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Preface to the sixth edition

Since the publication of the fifth edition of this book in 2005 the use of elemen-
tary and advanced statistical methods in the teaching and the practice of the ana-
lytical sciences has continued to increase in extent and quality. This new edition
attempts to keep pace with these developments in several chapters, while retain-
ing the basic approach of previous editions by adopting a pragmatic and, as far as
possible, non-mathematical approach to statistical calculations.

The results of many analytical experiments are conventionally evaluated using
established significance testing methods. In recent years, however, Bayesian
methods have become more widely used, especially in areas such as forensic sci-
ence and clinical chemistry. The basis and methodology of Bayesian statistics have
some distinctive features, which are introduced in a new section of Chapter 3. The
quality of analytical results obtained when different laboratories study identical
sample materials continues, for obvious practical reasons, to be an area of major
importance and interest. Such comparative studies form a major part of the
process of validating the use of a given method by a particular laboratory. Chap-
ter 4 has therefore been expanded to include a new section on method validation.
The most popular form of inter-laboratory comparison, proficiency testing schemes,
often yields suspect or unexpected results. The latter are now generally treated
using robust statistical methods, and the treatment of several such methods in
Chapter 6 has thus been expanded.  Uncertainty estimates have become a widely
accepted feature of many analyses, and a great deal of recent attention has been
focused on the uncertainty contributions that often arise from the all-important
sampling process: this topic has also been covered in Chapter 4. Calibration
methods lie at the core of most modern analytical experiments. In Chapter 5 we
have expanded our treatments of the standard additions approach, of weighted
regression, and of regression methods where both x- and y-axes are subject to errors
or variations.

A topic that analytical laboratories have not, perhaps, given the attention it
deserves has been the proper use of experimental designs. Such designs have
distinctive nomenclature and approaches compared with post-experiment data
analysis, and this perhaps accounts for their relative neglect, but many experi-
mental designs are relatively simple, and again excellent software support is avail-
able. This has encouraged us to expand significantly the coverage of experimental
designs in Chapter 7. New and ever more sophisticated multivariate analysis



 

x Preface to the sixth edition

methods are now used by many researchers, and also in some everyday applica-
tions of analytical methods. They really deserve a separate text to themselves, but
for this edition we have modestly expanded Chapter 8, which deals with these
methods.

We have continued to include in the text many examples of calculations per-
formed by two established pieces of software, Excel® and Minitab®. The former is
accessible from most personal computers, and is much used in the collection and
processing of data from analytical instruments, while the latter is frequently
adopted in education as well as by practising scientists. In each program the cal-
culations, at least the simple ones used in this book, are easily accessible and sim-
ply displayed, and many texts are available as general introductions to the
software. Macros and add-ins that usefully expand the capacities and applications
of Excel® and Minitab® are widely and freely available, and both programs offer
graphical displays that provide opportunities for better understanding and fur-
ther data interpretation. These extra facilities are utilised in some examples pro-
vided in the Instructors’ Manual, which again accompanies this edition of our
book. The Manual also contains ideas for classroom and laboratory work, a com-
plete set of figures for use as OHP masters, and fully worked solutions to the exer-
cises in this volume: this text now contains only outline solutions.

We are very grateful to many correspondents and staff and student colleagues
who continue to provide us with constructive comments and suggestions, and to
point out minor errors and omissions. We also thank the Royal Society of Chem-
istry for permission to use data from papers published in The Analyst. Finally we
thank Rufus Curnow and his editorial colleagues at Pearson Education, Nicola
Chilvers and Ros Woodward, for their perfect mixture of expertise, patience and
enthusiasm; any errors that remain despite their best efforts are ours alone.

James N. Miller
Jane C. Miller
December 2009



 

Preface to the first edition

To add yet another volume to the already numerous texts on statistics might seem
to be an unwarranted exercise, yet the fact remains that many highly competent
scientists are woefully ignorant of even the most elementary statistical methods.
It is even more astonishing that analytical chemists, who practise one of the most
quantitative of all sciences, are no more immune than others to this dangerous,
but entirely curable, affliction. It is hoped, therefore, that this book will benefit
analytical scientists who wish to design and conduct their experiments properly,
and extract as much information from the results as they legitimately can. It is
intended to be of value to the rapidly growing number of students specialising in
analytical chemistry, and to those who use analytical methods routinely in every-
day laboratory work.

There are two further and related reasons that have encouraged us to write this
book. One is the enormous impact of microelectronics, in the form of microcom-
puters and handheld calculators, on statistics: these devices have brought lengthy
or difficult statistical procedures within the reach of all practising scientists. The
second is the rapid development of new ‘chemometric’ procedures, including pat-
tern recognition, optimisation, numerical filter techniques, simulations and so
on, all of them made practicable by improved computing facilities. The last chap-
ter of this book attempts to give the reader at least a flavour of the potential of
some of these newer statistical methods. We have not, however, included any
computer programs in the book – partly because of the difficulties of presenting
programs that would run on all the popular types of microcomputer, and partly
because there is a substantial range of suitable and commercially available books
and software.

The availability of this tremendous computing power naturally makes it all the
more important that the scientist applies statistical methods rationally and cor-
rectly. To limit the length of the book, and to emphasise its practical bias, we have
made no attempt to describe in detail the theoretical background of the statistical
tests described. But we have tried to make it clear to the practising analyst which
tests are appropriate to the types of problem likely to be encountered in the labo-
ratory. There are worked examples in the text, and exercises for the reader at the
end of each chapter. Many of these are based on the data provided by research
papers published in The Analyst. We are deeply grateful to Mr. Phil Weston, the



 

xii Preface to the first edition

Editor, for allowing us thus to make use of his distinguished journal. We also
thank our colleagues, friends and family for their forbearance during the prepara-
tion of the book; the sources of the statistical tables, individually acknowledged
in the appendices; the Series Editor, Dr. Bob Chalmers; and our publishers for
their efficient cooperation and advice.

J. C. Miller
J. N. Miller
April 1984
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1

1.1 Analytical problems

Analytical chemists face both qualitative and quantitative problems. For example,
the presence of boron in distilled water is very damaging in the manufacture of elec-
tronic components, so we might be asked the qualitative question ‘Does this dis-
tilled water sample contain any boron?’ The comparison of soil samples in forensic
science provides another qualitative problem: ‘Could these two soil samples have
come from the same site?’ Other problems are quantitative ones: ‘How much albu-
min is there in this sample of blood serum?’ ‘What is the level of lead in this sample
of tap-water?’ ‘This steel sample contains small amounts of chromium, tungsten and
manganese – how much of each?’ These are typical examples of single- and multiple-
component quantitative analyses.

Modern analytical chemistry is overwhelmingly a quantitative science, as a
quantitative result will generally be much more valuable than a qualitative one. It
may be useful to have detected boron in a water sample, but it is much more useful
to be able to say how much boron is present. Only then can we judge whether the
boron level is worrying, or consider how it might be reduced. Sometimes it is only a
quantitative result that has any value at all: almost all samples of blood serum con-
tain albumin, so the only question is, how much?

Even when only a qualitative answer is required, quantitative methods are often
used to obtain it. In reality, an analyst would never simply report ‘I can/cannot
detect boron in this water sample’. A quantitative method capable of detecting

Major topics covered in this chapter
• Errors in analytical measurements

• Gross, random and systematic errors

• Precision, repeatability, reproducibility, bias, accuracy

• Planning experiments

• Using calculators and personal computers

Introduction



 

2 1: Introduction

boron at, say, 1 �g ml-1 levels would be used. If it gave a negative result, the outcome
would be described in the form, ‘This sample contains less than 1 �g ml-1 boron’. If
the method gave a positive result, the sample will be reported to contain at least 
1�g ml-1 boron (with other information too – see below). More complex approaches
can be used to compare two soil samples. The soils might be subjected to a particle
size analysis, in which the proportions of the soil particles falling within a number,
say 10, of particle-size ranges are determined. Each sample would then be charac-
terised by these 10 pieces of data, which can be used (see Chapter 8) to provide a
quantitative rather than just a qualitative assessment of their similarity.

1.2 Errors in quantitative analysis

Once we accept that quantitative methods will be the norm in an analytical labora-
tory, we must also accept that the errors that occur in such methods are of crucial
importance. Our guiding principle will be that no quantitative results are of any value
unless they are accompanied by some estimate of the errors inherent in them. (This princi-
ple naturally applies not only to analytical chemistry but to any field of study in
which numerical experimental results are obtained.) Several examples illustrate this
idea, and they also introduce some types of statistical problem that we shall meet
and solve in later chapters.

Suppose we synthesise an analytical reagent which we believe to be entirely new.
We study it using a spectrometric method and it gives a value of 104 (normally our
results will be given in proper units, but in this hypothetical example we use purely
arbitrary units). On checking the reference books, we find that no compound previ-
ously discovered has given a value above 100 when studied by the same method in
the same experimental conditions. So have we really discovered a new compound?
The answer clearly lies in the reliance that we can place on that experimental value
of 104. What errors are associated with it? If further work suggests that the result is
correct to within 2 (arbitrary) units, i.e. the true value probably lies in the range
104 2, then a new compound has probably been discovered. But if investigations
show that the error may amount to 10 units (i.e. 104 10), then it is quite likely
that the true value is actually less than 100, in which case a new discovery is far from
certain. So our knowledge of the experimental errors is crucial (in this and every
other case) to the proper interpretation of the results. Statistically this example in-
volves the comparison of our experimental result with an assumed or reference
value: this topic is studied in detail in Chapter 3.

Analysts commonly perform several replicate determinations in the course of a
single experiment. (The value and significance of such replicates is discussed in de-
tail in the next chapter.) Suppose we perform a titration four times and obtain values
of 24.69, 24.73, 24.77 and 25.39 ml. (Note that titration values are reported to the
nearest 0.01 ml: this point is also discussed in Chapter 2.) All four values are different,
because of the errors inherent in the measurements, and the fourth value (25.39 ml)
is substantially different from the other three. So can this fourth value be safely
rejected, so that (for example) the mean result is reported as 24.73 ml, the average of
the other three readings? In statistical terms, is the value 25.39 ml an outlier? The
major topic of outlier rejection is discussed in detail in Chapters 3 and 6.

;

;
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Another frequent problem involves the comparison of two (or more) sets of re-
sults. Suppose we measure the vanadium content of a steel sample by two separate
methods. With the first method the average value obtained is 1.04%, with an esti-
mated error of 0.07%, and with the second method the average value is 0.95%, with
an error of 0.04%. Several questions then arise. Are the two average values signifi-
cantly different, or are they indistinguishable within the limits of the experimental
errors? Is one method significantly less error-prone than the other? Which of the
mean values is actually closer to the truth? Again, Chapter 3 discusses these and
related questions.

Many instrumental analyses are based on graphical methods. Instead of making
repeated measurements on the same sample, we perform a series of measurements
on a small group of standards containing known analyte concentrations covering a
considerable range. The results yield a calibration graph that is used to estimate by
interpolation the concentrations of test samples (‘unknowns’) studied by the same
procedure. All the measurements on the standards and on the test samples will be
subject to errors. We shall need to assess the errors involved in drawing the calibra-
tion graph, and the error in the concentration of a single sample determined using
the graph. We can also estimate the limit of detection of the method, i.e. the small-
est quantity of analyte that can be detected with a given degree of confidence. These
and related methods are described in Chapter 5.

These examples represent only a small fraction of the possible problems arising
from the occurrence of experimental errors in quantitative analysis. All such prob-
lems have to be solved if the quantitative data are to have any real meaning, so
clearly we must study the various types of error in more detail.

1.3 Types of error

Experimental scientists make a fundamental distinction between three types of
error. These are known as gross, random and systematic errors. Gross errors are
readily described: they are so serious that there is no alternative to abandoning the
experiment and making a completely fresh start. Examples include a complete in-
strument breakdown, accidentally dropping or discarding a crucial sample, or dis-
covering during the course of the experiment that a supposedly pure reagent was in
fact badly contaminated. Such errors (which occur even in the best laboratories!) are
normally easily recognised. But we still have to distinguish carefully between
random and systematic errors.

We can make this distinction by careful study of a real experimental situation.
Four students (A–D) each perform an analysis in which exactly 10.00 ml of exactly
0.1 M sodium hydroxide is titrated with exactly 0.1 M hydrochloric acid. Each stu-
dent performs five replicate titrations, with the results shown in Table 1.1.

The results obtained by student A have two characteristics. First, they are all very
close to each other; all the results lie between 10.08 and 10.12 ml. In everyday terms
we would say that the results are highly repeatable. The second feature is that they
are all too high: in this experiment (somewhat unusually) we know the correct an-
swer: the result should be exactly 10.00 ml. Evidently two entirely separate types
of error have occurred. First, there are random errors – these cause replicate results to
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differ from one another, so that the individual results fall on both sides of the average value
(10.10 ml in this case). Random errors affect the precision, or repeatability, of an
experiment. In the case of student A it is clear that the random errors are small, so we
say that the results are precise. In addition, however, there are systematic errors –
these cause all the results to be in error in the same sense (in this case they are all too
high). The total systematic error (in a given experiment there may be several sources
of systematic error, some positive and others negative; see Chapter 2) is called the
bias of the measurement. (The opposite of bias, or lack of bias, is sometimes referred
to as trueness of a method: see Section 4.15.) The random and systematic errors here
are readily distinguishable by inspection of the results, and may also have quite dis-
tinct causes in terms of experimental technique and equipment (see Section 1.4). We
can extend these principles to the data obtained by student B, which are in direct
contrast to those of student A. The average of B’s five results (10.01 ml) is very close
to the true value, so there is no evidence of bias, but the spread of the results is very
large, indicating poor precision, i.e. substantial random errors. Comparison of these
results with those obtained by student A shows clearly that random and systematic
errors can occur independently of one another. This conclusion is reinforced by the
data of students C and D. Student C’s work has poor precision (range 9.69–10.19 ml)
and the average result (9.90 ml) is (negatively) biased. Student D has achieved
both precise (range 9.97–10.04 ml) and unbiased (average 10.01 ml) results. The dis-
tinction between random and systematic errors is summarised in Table 1.2, and in
Fig. 1.1 as a series of dot-plots. This simple graphical method of displaying data, in
which individual results are plotted as dots on a linear scale, is frequently used 
in exploratory data analysis (EDA, also called initial data analysis, IDA: see Chapters 3
and 6).

