

code, writing for Android apps,
584-589

code (Java), complexity, 206
code listings
Applnfo application
Applnfo.html, 643-644
Applnfo.java, 642-643

Applnfo2 application,
645-647

ItemProp application, 656
CodeKeeper class, 232
CodeKeeper2 class, 243-244
collection, garbage, 69
color

background colors, 377

dithering, 375

drawing colors, setting,
376-377

finding current color, 377
sRGB color system, 375
XYZ color system, 375
Color class, 375
Color objects, 375
color spaces, 375
colors, Color objects, 375
ColorSpace class, 375
combining
layout managers, 316-317
methods, nested, 76
combo boxes, 269-270
event handling
action events, 345-346
item events, 349-350
ComicBooks class, 239-240
command line, 636
arguments, 636
options, 636-637

command-line interfaces,
617-618

command-line tools, javac, 628
commands
Applet menu, 641-642
arguments, 636
jar, 648-650
jdb (debugger)
11,653
catch, 654
classes, 654
clear, 652
cont, 653

down, 654
exit, 653
ignore, 654
list, 653
locals, 653
memory, 654
methods, 654
print, 653
resume, 654
run, 652
step, 653
stop at, 652
stop in, 652
suspend, 654
threads, 654
up, 654

JDK, format, 636

MS-DOS
CD, 619, 628

CLASSPATH variable,
630-633

MD, 620
PATH variable, 622-625
SET CLASSPATH=, 631
Start menu
Find, 623
Run, 615
comment notation, 46
comments, 45
notation, 46
source code, 644
comparing
instances, 85
objects, 85-86
comparison operators, 56-57
compilation errors, 95
compiler (javac), 639-640
compiler errors, 242
compilers, 614
compiling
files, 639-640
multiple, 639

components

Java programs in Windows,
628-630

programs, 617
troubleshooting, 630
complexity, code (Java), 206

complications, multiple
interfaces, 169

components, 258
aligning, 306-307

border layouts, 314-315
card layouts, 317-318
flow layouts, 307-309
grid bag layouts, 325-327
grid layouts, 312
panels, 317

associating with event
listeners, 341-342

check boxes, 266-267
combo boxes, 269-270

to containers, adding,
250, 256

creating, 255-256
dialog boxes, 278
confirm dialog boxes, 279

Info sample application,
283-284

input dialog boxes,
280-281

message dialog boxes, 281

option dialog boxes,
282-283

disabled, 258

drop-down lists, 269-270
icons, 259-261

labels, 261-262

methods, stop(), 214

to panels, adding, 317
progress bars, 293

radio buttons, 266-267
resizing, 258

scroll panes, 288-289
scrollbars, configuring, 265
scrolling panes, 265

How can we make this index more useful? Email us at indexes@samspublishing.com

671

components

SDK 1.4, 616

sliders, 286
advantages, 286
labels, 286-287
orientation, 286

Slider.java sample
application, 287-288

Swing, creating, 250
text areas, 263-265
text fields, 262-263
toolbars, 289
adding, 290
dockable toolbars, 290
orientation, 289
windows, frames, 251
concatenating strings, 60
concatenation operator (+), 60
Conder, Shane, 589, 607
conditional operator, 107-108
conditionals, 101, 105-107
conditional operator, 107-108
if, 99
else keyword, 99
examples, 100
switch, 102-103
limitations, 102

configureBlocking()
method, 490

configuring

manifest files for Android
apps, 581-582

scrollbars, 265
SDK 1.4, 617

CLASSPATH variable,
630-633

command-line interface,
617-618

configuration errors, 622

MS-DOS folders,
618-619

PATH variable, 622-625
troubleshooting, 616
confirm dialog boxes, 279

ConfirmDialog dialog boxes, 278
conflicts, names (reducing), 162
connect() method, 490
connections
networking. See networking
telnet, 479-480

consistency checking
(exceptions), 191-192

constant variables, 159
constants, 43
declaring, 44
Constructor class, 459
constructor methods, 136-138
calling, 136, 143

from another
constructor, 138

naming, 137
overloading, 138-139
overriding, 143-144
constructors
definition of, 69
Dimension(), 252
exception classes, 204
JCheckBox(), 267
JFrame(), 251
methods
setSelected(), 266
SimpleFrame(), 255
URLY(), 469
constructors (methods), 67
cont command (jdb), 653
containers

components, adding,
250, 256

panels, 256
contains() method, 230
containsKey() method, 237
containsValue() method, 237
contents, labels, 262
continue keyword, 114

controlling animation with
threads, 207

controlling access. See access
control

conventions, naming, 165

converting, 80. See also
casting

objects, 79-80
primitive types, 79-80

primitive types and
objects, 83

source code, 639

text to uppercase,
AllCapsDemo application,
441

coordinate spaces (graphics),
377-378

coordinate system
(graphics), 369

CopyArrayWhile.java, main()
method, 112-113

CopyArrayWhile.java
application, 112

createFont() method, 371

createStatement()
method, 505

creating
array lists, 228-229
arrays, 95
objects, 93-94
character sets, 484
classes, 1-22, 457-459
packages, 638
components, 255-256
Swing, 250

debug configuration,
Android, 574-575

drawing surfaces, 368-369

exceptions, 204

folders in MS-DOS, 620

instances of classes, 16

interfaces, 170-171, 251-253

Java applications, 129-130

Java class with NetBeans,
598-599

JNLP files, 396-405

labels, 261

layout managers, grid bag
layout, 326

layouts, grid bag, 325

methods, overloaded,
133-134

NetBeans project, 596
objects, 66-68
arguments, 66
Font, 370
Imagelcon, 259
with new operator, 66-69
String, 21
StringTokenizer, 67-68
URL, 469
output streams, 450
source files, 627-629
storefronts, online, 172-179
streams, 420
threads, 208-209
variables, 39

XML-RPC web service,
555-560

curly braces (curly braces), 38
current color, finding, 377

current objects, referring
to, 124

custom packages
access control, 166
default access, 166
public access, 166-167
classes, adding, 166
folder structure, 166
naming, 165-166
cyclic gradients, 378

Darcey, Lauren, 589, 607
data, storing, 427

data sources (ODBC),
connections

closing, 507
opening, 503-507

data streams, 432
creating, 432
reading, 433
ReadPrimes, 435

sample applications,
‘WritePrimes, 434

‘WritePrimes, 434
data structures, 222

array lists, 223, 228-231
accessing, 229
adding elements, 229
capacity, 228
changing elements, 230
creating, 228-229
looping through, 231-233
removing elements, 230
searching elements, 230
size, 228
sizing, 231

arrays, 222
limitations, 222

bits, 223-228

dictionaries, 223

Enumeration interface, 223

generics, 241-244

hash maps, 223, 236-241
clearing, 237
creating, 237
hash codes, 238
load factor, 237

Iterator interface, 223-225

Java, 222

key-mapped, 235-236

stacks, 223, 233-235
adding elements, 234
logical organization, 233
popping off elements, 234
searching, 235

vectors, 231

data types, 42
boolean, 42
char, 42

debugger (jdb) 673

double, 42
float, 42
integers, 42
primitive, 42

primitive data types, buffers,
481

databases

JDBC (Java Database
Connectivity), 500-501

accessing, 501
drivers, 501

ODBC data source
connections, 503-507

queries, 500
records, navigating, 507, 517

DatalnputStream()
method, 432

DataOutputStream()
method, 433

datatypes, 88
casting, 80-81

DayCounter.java application,
103-104

deallocating memory,
objects, 69

debug configuration, Android,
574-575

debugger (jdb), 650-654
applet debugging, 653

application debugging,
651-653

breakpoints, 651
deleting, 652-653
setting, 652

commands
11, 653
catch, 654
classes, 654
clear, 652
cont, 653
down, 654
exit, 653
ignore, 654
list, 653

How can we make this index more useful? Email us at indexes@samspublishing.com

debugger (jdb)

locals, 653
memory, 654
methods, 654
print, 653
resume, 654
run, 652
step, 653
stop at, 652
stop in, 652
suspend, 654
threads, 654
up, 654
single-step execution, 651

debugging, 654. See also
debugger (jdb)

applets, 653
applications, 651-653
breakpoints, 651
deleting, 652-653
setting, 652
programs, 626, 650
single-step execution, 651
Spartacus application, 601
declarations
import, 163-164
package, 152, 166
declaring
array variables, 92-93
arrays of arrays, 97
constants, 44
interfaces, 168-171
methods, buildRect(), 134
variables, 39
decode() method, 485
decrement operations, 54

decrement operator (—),
55-56

decrementing variables, 54
default access, 151
defining

attributes, 18

class variables, 40

classes, 15, 120
as subclasses, 26
top-level, 181
hierarchies, 161
methods, 122
class methods, 128
parameter lists, 122
this keyword, 124
values, shared, 43
variables
class variables, 72

instance variables,
120-121

definitions

methods, multiple, 133

MyRect class, 135
delete() method, 441
deleting

array list elements, 230

breakpoints, 652-653
@deprecated tag (javadoc), 648
deprecation option (javac), 640
deriveFont() method, 372
descriptions, JNLP files, 406
designing

apps, Android, 577

grids, 327

GUI for Android apps,
582-584

hierarchies, classes, 28-29

socket client/server
application, 477-479

XML dialects, 525-526
destinations (casting), 80

determining classes of
objects, 87

developing
frameworks, 254-255
Java programs, 614

development tools, selecting,
12,614

device coordinate space, 378

dialects, designing XML,
525-526

dialog boxes, 278
confirm dialog boxes, 279
ConfirmDialog, 278

Info sample application,
283-284

input dialog boxes, 280-281
InputDialog, 278
message dialog boxes, 281
MessageDialog, 278
option dialog boxes, 282-283
OptionDialog, 278
diamond operator (<>), 244
Dictionary class, 223

