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4 Element of Al/Machine Learning
B X @ 8 @& b =

Task
Model - Graphical Models - Large-Margin - Deep Learning - Sparse Coding
* Nonparametric * Regularized + Spectral/Matrix * Sparse Structured
Bayesian Models Bayesian Methods Methods I/0O Regression
Algorithm « Stochastic Gradient *Coordinate * L-BFGS + Gibbs Sampling * Metropolis-
Descent / Bac' Descent Hastings
propagation
Implementation * Mahout sorflow
(MapReduce) (Async)
System
Hadoop MPI GraphLab
* Network * Network attached  + Server machines . + Cloud compute i
Platform switches storage + Desktops/Laptops c (e.g. Amazon EC2) \r/r:r:::ilin -
and Hardware « Infiniband  + Flash storage » NUMA machines . * 10T networks

» Mobile devices » Data centers
« GPUs, CPUs, FPGA, TPU
+ ARM-powered devices
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/" ML vs DL

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer
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Plan

e Statistical And Algorithmic Foundation and Insight of Deep
Learning

* On Unified Framework of Deep Generative Models

« Computational Mechanisms: Programming Platforms and
Distributed Deep Learning Architectures

© Petuum,Inc.
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Outline

* Probabilistic Graphical Models: Basics

* An overview of DL components
» Historical remarks: early days of neural networks
« Modern building blocks: units, layers, activations functions, loss functions, etc.
» Reverse-mode automatic differentiation (aka backpropagation)

 Similarities and differences between GMs and NNs
» Graphical models vs. computational graphs
« Sigmoid Belief Networks as graphical models
» Deep Belief Networks and Boltzmann Machines

« Combining DL methods and GMs

» Using outputs of NNs as inputs to GMs
« GMs with potential functions represented by NNs
* NNs with structured outputs

« Bayesian Learning of NNs
« Bayesian learning of NN parameters
* Deep kernel learning

© Petuum,Inc.



% Outline

* Probabilistic Graphical Models: Basics

© Petuum,Inc.



Fundamental questions of probabilistic modeling

* Representation: what is the joint probability distr. on multiple variables?

A
P(X{,X5,X3,..., X
(X1, X2, X3, o00) Xa) ) (E)
« How many state configurations are there?
* Do they all need to be represented? &) CHT

« Can we incorporate any domain-specific insights into the representation”

 Learning: where do we get the probabilities from?
* Maximum likelihood estimation” How much data do we need?
 Are there any other established principles?

* Inference: if not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?
- Computing P(H|A) would require summing over 2° configurations of the unobserved variables

© Petuum,Inc.



; What is a graphical model?

A possible world of cellular signal transduction

[ReceptorA ] X, [ReceptorB ] X,

[ Kinase C ] X; [ Kinase D ] X, [ Kinase E X;

L

[ Gene G ] X; [ Gene H ] X,




/
f GM: structure simplifies representation

A possible world of cellular signal transduction

[ReceptorA ] X, [ReceptorB ] X,

1
Membrane |

[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]X5




% Probabilistic Graphical Models

* |f X;’s are conditionally independent (as described by a PGM), then the
joint can be factored into a product of simpler terms

Receptor A | X, X, P(Xl,Xz,XB,X4,X5,X6,X7,X8) —
P(X1)P(X2)P(X3|X1)P(X4|X2)P(X5]X3)
KinseE ] X, P(Xe|X3, X4)P(X7|X6)P (Xg|Xs5, Xe)

* Why we may favor a PGM?
» Easy to incorporate domain knowledge and causal (logical) structures
« Significant reduction in representation cost (28 reduced down to 18)

© Petuum,Inc. 10



% The two types of GMs P(H|V)
0 = argmax,P 4 V)
* Directed edges assign causal meaning to the relationships
(Bayesian Networks or Directed Graphical Models)
P(X1,X5, X3, X4, X5, Xe, X7, Xg) =
P(X1)P(X2)P(X3|X1)P(X4|X2) P(X5|X7)
P(Xe|X3, X4)P(X7|Xe)P(Xg| X5, Xe)

« Undirected edges represent correlations between the variables
(Markov Random Field or Undirected Graphical Models)

};(X1:X21X31X4»X51X6:X7»X8) —
EeXp{E(Xﬂ + E(Xy) + E(X1,X3) + E(X3, Xy) + E(X5, X3) +
E(X3,X4,X6) + E(Xg,X7 ) + E(X5, X6, Xg)}




Outline

* An overview of DL components
» Historical remarks: early days of neural networks
« Modern building blocks: units, layers, activations functions, loss functions, etc.
» Reverse-mode automatic differentiation (aka backpropagation)

© Petuum,Inc.
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Perceptron and Neural Nets

«From biological neuron to artificial neuron (perceptron)

>\J ------- Inputs McCulloch & Pitts (1943)

X Linear Hard
\Nombiner Limiter
Output
S— —)

— J_ I
)\ V?Qt. ;703 \\ . /./@‘

\
7 4 Threshold

« From biological neuron network to artificial neuron networks

F=

Middle Layer

Ch bt

Output Signals

Output Layer © Petuum,Inc. 13



The perceptron learning algorithm

do
dt
« Consider regression problem f: XY, for scalary = f(x) + ¢

* Recall the nice property of sigmoid functic— = ¢(1 — o)

 We used to maximize the conditional data likelihood

e Here ... i

© Petuum,Inc.
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% The perceptron learning algorithm

OEp|w])

(9wj

_Z(t ~ 0a) Oog Onety
d d Onet; Ow;

d
— Z(td — 04)04(1 — od)wfj
d

X4 = input
ty = target output

04 = observed output

w; = weight i

Batch mode:

Do until converge:
1. compute gradient VEp[w]
W = 10 — nV Ep|]

Incremental mode:

Do until converge:

» For each training example din D

1. compute gradient VE [w]
240 = 0 — nV E 4[]

where

VEg[w) = —(tq — 04)oa(l — 04)Ta

© Petuum,Inc.
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Neural Network Model

» Output
0.6
Gende
; “Probability of
beingAlive”
Stage
. ‘ D dent
Independent Weights  Hidden Weights vae,fZZZ[een
variables Layer
Prediction

© Petuum,Inc.
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“Combined logistic models™

Inputs
» Output
5 0.6
Gende Z
) % “Probability of
beingAlive”
Stage
. ‘ D dent
Independent Weights  Hidden Weights vae,fZZZ[:n
variables Layer
Prediction

© Petuum,Inc.
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“Combined logistic models”

Output

0.6

“Probability of
beingAlive”

Dependent

Independent Weights  Hidden Weights variable

variables Layer
Prediction

© Petuum,Inc.
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“Combined logistic models™

» \ Output
S
?‘\ 0.6
Gende 2
) ;./8 “Probability of
: beingAlive”
Stage
. Dependent
Independent Weights Weights vaigable
variables
Prediction

© Petuum,Inc.

19



% Not really, no target for hidden units...

0.6

“Probability of
beingAlive”

Dependent

Independent Weights Weights variable

variables
Prediction

© Petuum,Inc.
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/
/ Backpropagation:

Reverse-mode differentiation

« Artificial neural networks are nothing more than complex functional compositions that can be

represented by computation graphs:

z @r

Input
variables

Intermediate
computations

Ts) f(x)

Outputs

Ofn _
or

© Petuum,Inc. 21



Backpropagation:
Reverse-mode differentiation

« Artificial neural networks are nothing more than complex functional compositions that can be
represented by computation graphs
O fn

x f(il?) e

* By applying the chain rule and using reverse accumulation, we get

i€ (n) i1e€T(n)
* The algorithm is commonly known as backpropagation

19 ETF(il)

* \What if some of the functions are stochastic?

» Then use stochastic backpropagation!
(to be covered in the next part)

* Modern packages can do this autormatically (more later)

© Petuum,Inc. 22



/
(/ Modern building blocks of deep networks

Act|yatlon functions b‘ f(Wx + b)
* Linear and RelLU X2 —>®—>
- Sigmoid and tanh _—
« Etc. o W
-IS _.5, A
o O
5 = /
e o
inpu't inpu't

Linear Rectified linear (RelLU)

© Petuum,Inc.
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% Modern building blocks of deep networks

x /
/1

 Activation functions
 Linear and RelLU /
« Sigmoid and tanh %

. I_ayers fully connected 7
* Fully connected convolutional
« Convolutional & pooling ® @T) ®) ?D
* Recurrent L—Aj ~ e il l et
* ResNets a ' ’ ’
 Etc. C’g (%9 g) ng - éD

recurrent

HH-

. . . © Petuum,Inc. 24
blocks with residual connections



Modern building blocks of deep networks

 Activation functions
 Linear and RelLU
« Sigmoid and tanh
 EtC.
 Layers
* Fully connected
« Convolutional & pooling
* Recurrent
* ResNets
* Etc.

 Loss functions
» Cross-entropy loss
* Mean squared error
* EtcC.

Putting things together:

fully connected
/

33333333

convolutional

D
Conv Coenv Conv v
1x1+1{S| A3 +1{S Sx5+1(S; Ix1+1(S] 1x1+1S)
4
V)

avg& max
pooling

(a part of GoogleNet)

© Petuum,Inc. 25



Modern building blocks of deep networks

 Activation functions
 Linear and RelLU
« Sigmoid and tanh
 EtC.
e Layers
* Fully connected
« Convolutional & pooling
* Recurrent
* ResNets
* Etc.

 Loss functions
» Cross-entropy loss
* Mean squared error
* EtcC.

Putting things together:

(a part of GoogleNet)

Arbitrary combinations of
the basic building blocks

Multiple loss functions —
multi-target prediction,
transfer learning, and more

Given enough data, deeper
architectures just keep
improving

Representation learning:
the networks learn
increasingly more abstract
representations of the data
that are “disentangled,” i.e.,
amenable to linear
separation.

© Petuum,Inc. 26



Outline

 Similarities and differences between GMs and NNs
» Graphical models vs. computational graphs
« Sigmoid Belief Networks as graphical models
» Deep Belief Networks and Boltzmann Machines

© Petuum,Inc.
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Graphical models vs. Deep nets

Graphical models

» Representation for encoding o
meaningful knowledge and the
associated uncertainty in a
graphical form

: Receptor A X, Receptor B X3
i -
: B
i [Kinsec ] x, [ Kinasep | x [ Kinase
™ A
[ TFF ] X

Deep neural networks

Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

(S1) 4 feacure maps

Inpuc layer
(CI) 4 feacure maps  (S2) 6 feature maps (C2) 6 feature maps

LR %Y

sub-sampling layer | convolution layer | wb-sampling layer l“rycmﬂuj

ae1-( (2
Topic proportions ;
e : "
Topic assignments |

oooooo

Learning and inference in the brain. e
Erison K.

The Wellcome Deparimert of knaging Newroscionce, Instiute of News | — |

© Petuum,Inc.
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Graphical models

» Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

» Learning and inference are based
on a rich toolbox of well-studied
(structure-dependent) techniques
(e.g., EM, message passing, VI,
MCMC, etc.)

» Graphs represent models

% Graphical models vs. Deep nets

Deep neural networks

e Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

e Learning is predominantly based
on the gradient descent method
(aka backpropagation);

Inference is often trivial and done
via a “forward pass”

e Graphs represent computation

© Petuum,Inc.
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f Graphical models vs. Deep nets

Utility of the graph
» A vehicle for synthesizing a global loss
function from local structure
» potential function, feature function, etc.
» A vehicle for designing sound and
efficient inference algorithms
« Sum-product, mean-field, etc.

» A vehicle to inspire approximation and
penalization

» Structured MF, Tree-approximation, etc.
» A vehicle for monitoring theoretical and

m_,,(x;)= Hmcqi(xi)

ceN(i)\a
ba(Xa) o fu(Xu) I_Imi—)u(x:)

ieN(a)

(%)= Zf(X) [1m..(x,

JeN(a)\i

empirical behavior and accuracy of 2:= {0 € RYA(D) < +00)
inference ‘ -
QUH)~P(H|V) , =5 ©°
Utility of the loss function Hou® o %8
)
» A major measure of quality of the 2 o o
learning algorithm and the model AFo) = {0€ Q|0 =0V (s.) € E}. QT) := {0 € Q[0 =0V (s,t) ¢ E(T)}

9: al‘gmanP@(V) © Petuum,Inc. 30



% Graphical models vs. Deep nets

BrH—|B8rH—|BtH—|BFH—|8BIH—|B {(—

I

the

agreement on the

I

|

sur la

I I I I I I i i I I

—! A —| A —| A —! A — A — A —

1 | | I | ]

European Economic Area was signed in August

@D

(L)L

Images from Distill.pub

zone économique européenne a été signé en aoQt 1992

|

Deep neural networks

Utility of the network
e A vehicle to conceptually synthesize
complex decision hypothesis
o stage-wise projection and aggregation
e A vehicle for organizing computational
operations
o stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules

e Layer-wise parallelization

e No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function

e Global loss? Well it is complex and non-
CONVeEX...

© Petuum,Inc.
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/
{/ Graphical models vs. Deep nets

Utility of the graph
» A vehicle for synthesizing a global loss
function from local structure
potential function, feature function, etc.

» A vehicle for designing sound and
efficient inference algorithms

« Sum-product, mean-field, etc.

» A vehicle to inspire approximation and
penalization

» Structured MF, Tree-approximation, etc.

» A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function

» A major measure of quality of the
learning algorithm and the model

Utility of the network
e A vehicle to conceptually synthesize
complex decision hypothesis
stage-wise projection and aggregation
e A vehicle for organizing computational
operations
stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules

Layer-wise parallelization

e No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function

e Global loss? Well it is complex and non-
convex... © Petuum,Inc. 32
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Empirical goal: e.g., classification, feature learning e.g., latent variable inference, transfer
learning

Structure: Graphical Graphical

Objective: Something aggregated from local functions Something aggregated from local functions

Vocabulary: Neuron, activation function, ... Variable, potential function, ...

Algorithm: A single, unchallenged, inference algorithm A major focus of open research, many

- algorithms, and more to come
Backpropagation (BP)

Evaluation: On a black-box score — On almost every intermediate quantity
end performance

Implementation: Many tricks More or less standardized

Experiments: Massive, real data Modest, often simulated data (GT known)

(GT unknown)



Graphical Models vs. Deep Nets

* SO far:
« Graphical models are representations of probability distributions
* Neural networks are function approximators (with no probabilistic meaning)

«Some of the neural nets are in fact proper graphical models

(i.e., units/neurons represent random variables):
» Boltzmann machines (Hinton & Sejnowsky, 1983)
 Restricted Boltzmann machines (Smolensky, 1986)
* Learning and Inference in sigmoid belief networks (Neal, 1992)
 Fast learning in deep belief networks (Hinton, Osindero, Teh, 2000)
* Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

| et's go through these models one-by-one

© Petuum,Inc. 34



I: Restricted Boltzmann Machines

« RBM is a Markov random field represented with a bi-partite graph

 All nodes in one layer/part of the graph are connected to all in the other;
no inter-layer connections

hlddenQQQQQQQ@

‘,\, ",»_.‘}.:."‘.._ XXV 4 weight: w;;
00 )'}.)"""("‘,' '_

visible Cjﬂ T
e Joint distributior

1
P(v,h) = - €XP {z wijvih; + Z bjv; + Z thj}
i,j i J

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum, Inc.

factor: exp(v; wij hj)

35



% I: Restricted Boltzmann Machines

* Log-likelihood of a single data point (unobservables marginalized out):

log L(v) = logz exp {z w;ivih; + z b;v; + z cihj — log(Z)}
h i,j i J

« Gradient of the log-likelihood w.r.t. the model parameters:

1ogL(v)=ZP(h|v) 0 P(v,h)—zp(v,h)
h v,h

an'j

0
aWij

P
aWij (U, h)

* where we have averaging over the posterior and over the joint.

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum, Inc. 36



% I: Restricted Boltzmann Machines

« Gradient of the log-likelihood w.r.t. the parameters (alternative form):

0 0
Sw;, ——log L(v) = Eppyw [aw P(v, h)] — Epwn) [MP(V» h)]

» Both expectations can be approximated via sampling
« Sampling from the posterior is exact (RBM factorizes over h given v)
« Sampling from the joint is done via MCMC (e.g., Gibbs sampling)

* In the neural networks literature:

« computing the first term is called the clamped / wake / positive phase
(the network is “awake” since it conditions on the visible variables)

« Computing the second term is called the unclamped / sleep / free / negative phase
(the network is “asleep” since it samples the visible variables from the joint;

metaphorically, it is "dreaming” the visible inputs) I .



; I: Restricted Boltzmann Machines

« Gradient of the log-likelihood w.r.t. the parameters (alternative form):

0 0
I lOgL(v) = [EP(h|v) [—P(U, h)] — ]EP(v,h) [MP(U, h)]

ij 0w

 Learning is done by optimizing the log-likelihood of the model for a given
data via stochastic gradient descent (SGD)

 Estimation of the second term (the negative phase) heavily relies on the
mixing properties of the Markov chain

* This often causes slow convergence and requires extra computation

© Petuum,Inc. 38



lI: Sigmoid Belief Networks

OOOQO Hidden units

Hidden units OOOO Symptoms ‘ OOOQO Diseases
OQQO0O t OOOO Symptoms
) \\ OOQO Hidden units } OOQOQ Hidden units
O000 QOO0 } OOOO Hidden units
Symptoms Diseases OOQOQO Diseases ; OOOO Symptoms
OOQQ Diseases from Neal, 1992

« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

P(xi|m(x;)) = o x; z Wi;X;
X j € n(xi)
« Bayesian networks exhibit a phenomenon called “explain away effect”

CA O B > If A correlates with C, then the chance of B correlating with C
decreases. = A and B become correlated given C.
<>

© Petuum,Inc. 39



lI: Sigmoid Belief Networks

OOOO Symptoms

Hidden units

OQOO
) \
QOO0 OO0O

Symptoms Diseases

OOQOQO Diseases

OOOO Hidden units

OOOQO Hidden units

OOQOQ Diseases
OOOQO Symptoms

OOOQO Hidden units
OOQOQO Hidden units

OOOO Symptoms

OQOQQ Diseases from Neal, 1992

« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

P(xi|m(x;)) = o x; z Wi;X;
ijn(xi)

« Bayesian networks exhibit a phenomenon called “explain away effect”

Note:

Due to the “explain away effect,” when we
condition on the visible layer in belief networks,
hidden variables all become dependent.

© Petuum,Inc.
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Sigmoid Belief Networks:
Learning and Inference

« Neal proposed Monte Carlo methods for Ieaminq and inference (Neal, 1992):

2 Z 8P(I7 =7)
6'wu ow;;
Approximated with Gibbs sampling
N Z_l_ ZBP(S= (h, 7))
- Conditional distributions: S PV=ib) & Ouwy
P(Si=x|S;=s;:j#1) = ZZP(S":(Z,gHV:g)
veT 1 OP(S = (h, 7))
S;W; o XW i SEW ‘ ——
( Jz<; j 1) g ( ( j k<§#ik Jk)) P(S = (h,v)) Oty
i ZZP(§=§|I~/=5) ~l ] OP(S =5)
i i veT 3 P(S§=5) Owi
* No negative phase as in RBM! veT s
- Convergence is very slow, T XD PS=3|V=7) :
especially for large belief nets, T n .0(5*21 ) 90 (s; %tﬁ-skw,-k)
due to the intricate i Lak<i>kTik i
“explain-away” effects... =YY PE =5V =9 sisjo(-s kz;_skw,-k).
veT s <t

Equations from Neal, 1992 © Petuum,Inc. 41



RBMs are infinite belief networks

* Recall the expression for the gradient of the log likelihood for RBM:
0
ow;, log L(v) = Epp) [awij P(v, h)] — Epw.n) [ P(v, h)]

aWij
* To make a gradient update of the model parameters, we need compute

the expectations via sampling.

« We can sample exactly from the posterior in the first term
» We run block Gibbs sampling to approximately sample from the joint distribution

© Petuum,Inc.

images from Marcus Frean, MLSS Tutorial 2010 sampling steps
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RBMs are infinite belief networks

* Gibbs sampling: alternate between sampling hidden and visible variables

« Conditional distributions P(v|h) and P(h|v) are represented by sigmoids

* Thus, we can think of Giblbs sampling from the joint distribution represented by
an RBM as a top-down propagation in an infinitely deep sigmoid belief network!

images from Marcus Frean, MLSS Tutorial 2010 © Petuum, Inc. 43



RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

to generate:

M

visible layer

Y

« Sampling from this is the same as sampling from
the network on the right

images from Marcus Frean, MLSS Tutorial 2010

w

and so on...

e

o

VLQ

ala s AL BN i

T |8

\ | /X \X( (.4 rQ_J'_

\ | ‘ <N\ \, / v (D
visible layer

© Petuum,Inc.




? RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

and so on...
+
o
Q
, - | M
{‘ » LA ’\ \‘ v -
w %\ /7 [ ‘ Y73
“'&e g!r &

to generate:

N\ /723 V \4 V
y1</ w J{
& visible layer

\

images from Marcus Frean, MLSS Tutorial 2010

© Petuum,Inc.
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RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

and so on...

:21e42uab 03

E
L3
\ S
- . o g
;é -
“ \
-

r ! ,L A¢~y\s

\\\ \/ )/ /r N\ﬁ( )/ J/ ‘,"‘1, "Iﬂ"'. RBM

Y
w ¢ Vi
: N % NM 'y :
W’ | ¢ o /\ ﬁN %’ ( | w' / ;“ ’:}/;, /\*‘ \". | l‘". ';n lllIRBM STRBeE
p it ﬁ{,/z;w;)\m Y ¢ 2 m Ao V| i
= /Iv = ¢ <\ ’\k[‘ \>“\/ 1’/> J<\"\/\ «/‘\// T//'*’ \ "4“»“ ‘1 ‘ll
I.2 VKA | w \/ ||‘ I,’ |
; 'Yf /f»‘_ N Y' y * by
isi *A?’ \‘l‘, visible Iayer w‘& \ﬁ! sible layer visible*layer

* When we train an RBM, we are really training an infinitely deep brief net!

e |t Is just that the weights of all layers are tied.
* |t the weights are “untied” to some extent, we get a Deep Belief Network.

images from Marcus Frean, MLSS Tutorial 2010 © Petuum, Inc. 46



lll: Deep Belief Nets

Deep Belief Network

Now weights are untied!

* DBNSs are hybrid graphical models (chain graphs):

» Exact inference in DBNs is problematic due to explaining away effect

 Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training

« Approximate inference is feed-forward

© Petuum,Inc.

47



/
ﬁ Deep Belief Networks

Deep Belief Network <« DBNs represent a joint probability distribution
P(v, ht, h2, h3) = P(h?, h3)P(h|h?)P(v|h})

 Note that P(h?, h?) is an RBM and the conditionals P(h'|h?)
and P(v|h!) are represented in the sigmoid form

* The model is trained by optimizing the log likelihood for a
given data log P(v)

Challenges:
» Exact inference in DBNs is problematic due to explain away effect
* Training is done in two stages:
« greedy pre-training + ad-hoc fine-tuning; no proper joint training
« Approximate inference is feed-forward (bottom-up)  orewumine. 48




DBN: Layer-wise pre-training

* Pre-train and freeze the 18t RBM
» Stack another RBM on top and train it

visible layer

* The weights weights 2+ layers remain tied

* We repeat this procedure: pre-train and untie
the weights layer-by-layer...

images from Marcus Frean, MLSS Tutorial 2010

and so on...

e LA
S 10 0




DBN: Layer-wise pre-training

* We repeat this procedure: pre-train and untie
the weights layer-by-layer:

* The weights of 3+ layers remain tied

e and so forth

One pass, non-iterative

and so on...

w3’
CLCLL
e S V.

w3

* From the optimization perspective, this procequre loosely corresponas
fo an approximate block-coordinate accent on the log-likelihood

images from Marcus Frean, MLSS Tutorial 2010

© Petuum,Inc. 50



% DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probablllstlc

model per se e :
* However, the layers of representations could perhaps be T N

useful for some other downstream tasks! S — é

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder) I ____________ 2000 | RBM
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder

3. Fine-tune the parameters by optimizing the reconstruction error

Pretraining

images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 51



% DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probablllstlc
model per se '

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion _
2. “Unroll” the RBMs to create an autoencoder T,
3. Fine-tune the parameters by optimizing the reconstruction error |

Unrolling
images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 52



% DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

* However, the layers of representations could perhaps be

useful for some other downstream tasks! |

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion

2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

Fine-tuning
images from Hinton & Salakhutdinov, 2006 © Petuum, Inc. 53



% DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting B: Supervised learning (DBN — classifier)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion

2. “Unroll” the RBMs to create a feedforward classifier

3. Fine-tune the parameters by optimizing the reconstruction error

Some intuitions about how pre-training works:
Erhan et al.. Why Does Unsupervised Pre-training Help Deep Learning? JMLR, 2010 © Petuum,Inc. 54



Deep Belief Nets and Boltzmann Machines
Deep Belief Network

* DBNs are hybrid graphical models (chain graphs):
* Inference in DBNs is problematic due to explaining away effect
 Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
« Approximate inference is feed-forward

© Petuum,Inc.
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(/ Deep Belief Nets and Boltzmann Machines

Deep Belief Network Deep Boltzmann Machine

* DBMs are fully un-directed models (Markov random fields):
« Can be trained similarly as RBMs via MCMC (Hinton & Sejnowski, 1983)

« Use a variational approximation of the data distribution for faster training
(Salakhutdinov & Hinton, 2009)

« Similarly, can be used to initialize other networks for downstream tasks

© Petuum,Inc.
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Graphical models vs. Deep networks

A few critical points to note about all these models:

* The primary goal of deep generative models is to represent the
distribution of the observable variables. Adding layers of hidden
variables allows to represent increasingly more complex distributions.

» Hidden variables are secondary (auxiliary) elements used to facilitate
learning of complex dependencies between the observables.

* Training of the model is ad-hoc, but what matters is the quality of
learned hidden representations.

* Representations are judged by their usefulness on a downstream task
(the probabilistic meaning of the model is often discarded at the end).

*|n contrast, classical graphical models are often concerned
with the correctness of learning and inference of all variables

© Petuum,Inc. 57



}/ An old study of belief networks
from the GM standpoint g, Russsl, Jorcan, UAI 2003

Mean-field partitions of a sigmoid belief network for subsequent GMF inference

"""""""""""""""""""

Jetetetere1e felelelelele}

GETETEEY (00000000

SO0000000D 0000000060

Study focused on only inference/learning accuracy, speed, and partition

Singleton marginal error CPU time
0:5 g T 140 g
120+
0.4 [ GMF, [
GMF, 100"
03 I |
80
0.2/ T 1 60
I 40
0.17 , 1
20+
[ .|
0 . 0 7
no obs with obs no obs with obs
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“Optimize” how to optimize via truncation & re-opt

* Energy-based modeling of the structured output (CRF)

y*(x;w) := argmin E(y, x; w)

Yy

 Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y* (x; w) = opt-alg E(y, x; W)

We can backprop through the optimization steps
since they are just a sequence of computations

Relevant recent paper:

Anrychowicz et al.: Learning to learn by gradient
descent by gradient descent. 2016.

© Petuum,Inc. 59




Dealing with structured prediction

* Energy-based modeling of the structured output (CRF)

y*(x;w) := argmin E(y, X; w)
y
 Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y"(x; w) = opt-alg E(y, x; w)
y
« We can think of y* as some non-linear ditferentiable tunction of the inputs and

weights — impose some loss and optimize it as any other standard computation
graph using backprop!

« Similarly, message passing based inference algorithms can be truncated and
converted into computational graphs (Domke, 2011; Stoyanov et al., 2011)

© Petuum,Inc. 60



Outline

« Combining DL methods and GMs

» Using outputs of NNs as inputs to GMs
« GMs with potential functions represented by NNs
* NNs with structured outputs

© Petuum,Inc.
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% Combining sequential NNs and GMs

H ybrid: RNN + HMM

5 b 6

L_.__ L___ L___ L___

. © Petuum,Inc. 62
slide courtesy: Matt Gormley



/
{/ Combining sequential NNs and GMs

et ale 7‘0\3)

Hybrid: RNN + HMM KD

The model, inference, and
learning can be analogous to

our NN + HMM hybrid D—()

* Objective: log-likelihood g g g

e Model: HMM/Gaussian - . - :
emissions

* Inference: forward-
backward algorithm

* Learning: SGD with
gradient by
backpropagation

© Petuum,Inc.
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% Hybrid NNs + conditional GMs

. -

S

v v

n4 vin|p|d nis vin|pld

P 0.1 v|.al.4].2].3 |plo1 vl alkalalis

d 0.1 nl/.8/4/4]0 d 0.2 n|(.8/4/la]0
pl2/.3.2].3 Blalialals
d|.2|.8(0]|0 d|.2|.8/0|0

- @ © © o ¢

|n a standard CRF, each of the factor cells is a parameter.

*[n a hybrid model, these values are computed by a neural
network.

© Petuum,Inc. 64



% Hybrid NNs + conditional GMs
Hybrid: Neural Net + CRF

Forward computation

N

v
n vin/p d
b v 2|.3
d n/slalalo
3

|0

71
© Petuum,Inc. 65



/
(/ Hybrid NNs + conditional GMs

11)
Westo™ L

O Hybrid: CNN + CRF

“NN + SLL” i —

* Model: Convolutional el i ddH ‘
Neural Network w - L
(CNN) with linear- i .
chain CRF J \

o

* Training objective:

maximize sentence- e
level likelihood (SLL) o

Figure from (Collobert & Weston, 2011) .
Petuum,Inc. 66



4 Using GMs as Prediction Explanations

Satellite imagery Meaningful attributes

01 Nightlight intensity 09 Avg. vegetation dec.

02 Is urban 10 Avg. dist. to market
03 Has electricity 11 Avg. dist. to road
04 Has generator 12 Num. of rooms

05 Avg. temperature 13 Dist. to water src.
06 Avg. percipitation 14 Water usage p/ day

07 Vegetation 15 Is water payed

08 Avg. vegetation inc. 16 HH type: BQ

© Petuum,Inc. 67



% Using GMs as Prediction Explanations

How do we build a powerful predictive model whose
predictions we can interpret in terms of
semantically meaningful features?

68



% Contextual Explanation Networks (CENSs)

made by a linear GM.

» Each coefficient
assigns a weight to a
meaningful attribute.

 Allows us to judge
predictions in terms of
GMs produced by the
context encoder.

Context Explanation Prediction
)
- ParameiNetast a
0 1 1 0 1 . D :
43 graphicairreamel prediction is
-

Encoder
Unreliable water
Walls: Unburnt bricks
Roof: Thatch, Straw
Has electricity
Attributes

Water src: Public tap

Instance 2

—_ Poor

]

.

© Petuum,Inc. 69



Contextual Explanation Networks (CENSs)

» family history of diabetes

Medical notes (context):
» reqular smoker
» [no previous heart attacks]

High blood Previous
pressure heart attack

(a)

» General idea: Use deep neural nets to generate parameters for graphical models
applicable in a given context (e.g., for a given patient).

* Produced GMs are used to make the final prediction = 100% fidelity and consistency.
* GMs are built on top of semantically meaningful variables (not deep embeddings!)
and can be used as explanations for each prediction.

© Petuum,Inc. 70



CEN: Implementation Details

Context Encoder

et .
o N\
o N
' iy g
i ¥
]
' d

Dictionary

[TIITTT]
—

B T e —

1/

I Context Attention

B — — — — — — — — — e s — e e e ] — — — — — — — — w— — w— — —

Workflow:
* Maintain a (sparse) dictionary of GM parameters.

* Process complex inputs (images, text, time series, etc.) using deep nets; use soft
attention to either select or combine models from the dictionary.

» Use constructed GMs (e.g., CRFs) to make predictions.
* Inspect GM parameters to understand the reasoning behind predictions.

© Petuum,Inc. 71
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% Results: imagery as context

Uganda: Contextual Models

Nightlight intensity 0.8 :»\j().T
) =
. £ 06 Arua . g i
Has electricity 0.4 K] \pofl g ™ = '= . M2
! .
0.0 < ().: -m = a wa
Vegetation 3 =l - :
~0.4 E 04 “u B & -
] Gul = . "
Is water payed —08 Eng ulu -'l - "
| = . I'-“:l-l.,". o'e,
S .' m ] - . l.
Roof: Thatch, Straw :?“'l Kasese -w e i 2 l-. 3 :!-;’!l e M1
2?/ = .. - o ™
Walls: Unburnt bricks 5, é "L B
- Sos| EEE M2 I ,
Qc) .. L " -J. h & a
L3 as s B ..
Water src: Public tap = u e @ 2 3 |
g”‘;’ A “-. o - . ganga
Water: Unreliable 5 ﬁ o & G Kampala (capltal)
I st ™ pe
0.1 Masaka
Rural Urban g

(a) (b) (c)
Based on the imagery, CEN learns to select different models for urban and rural areas
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% Results: classical image & text datasets

MNIST CIFAR10 |
Model Err (%) | Model Err (%)
LRpog 2.98 | LRpog 48.6
CNN 0.75 | VGG 94
MoE 1 1.23 | MoEpx 13.0
CENpy1 0.76 | CENpp 9.6
CENhog 0.73 | CENpog 9.2

Same performance as vanilla deep
networks; no compute overhead.

Test error (%)

MNIST

0 5 10 15
Train set size (%)

IMDB

—4— LST™M

10 20 30 40
Train set size (%)

Predicting via explanation regularizes the
model when there is not enough data.

© Petuum,Inc.
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% Results: classical image & text datasets

Method Error
Paragraph Vector (Le and Mikolov, 2014) 7.42%
SA-LSTM with joint training (Dai and Le, 2015) 14.70%
LSTM with tuning and dropout (Dai and Le, 2015) 13.50%
LSTM initialized with word2vec embeddings (Dai and Le, 2015) 10.00%
SA-LSTM with linear gain (Dai and Le, 2015) 9.17%
LM-TM (Dai and Le, 2015) 7.64%
SA-LSTM (Dai and Le, 2015) 7.24%
Virtual Adversarial (Miyato et al., 2016) 5.94 + 0.12%
TopicRNN (Dieng et al., 2017) 6.28 %

CEN-bow
CEN-topic

5.92 1 0.05 %
6.25 £+ 0.09 %

Semi-supervised
training

Only supervised
training ()

© Petuum,Inc. 74



/
4 CEN architectures for survival analysis

AABNAR AL

Produce a CRF that
predicts a sequence of
survival indicators over
future time intervals.

Encode a sequence of
observations for a patient
(e.g., vitals/tests measured in ICU).

© Petuum,Inc. 75



% Results: survival analysis

SUPPORT?2 PhysioNet Challenge 2012
Model Acc@25 Acc@Q50 Acc@Q75 RAE | Model Acc@25 Acc@Q50 Acc@Q75 RAE
Cox 84.1 73.7 47.6 0.90 Cox 93.0 69.6 49.1 0.24
Aalen 87.1 66.2 45.8 0.98 Aalen 93.3 78.7 57.1 0.31
CRF 84.4 89.3 79.2 0.59 CRF 93.2 85.1 65.6 0.14
MLP-CRF 87.7 89.6 80.1 0.62 LSTM-CRF 93.9 86.3 68.1 0.11
MLP-CEN 85.5 90.8 81.9 0.56 LSTM-CEN 94 .8 87.5 70.1 0.09
Patient ID: 3520 (Died) Patient ID: 1100 (Survived)
dementia i I4
avtisst I 2
slos i I B
hday PR | fi 0
ca_yes —2
sfdm2_Coma or Intub T ] e I | il
sfdm2_SIP>=30 IIIIIIII | 8 ' -4
10 20 30 40 50 0 10 20 30 40 50

Time after leaving hospital (weeks)

Time after leaving hospital (weeks)

© Petuum,Inc.
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% Outline

« Bayesian Learning of NNs
« Bayesian learning of NN parameters
* Deep kernel learning

© Petuum,Inc. 77



Bayesian learning of NNs

* A neural network as a probabilistic model:

* Likelihood: p(y|x, 8)
» Categorical distribution for classification = cross-entropy Ioss

« Gaussian distribution for regression = squared loss
 Prior on parameters: p(0) @/ \@\z
* Maximum a posteriori (MAP) solution: \/

2

» 04" = argmaxg log p(y|x, 8)p(0)

« (Gaussian prior = L2 regularization

 Laplace prior = L1 regularization

* Bayesian learning [Mackay 1992, Neal 1996, de Freitas 2003]
 Posterior: p(0]x,y)
« Variational inference with approximate posterior q(8)

\

N\

/

f

SR

© Petuum,Inc.
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Bayesian learning of NNs

 Variational inference (in a nutshell):
ming F(D,8) = KL(q(6)|| p(81D)) — Eq(g)[log p(D|6)]
ming F(D,8) = KL(q(0)|| p(81D)) = ) logp(D|6)
where 6; ~ q(0); KL term can be approximated similarly l
» We can define q(0) as a diagonal Gaussian or full-covariance Gaussian
* Alternatively, q(@) can be defined implicitly, e.g. via dropout [Gal & Ghahramani, 2016]
0 = M - diag(z),
z ~ Bernoulli(p)

» Dropping out neurons is equivalent to zeroing out
columns of the parameter matrices (i.e., weights)

» z; = 0 corresponds to i-th column of M being dropped vut
= the procedure is equivalent to dropout of unit i [Hinton et al., 2012]

 Variational parameters are {M, p}

© Petuum,Inc.
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% “Infinitely Wide” Deep Models

» We have seen that an ”infinitely deep” network can be explained by a proper GM, How
about an “infinitely wide” one?

» Consider a neural network with a Gaussian prior on its weights an infinitely many hidden
neurons in the intermediate layer.

Infinitely many
hidden units

» Turns out, if we have a certain Gaussian prior on the
weights of such infinite network, it will be equivalent
to a Gaussian process [Neal 1996].

e (Gaussian process (GP) is a distribution over functions:
m(x) = E[f(x)],
k(x,x') = E[(f(x) — m(x))(f(x') —m(x))],
f(x) ~ GP(m(x),k(x,x’)).

» When used for prediction, GPs account for correlations between the data points and can
output well-calibrated predictive uncertainty estimates. ©Petwuminc. 80



/" Gaussian Process and Deep Kernel Learning

« Consider a neural network with a Gaussian prior on its weights an infinitely many hidden neurons in
the intermediate layer. il

Infinitely many
hidden units

» Certain classes of Gaussian priors for neural networks with infinitely many hidden units converge to
Gaussian processes [Neal 1996]

» Deep kernel [Wilson et al., 2016]

« Combines the inductive biases of deep model architectures with the non-parametric flexibility of Gaussian processes
k(xi, xj|p) = k(g(xi, 0), g(xj,0)|¢,6) where Ki; = k(xi, x;)

p(fl$) = N (fIm(x),K)

pIf) =NWUIf,B7Y)

« Learn both kernel and neural parameters {¢, 8} jointly by optimizing marginal log-likelihood (or its variational lower-bound).
« Fast learning and inference with local kernel interpolation, structured inducing points, and Monte Carlo approximations

- Starting from a base kernel k(x;, xj|¢), transform the inputs x as

© Petuum,Inc. 81



Gaussian Process and Deep Kernel Learning

* By adding GP as a layer to a deep neural net, we can think of it as adding
an infinite hidden layer with a particular prior on the weights

. W
* Deep kernel learning [wilson et al., 2016] LA )
. ) : ) nput layer ) _ N
« Combines the inductive biases of — \/\\ WOUUM layer
deep models with the non-parametric | @ . ﬁ,

flexibility of Gaussian processes

» GPs add powerful regularization to
the network

« Additionally, they provide predictive
uncertainty estimates

\\ /
\
/

/\ '
/ yp

/

Irp

he(0)

| Hidden layers

oo layer

© Petuum,Inc. 82



% Deep kernel learning on sequential data

What if we have data of

sequential nature? @

Can we still apply the same
reasoning and build rich
nonparametric models on top

recurrent nets? !

© Petuum,Inc. 83



% Deep kernel learning on sequential data

The answer is YES!

By adding a GP layer to a recurrent
network, we effectively correlate
samples across time and get
predictions along with well calibrated
uncertainty estimates.

To train such model using stochastic

techniques however requires some
additional care (see our paper).