Table 1.1 Data demonstrating random and systematic errors

Student Results (ml) Comment

A 10.08 10.11 10.09 10.10 10.12 Precise, biased

B 9.88 10.14 10.02 9.80 10.21 Imprecise, unbiased

C 10.19 9.79 9.69 10.05 9.78 Imprecise, biased

D 10.04 9.98 10.02 9.97 10.04 Precise, unbiased

Table 1.2 Random and systematic errors

Random errors Systematic errors

Cause replicate results to fall on either side 
of a mean value

Cause all results to be affected in one sense 
only, all too high or all too low

Produce bias – an overall deviation of a 
result from the true value even when 
random errors are very small

Can be estimated using replicate 
measurements

Caused by both humans and equipment Caused by both humans and equipment

Cannot be detected simply by using 
replicate measurements

Affect precision – repeatability or 
reproducibility

Can be minimised by good technique but 
not eliminated

Can be corrected, e.g. by using 
standard methods and materials
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In most analytical experiments the most important question is, how far is the
result from the true value of the concentration or amount that we are trying to mea-
sure? This is expressed as the accuracy of the experiment. Accuracy is defined by the
International Organization for Standardization (ISO) as ‘the closeness of agreement
between a test result and the accepted reference value’ of the analyte. Under this de-
finition the accuracy of a single result may be affected by both random and system-
atic errors. The accuracy of an average result also has contributions from both error
sources: even if systematic errors are absent, the average result will probably not
equal the reference value exactly, because of the occurrence of random errors (see
Chapters 2 and 3). The results obtained by student B demonstrate this. Four of B’s
five measurements show significant inaccuracy, i.e. are well removed from the true
value of 10.00. But the average of the results (10.01) is very accurate, so it seems that
the inaccuracy of the individual results is due largely to random errors and not to
systematic ones. By contrast, all of student A’s individual results, and the resulting
average, are inaccurate: given the good precision of A’s work, it seems certain that
these inaccuracies are due to systematic errors. Note that, contrary to the implications
of many dictionaries, accuracy and precision have entirely different meanings in the
study of experimental errors.

In summary, precision describes random error, bias describes systematic error
and the accuracy, i.e. closeness to the true value of a single measurement or a
mean value, incorporates both types of error.

Another important area of terminology is the difference between reproducibility
and repeatability. We can illustrate this using the students’ results again. In the
normal way each student would do the five replicate titrations in rapid succession,
taking only an hour or so. The same set of solutions and the same glassware would
be used throughout, the same preparation of indicator would be added to each
titration flask, and the temperature, humidity and other laboratory conditions
would remain much the same. In such cases the precision measured would be the

Student A

Student B

Student D

Student C

9.70 10.00 10.30

Correct
result

Titrant volume, ml

Figure 1.1 Bias and precision: dot-plots of the data in Table 1.1.
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within-run precision: this is called the repeatability. Suppose, however, that for
some reason the titrations were performed by different staff on five different occa-
sions in different laboratories, using different pieces of glassware and different
batches of indicator. It would not be surprising to find a greater spread of the results
in this case. The resulting data would reflect the between-run precision of the
method, i.e. its reproducibility.

• Repeatability describes the precision of within-run replicates.

• Reproducibility describes the precision of between-run replicates.

• The reproducibility of a method is normally expected to be poorer (i.e. with
larger random errors) than its repeatability.

One further lesson may be learned from the titration experiments. Clearly the
data obtained by student C are unacceptable, and those of student D are the best.
Sometimes, however, two methods may be available for a particular analysis, one of
which is believed to be precise but biased, and the other imprecise but without bias.
In other words we may have to choose between the types of results obtained by stu-
dents A and B respectively. Which type of result is preferable? It is impossible to give
a dogmatic answer to this question, because in practice the choice of analytical
method will often be based on the cost, ease of automation, speed of analysis, and 
so on. But it is important to realise that a method which is substantially free from
systematic errors may still, if it is very imprecise, give an average value that is (by
chance) a long way from the correct value. On the other hand a method that is pre-
cise but biased (e.g. student A) can be converted into one that is both precise and
unbiased (e.g. student D) if the systematic errors can be discovered and hence removed.
Random errors can never be eliminated, though by careful technique we can min-
imise them, and by making repeated measurements we can measure them and eval-
uate their significance. Systematic errors can in many cases be removed by careful
checks on our experimental technique and equipment. This crucial distinction
between the two major types of error is further explored in the next section.

When an analytical laboratory is supplied with a sample and requested to deter-
mine the concentrations of one of its constituents, it will estimate, or perhaps know
from previous experience, the extent of the major random and systematic errors
occurring. The customer supplying the sample may well want this information
incorporated in a single statement, giving the range within which the true concentra-
tion is reasonably likely to lie. This range, which should be given with a probability
(e.g. ‘it is 95% probable that the concentration lies between . . . and . . .’), is called
the uncertainty of the measurement. Uncertainty estimates are now very widely
used in analytical chemistry and are discussed in more detail in Chapter 4.

1.4 Random and systematic errors in titrimetric analysis

The students’ titrimetric experiments showed clearly that random and systematic
errors can occur independently of one another, and thus presumably arise at different
stages of an experiment. A complete titrimetric analysis can be summarised by the
following steps:
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1 Making up a standard solution of one of the reactants. This involves (a) weighing
a weighing bottle or similar vessel containing some solid material, (b) transferring
the solid material to a standard flask and weighing the bottle again to obtain by
subtraction the weight of solid transferred (weighing by difference), and (c) filling
the flask up to the mark with water (assuming that an aqueous titration is to be
used).

2 Transferring an aliquot of the standard material to a titration flask by filling and
draining a pipette properly.

3 Titrating the liquid in the flask with a solution of the other reactant, added from
a burette. This involves (a) filling the burette and allowing the liquid in it to drain
until the meniscus is at a constant level, (b) adding a few drops of indicator solu-
tion to the titration flask, (c) reading the initial burette volume, (d) adding liquid
to the titration flask from the burette until the end point is adjudged to have been
reached, and (e) measuring the final level of liquid in the burette.

So the titration involves some ten separate steps, the last seven of which are nor-
mally repeated several times, giving replicate results. In principle, we should examine
each step to evaluate the random and systematic errors that might occur. In practice,
it is simpler to examine separately those stages which utilise weighings (steps 1(a)
and 1(b)), and the remaining stages involving the use of volumetric equipment. (It is
not intended to give detailed descriptions of the experimental techniques used in
the various stages. Similarly, methods for calibrating weights, glassware, etc. will not
be given.) The tolerances of weights used in the gravimetric steps, and of the volu-
metric glassware, may contribute significantly to the experimental errors. Specifica-
tions for these tolerances are issued by such bodies as the British Standards Institute
(BSI) and the American Society for Testing and Materials (ASTM). The tolerance of a
top-quality 100 g weight can be as low as 0.25 mg, although for a weight used in
routine work the tolerance would be up to four times as large. Similarly the tolerance
for a grade A 250 ml standard flask is 0.12 ml: grade B glassware generally has toler-
ances twice as large as grade A glassware. If a weight or a piece of glassware is within
the tolerance limits, but not of exactly the correct weight or volume, a systematic
error will arise. Thus, if the standard flask actually has a volume of 249.95 ml, this
error will be reflected in the results of all the experiments based on the use of that
flask. Repetition of the experiment will not reveal the error: in each replicate the vol-
ume will be assumed to be 250.00 ml when in fact it is less than this. If, however, the
results of an experiment using this flask are compared with the results of several
other experiments (e.g. in other laboratories) done with other flasks, then if all the
flasks have slightly different volumes they will contribute to the random variation,
i.e. the reproducibility, of the results.

Weighing procedures are normally associated with very small random errors. In
routine laboratory work a ‘four-place’ balance is commonly used, and the random
error involved should not be greater than ca. 0.0002 g (the next chapter describes in
detail the statistical terms used to express random errors). Since the quantity being
weighed is normally of the order of 1 g or more, the random error, expressed as a
percentage of the weight involved, is not more than 0.02%. A good standard mater-
ial for volumetric analysis should (amongst other properties) have as high a formula
weight as possible, to minimise these random weighing errors when a solution of a
specified molarity is being made up.

Systematic errors in weighings can be appreciable, arising from adsorption of mois-
ture on the surface of the weighing vessel; corroded or dust-contaminated weights;

;

;
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and the buoyancy effect of the atmosphere, acting to different extents on objects of
different density. For the best work, weights must be calibrated against standards pro-
vided by statutory bodies and authorities (see above). This calibration can be very
accurate indeed, e.g. to 0.01 mg for weights in the range 1–10 g. Some simple exper-
imental precautions can be taken to minimise these systematic weighing errors.
Weighing by difference (see above) cancels systematic errors arising from (for exam-
ple) the moisture and other contaminants on the surface of the bottle. (See also Sec-
tion 2.12.) If such precautions are taken, the errors in the weighing steps will be small,
and in most volumetric experiments weighing errors will probably be negligible com-
pared with the volumetric ones. Indeed, gravimetric methods are usually used for the
calibration of items of volumetric glassware, by weighing (in standard conditions)
the water that they contain or deliver, and standards for top-quality calibration
experiments (Chapter 5) are made up by weighing rather than volume measurements.

Most of the random errors in volumetric procedures arise in the use of volumetric
glassware. In filling a 250 ml standard flask to the mark, the error (i.e. the distance
between the meniscus and the mark) might be about 0.03 cm in a flask neck of
diameter ca. 1.5 cm. This corresponds to a volume error of about 0.05 ml – only
0.02% of the total volume of the flask. The error in reading a burette (the conven-
tional type graduated in 0.1 ml divisions) is perhaps 0.01–0.02 ml. Each titration
involves two such readings (the errors of which are not simply additive – see Chapter 2);
if the titration volume is ca. 25 ml, the percentage error is again very small. The
experiment should be arranged so that the volume of titrant is not too small (say not
less than 10 ml), otherwise such errors may become appreciable. (This precaution is
analogous to choosing a standard compound of high formula weight to minimise
the weighing error.) Even though a volumetric analysis involves several steps, each
involving a piece of volumetric glassware, the random errors should evidently be
small if the experiments are performed with care. In practice a good volumetric
analysis should have a relative standard deviation (see Chapter 2) of not more than
about 0.1%. Until fairly recently such precision was not normally attainable in
instrumental analysis methods, and it is still not very common.

Volumetric procedures incorporate several important sources of systematic error: the
drainage errors in the use of volumetric glassware, calibration errors in the glassware and
‘indicator errors’. Perhaps the commonest error in routine volumetric analysis is to fail to
allow enough time for a pipette to drain properly, or a meniscus level in a burette to sta-
bilise. The temperature at which an experiment is performed has two effects. Volumetric
equipment is conventionally calibrated at 20 °C, but the temperature in an analytical
laboratory may easily be several degrees different from this, and many experiments, for
example in biochemical analysis, are carried out in ‘cold rooms’ at ca. 4 °C. The temper-
ature affects both the volume of the glassware and the density of liquids.

Indicator errors can be quite substantial, perhaps larger than the random errors in
a typical titrimetric analysis. For example, in the titration of 0.1 M hydrochloric acid
with 0.1 M sodium hydroxide, we expect the end point to correspond to a pH of 7.
In practice, however, we estimate this end point using an indicator such as methyl
orange. Separate experiments show that this substance changes colour over the pH
range ca. 3–4. If, therefore, the titration is performed by adding alkali to acid, the
indicator will yield an apparent end point when the pH is ca. 3.5, i.e. just before the
true end point. The error can be evaluated and corrected by doing a blank experi-
ment, i.e. by determining how much alkali is required to produce the indicator
colour change in the absence of the acid.

;

;



 

Handling systematic errors 9

It should be possible to consider and estimate the sources of random and system-
atic error arising at each distinct stage of an analytical experiment. It is very desir-
able to do this, so as to avoid major sources of error by careful experimental design
(Sections 1.5 and 1.6). In many analyses (though not normally in titrimetry) the
overall error is in practice dominated by the error in a single step: this point is fur-
ther discussed in the next chapter.