DigitalClock.java
application, 209

Dimension class, 252
Dimension() constructor, 252
disabled components, 258
displaying

errors, 629

frames, 252
dithering, 375
division operators, 52
do...while loops, 113
dockable toolbars, 290

documentation tool (javadoc),
644-648

Applnfo2 sample application,
645-647

tags, 645-648
documentation tools, javadoc

Applnfo2 sample application,
645-647

tags, 645, 648

documents, viewing
HTML, 641

DomainEditor application,
creating, 532, 535

DomainWriter application,
creating, 536-538

DOS text, 627
dot notation, evaluating, 70
double data type, 42

down command (jdb), 654
downloading

Eclipse, 606

JDK, 636
drawing

arcs, Arc2D.Float class,
382-383

coordinate spaces, 377-378
coordinate system, 369

ellipses, Ellipse2D.Float
class, 381

lines, Line2D.Float class, 381
polygons, Java2D, 383-384
rectangles, Rectangle2D.Float
class, 381
rendering attributes, 378
drawing strokes, 380
fill patterns, 378-379
text, 370-372
antialiasing, 372

finding font metrics,
372-375

drawing colors, setting,
376-377

drawing surfaces, creating,
368-369

drawString() method, 370

drivers, JDBC (Java Database
Connectivity), 501

drop-down lists, 269-270

DTD (Document Type
Definition), 525

duplicating variables, 126

ea option (javac), 639
Eclipse

Android plug-in, installing,
608-611

installing, 606

editing
array list elements, 230
AUTOEXEC.BAT, 622
system properties, 655

editors (text), 625-626

efficiency, classes
(increasing), 160

elements
arrays
accessing, 94-95
changing, 95-97
data types, 94
grids, 97
Map interfaces,
accessing, 235
XML, 523
elements (array lists)
accessing, 229
adding, 229
changing, 230
removing, 230
searching, 230
elements (stack)
adding, 234
popping off, 234
searching, 235
Ellipse2D.Float class, 381

Ellipses, drawing
(Ellipse2D.Float class), 381

else keyword, 99
empty catch clauses, 206

empty statements,
for loops, 109

empty() method, 235
emulators, AVD, 573-574
enabling

classes, Random(), 69

telnet, 480
encapsulating objects, 153
encapsulation, 151
encode() method, 485

end-of-file exception
(EOFException), 433

end-of-line characters,
438-440

endcap styles (drawing
strokes), 380

Enumeration interface, 223

event listeners

environment variables, 655

EOFException (end-of-file
exception), 433

EOFException exception, 191
equal sign (=)

assignment operator, 40, 43

equality operator (==), 56, 85

equality operator (==), 56, 85
equals() method, 85, 238
Error class, 190
error-handling

methods, 198

traditional method, 188-189

errors, 215. See also
exceptions

Class not found, 630
compilation, 95
compiler, 206-207, 242
displaying, 629

Error class, 190

error-handling, traditional
method, 188-189

Exception class, 190
fatal, troubleshooting, 192
NoClassDef, 630
runtime, 242
escape codes, 49-50
Unicode character set, 49
evaluating
dot notation, 70
XOM, 538-540
event handling
ChangeTitle.java application,
343-344
item events, 349-350
event listeners, 340
ActionListener, 340
AdjustmentListener, 340

associating components with,

341-342
FocusListener, 340
methods, 346
importing, 341

How can we make this index more useful? Email us at indexes@samspublishing.com

675

event listeners

ItemListener, 340, 349

itemStateChanged()
method, 349

KeyListener, 340, 351
MouseListener, 340, 351
MouseMotionListener, 340
WindowListener, 340, 357
event-handling, 339
action events, 345-346
ChangeTitle.java, 343-345
event listeners
ActionListener, 340
AdjustmentListener, 340

associating components
with, 341-342

FocusListener, 340
importing, 341
ItemListener, 340
KeyListener, 340
MouseListener, 340

MouseMotionListener,
340

WindowListener, 340
focus events, 346
item events, 349
key events, 350-351
methods, 342
actionPerformed(), 342
getSource(), 342
instanceof keyword, 343
mouse events, 351-352

mouse-movement events, 352

SwingColorTest sample
application, 357

window events, 357
Exception class, 190-191
in catch blocks, 194

exception classes,
constructors, 204

@exception tag (javadoc), 648

exceptions, 188, 191. See also
errors

ArrayIndexOutofBounds, 190
avoiding, 206

catching, 190-192
finally statement, 195-196

try and catch blocks,
192-194

class hierarchy, 190
classes, 193
compiler errors, 206-207

consistency checking,
191-192

creating, 204
EOFException, 191, 433
Error class, 190
Exception class, 190-191
floating, 205

handling nested handlers,
204-205

hierarchy, 205
inheritance, 204
IOException, 191, 453
limitations, 206

MalformedURLException,
191

methods, 198
multiple, 205

NullPointerException,
190, 453

overview, 215

passing, 201-202
throws keyword, 201

runtime, 190

SecurityException, 453

StreamCorruptionException,
453

Throwable class, 190
throwing, 190, 198-199, 203
explicit exceptions, 200
implicit exceptions, 200
inheritance issues, 202
throws keyword, 199-200
when to use, 205-206

exclamation point (), NOT
operator, 58

exclusive radio buttons, 267

executeQuery() method,
505-506

exit command (jdb), 653

exiting
frames, 253
loops, 114

explicit casts, 81
explicit exceptions, 200

exponential notation,
literals, 48

expressions, 51

definition of, 38

dot notation, 70

grouping, 58

readability, improving, 59

return values, 38, 51
extending interfaces, 172
extends keyword, 120, 172
extensions, .class, 637

F

false value (Boolean), 48

fatal errors, troubleshooting,
192

feeds, 524

DomainEditor application,
creating, 532-534

DomainWriter application,
creating, 536-538

RssFilter application,
creating, 538-540

RssStarter application,
creating, 529-531

RssWriter application,
creating, 528

Field class, 459
file input streams
creating, 422
reading, 422-424
read() method, 423
while loops, 423
File objects, 440

file output streams
creating, 425
writing to, 426

sample application,
425-426

write() method, 425
file streams
file input, 422-423
file output, 425-426
FilelnputStream class, 485
FileInputStream() method, 422
FileOutputStream class, 485

FileOutputStream()
method, 425

FileReader() method, 436
files
archiving, jar utility, 648-650
compiling, 639-640
file objects, creating, 440
formats, jar, 648-650
installation (SDK 1.4), 615
multiple, compiling, 639
renaming, 441
unformatted, saving, 626
files formats, jar, 648-650
FileWriter() method, 439
fills, Java2D, 378-379
filtering streams, 421, 426
byte filters, 427
FilterinputStream class, 426
FilterOutputStream class, 426
filters, associating, 421
filters (streams), 421
final abstract methods, 182
final class, 159
final classes, 160-161
subclassing, 160
final keyword, 44
final method, 159
final methods, 160
final modifier, 159
final variable, 159

getActionCommand() method

final variables, 159
finally statement, 195-196

Find command (Start
menu), 623

finding current color, 377
finger protocol, 474

Finger.java application,
475-476

FingerServer sample
application, 492-495

finishConnect() method, 491
first() method, 517

flags, 223-228

flip() method, 483

float data type, 42

floating exceptions, 205

floating-point literals versus
hexadecimal numbers, 376

floating-point numbers,
42,387

exponents, 48
representing as literals, 48
flow layout manager, 307

FlowLayout()
constructor, 309

FlowLayout class, 306-307
flowLayout() method, 307
arguments, 309

focus, object-oriented
programming, 14

focus events, event
handling, 346

focusGained() method, 346

FocusListener event
listener, 340

methods, 346
focusLost() method, 346
folder structure (packages), 166
folders, MS-DOS

creating, 620

opening, 618-619
Font objects, creating, 370-372
Font styles, selecting, 371
FontMetrics class, 373-375

fonts
antialiasing, 372
built-in, 371

Font objects, creating,
370-372

returning information about,
373-375

for loops, 108-109, 231-233
empty statements, 109
example, 110
troubleshooting, 109