© Petuum,Inc. 84



/
f Deep kernel learning on sequential data

Lane prediction: LSTM vs GP-LSTM

50

Front distance, m
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e}

Side distance, m
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/
(/ Deep kernel learning on sequential data

Lead vehicle prediction: LSTM vs GP-LSTM

100
[ ] u B =Zil B =Z:l [ =::. . =::-
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Conclusion

* DL & GM: the fields are similar in the beginning (structure, energy, etc.), and then
diverge to their own signature pipelines

» DL: most effort is directed to comparing different architectures and their components
(models are driven by evaluating empirical performance on a downstream tasks)

« DL models are good at learning robust hierarchical representations from the data and suitable
for simple reasoning (call it “low-level cognition”)

« GM: the effort is directed towards improving inference accuracy and convergence speed

» GMs are best for provably correct inference and suitable for high-level complex reasoning tasks
(call it “high-level cognition”)

» Convergence of both fields is very promising!
» Next part: a unified view of deep generative models in the GM interpretation
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Part-II
A Unified Framework of Deep
Generative Models



Plan

e Statistical And Algorithmic Foundation and Insight of Deep
Learning

* A Unified Framework of Deep Generative Models

« Computational Mechanisms: Programming Platforms and
Distributed Deep Learning Architectures

© Petuum,Inc.



Outline

* Overview of advances in deep generative models

 Theoretical Basis of deep generative models

» Wake sleep algorithm
e \Variational autoencoders
 Generative adversarial networks

A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc.



% Outline

* Overview of advances in deep generative models

 Theoretical Basis of deep generative models
« Wake sleep algorithm
* Variational autoencoders
» Generative adversarial networks

* A unified view of deep generative models

* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc. 3



/
(/ Deep generative models

* Define probabilistic distributions over a set of variables
*'Deep” means multiple layers of hidden variables!

i

© Petuum,Inc.



/
(/ Early forms of deep generative models

* Hierarchical Bayesian models
« Sigmoid brief nets [neal 1992

D (an = 1‘0,(,2,(11) ) = (Bizg))
) o (6722

© Petuum,Inc.



/
(/ Early forms of deep generative models

* Hierarchical Bayesian models

« Sigmoid brief nets [neal 1992 Jayer ger;)eiga;tel;fe
« Neural network models v oovo oy
 Helmholtz machines [Dayan et al.,1995] Z1 O Q Q
o |16
2 OO0®OOO
inference : enerative
weights \ 0 gweights
r 00000
input

[Dayan et al. 1995]

© Petuum,Inc.
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% Early forms of deep generative models

* Hierarchical Bayesian models
« Sigmoid brief nets [neal 1992

* Neural network models
 Helmholtz machines [Dayan et al.,1995]
 Predictability minimization (schmidhuoer 1995]




ﬁ Early forms of deep generative models

* Training of DGMs via an EM style framework

« Sampling / data augmentation

zZ = {thzz}
z1%" ~p(z1]z,, x)
new p(zzlznew’ )

« Variational inference
log p(x) = Eg (z1x)[log pe(x,2)] —KL(qy(z|x) || p(2)) = L(6, $; x)
maxg 4 L(0, ¢; x)
« Wake sleep
Wake: mingEq, z|x) llog pg (x|2)]
Sleep: mingE,, x|z [log q¢(z|x)]

© Petuum,Inc.



% Resurgence of deep generative models

* Restricted Boltzmann machines (RBMS) ismofensky, 1986)
 Building blocks of deep probabilistic models

e COQQQQQ@

L A k )\' "\_ "f‘ A ’l, 'l / . Welght w 1)
----------------- factor: exp(v; wi; hj)

© Petuum,Inc.



Resurgence of deep generative models

¢ ReStHCted BOHZH’]&I’]I’] maChIﬂeS (RBMS) [Smolensky, 1986]
 Building blocks of deep probabilistic models

* Deep belief networks (DBNS) Hinton et a., 2006
* Hybrid graphical model
* Inference in DBNs is problematic due to explaining away
* Deep Boltzmann Machines (DBMS) (saxnutdinoy & Hinton, 2009]
» Undirected model

Deep Belief Network Deep Boltzmann Machine

WS
h?C )

W2
h!'C D)

Wl

© Petuum,Inc.
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/
(/ Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 20141

. N
¢ --| z
aw@n) | / po (xl2)
inference model ‘®}/ generative model
N

% 000

Figure courtesy: Kingma & Welling, 2014

© Petuum,Inc.
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/
(/ Resurgence of deep generative models

 Variational autoencoders (VAES) ingma & weling, 2014
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 2014
* Generative adversarial networks (GANS) (ceodteliow et ai. 2014)

Zgen

—|Lgen

code

Ldata

data/gen

Gg: generative model ?
D discriminator

© Petuum,Inc.
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Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 20141

» Generative adversarial networks (GANS) (coodfeliow et . 2014]
* Generative moment matching networks (GMMNS) (ietal., 2015, Drivgate et

al., 2015]

© Petuum,Inc.
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Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 20141

» Generative adversarial networks (GANS) (coodfeliow et a,. 2014]
* Generative moment matching networks (GMMNS) (ietal., 2015, Drivgate et

al., 2015]

* Autoregressive neural networks

A
ORI

© Petuum,Inc.
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4

Outline

* Overview of advances in deep generative models

 Theoretical Basis of deep generative models
» Wake sleep algorithm
* Variational autoencoders
« Generative adversarial networks

* A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc.
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% Synonyms in the literature

 Posterior Distribution -> Inference model
* Variational approximation
« Recognition model
* Inference network (if parameterized as neural networks)
« Recognition network (if parameterized as neural networks)
 (Probabilistic) encoder

* "The Model" (prior + conditional, or joint) -> Generative model
* The (data) likelihood model
» Generative network (if parameterized as neural networks)
« Generator
 (Probabilistic) decoder

© Petuum,Inc.
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Recap: Variational Inference

* Consider a generative model pg(x|z), and prior p(z)
* Joint distribution: pg(x,z) = pg(x|2)p(2)

- Assume variational distribution q¢(z|x)

* Objective: I\/Ia>(<ignize lower bound for log likelihood
log p(x

= KL (qu(ZIx) | pe(ZIx)) + f q¢ (z|x) logpe(x' 2

q¢(z|x)

Po (x, Z)
q¢ (2]x)

> Jq¢(z|x) log

= L(e, ¢; X)
« Equivalently, minimize free energy

F(8,¢;x) = —logp(x) + KL(qe(2]|x) || pg(2]x))

© Petuum,Inc.
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Recap: Variational Inference

Maximize the variational lower bound:
L(0, ¢; x) = Eg 2 llog pe (x]2)] + KL(q4 (z]x)||p(2))
« E-step: maximize £ wrt. ¢, with 0 fixed
max g L(0, ¢; x)
* |f closed form solutions exist:

Gy (z|x) < exp[log pg(x, 2)]

* M-step: maximize L wrt. 8, with ¢ fixed
maxg L(0, ¢; x)

© Petuum,Inc.
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Recap: Amortized Variational Inference

- Variational distribution as an inference model q4(z]x) with
parameters ¢ (which was traditionally factored over samples)

« Amortize the cost of inference by learning a single data-
dependent inference model

* The trained inference model can be used for quick inference
on new data

* Maximize the variational lower bound L(0, ¢; x)
« E-step: maximize £ wrt. ¢ with 0 fixed
« M-step: maximize L wrt. 8 with ¢ fixed

© Petuum,Inc.
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/
f Deep generative models with amortized inference

 Helmholtz machines

 Variational autoencoders (VAESs) / Neural Variational Inference
and Learning (NVIL)

* We will see later that adversarial approaches are also included
INn the list

 Predictability minimization (PM)
« Generative adversarial networks (GANS)

© Petuum,Inc. 20



Wake Sleep Algorithm

 [Hinton et al., Science 1995]

 Train a separate inference model along with the generative model
» Generally applicable to a wide range of generative models, e.g., Helmholtz machines

« Consider a generative model pg(x|z) and prior p(z)
« Joint distribution pg(x, z) = pg(x|z)p(2)
« E.g., multi-layer brief nets

» Inference model q4(z|x)

« Maximize data log-likelihood with two steps of loss relaxation:

« Maximize the variational lower bound of log-likelihood, or equivalently,
minimize the free energy

F(0,¢;x) = —logp(x) + KL(q4(2z|x) || pe(2z|x))

* Minimize a different objective (reversed KLD) wrt ¢ to ease the optimization
» Disconnect to the original variational lower bound loss

F'(0,¢;x) = —log p(x) + KL(pg(z|x) || q¢(z|x))

21



O O O
% Wake Sleep Algorithm 52: SXeXs
R

X |© SO0 00O

* Free energy:
F(0,¢;x) = —logp(x) + KL(qp(2|x) || pe(z]x))
* Minimize the free energy wrt. @ of pg > wake phase
maxg Eq, (zx) [l0g pe(%, 2)]

 Get samples from g4 (z|x) through inference on hidden variables
« Use the samples as targets for updating the generative model pg(z|x)
» Correspond to the variational M step

[Figure courtesy: Maei's slides] © Petuum,Inc.
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Wake Sleep Algorithm

* Free energy:

F(0,¢;x) = —log p(x) + KL(qe(z|x) || pa(z|x))
* Minimize the free energy wrt. ¢ of q4(z|x)
» Correspond to the variational E step
« Difficulties:

el = 2D

* Optima [ po(z, x) dz intractable
* High variance of direct gradient estimate  V,F(8, ¢;x) = -+ + VyEq, (z)x)[log pg (2, x)] + -
« Gradient estimate with the log-derivative trick:
VpEq,llogpel = | Vyqglogpe = | qglogpe Vglog qp = Eq,[log pe Vglog qe)
« Monte Carlo estimation:

VpEq,llogpel = Bz, q4[l0g pe(x, zi) Vpqe(2ilx)]

* The scale factor log pg (x, z;) can have arbitrary large magnitude

© Petuum,Inc. 23



% Wake Sleep Algorithm RA *EZ. 5
R1* VG

X SO0 OO0 O

* Free energy:

F(0,¢;x) = —log p(x) + KL(qe(z|x) || pa(z|x))
« WS works around the difficulties with the sleep phase approximation
« Minimize the following objective = s/eep phase

F'(0,¢; x) = —logp(x) + KL(pg(z|x) || ¢4 (z|x))

maxg Ep, 2 [10g 4o (2]%)] maxg g g poté-2)
* “Dreaming” up samples from pg(x|z) through top-down pass
» Use the samples as targets for updating the inference model

 (Recent approaches other than sleep phase are developed to reduce the
variance of gradient estimate: slides later)

[Figure courtesy: Maei's slides] ©Petuum/nc. 24



Wake Sleep Algorithm

Wake sleep Variational EM

- Parametrized inference model g4 (z|x) - Variational distribution q4(z|x)

* Wake phase: « Variational M step:
* minimize KL(q4(z|x) || pg(z]x)) wrt. 6 - minimize KL(qg(z|x) || pe(z]x)) wrt. 6
* Egyzim) [Volog pe(x|2)] * Eqplzim) [Volog pe(x|2)]

» Sleep phase:

« Variational E step:
* minimize KL(pg(z|x) || 4 (z]|x)) wrt. ¢

« minimize KL(q4(z|x) || pe(z|x)) wrt. ¢
* Epg(z) [Vgl0g 44 (2, %)) * qy x exp[log py] if with closed-form
* low variance . V,E, [logpg(z,x)]
* Learning with generated samples of x PTde o\ | |
* need variance-reduce in practice

o  Learning with real data x
» TwO objective, not guaranteed to converge . .
« Single objective, guaranteed to converge

© Petuum,Inc. 25



Variational Autoencoders (VAES)

* [Kingma & Welling, 2014]

* Use variational inference with an inference model
* Enjoy similar applicability with wake-sleep algorithm

* Generative model pg(x|z), and prior p(z)
* Joint distribution pg (x,z) = pg(x|2)p(2)

- 9
apl) || / po (xlz)
 Inference model d¢ (le) inference model ‘®}/ generative model
N

~—

Figure courtesy: Kingma & Welling, 2014

© Petuum,Inc. 26



Variational Autoencoders (VAES)

 \Variational lower bound
L(6,¢;x) = Eq,z1x)llog pe(x,2)] — KL(qy(z|x) || p(2))

* Optimize L(0, ¢; x) wrt. 8 of pg(x|z)
* The same with the wake phase

* Optimize L(0, ¢; x) wrt. ¢ of q4(z|x)

Vo L(6, ;%) = -+ VpEq (22 [log pg(x|2)] + -

« Use reparameterization trick to reduce variance

* Alternatives: use control variates as in reinforcement learning [Mnih &
Gregor, 2014; Paisley et al., 2012]

© Petuum,Inc.
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Reparametrized gradient

* Optimize L(0, ¢; x) wrt. ¢ of q4(z]|x)
* Recap: gradient estimate with log-derivative trick:
VpEq,llogpe(x,2)| = Eg [log pe(x, 2) Vplog qy)

* Highvariance: vk, [logpel ~ E,,_q,[10g po(x, ) Vgqe(z:]x)]
* The scale factor log pg(x, z;) can have arbitrary large magnitude

« gradient estimate with reparameterization trick
z~qp(zlx) © z=gyu(ex), € ~ p(e)
VoEqgzix) 108 pa(x, 2)| = Ecop(e) [V¢log Do (x, Zy (6))]

» (Empirically) lower variance of the gradient estimate
*EgQ., z~ N(u(x),L(x)L(x)T) & €~N(0,1), z=pulx) + L(x)e

© Petuum,Inc.
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/
4 VAEs: algorithm

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
€ <+ Random samples from noise distribution p(e€)

g < Vo o LM (0, ¢p; XM €) (Gradients of minibatch estimator (8))

0, ¢ + Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 9, ¢

[Kingma & Welling, 2014]



% VAEs: example results

« VAEs tend to generate blurred
Images due to the mode covering
behavior (more later)

« Latent code interpolation and

sentences generation from VAEs
[Bowman et al., 2015].

(14 29

i want to talk to you .
“o want to be with you . ”

“o do n’t want to be with you .
1 do n’t want to be with you .

she did n’t want to be with him .

2

Celebrity faces [Radford 2015]

© Petuum,Inc.



Generative Adversarial Nets (GANS)

- [Goodfellow et al., 2014]

» Generative model x = Gg(z), z ~ p(2)
* Map noise variable z to data space x
* Define an implicit distribution over x: pg, (x)

* a stochastic process to simulate data x
* Intractable to evaluate likelihood

* Discriminator Dy (x)
« Qutput the probability that x came from the data rather than the generator
* No explicit inference model

* No obvious connection to previous models with inference networks like VAES
« We will build formal connections between GANs and VAEs later

© Petuum,Inc.
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/
{/ Generative Adversarial Nets (GANS)

 Learning
* A minimax game between the generator and the discriminator

 Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

* Train G to fool the discriminator

maxp ,CD = Ewdiata(w) [log D<CD)] + ]E:nNG(z),sz(z) [1Og<1 o D(m»]
minG EG = Ech;(z)’sz(z) [log(l — D(w))] .

e 1

JHE — Discriminator training
s — Generator training

fake image

g G
(generator)

£ N(0.I) © Petuum,Inc. 32

[Figure courtesy: Kim’s slides]



 Learning

* Train G to fool the discriminator
 The original loss suffers from vanishing gradients when D is too strong

* Instead use the following in practice
maxg Lg = IEj’:BNG’(z),zwp(z) [log D((E)]

[Figure courtesy: Kim’s slides]

G

(generator)

real image

fake image

f Generative Adversarial Nets (GANS)

1( Real)

D
(discriminator O(fake)
1(real)

— Discriminator training
— Generator training

© Petuum,Inc.
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; Generative Adversarial Nets (GANS)

 Learning

« Aim to achieve equilibrium of the game

» Optimal state:
* Pg(X) = Paara(x)
*D(x) =

[Figure courtesy: Kim’s slides]

Pdata(x)

¥

Pdata(X)+pg(x) -

G

(generator)

2

1( Real)
| D 0
4 |(discriminator (fake)
real image 1(rea|)

— Discriminator training
— Generator training

fake image

© Petuum,Inc.
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Generated bedrooms [Radford et al., 2016]

© Petuum,Inc.
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The Zoo of DGMs

 Variational autoencoders (VAES) [Kingma & Welling, 2014]
« Adversarial autoencoder [Makhzani et al., 2015]
* Importance weighted autoencoder [Burda et al., 2015]
 Implicit variational autoencoder [Mescheder., 2017]

» Generative adversarial networks (GANS) [Goodfellos et al., 2014]
* INfOGAN [Chen et al., 2016]

- CycleGAN [Zhu et al., 2017]
- Wasserstein GAN [Arjovsky et al., 2017]
» Autoregressive neural networks

* PixelRNN / PixelCNN [Oord et al., 2016]
* RNN (e.g., for language modeling)

. Ger]werative moment matching networks (GMMNS) [Liet al., 2015; Dziugaite et al.,
2015

* Retricted Boltzmann Machines (RBMS) [Smolensky, 1986]



(/ Alchemy Vs Modern Chemistry

This flower has small, round violet ) This flower has small, round violet
pc:luls with a dark purple center 3z, petals with a dark purple center

i
wﬁ...

Generator Network

Generator Network B rosidual blocks

LeakyRelU |

Mind Juice Media Inc. All rights reserved

© Petuum,Inc. 37



Outline

A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

Z Hu, Z YANG, R Salakhutdinov, E Xing,
“On Unifying Deep Generative Models”, arxiv 1706.00550

© Petuum,Inc.
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/
f A unified view of deep generative models

e Literatures have viewed these DGM approaches as distinct
model training paradigms
* GANs: achieve an equilibrium between generator and discriminator
« VAES: maximize lower bound of the data likelihood

o |_et's study a new formulation for DGMs
 Connects GANs, VAEs, and other variants, under a unified view

* Links them back to inference and learning of Graphical Models, and the
wake-sleep heuristic that approximates this

* Provides a tool to analyze many GAN-/VAE-based algorithms

« Encourages mutual exchange of ideas from each individual class of
models

© Petuum,Inc. 39



/
ﬁ Adversarial domain adaptation (ADA)

o Let’s start from ADA

* The application of adversarial approach on domain adaptation

« We then show GANs can be seen as a special case of ADA
» Correspondence of elements: S reag
D
GANs o
Elements GANs ADA Ldata
X data/generation features code data/gen
Data from source/target Ztgt [—Ltgt
V4 code vector . Go
domains oy
ADA
I Zsre Pl Lsrc
y Real/fake indicator Source/tar get domain Go
indicator
data  feature

© Petuum,Inc. 40




Adversarial domain adaptation (ADA)

 Data z from two domains indicated by y € {0,1}
« Source domain (y = 1)
» Target domain (y = 0)

* ADA transfers prediction knowledge learned from the
source domain to the target domain
» Learn a feature extractor Gg: x = Gg(2)
« Wants x to be indistinguishable by a domain discriminator:
Dy (x)
« Application in classification
« £E.9., we have labels of the source domain data

* Train classifier over x of source domain data to predict the
labels

* x is domain invariant = x is predictive for target domain data

Is this

“inference” or

“‘generation’

?