1.5 Handling systematic errors

Much of the rest of this book will deal with the handling of random errors, using a
wide range of statistical methods. In most cases we shall assume that systematic errors
are absent (though methods which test for the occurrence of systematic errors will be
described). So at this stage we must discuss systematic errors in more detail – how
they arise, and how they may be countered. The example of the titrimetric analysis
given above shows that systematic errors cause the mean value of a set of replicate
measurements to deviate from the true value. It follows that (a) in contrast to random
errors, systematic errors cannot be revealed merely by making repeated measure-
ments, and that (b) unless the true result of the analysis is known in advance – an un-
likely situation! – very large systematic errors might occur but go entirely undetected
unless suitable precautions are taken. That is, it is all too easy totally to overlook sub-
stantial sources of systematic error. A few examples will clarify both the possible prob-
lems and their solutions.

The levels of transition metals in biological samples such as blood serum are im-
portant in many biomedical studies. For many years determinations were made of
the levels of (for example) chromium in serum – with some startling results. Differ-
ent workers, all studying pooled serum samples from healthy subjects, published
chromium concentrations varying from �1 to ca. 200 ng ml-1. In general the lower
results were obtained later than the higher ones, and it gradually became apparent
that the earlier values were due at least in part to contamination of the samples by
chromium from stainless-steel syringes, tube caps, and so on. The determination of
traces of chromium, e.g. by atomic-absorption spectrometry, is in principle relatively
straightforward, and no doubt each group of workers achieved results which seemed
satisfactory in terms of precision; but in a number of cases the large systematic error
introduced by the contamination was entirely overlooked. Similarly the normal
levels of iron in seawater are now known to be in the parts per billion (ng ml-1)
range, but until fairly recently the concentration was thought to be much higher,
perhaps tens of �g ml-1. This misconception arose from the practice of sampling and
analysing seawater in ship-borne environments containing high ambient iron levels.
Methodological systematic errors of this kind are extremely common.

Another class of systematic error occurs widely when false assumptions are made
about the accuracy of an analytical instrument. A monochromator in a spectrometer
may gradually go out of adjustment, so that errors of several nanometres in wave-
length settings arise, yet many photometric analyses are undertaken without appro-
priate checks being made. Very simple devices such as volumetric glassware,
stopwatches, pH meters and thermometers can all show substantial systematic
errors, but many laboratory workers use them as though they are without bias. Most
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instrumental analysis systems are now wholly controlled by computers, minimising
the number of steps and the skill levels required in many experiments. It is very
tempting to regard results from such instruments as beyond reproach, but (unless
the devices are ‘intelligent’ enough to be self-calibrating – see Section 1.7) they are
still subject to systematic errors.

Systematic errors arise not only from procedures or apparatus; they can also arise
from human bias. Some chemists suffer from astigmatism or colour-blindness (the
latter is more common among men than women) which might introduce errors into
their readings of instruments and other observations. A number of authors have
reported various types of number bias, for example a tendency to favour even over
odd numbers, or 0 and 5 over other digits, in the reporting of results. In short, sys-
tematic errors of several kinds are a constant, and often hidden, risk for the analyst,
so very careful steps to minimise them must be taken.

Several approaches to this problem are available, and any or all of them should be
considered in each analytical procedure. The first precautions should be taken be-
fore any experimental work is begun. The analyst should consider carefully each
stage of the experiment to be performed, the apparatus to be used and the sampling
and analytical procedures to be adopted. At this early stage the likely sources of sys-
tematic error, such as the instrument functions that need calibrating, and the steps
of the analytical procedure where errors are most likely to occur, and the checks that
can be made during the analysis, must be identified. Foresight of this kind can be
very valuable (the next section shows that similar advance attention should be given
to the sources of random error) and is normally well worth the time invested. For
example, a little thinking of this kind might well have revealed the possibility of
contamination in the serum chromium determinations described above.

The second line of defence against systematic errors lies in the design of the exper-
iment at every stage. We have already seen (Section 1.4) that weighing by difference
can remove some systematic gravimetric errors: these can be assumed to occur to the
same extent in both weighings, so the subtraction process eliminates them. Another
example of careful experimental planning is provided by the spectrometer wave-
length error described above. If the concentration of a sample of a single material is
to be determined by absorption spectrometry, two procedures are possible. In the
first, the sample is studied in a 1 cm pathlength spectrometer cell at a single wave-
length, say 400 nm, and the concentration of the test component is determined from
the well-known equation (where A, , c and b are the measured absorbance,
a published value of the molar absorptivity (with units l mole-1 cm-1) of the test
component, the molar concentration of this analyte, and the pathlength (cm) of the
spectrometer cell) respectively. Several systematic errors can arise here. The wave-
length might, as already discussed, be (say) 405 nm rather than 400 nm, thus render-
ing the published value of inappropriate; this published value might in any case be
wrong; the absorbance scale of the spectrometer might exhibit a systematic error; and
the pathlength of the cell might not be exactly 1 cm. Alternatively, the analyst might
use the calibration graph approach outlined in Section 1.2 and discussed in detail in
Chapter 5. In this case the value of is not required, and the errors due to wavelength
shifts, absorbance errors and pathlength inaccuracies should cancel out, as they occur
equally in the calibration and test experiments. If the conditions are truly equivalent
for the test and calibration samples (e.g. the same cell is used and the wavelength and
absorbance scales do not alter during the experiment) all the major sources of system-
atic error are in principle eliminated.

e

e

eA = ebc
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The final and perhaps most formidable protection against systematic errors is the
use of standard reference materials and methods. Before the experiment is started,
each piece of apparatus is calibrated by an appropriate procedure. We have seen that
volumetric equipment can be calibrated by the use of gravimetric methods. Simi-
larly, spectrometer wavelength scales can be calibrated with the aid of standard light
sources which have narrow emission lines at well-established wavelengths, and
spectrometer absorbance scales can be calibrated with standard solid or liquid fil-
ters. Most pieces of equipment can be calibrated so that their systematic errors are
known in advance. The importance of this area of chemistry (and other experi-
mental sciences) is reflected in the extensive work of bodies such as the National
Physical Laboratory and LGC (in the UK), the National Institute for Science and
Technology (NIST) (in the USA) and similar organisations elsewhere. Whole volumes
have been written on the standardisation of particular types of equipment, and a
number of commercial organisations specialise in the sale of certified reference
materials (CRMs).

A further check on the occurrence of systematic errors in a method is to com-
pare the results with those obtained from a different method. If two unrelated
methods are used to perform one analysis, and if they consistently yield results
showing only random differences, it is a reasonable presumption that no signifi-
cant systematic errors are present. For this approach to be valid, each step of the
two analyses has to be independent. Thus in the case of serum chromium deter-
minations, it would not be sufficient to replace the atomic-absorption spectrome-
try method by a colorimetric one or by plasma spectrometry. The systematic
errors would only be revealed by altering the sampling methods also, e.g. by min-
imising or eliminating the use of stainless-steel equipment. Moreover such com-
parisons must be made over the whole of the concentration range for which an
analytical procedure is to be used. For example, the bromocresol green dye-binding
method for the determination of albumin in blood serum agrees well with
alternative methods (e.g. immunological ones) at normal or high levels of albu-
min, but when the albumin levels are abnormally low (these are the cases of most
clinical interest, inevitably!) the agreement between the two methods is poor, the
dye-binding method giving consistently (and erroneously) higher values. The
statistical approaches used in method comparisons are described in detail in
Chapters 3 and 5.

The prevalence of systematic errors in everyday analytical work is well illustrated
by the results of collaborative trials (method performance studies). If an experi-
enced analyst finds 10 ng ml-1 of a drug in a urine sample, it is natural to suppose
that other analysts would obtain very similar results for the same sample, any dif-
ferences being due to random errors only. Unfortunately, this is far from true in
practice. Many collaborative studies involving different laboratories, when aliquots
of a single sample are examined by the same experimental procedures and types of
instrument, show variations in the results much greater than those expected from
random errors. So in many laboratories substantial systematic errors, both positive
and negative, must be going undetected or uncorrected. This situation, which has
serious implications for all analytical scientists, has encouraged many studies of the
methodology of collaborative trials and proficiency testing schemes, and of their
statistical evaluation. Such schemes have led to dramatic improvements in the
quality of analytical results in a range of fields. These topics are discussed in
Chapter 4.
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Tackling systematic errors:

• Foresight: identifying problem areas before starting experiments.

• Careful experimental design, e.g. use of calibration methods.

• Checking instrument performance.

• Use of standard reference materials and other standards.

• Comparison with other methods for the same analytes.

• Participation in proficiency testing schemes.

1.6 Planning and design of experiments

Many chemists regard statistical methods only as tools to assess the results of com-
pleted experiments. This is indeed a crucial area of application of statistics, but we
must also be aware of the importance of statistical concepts in the planning and
design of experiments. In the previous section the value of trying to predict systematic
errors in advance, thereby permitting the analyst to lay plans for countering them,
was emphasised. The same considerations apply to random errors. As we shall see in
Chapter 2, combining the random errors of the individual parts of an experiment to
give an overall random error requires some simple statistical formulae. In practice, the
overall error is often dominated by the error in just one stage of the experiment,
the other errors having negligible effects when they are all combined correctly. It is
obviously desirable to try to find, before the experiment begins, where this single domi-
nant error is likely to arise, and then to try to minimise it. Although random errors can
never be eliminated, they can certainly be minimised by particular attention to experi-
mental techniques. For both random and systematic errors, therefore, the moral is
clear: every effort must be made to identify the serious sources of error before practical
work starts, so that experiments can be designed to minimise such errors.

There is another and more subtle aspect of experimental design. In many analyses,
one or more of the desirable features of the method (sensitivity, selectivity, sampling
rate, low cost, etc.) will depend on a number of experimental factors. We should de-
sign the analysis so that we can identify the most important of these factors and
then use them in the best combination, thereby obtaining the best sensitivity, selec-
tivity, etc. In the interests of conserving resources, samples, reagents, etc., this process
of design and optimisation should again be completed before a method is put into
routine or widespread use.

Some of the problems of experimental design and optimisation can be illustrated
by a simple example. In enzymatic analyses, the concentration of the analyte is deter-
mined by measuring the rate of an enzyme-catalysed reaction. (The analyte is often
the substrate, i.e. the compound that is changed in the reaction.) Let us assume that
we want the maximum reaction rate in a particular analysis, and that we believe that
this rate depends on (amongst other factors) the pH of the reaction mixture and the
temperature. How do we establish just how important these factors are, and find their
best levels, i.e. values? It is easy to identify one possible approach. We could perform
a series of experiments in which the temperature is kept constant but the pH is
varied. In each case the rate of the reaction would be determined and an optimum
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pH value would thus be found – suppose it is 7.5. A second series of reaction-rate ex-
periments could then be performed, with the pH maintained at 7.5 but the tempera-
ture varied. An optimum temperature would thus be found, say 40 °C. This approach
to studying the factors affecting the experiment is clearly tedious, because in more re-
alistic examples many more than two factors might need investigation. Moreover, if
the reaction rate at pH 7.5 and 40 °C was only slightly different from that at (e.g.)
pH 7.5 and 37 °C, we would need to know whether the difference was a real one, or
merely a result of random experimental errors, and we could distinguish these possi-
bilities only by repeating the experiments. A more fundamental problem is that this
‘one at a time’ approach assumes that the factors affect the reaction rate independently
of each other, i.e. that the best pH is 7.5 whatever the temperature, and the best tem-
perature is 40 °C at all pH values. This may not be true: for example at a pH other
than 7.5 the optimum temperature might not be 40 °C, i.e. the factors may affect the
reaction rate interactively. It follows that the conditions established in the two sets of
experiments just described might not actually be the optimum ones: had the first set
of experiments been done at a different pH, a different set of ‘optimum’ values might
have been obtained. Experimental design and optimisation can clearly present signif-
icant problems. These important topics are considered in more detail in Chapter 7.

1.7 Calculators and computers in statistical calculations

The rapid growth of chemometrics – the application of mathematical methods to
the solution of chemical problems of all types – is due to the ease with which large
quantities of data can be handled, and advanced calculations done, with calculators
and computers.

These devices are available to the analytical chemist at several levels of complex-
ity and cost. Handheld calculators are extremely cheap, very reliable and capable of
performing many of the routine statistical calculations described in this book with a
minimal number of keystrokes. Pre-programmed functions allow calculations of
mean and standard deviation (see Chapter 2) and correlation and linear regression
(see Chapter 5). Other calculators can be programmed by the user to perform addi-
tional calculations such as confidence limits (see Chapter 2), significance tests (see
Chapter 3) and non-linear regression (see Chapter 5). For those performing analyti-
cal research or routine analyses such calculators will be more than adequate. Their
main disadvantage is their inability to handle very large quantities of data.

Most modern analytical instruments (some entirely devoid of manual controls)
are controlled by personal computers which also handle and report the data ob-
tained. Portable computers facilitate the recording and calculation of data in the
field, and are readily linked to their larger cousins on returning to the laboratory.
Additional functions can include checking instrument performance, diagnosing and
reporting malfunctions, storing large databases (e.g. of digitised spectra), comparing
analytical data with the databases, optimising operating conditions (see Chapter 7),
and selecting and using a variety of calibration calculations.

A wealth of excellent general statistical software is available. The memory size
and speed of computers are now sufficient for work with all but the largest data sets,
and word processors greatly aid the production of analytical reports and papers.
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Spreadsheet programs, originally designed for financial calculations, are often in-
valuable for statistical work, having many built-in statistical functions and excellent
graphical presentation facilities. The popularity of spreadsheets derives from their
speed and simplicity in use, and their ability to perform almost instant ‘what if?’ cal-
culations: for example, what would the mean and standard deviation of a set of re-
sults be if one suspect piece of data is omitted? Spreadsheets are designed to facilitate
rapid data entry, and data in spreadsheet format can easily be exported to the more
specialist suites of statistics software. Microsoft Excel® is the most widely used
spreadsheet, and offers most of the statistical facilities that users of this book may
need. Several examples of its application are provided in later chapters, and helpful
texts are listed in the bibliography.

