Combining ACL2 and Mathematica for the Symbolic Simulation of
Digital Systems

AL SAMMANE Ghiath BORRIONE Dominique OSTIER Pierre
SCHMALTZ Julien TOMA Diana

Abstract
We combine Mathematica, a computer algebra system, and ACL2 to perform what we call constrained
symbolic simulation. This association increases the efficiency of the symbolic simulation by using the au-
tomated reasoning capabilities of ACL2 and the powerful symbolic computation of Mathematica. The
communication between the two systems is automated.

1 Introduction

The constrained symbolic simulation relies on the separation of algebraic computation and branching decision. It
uses the efficiency of Mathematica [Wol00] at reducing symbolic expressions and the ACL2 reasoning capabilites
to decide conditional expressions under constraints.

VHDL Symbolic computation
) M-Code o)
File within Mathematica
Constraints
User Simulation Constraints resolution
Constraints within ACL2

Figure 1: Overview of the method

Figure 1 shows the overall combined verification system for the VHDL standard. The M-Code is the
translation of the VHDL description file in the Mathematica syntax. During this step, data type restrictions are
extracted as constraints. Before starting the simulation, the user, who is not necessary a proof expert, can add
constraints on the inputs. Those are inequalities or equalities between expressions composed of design variables
or input signals and arithmetic operators (+, —, /, x). M-code and constraints are submitted to Mathematica
for n simulation cycles, n is user defined. In our system, due to some restrictions on the VHDL, a simulation
cycle is identical to a clock cycle. Indeed, we consider sequential processes synchronized on a single clock
and concurrent instructions which are stabilized before simulation using, the Mathematica fixed point feature.
During simulation, symbolic expressions are simplified using Mathematica rewrite rules, and whenever path
conditions cannot be resolved by Mathematica, ACL2 is called. Depending on the ACL2 answer, Mathematica
chooses a path. After each simulation cycle, the values of all variables and signals are stored in a file. This is the
result of the constrained symbolic simulation of the VHDL description. This document concentrates on the use
of ACL2 to prune the execution tree. Details on the simplification of the symbolic expressions by Mathematica
are given in [STSBO3].

2 ACL2 as a reasoning engine

2.1 ACL2 and Mathematica communication

Mathematica calls ACL2 through the function callAcl2[“string”]. Tt sends string to ACL2 via a pipe and gets
back the last line of the ACL2 response.

callAcl2["(defthm foo (equal x x) :rule-classes nil)"]

FOO

callAcl2["(defthm foo (not (equal x x)) :rule-classes nil)"]

kxkkkkkk FATLED **xkxkx* See :DOC failure *kxkxkkxkx FATLED skkkikkxkkk

Our tool in Mathematica uses ACL2 as shown on Figure 2. First, Mathematica asks ACL2 to check the
consistency of the set of simulation constraints L. This is done by a function check_consistency that takes
Ly, as input and returns a minimal set I, of unsatisfiable constraints ' or ¢ if Ly, is consistent. This is done by
callAcl2[“(check-consistency L state)”] (see next subsection).

MATHEMATICA ACL2

-~

. . consistency Lh?
Call of ACL2 to check consistency of constraints

-

lhort check_consistency(Lh)

If Ihisreturned, show it to the user,

else Lhimplies branch condition B?

Lh=>B?
N \
X X N answer
If answer is Q.E.D simulate "true" branch /\
elseLhimpliesnot B? Lh=> (not B)?-
/\
answer
If answer is Q.E.D simulate "false" branch /\

else ask the user to add constraints or fork

Prove (impliesLh B)

Prove (implies Lh (not B))

J

Figure 2: Branch decision scheme

If I, is not empty, the simulation is stopped and the contradiction is shown to the user. If Lj is consistent,
Mathematica sends L, = B to ACL2.
callAcl2[¢‘ (mv-let (erp val state)
(defthm foo (implies Lh B))
(declare (ignore val))
(if erp
(value nil)
(value T)))?’]
If ACL2 finds a proof, the ”true” branch is considered for simulation. If ACL2 fails or is not able to
find a proof in a given time, Mathematica sends L, = —B. If it succeeds, the ”false” branch is considered
for simulation. Otherwise, the simulation is stopped and the user is asked to add more constraints. If more

1

minimal in the sense that every strict subset of constraints is satisfiable

constraints are given, simulation is reinitialized. Otherwise, the symbolic simulation forks into two branches,
one assuming the branch condition is true and the other its negation.