Ztgt

—»|Ligt

zST"C

_» mST‘C

data

feature

© Petuum,Inc.
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/
(/ ADA: conventional formulation

* Train Dy to distinguish between domains

MaXg /:,¢ = Ew:Ge(z),sz(z|y:1) [log D¢($)] + ]Ea):GQ(Z),sz(Zly:O) [log(l o D¢(CB>)]
* Train Gy to fool Dy

maxg Ly = ECC:GQ (2),z~p(z|y=1) [1Og(1 - D(b(w))] + Em:GQ (z2),z~p(z|y=0) [1Og D¢(£13)]

© Petuum,Inc. 42



ADA: new formulation

* To reveal the connections to conventional variational approaches, let's rewrite
the objectives in a format that resembles variational EM

* Implicit distribution over x ~ pg(x|y)
x = Gg(2), z ~ p(zly)

* Discriminator distribution q4 (y|x)
dey|x) = q4(1 — y|x)

» Rewrite the objective in the new form (up to constant scale factor)
maxg Lo = By, (zly)p(y) 102 4o (yl2)]

maxg Lo = Epg (z|y)p(y) [lOg ng(y|w)}
 z Is encapsulated in the implicit distribution pg(x|y)

maxe Lo = Ep, ()y=0)p(y=0) 108 @s(y = 0|)] + Ep, (z|y=1)py=1) [108 ¢s(y = 1|z)]

1 1

— iEaz:Ge(z),ZNp(zw:O) [log(l _ D¢(CU))] + §Ew:Ge(z),z~p(z|y:1) [log D¢(£U)]

* (Ignore the constant scale factor 1/2)

© Petuum,Inc. 43



ADA: new formulation

 New formulation
maxep Lo = Epg(a)y)p(y) 108 ¢ (y|x)]
maxg Lo = Ep, (z]y)p(y) [108 75 (y]x)]

* The only difference between optimizing 8 and ¢: g vs. q”
 This is where the adversarial mechanism comes about

© Petuum,Inc.
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/
f ADA vs. Variational EM

Variational EM ADA
« Objectives * Objectives
maxy Ly e = Eq,(z1x)[10g P (x]2)] + KL (q¢,(z|x)||p(z)) maxe Lo = Ep, (z/y)p(y) 108 70 (y|x)]
maxgLy g = E lo x|z)] + KL z|x%)||p(z maxg Lo = Ep, (2 log gy (y|x)
oL90 = Bay o [10g P (112 (d0lIp@)  max Lo = Epaahints [log g5, (y])]
» Single objective for both 6 and ¢ » Have global optimal state in the game
» Extra prior regularization by p(z) theoretic view

© Petuum,Inc. 45



% ADA vs. Variational EM

Variational EM
» Objectives

maxgLye = Eq, 0 llogpe(x|2)] + KL (CI¢(Z|X)||P(Z))

maxgLyg = Eq 210108 P (x|2)] + KL { g4 (2z]x)|Ip(2)

« Single objective for both 8 and ¢
« Extra prior regularization by p(2)

* The reconstruction term: maximize the conditional
log-likelihood of x with the generative distribution
pe (x|z) conditioning on the latent code z inferred

by gg(z]x)
- b

* pg(x|z) is the generative model

* g¢(z]x) IS the inference model

)

ADA

» Objectives
maxe Lo = Ep, (x)y)p(y) log g4 (y|)]
maxg Lg = Ep, (a]y)p(y) [log qg(ylw)]

* Two objectives
» Have global optimal state in the game
theoretic view

* The objectives: maximize the conditional
log-likelihood of y (or 1 — y) with the
distribution g4 (y|x) conditioning on latent

feature x inferred by pg(x|y)

* Interpret q4 (y|x) as the generative model

L 8 A" 4ERN w7

© Petuum,Inc. 46



ADA: graphical model

Define:

e Solid-line arrows (x — y):
* generative process

* Dashed-line arrows (y,z -» x):
* inference

* Hollow arrows (z — x):

« deterministic transformation
* leading to implicit distributions

* Blue arrows (x — y):
« adversarial mechanism
» involves both g4 (y]x) and qg (y]x)

a5 (ylz)
po(x|y)

maxep Lo = Ep, (z)y)py) 108 g6 (y[2)]
maxg Lo = Ep, (z|y)p(y) 108 45 (ylT))

© Petuum,Inc. 47



/
(/ GANSs: a variant of ADA

 Transfer the properties of source domain to target domain

e Source domain: e.g. real image, y =1
* Target domain: e.g. generated image, y =0

Ztgt

—»

Go

Ltgt

‘ZS‘T‘C

>
Go

data

a:S’J"C

feature

ADA

Zgen

—P|Lgen

code

Ldata

data/gen
GANSs

© Petuum,Inc.
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GANSs: a variant of ADA

 Implicit distribution over x ~ pg(x|y)
Pge(x) Yy =0
€XT p—
palaly) = {7 V0
‘X~ pg,(x) & x=0Gg(2), z~p(zly =0)

*X ~ Paata(X)
* the code space of z is degenerated
« sample directly from data

(distribution of generated images)

(distribution of real images)

© Petuum,Inc. 49



GANSs: new formulation

* Again, rewrite GAN objectives in the "variational-EM” format

* Recap: conventional formulation:
maxe Lo = Ez—g,(2),zop(zly=0) 108(1 — Dy(@))] + Exnpyora(w) 108 Do ()]
maxg L9 = Ex—q,(2),z~p(z|y=0) (108 Dy ()] + Eprp,oio (@) 10g(1 — Dy(x))]

= Ez=Gy(2),2~p(2|y=0) log Dy ()] (r)
L 4y (y|z)
 Rewrite in the new form
maxe Lo = Epp (z)y)p(y) [108 4o (y]2)]
maxg Lo = Ep, (aly)py) 108 76 (yl)) A L
po(x|y)

» Exact the same with ADA !
* The same correspondence to variational EM !

© Petuum,Inc. 50



? GANSs vs. Variational EM

Variational EM
» Objectives

maxgLye = Eq, 0 llogpe(x|2)] + KL (CI¢(Z|X)||P(Z))

maxgLyg = Eq 210108 P (x|2)] + KL { g4 (2z]x)|Ip(2)

« Single objective for both 8 and ¢
« Extra prior regularization by p(2)

* The reconstruction term: maximize the conditional
log-likelihood of x with the generative distribution
pe (x|z) conditioning on the latent code z inferred

by gg(z]x)
- b

* pg(x|z) is the generative model

* g¢(z]x) IS the inference model

)

GAN

» Objectives
maxe Lo = Ep, (x)y)p(y) log g4 (y|)]
maxg Lo = Ep, @]y)p(y) [log qu(y|w)]
* Two objectives

» Have global optimal state in the game
theoretic view

* The objectives: maximize the conditional
log-likelihood of y (or 1 — y) with the
distribution g4 (y|x) conditioning on
data/generation x inferred b X

* Interpret q4 (y|x) as the generative model

L 8 A" 4ERN w7

© Petuum,Inc. 51



% GANSs vs. Variational EM * Interpret x as latent variables

 Interpret generation of x as
performing inference over latent

Variational EM GAN
» Objectives » Objectives
maxgLye = Eq, 0 llogpe(x|2)] + KL (CI¢(Z|X)||P(Z)) maxe Lo = Ep, (a|y)p(y) [108 45 (y[)]
maxgLy g = E lo x|z)| + KL Z|x Z maxg Lo = Ky, (2 log g, (y|)
oL40 = Eay o l10g P (112 (d0zlIp@) o = Epahn(s [log g5, (/)]
» Single objective for both 6 and ¢ « Have global optimal state in the game
« Extra prior regularization by p(z) theoretic view
- The reconstruction term: maximize the conditional ~ * The objectives: maximize the conditional
log-likelihood of x with the generative distribution log-likelihood of y (or 1 — y) with the
pe (x|2) conditioning on the latent code z inferred distribution g¢ (v|x) conditioning on
data/generation x inferred b X
by gg(z]x)

-

* pg(x|z) is the generative model

. q¢(z|x) is the inference model ~ TOTETTEETEY
© Petuum,Inc. 52

* Interpret q4 (y|x) as the generative model




GANSs: minimizing KLD

* As in Variational EM, we can further rewrite in the form of minimizing
KLD to reveal more insights into the optimization problem

* For each optimization ste

* p(y): a uniform distribution

* Po=g,(X) = Epy)|Po=g,(x

0 Of pg(x|y) at point (8 = 0y, P = ¢y), let

y)| : prior distribution over x

*q" (x]y) « gy, (¥|2)Po=g,(x) : posterior distribution over x

 Lemma 7. The updates

« KL: KL divergence

Vo Epy) [KL (pa(@ly) 4" (@[y))] ~ ISD (poly = 0)[lpa(aly = 1)) |

of 8 at 8, have

Vo| = By (@lyp) (108 G5=g, (y]2)] ] | -

6=0¢

0—0,

« JSD: Jensen-shannon divergence

© Petuum,Inc. 53



GANSs: minimizing KLD

*Lermma 1. The updates of 0 at 8, have

Vo - Epe (29)p() [log Q=g (y\a:)} } ‘9:90 -

Vo By KL (po(@19) 4" ([y))] ~ ISD (po(aly = 0) [po(ly = 1)) |

» Connection to variational inference
* See x as latent variables, y as visible
* Po=g, (x): prior distribution
*q"(x|y) x qg,zd)o(ylx)pg:go(x) . posterior distribution

* pg(x|y): variational distribution
« Amortized inference: updates model parameter @

* Suggests relations to VAEs, as we will explore shortly

60=0,

© Petuum,Inc.
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% GANs: minimizing KLD

Po=g, Xy = 1) = Paata (X)  Po=g, (Xly = 0) = pg,_, ()

Po=gnew (xly = O) = pgezgnew (x)

P

-
- =~ X

-
——————

» MiniMizing the KLD drives py, (X) 10 Pagra(X)

+ By definition: pg—g, (x) = Epcyy[Po=0, (X19)] = (Poggy () + Paara(®)) /2
* KL(pg(xly = DI|q" (x|ly = 1)) = KL(Paara()11q" (x|ly = 1)) : constant, no free parameters
* KL(pg(x|ly = 0)||q" (x|y = 0)) = KL (pge(x)nq’"(xly = O)) . parameter 6 to optimize

*q" (xly = 0) € qy—¢ (v = 0[x)pg=g, () )
+ seen as a mixture of py,_, (x) and paq¢a (x) ’ @
« mixing weights induced from qu;=¢o(y = 0]|x) . >

« Drives pg, (x|y) to mixture of Pgo—g, (X) and pagiq (x) 4<_,§;a(.:cly)

= Drives pg, (x) 10 paara(X)

© Petuum,Inc. 58



% GANSs: minimizing KLD

Po=g, X|y = 1) = Paara (¥)  Po=g, (Xly = 0) = pg,_, (x)

> pognew(xly = 0) =py .. (%)
AN s S
1 s , AN
. \
missed mode K S\’ S\
- \
4
Y4
- x__Z ___= - S

* Missing mode phenomena of GANSs

KL T(xly =0
« Asymmetry of KLD (Pos COlla” ey = 0)

pgg (x)
« Concentrates pg(x|y = 0) to large = Jpgg(x) logqr(xly —0) dx
r
modes of g" (x]y)
= Dy (x) misses modes of Paata(X) » Large positive contribution to the KLD in the

« Symmetry of JSD regions of x space where q" (x|y = 0) is
D ff h NavVi f small, unless p,, (x) is also small
 Does not affect the behavior of mode + = py, (x) tends to avoid regions where

miISSsIiNg q" (x|y = 0) is small

© Petuum,Inc. 59



GANSs: minimizing KLD

* Lemma T. The updates of @ at 8, have

Vo | IE'T'pe(wly)p(y) [log qgo (y|:13)} } ‘9:00 -

Vo Epy) [KL (po(@[y)l|q” (x1y))] = ISD (po(ly = 0)llpo(ly = 1)) ]|
* No assumption on optimal discriminator q(’];O(ylx)

0=0,

* Previous results usually rely on (near) optimal discriminator

* ¢°(y = 11%) = paata(X)/ Paata(x) + pg(x))
* Optimality assumption is impractical: limited expressiveness of Dy, [Arora et al 2017]
« Our result is a generalization of the previous theorem [Arjovsky & Bottou 2017]

* Plug the optimal discriminator into the above equation, we recover the theorem

] 1
Vo [ — Epg(ly)p(y) [log Ao (y\m)] ] ’ = Vo IEKL (Pgo l|Pdata) — ISD (py, deata)] ’

6=60, 6=0¢

» Give insights on the generator training when discriminator is optimal

© Petuum,Inc.
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GANSs: minimizing KLD

In summary:

* Reveal connection to variational inference
* Build connections to VAEs (slides soon)
* Inspire new model variants based on the connections

« Offer insights into the generator training
« Formal explanation of the missing mode behavior of GANs

« Still hold when the discriminator does not achieve its optimum at each
iteration

© Petuum,Inc.
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b

Inference as generation

valid z space in
two domains

© Petuum,Inc. 62



Variant of GAN: InfoGAN

* GANs don't offer the functionality of inferring code z given datze

* INfOGAN [Chen et al., 2016]
* Introduce inference model @, (z|x) with parameters n
* Augment the objectives of GANs by additionally inferring z

maxp Lp = ]Emwpdata(w) [logD(az)] + EmNG(z),sz(z) [log(l - D(w))] )
maxq,Q £6,Q = EznG(2),2~p(z) 108 D()+1og Q(z|x)] .

@y
<
Zgen L gen
g 2 g Zgen ng Zgen
qu Y qu Y
GANSs InfoGAN
Ldata Tdata

code data/gen code data/gen oPetumine. 63



w(zlz,y) 0 (ylz)

/
(/ INfoGAN: new formulation

- Defines conditional g, (z|x,y)

* qn(z|x,y = 1) is fixed without free parameters to learn
» As GANs assume the code space of real data is degenerated

 Parameters n are only associated with g, (z|x,y = 0)
* Rewrite in the new form:

maxg Lo = Ep, (aly)p(y) [108 ¢y (2], y)ge (y|)]
maxe.n Lo, = Epy(zly)pey) 1108 ¢, (2|2, y)d} (y]x)]

© Petuum,Inc. 64



/
{/ GANs vs InfoGAN

Oy
a—
Zgen »{Lgen Zgen —lL gen
G@ GE)
Ldata

Ldata

code data/gen code data/gen

a5 (y|z)

@ am(zle,y) ¢ (ylz)

\4 ‘/, 4 ’
é;(my) Po(xy)

maxg Lo = Ep, (zy)p(y) 108 as(ylw)]  maxe Lo =By, (@)y)p(y) 108 45 (2], 1) g0 (y] )]
maxg Lo = Ep, (aly)p(y) 108 45(y/z)] maxg.n Lo = Epg(aly)p(y) 108 4y (2|T, y)q;(ylm)}




/
(/ INfoGAN: new formulation

wm(zlz,y) ¢ (ylz)

e Similar results as in GANs hold:
*Letq"(xlz,y) o« qy=n,(2|%,¥)qp-¢ (¥ |2)Dg=5, (%)
 We have:

Vo | = Epy@iypw) [108 @ (212, 9)g5, (y]z)] } ‘e:eo -

Vo :Ep@) KL (po(z|y)|lq" (x|2,y))] — ISD (po(x|y = 0)||pe(x|y = 1))} ‘

0=0,

* Next we show correspondences between GANs/InfoGAN and
VAES
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e

Inference as generation

+ generate z
GANs >

valid z space in
two domains
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% Relates VAEs with GANs

*Resemblance of GAN generator learning to variational

inference
» Suggest strong relations between VAEs and GANs

*Indeed, VAEs are basically minimizing KLD with an opposite
direction, and with a degenerated adversarial discriminator

an(z|2,y) qq(;) (y|x) (2|, y) qf) (y|x) &degenerated
swap the generation (solid-line) discriminator
and inference (dashed-line)
processes of InfoGAN

InfoGAN



ﬁ Recap: conventional formulation of VAEs

* Objective:
maxenﬁvae = Epoia(a) [Eqn(zm) log pg(x|z)] — KL(g,(z|x)||p(= ))}

*p(z): prior over z

* pg(x|z): generative model

* Jn(z|x): inference model

* Only uses real examples from pi4:4 (%), lacks adversarial mechanism

 To align with GANSs, let’s introduce the real/fake indicator y and
adversarial discriminator

© Petuum,Inc. 69



VAEs: new formulation

* Assume a perfect discriminator q.(y|x)
* q.(y =1|x) = 1 if x is real examples
 g.(y = 0]x) = 1 if x is generated samples
* ¢ (y|x) := q.(1 —y|x)

* Generative distribution

p9($|z,y) = 9

(po(x|z) y=0
\pdata(w> y =1
*Let pg(z, ylx) o py(xlz, y)p(z|y)p(¥)

o« Llemma 2

vae

o =2 Ep, (@) Eq, (zl2)q (yle) 108 po (2|2, y)] — KL(qn (2|2, y)q (y]2) Ip(2]y)p(Y))]
=2-Ep, (@) [-KL (g,(2]|2, y) @ (y|x)||pe(z, y|x))] -
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% GANSs vs VAEs side by side

GANSs (InfoGAN) VAEs
Generative gy () y=20 _ [pe(xlz) y=0
distribution | Pe(®ly) = {pdam(m) Y= 1. po(®|2,y) = {pdam(w) y=1.
D(;?;’:ig‘:;‘gtr?r qp(¥|%) q.(y|x), perfect, degenerated
Z'"r:%eer;ce gy (z|x,y) of INfoGAN qn(z|x,y)
bt | mine KL (g (x1y) | q"(x12,y)) | mingKL (g, (zlx, y)at (712) || pe (2 ¥10))
minimize

~ mingKL(Pg || Q) ~mingKL(Q || Pg)
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e

Inference as generation Instantiate
+ generate z Exchange generation
GANs g and inference

valid z space in
two domains
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/
(/ Link back to wake sleep algorithm

* Denote

e | atent variables h
« Parameters A

* Recap: wake sleep algorithm
Wake :  maxg Eq, (h|2)pyara (=) 108 Po(z|h)]
Sleep . maxy Epe (x|h)p(h) [log Q)\(h|£13)]

© Petuum,Inc. 75



VAEs vs. Wake-sleep

» Wake sleep algorithm
Wake : maxeg EQA(h|w)pdata<w) [log Po (a:\h)]

Sleep : maxy Epe(m|h)p(h) [log Q)\(h‘a))]
lLethbez and Aben

= maxg By (z|@)paas. (@) 108 Po(x|2)], recovers VAE objective of optimizing @
* VAEs extend wake phase by also learning the inference model (n)

maxeg,n E;ﬁ‘% = Eq, z12)paata (@) log pg(z|2)] —Epata () [KL(qy(2|z)|lp(2))]

* Minimize the KLD in the original variational free energy wrt. n

» Stick to minimizing the wake-phase KLD wrt. both @ and n

* Do not involve sleep-phase objective

» Recall: sleep phase minimizes the reverse KLD in the variational free energy

© Petuum,Inc.
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GANSs vs. Wake-sleep

» Wake sleep algorithm
Wake : maxeg EQA(h|w)pdata<w) [logpg (a:\h)]
Sleep . maxy Epe(m|h)p(h) [log Q)\(h‘a))]
Let hbey,and 4 be ¢

= maxe Ep, (xy)p(y) 108 ¢s(y|x)]. recovers GAN objective of optimizing ¢

* GANs extend sleep phase by also learning the generative model (0)
* Directly extending sleep phase: maxg Lo = Ep, (2)y)py) 108 ¢ (y|T)]

* GANs: maxg Lo = Ep, (zly)p(y) [108 05 (y]2)]
- The only difference is replacing g4 with qg

 This is where adversarial mechanism come about !