More advanced calculation facilities are provided by specialised suites of statisti-
cal software. Amongst these, Minitab® is very widely used in educational establish-
ments and research laboratories. In addition to the expected simple statistical
functions it offers many more advanced calculations, including multivariate meth-
ods (see Chapter 8), exploratory data analysis (EDA) and non-parametric tests (see
Chapter 6), experimental design (see Chapter 7) and many quality control methods
(see Chapter 4). More specialised and excellent programs for various types of multi-
variate analysis are also available: the best known is The Unscrambler®: New and
updated versions of these programs, with extra facilities and/or improved user
interfaces, appear at regular intervals. Although help facilities are always built in,
such software is really designed for users rather than students, and does not have a
strongly tutorial emphasis. But a program specifically designed for tutorial pur-
poses, VAMSTAT®, is a valuable tool, with on-screen tests for students and clear
explanations of many important methods.

A group of computers in separate laboratories can be ‘networked’, i.e. linked so
that both operating software and data can be freely passed from one to another. A
major use of networks is the establishment of Laboratory Information Management
Systems (LIMS), which allow large numbers of analytical specimens to be identified
and tracked as they move through one or more laboratories. Samples are identified
and tracked by bar-coding or similar systems, and the computers attached to a range
of instruments send their analytical results to a central computer which (for example)
prints a summary report, including a statistical evaluation.

It must be emphasised that the availability of calculators and computers makes it
all the more important that their users understand the principles underlying statisti-
cal calculations. Such devices will rapidly perform any statistical test or calculation
selected by the user, whether or not that procedure is suitable for the data under study. For
example, a linear least-squares program will determine a straight line to fit any set of
x- and y-values, even in cases where visual inspection would show that such a pro-
gram is wholly inappropriate (see Chapter 5). Similarly a simple program for testing
the significance of the difference between the means of two data sets may assume
that the variances (see Chapter 2) of the two sets are similar: but the program will
blindly perform the calculation on request and provide a ‘result’ even if the vari-
ances actually differ significantly. Even comprehensive suites of computer programs
often fail to provide advice on the right choice of statistical method for a given set of
data. The analyst must thus use both statistical know-how and common sense to
ensure that the correct calculation is performed.
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Exercises

1 A standard sample of pooled human blood serum contains 42.0 g of albumin per
litre. Five laboratories (A–E) each do six determinations (on the same day) of the
albumin concentration, with the following results (g l-1 throughout):

A 42.5 41.6 42.1 41.9 41.1 42.2
B 39.8 43.6 42.1 40.1 43.9 41.9
C 43.5 42.8 43.8 43.1 42.7 43.3
D 35.0 43.0 37.1 40.5 36.8 42.2
E 42.2 41.6 42.0 41.8 42.6 39.0

Comment on the bias, precision and accuracy of each of these sets of results.

2 Using the same sample and method as in question 1, laboratory A makes six fur-
ther determinations of the albumin concentration, this time on six successive
days. The values obtained are 41.5, 40.8, 43.3, 41.9, 42.2 and 41.7 g l-1. Com-
ment on these results.

3 The number of binding sites per molecule in a sample of monoclonal antibody
is determined four times, with results of 1.95, 1.95, 1.92 and 1.97. Comment on
the bias, precision and accuracy of these results.

4 Discuss the degrees of bias and precision desirable or acceptable in the following
analyses:

(a) Determination of the lactate concentration of human blood samples.

(b) Determination of uranium in an ore sample.

(c) Determination of a drug in blood plasma after an overdose.

(d) Study of the stability of a colorimetric reagent by determination of its
absorbance at a single wavelength over a period of several weeks.

5 For each of the following experiments, try to identify the major probable
sources of random and systematic errors, and consider how such errors may be
minimised:

(a) The iron content of a large lump of ore is determined by taking a single
small sample, dissolving it in acid, and titrating with ceric sulphate after
reduction of Fe(III) to Fe(II).

(b) The same sampling and dissolution procedure is used as in (a) but the iron is
determined colorimetrically after addition of a chelating reagent and extrac-
tion of the resulting coloured and uncharged complex into an organic
solvent.

(c) The sulphate content of an aqueous solution is determined gravimetrically
with barium chloride as the precipitant.
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2.1 Mean and standard deviation

In Chapter 1 we saw that it is usually necessary to make repeated measurements in
many analytical experiments in order to reveal the presence of random errors. This
chapter applies some fundamental statistical concepts to such a situation. We will
start by looking again at the example in Chapter 1 which considered the results of
five replicate titrations done by each of four students. These results are reproduced
below.

Major topics covered in this chapter
• Measures of location and spread; mean, standard deviation, variance

• Normal and log-normal distributions; samples and populations

• Sampling distribution of the mean; central limit theorem

• Confidence limits and intervals

• Presentation and rounding of results

• Propagation of errors in multi-stage experiments

Statistics of repeated
measurements

Student Results (ml)

A 10.08 10.11 10.09 10.10 10.12

B 9.88 10.14 10.02 9.80 10.21

C 10.19 9.79 9.69 10.05 9.78

D 10.04 9.98 10.02 9.97 10.04

Two criteria were used to compare these results, the average value (technically
known as a measure of location) and the degree of spread (or dispersion). The
average value used was the arithmetic mean, (usually abbreviated to the mean),x
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In Chapter 1 the spread was measured by the difference between the highest and
lowest values. A more useful measure, which utilises all the values, is the standard
deviation, s, which is defined as follows:

The calculation of these statistics can be illustrated by an example.

(2.1.1)The mean, x, of n measurements is given by x =
axi

n

(2.1.2) s = Aai (xi -  x)2>(n -  1)

The standard deviation, s, of n measurements is given by

which is the sum of all the measurements, , divided by the number of measure-
ments, n.

axi

Example 2.1.1

Find the mean and standard deviation of A’s results.

10.08 - 0.02 0.0004
10.11 0.01 0.0001
10.09 - 0.01 0.0001
10.10 0.00 0.0000
10.12 0.02 0.0004

Totals 50.50 0 0.0010

(xi - x )2(xi - x)xi

Note that is always equal to 0.a (xi - x)

 s = Aai (xi - x)2>(n - 1) = 20.001>4 = 0.0158 ml

 x =
axi

n
=

50.50
5

= 10.1 ml

The answers to this example have been arbitrarily given to three significant figures:
further discussion of this important aspect of the presentation of results is consid-
ered in Section 2.8. The reader can check that the standard deviations of the results
of students B, C and D are 0.172, 0.210 and 0.0332 ml respectively, giving quantita-
tive confirmation of the assessments of precision made in Chapter 1.

In practice all calculators will give these results if the values of xi are keyed in.
However, care must be taken that the correct key is pressed to obtain the standard
deviation. Some calculators give two different values for the standard deviation, one
calculated by using Eq. (2.1.2) and the other calculated with the denominator of this
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Table 2.1 Results of 50 determinations of nitrate ion concentration, in μg ml-1

0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47
0.51 0.52 0.53 0.48 0.49 0.50 0.52 0.49 0.49 0.50
0.49 0.48 0.46 0.49 0.49 0.48 0.49 0.49 0.51 0.47
0.51 0.51 0.51 0.48 0.50 0.47 0.50 0.51 0.49 0.48
0.51 0.50 0.50 0.53 0.52 0.52 0.50 0.50 0.51 0.51

equation, i.e. (n - 1), replaced by n. (The reason for this is explained below, p. 20.)
Obviously, for large values of n the difference is negligible. Alternatively, readily avail-
able computer software can be used to perform these calculations (see Chapter 1).

The square of s is a very important statistical quantity known as the variance; its
value will become apparent later in this chapter when we consider the propagation
of errors.

(2.1.3)Variance = the square of the standard deviation, s2

Another widely used measure of spread is the coefficient of variation (CV), also
known as the relative standard deviation (RSD), which is given by .100 s>x

(2.1.4)
Coefficient of variation (CV) = relative standard deviation (RSD) = 100 s>x

The CV or RSD, the units of which are obviously per cent, is an example of a relative
error, i.e. an error estimate divided by an estimate of the absolute value of the mea-
sured quantity. Relative errors are often used to compare the precision of results
which have different units or magnitudes, and are again important in calculations of
error propagation.

2.2 The distribution of repeated measurements

Although the standard deviation gives a measure of the spread of a set of results
about the mean value, it does not indicate the shape of the distribution. To illustrate
this we need quite a large number of measurements such as those in Table 2.1. This
gives the results (to two significant figures) of 50 replicate determinations of the lev-
els of nitrate ion, a potentially harmful contaminant, in a particular water specimen.

These results can be summarised in a frequency table (Table 2.2). This table
shows that, in Table 2.1, the value 0.46 μg ml-1 appears once, the value 0.47 �g ml-1

appears three times, and so on. The reader can check that the mean of these results is
0.500 μg ml-1 and the standard deviation is 0.0165 μg ml-1 (both values being given
to three significant figures). The distribution of the results can most easily be appre-
ciated by drawing a histogram as in Fig. 2.1. This shows that the distribution of the
measurements is roughly symmetrical about the mean, with the measurements clus-
tered towards the centre.
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Table 2.2 Frequency table for measurements of
nitrate ion concentration

Nitrate ion concentration Frequency
(μg ml-1)

0.46 1
0.47 3
0.48 5
0.49 10
0.50 10
0.51 13
0.52 5
0.53 3

10

5

0
0.46 0.48 0.50 0.52

Fr
eq

ue
nc

y

Nitrate ion concentration, μg/ml

Figure 2.1 Histogram of the nitrate ion concentration data in Table 2.2.

This set of 50 measurements is a sample from the theoretically infinite number of
measurements which we could make of the nitrate ion concentration. The set of all
possible measurements is called the population. If there are no systematic errors, then
the mean of this population, given the symbol m, is the true value of the nitrate ion
concentration we are trying to determine. The mean of the sample, , gives us
an estimate of m. Similarly, the population has a standard deviation, denoted by 

. The standard deviation, s, of the sample gives us an estimate of
s. Use of Eq. (2.1.2) gives us an unbiased estimate of s. If n, rather than (n - 1), is
used in the denominator of the equation the value of s obtained tends to underesti-
mate s (see p. 19 above).

s = 2a i(xi - m)2>n

x

The distinction between populations and samples is fundamental in statistics:
the properties of populations have Greek symbols, samples have English symbols.

(2.2.1)y =

1

s22p
 exp3-(x - m)2>2s24

The nitrate ion concentrations given in Table 2.2 have only certain discrete val-
ues, because of the limitations of the method of measurement. In theory a concen-
tration could take any value, so a continuous curve is needed to describe the form of
the population from which the sample was taken. The mathematical model usually
used is the normal or Gaussian distribution which is described by the equation:
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y

xm

Figure 2.2 The normal distribution, y = exp[−(x − m)2�2s2]�s . The mean is indicated by m.22p

where x is the measured value, and y the frequency with which it occurs. The shape
of this distribution is shown in Fig. 2.2. There is no need to remember this compli-
cated formula, but some of its general properties are important. The curve is sym-
metrical about m and the greater the value of s the greater the spread of the curve, as
shown in Fig. 2.3. More detailed analysis shows that, whatever the values of m and s,
the normal distribution has the following properties.

For a normal distribution with mean m and standard deviation s:

• approximately 68% of the population values lie within ±ls of the mean;

• approximately 95% of population values lie within ±2s of the mean;

• approximately 99.7% of population values lie within ±3s of the mean.

These properties are illustrated in Fig. 2.4. This would mean that, if the nitrate ion
concentrations (in μg ml-1) given in Table 2.2 are normally distributed, then about
68% should lie in the range 0.483–0.517, about 95% in the range 0.467–0.533 and
99.7% in the range 0.450–0.550. In fact 33 out of the 50 results (66%) lie between

y

xm

SD = s2

s1 > s2

SD = s1

Figure 2.3 Normal distributions with the same mean but different values of the standard
deviation.
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y

x

m – 1s m + 1s
y

y

x

x

m

m – 2s m + 2sm

m – 3s m + 3sm

(i)

68%

(ii)

95%

(iii)

99.7%

Figure 2.4 Properties of the normal distribution: (i) approximately 68% of values lie within ±1s
of the mean; (ii) approximately 95% of values lie within ±2s of the mean; (iii) approximately
99.7% of values lie within ±3s of the mean.

0.483 and 0.517, 49 (98%) between 0.467 and 0.533, and all the results between
0.450 and 0.550, so the agreement with theory is fairly good.

For a normal distribution with known mean, m, and standard deviation, s, the
exact proportion of values which lie within any interval can be found from tables,
provided that the values are first standardised so as to give z-values. (These are
widely used in proficiency testing schemes; see Chapter 4.) This is done by express-
ing any value of x in terms of its deviation from the mean in units of the standard
deviation, s. That is:

(2.2.2)Standardised normal variable, z =

(x - m)
s

Table A.1 (Appendix 2) gives the proportions of values, F(z), that lie below a given
value of z. F(z) is called the standard normal cumulative distribution function.
For example the proportion of values below z � 2 is F(2) � 0.9772 and the propor-
tion of values below z � -2 is F(-2) � 0.0228. Thus the exact proportion of measure-
ments lying within two standard deviations of the mean is 0.9772 - 0.0228 �

0.9544.
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In practice there is considerable variation in the formatting of tables for calculating
proportions from z-values. Some tables give only positive z-values, and the propor-
tions for negative z-values then have to be deduced using considerations of symme-
try. F(z) values are also provided by Excel® and Minitab®.