Form.java, 263-264

format, commands (JDK), 636

formatting XML documents,
536-538

forms, submitting (POST
method), 496

forName() method, 458, 484

forward slash (/), comment
notation, 46

frames
displaying, 252
exiting, 253
locations, 252
sizing, 251
user interfaces, 255
visible, 252

frameworks, developing,
254-255

functionality, classes, 25

functions, tools (modifying),
636. See also methods

g option (debugger), 651
garbage collection, 69
general utility methods, 76

GeneralPath objects,
creating, 383

generics, 241-244
get() method, 229, 236, 481

getActionCommand()
method, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

677

678

getAppletinfo() method

getAppletinfo() method,
642-643, 653

getChannel() method, 485
getClass() method, 87
getClickCount() method, 352
getColor() method, 377

getConnection() method,
504-505

getConstructors()
method, 460

getContent() method, 468
getContentType() method, 472
getDate() method, 506
getDouble() method, 506
getFloat() method, 506
getFontMetrics() method, 373
getHeaderField() method, 472

getHeaderFieldKey()
method, 472

getHeight() method, 373
getint() method, 506
getltemAt() method, 269
getltemCount() method, 269
getKeyChar() method, 351
getLong() method, 506
getMessage() method, 193
getModifiers() method, 460
getName() method, 458

getNumberOfFiles()
method, 293

getParameterinfo() method,
642-643

getparameterTypes()
method, 460

getPoint() method, 352
getProperties() method, 656
getProperty() method, 656

getResponseCode()
method, 472

getResponseMessage()
method, 472

getReturnType() method, 460

getSelectedltem()
method, 269

getSelectedindex()
method, 269

getSize() method, 258, 375
getSource() method, 342, 345
getStateChange() method, 349
getString() method, 506

getX() method, 352

getY() method, 352

Giftshop class, 177-178
Gosling, James, 10

gradient fills, 378

graphical Swing
applications, 251

graphics
arcs, drawing, 382-383
coordinate spaces, 377-378
coordinate system, 369
drawing text, 370-372
antialiasing, 372

finding font metrics,
372-375

ellipses, drawing, 381

lines, drawing, 381

Map example, 384-387

polygons, drawing, 383-384

rectangles, drawing, 381

rendering attributes, 378
drawing strokes, 380
fill patterns, 378-379

graphics operations,
Java 2D, 82

Graphics2D class, 368-369

greater than or equal to
symbol (>=), 56

greater than symbol (>), 56
grid bag layout manager
creating, 327

versus grid layout
manager, 325

grids, designing, 327
overview, 325
grid bag layouts, creating, 325
grid layout manager, 311
creating, 312
example, 312

versus grid bag layout
manager, 325

GridLayout() method, 312
grids

creating grid layout
manager, 312

designing, 327
element arrays, 97
grouping
arguments, 131
classes, 32
expressions, 58
interfaces, 32
methods, 77
GUIs

for Android apps, designing,
582-584

dialog boxes, 278
confirm dialog boxes, 279

Info sample application,
283-284

input dialog boxes,
280-281

message dialog boxes, 281

option dialog boxes,
282-283

event handling
action events, 345-346

ChangeTitle sample
application, 343-345

component setup,
341-342

event listeners, 340
focus events, 346

item events, 349-350
key events, 350-351
methods, 342-343
mouse events, 351-352

mouse-movement
events, 352

SwingColorTest sample
application, 357

window events, 357
layout managers, 306

border layout, 314-315

card layout, 317-318

combining, 316-317
flow layout, 307-309
grid bag layout, 325-327
grid layout, 311-312
insets, 334
specifying, 306-307

progress bars, 293
labels, 293
orientation, 293
updating, 293

scroll panes, 288
creating, 288
scrollbars, 289
sizing, 288
toolbars, 289-290

sliders, 286
advantages, 286
labels, 286-287
orientation, 286

Slider.java sample
application, 287-288

windows, resizing, 306

HalfDollars application
main() method, 97
source code, 95

HalfDollars.java application
(arrays), 96

HalfLoop.java application, 110
handlers, 555-560

nested, 205
handling

arguments in applications,
131-132

strings, 79
Harold, Elliotte Rusty, 527
hash codes, 238
hash maps, 223, 236-241
clearing, 237
creating, 237

Info application (dialog box example)

hash codes, 238

load factor, 237
hashCode() method, 238
HashMap class, 223, 236-241
hasNext() method, 224, 491
helper classes, 130
hexadecimal numbers, 47

versus floating-point
literals, 376

HexRead.java application, 196
hierarchies

classes, 26

creating, 27-29

defining, 161

designing, 28-29

exceptions, 205

interface, 172

methods, 30
history

of Android, 566-567

of Java, 10
HolidaySked class, 226-227
HTML, forms (submitting), 496
HTML documents, viewing, 641
HttpUriConnection class, 472

HttpURLConnection
objects, 468

hyphen (-), decrement operator
(—), 55-56

1/0 (input/output), 419
nonblocking 1/0, 488-495
streams, 419-420

buffered, 427-430
byte streams, 420, 426

character streams, 420,
436-440

creating, 420

data streams, 432-435
filtering, 421, 426-427
filters, 421

reading, 420
writing to, 421
icons, 259-261
JNLP files, 407

Icons.java application,
259-260

identifying classes, 162
if keyword, 99
if statements, 99
else keyword, 99
examples, 100
nested, 101
ignore command (jdb), 654
Imagelcon objects, 259
creating, 259
implementing
arrays, 92
interfaces, 168-169
multiple, 169

implements keyword,
168-169, 208

implicit exceptions, 200
import declaration, 163-164
import statement, 167, 250
importing

classes, 163

event listeners, 341

packages, 163-164
improving readability

expressions, 59

programs, 45

increasing efficiency,
classes, 160

increment operations, 54

increment operator (++),
55-56

incrementing variables, 54
increments, loops, 108
indexOf() method, 74, 231
inequality operator (!=), 85
InetSocketAddress class, 489

Info application (dialog box
example), 283-284

How can we make this index more useful? Email us at indexes@samspublishing.com

679

Info command (Applet menu)

Info command (Applet
menu), 642

Info.java application, 283-284
inheritance, 25
access control, 155-156
class hierarchies, creating,
27-29
classes, 29-30

object-oriented
programming, 25-26

exceptions, 202-204
multiple, 167

object-oriented
programming, 27

overview, 27

single, 31, 167-168
initialization, loops, 108
initializing objects, 69

inner classes, 179-180,
359-361, 388

advantages, 181
naming, 181
scope, 181
input dialog boxes, 280-281

input streams, 371, 452. See
also streams

creating, 453

ObjectReader class, 454-455
reading, 453-454

transient variables, 455-456
validation checks, 456-457

input/output. See I/0
(input/output)

InputDialog dialog boxes, 278
InputStream class, 422

insets, 334

inspecting classes, 457-463
installation files (SDK 1.4), 615
installing

Android plug-in for Eclipse,
608-611

Android SDK, 607

Eclipse, 606
NetBeans, 596
SDK 1.4, 615-617

instance methods. See
methods

instance variables, 18, 39, 70
versus class variables, 72
defining, 120-121
length, 95
modifying, 71
testing, 71
values

accessing, 70
initial values, 40
modifying, 70-72

InstanceCounter class, 158-159

instanceof keyword, 343

instanceof operator, 58, 87

instances, 66. See also objects
comparing, 85
of classes, creating, 16
passing, 81

int data type, 42

integer literals, 47
floating-point numbers, 48
negative numbers, 47
octal numbers, 47

integers, data types, 42

interface hierarchy, 172

interfaces, 31-32
as variable type, 169
casting objects to, 170
command-line, 617-618
creating, 170-171, 251-253
declaring, 168-171
Enumeration, 223

event listeners. See event
listeners

extending, 172
grouping, 32
implementing, 168-169

Iterator, 223-225, 231
Map, 235-236
accessing elements, 235

methods, 171-172

multiple, 169

objects to, casting, 82

overview, 32, 167

protection, 171

Runnable, 208

Serializable, 448

variables, 171

versus classes, 168
interpreter (java), 637-639
interpreters

running, 621

SDK 1.4, 629

InterruptedException
exceptions, 192

introspection. See reflection
invoking, 73. See also calling
I0Exception, 191, 453
isAcceptable() method, 491
isConnectible() method, 491

isConnectionPending()
method, 491

isEmpty() method, 236

1SO-8859-1 character
encoding, 484

ISO-LATIN-1 character
encoding, 484

isReadable() method, 491
isWritable() method, 491
Item class, 173-174

item events, event
handling, 349

ItemListener event
listener, 340

ItemProp application, 656

itemStateChanged()
method, 349

Iterator interface, 223-225, 231
iterator() method, 231

J

J2SE 1.3,9
Jakarta, 182
jar utility, 648-650
Java
applications, 130
creating, 129-130
running, 637
case-sensitivity, 41
code, complexity, 206
compilers, 614

development tools, selecting,
614

fonts, built-in, 371

frames, exiting, 253

XML, processing, 526
Java 2 Class Library, 16
Java 2 SDK 1.3,9

Java 2D graphics
operations, 82

Java data structures, 222

Java Database Connectivity.
See JDBC

Java Development Kit. See JDK

Java exceptions. See
exceptions

java interpreter, 637-639
Java Plug-in, 641
Java programs

compiling in Windows,
628-630

developing, 614

running in Windows,
628-630

speed, 640
Java Web site, 636
Java Web Start, 391-395
JNLP files
creating, 396-405
descriptions, 406
icons, 407
security, 406