Note that ACL2 automatically resolves most of the equalities and inequalities formulae of branch decisions
by using some pre-proven theorems on them (written as ACL2 books). At each cycle the proven theorems are
added to the ACL2 database and they are available for the future proofs.

2.2 Checking constraints consistency

The function check_consistency uses some functions of the book books/misc/expander of the ACL2 distribution,
particularly tooll-fn, which tries to simplify a list of hypotheses. This function can decide if a list of hypotheses
is consistent, check_consistency exhibits a set of contradictory hypotheses I. Function check_consistency(L
state) returns nil in case of errors, ¢ if L is consistent, else it calls consistency(L nil 1 state).

(defun check-consistency (L state)

(if (true-listp L)
(cond ((endp L) (value nil))
(t (mv-let (erp val state)
(tooll-fn L state nil t nil t t)
(if erp
(value nil)
(if (nth 1 val)
(value t) ; L contains no contradictions
(consistency L nil 1 state))))))
(value nil)))

Function consistency takes as inputs an inconsistent set of constraints L, the initial values of I;, an index 1,
and the ACL2 state. It returns nil in case of errors, else it returns the list of the contradictory hypotheses I,
of L.

(1) (defun consistency (L Ih i state)

(2) (if (and (true-listp L)

(3) (true-listp Ih)

(4) (integerp i)

(5) (< 0 1))

(6) (cond ((endp L) ; last step of the algorithm

7) (value Ih)); now Ih is the minimal set

(8) ((< (length L) i) (value nil)) ;error: i out of L range

9) ((endp Ih) ; first step(s) of the algorithm (at call Ih is empty)
(10) (mv-let (erp val state)

(11) (tooll-fn (subseq L 0 i) state nil t nil t t)

(12) (if erp

(13) (value nil) ; tooll-fn error case

(15) (if (nth 1 val) ; is either a list of consistent constraints or nil
(16) (consistency L Ih (+ i 1) state)

an ; if no contradictions in L[0 .. i], proceed with L[0 .. i+1]
(18) ; else the added constraint is removed from L and added to Ih

(19) (consistency (remove (nth (- i 1) L) L)

(20) (cons (nth (- i 1) L) Th) 1 state)))))
(21) (t (mv-let (erp val state) ; one step of the algorithm

(22) (tooll-fn Ih state nil t nil t t)

(23) (if erp

(24) (value nil) ; tooll-fn error case

(25) (if (nth 1 val)

(26) (mv-let (erpl vall state)

27 (tooll-fn (append Ih (subseq L 0 i))

(28) state nil t nil t t)

(29) ; check of the consistency of the union of Ih and L[0 .. il

(30) (if erpl

(31) (value nil) ; tooll-fn error case

(32) (if (nth 1 valil)

(33) (consistency L Th (+ i 1) state)

(34) (consistency (remove (nth (- i 1) L) L)

(35) (cons (nth (- i 1) L) Ih) 1 state))))
(36) (value Ih))))))

(37) (value nil)))

Lines 2 to 5 insure the type of the inputs. On lines 6 and 7, L is the empty list and I}, is returned. If the
index is greater than the length of L, nil is returned (8). When I, is empty (9 to 16), if L[0 .. i] is consistent,
we proceed with L[0 .. i41], else the constraint L[i] is removed from L and added to Ij,. The algorithm restarts
with 4 = 1. When neither L nor I, are the empty list (21 to 36), if I; is not consistent, the algorithm terminates
and I is returned; else, it proceeds in a similar way to the third case of the “cond” (9 to 16), except that
tooll-fn is called on the concatenation of I, and L[0 .. i].