Although it cannot be proved that replicate values of a single analytical quantity
are always normally distributed, there is considerable evidence that this assumption
is generally at least approximately true. Moreover we shall see when we come to
look at sample means that any departure of a population from normality is not usu-
ally important in the context of the statistical tests most frequently used.

The normal distribution is not only applicable to repeated measurements made
on the same specimen. It also often fits the distribution of results obtained when the
same quantity is measured for different materials from similar sources. For example
if we measured the concentration of albumin in blood sera taken from healthy adult
humans we would find the results were approximately normally distributed.

Example 2.2.1

If repeated values of a titration are normally distributed with mean 10.15 ml
and standard deviation 0.02 ml, find the proportion of measurements which
lie between 10.12 ml and 10.20 ml.

Standardising the lower limit of the range gives z � (10.12 - 10.15)/0.02 � -1.5.
From Table A.1, F(-1.5) � 0.0668.

Standardising the upper limit of the range gives z � (10.20 - 10.15)/0.02 � 2.5.
From Table A.1, F(2.5) � 0.9938.

Thus the proportion of values between x � 10.12 to 10.20 (corresponding to 
z � -1.5 to 2.5) is 0.9938 - 0.0668 � 0.927.

2.3 Log-normal distribution

In situations where one measurement is made on each of a number of specimens, dis-
tributions other than the normal distribution can also occur. In particular the 
so-called log-normal distribution is frequently encountered. For this distribution,
frequency plotted against the logarithm of the concentration (or other characteristics)
gives a normal distribution curve. An example of a variable which has a log-normal
distribution is the antibody concentration in human blood sera. When frequency is
plotted against concentration for this variable, the asymmetrical histogram shown in
Fig. 2.5(a) is obtained. If, however, the frequency is plotted against the logarithm (to
the base 10) of the concentration, an approximately normal distribution is obtained,
as shown in Fig. 2.5(b). Another example of a variable which may follow a log-
normal distribution is the particle size of the droplets formed by the nebulisers used
in flame spectroscopy. Particle size distributions in atmospheric aerosols may also
take the log-normal form, and the distribution is used to describe equipment failure
rates and in gene expression analysis. However, many asymmetric population distri-
butions cannot be converted to normal ones by the logarithmic transformation.



 

24 2: Statistics of repeated measurements

Concentration
6543210

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

100

50

0

–0 .5 0 0.5
Log (concentration)

(a)

(b)

Figure 2.5 (a) An approximately log-normal distribution: concentration of serum 
immunoglobulin M antibody in male subjects. (b) The results in (a) plotted against the 
logarithm of the concentration.

The interval containing a given percentage of the measurements for a variable
which is log-normally distributed can be found by working with the logarithms of the
values. The distribution of the logarithms of the blood serum antibody concentration
shown in Fig. 2.5(b) has mean 0.15 and standard deviation 0.20. This means that ap-
proximately 95% of the logged values lie in the interval 0.15 - 0.20 to 0.15 + 0.20,
that is -0.05 to 0.35. Taking antilogarithms we find that 95% of the original measure-
ments lie in the interval 10-0.05 to 100.35, that is 1.05 to 2.24. The antilogarithm of
the mean of the logged values, 100.15 � 1.41, gives the geometric mean of the original
distribution where the geometric mean is given by See also Section 2.10.2n x1x2 Á xn.

2.4 Definition of a ‘sample’

In this chapter the word ‘sample’ has been introduced and used in its statistical
sense of a group of objects selected from the population of all such objects, for ex-
ample a sample of 50 measurements of nitrate ion concentration from the (infinite)
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population of all such possible measurements, or a sample of healthy human adults
chosen from the whole population in order to measure the concentration of serum
albumin for each one. The Commission on Analytical Nomenclature of the Analyti-
cal Chemistry Division of the International Union of Pure and Applied Chemistry has
pointed out that confusion and ambiguity can arise if the term ‘sample’ is also used
in its colloquial sense of the actual material being studied. It recommends that the
term ‘sample’ is confined to its statistical concept. Other words should be used to de-
scribe the material on which measurements are being made, in each case preceded
by ‘test’, for example test solution or test extract. We can then talk unambiguously of
a sample of measurements on a test extract, or a sample of tablets from a batch. A test
portion from a population which varies with time, such as a river or circulating blood,
should be described as a specimen. Unfortunately this practice is by no means
usual, so the term ‘sample’ remains in use for two related but distinct purposes.

2.5 The sampling distribution of the mean

We have seen that, in the absence of systematic errors, the mean of a sample of mea-
surements, , provides us with an estimate of the true value, m, of the quantity we
are trying to measure. However, even in the absence of systematic errors, the indi-
vidual measurements vary due to random errors and so it is most unlikely that the
mean of the sample will be exactly equal to the true value. For this reason it is more
useful to give a range of values which is likely to include the true value. The width of
this range depends on two factors, the precision of the individual measurements,
which in turn depends on the standard deviation of the population; and the num-
ber of measurements in the sample. The very fact that we repeat measurements
implies that we have more confidence in the mean of several values than in a single
value. Intuitively we would expect that the more measurements we make, the more
reliable our estimate of m, the true value, will be.

To pursue this idea, let us return to the nitrate ion determination described in Sec-
tion 2.2. In practice it would be most unusual to make 50 repeated measurements in
such a case: a more likely number would be 5. We can see how the means of samples
of this size are spread about m by treating the results in Table 2.1 as ten samples, each
containing five results. Taking each column as one sample, the means are 0.506,
0.504, 0.502, 0.496, 0.502, 0.492, 0.506, 0.504, 0.500 and 0.486. We can see at once
that these means are more closely clustered than the original measurements. If we
took still more samples of five measurements and calculated their means, those
means would have a frequency distribution of their own. The distribution of all pos-
sible sample means (in this case, an infinite number) is called the sampling distrib-
ution of the mean. Its mean is the same as the mean of the original population. Its
standard deviation is called the standard error of the mean (SEM). There is an exact
mathematical relationship between the latter and the standard deviation, s, of the
distribution of the individual measurements:

x

(2.5.1)standard error of the mean = s>2n

For a sample of n measurements, 
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Figure 2.6 The sampling distribution of the mean, showing the range within which 95% of
sample means lie.

As expected, the larger n is, the smaller the value of the SEM and consequently the
smaller the spread of the sample means about m.

The term ‘standard error of the mean’ might give the impression that gives
the difference between m and This is not so: gives a measure of the variability
of , as we shall see in the next section.

Another property of the sampling distribution of the mean is that, even if the
original population is not normal, the sampling distribution of the mean tends
to the normal distribution as n increases. This result is known as the central limit
theorem. This theorem is of great importance because many statistical tests are per-
formed on the mean and assume that it is normally distributed. Since in practice we
can assume that distributions of repeated measurements are at least approximately
normally distributed, it is reasonable to assume that the means of quite small sam-
ples (say n � 5) are also normally distributed.

x
s>2nx.

s>2n

2.6 Confidence limits of the mean for large samples

Now that we know the form of the sampling distribution of the mean we can return
to the problem of using a sample to define a range which we may reasonably assume
includes the true value. (Remember that in doing this we are assuming systematic
errors to be absent.) Such a range is known as a confidence interval and the
extreme values of the interval are called the confidence limits. The term ‘confi-
dence’ implies that we can assert with a given degree of confidence, i.e. a certain
probability, that the confidence interval does include the true value. The size of the
confidence interval will obviously depend on how certain we want to be that it
includes the true value: the greater the certainty, the greater the interval required.

Figure 2.6 shows the sampling distribution of the mean for samples of size n. If we
assume that this distribution is normal, then 95% of the sample means will lie in the
range given by:

(2.6.1)m - 1.96(s>2n) 6 x 6 m + 1.96(s>2n)
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(The exact value 1.96 has been used in this equation rather than the approximate
value, 2, quoted in Section 2.2. The reader can use Table A.1 to check that the pro-
portion of values between z � -1.96 and z � 1.96 is indeed 0.95.)

In practice, however, we usually have one sample, of known mean, and we
require a range for m, the true value. Equation (2.6.1) can be rearranged to give this:

(2.6.2)

Equation (2.6.2) gives the 95% confidence interval of the mean. The 95% confi-
dence limits are . In practice we are unlikely to know s exactly. How-
ever, provided that the sample is large, s can be replaced by its estimate, s.

Other confidence limits are sometimes used, in particular the 99% and 99.7%
confidence limits.

x ; 1.96s>2n

x - 1.96(s>2n) 6 m 6 x + 1.96(s>2n)

For large samples, the confidence limits of the mean are given by

(2.6.3)

where the value of z depends on the degree of confidence required.

For 95% confidence limits, z � 1.96
For 99% confidence limits, z � 2.58
For 99.7% confidence limits, z � 2.97

x ; zs>2n

Example 2.6.1

Calculate the 95% and 99% confidence limits of the mean for the nitrate ion
concentration measurements in Table 2.1.

From previous examples we have found that , s � 0.0165 and n � 50.
Using Eq. (2.6.3) gives the 95% confidence limits as:

and the 99% confidence limits as:

x ; 2.58s>2n = 0.500 ; 2.58 * 0.01651>250 = 0.500 ; 0.006 mg ml-1

x ; 1.96s>2n = 0.500 ; 1.96 * 0.0165>250 = 0.500 ; 0.005 mg ml-1

x = 0.500

In this example it is interesting to note that although the original measurements
varied between 0.46 and 0.53, the 99% confidence interval for the mean is from
0.494 to 0.506 – a much narrower range, though admittedly the sample size of 50 is
quite large.

2.7 Confidence limits of the mean for small samples

As the sample size gets smaller, s becomes less reliable as an estimate of s. This can
be seen by treating each column of data in Table 2.1 as a sample of size 5. The stan-
dard deviations of the ten columns are then 0.009, 0.015, 0.026, 0.021, 0.013, 0.019,
0.013, 0.017, 0.010 and 0.018, i.e. the largest value of s is nearly three times the size
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Table 2.3 Values of t for confidence intervals

Degrees of freedom Values of t for confidence interval of

95% 99%

2 4.30 9.92
5 2.57 4.03

10 2.23 3.17
20 2.09 2.85
50 2.01 2.68

100 1.98 2.63

of the smallest. To allow for this effect, Eq. (2.6.3) must be modified using the so-called
t-statistic.

For small samples, the confidence limits of the mean are given by

(2.7.1)x ; tn-1s>2n

The subscript (n - 1) indicates that t depends on this quantity, which is known as
the number of degrees of freedom, d.f. (usually given the symbol n). (The term
‘degrees of freedom’ refers to the number of independent deviations which
are used in calculating s. In this case the number is (n - 1), because when (n - 1) de-
viations are known the last can be deduced, since .) The value of t also 
depends on the degree of confidence required. Some values of t are given in Table 2.3.
A more complete version of this table is given in Table A.2 in Appendix 2.

For large n, the values of tn-1 for confidence intervals of 95% and 99% respec-
tively are very close to the values 1.96 and 2.58 used in Example 2.6.1. The follow-
ing example illustrates the use of Eq. (2.7.1).

g i(xi - x) = 0

(xi - x)

Example 2.7.1

The sodium ion level in a urine specimen was measured using an ion-selective
electrode. The following values were obtained: 102, 97, 99, 98, 101, 106 mM.
What are the 95% and 99% confidence limits for the sodium ion concentration?

The mean and standard deviation of these values are 100.5 mM and 3.27 mM
respectively. There are six measurements and therefore five degrees of freedom.
From Table A.2 the value of t5 for calculating the 95% confidence limits is 2.57
and from Eq. (2.7.1) the 95% confidence limits of the mean are given by:

Similarly the 99% confidence limits are given by:

100.5 ; 4.03 * 3.27>26 = 100.5 ; 5.4 mM

100.5 ; 2.57 * 3.27>26 = 100.5 ; 3.4 mM
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2.8 Presentation of results

Since no quantitative result is of any value unless it comes with an estimate of the
errors involved, the presentation of the results and the errors is important. A com-
mon practice is to quote the mean as the estimate of the quantity measured and the
standard deviation as the estimate of the precision. Less commonly, the standard
error of the mean is sometimes quoted instead of the standard deviation, or the re-
sult is given in the form of the 95% confidence limits of the mean. There is no uni-
versal convention, so it is obviously essential to state clearly the form used. Provided
the value of n is given (which it always should be), the three forms are easily inter-
converted using Eqs (2.5.1) and (2.7.1). Uncertainty estimates are now often calcu-
lated (see Chapter 4).

A related aspect of presenting results is the rounding-off of the answer. The
important principle here is that the number of significant figures given indicates the
precision of the experiment. It would be absurd, for example, to give the result of a titri-
metric analysis as 0.107846 M – no analyst could achieve the implied precision of
0.000001 in ca. 0.1, i.e. 0.001%. In practice it is usual to quote as significant figures
all the digits which are certain, plus the first uncertain one. For example, the mean
of the values 10.09, 10.11, 10.09, 10.10 and 10.12 is 10.102, and their standard devi-
ation is 0.01304. Clearly there is uncertainty in the second decimal place; the results
are all 10.1 to one decimal place but disagree in the second decimal place. Using the
suggested method the result would be quoted as:

If it was felt that this resulted in an unacceptable rounding-off of the standard
deviation, then the result could be given as:

where the use of a subscript indicates that the digit is given only to avoid loss of
information. The reader could decide whether it was useful or not. Similar principles
apply to the presentation of confidence limits.