« GANSs stick to minimizing the sleep-phase KLD

* Do not involve wake-phase objective

© Petuum,Inc.
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Extend wake phase
Approximate
E-step

Extend /
sleep phase

Inference as generation Instantiate

+ generate z Exchange generation
g and inference

valid z space in
two domains
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Extend wake phase
Approximate
E-step

Extend /
sleep phase

Inference as generation Instantiate

+ generate z

|4

Exchange generation

INfoGAN )| ——— .
and inference

Exchange
x and z

valid z space in

two domains Combine
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Extend wake phase
Approximate
E-step

Extend /
sleep phase

Inference as generation Instantiate

+ generate z

|4

Exchange generation

INfoGAN )| ——— :
and inference

Exchange
x and z

valid z space in

two domains Combine

Implicit

inference

Models © Petuum,Inc. 80



; Mutual exchanges of ideas: augment the loss
functions

GANs (InfoGAN) VAEs
KLD to ming KL (pg(x]y) || 9" (x]|z,y)) | mingKL(gq,(zlx,y)ql (y|x) || pe(z y]x))
minimize ~ mingKL(Pg || Q) ~mingKL(Q || Pg)

« Asymmetry of KLDs inspires combination of GANs and VAEs
* GANSs: mingKL(Pg||Q) tends to missing mode
* VAEs: mingKL(Q||Pg) tends to cover regions with small values of ¢4

r’e

[Figure courtesy: PRML] Mode covering Mode missing

© Petuum,Inc. 81



% Mutual exchanges of ideas: augment the loss
functions

GANs (InfoGAN) VAEs
KLD to ming KL (pg(x]y) || 9" (x]|z,y)) | mingKL(gq,(zlx,y)ql (y|x) || pe(z y]x))
minimize ~ mingKL(Pg || Q) ~mingKL(Q || Pg)

« Asymmetry of KLDs inspires combination of GANs and VAEs
 GANs: mingKL(Pgy||Q) tends to missing mode
* VAEs: mingKL(Q||Pg) tends to cover regions with small values of py4t4
« Augment VAEs with GAN 0SS [Larsen et al., 2016]
 Alleviate the mode covering issue of VAES
« Improve the sharpness of VAE generated images
« Augment GANs with VAE 0SS [Che et al., 2017]
 Alleviate the mode missing issue of GANs
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/
ﬁ Mutual exchanges of ideas: augment the graphical
model

GANs (InfoGAN) VAEs

Discriminator

distribution qe(V]X) q.(y|x), perfect, degenerated

« Activate the adversarial mechanism in VAEs
« Enable adaptive incorporation of fake samples for learning
 Straightforward derivation by making symbolic analog to GANs

wm(zlzy) 7 (y|)

1 N ,'
Po (£B|Z, y)
Vanilla VAEs Adversary Activated VAEs

© Petuum,Inc. 83



/
(/ Adversary Activated VAEs (AAVAE)

*\Vanilla VAES:
maxg n L4 = Epy (@) |Eq, (zl2.y)a” (v]2) 108 Pa(x|2,y)] — KL(gn (2|, y)q. (y|2)[p(2|y)p(y))]

*Replace q.(y|x) with learnable one q4 (y|x) with parameters ¢
» As usual, denote reversed distribution g (y|x) = q¢ (y]x)

maxeg,n %%Vq;le — Epgo () [Eqn (z|w,y)qg(y\w) [logp9 ($|Z, y)] _ KL(Qn (Z|33, y)qg (y!w)||p(z|y)p(y))}
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/
f AAVAE: adaptive data selection

maxe,n zet\;;le — Epgo () [Eqn(z|w,y)qg(y|w) [logpg(a:|z, y)] o KL(Qﬂ(Z|w7 y)qg(y|$)||p(z|y)p(y))]

* An effective data selection mechanism:
« Both generated samples and real examples are weighted by

qp(y = 0|x) = q4(y = 1|x)
« Only samples that resembles real data and fool the discriminator will be used
for training

- A real example receiving large weight g4 (y[x)
= Easily recognized by the discriminator as real
= Hard to be simulated from the generator
= Hard examples get larger weights

© Petuum,Inc. 85



/
(/ AAVAE: discriminator learning

« Use the binary classification objective as in GAN

aavac

maxey L4 = Epy(a|z,y)pzlv)p(y) 108 26 (y]T)]

© Petuum,Inc. 86



/
f AAVAE: empirical results

* Applied the adversary activating method on

 vanilla VAEs
* class-conditional VAEs (CVAE)
» semi-supervised VAEs (SVAE)

© Petuum,Inc. 87



)
/' AAVAE: empirical results

e Evaluated test-set variational lower bound on MNIST

* The higher the better

Train Data Size | VAE AA-VAE | CVAE AA-CVAE | SVAE  AA-SVAE
1% | -122.89 -122.15 | -125.44 -122.88 -108.22 -107.61
10% | -104.49 -103.05 | -102.63 -101.63 -99.44  -98.81
100% | -92.53  -92.42 -93.16  -92.75 — —

« X-axis: the ratio of training data for learning: (1%, 10%, 100%)

e Y-axis: value of test-set lower bound

© Petuum,Inc. 88



)
/" AAVAE: empirical results

* Evaluated classification accuracy of SVAE and AA-SVAE

1% 10%

SVAE 0.9412+.0039 0.9768+.0009
AASVAE 0.9425+.0045 0.9797+.0010

e Used 1% and 10% data labels in MNIST

© Petuum,Inc. 89



Mutual exchanges of ideas

 AAVAE enhances VAEs with ideas from GANSs
*\We can also enhance GANs with ideas from VAES
* VAES maximize a variational lower bound of log likelihood

* Importance weighted VAE (IWAE) Budaeta. 2016
« Maximizes a tighter lower bound through importance sampling

 The variational inference interpretation of GANs allows the
importance weighting method to be straightforwardly applied to

GANSs
« Just copy the derivations of IWAE side by side with little adaptions!

© Petuum,Inc. 90



/
(/ Importance weighted GANs (IWGAN)

e Generator learning in vanilla GANs

maxe Egepg (@ly)p(y) 108 @, (U] 2)]

e Generator learning in IWGAN

ko g (ylxi) r
maxg Ky, xy~peo(x|y)p(y) [221 Q¢O (y|x;) log 9, (ylz:)
0 (/

* Assigns higher weights to samples that are more realistic and fool the
discriminator better
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IWGAN: empirical results

* Applied the importance weighting method to

 vanilla GANs
* class-conditional GANs (CGAN)

« CGAN adds one dimension to code z to represent the class label
» The derivations of the IW extension remain the same as in vanilla GANs

© Petuum,Inc.
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/
(/ IWGAN: empirical results

e Evaluated on MNIST and SVHN

« Used pretrained NN to evaluate:

* [nception scores of samples from GANs and IW-GAN

« Confidence of a pre-trained classifier on generated samples + diversity of
generated samples

MNIST SVHN

GAN 8.34+.03 5.18%.03
IWGAN  8.45+.04 5.34+.03

» Classification accuracy of samples from CGAN and IW-CGAN

MNIST SVHN

CGAN 0.985+.002 0.797=.005
IWCGAN  0.987£.002 0.798+.006
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Recap: Variational Inference

Maximize the variational lower bound L(0, ¢; x), or equivalently,
minimize free energy

F(0,¢;x) = —logp(x) + KL(q4(2|x) || pe(z]x))

» E-step: maximize £ wrt. ¢ with 0 fixed
maxyL(0, ; x) = Eq (212 [log pe (x]2)] + KL(qq (z]x)||p(2))
* |f with closed form solutions
qg (z]|x) o exp[log pg(x, z)]
* M-step: maximize L wrt. 8 with ¢ fixed

maxgL(0, ¢; x) = Eg(z)x)[log pe(x]2)] + KL(q4(z]x)||p(2))

© Petuum,Inc.
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/
f Discussion: Modeling latent vs. visible variables

Latent and visible variables are traditionally distinguished
clearly and modeled in very different ways

* A key thought in the new formulation:

* Not necessary to make clear boundary between latent and visible
variables,

* And between inference and generation

* Instead treat them as a symmetric pair

© Petuum,Inc. 95



/
(/ Symmetric modeling of latent & visible variables

* Help with modeling and understanding:

* Treating the generation space x in GANs as latent
* reveals the connection between GANs and ADA
 provides an variational inference interpretation of generation

‘/
Ztgt

ZSTC

_> wsrc

data

feature

ADA

N
\
_> wtgt ’/I

Inference on features

Zgemn

code

- - o

data/gen

GANSs

Treat generation of x

™ as performing

—P1TsenN inference
Go
D¢ Yy
Ldata

© Petuum,Inc.
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/
f Symmetric modeling of latent & visible variables

* Help with modeling and understanding:

* Treating the generation space x in GANs as latent
* reveals the connection between GANs and ADA

 provides an variational inference interpretation of generation

« Wake sleep algorithm

« wake phase reconstructs visible variables based on latents
* sleep phase reconstructs latent variables based on visibles

* latent and visible variables are treated in a completely symmetric way

Wake: maxg E

Sleep: maxgy E

q¢(z]|x)

pe(z,x)

log pg(x, 2)]

:108 d¢ (zlx):
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% Symmetric modeling of latent & visible variables

* New modeling approaches narrow the gap

Empirical distributions over visible  Prior distributions over latent variables
variables

* Impossible to be explicit distribution « Traditionally defined as explicit distributions, e.g.,

. . . Gaussian prior distribution
* The only information we have is . Amiable for likelihood uat
the observe data examples miable for fikelinood evaiuation

« We can assume the parametric form
according to our prior knowledge

* Do not know the true parametric
form of data distribution

+ Naturally an implicit distribution * New tools to allow implicit priors and models

* GANSs, density ratio estimation, approximate
Bayesian computations

« E.g., adversarial autoencoder [Makhzani et al., 2015]
replaces the Gaussian prior of vanilla VAEs
with implicit priors

« Easy to sample from, hard to
evaluate likelihood
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/
(/ Symmetric modeling of latent & visible variables

* No difference in terms of formulations
 with implicit distributions and black-box NN models

e Just swap the symbols x and z

Z ~ Dprior (Z) X ~ Pdata (x)
!

X ~ fblack—box(z) zZ~ f black—box(x)

prior distr.
X~ pdata(x)
Z ~ f pack—box (%)
Generation Inference
model model

Z ~ DPprior (Z) @
X ~ fplack-box(2) _—
data distr. etuum, Inc. 99



/
(/ Symmetric modeling of latent & visible variables

* No difference in terms of formulations
 with implicit distributions and black-box NN models

* Difference in terms of space complexity

» depend on the problem at hand
* choose appropriate tools:
 implicit/explicit distribution, adversarial/maximum-likelihood optimization, ...

orior distr. orior distr. adversarial loss 0 maximum likelihood loss
maxg logp(zpriorl(p)

prior distr.

Generation Generation
model g gi model Inference Inference
ata distr. model model

maxg logp(Xyeq|0) @ @
adversarial loss ° maximum likelihood loss data distr. data distr.




/ Examples of symmetric modeling:
Controlled generation of text and image

» Goals:
« Generation of realistic sentences / images Generation: py(x|z, c)
» Control of user-specified attributes Inference: q4(z|x), q4(c|x)

» Conditional generative models:

« Control-gen [1] for controlled text generation

« SGAN [2] for controlled image generation

« Structured code ¢ with designated semantics
» Text: sentiment, tense, ...
* Image: object, ...

» Unstructured code z:
» Captures all other aspects of the sample

[1] Hu et al., “Towards Controlled Generation of Text”, ICML 2017
[2] Zhang et al., “Structured GANs”, NIPS 2017 ©Petuuminc. 101



/
{/ Losses in generation space

« Generation of realistic sentences / images
« => (Generation distribution stays “close” to the real data distribution
« Control-gen for text: maximum likelihood loss in x space
* SGAN for image: adversarial loss in joint (x,z) and (x, ¢) space

Text generation Image generation
@ @ data distr.

pe(x|z, c) pe(x|z,c) @
~ ~

maximum likelihood loss adversarial loss
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Losses in latent space

« Control of user-specified attributes
« => |nference distributions stay close to true posterior distributions
& Inference distributions p 4 (c|x) stay close to data label distributions
« Control-gen for text: maximum likelihood loss in z and ¢ space
* SGAN for image: adversarial loss in joint (x, z) and (x, ¢) space
« Both: maximum likelihood loss in ¢ space
Text generation Image generation

P ¢(z|x) p ¢ (clx)
@ ©Petuumnc. 103
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% Example results

« Control-gen for text  SGAN for image

Generated sentence pairs with opposite sentiment

the acting is uniformly bad either .
the performances are uniformly good .

000p
1
(text style transfer) 222
- Image 232
the film is strictly routine ! . progression i Pe
the film is full of imagination . ' 7z
‘ 9 9 20
after watching this movie , i felt that disappointed . v / ié (o7
. . . i 2O $¥so62F
after seeing this film ,1’ma fan . 5 Style 2013348873
transfer 2315671
23
23
23

——

gy o

NN
YN~

E VIR JEN RV
OQO Qu S
Ny ¢

this 1s just awful .
this 1s pure genius .
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Part-ll: Conclusions Z Hu, Z YANG, R Salakhutdinov, E Xing,

“On Unifying Deep Generative Models”, arxiv 1706.00550

* Deep generative models research have a long history
« Deep blief nets / Helmholtz machines / Predictability Minimization / ...

 Unification of deep generative models

 GANs and VAEs are essentially minimizing KLD in opposite directions
» Extends two phases of classic wake sleep algorithm, respectively

A general formulation framework useful for
» Analyzing broad class of existing DGM and variants: ADA/InfoGAN/Joint-models/...

* Inspiring new models and algorithms by borrowing ideas across research fields

« Symmetric view of latent/visible variables

* No difference in formulation with implicit prior distributions and black-box NN
transformations

* Difference in space complexity: choose appropriate tools
» Structured modeling of latent space
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Plan

e Statistical And Algorithmic Foundation and Insight of Deep
Learning

* On Unified Framework of Deep Generative Models

« Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc.
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Outline

*Deep Learning as Dataflow Graphs
» Auto-differential Libraries

 Static and Dynamic Neural Networks
* DyNet

«Cavs
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Outline

*Deep Learning as Dataflow Graphs
» Auto-differential Libraries

« Static and Dynamic Neural Networks
* DyNet

«Cavs
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; A Computational Layer in DL

* A layer in a neural network is composed of a few finer
computational operations

* A layer [ has input x and output z, and transforms x into z following: y =
Wx + b,z = ReLU(y)

* Denote the transformation of layer [ as f;, which can be represented as
a dataflow graphs: the input x flow though the layer

©
T3
X Z
— || — >
Add
A
fi

MatMul
&

© Petuum,Inc.



From Layers to Networks

* A neural network is thus a few stacked layers [ =1, ..., L, where
every layer represents a function transform f;
* The forward computation proceeds by sequentially executing

f1'f21f3' "')fL

* Training the neural network involves deriving the gradient of its
parameters with a backward pass (next slides)

© Petuum,Inc.



% A Computational Layer in DL

* Denote the backward pass through a layer [ as b;

* b; derives the gradients of the input x(dx),given the gradient of z as dz,
as well as the gradients of the parameters W, b

 dx will be the backward input of its previous layer [ — 1

« Backward pass can be thought as a backward dataflow where the
gradient flow through the layer

dx dz '

— || - > G

Y

b o

& g
H

© Petuum,Inc.




/
(/ Backpropagation through a NN

* [he backward computation proceeds by sequentially executing
bL, bL—l) bL_Z’ nany b1

© Petuum,Inc. 6



% A Layer as a Dataflow Graph

 Give the forward computation flow, gradients can be computed
by auto differentiation

« Automatically derive the backward gradient flow graph from the forward
dataflow graph

© Petuum,Inc. 7



% A Network as a Dataflow Graph

» Gradients can be computed by auto differentiation

» Automatically derive the gradient flow graph from the forward dataflow
graph

SGD Trainer

» Gradients

| =
_
oy
N
S
=

© Petuum,Inc.



Gradient Descent via Backpropagation

* The computational workflow of deep learning
» Forward, which we usually also call inference: forward dataflow
« Backward, which derives the gradients: backward gradient flow
« Apply/update gradients and repeat

Backward
* Mathematically,

00 — (=) 4 g.v (9~ D))

Model parameters Forward Data

© Petuum,Inc.



Outline

*Deep Learning as Dataflow Graphs
 Auto-differential Libraries

« Static and Dynamic Neural Networks
* DyNet

«Cavs
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Auto-differential Libraries

« Auto-diff libraries automatically derive the gradients following
the back-propagation rule.

* A lot of auto-differentiation libraries have been developed:
» So-called Deep Learning toolkits

P ¥ Microsoft
Caffe & Caffe2 o CNTK
«I.mh PYTORCH
DyNet theano
<o
Chainer

dmlc
mxnet

© Petuum,Inc.
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Deep Learning Toolkits

* They are adopted differently in different domains
*For example

P B Microsoft
Caffe © caffe2 Tensf oW C N T K
‘I‘torch PYTORCH
DyNet theano
<o

Chainer

dmlic

mxnet

—

Vision NLP

© Petuum,Inc.
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% Deep Learning Toolkits

* They are also designed differently
* Symbolic vs. imperative programming

Caffe ‘

TensorFlov

DyNet :U;’ Caffe2

9
.r torch i
Chainer theano
. dmlc
PYTORCH mxnet

—

Imperative Symbolic

© Petuum,Inc.



/
f Deep Learning Toolkits: Symbolic and Imperative

« Symbolic vs. imperative programming

« Symbolic: write symbols to assemble the networks first, evaluate later

* Imperative: immediate evaluation

Q -h % OO W >

Variable('A")

Variable('B")

B * A
C + Constant(1)

compiles the function

compile(D)
f(A=np.ones(18), B=np.ones(10)*2)

Symbolic

import numpy as np
a = np.ones(10)
np.ones(18) * 2
b * a

c +1

b
C
d

Imperative

© Petuum,Inc. 14



% Deep Learning Toolkits

* Symbolic

« Good
 easy to optimize (e.g. batching, parallelization, kernel fusion) for developers
» More efficient

« Bad
« The way of programming might be counter-intuitive
» Harder to debug for user programs
* Less flexible: you need to write symbols before actually doing anything

* [mperative:
« Good

* More flexible: write one line, evaluate/execute one line

. Fasy to program and easy to debug: because it matches the way we use in most programming
anguages

* Bad

» Less efficient
« More difficult to optimize

© Petuum,Inc. 15



Outline

*Deep Learning as Dataflow Graphs
» Auto-differential Libraries

» Static and Dynamic Neural Networks
* Dynamic Declaration and DyNet
«Cavs
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/
4 Program an NN = Assemble a Dataflow Graph?

 Define a neural network
 Define operations and layers: fully-connected” Convolution? Recurrent?
 Define the data I/O: what data to read? Where?

 Define a loss function/optimization objective: L2 loss”? Softmax? Ranking
Loss?

 Define an optimization operator: SGD, Momentum, Adam, etc.
« Connect operations, data 1/O, loss functions and optimizer as a full
dataflow graph, which is the representation of the neural network
Auto-differential Libraries then take over

 Build forward dataflow graph and backward gradient flow graphs
automatically

» Perform training and apply updates

© Petuum,Inc. 17



Summary: Static Declaration

* Users build a dataflow graph

e Frameworks analyze and optimize the graph
« Automatically derive the backward graph
* Incorporate some optimization if desired

« Perform training iteratively (via SGD)

Perform graph-level optimization

over D (optionally)

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1—1T:
read the ¢th data batch {z!}* ,.
batched computation: D({zt}2 ).

© Petuum,Inc.




/
/ Summary: Static Declaration

 Static Declaration seems to be a dominant choice for
programming deep learning models
» Good for static workflows: define once, run for arbitrary batches/data
« Easy to parallelize/batching for a fixed graph
« Easy to optimize: a lot of off-the-shelf optimization techniques for graph

© Petuum,Inc.



/
f Static Declaration: Advantages and Assumptions

* The dataflow graph D only needs to be declared (and optimized) once,
therefore
« Ease of programming: users declare graph once, works for all samples
« Constant graph construction/optimization overhead

» All samples compute over one graph, therefore the computation can be “by-nature”
balched - by leveraging GPU and other advanced matrix-computing libs (CUDA, etc.)

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1—1T-:
read the t¢th data batch {z}% .
batched computation: D({zt}2 ).

© Petuum,Inc. 20



Introduction to Dynamic Neural Networks

* Deep Learning has been applied on more structured data
» The neural network compute following a data-dependent structure, in order to encode the

structure information
« Sequences, Trees, Graphs

* E.g. Recurrent Neural Networks and their variants

« Sequence RNN in machine translation, video understanding

» Tree RNN in sentence parsing and sentiment analysis
» GraphRNN in social network/image segmentation

(a) Cel! (b) Chain| |(d) Graph
Funlctlon —-O—-0O0—~0O— | | |
C“) © g) =" —»(1)4— —»CT)<- —>(1)<-
vl _w | Y Y
SOO O/ \o —>(T)<— —»(1)4— —>C1)<—
ul NN S S
. 0O 0O >0« >0« ->0«
7N 7N t t t
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Dynamic Neural Networks

* The dynamics of the NNs come from multiple dimensions
 Variably sized inputs
 Variably sized outputs

* .g. in machine translation, input/output sentences have different length across
samples

« Variably structured inputs/outputs

*e.g. irr]w image segmentation/social network, input and output are differently structured
graphs.

* Nontrivial inference algorithms
* e.g. in graph NNs, the inference path is dependent on the structure of the input data
 The NN architecture used to handle structured data would change
with the input sample
* I.e. Dynamic Neural networks

© Petuum,Inc.
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Static Declaration for Dynamic Dataflow Graphs

«Can we handle dynamic dataflow graphs using static
declaration?

*\Which sounds contradicting, but there do exist some
techniques that only work for sequential data:
 Static unrolf preprocessing all inputs to have the same length
» Bucketing. put inputs into different buckets, one bucket one NN
» Dynamic unroll (in TensorFlow): based on control flow operations
* Observations

At the core of the above tricks is to find a way to batch the computation
in order to make the computation more efficient

© Petuum,Inc. 23



/
ﬁ Static Declaration for Dynamic Dataflow Graphs

* They are very commonly adopted, but are they good?