security privileges,
selecting, 394

server support, 405-406

java.io package, 419. See also
streams

java.lang package, 83

java.lang.reflect package,
459-461

java.net package. See
networking

java.nio package, 481
buffers, 481-483
byte buffers, 483-484

java.nio.channels package,
485-488

BufferConverter sample
application, 486-488

nonblocking 1/0, 488-495

java.nio.charset package,
484-485

java.sql package, 501. See
also JDBC (Java Database
Connectivity)

java.util package, 151. See
also data structures

java.vendor system
property, 655

java.version system
property, 655

Java2D
arcs, drawing, 382-383
coordinate spaces, 377-378
ellipses, drawing, 381
lines, drawing, 381
polygons, drawing, 383-384
rectangles, drawing, 381
rendering attributes, 378
drawing strokes, 380
fill patterns, 378-379
sample applet, 384-387
javac
options
-depreciation, 640
-ea, 639
-0, 640

jdb debugger

-q, 640
-verbose, 640

running Windows
platforms, 628

javac command-line tool, 628
javac compiler, 639-640
javadoc, tags, 645
@author, 645
@deprecated, 648
@exception, 648
@param, 648
@return, 645
@see, 648
@serial, 645
@since, 648
@version, 645

javadoc documentation tool,
644-648

ApplInfo2 sample application,
645-647

tags, 645, 648
javax.swing package, 151
javax.swing.JButton class, 17

javax.swing.JComponent
class, 258

JCheckBox class, 266
JCheckBox() constructor, 267
JComboBox class, 269
jdb debugger, 650-654

applet debugging, 653

application debugging,
651-653

breakpoints, 651
deleting, 652-653
setting, 652

commands
11, 653
catch, 654
classes, 654
clear, 652
cont, 653
down, 654
exit, 653

How can we make this index more useful? Email us at indexes@samspublishing.com

681

682

jdb debugger

ignore, 654
list, 653
locals, 653
memory, 654
methods, 654
print, 653
resume, 654
run, 652
step, 653
stop at, 652
stop in, 652
suspend, 654
threads, 654
up, 654
single-step execution, 651

JDBC (Java Database
Connectivity), 500-501

databases, accessing, 501
drivers, 501

ODBC data source
connections

closing, 507
opening, 503-507

JDK (Java Development Kit),
635-636

command line, arguments,
636

commands, format, 636
downloading, 636

system properties, 655-656
utilities

applet viewer browser,
640-644

command line, 636

jar, 648-650

java interpreter, 637-639
javac compiler, 639-640

javadoc documentation
tool, 644-648

jdb debugger, 650-654
options, 636-637
JDK 1.3,9

JFC
JOptionPane, 278

confirm dialog boxes,
279

input dialog boxes,
280-281

message dialog boxes,
281

option dialog boxes,
282-283

JProgressBar, 293

JScrollPane, 288-289

JSlider, 286-287

JToolBar, 289-290
JFrame() constructor, 251
JLabel() methods, 261
JNLP files

creating, 396-405

descriptions, 406

icons, 407

security, 406
JOptionPane class, 278

confirm dialog boxes, 279

input dialog boxes, 280-281

message dialog boxes, 281

option dialog boxes, 282-283
JPanel class, 368
JProgressBar class, 293
JPython language, 638
JRadioButton class, 266
JRuby language, 638
JScrollPane class, 288-289
JScrollPane() method, 265
JSlider class, 286-287
JTextArea() method, 263
JTextField() method, 262
JToolBar class, 289-290
JudoScript language, 638

juncture styles (drawing
strokes), 380

K

key-mapped data structures

Dictionary class, 223

HashMap class, 223, 236-241

Map interface, 235-236
keyboard, event handling, 351
KeyListener, 351
KeyListener event listener, 340
keyPressed() method, 351
keyReleased() method, 351
keystores, 405
keyTyped() method, 351
keywords

abstract, 161

break, 114

class, 120

continue, 114

else, 99

extends, 120, 172

final, 44, 159

if, 99

implements, 168-169, 208

instance of, 343

modifiers. See modifiers

null, 93

private, 152-153

protected, 154

public, 154

return, 123

static, 72, 120-121, 128, 157

super, 142

this, 124, 138

throws, 199-201

L

labeled loops, 114

labels, 261-262
aligning, 261
progress bars, 293
sliders, 286-287

languages
JPython, 638
JRuby, 638
JudoScript, 638
NetRexx, 638

SQL (Structured Query
Language), 500-501

last() method, 517
layout managers, 306
border layout, 315-316
creating, 314-315
card layout, 317
creating, 318
combining, 316-317
flow layout, 307-308

FlowLayout()
constructor, 309

grid bag layout
creating, 327
designing grids, 327
overview, 325
grid layout, 311-313
creating, 312
example, 312
insets, 334
specifying, 306-307
layouts, creating grid bag, 325
length instance variable, 95
length() method, 74

less than or equal to symbol
(=), 56

less than symbol (), 56
lexical scope, 115

LGPL (Lesser General Public
License), 528

Line2D.Float class, 381

lines, drawing (Line2D.Float
class), 381

lineTo() method, 383
linking node objects, 88
list command (jdb), 653
listeners, 340
ActionListener, 340
AdjustmentListener, 340

associating components with,
341-342

FocusListener, 340
methods, 346

importing, 341

ItemListener, 340, 349

itemStateChanged()
method, 349

KeyListener, 340, 351

MouseListener, 340, 352

MouseMotionListener, 340

‘WindowListener, 340, 357
listings

AllCapsDemo.java
application, 441-442

Alphabet.java, 308

arrays, HalfDollars.java
application, 96

BufferConverter class, 487
Bunch.java, 312-313
Buttons.java, 256-257
ChooseTeam.java, 268-270
CoalTotals.java, 508
CodeKeeper class, 232
CodeKeeper?2 class, 243-244
ComicBooks class, 239-240
comparing objects, 85-86
defining methods, 123
DigitalClock.java, 209

Ellsworth example source
code, 627

event handling

ChangeTitle.java
application, 343-344

Selectltem application,
349

Finger.java application, 475
FingerServer class, 492-494
for loops, 110

Form.java, 263-264
Giftshop class, 177-178
HolidaySked class, 226-227
Icons.java, 259-260

listings 683

Info.java application,
283-284

instance variables,
testing/modifying, 71

InstanceCounter class, 158
Item class, 173-174

layout managers, border
layout, 315-316

loops, while, 112

Map class, 384-386
MethodInspector class, 461
methods, calling, 73
MyRect class definition, 135
MyRect?2 class, 139
NamedPoint class, 144
ObjectReader class, 454-455
objects, creating, 67-68
ObjectWriter class, 451-452
PassbyReference class, 126
PrintClass class, 141

ReferencesTest.java
application, 78

Selectltem.java application,
349-350

simple arithmetic example,
52-53

SimpleFrame.java, 254
Slider.java application, 287
SquareTool class, 180
statements, switch, 103-104
Storefront class, 176-177
streams

BufferDemo.java
application, 428-429

ReadBytes.java
application, 424

ReadPrimes.java
application, 435

ReadSource application,
438

WriteBytes application,
425-426

WritePrimes.java
application, 434

How can we make this index more useful? Email us at indexes@samspublishing.com

684 listings

SumAuverage.java
application, 132

TextFrame class, 373-374
TimeServer class, 478-479
ToolBar.java application, 290
try...finally blocks, 196

VolcanoRobot class
example, 21

‘WebReader class, 469-470
lists, 271
literals, 46
Boolean, 48-49
characters, 49
escape codes, 49-50
integers, 47
floating-point
numbers, 48
negative numbers, 47
octal numbers, 47
strings, 50-51
load factor (hash maps), 237
local variables, 39
locals command (jdb), 653
locations, frames, 252
logical operators, 57-58
long data type, 42

looping through array lists,
231-233

loops
breaking, 114
do...while, 113
for, 108-109
empty statements, 109
example, 110
troubleshooting, 109
increments, 108
index values, 109
initialization, 108
labeling, 114
restarting, 114
run() methods, 214
tests, 108
while, 111-113

overview, 111

lowercase, converting to
uppercase (AllCapsDemo
application), 441

main() method, 24, 129,
154, 637

signature, 129

makeRange() method,
123-124

MalformedURLException
exception, 191

management, memory, 69

managing errors/exceptions.
See error-handling

manifest file, configuring for
Android apps, 581-582

Map applet, 384-387

Map class, 384-386

Map interface, 235-236
elements, accessing, 235

maps, hash maps, 223,
236-241

clearing, 237

creating, 237

hash codes, 238

load factor, 237
math operators, 51-52

example, 52-53

MD command (MS-DOS), 620

member functions. See
methods

memory, 69

memory command (jdb), 654

memory management, 69
menus, 295-296, 299
message dialog boxes, 281

MessageDialog dialog
boxes, 278

method calls, nesting, 75-76
Method class, 459-460
method overloading, 122
MethodInspector class, 461

methods

abstract methods, 161-162
final, 182
private, 182

access control, 151, 155
default access, 151
inheritance, 155-156
private access, 152-153
protected access, 154-155
public access, 153-154