The number of significant figures quoted is sometimes used instead of a specific
estimate of the precision of a result. For example the result 0.1046 M is taken to
mean that the figures in the first three decimal places are certain but there is doubt
about the fourth. Sometimes the uncertainty in the last figure is emphasised by
using the formats 0.104(6) M or 0.1046 M, but it remains preferable to give a specific
estimate of precision such as the standard deviation.

One problem is whether a result ending in a 5 should be rounded up or down. For
example, if 9.65 is rounded to one decimal place, should it become 9.6 or 9.7? It is
evident that the results will be biased if a 5 is always rounded up; this bias can be
avoided by rounding the 5 to the nearest even number giving, in this case, 9.6. Anal-
ogously, 4.75 is rounded to 4.8.

When several measured quantities are to be combined mathematically to
calculate a final result (see Section 2.11) these quantities should not be rounded
off too much or a needless loss of precision will result. A good rule is to keep
one digit beyond the last significant figure for each individual quantity, and leave
further rounding until the final result is reached. The same advice applies when

x ; s = 10.102 ; 0.013  (n = 5)

x ; s = 10.10 ; 0.01  (n = 5)
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the mean and standard deviation are used to apply a statistical test such as the 
F- and t-tests (see Chapter 3): un-rounded values of and s should be used in the
calculations.

x

2.9 Other uses of confidence limits

Confidence intervals can be used to test for systematic errors as shown in the follow-
ing example.

Example 2.9.1

The absorbance scale of a spectrometer is tested at a particular wavelength with
a standard solution which has an absorbance given as 0.470. Ten measure-
ments of the absorbance with the spectrometer give , and s � 0.003.
Find the 95% confidence interval for the mean absorbance as measured by the
spectrometer, and hence decide whether a systematic error is present.

The 95% confidence limits for the absorbance as measured by the spectrometer
are (Eq. (2.7.1)):

(The value of t9 was obtained from Table A.2.)

Since the confidence interval does not include the known absorbance of 0.470,
it is likely that a systematic error has occurred.

x ; tn-1s>2n = 0.461 ; 2.26 * 0.003>210 = 0.461 ; 0.002

x = 0.461

In practice the type of problem in Example 2.9.1 is usually tackled by a different, but
related, approach (see Example 3.2.1).

Confidence limits can also be used in cases where measurements are made on
each of a number of specimens. For example if the mean weight of a tablet in a very
large batch is required, it would be too time-consuming to weigh each tablet. Simi-
larly, if the mean iron content of the tablets is measured using a destructive method
of analysis such as atomic-absorption spectrometry, it is clearly impossible to exam-
ine every tablet. In each case, a sample could be taken from the batch (which in such
instances forms the population), and from the mean and standard deviation of the
sample a confidence interval could be found for the mean value of the quantity
measured.

2.10 Confidence limits of the geometric mean 
for a log-normal distribution

In Section 2.3 we saw that measurements on a number of different specimens may
not be normally distributed. If they come from a log-normal distribution, then the
confidence limits should be calculated taking this fact into account. Since the log of
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the measurements is normally distributed it is more accurate to work with the loga-
rithms of the measurements when calculating a confidence interval. The confidence
interval obtained will be the confidence interval for the geometric mean.

Example 2.10.1

The following values (expressed as percentages) give the antibody concentra-
tion in human blood serum for a sample of eight healthy adults.

Calculate the 95% confidence interval for the geometric mean assuming that
antibody concentration is log-normally distributed.

The logarithms (to the base 10) of these values are, from Eq. (2.7.1):

The mean of these logged values is 0.1669, giving 100.1669 � 1.47 as the geometric
mean of the original values. The standard deviation of the logged values is
0.1365.

The 95% confidence limits for the logged values are

The value of t was taken from Table A.2.

Taking antilogarithms of these limits gives the 95% confidence interval of the
geometric mean of the antibody concentrations as 1.13 to 1.91.

0.1669 ; 2.36 * 0.1365>28 = 0.1669 ; 0.1139 = 0.0530 to 0.2808

0.332, 0.053, 0.310, 0.161, 0.130, 0.037, -0.004, 0.316

2.15, 1.13, 2.04, 1.45, 1.35, 1.09, 0.99, 2.07

2.11 Propagation of random errors

In experimental work, the final result is often calculated from a combination of
measured quantities. In Chapter 1 it was shown that even a relatively simple opera-
tion such as a titration involves several stages, each of which is subject to errors. The
final result may be calculated from the sum, difference, product or quotient of two
or more measured quantities, or the raising of any quantity to a power.

The procedures used for combining random and systematic errors are completely
distinct. This is because random errors to some extent cancel each other out,
whereas every systematic error occurs in a definite and known sense. Suppose for
example that the final result of an experiment, x, is given by x � a + b. If a and b
each have a systematic error of +1, it is clear that the systematic error in x is +2. If,
however, a and b each have a random error of ±1, the random error in x is not ±2:
this is because there will be occasions when the random error in a is positive while
that in b is negative (or vice versa). This section deals only with the propagation of
random errors (systematic errors are considered in Section 2.12). If the precision of
each observation is known, then simple mathematical rules can be used to estimate
the precision of the final result. These rules can be summarised as follows.
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2.11.1 Linear combinations

In this case the final value, y, is calculated from a linear combination of measured
quantities a, b, c, etc. by:

(2.11.1)

where k, ka , kb, kc, etc. are constants. Variance (defined as the square of the standard
deviation) has the important property that the variance of a sum or difference of
independent quantities is equal to the sum of their variances. It can be shown
that if etc. are the standard deviations of a, b, c, etc., then the standard
deviation of y, , is given by:sy

sa, sb, sc,

y = k + kaa + kbb + kcc +
. . .

This example illustrates the important point that the standard deviation for the final
result is larger than the standard deviations of the individual burette readings, even
though the volume used is calculated from a difference. It is, however, less than the
sum of the standard deviations.

2.11.2 Multiplicative expressions

If y is calculated from an expression of the type:

(2.11.3)

(where a, b, c and d are independent measured quantities and k is a constant), then
there is a relationship between the squares of the relative standard deviations:

y = kab>cd

(2.11.2)sy = 2(kasa)
2

+ (kbsb)
2

+ (kcsc)
2

+
. . .

Example 2.11.1

In a titration the initial reading on the burette is 3.51 ml and the final reading
is 15.67 ml, both with a standard deviation of 0.02 ml. What is the volume of
titrant used and what is its standard deviation?

From Eq. (2.11.2), using two terms on the right-hand side with ka � 1, 
sa � 0.02, kb � -1, sb � 0.02, we have

Standard deviation = 2(0.02)2
+ (-0.02)2

= 0.028 ml

Volume used = 15 .67 - 3 .51 = 12 .16 ml

(2.11.4)
sy

y
= A a

sa

a
b

2

+ a
sb

b
b

2

+ a
sc

c
b

2
+ a
sd

d
b

2
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It can be seen that the relative standard deviation in the final result is not much larger
than the largest relative standard deviation used to calculate it (i.e. 2% for If). This is
mainly a consequence of the squaring of the relative standard deviations and illus-
trates an important general point: any efforts to improve the precision of an experi-
ment need to be directed towards improving the precision of the least precise values.
By contrast, there is little point in expending effort in increasing the precision of the
most precise measurements. Nonetheless small errors are not always unimportant: the
combination of small errors at many stages of an experiment, such as the titration dis-
cussed in detail in Chapter 1, may produce an appreciable error in the final result.

When a quantity is raised to a power, e.g. b3, the error is not calculated as for a
multiplication, i.e. , because the quantities involved are not independent.
If the relationship is:

(2.11.5)

then the standard deviations of y and b are related by:

y = bn

b * b * b

Example 2.11.2

The quantum yield of fluorescence, , of a material in solution is calculated
from the expression:

where the quantities involved are defined below, with an estimate of their rela-
tive standard deviations in brackets:

f = If>kclI0e

f

I0 � incident light intensity (0.5%)
If � fluorescence intensity (2%)
e � molar absorptivity (1%)
c � concentration (0.2%)
l � optical pathlength (0.2%)
k is an instrument constant.

From Eq. (2.11.4), the relative standard deviation (RSD) of is given by:

RSD = 222
+ 0.22

+ 0.22
+ 0.52

+ 12
= 2.3%

f

(2.11.6)`
sy

y
` = `

nsb

b
`

(2.11.7)sy = `sx
dy

dx
`

(The modulus sign means that the magnitude of the enclosed quantity is taken with-
out respect to sign, e.g. .)

2.11.3 Other functions

If y is a general function of x, i.e. y � f(x), then the standard deviations of x and y are
related by:

ƒ -2 ƒ =  2
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It is interesting and important that for this widely used experimental method we
can also find the conditions for which the relative standard deviation is a minimum.
The relative standard deviation of A is given by

Differentiation of this expression with respect to T shows that the RSD of A is a min-
imum when T � l/e � 0.368.

RSD of A = 100sA>A = `
-100sT loge

T log T
`

Example 2.11.3

The absorbance, A, of a solution is given by A � - log(T) where T is the trans-
mittance. If the measured value of T is 0.501 with a standard deviation of
0.001, calculate A and its standard deviation.

We have:

Also:

dA/dT � �(log e)/T � �0.434/T

so from Eq. (2.11.7):

sA = |sT (- loge>T )| = |0.001 * (-0.434>0.501)| = 0.00087

A = - log 0 .501 = 0 .300

2.12 Propagation of systematic errors

The rules for the combination of systematic errors can also be divided into three
groups.

2.12.1 Linear combinations

If y is calculated from measured quantities by using Eq. (2.11.1), and the systematic
errors in a, b, c, etc., are Δa, Δb, Δc, etc., then the systematic error in y, Δy, is calcu-
lated from:

(2.12.1)¢y = ka¢a + kb¢b + kc¢c +
Á

Remember that each systematic error is either positive or negative and that these
signs must be included in the calculation of Δy.

The total systematic error can sometimes be zero. For example, if a balance with a
systematic error of -0.01 g is used for the weighings involved in making a standard
solution and the weight of the solute used is found from the difference between
two weighings, the systematic errors cancel out. (This applies only to an electronic
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balance with a single internal reference weight.) Carefully considered procedures
such as this can often minimise the systematic errors (see Chapter 1).

2.12.2 Multiplicative expressions

If y is calculated from the measured quantities by use of Eq. (2.11.3), then relative
systematic errors are used:

(2.12.2)(¢y>y) = (¢a>a) + (¢b>b) + (¢c>c) + (¢d>d)

When a quantity is raised to some power, then Eq. (2.11.6) is used with the modulus
sign omitted and the standard deviations replaced by systematic errors.

2.12.3 Other functions

The equation used is identical to Eq. (2.11.7) but with the modulus sign omitted and
the standard deviations replaced by systematic errors.

In any real analytical experiment both random and systematic errors will occur.
They can be combined to give an uncertainty in the final result, which provides a
realistic range of values within which the true value of a measured quantity proba-
bly lies. This topic is dealt with in detail in Chapter 4.
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Exercises

1 The reproducibility of a method for the determination of selenium in foods was
investigated by taking nine samples from a single batch of brown rice and deter-
mining the selenium concentration in each. The following results were obtained:

0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.09 0.08 μg g-1

(Moreno-Dominguez, T., Garcia-Moreno, C. and Marine-Font, A., 1983, Analyst,
108: 505)

Calculate the mean, standard deviation and relative standard deviation of these
results.
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2 The morphine levels (%) of seven batches of seized heroin were determined,
with the following results:

15.1 21.2 18.5 25.3 19.2 16.0 17.8

Calculate the 95% and 99% confidence limits for these measurements

3 Ten replicate analyses of the concentration of mercury in a sample of commer-
cial gas condensate gave the following results:

23.3 22.5 21.9 21.5 19.9 21.3 21.7 23.8 22.6 24.7 ng ml-1

(Shafawi, A., Ebdon, L., Foulkes, M., Stockwell, P. and Corns, W., 1999, Analyst,
124: 185)

Calculate the mean, standard deviation, relative standard deviation and 99%
confidence limits of the mean.

Six replicate analyses on another sample gave the following values:

13.8 14.0 13.2 11.9 12.0 12.1 ng ml-1

Repeat the calculations for these values.

4 The concentration of lead in the bloodstream was measured for a sample of
50 children from a large school near a busy main road. The sample mean was
10.12 ng ml-1 and the standard deviation was 0.64 ng ml-1. Calculate the 95%
confidence interval for the mean lead concentration for all the children in the
school.

About how big should the sample have been to reduce the range of the confi-
dence interval to 0.2 ng ml-1 (i.e. ±0.1 ng ml-1)?

5 In an evaluation of a method for the determination of fluorene in seawater, a
synthetic sample of seawater was spiked with 50 ng ml-1 of fluorene. Ten repli-
cate determinations of the fluorene concentration in the sample had a mean of
49.5 ng ml-1 with a standard deviation of 1.5 ng ml-1.