3 Applications

3.1 Reduction of the execution tree

Let us illustrate simulation tree reduction through a V H DL process that implements Euclid’s GCD algorithm:

P1 : process begin
wait until clk=’17;
if RST=’1’ then

al:=a; b0:=b;
ok<=False;
elsif a0=b0 then
ok<=True;
res<=al;
elsif a0>b0 then
a0:=a0-b0;
else b0:=b0-al;
end if;
end process Pi;

For instance, one wants to simulate this circuit for a = 3n and b = n under the constraint L, = {n € N'*}
and for four cycles. At the first cycle, RST has the numeric value 1 and ag and by are assigned with initial
values 3n and n, respectively. In all the next cycles, RST is set to 0 and Mathematica will always treat the
”false” branch of the first i f — then — else statement. At the next cycle, Mathematica cannot decide if ag is
equal to by, i.e. if 3n is equal to n. So, it calls ACL2 :

callAcl2[¢‘(mv-let (erp val state)
(defthm branch-1
(implies (and (integerp n) (< 0 n))
(equal (* 3 n) n)))
(declare (ignore val)) ...7°]

Because the answer is ”nil”, Mathematica sends the negation of branch-1. As ACL2 answers ”t”, Mathe-
matica considers the ”false” branch for simulation and simplifies ag — by to 2n. The reader may be surprised by
the simplicity of the theorems, but without ACL2 Mathematica is not able to prove them. At the third cycle,
ag is simplified to n and at the fourth cycle ACL2 answers ”t” to the event:

callAcl2[¢‘ (mv-let (erp val state)
(defthm branch-4
(implies (and (integerp n) (< 0 n))
(equal n n)))
(declare (ignore val)) ...7°]

As four cycles have been simulated, the simulation is stopped. If ACL2 were not used, eight paths would
have been simulated instead of the single explained one.

3.2 Symbolic evaluation of assertions

The proposed combination can be used for the verification of digital systems by proving properties by symbolic
evaluation of assertions. VHDL assert statements insure that a given condition bool_ezpr is never violated. If it
happens, the “message” is printed and, depending on the severity level (e.g. error, warning), the simulation is
stopped or not. These statements will be translated as If function calls in Mathematica.

VHDL assert statement Mathematica if function
Labell:assert bool_expr If [bool_expr
report "message" ,ChangeVar[Labell, True]
severity severitylevel; ,ChangeVar[Labell,False]
,decideACL2]

Labell is translated to a variable, which is assigned by function ChangeVar with value true or false according
to the truth value of bool_expr. It is possible that the truth value of the assertion remains under the form of a
symbolic expression during one or more simulation cycles. If it evaluates to false at cycle C, the path from the
root leading to the node in the simulation tree constitutes a counter-example for the assertion.

4 Conclusion

We have presented a new approach for the symbolic simulation of high level circuit specifications called Con-
strained Symbolic Simulation. This method makes use of typing information and user constraints to prune
the execution tree. It is implemented on top of two powerful automatic systems, taking advantage of the best
qualities of each one: Mathematica to simplify algebraic expressions, and ACL2 to decide the truth value of
expressions under a set of hypotheses.

Up to now, we have applied our technique on small circuit blocks and we are working on bigger systems. Finally
we intend to extend our method to more abstract specifications, as describable in the next version of the VHDL
subset for system-level synthesis, or SystemC.

References

[STSB03] G. AL Sammane, D. Toma, J. Schmaltz, and D. Borrione. Symbolic Simulation of Digital Circuits with
an Automatic Theorem Prover and a Computer Algebra System. Journal of Symbolic Computation,
2003. (Submitted for publication).

[Wol00] S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram Research, 100 Trade
Center Drive, Champaign, IL 61820-7237, USA, 2000. fourth ed.