accessor methods, 156

actionPerformed(), 342

add(), 229, 256

addActionListener(), 345

addItem(), 269

afterLast(), 517

allocate(), 482

ArgStream(), 430

arguments, passing to,
126-127

beforeFirst(), 517
BorderLayout(), 314
BufferedInputStream(), 427
BufferedOutputStream(), 428
BufferedReader(), 437
BufferedWriter(), 440
buildRect(), declaring, 134
calling, 19, 73-74
CardLayout(), 318
channel(), 491
charAt(), 74
charWidth(), 373
checkTemperature(), 25
class, 19
accessing, 157
class methods, 76-77, 127
availability, 128

calling, 77
defining, 128
classes, 19

clear(), 230, 237
close(), 421

closePath(), 384
configureBlocking(), 490
connect(), 490
constructors, 67, 136-138
calling, 136, 143

calling from another
constructor, 138

definition of, 69
naming, 137
overloading, 138-139
overriding, 143-144
contains(), 230
containsKey(), 237
containsValue(), 237
createFont(), 371
createStatement(), 505
DatalnputStream(), 432
DataOutputStream(), 433
decode(), 485
defining, 122
parameter lists, 122
this keyword, 124
definitions, multiple, 133
delete(), 441
deriveFont(), 372
drawString(), 370
empty(), 235
encode(), 485
equals(), 85, 238
event handling, 342
exceptions, 198
executeQuery(), 505-506
FileInputStream(), 422
FileOutputStream(), 425
FileReader(), 436
FileWriter(), 439
final, 159
final methods, 160
finishConnect(), 491
first(), 517
flip(), 483
flowLayout(), 307
arguments, 309

focusGained(), 346
focusLost(), 346
forName(), 458, 484
general utility, 76

get(), 229, 236, 481
getActionCommand(), 345

getAppletInfo(),
642-643, 653

getChannel(), 485
getClass(), 87
getClickCount(), 352
getColor(), 377
getConnection(), 504-505
getConstructors(), 460
getContent(), 468
getContentType(), 472
getDate(), 506
getDouble(), 506
getFloat(), 506
getFontMetrics(), 373
getHeaderField(), 472
getHeaderFieldKey(), 472
getHeight(), 373

getInt(), 506

getltemAt(), 269
getltemCount(), 269
getKeyChar(), 351
getLong(), 506
getMessage(), 193
getModifiers(), 460
getName(), 458
getNumberOfFiles(), 293
getParameterInfo(), 642-643
getParameterTypes(), 460
getPoint(), 352
getProperties(), 656
getProperty(), 656
getResponseCode(), 472
getResponseMessage(), 472
getReturnType(), 460
getSelectedIndex(), 269
getSelectedItem(), 269

methods

getSize(), 258, 375
getSource(), 342, 345
getStateChange(), 349
getString(), 506
getX(), 352
getY(), 352
GridLayout(), 312
grouping, 77
hashCode(), 238
hasNext(), 224, 491
hierarchies, 30
indexOf(), 74, 231
instance methods, 128
interfaces, 31, 171-172
isAcceptable(), 491
isConnectible(), 491
isConnectionPending(), 491
isEmpty(), 236
isReadable(), 491
isWritable(), 491
itemStateChanged(), 349
iterator(), 231
JLabel(), 261
JScrollPane(), 265
JTextArea(), 263
JTextField(), 262
keyPressed(), 351
keyReleased(), 351
keyTyped(), 351
last(), 517
length(), 74
lineTo(), 383
main(), 24, 129, 154, 637
signature, 129
makeRange(), 123-124
mouseClicked(), 352
mouseDragged(), 352
mouseEntered(), 352
mouseExited(), 352
mouseMoved(), 352
mousePressed(), 352
mouseReleased(), 352

How can we make this index more useful? Email us at indexes@samspublishing.com

685

methods

moveTo(), 383
nested, combining, 76
newDecoder(), 485
newEncoder(), 485
newlInstance(), 459
newLine(), 440
next(), 224, 491
of objects, calling, 76
overloaded
creating, 133-136
definition of, 133
troubleshooting, 133
overloading advantages, 133
overriding, 30, 140-142
advantages, 142
super keyword, 142

paintComponent(),
368-370, 377

peek(), 235

pop(), 234
position(), 482, 485
POST, form submission, 496
previous(), 517
println(), 45
protecting, 162
push(), 234

put(), 236, 482
putChar(), 483
putDouble(), 483
putFloat(), 483
putlnt(), 483
putLong(), 483
putShort(), 483

read(), 420-421, 437,
454, 486

readBoolean(), 454
readByte(), 454
readChar(), 454
readDouble(), 454
readFloat(), 433, 454
readInt(), 454
readLine(), 438, 454

readLong(), 454
readObject(), 453, 456
readShort(), 454
readStream(), 430

readUnsignedByte(),
433, 454

readUnsignedShort(),
433, 454

register(), 490
remove(), 229, 236
renameTo(), 441
return types, 122
void, 123
run(), 209
loops, 214
search(), 235
select(), 491
selectedKeys(), 491
set(), 230
setActionCommand(), 346
setBackground(), 377
setBounds(), 252
setColor(), 376

setDefaultCloseOperation(),
253

setEchoChar(), 263
setEnabled(), 258
setFollowRedirects(), 472
setFont(), 371

setLayout(), 306, 317-318
setLineWrap(), 263
setMajorTickSpacing(), 286
setMaximum(), 293

setMaximumRowCount(),
269

setMinimum(), 293
setMinorTickSpacing(), 286
setPaint(), 378
setPaintLabels(), 287
setPaintTicks(), 287
setRenderingHint(), 372
setSelected(), 266

setSelectedIndex(), 269
setSize(), 251, 258, 369
setSoTimeOut(), 473
setStringPainted(), 293
setStroke(), 380
setValue(), 293
setVisible(), 252, 258
setWrapStyleWord(), 263
show(), 318
showConfirmDialog(), 279
showInputDialog(), 280
showMessageDialog(), 281
showOptionDialog(), 282
signatures, 122, 133
SimpleFrame(), 255
size, 231
size(), 236, 486
start(), calling, 641
static, 157-159
stop(), 214

calling, 641
stringWidth(), 373
substring(), 74
in superclasses, calling, 143
System.out.println(), 45
testing, 124
toUpperCase(), 74
trimToSize(), 231
URLY(), 469
valueOf(), 77
windowActivated(), 357
windowClosed(), 357
windowClosing(), 357
windowDeactivated(), 357
windowDeiconified(), 357
windowIconified, 357
windowOpened(), 357
wrap(), 481
write(), 421, 428, 439, 450
writeBoolean(), 450
writeByte(), 450

writeBytes(), 450
writeChar(), 450
writeChars(), 450
writeDouble(), 450
writeFloat(), 450
writelnt(), 435, 450

mouseMoved() method, 352
mousePressed() method, 352
mouseReleased() method, 352
moveTo() method, 383
MS-DOS

accessing, 618

networking

name conflicts (classes), 165
NamedPoint class, 144
names, reducing conflicts, 162
namespaces, 529

writeLong(), 450 CLASSPATH variable naming

writeObject(), 450 Windows 2000/XP, classes, inner, 181

writeShort(), 450 632-633 methods, constructor, 137

writeStream(), 430 Windows 9x/Me, packages, 165-166
630-631

methods command (jdb), 654
minus sign (-), 47

Modifier class, 459

modifiers, 150

abstract, 161

final, 159

multiple, 150

commands, cd, 628
folders
creating, 620
opening, 618-619
PATH variable
‘Windows 2000/XP,

variables, 40-41
naming conventions, 165

Native Interface Header Files
component (SDK 1.4), 616

navigating records, 507, 517
Naviseek Web site, 24
negative numbers,

687

623-625 representing as literals, 47
private, 152-153 Windows 9x/Me, nested if statements, 101
protected, 154 622-623 nested methods,
public, 154 programs, running, 620 combining, 76
static, 157 MS-DOS commands nesting
modifying. See also editing CD, 619 exception handlers, 204-205
arrays, 95 MD, 620 method calls, 75-76
class variable values, 72 SET CLASSPATH=, 631 NetBeans
classes, 208 MS-DOS prompt, 636 installing, 596
functions, tools, 636 MS-DOS Prompt window, 618 Java class, creating, 598-599
instance variable values, multidimensional arrays, 97 projects, creating, 596
70-72 multiple, method NetRexx language, 638
instance variables, 71 definitions, 133 X
networking, 468
precedence, operators, 59 multiple bytes, writing, 425 channels, 485-488
superclasses, 27 multiple exceptlons, 205 BufferConverter sample
modulus operators, 52 multiple files, compiling, 639 application, 486-488
mouse, event handling, multiple inheritance, 167 non-blocking 1/0,
351-352 multiple interfaces, 169 488-495
mouseClicked() method, 352 multiple modifiers, 150 character sets, 484-485
mouseEntered() method, 352 multitasking, 207 creating, 484
mouseExited() method, 352 MyRect class, 133 java.nio package, 481
MouselListener, 352 buildRect() method, 134 buffers, 481-484
MouselListener event MyRect class definition, 135 sockets, 473
listener, 340 MyRect2 class, 139 client-side, 473-474
Mlt?useMotlonLlstener event Finger java application,
istener, 340 475-476