(Gonsalez, M.A. and Lopez, M.H., 1998, Analyst, 123: 2217)

Calculate the 95% confidence limits of the mean. Is the spiked value of 50 ng ml-1

within the 95% confidence limits?

6 A 0.1 M solution of acid was used to titrate 10 ml of 0.1 M solution of alkali and
the following volumes of acid were recorded:

9.88 10.18 10.23 10.39 10.21 ml.

Calculate the 95% confidence limits of the mean and use them to decide whether
there is any evidence of systematic error.

7 A volume of 250 ml of a 0.05 M solution of a reagent of formula weight (relative
molecular mass) 40 was made up, using weighing by difference. The standard
deviation of each weighing was 0.0001 g: what were the standard deviation and
relative standard deviation of the weight of reagent used? The standard devia-
tion of the volume of solvent used was 0.05 ml. Express this as a relative stan-
dard deviation. Hence calculate the relative standard deviation of the molarity
of the solution.

Repeat the calculation for a reagent of formula weight 392.

8 The solubility product of barium sulphate is , with a standard devia-
tion of . Calculate the standard deviation of the calculated solubility
of barium sulphate in water.

0.1 * 10-10
1.3 * 10-10
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3.1 Introduction

One of the most important properties of an analytical method is that it should be
free from bias, so that the value it gives for the amount of the analyte should be the
true value. This property may be tested by applying the method to a standard test
portion containing a known amount of analyte (see Chapters 1 and 2). However,
even if there are no systematic errors, random errors make it most unlikely that the
measured amount will exactly equal the known amount in the standard. To decide
whether the difference between the measured and standard amounts can be ac-
counted for by random errors a statistical test known as a significance test can be
used. As its name implies, this approach tests whether the difference between the
two results is significant, or whether it can be accounted for merely by random vari-
ations. Significance tests are widely used in the evaluation of experimental results.
This chapter considers several tests which are particularly useful to analytical
chemists.

Major topics covered in this chapter
• Principles of significance testing: one-sided and two-sided tests

• Applications of the t-test for comparing means

• F-test for comparing variances

• Testing for outliers

• One-way analysis of variance (ANOVA)

• The (chi-squared) test

• Testing for the normal distribution

• Conclusions and errors in significance tests

• Introduction to Bayesian methods

X2

Significance tests
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3.2 Comparison of an experimental mean with a known value

In making a significance test we are testing the truth of a hypothesis which is known
as a null hypothesis, often denoted by H0. For the example in the previous paragraph
we adopt the null hypothesis that the analytical method is not subject to systematic
error. The term null is used to imply that there is no difference between the observed
and known values apart from that due to random variation. Assuming that this null
hypothesis is true, statistical theory can be used to calculate the probability that the
observed difference (or a greater one) between the sample mean, , and the true
value, , arises solely as a result of random errors. As the probability that the observed
difference occurs by chance falls, it becomes less likely that the null hypothesis is
true. Usually the null hypothesis is rejected if the probability of such a difference
occurring by chance is less than 1 in 20 (i.e. 0.05 or 5%). In such a case the differ-
ence is said to be significant at the P � 0.05 (or 5%) level. Using this level of signif-
icance there is, on average, a 1 in 20 chance that we shall reject the null hypothesis
when it is in fact true. In order to be more certain that we make the correct decision a
higher level of significance can be used, usually 0.01 or 0.001 (1% or 0.1%). The sig-
nificance level is indicated by writing, for example, P (i.e. probability) � 0.05, this
number giving the probability of rejecting a true null hypothesis. It is important to
appreciate that if the null hypothesis is retained, we have not proved that it is true, only
that it has not been demonstrated to be false. Later in the chapter the probability of
retaining a null hypothesis when it is in fact false will be discussed in more detail.

m

x

In order to decide whether the difference between and is significant, i.e. to
test H0: mean of the population from which the sample is drawn � , the sta-
tistic t is calculated from:

(3.2.1)

where sample mean, s � sample standard deviation and n � sample size.x =

t = (x - m)1n>s

m

mx

If (i.e. the calculated value of t without regard to sign) exceeds a certain critical
value then the null hypothesis is rejected. The critical value of t for a given signifi-
cance level can be found from Table A.2. For example for a sample size of ten (i.e.
nine degrees of freedom) and a significance level of 0.01, the critical value of is
3.25, where, as in Chapter 2, the subscript is used to denote the number of degrees
of freedom.

t9

ƒ t ƒ

Example 3.2.1

In a new method for determining selenourea in water the following values
were obtained for tap water samples spiked with 50 ng ml�1 of selenourea:

50.4, 50.7, 49.1, 49.0, 51.1 ng ml�1

(Aller, A.J. and Robles, L.C., 1998, Analyst, 123: 919)

Is there any evidence of systematic error?
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Test of mu = 50.000 vs mu not = 50.000

Variable N Mean StDev SE Mean T P
selenour 5 50.060 0.956 0.427 0.14 0.90

Critical values from statistical tables were used in significance testing for many years
because it was too tedious to calculate the probability of t exceeding the experimen-
tal value. Computers have altered this situation, and statistical software usually
quotes the results of significance tests in terms of a probability. If the individual data
values are entered in Minitab® the result of performing this test is shown below:

t-Test of the mean

This gives the additional information that Since this probabil-
ity is much greater than 0.05, the result is not significant at in agreement
with the previous calculation. Obviously the power to calculate an exact probability
is a great advantage, removing the need for statistical tables containing critical val-
ues. Examples in this book use critical values, however, as many scientists still per-
form significance tests using handheld calculators, which do not normally provide 
P values. Moreover in cases where only means and standard deviations are available,
but not the original data values, programs such as Minitab® or Excel® cannot be used.
However, where the calculation can be performed using such programs, the P value
will also be quoted.

P = 0.05,
P( ƒ t ƒ 7 0.14) = 0.90.

The mean of these values is 50.06 and the standard deviation is 0.956. Adopt-
ing the null hypothesis that there is no systematic error, i.e. that 
Eq. (3.2.1) gives:

From Table A.2, the critical value is Since the observed
value of is less than the critical value the null hypothesis is retained: there is
no evidence of systematic error. Note again that this does not mean that there
are no systematic errors, only that they have not been demonstrated.

ƒ t ƒ

t4 = 2.78 (P = 0.05).

t =

(50.06 - 50)25
0.956

= 0.14

m = 50,

3.3 Comparison of two experimental means

Another way in which the results of a new analytical method may be tested is by
comparing them with those obtained by using a second (perhaps a reference)
method. In this case the two methods give two sample means, and The null
hypothesis is that the two methods give the same result, i.e. or

, so we need to test whether ( ) differs significantly from zero. As
we saw in the previous section, the t-test can be used to compare an experimental
result, ( ) in this case, with a standard value, obviously zero here. However, we
must allow for the fact that the results from the two methods might have different
sample sizes, and n2, and that we also have two different standard deviations, n1

x1 - x2

x1 - x2m1 - m2 = 0
H0: m1 = m2,

x2.x1
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s1 and s2. If these standard deviations are not significantly different (see Section 3.5
for a method of testing this assumption), a pooled estimate, s, of the standard devi-
ation can first be calculated using the equation:

The next example shows another application of this test, where it is used to decide
whether a change in the conditions of an experiment affects the result.

(3.3.1)s =

(n1 - 1)s2
1 + (n2 - 1)s2

2

(n1 + n2 - 2)

(3.3.2)

where t has degrees of freedom.n1 + n2 - 2

t =

x1 - x2

sA
1
n1

+

1
n2

To decide whether the difference between the two means, and is significant,
i.e. to test the null hypothesis, the statistic t is then calculated from:H0: m1 = m2,

x2,x1

Example 3.3.1

In a comparison of two methods for the determination of chromium in rye
grass, the following results were obtained:

Method 1: mean � 1.48; standard deviation 0.28
Method 2: mean � 2.33; standard deviation 0.31

For each method five determinations were made.
(Sahuquillo, A., Rubio, R. and Rauret, G., 1999, Analyst, 124: 1)

Do these two methods give results having means which differ significantly?

From Eq. (3.3.1), the pooled value of the standard deviation is given by:

so 

From Eq. (3.3.2):

There are eight degrees of freedom, so (Table A.2) the critical value is
Since the experimental value of is greater than this,

the difference between the two results is significant at the 5% level and the null
hypothesis is rejected. In fact since the critical value of t8 for P � 0.01 is 3.36,
the difference is significant at the 1% level. In other words, if the null hypoth-
esis is true the probability of such a large difference arising by chance is less
than 1 in 100.

ƒ t ƒt8 = 2.31 (P = 0.05).

t =

2.33 - 1.48

0.295A
1
5

+

1
5

= 4.56

s = 0.295.

s2
= ([4 * 0.282] + [4 * 0.312])>(5 + 5 - 2) = 0.0872

(mg kg-1 Cr)
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Example 3.3.2

In a series of experiments on the determination of tin in foodstuffs, samples
were boiled with hydrochloric acid under reflux for different times. Some of
the results are shown below:

Refluxing time (min) Tin found (mg kg-1)

30 55, 57, 59, 56, 56, 59
75 57, 55, 58, 59, 59, 59

(Analytical Methods Committee, 1983, Analyst, 108: 109).

Does the mean amount of tin found differ significantly for the two boiling
times?

The mean and variance (square of the standard deviation) for the two times are:

30 min � 57.00 � 2.80

75 min � 57.83 � 2.57

The null hypothesis is that the refluxing time has no effect on the amount of
tin found. From Eq. (3.3.1), the pooled value for the variance is given by:

From Eq. (3.3.2):

There are 10 degrees of freedom so the critical value is 
The observed value of is less than the critical value so the null
hypothesis is retained: there is no evidence that the refluxing time affects the
amount of tin found.

The table below shows the result of performing this calculation using Excel®:

ƒ t ƒ  (=  0.88)
t10 = 2.23 (P = 0.05).

 = -0.88

 t =

57.00 - 57.83

1.64A
1
6

+

1
6

 s = 1.64

 s2
= ([5 * 2.80] + [5 * 2.57])>10 = 2.685

s2
2x2

s1
2x1

t-Test: Two-sample assuming equal variances

Variable 1 Variable 2
Mean 57 57.833
Variance 2.8 2.567
Observations 6 6
Pooled variance 2.683
Hypothesized mean difference 0
df 10
t Stat -0.881
P(T<=t) one-tail 0.199
t Critical one-tail 1.812
P(T<=t) two-tail 0.399
t Critical two-tail 2.228
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The distinction between ‘one-tail’ and ‘two-tail’ will be covered in Section 3.5.
For the present, it is sufficient to consider only the two-tail values. These show
that Since this probability is much greater than 0.05,
the result is not significant at the 5% level.

P ( ƒ t ƒ 7 0.88) = 0.399.

If the population standard deviations are unlikely to be equal then it is no longer
appropriate to pool sample standard deviations in order to give an overall estimate of
standard deviation. An approximate method in these circumstances is given below:

In order to test when it cannot be assumed that the two samples
come from populations with equal standard deviations, the statistic t is calcu-
lated where

(3.3.3)

(3.3.4)

the value obtained being truncated to an integer.

with the number of degrees of freedom =

a
s2

1

n1
+

s2
2

n2
b

2

s4
1

n2
11n1 - 12

+

s4
2

n2
21n2 - 12

t =

1x1 - x22

B
s2

1

n1
+

s2
2

n2

H0: m1 = m2

Several different equations have been suggested for the number of degrees of freedom
for t when s1 and s2 differ, reflecting the fact that the method is an approximate one.
Equation (3.3.4) is used by both Minitab® and Excel®, but Minitab®, erring on the
side of caution in giving a significant result, rounds the value down, while Excel®

rounds it to the nearest integer. For example, if the equation gave a value of 4.7,
Minitab® would take four degrees of freedom and Excel® would take five.

Example 3.3.3

The data below give the concentration of thiol (mM) in the blood lysate of the
blood of two groups of volunteers, the first group being ‘normal’ and the second
having rheumatoid arthritis:

Normal: 1.84, 1.92, 1.94, 1.92, 1.85, 1.91, 2.07
Rheumatoid: 2.81, 4.06, 3.62, 3.27, 3.27, 3.76

(Banford, J.C., Brown, D.H., McConnell, A.A., McNeil, C.J., Smith, W.E.,
Hazelton, R.A. and Sturrock, R.D., 1983, Analyst, 107: 195)

The null hypothesis adopted is that the mean concentration of thiol is the
same for the two groups.
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Two sample T for Normal vs Rheumatoid

N Mean StDev SE Mean
Normal 7 1.9214 0.0756 0.029
Rheumato 6 3.465 0.440 0.18

The reader can check that:

n1 � 7 � 1.921 � 0.076

n2 � 6 � 3.465 � 0.440

Substitution in Eq. (3.3.3) gives and substitution in Eq. (3.3.4) gives
5.3, which is truncated to 5. The critical value is so the null
hypothesis is rejected: there is evidence that the mean concentration of thiol
differs between the groups.

The result of performing this calculation using Minitab® (where the non-
pooled test is the default option) is shown below.

Two sample t-test and confidence interval

t5 = 4.03 (P = 0.01)
t = -8.48

s2x2

s1x1

95% CI for mu Normal - mu Rheumato: (-2.012, -1.08)
T-Test mu Normal = mu Rheumato (vs not =):T= -8.48
P = 0.0004 DF = 5

This confirms the values above and also gives the information that
This probability is extremely low: the result is in fact 

significant at P � 0.001.
P  ( ƒ t ƒ Ú 8.48) = 0.0004.