» Unable to express structures beyond sequences

« Usually yield unnecessary (extra) computation, which wastes
computational resources

* More problems
e Difficulty in expressing complex flow-control logic
« Complexity of the computation graph implementation
« Difficulty in debugging

© Petuum,Inc.
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Outline

*Deep Learning as Dataflow Graphs

» Auto-differential Libraries

« Static Declaration and Dynamic Neural Networks
* Dynamic Declaration and DyNet

«Cavs

© Petuum,Inc.

25



/
(/ An Extended Model: Dynamic Declaration

* From Static Declaration to Dynamic Declaration

- Key idea: declare and construct a dataflow graph for each
iInput sample

/* (b) dynamic declaration */
fort=1— 1T
read the tth data batch {z!}* .
fork=1— K:
declare a data flow graph D! for .
single-instance computation: D} (z}).

© Petuum,Inc



% Dynamic Declaration

 Static Declaration vs. Dynamic Declaration

* Move the graph declaration and construction (and optimization) from
outside of the loop to inside the loop

* Perform single instance training because it is hard to batch

/* (a) static declaration */ /* (b) dynamic declaration */
// all samples must share one graph fort=1—1T:
declare a static data flow graph D. read the tth data batch {zt}X .
fort=1-—->1T: fork=1— K:
read the tth data batch {z?} % .. declare a data flow graph D! for xt.
batched computation{D({z!} X ,). single-instance computation:| D} (z?)

© Petuum,Inc. 27



Dynamic Declaration: Existing Frameworks

* Dynamic Declaration

 Imperative (instance evaluation)
» Chainer (Preferred Networks Inc.), PyTorch (Facebook)

* Symbolic (Lazy evaluation): DyNet (Petuum Inc.)

~

Caffe é Caffe2 Texjs‘g" |
"o
torc DyNet| theano
PYTORCH o
Chainer dmic
mxnet

—

© Petuum,Inc.
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% Introducing DyNet

* Designed for dynamic deep learning workflow, e.g.

Phrases

QQ'
*-9-9-¢

concat

Sentences

vps
- Vp/\
e . ;.

Alice gave a message to Bob

Documents

v Ia U+ This film was completely unbelievable.

J f O+ The characters were wooden and the plot was absurd.

OO0+ That being said, I liked it.

© Petuum,Inc.
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DyNet is Optimized for Dynamic Declaration

«Key Ingredients

« Separate parameter declaration and graph construction
» Declare trainable parameters and construct models first
« Construct computation graphs

« Conclusion: Define parameter once, but define graphs dynamically
depending on inputs - therefore making the graph construction lighter-
weight |

pW model.add parameters((20,4))
pb model .add parameters ( )

dy.renew cqg()

x = dy.inputVector([1,2,3,4])
W dy.parameter (pW)

b = dy.parameter (pb)
Y

W*x +Db

© Petuum,Inc. 30



7 Key Ingredients in DyNet

* A visual comparison: implement a TreeRNN

1 class TreeRNNBuilder(object): ppuses oo A% e 0 -

def __init__(self, model, word_vocab, hdim): § St crow o e - -

) self W = model.add parameters((hdim, 2+hdim)) g dn iAo 3 rinus

‘ self .E = model.add_lookup_parameters((len(word_vocab), hdim)) SR T IR I SR TS S
self .w2i = word_vecab X

def encode(self, tree):
. if tree. isleaf():
. return self E[self.w2i.get(tree.label,0)]
10 elif len(tree.children) == 1: # umary mode, skip
1 expr = self. encode(tree.children[0]) = ~

12 return expr -
11 else:

" assert(len(tree.children) == 2) -
1 el = self encede(tree.children(0])

" 2 = self . encode(tree.children(1])

I W = dy.parameter(self.W) - - -

18 expr = dy.tanh(Wedy.concatenate([e1,e2])) = ® o
" return expr 2 - -

n model = dy.Model() "

n U_p = model.add_parameters((2,50)) B =

= tree_builder = TreeRNNBuilder(model, word_vocabulary, 50) - A~‘

2 trainer = dy.AdasTrainer(model) m T .

» for epoch in xrange(10):
, for in_tree, out_label in read_examples():
o dy.renew_cg()
- U = dy.parameter(U_p)
a loss = dy.pickneglogsoftnax(Ustree_builder.encode(in_tree), out_label)

= loss.forvard() = = @ >
n loss . backvard()
x trainer.update()

DyNet TreeLSTM (30 LoC) TensorFlow TreeLSTM (200 LoC)

© Petuum,Inc. 31



Outline

*Deep Learning as Dataflow Graphs

» Auto-differential Libraries

« Static Declaration and Dynamic Neural Networks
* Dynamic Declaration and DyNet

*Cavs

© Petuum,Inc.
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/
f Dynamic Declaration: Advantages

* Dynamic declaration has one major advantages

 Flexibility: it can express arbitrarily dynamically structured networks by
declaring as many as dataflow graphs as the number of training data

/* (b) dynamic declaration */
fort=1—T:
read the ¢th data batch {z!}1* ,.
fork=1— K:
declare a data flow graph D} for «.
single-instance computation: D! (x%).

© Petuum,Inc.



/
f Dynamic Declaration: Problems

* Dynamic declaration scarifies efficiency for flexibility
« Graph construction overhead grows linearly with # of samples

* Only single-instance computation can be performed — no batching!

* Hard to incorporate graph-level optimization

/* (b) dynamic declaration */
fort=1—T:
read the ¢th data batch {z!}1* ,.
fork=1— K:
declare a data flow graph D} for «.
single-instance computation: D! (x%).

© Petuum,Inc.

34



/
f Problem #1:

Graph Construction and Optimization

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1-—->T1T:
read the tth data batch {z!}X .
batched computation: D({z!} % ;).

/* (b) dynamic declaration */

fort=1—1T:

read the ¢th data batch {z} 1 ..
fork=1— K:
declare a data flow graph D! for «!.

single-instance computation: D} (z%).

© Petuum,Inc.
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% Problem #1: Graph Construction and Optimization

« Graph construction literally takes 80% of time in TensorFlow

Fold

* Curve (left axis): absolute time; bar (right): percentage time

O
—

12

(a) Tree-FC (bs = 64, h = 512)

32 64 128 256 512 1024
Num of Leaves

20 60 80

20
0.6

1.2

2.4

1.8

(b) Tree-LSTM (h = 512)

1 16 32 64 128
Batch Size (bs)

O
oo}

60

20

40

Percentage(%)

© Petuum,Inc.

36



; Problem #2: Batching will be Very Hard

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1-—->T:

read the tth data batch {xf}# ..

batched computation: D({z} ). |

/* (b) dynamic declaration */
fort=1—1T:
read the ¢th data batch {z!} 1 ..
fork=1— K:
declare a data flow graph D! for «!.

single-instance computation:| D (z?). |

In static declaration:
batching is natural

In dynamic
declaration: batching
is difficult

© Petuum,Inc. 37



% Problem #2: Batching will be Very Hard

* Manual batching of dynamic graphs?
* Users have to write code to do batching by themselves
* In fact, until 2017, the famous tree-LSTM (a typical dynamic NN) model

IS trained with batchsize=1
* And it is not always available!

AN ANN | ANN | ! A | NPT
e 3 f J T L } \\ i = ill
0000 (0000 (0000 (@0 [O0T 4o0] |t
o} —{oer | {2} L¢] [ : ~
{ i 11 4 batches T T I o\
0000 0000 [BJ ' —
® P . ANN || ANN o ann | -{m:n £
NN = FANN " 0" ANN } - c(’) I I . 3
(e [ ] 0000}, (0000 0000} (0000}
i o= | T
X X2 X3 X“~ 2 "
“**=--padding
© Petuum,Inc. 38
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Problem #3: Unavailable to Graph Optimizations

« Graph optimization itself has a overhead (growing with the size of the graph)

* In static declaration, we optimize the graph only once, and apply for all input data points
— graph optimization overhead is constant, and the gain is mostly positive

* In dynamic declaration, if we want to incorporate these optimization, we need to
optimize for each declared graph

* Therefore, linear graph optimization overhead
* As a result: the optimization overhead might cost more than gained

/* (b) dynamic declaration */ Graph optimization
fort=1—>1T: happens here: inside
read the tth data batch {z!}% . the loops!
fork=1— K:
declare a data flow graph D} for «!.
single-instance computation: D} (z%).

© Petuum,Inc. 39



/
/ Introducing Cavs: Design Goals

«Simple Interface, rich expressiveness
« Keep the flexibility of symbolic programming and dynamic declaration

* At the same time, address the three atforementioned problems:
* Minimize graph construction overhead
* Allow for efficient computation and batching
* (Re-)open the opportunities for graph optimization techniques

© Petuum,Inc.
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f Cavs: Motivation

* An example of a dynamic NN
* (a) a constituency parsing tree

* (b) the corresponding Tree-LSTM network.
* We use the following abbreviations in (a): S for sentence, N for noun, VP

for verb phrase, NP for noun phrase, D for determiner, and V for verb.

(@)

S
A

N VP

JO

/\NP
V
7\
D N

|
\n hit the ball

‘ LSTM l l LSTM \

JO

LSTM ‘ LSTM \

[ LSTM ][ LSTM

NN hit the baII

© Petuum,Inc.
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/
(/ Cavs: Motivation

* Observation: Most dynamic NNs has recurrent/recursive

structures
* The dynamics come from the sample-dependent structure

* Not the "neural network” itself

(a)F Cel! (b) Chain| |(d) Graph
unction —’O—’O—’O—’ ‘ ‘ ‘

>0« >0« >0«

O (c) 3 Tree $ 4 4
v _w O Voo
SOO / \ >0« >0« >0«
‘ O O t t t
ul N N } Vo

>0« >0« >0«
: ALY
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; Think Like a Vertex

* “Think like a vertex”
* Originally from the graph computing community

«Key idea: express “global” through ‘local”

« User implements a vertex function, specifying how a node will interact
with its neighboring nodes

* The system will compile the local vertex function and figure out the
overall computing pattern over the whole graph

© Petuum,Inc.
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Cavs: A Vertex-centric Representation

e Cavs introduces vertex-centric representation for DL, and
decompose a dynamic NN as two modules
* A vertex function F, which is static;
* An input graph G, which is data-dependent and dynamic;

. — — — — — — — —

B — — — —— — — —

O
Dynamics come é/t\g}x"/

Eb e
from here M AT TR : & @ g SN Computation specified
1/1 \f h | 0 @ O g 0 : here

O O

/T\ m Intoe:rr)\al ExtEmal Or?%c))th l @ @ . |

Data Path Data Path Data Path S
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Cavs: A Vertex-centric Representation

* The key idea: separate out static ML model declaration from the
data-dependent dynamics of input samples

. — — — — — — — —

B — — — —— — — —

O
Dynamics come é/t\g}/”/

Er " @ G
from here /f\ ”””” TR : @ @ : b Computation specified
1/1 \f h | 0 @ 0 g 0 : here

O O

fT\ m Intoe:rr)ial Extqe__rz\al Or?%t))th l @ @ . |

Data Path Data Path Data Path S
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% Cavs: Four APlIs

» Gather & Scatterfor internal data path
» Pull & Push for external data path

I ] C?ain @ @ 5 LSTM:
—'O—O—-CI—':"' & (x0) @ - %(h) |
] ]]\\ i —
@ @ f GRU|

ather
1 Tree g f 9 o o:

O
va,/“ —sinput (3]
O O--__]. —& Output
My/N 7

l

®) @, S

@—{uli =1-2(h) :

;1)\ /‘?\ Intae:rr)\al External Or?%c))th @ @ » |

DataPath DataPath DataPath e o o e e e e

© Petuum,Inc.



% Cavs: Four APlIs

* An example: expressing Tree-LSTM using the four APls

£t F0O:

S = gather() # gather states of child vertices
g g

for k in range(N):

= it(S[k], 2) # get hidden states c and h
x = pull({0}) # pull the first external input z

# specify the computation
h = Fplohk : .
i = sigmoid(W(¥ x x + UV x n + b(})
for k in range(N):

fr = sigmoid(W()x x + U x ng + b))
sigmoid(W(? x x + U@ x n + b(?)
tanh(W(") x x + U™ x h + b(¥)
i@u+ otk ® ck
o ® tanh(c)

scatter(concat(lc, hl, 1)) # scatter c, h to parent vertices
pus # push to external connectors

o g o
nn

© Petuum,Inc.
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Expressing Backpropagation

e [t transforms the forward-backward computation on batch of
dataflow graphs as

« Forward: schedule the execution of the vertex function F through a
batch of input graphs

« Backward: schedule the execution of dF through the same batch of
iInput graphs, in a reverse order

/* (c) our proposed vertex-centric model */
declare a symbolic vertex function F.
fort=1—T:

read the tth data batch {z} % .

read their associated graphs {Qt 2 .

compute F over {G!}2 | with inputs {z} 5 .

© Petuum,Inc.



% Cavs Bypass Graph Construction Overhead

*No repeated graph construction overhead!

* The graph construction overhead is constant — we only need to
construction F, which is usually a small-scale dataflow graph

* Bypass the repeated dataflow graph construction

* Instead, read the input graph G, which could be achieved by an /O
function

/” (c) our proposed vertex-centric model */
declare a symbolic vertex function F.
ort=1—>T1T:

Declare only once - constant Read through 1/O, no graph

graph construction cost read the tth data batch { mt }-K;l ] construction involved any more.

read their associated graphs {GE):<
compute F over {G}.* , with mputs {xt f{ 1

© Petuum,Inc. 49



Empirical Results: Graph Construction Cost

« Cavs has constant graph construction time
* Curve (left axis): absolute time; bar (right): percentage time
« Cavs outperforms TensorFlow-Fold by a large margin

o  (a) Tree-FC (bs = 64, h = 512) (b) Tree-LSTM (h = 512)

2.4

O
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80

1.8

60
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Fold-1 |4
3 Fold-32

40
1.2
o
s

40
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20

0.6
20

32 64 128 256 512 1024 1 -‘ 32 64 128 25
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Cavs Enables Batched Computation

« Batched computation is key to deep learning
* Recall the Dynamic Declaration problem #2

« Batched computation on dynamic graphs are difficult:

« Difficult to find batching opportunities
* need to analyze the graph
* need to manually write code to do extra processing
» Given batching opportunities, different to re-order memory contents

* For the batched computation to be efficient, their input/output need to coalesce on
memory

» How to efficiently re-arrange memory layout to guarantee continuity?

© Petuum,Inc. 51



/
/ Cavs Enables Batched Computation

« Batched computation is natural and automatic in Cavs

 Cavs transforms the backpropagation as evaluating F on nodes of a
batch of input graphs, see the figure below.

* Then, batched computation can be realized by

 Figure out a set of vertices that we are ready to evaluate F on
« Batch the evaluation of F on this set of vertices
* Pass the output of F to their parent vertices

© Petuum,Inc.
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? Cavs Enables Batched Computation

* A simple policy enables efficient batched computation
e \/ertices with same colors are batched evaluated.

Algorithm 1 Backpropagation with the batching policy.

I: function FORWARD({z) } . {Gk} . F)

2: settask ID ¢t < 0, task stack S « 0.

3: while NOT all vertices in {Gy. }1_, are evaluated do

4:  figure out all activated vertices in {Gy }_, as a set V.

5:  push V; into S.

6:  evaluate F on V;: GraphExecute(V;, F) (see §3.5).

7:  set the status of all vertices in V; as evaluated.

8: sett«—t+1.

9:  end while
10: return S. ! \ ' vt \i \

11: end function

12: function BACKWARD(S, {G}. },{‘:1 ,OF)
13: sett as the size of S.

14:  while S is not empty do

15:  pop the top element of S as V;.

16:  Evaluate OF on V;: GraphExecute(V;, OF) (§3.5). Tree 1 Tree 2
17:  sett «+t— 1.

18: end while

19: end function

© Petuum,Inc.



/
ﬁ Dynamic Batching: Memory Management Challenge

« Batched computational kernels on CPU/CPUs requires the
Inputs to a batched computation kernel locate continuously on
memory

* In Dynamic Declaration, this is usually not the case due to the dynamic-
varying input structures.

« TO achieve memory continuity, one has to frequently re-arrange memory
layouts (memcpy) of the inputs to each batched operation.
« Cavs proposes a new data structure, DynamicTensor, to ensure

memory continuity, at the same time minimize memory
movement overhead

© Petuum,Inc. 54



Cavs: Dynamic Tensor

« Cavs proposes a new data structure, DynamicTensor, to ensure

memory continuity.
* shape: tensorshape except the batch dimension

 bs: a placeholder for batch size, determined and filled at runtime
» offset: records where to read from
* p: pointer to the allocated memory, which can be extended whenever

needed.

*Hence, dynamic tensor is more flexible for dynamically-varying

batch size

struct DynamicTensor {
vector<int> shape;
int bs;
int offset;
void* p; };
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% Cavs: Advanced Memory Management — Dynamic Tensor

* With dynamic tensors, Cavs designs a memory management
mechanism to guarantee the coalesce of input contents of

batched operations on memory

to = pull() -
t1 = gather (0) E> push J scatterl _________________ i
tz = gather(1) — . | '
t3 = matmul (to, w)+ | | | batchingtask [ B’ E:
€0 ol1l2lslsl7lals 5
matmul (t2, w) | —
scatter(0,t3) : i 7
push (t3) - ‘ 01 LE: 0125
6.7 y 16171819
| 3 1 — ! |3
' 4 [ D 1)
i
] 1 ' \ ' Y \ | L-B_:
i fou o OIS TEI 7SS0 13 oush buffer
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Overall Performance

*Overall, Cavs is 1 — 2 orders of magnitude faster than state-of-
the-art systems such as DyNet and TensorFlow-Fold.

me~unn o~ w
& S55S (a) Fixed-LSTM (h = 512) S c-c (b)) Var-LSTM (h = 512) ® 2 (c) Tree-FC (h = 512) ® S (d) Tree-LSTM (h = 512)
it . |3 cubnn|© - Cavs e = Cavs = :
=8| . |@mm cavs |=} == TF |3} EZm Fold |3}
s % - DyNet | © B DyNet |©
—~ O o < <
x O L ~ L o} " =3
o © . o (S ‘( Bl o
Em - : n |/ ~ [/ ] o~
= - T EEEEETEREEE = 5 =1 2
o i o ; o ’ o
bl 4 £ ., o ¢ ».
1 16 32 64 128 256 1 1 16 32 64 128 256 1 16 32 64 128 256
w ~
o ... (8 FixedLSTM (b =64) 33 O (9) Tree-FC(b=64) S 3
© ||z cupnn . ;° S |[@mm cavs b ©
—,;"of.-Cavs ........... 4 El{mm Fold |.-ioooi o] 8
@ TF b © ||=mm DyNet =
- O o < <
x © | = =
e S = e i
Em N I I
FOl g - e =4 =1 =1
o o o o

2048

1024

64 128 256 512

256 512 1024 2048

64 128
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/
f Cavs: Improvement on Computation

*In terms of compution-only, Cavs shows maximally 5.4x/9.7x

and 7.2x/2.4x speedups over Fold/DyNet on Tree-FC and Tree-
LSTM, respectively.

leﬁves time (s) Speedup bs time (s) Speedup
32 0.6/3.1/4.1 54/7.1 1 76 /550/ 62 7.2/0.8
64 1.1/3.9/8.0 323 16 98/69/12 1.9/1.2
128 2/6.2/16 30179 32 6.2/43/9.9 7.0/1.6
256 4/10.6/33.7 211817 64 41/29/7.4 7.2/1.8
512 8/18.5/70.6 23/89 128 2.9/20.5/5.9 1.1/20
1024 | 16/32/153 2.1 19.7 256 2.3/15.8/5.4 7.0/24

© Petuum,Inc.
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/
ﬁ Cavs: Improvement on Memory Management

* The improvement is significant (2x - 3x) at larger batch size, c

comparing to DyNet.

Memory operations Computation (s)

bs (s) (Cavs / DyNet) (Cavs / DyNet)
Train Inference Train Inference
16 1.14/1.33 0.6/1.33 9.8 /12 2.9./8.53
32 0.67 / 0.87 0.35/0.87 6.1/9.8 L9/5.35
64 0.39/0.6 0.21/0.6 4.0/7.4 1.3/3.48
128 | 0.25/0.44 0.13/0.44 29/5.9 0.97/2.52
256 | 0.17/0.44 0.09/0.44 23/54 0.77 /1 2.58

© Petuum,Inc.
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Cavs is Open to Graph Optimization

 Incorporating graph-level optimization in Cavs is the same as it
In static declaration
» Optimize the static vertex function F
* - will be evaluated at each vertex of the input structure
* Optimize once, benefit elsewhere

|
linear push l

transformation

parameter eager operator lazy operator  lazy batching streaml stream2 © Petuum, Inc. 60



% Cavs Exposes Opportunities for Graph Optimization

« Cavs propose three graph-level optimization strategies
* Lazy batching
« Streaming
« Automatic kernel fusion

.
<l
linear
transformation pUSh JJ

parameter eager operator lazy operator lazy batching stream1l stream2

© Petuum,Inc.
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How Important is Graph Optimization?