How can we make this index more useful? Email us at indexes@samspublishing.com

688

networking

server-side, 476-477

transport-layer
implementation, 477

streams, 468

BufferedReader
objects, 468

getContent() method, 468

HttpURLConnection
objects, 468

URL objects, 468

WebReader sample
application, 469-473

TimeServer application
designing, 477-479
testing, 479-480

new operator, 59, 66-69
instantiating arrays, 93
objects, creating with, 66-69

newDecoder() method, 485

newEncoder() method, 485

newlnstance() method, 459

newLine() method, 440

next() method, 224, 491

NoClassDef error, 630

node objects, linking, 88

nonblocking 1/0, over
networking channels,
488-495

nonexclusive check boxes, 267
not equal symbol (I=), 56

NOT operator, 58

notation, dot, 70

Notepad, accessing, 622

null keyword, 93
NullPointerException, 453

NullPointerException
exception, 190

number literals, 47
floating-point numbers, 48
negative numbers, 47
octal numbers, 47

numbering systems, 47

numbers
floating-point, 42
octal, 47

o

O option (debugger), 651
Object class, 26

object serialization, private
variables and objects, 464

object streams, 448. See also
streams

Writer and Reader
classes, 463

object variables. See instance
variables

object-oriented programming
(00P), 13

classes, 14-15
inheritance, 25-26
focus, 14
inheritance, 27
class hierarchies, 27-29
single, 31
objects, 14

ObjectinputStream class,
452-455

ObjectOutputStream class,
449-451

ObjectReader class, 454-455

objects, 13-14. See also
instances

arrays, creating, 93-94
attributes, defining, 18
ButtonGroup, 267
casting, 79-80
to interfaces, 170
classes
attributes, 17-18
behavior, 18-19
casting, 81-82
determining, 87
Color, 375
comparing, 85-86
converting, 79-80
creating, 66-68
arguments, 66
constructors, 69
with new operator, 66-69

current, referring to, 124
encapsulating, 153
File, 440
Font, creating, 370-372
GeneralPath, creating, 383
Imagelcon, 259
initializing, 69
to interfaces, casting, 82
memory, 69
methods of, calling, 76
nodes, linking, 88
primitive types, converting, 83
references, 77, 85
example, 78-79
reusing, 15-16
Selector, 490
serialization, 448-449
advantages, 449
input streams, 452-455
output streams, 449-452
persistence, 449

transient variables,
455-456

validation checks,
456-457

String, creating, 21

StringTokenizer, creating,
67-68

URL, creating, 469
ObjectWriter class, 451-452
obscuring password fields, 263
octal numbering systems, 47
octal numbers, 47

ODBC, data source
connections

closing, 507
opening, 503-507

Old Native Interface
Header Files component
(SDK 1.4), 616

online storefronts, creating,
172-179

OOP. See object-oriented
programming

opening
folders, MS-DOS, 618-619
socket connections, 473
streams over Internet, 468

BufferedReader
objects, 468

getContent()
method, 468

HttpURLConnection
objects, 468

URL objects, 468

WebReader sample
application, 469-473

operations, 54
operators, 51
arithmetic, 51-52
example, 52-53
assignment, 53-54
equal sign (=), 40
comparison, 56-57
concatenation (+), 60
conditional, 107-108
decrement (—), 55-56
division, 52
equality (==), 85
increment (++), 55-56
inequality (!=), 85
instance of, 58, 87
logical, 57-58
modulus, 52
new, 59, 66-69

creating objects with,
66-69

instantiating arrays, 93
postfix, 55
precedence, 58-59
modifying, 59
prefix, 55
subtraction, 52
option dialog boxes, 282-283
OptionDialog dialog boxes, 278

options, command line,
636-637

OR operators, 57

Oracle, 636

order of precedence,
operators, 58-59

modifying, 59
organization
classes, 150
stacks, 233
organizing
behavior, classes, 25-32
classes, 25-32, 162
projects, Android, 569-570
os.name system property, 655

os.version system
property, 655

output streams, 449. See also
streams

creating, 450
ObjectWriter class, 451-452
writing to, 450

overflow (variable
assignment), 62

overloaded methods
buildRect(), 134
constructors, 138-139
creating, 133-136
definition of, 133
troubleshooting, 133
overloading methods, 122
advantages, 133
overriding
methods, 30, 140-142
advantages, 142
constructors, 143-144
super keyword, 142
scrollbars, 289

P

package declaration, 152, 166
packages, 32, 162
access control, 166
default access, 166
public access, 166-167

password fields, obscuring

advantages, 162

classes, creating, 638
creating, 165-166
importing, 163-164
java.lang, 83
java.lang.reflect, 459-461

java.net package. See
networking

java.nio package, 481
buffers, 481-484

java.nio.channels package,
485-488

BufferConverter sample
application, 486-488

nonblocking 1/0, 488-495

java.nio.charset package,
484-485

java.util, 151
javax.swing, 151
overview, 32
referencing, 162
class names, 162
package names, 163

paintComponent() method,
368-370, 377

panels, 256, 317
components, adding, 317
creating, 317
insets, 334
panes, scrolling, 265
parallel data, 448
@param tag (javadoc), 648
Pardon My Icons Web site, 261
PassByReference class, 126
passing
arguments
to applications, 130
to methods, 126-127
exceptions, 201-202
throws keyword, 201
instances, 81
password fields, obscuring, 263

How can we make this index more useful? Email us at indexes@samspublishing.com

689

690

PATH variable (MS-DOS)

PATH variable (MS-DOS)
Windows 2000/XP, 623-625
‘Windows 9x/Me, 622-623

peek() method, 235

performance, assessor
methods, 182

period (.), dot notation, 70
persistence, 449

pipe character (]), OR
operators, 57

plus sign (+)
concatenation operator (+), 60

increment operator (++),
55-56

pointers, 79. See also arrays;
references

pointers (C/C++), 79, 88

polygons, drawing (Java2D),
383-384

pop() method, 234
port numbers, selecting, 477
position() method, 482, 485

POST method, form
submission, 496

postfix operators, 55

potential exceptions,
indicating, 199

precedence, operators, 58-59
modifying, 59
prefix operators, 55

preparing resources for
Android apps, 578-580

previous() method, 517

primitive data types,
buffers, 481

primitive type arrays, 458
primitive types, 88
casting, 79-81
converting, 79-80
data, 42
objects, converting, 83
print command (jdb), 653
PrintClass class, 141

printin() method, 45

private abstract methods, 182
private access, 152-153
private modifier, 152-153

private variables, object
serialization, 464

procedural programming, 13
processing XML

with Java, 526

with XOM, 526-528
programming

object-oriented. See object
oriented programming

procedural, 13

programs. See also
applications

compiling, 617
debugging, 626, 650
Java. See Java programs
MS-DOS, running, 620
Readability, improving, 45
running, 23, 617

progress bars, 293

projects, organizing (Android),
569-570

properties, system properties,
655-656

protected access, 154-155
protected modifier, 154

protecting classes, methods,
and variables, 162

protection, interfaces, 171
public access, 153-154
public modifier, 154
push() method, 234

put() method, 236, 482
putChar() method, 483
putDouble() method, 483
putFloat() method, 483
putint() method, 483
putLong() method, 483
putShort() method, 483

Q-R

q option (javac), 640
queries, databases, 500

quotation marks in
arguments, 131

radio buttons, 266-267
event handling
action events, 345-346
item events, 349-350
exclusive, 267
Random() class, enabling, 69

RangeClass.java
application, 123

read() method, 420-421, 437,
454, 486

readability

expressions, improving, 59

programs, improving, 45
readBoolean() method, 454
readByte() method, 454
ReadBytes.java application, 424
readChar() method, 454
readDouble() method, 454
Reader class, 463
readFloat() method, 433, 454
reading

bytes from channels, 486

input streams, 453-454

from sockets, 473

streams, 420

buffered streams, 427

character streams,
436-439

data streams, 433

file input streams,
422-423

readint() method, 454
readLine() method, 438, 454
readLong() method, 454

readObject() method,
453, 456

ReadPrimes.java
application, 435

readShort() method, 454

ReadSource.java
application, 438

readStream() method, 430

readUnsignedByte() method,
433, 454

readUnsignedShort() method,
433, 454

reclaiming memory, 69
records
navigating, 507, 517

SQL, writing to database,
509-516

Rectangle2D.Double class,
381

Rectangle2D.Float class, 381

rectangles, drawing
(Rectangle2D.Float class), 381

reducing conflicts, names, 162
references

arrays, 95

example, 78-79

objects, 85

passing by, 126
references (objects), 77

ReferencesTest.java
application, 78

referencing packages, 162
class names, 162
package names, 163
referring to objects, current, 124
reflection, 457, 461-463

java.lang.reflect package,
459-461

register() method, 490

Reload command (Applet
menu), 641

remove() method, 229, 236

removing array list
elements, 230

renameTo() method, 441
renaming files, 441

rendering attributes
(Java2D), 378

drawing strokes, 380
fill patterns, 378-379
requests, XML-RPC
responding to, 549-550
sending, 548-549

reserved words, 150. See also
modifiers

resizing
components, 258
windows, 306

responding to XML-RPC
requests, 549-550

Restart command (Applet
menu), 641

restarting loops, 114
resume command (jdb), 654
return keyword, 123
@return tag (javadoc), 645
return types, 122

methods, void, 123
return values, 38, 51
reusing objects, 15-16

RMI (remote method
invocation), 546

RPCs, 545
RMLI, 546
XMC-RPC, 546-547

requests, responding to,
549-550

requests, sending,
548-549

XML-RPC

implementation,
selecting, 550-551

web service, creating,
555-560

web service, selecting,
552-555

RSS Advisory Board, 524

RSS feed application, creating,
528-531

scroll panes 691

RSS feeds

DomainEditor application,
creating, 532, 535

DomainWriter application,
creating, 536-538

RssFilter application,
creating, 538-540

RssFilter application, creating,
538-540

run command (jdb), 652

Run command (Start
menu), 615

run() method, 209
loops, 214
Runnable interface, 208
running
Android app, 575-576
applications, 637
bytecode, 637
interpreter, 621
Java programs in Windows,
628-630
programs, 23, 617
in MS-DOS, 620
threads, 209
runtime errors, 242
runtime exceptions, 190, 215

S

Sams Teach Yourself Android
Application Development in
24 Hours, 2nd Edition,
589, 607

saving
files, formatted., 626
source code, 628
scope
inner classes, 181
lexical scope, 115
variables, 98, 125-126
troubleshooting, 125
scroll panes, 288-289

How can we make this index more useful? Email us at indexes@samspublishing.com

692

scrollbars

scrollbars
configuring, 265
overriding, 289
scrolling panes, 265
ScrollPaneConstants class, 265
SDK 1.3, 9, 12
SDK 1.4
components, 616
configuring, 617

CLASSPATH variable,
630-633

command-line interface,
617-618

configuration errors, 622

MS-DOS folders,
618-619

PATH variable, 622-625
troubleshooting, 616
installation files, 615
installing, 615-617
on Windows, 615-617
troubleshooting, 615
interpreter, 629
SDK Setup Wizard, 615

SDK utilities, jdb (commands),
653-654

search() method, 235
searching
array list elements, 230
stack, 235
security, JNLP files, 406
SecurityException, 453
@see tag (javadoc), 648
select() method, 491
selectedKeys() method, 491
selecting
development tool, 12
development tools, 614
Font styles, 371
port numbers, 477

XML-RPC implementation,
550-551

XML-RPC web service,
552-555

SelectionKey class, 490-491

Selectltem.java application,
349-350

Selector objects, 490

semicolon (;), statement
termination character, 38

sending XML-RPC requests,
548-549

serial data, 448
@serial tag (javadoc), 645
Serializable interface, 448
serialization, 448-449
advantages, 449
input streams, 452
creating, 453

ObjectReader class,
454-455

reading, 453-454
output streams, 449
creating, 450

ObjectWriter class,
451-452

writing to, 450
persistence, 449
private variables and
objects, 464

transient variables, 455-456

validation checks, 456-457
server-side sockets, 476-477
ServerSocket class, 476-477

SET CLASSPATH= command
(MS-DOS), 631

set() method, 230

setActionCommand()
method, 346

setBackground() method, 377
setBounds() method, 252
setColor() method, 376

setDefaultCloseOperation()
method, 253

setEchoChar() method, 263
setEnabled() method, 258

setFollowRedirects()
method, 472

setFont() method, 371

setLayout() method, 306,
317-318

setLineWrap() method, 263

setMajorTickSpacing()
method, 286

setMaximum() method, 293

setMaximunRowCount()
method, 269

setMinimum() method, 293

setMinorTickSpacing()
method, 286

setPaint() method, 378
setPaintLabels() method, 287
setPaintTicks() method, 287

setRenderingHint()
method, 372

setSelected() method, 266

setSelectedIndex() method,
269

setSize() method, 251,
258, 369

setSoTimeOut() method, 473
setStringPainted() method, 293
setStroke() method, 380
setting

breakpoints, 652

drawing colors, 376-377
setValue() method, 293
setVisible() method, 252, 258

setWrapStyleWord()
method, 263

shapes, coordinate system, 369
shared behavior, 31-32

shared values, defining, 43
short data type, 42

show() method, 318

showConfirmDialog()
method, 279

showlnputDialog()
method, 280

showMessageDialog()
method, 281

showOptionDialog()
method, 282

ShowTokens.java, 67-68

signatures (methods),
122,133

SimpleFrame() method, 255
SimpleFrame.java, 254
@since tag (javadoc), 648

single inheritance, 31,
167-168

single-step execution, 651

sites (Web), Java 2
documentation, 46

size, array lists, 228
size() method, 231, 236, 486
sizing
array lists, 231
components, 258
frames, 251
scroll panes, 288
sliders, 286
advantages, 286
labels, 286-287
orientation, 286

Slider.java sample
application, 287-288

SOAP (Simple Object Access
Protocol), 547

Socket class, 473
Socketlmpl class, 477
sockets, 473
client-side, 473-474
Finger.java application,
475-476

nonblocking clients/servers,
489-495

server-side, 476-477

timeout values, 473

TimeServer application
designing, 477-479
testing, 479-480

transport-layer
implementation, 477

software deployment, Java
Web Start, 392-395

sources (casting), 80

source code
comments, 644
converting, 639
Ellsworth example, 627
saving, 628
source files, creating, 627-629
Spartacus application
creating, 599-600
debugging, 601
specifying
class files, 638
layout managers, 306
speed, Java programs, 640
splash screens, 407

SQL, records (writing to
database), 509-516

SQL (Structured Query
Language), 500-501

records, writing to database,
509-516

SquareTool class, 180
sRGB color system, 375
Stack class, 223, 233-235
stack frames, 654
stacks, 223, 233-235, 654
elements, 234
logical organization, 233
searching, 235

Start command (Applet
menu), 641

Start menu, commands
Find, 623
Run, 615

start() method, calling, 641

statements, 38. See also
modifiers

block statements, 38

blocks, 98-99
try...catch, 193-194

conditionals

conditional operator,
107-108

if, 99-100
switch, 101-107

streams

empty, for loops, 109
expressions, 51
definition of, 38
return values, 38, 51
finally, 195-196
if, nested, 101
import, 163-164, 167, 250
loops
breaking, 114
do, 113
for, 108-110
index values, 109
labeling, 114
restarting, 114
while, 111-113
switch, 101
termination character, 38

static keyword, 72,
120-121, 128

static methods, 157-159
static modifier, 157

static variables, 72, 157-159
step command (jdb), 653
stop at command (jdb), 652

Stop command (Applet
menu), 641

stop in command (jdb), 652
stop() method, 214

calling, 641
Storefront application, 172
Storefront class, 176-177

storefronts, creating online,
172-179

storing data, 427

StreamCorruptionException
exceptions, 453

streams, 419-420, 448
buffered, 427
creating, 427-428
reading, 427
writing to, 428-430

How can we make this index more useful? Email us at indexes@samspublishing.com

693

694 streams

byte streams, 420-422

file input streams,
422-423

file output streams,
425-426

character streams, 420, 436

reading text files,
436-439

writing text files, 439-440
creating, 420
data streams, 432-435
creating, 432
reading, 433
sample applications, 434
filtering, 421, 426
byte filters, 427
filters, 421
input, 371
input streams, 452
creating, 453

ObjectReader class,
454-455

reading, 453-454

transient variables,
455-456

validation checks,
456-457

object streams, Writer and
Reader classes, 463

opening over Internet, 468

BufferedReader
objects, 468

getContent() method, 468

HttpURLConnection
objects, 468

URL objects, 468

WebReader sample
application, 469-473

output streams, 449
creating, 450

ObjectWriter class,
451-452

writing to, 450
reading, 420
writing to, 421

string arithmetic, 60
string literals, 50-51
String objects, creating, 21
strings
concatenating, 60
handling, 79
StringTokenizer class, 67

StringTokenizer objects,
creating, 67-68

stringWidth() method, 373
strokes (drawing), 380

Structured Query Language
(SQL), 500-501

structures, data. See data
structures

styles, Font, 371

subclasses, 25
defining, 26

subclassing, 27
final classes, 160

submitting forms, POST
method, 496

subscripts (arrays), 94
substring() method, 74
subtraction operator, 52

SumAverage.java
application, 132

super keyword, 142
super(), 143
superclasses, 25
casting, 82
indicating, 120
methods in calling, 143
modifying, 27

supporting Java Web Start on
servers, 405-406

surfaces, drawing, 368-369
suspend command (jdb), 654
Swing
applications
graphical, 251
Slider.java, 287

components, 250, 258
check boxes, 266-267
combo boxes, 269-270
creating, 250, 255-256
disabled, 258
drop-down lists, 269-270
icons, 259-261
labels, 261-262
lists, 271
radio buttons, 266-267
resizing, 258
scrolling panes, 265
text areas, 263-265
text fields, 262-263
containers, panels, 256
dialog boxes
confirm dialog boxes, 279
creating, 278

input dialog boxes,
280-281

message dialog boxes, 281

option dialog boxes,
282-283

sample application,
283-284

event-handling, 339
action events, 345-346

ChangeTitle.java,
343-345

component setup, 341-342
event listeners, 341

focus events, 346
instanceof keyword, 343
item events, 349

key events, 350-351
methods, 342

mouse events, 351-352

mouse-movement
events, 352

SwingColorTest sample
application, 357

window events, 357
Info application, 283-284

layout managers, 306
border layout, 314-315
card layout, 317-318
combining, 316-317
flow layout, 307-309
grid bag layout, 325-327
grid layout, 311-312
insets, 334
specifying, 306-307

progress bars, 293

scroll panes, 288-289

sliders, 286
advantages, 286
labels, 286-287
orientation, 286

Slider.java sample
application, 287-288

SwingWorker class, 408-413
ToolBar.java application, 290
toolbars, 289-290

windows, resizing, 306

SwingColorTest sample
application, 357

SwingConstants class, 261, 286

SwingWorker class, 408-413

switch statements, 101-107
limitations, 102

system properties, 655-656

System.out.printin()
method, 45

T

tabbed panes, 299-300

Tag command (Applet
menu), 642

tags
applet, archive attribute, 649
javadoc, 645, 648
@author, 645
@deprecated, 648
@exception, 648