« Together they result in another 1.5 times speedup

(a) Fixed-LSTM (bs = 64) (b) Tree-LSTM (bs = 64)
L5} Lazy-batching| ~ =~~~ " T L5} Lazy-batchingl ~ =~~~ |~
Fusion : Fusion :
Streamming : Streamming
LA o o me s v s s i - 14—
x N BN
s P | - TR S o - - - - 1.3]-- -
- ' B
7 ;
& 1.2f II 1.2¢
v i :
1.1} B - - -] 1.1
1.0 1.0
64 128 256 512 1024 2048 64 128 256 512 1024 2048
Hidden Size (h) Hidden Size (h)

© Petuum,Inc.

62



7/ Summary: Comparing Software Frameworks for
Dynamic Neural Networks

. . Graph Cons. Graph Exec.
Model Frameworks Expressiveness | Batching Overhead Optimization
. . Caffe, Theano, .
static declaration TensorFlow, MxNet X X low beneficial
dynamic declaration . .
Goatantevalution) PyTorch, Chainer Vv X N/A unavailable
dynamic declaration . .
(azy evaluation) DyNet Vv Vv high not beneficial
Fold TensorFlow-Fold Vv v high unknown
Vertex-centric Cavs Vv Vv beneficial

© Petuum,Inc.
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/
f Cavs will be in

» More descriptions about Cavs:

Cavs: A Vertex-centric Programming Interface for Dynamic
Neural Networks. , , ,
, : , ATC 2018,

« Code will be released soon, check out at: https://github.com/petuum-inc

© Petuum,Inc.
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Distributed Deep Learning



Outline

* Overview: Distributed Deep Learning on GPUs
*Challenges 1: Addressing the communication bottleneck
*Challenges 2: Handling the limited GPU memory

© Petuum,Inc
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/
(/ Review — DL toolkits on single machine

* Using GPU is a must

* A small number of GPU-equipped machines could achieve satistactory
speedup compared to CPU clusters with thousands of cores

5

ST EL L E
cAmmESIEiE

More readily
* A cluster of 8 GPU-equipped machines available to
A cluster of 2000 CPU cores researchers
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Review — DL toolkits on single machine

* However, using a single GPU is far from sufficient

« average-sized deep networks can take days to train on a single GPU when
faced with 100s of GBs to TBs of data

* Demand faster training of neural networks on ever-larger datasets
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” AlexNet, 5 — 7 days GooglLeNet, 10+ days

« However, current distributed DL implementations (e.g. in TensorFlow) can
scale poorly due to substantial parameter synchronization over the network
(we will show later)
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Outline

* Overview: Distributed Deep Learning on GPUs
*Challenges 1: Addressing the communication bottleneck
*Challenges 2: Handling the limited GPU memory

© Petuum,Inc
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Challenges

« Communication challenges
« GPUs are at least one order of magnitude faster than CPUs

GPU are faster High Comm Low GPU
Load bottleneck utilization

m—)

Poor Scalability
with additional
machines

Limited network Bursty
bandwidth Communication

« High communication load raises the network communication as the main bottleneck
given limited bandwidth of commodity Ethernet

* Managing the computation and communication in a distributed GPU cluster often
complicates the algorithm design

© Petuum,Inc.
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/
(/ Let’s see what causes the problem

*Deep Learning on a single node — an iterative-convergent
formulation

0") =g~V te.v, (0"~ D)

Model parameters Forward Data

Apply gradients
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% Let’s see what causes the problem

*Deep Learning on a single node — an iterative-convergent
formulation

) =1 ye.v, (0"~ D)

Forward Data

Forward and backward are the main computation (99%) workload of deep
learning programs.
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Distributed Deep Learning

 Distributed DL: parallelize DL training using multiple machines.

i.e. we want to accelerate the heaviest workload (in the box) to
multiple machines Backward

) =1 ye.v, (0"~ D)

Forward Data

Forward and backward are the main computation (99%) workload of deep
learning programs.
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? Data parallelism with stochastic gradient descent

* We usually seek a parallelization strategy called data parallelism, based
on SGD

« \We partition data into different parts
* Let different machines compute the gradient updates on different data partitions
* Then aggregate/sync.

Data @ uWorkeH WorkerZu @Data
(one or more
machines)
Data
@ Worker 3 Worker?i @ Data
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Data Parallel SGD

* Data parallel stochastic gradient descent

e Data-parallelism requires every worker to have read and write
access to the shared model parameters 8, which causes
communication among workers; In total P workers

P
o+l — g() 4 ¢ Z VL(Q(t)’Dg))
p=1

Data partition p

Collect and aggregate Happening locally on each worker
before application, where

communication is required
© Petuum,Inc. 75



How to communicate

* Parameter server, e.g. Bosen, SSP
* A parameter server (PS) is a shared memory system that provides a
shared access for the global model parameters 6
*Deep learning can be trivially data-parallelized over distributed
workers using PS by 3 steps:

- Each worker computes the gradients (VL) on their own data partition (D)
and send them to remote servers:;

* servers receive the updates and apply (+) them on globally shared
parameters;

« Each worker pulls back the updated parameters (0_t)
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/
f How PS works

Vo, Vo,
6 6
l PS I
6 6
ve, v,
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% Parameter Server

« Parameter server has been successful for CPU-based deep
learning

» Google Distbelief, Dean et al. 2012
» Scale up to thousands of CPU machines and 16000 CPU cores
« SSPTable, Ho et al, 2013
» Stale-synchronous parallel consistency model
« Microsoft Adam, Chilimbi et al. 2014
* 63 machines, state-of-art results on ImageNet 22K
* Bosen, Wei et al. 2015
* Managed communication

© Petuum,Inc. 78



Parameter Server on GPUs

 Directly applying parameter server for GPU-based distributed deep
learning will underperform (as will show later).
« GPU is too fast
» Ethernet bandwidth is limited, and has latency

* For example
» AlexNet: 61.5M float parameters, 0.25s/iteration on Geforce Titan X (batchsize
= 256)
» Gradient generation rate: 240M float/(s*GPU)
« Parallelize it over 8 machines each w/ one GPU using PS.

« To ensure the computation not blocked on GPU (i.e. linear speed-up with
additional nodes)
* As a worker: send 240M floats/s and pull back 240M floats/s (at least)
* As a server: receive 240M * 8 floats/s and send back 240M * 8/s (at least)
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Parameter Server on GPUs

e| et’'s see where we are
This is what the GPU

Ethernet standards

workstation in you lab has

Ethernet Rate(GBit/s) | Rate (Mb/s) | Rate (# floats/s)
1 GbE 1 125 31.25M

10 GbE 10 1250 312.5M

Infiband 40 5000 1250M

One of the most expensive instances
AWS could provide you (18%$/h?)

Specialized hardware! Non-
commodity anymore, inaffordable

© Petuum,Inc.
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/
f Parameter Server on GPUs

The problem is more severe than described above
« We only use 8 nodes (which is small). How about 32,128, or even 2567
* We haven'’t considered other issues (which might be also troublesome),

e.g.
* Memory copy between DRAM and GPU will have a non-trivial cost
* The Ethernet might be shared with other tasks, i.e. available bandwidth is even less.
» Burst communication happens very often on GPUs (which will explain later).
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/
ﬁ Address the Communication Bottleneck

* A simple fact:
« Communication time may be reduced, but cannot be eliminated (of
course)
* Therefore, possible ideas to address the communication
bottleneck
» Hide the communication time by overlapping it with the computation
time
* Reduce the size of messages needed to be communications
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/
f Address the Communication Bottleneck

* A simple fact:
« Communication time may be reduced, but cannot be eliminated (of
course).
* Therefore, possible ideas to address the communication
bottleneck
» Hide the communication time by overlapping it with the computation
time
* Reduce the size of messages needed to be communications
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/
ﬁ Overlap Computation and Communication

* Revisit on a single node the computation flow of BP

* b;: backpropagation computational through layer |
* C;: forward and backward computation at iteration t

© Petuum,Inc.
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/
f Overlap Computation and Communication

« On multiple nodes, when communication is involved

* Introduce two communication operations
* 0;: send out the gradients in layer [ to the remote

* i;: pull back the globally shared parameters of layer [ from the remote
* 0,: the set {o;}i_, at iteration t
- I,: the set {i;}}_, at iteration t

01) =gt~V 1 e.v, (01 pl)

L
Cd= N b [ b, by
{i}l=1
o [0, I [ [ I

Computation and communication
happen sequentially!
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/
/ Overlap Computation and Communication

* Note the following independency

* The send-out operation o; is independent of backward operations

* The read-in operation i; could update the layer parameters as long as
b; was finished, without blocking the subsequent backward operations
b; (i <)
*|dea: overlap computation and communication by utilizing

concurrency
* Pipelining the updates and computation operations

0) =gt~ e.v (0" D)
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; WFBP: Wait-free backpropagation

* |[dea: overlap computation and communication by utilizing concurrency
* Pipelining the updates and computation operations

L
07 47—
{ l}l—l bl bz bL
. L
{ll}l=1
ﬂ reschedule
041 %) 03 oy,
b4 b, b;
I 1, i3 43
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% WFBP: Wait-free backpropagation

*|dea: overlap computation and communication by utilizing

concurrency

« Communication overhead is hidden under computation

» Results: more computations in unit time

Ct

O

C}

ﬂ pipelining

Cri1

0t+1

Ct+1 0t+1

Ctio

Cii3

0t+2

0t+3

t

T
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1

7 wrer

* How does WFBP perform?

« Using Caffe as an engine:

GoogLeNet (40 GbE) VGG19 (40 GbE) VGG19-22K (40 GbE)
I 32 32
R —&— Linear 2 —&— Linear —&— Linear
—&— Poscidon A —&— Poseidon —&— Poscidon
—4— Caffe+tWFBP . — Caffe+tWFBP A —4&— Caffe+WFBP
@ —o— Caffe+PS i B —o— Caffe+PS » —o— Caffe+PS
s / i |2 =
B 50% comms = (3 16 g 16
A ” bottleneck ¢ [& &
81 reducti 8 gl
4 4 44
1] 1 1
12 4 8 16 32 12 4 8 16 32 12 4 8 16 EY)
. # of Nodes , # of Nodes # of Nodes
« Using TensorFlow as engine:
Inception-V3 (40 GbE) VGG19 (40 GbE) VGG19-22K (40 GbE)
329 32 32
—&— Linear —&— Linear —8— Linear
—&— Poseidon —&— Poseidon —&— Poseidon
#— TF+WFBP 4— TF+WFBP | #— TF+WFBP
»w | —e— TF «w | —e— TF le | —o— TF 4
o [=9 o
= = =
B 16 B 16 B 16
(5] Q [
o, a, =9
) n )
81 8 8
4 4 4 3
%: Hela —a . e -
12 4 8 16 32 12 4 8 16 32 12 4 8 16 32
# of Nodes # of Nodes # of Nodes

: Distributed Wait-free backpropagation

Zhang et al. 2017
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/
f WFBP: Distributed Wait-free backpropagation

* Observation: Why DWBP would be effective

 More statistics of modern CNNs

Params/FLOP distribution of modern CNNs

Parameters | CONYV Layers (#/% ) | FC Layers (#/% )
AlexNet 2.3M/3.75 S5OM / 96.25
VGG-16 7.15M /5.58 121.1M /94.42
FLOPs CONYV Layers (#/% ) | FC Layers (#/% )
AlexNet 1,352M 7/ 92.0 117M / 8.0
VGG-16 10,937M /91.3 121.1M /8.7

* 90% computation happens at bottom layers
* 90% communication happens at top layers
 WFBP overlaps 90% and 90%

© Petuum,Inc.
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? WFBP: Wait-free Backpropagation

* Does overlapping communication and computation solve all the

problems?

« When communication time is longer than computation, no (see the figure below).

« Say, if communication and computation are perfectly overlapped, how many
scalability we can achieve?

Single node

Distributed

VGG19 (40 GbE)

—8— Linear
—4— Poseidon

»— Caffe+WFBP
—8— Caffe+PS

Speedups

VGG19-22K (40 GbE)

—&— Linear

—4— Poseidon
#— Caffe+WFBP
—— Caffe+PS

gap

12 4 8 16

# of Nodes

12 4 8 16 32
# of Nodes
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/
ﬁ Address the communication bottleneck

* Note a simple fact:
« Communication time may be reduced, but cannot be eliminated (of
course).
* Therefore, possible ideas to address the communication
bottleneck

» Hide the communication time by overlapping it with the computation
time — which we have described before.

* Reduce the size of messages needed to be communications
« While without compromising statistical convergence
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Introducing Sufficient Factor Broadcasting

* Matrix-parametrized models

Multiclass Logistic
Regression

Feature dim.

\
( |

} #classes

Sparse Coding

Feature dim.

\
( |

Dictionary
size

Distance Metric Learning

Feature dim.
\

|

Neural Network

} Latent dim.

#neurons in layer I — 1

)

[

|

#neurons in
layer 1
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% Distributed Learning of MPMs

* Learning MPMs by communicating parameter matrices between server
and workers

 Dean and Ghemawat, 2008; Dean et al, 2012; Sindhwani and Ghoting, 2012; Gopal
and Yang, 2013; Chilimbi et al, 2014, Li et al, 2015

* High communication cost and large synchronization delays

Multiclass Logistic
Neural Network (AlexNet)

Regression
Feature dim. = 20K #neurons in layer
| fc6:f1096

[ \ ( \

' #neurons in
#classes=325K <UUM } layer fc7

—-

(A

=4096
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% Contents:
Sufficient Factor (SF) Updates

Full parameter matrix update AW can be computed as outer product of two
vectors uv! (called sufficient factors)
Example: Primal stochastic gradient descent (SGD)

1 N
min — (Wa.;b))+h(W
i 2/ (Waisb) +hOv)

of Wanb) | _

AW =uv' u= a,
o(Wa)

Example: Stochastic dual coordinate ascent (SDCA)
1 & . « 1
min — (—z)+h (—ZA"
in 2 () ZAT)

AW =w'" u=Az, v=a,

Send lightweight SF updates (u,v), instead of expensive full-matrix AW updates!
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}/ Sufficient Factor Broadcasting:
P2P Topology + SF Updates

[

uzavz\ ,[ |
L Wl—>u1av1
u, v,

X




A computing & communication tradeoff

 Full update:

* Pre-update

« Stochastic algorithms
* Mini-batch: C samples

Training examples

101 101 101 101
on on on on

13 l l 1

e BRI EEHEREES

P— \|\ /‘

Individual update

update matrix

. e P ES [l

Training 101 101 101 101

examples on on on on
Sufficient

vectors U, 1 Uz, V2 Uus, U3 Uy, Vy

\ J
Y
Cannot be aggregated
Matrix 0(K)
Representation

SV Representation 0((J+K)O) © Petuum, Inc. 97



% Synchronization of Parameter Replicas

parameter server

Model
Replica 1

Model
' Ws Replica

« A Cost Comparison

3

Transfer SVs instead of AW

Model Model
Replica 1 Replica 2

AW, = u, ®v .

W, =u, @y Uy, 1 AW,

W™ e W0 4 AW, + AW, 3 V3 AW, = "
U3, V3 Uz, v, W e

Model
W3 Replica 3

“z V2

AW, =1, @y
AW, =u, ®v
W™ e W L AW + AN

Size of one message

Number of messages Network Traffic

P2P SV-Transfer

0( +K)

0(P?) O0((J + K)P?)

Parameter Server

0(UK)

0(P) O(JKP)

+ AW, + AW,
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Convergence Speedup

iSpark ©Gopal ©:PS m SFB “PS m SFB ZPS m SFB

O __40 __30

30 X -« RO [T 2

§ 2 30 -1— 220 2

£ 20 N £ 20 E ,,,,,,, <

@ 2 o 7 @ 10

§ 10 * % E 10 | £ .

Sl "N NN LAl BN m -, M [ =

12 28 12 28 12 28

Multiclass Logistic Regression (MLR) Distance Metric Learning (DML) Sparse Coding (SC)

« 3 Benchmark ML Programs
* Big parameter matrices with 6.5-8.6b entries (30+GB), running on 12- & 28-
machine clusters
» 28-machine SFB finished in 2-7 hours
« Up to 5.6x faster than 28-machine PS, 12.3x faster than 28-machine Spark

* PS cannot support SF communication, which requires decentralized
storage
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Convergence Guarantee

* Assumptions
 Bridging model

» Staleness Synchronous Parallel (SSP) with staleness
parameter s

» Bulk Synchronous Parallel is a special case of SSP when s =

0

« Communication methods

 Partial broadcast (PB): sending messages to a subset of
Q (Q < P —1) machines

e Full broadcast is a snecial case of PBwhen 0 = P — 1
Assumption 1. (/) For all j, f; is continuously differentiable and F' is bounded from below; (2)
VF, VF, are Lipschitz continuous with constants L and L, respectively, and let L = Z,I,, y Lps
(3) There exists G, o? such that for all p and ¢, we have (almost surely) |U,(W<S,1°)|| < Gn and

Pop
Ell 1Sp| Xjes, V(W) = VE,(W) |13 < 0.

© Petuum,Inc.
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% Convergence Guarantee

e Results

Theorem 1. Let Assumption 1 hold, and let {W3}, p = 1,..., P, {W*} be the local sequences
and the auxiliary sequence, respectively.

Under full broadcasting (i.e., Q = P — 1) and set the learning rate n := 1, = O( ﬁ) we

have

o liminf E|VF(W€)|| = 0, hence there exists a subsequence of VF(WF€) that almost surely
C—»00
vanishes;

e lim max, |[W* — W7| = 0, i.e., the maximal disagreement between all local sequences and
C—»00

the auxiliary sequence converges to 0 (almost surely);
e There exists a common subsequence of {Wy} and {W¢} that converges almost surely to a sta-

5 - : : - P c\||2 Lo?Ps
tionary point of F, with the rate lclélg Ell> -y VF, (W[5 <O (\/ T)

Under partial broadcasting (i.e., Q < P — 1) and set a constant learning rate 1 = m,

where C' is the total number of iterations. Then we have
P(sG + o?) )

min E [|| Sy VF,,(W;;)M%] <0 (LG(P ~Q+Ger-0)

Hence, the algorithm converges to a O(LG(P — Q)) neighbourhood if C' — oc.
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Convergence Guarantee

» Take-nome message:

« Under full broadcasting, given a properly-chosen
learning rate, all local worker parameters Wy
eventually converge to stationary points (i.e. local
minima) of the objective function, despite the fact
that SV transmission can be delayed by up to s
iterations.

« Under partial broadcasting, the algorithm converges
toa O(LG(P — Q)) neighbourhood if C — oo.

© Petuum,Inc.
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Parameter Storage and
Communication Paradigms

Centralized Storage Decentralized Storage
Server Worker
SendAch:/ange l Send W itself SendAch[;ange SendACvr‘]/ange
Worker Worker

 Centralized: send parameter W itself from server to worker
« Advantage: allows compact comms topology, €.g. bipartite

» Decentralized: always send changes AW between workers
« Advantage: more robust, homogeneous code, low communication (?)

© Petuum,Inc. 103



Topologies:
Master-SIave versus P2P’?

Model partition Mo de_lpm'tm

server 1 SErvey ’7

worker1 worker 2

[
e

WT? \:

Master-slave
» Used with centralized storage paradigm

 Disadvantage: need to code/manage clients and
servers separately

» Advantage: bipartite topology is comms-efficient

» Popular for Parameter Servers: Yahoo LDA,
Google DistBelief, Petuum PS, Project Adam,
Li&Smola PS, ...

worker 1 worker 2
’J MLApp ‘ Modelcopy ¢ . { MLApp ‘ Model copy l

[ \—1' cal ]

worker 3 worker 4

P2P
» Used with decentralized storage

« Disadvantage (?): high comms volume for large
# of workers

« Advantage: same code for all workers; no single
point of failure, high elasticity to resource
adjustment

» Less well-explored due to perception of high
communication overhead?
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/
f Hybrid Updates: PS + SFB

« Hybrid communications:
Parameter Server +
Sufficient Factor
Broadcasting

 Parameter Server: Master-
Slave topology

e Sufficient factor broadcasting:
P2P topology

 For problems with a mix of
large and small matrices,
« Send small matrices via PS

« Send large matrices via SFB
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% Hybrid example: CNN

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A

System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

« Example: AlexNet CNN model

 Final layers = 4096 * 30000 matrix (120M parameters)

 Use SFB to communicate

« 1. Decouple into two 4096 vectors: u, v

« 2. Transmit two vectors
» 3. Reconstruct the gradient matrix

Figure from
Krizhevsky et al. 2012

Lo
=)
S|

\stria Max 128 Max
of 4 pooling pooling
3 48

|
3J N\ ‘
92 ?
13 \ 13 /
x> I W T
3 T ol
b e ' 13 dense | [dgnse
192 3 Max m
pooling 2538 2048
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% Hybrid example: CNN

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A
System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

« Example: AlexNet CNN model

« Convolutional layers = e.g. 11 * 11 matrix (121 parameters)

« Use Full-matrix updates to communicate
» 1. Send/receive using Master-Slave PS topology

el iy |
ol N + e 3J e ‘
F' f — ‘- 192 128 7048 2048 dense
igure trrom 27 PP o — il
. 13 13
Krizhevsky et al. 2012 = A \
) = m— = ‘ 13 dense | |dense]
E 3 1000
192 128 Ma |
Max 128 poox"ng ;uh 2048
pooling pooling
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; Hybrid Communication

* |dea
« Sync FC layers using SFB
« Sync Conv layer using PS

» Effectiveness

« [t directly reduces the size
of messages in many
situations

* |s SFB always optimal?

. _No, its Communication load
increases quadratically

* The right strategy: choose
PS whenever it results in
less communication
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Hybrid Communication

* A best of both worlds strategy
*For example, AlexNet parameters between FC6 and FC7
* Tradeoff between PS and SFB communication

700 300
(a) (b)

- 600 250
= p=
z 500 E 200 | |
3 400 3 < I
= = [ —— '
éj 300 / E
= 200 - 5 100
RS —— PS+Matrices + 50 | —— PS+Matrices

100 ~ PS+SFs+Matrices - ~ PS+SFs+Matrices

SFB SFB
0~ : '_ 0 : » :
2 4 8 12 16 64 128 256 512

# of Nodes Batch Size
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% Hybrid Communication

 How to choose”? Where is the threshold?

* Determine the best strategy depending on

* Layer type: CONV or FC?
 Layer size

e Batch size

« # of Cluster nodes

Method Server Worker Server & Worker
2MN(P] + P —
PS 2PLMN /P> 2MN 2)/P,
2K (P, —
SFB N/A 1) (M +N) N/A
Adam P{MN + K(M+N)+ (P, —1)(MN +
(max) PLK(M+N) MN KM +KN)

Table 1: Estimated communication cost of PS, SFB and Adam
for synchrnizing the parameters of a M x N FC layer on a clus-

ter with P; workers and P servers, when batchsize i1s K.

© Petuum,Inc.
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% Hybrid Communication

* Hybrid communication algorithm

Algorithm 1 Get the best comm method of layer /

Determine the best strategy depending on L: Function BESTSCHEME())

. _ 2 layer_property = Query(/.name)
. t:zgi Eilgee; I\(z,olil\l Vor FC? 3: P, P>, K = Query(‘n_worker’, ‘n_server’, ‘batchsize’)
. Batch size: K 4: if layer_property.type == ‘FC’ then
- # of Cluster nodes: P;, P, > W =layer _property.widih
6: N = layer_property.height
7: if 2K(P, —1)(M +N) < 2MNEER=2) then
8: return ‘SFB’ )
9: end if
10: end if
3 & return ‘PS’

12: end function

© Petuum,Inc.

111



Hybrid Communication

» Results: achieve linear scalability across different models/data with 40GbE bandwidth

» Using Caffe as an engine:

GoogLeNet (40 GbE) " VGG19 (40 GbE) VGG19-22K (40 GbE)
2 32
= —&— Linear —— Linear —— Linear
—&— Poseidon —&— Poseidon —4— Poseidon
—4&— Caffe+tWFBP —&— Caffe+WFBP _A —&— Caffe+WFBP
@ —8— Caffe+PS @ —e— Caffe+PS » —8— C(affe+PS
o [=9 o
= = =
§ 16 § 16 '93 16
=4 =% o
] 7] 152)
8 8 8
4 4 4
1 1 ?
12 4 8 16 32 12 4 8 16 32 12 4 N 16 32
# of Nodes # of Nodes # of Nodes
» Using TensorFlow as engine
Inception-V3 (40 GbE) VGG19 (40 GbE) VGG19-22K (40 GbE)
32 32 324
—— Linear —8— Linear —— Linear
—&— Poseidon —&— Poseidon —&— Poseidon
—&— TF+WFBP —4— TF+WFBP L —&— TF+WFBP
& —e— TF @ —e— TF o | —o— TF v““
o o o _
= = =
2 16 D 16 3 16
(5 Q L
=9 =% o
2 12 2
8 8 8
4 4 4
1 ? =t o o 1 & -
12 4 8 16 32 24 B 16 32 12 4 8 16 32
# of Nodes # of Nodes

# of Nodes

Improve over WFBP
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Hybrid Communication

Linear scalability on throughput, even with limited bandwidth!
» Make distributed deep learning affordable

: GooglLeNet 4 VGG19 VGG19-22K
161 @ Unear 16 | @ Linear 16| g Unear
—#— Poseidon (2GbE) ~#— Poseidon (10GbE) ~#— Poseidon (10GbE)
&~ Poseidon (SGbE) &~ Poseidon (20GbE) &~ Poseldon (20GbE)
~@- Poseidon (10GbE) -8~ Poseidon (30GbE) ~@~ Poseldon (30GbE)
n ~#= Caffe+WFBP (2GbE) n ~#= Caffe+WFBP (10GbE) 2 ~#= Caffe+WFBP (10GbE)
% 4 Caffe+WFBP (SGbE) A g 4~ Caffe+WFBP (20GbE) g- 4~ Caffe+WFBP (20GbE)
= -@- Caffe+WFBP (10GbE) - -®- Caffe+WFBP (30GbE) ‘e -®- Caffe+WFBP (30GbE)
Q 8- Q 84 o 8 Y
Q (1] (7]
Q Q Q' 1l | | Tl L s A
(1) & wn A || | | o
44 41 4 :
__#,_—c-—-""""""/’" a
2 21 21
14 1{ W 1 d
12 4 8 16 12 4 8 16 1.2 4 8 16
# of Nodes # of Nodes # of Nodes
# parameters 5M 143M 229M
Ethernet Rate(GBit/s) | Rate (Mb/s) | Rate (# floats/s)
1 GbE 1 125 31.25M
10 GbE 10 1250 312.5M
Infiband 40 5000 1250M
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; Hybrid Communication

 Discussion: Utilizing SFs is not a new idea, actually
« Microsoft Adam uses the third strategy (c)

(a) Centralized: Matrices (b) Decentralized: SFB  (c¢) Centralized: Matrices + SFs
Server Workers Server
VA, A w,v o uv u,v| A
Workers Workers Workers
PS SFB push: SFs

Pull: full matrices

© Petuum,Inc. 114



% Hybrid Communication

* Adam’s strategy leads to communication bottleneck
» Pushing SFs to server is fine
« Pulling full matrices back will create a bottleneck on the server node.

~

[5%3
(=4
1

Traffic (Gb/iter)

0 -
TF-WFBP Adam Poseidon
Figure 10: Averaged communication load when training

VGG19 using TF-WFBP, Adam and Poseidon with TensorFlow
engine. Each bar represents the network traffic on a node.

* Hybrid communication yields communication load balancing
« Which is important to address the problem of burst communication.
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% Introducing Poseidon

* Poseidon: An efficient communication architecture
* A distributed platform to amplify existing DL toolkits

/ . ¥ Microsoft N\
Caffe © caffe2 1
| = ¥. CNTK !
: .
| ‘I‘torch PYTORCH :
toolkits | DyNet theano |
|
| ‘o |
, Chainer :
| ]

platform




/
f Poseidon’s position

* Design principles
e Efficient distributed platform for amplitying any DL toolkits

 Preserve the programming interface for any high-level toolkits
* i.e. distribute the DL program without changing any line of code

« Easy deployment, easy adoption.
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% Poseidon System Architecture

data flow
----- allocation
— instruction

O
OCO00O

OCO00O

GPU

CPU KV Store

OO0

4 3

Stream Pool

Thread Pool

(Coordinator )

\. J
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Poseidon APIs

« KV Store, Syncer and Coordinator

« Standard APIs similar to parameter server
* Push/Full APl for parameter synchronization
» BestScheme method to return the best communication method

| Method | Owner | Arguments | Description
BestScheme | Coordinator| A layer name or index Get the best communication scheme of a layer
Query Coordinator| A list of property names Query information from coordinators’ information book
Send Syncer None Send out the parameter updates of the corresponding layer
Receive Syncer None Receive parameter updates from either parameter server or peer workers
Move Syncer A GPU stream and an indicator Move contents between GPU and CPU, do transformations and
of move direction application of updates if needed
Send KV store updated parameters Send out the updated parameters
Receive KV store parameter buffer of KV stores Receive gradient updates from workers
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Amplify DL toolboxes Using Poseidon

*For developers: plug Poseidon API into th

e backpropagation

code, all you need to do is: Al

gorithm 2 Parallelize a DL library using Poseidon

1

» Back propagate through layer [ 2

: function TRAIN(net)
foriter=1—T do

3: sync_count = (
* Sync parameters of layer I 4 peRo,
. or/=L—1do
° Walt for f| n |S h | n g 6 net .BackwardThroufgh(/)
7 thread _pool.Schedydle(sync(l))
: : : end for
® Am p | Ifyl n g G OO g | e Te n SO r F | OW 9: wait_until(sync_count == net.num_layers)
. 10: end for
° 250 ||ne Of COde 11: end function
12: function SYNC(/)
" : 13: stream = stream_pool .Allocate()
° Am p | lfyl n g C affe 14: syncers[l). Move(stream, GPU2CPU)
. 15: syncers|l|.method = coordinator.BestScheme(/)
° 1 50 | ine Of COd e 16: syncers|l].Send()
17: syncers|l].Receive()
18: syncers|l]. Move(stream, CPU2GPU)
19: sync_count++
20: end function

© Petuum,Inc.
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Using Poseidon

* Poseidon: An efficient communication architecture

* Preserve the programming interface for any high-level toolkits
* i.e. distribute the DL program without changing any line of application code

- T, r-—-- I Microsoft S
I Caffe 'S caffe? D !
f Caffe ..l CNTK
I "3t F___P_Y;TIbRCH |
toolkits | :ay net I theano |
I ______
i |
| Chainer
| dmic I
mxnet ]
N e e e e e e e e — -

4118 411N
o (D) (R @)
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Outline

* Overview: Distributed Deep Learning on GPUs
*Challenges 1: Addressing the communication bottleneck
*Challenges 2: Handling the limited GPU memory

© Petuum,Inc.
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What is the Issue

* Memory

« GPUs have dedicate memory

« For a DL training program to be efficient, its data must be placed on
GPU memory

« GPU memory is limited, compared to CPU, e.g. maximally 12Gb
* Memcpy between CPU and GPU is expensive — a memcpy takes the
same time as launching a GPU computation kernel
* Problems to be answered
* How to Avoid memcpy overhead between CPU and GPU?

* How to proceed the training of a gigantic network with very limited
available memory?
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ﬁ A Machine w/o GPU

N . < >
CPU cores et\lNor Local
storage
NIC — —
DRAM

(CPU memory)
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; A Machine w/ GPU

Network < >
CPU cores © \INor Local
storage
NIC — —
GPU device
GPU cores
OOE000
BIRIALY OOE00E GPU
(CPU memory) OooooQ
|:||:||:||:||:||:|<:> memory
OOO008 (a few GB)
Small GPU memory

— Expensive to copy between GPU/CPU mem
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ﬁ Machine Learning on GPU

~
\

—
—

. <€
Staging memory
for input data|batch

a mini-batch of training data

N —

Input data file

(training data)

e

Input
data

N

Intermediate
data

Parameter data

CPU memory

GPU memory
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% Deep Learning on GPU

Class probabilities

Training batch

parameters

GPU memory

Vulture Intermediate states

"
~ Accipiter
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Training batch

Numbers

parameters

GPU memory

Max available GPU memory: 12G

Intermediate states

Batch size Parameters + Intermediate
grads states

AlexNet 150MB <500M 4.5G
GooglLeNet 64 19MB <40M 10G
VGG19 16 10MB <1.2G 10.8G
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Why Memory is an Issue?

* Intermediate states occupy 90% of the GPU memory
* Intermediate states is proportional to input batch size

e However,

e If you want high throughput, you must have large batch size (because
of the SIMD nature of GPUS)

* It you have large batch size, your GPU will be occupied by intermediate
states, which thereby limits your model size/depth
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Saving Memory: A Simple Trick

» Basic idea
» The fact: intermediate states are proportional to the batch size K

* |dea; achieve large batch size by accumulating gradients generated by smaller batch sizes
which are affordable in the GPU memory

e Solution:
« Parition K into M parts, every part has K/M samples
» Foriter = 1:M

* Train with mini-batchsize K/M
« Accumulate the gradient on GPU w/o updating model parameters
» Update the model parameter all together when all M parts finished

« Drawbacks
« What if the GPU still cannot afford the intermediate states even if K=17?
« Small batch size usually leads to insufficient use of GPUs’ computational capability

© Petuum,Inc.
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(/ Memory Management using CPU Memory

e Core ideas

* If the memory is limited, trade something for memory
» Trade extra computations for memory
 Trade other cost (e.g. memory exchange) for more available memory

* |If the memory is limited, then get more
* model parallel
« CPU memory
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; Memory Management using CPU Memory

Class probabilities

Training images

*For each iteration (mini-
batch)
A forward pass
* Then a backward pass

« Each time only data of two
layers are used
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% Memory Management using CPU Memory

Class probabilities

Training images

*For each iteration (mini-
batch)
A forward pass
* Then a backward pass

« Each time only data of two
layers are used
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/ Memory Management using CPU Memory

Class probabilitie

X . 4 > 2

I

Training images

*For each iteration (mini-
batch)
A forward pass
* Then a backward pass

« Each time only data of two
layers are used
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/ Memory Management using CPU Memory

Class probabilities

v"
’ » N
s “ 5 N
- » o -
* > P'S
= - 3 - .

Training images

*For each iteration (mini-
batch)
A forward pass
* Then a backward pass

« Each time only data of two
layers are used
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4 Memory Management using CPU Memory

Cl babiliti - - ini
ass probabilities » For each iteration (mini-

‘ batch)
A forward pass

%} * Then a backward pass
* Each time only data of two

NN layers are used
Training images l
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% Memory Management using CPU Memory

Class probabilities | | o
*For each iteration (mini-

NN17 batch)
'S « A forward pass
S| e Then a backward pass

* Each time only data of
two layers are used

Training images

The idea
« Use GPU mem as a cache to keep actively used data
« Store the remaining in CPU memory
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f Memory Management using CPU Memory

— —

_/

Staging meimory"
\ery expensive, for input data|batch
sometimes more

expensive than

Input data file
(training data)

N — —

computation
Input| Intermediate
CPU/GPU data data
data transfer
< parameters
CPU memory GPU memory
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f Memory Management using CPU Memory

~ N
N — I
Staging me ory< Input data file
for input data|batch (training data)
Controller/Scheduler ~—— A
to alleviate/hide this
overhead
Input| Intermediate
CPU/GPU data data
data transfer
< parameters
CPU memory GPU memory
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Memory Management using CPU Memory

e Controller

 The fact: the memory access order is deterministic and can be exactly
known by a single forward and backward pass

* |dea:
» Obtain the memory access order by a virtual iteration
* Pre-fetch memory blocks from CPU to GPU
» Overlap memory swap overhead with computation
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% Memory Management using CPU Memory

*\What's the best we can do with this strategy

* We only need 3 memory blocks (peak size) on GPU for:
* Input, Parameters, Output
* The whole training can process with ONLY these three blocks by

» Scheduling memcpy between CPU and GPU to be overlapped with computation

* Move in and out for each layer’'s computation as training proceeds
1le9

1.0 - - : v

4 0 Input data

2 0.8 Intermediate states ,N k :

; B Parameter data pea

o 0.6 ‘ -

© X

5 - L1
alm _ L B 4

> 0411 I H

o l o - "

g 0.2 ™ - W‘ r =2 ‘A"—"“‘ N

2 UMl d . 1.3 & BelRLRNNRERN
0 10 20 20 10 0

forward backward

Neural network layers
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; Throughput vs. memory budget

o 800 ! ; ! !

Q :

N 5 5 5 . o

8-600_ ............. .............. ............ [ Bifeemzaca: f_

o : : : '

Q X ; Z I

£ 400} T T ............. Al data |:n GPU memory

Q 2001} Onlly buffer pool i.n GPU memory |

G Twice the peak size for double buffering

& : : : ;

— 0 | | | | |
0 | 2 3 4 5

GPU memory per machine (GB)

» Only 27% reduction in throughput with 35% memory
« Can do 3x bigger problems with little overhead

© Petuum,Inc. 142



/
4 Larger models
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* Models up to 20 GB



Summary

* Deep learning as dataflow graphs

* A lot of auto-differentiation libraries have been developed to train NNs
« Different adoption, advantages, disadvantages
« DyNet is a new framework for next-wave dynamic NNs

e Difficulties arise when scaling up DL using distributed GPUs
« Communication bottleneck
* Memory limit

* Poseidon as a platform to support and amplify different kinds of DL
toolboxes
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Elements of Modern Al

Data

Task

Model

Algorithm

Implementation

System

Platform
and Hardware
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R
+ Graphical Models

*» Nonparametric
Bayesian Models

« Stochastic Gradient
Descent / Back
propagation

» Mahout
(MapReduce)

Hadoop

 Network switches
* Infiniband

* Large-Margin

* Regularized

* Milib * MxNet

Spark MPI RPC

* Network attached

storage » Desktops/Laptops + Flash networks (e.g.
* Flash storage

» Deep Learning + Sparse Coding

+ Spectral/Matrix
Bayesian Methods Methods

* Sparse Structured
1/O Regression

+ Coordinate + L-BFGS + Gibbs Sampling * Metropolis-
Descent Hastings

+ Tensorflow
(BSP) (Async)

GraphLab

» Server machines +RAM - loT device * Virtual

machines

* ARM-powered
devices

» Mobile devices

+SSD  Amazon EC2)
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% Sys-Alg Co-design Inside!

Model

=%
)

Our “VML”
Software Layer

Algorithm

Implementation

System
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% Better Performance

Time taken (minutes)

» Fast and Real-Time

 Orders of magnitude
faster than Spark and
TensorFlow

» As fast as hand-crafted
systems

Speedup vs  Spark
10 822
. Up to 200x faster on some ML
8 XXX algorithms
6 £ 58
4 388
2 -
0 03
Hand-
Spark Crafted PetuumOS
System

« Any Scale

* Perfect straight-line
speedup with more
computing devices

» Spark, TensorFlow can
slow down with more
devices

Up to 20x faster deep learning *p
vs TensorFlow Sikiind
& Lo

Poscubm

= Temaont how

Speedup

>
-«

Number of GPU computers

 Low Resource

» Turning a regular cluster
into a super computer:

» Achieve Al results with much
more data, but using fewer
computing devices

» Google brain uses ~1000
machines whereas Petuum
uses ~10 for the same job
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A Petuum Vision
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Model

* Omni-Source
(Any Data)

——
/ « Omni-Lingual
Implementation PETUUM (Any Programming Language)

System

Algorithm

* Omni-Mount
(Any Hardware)

» Network switches Network attached  + Server machines <+ RAM - loT device * Virtual
* Infiniband storage » Desktops/Laptops + Flash networks (e.g. machines
* Flash storage * ARM-powered +SSD  Amazon EC2)
devices
+ Mobile devices

© Petuum,Inc. 148



	DL-Part-1-new
	DL-Part-2-new
	DL-Part-3-new