@param, 648
@return, 645
@see, 648
@serial, 645
@since, 648
@version, 645
XML, 523
tasks, statements, 38
TCP sockets, 473
client-side, 473-474
server-side, 476-477
TimeServer application
designing, 477-479
testing, 479-480

transport-layer
implementation, 477

telnet, enabling, 480
telnet connections, 479-480
terminating threads, 214
ternary operator, 107-108
testing
apps, Android, 611
instance variables, 71
methods, 124

socket client/server
application, 479-480

tests, loops, 108
text
ASCII, 627

converting to uppercase,
AllCapsDemo application,
441

DOS, 627
drawing, 370-372
antialiasing, 372

finding font metrics,
372-375

unformatted, 627
text areas, 263-265
text editors

choosing, 625-626

WordPad, 626

tools

text fields, 262-263
event handling
action events, 345-346
item events, 349-350

password fields,
obscuring, 263

TextFrame class, 373-374
this keyword, 124, 138
Thread class, 207
threaded applications

clock, 209

writing, 207-209
threads

animation, controlling, 207

creating, 208-209

run() methods, 209

loops, 214

running, 209

terminating, 214
threads command (jdb), 654
Throwable class, 190

throwing exceptions, 190,
198-199, 203

explicit, 200

implicit, 200

inheritance issues, 202

throws keyword, 199-200
throws keyword, 199-201
timeout values, sockets, 473
TimeServer application

designing, 477-479

testing, 479-480
TimeServer class, 478-479
Tolksdorf, Robert, 638
Toolbar.java application, 290
toolbars, 289

components, adding, 290

dockable toolbars, 290

orientation, 289
tools

development, selecting, 614

functions, modifying, 636

How can we make this index more useful? Email us at indexes@samspublishing.com

695

696

top-level classes

top-level classes, 179
defining, 181

toUpperCase() method, 74

transient variables, 455-456

transport-layer socket
implementation, 477

trimToSize() method, 231

troubleshooting, 654. See also
debugging, 654

arrays, 95

compiling, 630

errors, fatal, 192

for loops, 109

methods, overloaded, 133

scope, variables, 125

SDK 1.4

configuring, 616
installing, 615

variables, class, 73
true value (Boolean), 48
try and catch blocks, 192
try...catch blocks

example, 193-194

finally clause, 195-196
try...finally blocks, 196
type inference, 244
types

primitive. See primitive types

variables, 41

unformatted files, saving, 626

unformatted text, 627

Unicode, 420

Unicode character set, 41
escape codes, 49

Unicode Consortium Web
site, 50

uniform resource identifier
(URI), 529

uniform resource locator
(URL), 469

up command (jdb), 654
updating progress bars, 293

uppercase, converting text to
(AliCapsDemo application),
441

URI (uniform resource
identifier), 529

URL (uniform resource
locator), 469

URL objects, 468
creating, 469
URL() method, 469

US-ASCII character
encoding, 484

user coordinate space, 378
user interfaces, frames, 255
UTF-16 character encoding, 484

UTF-16BE character
encoding, 484

UTF-16LE character
encoding, 484

UTF-8 character encoding, 484
utilities
applet viewer, 640

Applnfo sample
application, 642-644

Applet menu commands,
641-642

command line, 636
options, 636-637

jar, 648-650

java interpreter, 637-639

javac compiler, 639-640

javadoc, 644

ApplInfo2 sample
application, 645-647

tags, 645, 648
jdb, commands, 653-654
jdb debugger, 650-651
applet debugging, 653

application debugging,
651-653

breakpoints, 651-653
commands, 652-654

single-step execution, 651

Vv

validation checks on input
streams, 456-457

valueOf() method, 77
values
Boolean, 42, 80
class variables, modifying, 72
instance variables,
modifying, 70-72
shared, defining, 43
to variables, assigning, 43
variables, 38
access control, 151, 155
default access, 151
private access, 152-153
protected access, 154-155
public access, 153-154

array variables, declaring,
92-93

assigning values to, 40

casting, 80-81
definition of, 80

class, 18, 39, 70
accessing, 157
accessing values, 72
defining, 40, 72
versus instance, 72
modifying values, 72
troubleshooting, 73

class types, 43

class variables, 121

CLASSPATH

‘Windows 2000/XP,
632-633

‘Windows 9x/Me,
630-631

constant variables, 43
declaring, 44

creating, 39

data types, 42
converting to objects, 83

declaring, 39

decrementing, 54-56

duplicating, 126

encapsulation, 151

environment, 655

final, 159

final variables, 159

in interfaces, 171

incrementing, 54-56

instance, 18, 39, 70
accessing values, 70
length, 95
modifying, 71
modifying values, 70-72
testing, 71

instance variables, defining,
120-121

interface type, 169
local, 39

naming, 40-41
overflow, 62
PATH

Windows 2000/XP,
623-625

‘Windows 9x/Me,
622-623

private variables, object
serialization, 464

protecting, 162
scope, 98, 125-126
lexical scope, 115
troubleshooting, 125
static, 157-159
transient variables, 455-456
types, 41
to values, assigning, 43
Vector class, 231
vectors, 231
verbose option (javac), 640
@version tag (javadoc), 645
viewing documents, HTML, 641

virtual machine (java),
637-639

visible frames, 252
void return type (methods), 123

VolcanoRobot class example,
attributes, 21

w

web servers, Java Web Start
(supporting), 405-406

WebReader class, 469-470
website

for this book, 603

Java, 636

Java 2 documentation, 46

Java Plug-in, 641

Naviseek, 24

Pardon My Icons, 261

RSS Advisory Board, 524

Unicode Consortium, 50

xmethods.com, 547
well-formed XML data, 524
well-known ports, 477
while loops, 111-113

overview, 111
windowActivated() method, 357
windowClosed() method, 357
windowClosing() method, 357

windowDeactivated()
method, 357

windowDeiconified()
method, 357

windowlconified() method, 357
WindowlListener, 357

WindowListener event
listener, 340

windowOpened() method, 357
windows
event handling, 357
frames
displaying, 252
exiting, 253
locations, 252
sizing, 251

writeStream() method

user interfaces, 255
visible, 252
GUI, resizing, 306
Java programs
compiling in, 628-630
running in, 628-630
MS-DOS Prompt, 618
Swing, resizing, 306

Windows, SDK 1.4 (installing
on), 615-617

Windows 2000/XP

CLASSPATH variable,
632-633

PATH variable, 623-625
Windows 9x/Me

CLASSPATH variable,
630-631

PATH variable, 622-623
wizards, SDK Setup, 615
word processors, 625-626
WordPad, 626
wrap() method, 481
wrapper classes, 128

write() method, 421, 428,
439, 450

writeBoolean() method, 450
writeByte() method, 450
writeBytes() method, 450

WriteBytes.java application,
425-426

writeChar() method, 450
writeChars() method, 450
writeDouble() method, 450
writeFloat() method, 450
writelnt() method, 435, 450
writeLong() method, 450
writeObject() method, 450

WritePrimes.java
application, 434

Writer class, 463
writeShort() method, 450
writeStream() method, 430

How can we make this index more useful? Email us at indexes@samspublishing.com

697

698 writing

writing
apps
Android, 567-572
threaded, 207-209
bytes, multiple, 425
to sockets, 473
to streams, 421

buffered streams,
428, 430

character streams,
439-440

file output streams,
425-426

output streams, 450
text files, 439-440

X-Y-Z

xmethods.com, 547
XML
dialects, designing, 525-526

documents, formatting,
536-538

DomainEditor application,
creating, 532, 535

DTD, 525
elements, 523
namespaces, 529
processing

with Java, 526

with XOM, 526-528

RSS feed application,
creating, 528-531

tags, 523
well-formed data, 524

XML-RPC, 546-547

implementation, selecting,
550-551

requests, responding to,
549-550

requests, sending, 548-549
SOAP, 547
web service
creating, 555-560
selecting, 552-555
XOM
evaluating, 538-540
XML, processing, 526-528
XOR operator, 57
XYZ color system, 375

	Contents
	Introduction
	3 Working with Objects
	Creating New Objects
	Using Class and Instance Variables
	Calling Methods
	References to Objects
	Casting Objects and Primitive Types
	Comparing Object Values and Classes
	Summary
	Q&A
	Quiz
	Certification Practice
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