3.4 Paired t -test

It frequently happens that two methods of analysis are compared by applying both
of them to the same set of test materials, which contain different amounts of ana-
lyte. For example, Table 3.1 gives the results of determining the paracetamol con-
centration (% m/m) in tablets by two different methods. Tablets from ten different
batches were analysed to see whether the results obtained by the two methods dif-
fered. Each batch is thus characterised by a pair of measurements, one value for
each method.

In addition to random measurement errors, differences between the tablets and
differences between the methods may also contribute to the variation between the
measurements. Here we wish to know whether the methods produce significantly
different results. The t-test for comparing two means (Section 3.3) is not appropriate
in this case because it does not separate the variation due to method from that due
to variation between tablets: the two effects are said to be confounded. This difficulty
is overcome by looking at the difference, d, between each pair of results given by the
two methods. If there is no difference between the two methods then these differ-
ences are drawn from a population with mean In order to test this null
hypothesis, we test whether differs significantly from 0 using the statistic t.d

md = 0.
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Table 3.1 Example of paired data

Batch UV spectrometric assay Near-infrared reflectance spectroscopy

1 84.63 83.15
2 84.38 83.72
3 84.08 83.84
4 84.41 84.20
5 83.82 83.92
6 83.55 84.16
7 83.92 84.02
8 83.69 83.60
9 84.06 84.13

10 84.03 84.24

(Trafford, A.D., Jee, R.D., Moffat, A.C. and Graham, P., 1999, Analyst, 124: 163)

To test whether n paired results are drawn from the same population, that is
we calculate the t-statistic from the equation:

(3.4.1)

where and sd are the mean and standard deviation respectively of d values,
the differences between the paired values. (Eq. (3.4.1) is clearly similar to 
Eq. (3.2.1).)

The number of degrees of freedom of t is n - 1.

d

t = d1n>sd

H0: md = 0,

Example 3.4.1

Test whether there is a significant difference between the results obtained by
the two methods in Table 3.1.

The differences between the pairs of values (subtracting the second value from
the first value in each case) are:

These differences have mean, and standard deviation, 
Substituting in Eq. (3.4.1), with n � 10, gives t � 0.88. The critical value is

Since the calculated value of is less than this the null
hypothesis is retained: the methods do not give significantly different results
for the paracetamol concentration.

Again this calculation can be performed on a computer, giving the result that
Since this probability is much greater than 0.05 we reach

the same conclusion: the two methods do not differ significantly at P � 0.05.
P( ƒ t ƒ Ú 0.88) = 0.40.

ƒ t ƒt9 = 2.26 (P = 0.05).

sd = 0.570.d = 0.159,

+1.48, +0.66, +0.24, +0.21, -0.10, -0.61, -0.10, +0.09, -0.07, -0.21
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The paired test described above does not require that the precisions of the two
methods are equal but it does assume that the differences, d, are normally distrib-
uted. In effect this requires that each set of measurements is normally distributed
and that the precision and bias (if any) of each method are constant over the range
of values for which the measurements were made. The data can consist of single
measurements, as in Example 3.4.1, or as the means of replicate measurements.
However, it is necessary for the same number of measurements to be made on each
sample by the first method and likewise for the second method: that is, l measure-
ments are made on each sample by method 1 and m measurements on each sample
by method 2, where l and m do not have to be equal.

There are various circumstances in which it may be necessary or desirable to de-
sign an experiment so that each sample is analysed by each of two methods, giving
results that are naturally paired. Some examples are:

• the quantity of any one test sample is sufficient for only one determination by
each method;

• the test samples may be presented over an extended period so it is necessary to
remove the effects of variations in the environmental conditions such as temper-
ature, pressure, etc.;

• the methods are to be compared by using a wide variety of samples from dif-
ferent sources and possibly with very different concentrations (but see the next
paragraph).

Analytical methods usually have to be applicable over a wide range of concentra-
tions, so a new method is often compared with a standard method by analysis of
samples in which the analyte concentration may vary over several powers of 10. In
this case it is inappropriate to use the paired t-test since it is valid only if any errors,
either random or systematic, are independent of concentration: over wide ranges of
concentration this assumption may no longer be true. An alternative method in
such cases is linear regression (see Section 5.9), but this approach also presents some
difficulties if it is used uncritically.

3.5 One-sided and two-sided tests

The methods described so far in this chapter have been concerned with testing for a
difference between two means in either direction. For example, the method described
in Section 3.2 tests whether there is a significant difference between the experimen-
tal result and the known value for the reference material, regardless of the sign of
the difference. In most situations of this kind the analyst has no idea, prior to the
experiment, as to whether any difference between the experimental mean and the
reference value will be positive or negative. Thus the test used must cover either
possibility. Such a test is called two-sided (or two-tailed). In a few cases, however, a
different kind of test may be appropriate. If, for example, we do an experiment in
which we hope to increase the rate of a reaction by addition of a catalyst, it is clear
before we begin that the only outcome of interest is whether the new reaction rate is
greater than the old, and only an increase need be tested for significance. This kind
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of test is called one-sided (or one-tailed). For a given value of n and a particular
probability level, the critical value for a one-sided test differs from that for a two-
sided test. In a one-sided test for an increase, the critical value of t (rather than ) 
for P � 0.05 is that value which is exceeded with a probability of 5%. Since the sam-
pling distribution of the mean is assumed to be symmetrical, this probability is half
the probability that is relevant in the two-sided test. The appropriate value for the
one-sided test is thus found in the P � 0.10 column of Table A.2. Similarly, for a one-
sided test at the P � 0.01 level, the P � 0.02 column is used. For a one-sided test for
a decrease, the critical value of t will be of equal magnitude but with a negative sign.
If the test is carried out on a computer, it will be necessary to indicate whether a one-
or a two-sided test is required.

ƒ t ƒ

Example 3.5.1

It is suspected that an acid–base titrimetric method has a significant indicator
error and thus tends to give results with a positive systematic error (i.e. positive
bias). To test this an exactly 0.1 M solution of acid is used to titrate 25.00 ml of
an exactly 0.1 M solution of alkali, with the following results (ml):

Test for positive bias in these results.

For these data we have:

Adopting the null hypothesis that there is no bias, and using 
Eq. (3.2.1) gives:

From Table A.2 the critical value is (P � 0.05, one-sided test). Since the
observed value of t is greater than this, the null hypothesis is rejected and we
can conclude that there is evidence for positive bias from the indicator error.

Using a computer gives Since this is less than 0.05, the 
result is significant at P � 0.05, as before.

P (t Ú 2.35) = 0.033.

t5 = 2.02

t = 125.228 - 25.002 * 26>0.238 = 2.35

H0: m = 25.00,

mean = 25.228 ml, standard deviation = 0.238 ml

25.06 25.18 24.87 25.51 25.34 25.41

It is interesting that if a two-sided test had been made in the example above (for
which the critical value for ), the null hypothesis would not have been
rejected! This apparently contradictory result is explained by the fact that the deci-
sion on whether to use a one- or two-sided test depends on the degree of prior knowledge,
in this case a suspicion or expectation of positive bias. It is obviously essential that
the decision on using a one- or two-sided test should be made before the experiment
has been done, and not with hindsight, when the results might prejudice the
choice. In general, two-sided tests are much more commonly used than one-sided
ones and the relatively rare circumstances in which one-sided tests are necessary are
easily identified.

t5 = 2.57
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3.6 F-test for the comparison of standard deviations

The significance tests described so far are used for comparing means, and hence for
detecting systematic errors. In many cases it is also important to compare the stan-
dard deviations, i.e. the random errors of two sets of data. As with tests on means,
this comparison can take two forms. Either we may wish to test whether Method A
is more precise than Method B (i.e. a one-sided test) or we may wish to test whether
Methods A and B differ in their precision (i.e. a two-sided test). For example, if we
wished to test whether a new analytical method is more precise than a standard
method we would use a one-sided test; if we wished to test whether two standard
deviations differ significantly (e.g. before applying a t-test – see Section 3.3 above) a
two-sided test would be appropriate.

The F-test uses the ratio of the two sample variances, i.e. the ratio of the squares
of the standard deviations, s2

1>s
2
2.

If the null hypothesis is true, then the variance ratio should be close to 1. Differences
from 1 can occur because of random variation, but if the difference is too great, it
can no longer be attributed to this cause. If the calculated value of F exceeds a cer-
tain critical value (obtained from tables), then the null hypothesis is rejected. This
critical value of F depends on the size of both samples, the significance level and the
type of test performed. The values for P � 0.05 are given in Table A.3 for one-sided
tests and in Table A.4 for two-sided tests; the use of these tables is illustrated in the
following examples.

In order to test whether the difference between two sample variances is signi-
ficant, that is to test the statistic F is calculated:

(3.6.1)

where the subscripts 1 and 2 are allocated in the equation so that F is always

The number of degrees of freedom of the numerator and denominator are
and respectively.

The test assumes that the populations from which the samples are taken are
normal.

n2 - 1n1 - 1

 Ú1.

F =

s2
1

s2
2

H0: s
2
1 = s2

2,

Example 3.6.1

A proposed method for the determination of the chemical oxygen demand of
wastewater was compared with the standard (mercury salt) method. The fol-
lowing results were obtained for a sewage effluent sample:

Mean (mg l�1) Standard deviation (mg l�1)

Standard method 72 3.31
Proposed method 72 1.51
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For each method eight determinations were made.
(Ballinger, D., Lloyd, A. and Morrish, A., 1982, Analyst, 107: 1047)

Is the precision of the proposed method significantly greater than that of the
standard method?

We have to decide whether the variance of the standard method is signifi-
cantly greater than that of the proposed method, so this is a case where a one-
sided test must be used. F is given by the ratio of the variances (Eq. 3.6.1):

In Table A.3 the number of degrees of freedom of the denominator is given in
the left-hand column and the number of degrees of freedom of the numerator
at the top. Both samples contain eight values so the number of degrees of free-
dom in each case is seven. The critical value is (P � 0.05), where
the first and second subscripts indicate the number of degrees of freedom of the
numerator and denominator respectively. Since the calculated value of F (4.8)
exceeds this, the null hypothesis of equal variances is rejected. The variance of
the standard method is significantly greater than that of the proposed method
at the 5% probability level, i.e. the proposed method is more precise.

F7,7 = 3.787

F =

3.312

1.512 = 4.8

Example 3.6.2

In Example 3.3.1 it was assumed that the variances of the two methods for
determining chromium in rye grass did not differ significantly. This assumption
can now be tested.

The standard deviations were 0.28 and 0.31 (each obtained from five measure-
ments on a specimen of a particular plant). Calculating F using Eq. (3.6.1) so
that it is greater than 1, we have:

In this case, however, we have no reason to expect in advance that the variance
of one method should be greater than the other, so a two-sided test is appropri-
ate. The critical values are given in Table A.4. From this table, taking the number
of degrees of freedom of both numerator and denominator as four, the critical
value is The calculated value is much less than this, so the null
hypothesis of equal variances is retained: there is no significant difference
between the two variances at the 5% level.

F4,4 = 9.605.

F =

0.312

0.282 = 1.23

As with the t-test, other significance levels may be used for the F-test and the criti-
cal values can be found from the tables listed in the bibliography at the end of
Chapter 1. Care must be taken that the correct table is used, depending on whether
the test is one- or two-sided: for an % significance level the 2 % points of the aa



 

Outliers 49

F distribution are used for a one-sided test and the % points are used for a two-sided
test. A computer calculation will provide a P-value. Note that Excel® apparently only
carries out a one-sided F-test, and that it is necessary to enter the data with the larger
variance as the first sample.

3.7 Outliers

Every experimentalist is familiar with the situation in which one (or possibly more
than one) measurement in a set of results appears to differ unexpectedly from the
others. In some cases the suspect result may be attributed to a human error. For ex-
ample, if the following results were given for a titration:

the fourth value is almost certainly due to a slip in writing down the result and
should be 12.14. However, even when such clearly erroneous values have been re-
moved or corrected (and other obvious problems such as equipment failure taken
into account) suspect data may still occur. (They may also arise in proficiency testing
schemes and method performance studies (see Chapter 4) and regression problems
(see Chapter 5).) Should such suspect values be retained, come what may, or should
methods be found to decide whether or not they should be rejected as outliers? The
calculated mean and standard deviation values, which are used to evaluate and com-
pare the precision and accuracy of analytical methods, will obviously depend on
whether or not any suspect measurements are rejected, so the occurrence of suspect
data, and the ways in which they are treated, must always be described carefully.

The essence of the problem is clear. We saw in Chapter 2 that if the data come
from a population with a normal error distribution there is a finite chance that a sin-
gle value in a set of replicates will be a long way from the mean, even if everything is
in order. To reject such a value wrongly might result in the value of the mean being
shifted and the standard deviation being too small. On the other hand if a measure-
ment is a genuine outlier it would be wrong to retain it, otherwise the results would
be unnecessarily pessimistic. In broad terms, suspect values can be tackled in three
ways. Two of these approaches, median-based statistics and robust statistics, are treated
separately in Chapter 6. Here we consider only the application of significance testing,
probably still the most common approach to the problem of suspect measurements.

The ISO recommended test for outliers is Grubbs’ test. This test compares the de-
viation of the suspect value from the sample mean with the standard deviation of the
sample. The suspect value is naturally the value that is furthest away from the mean.

12.12,  12 .15,  12 .13,  13 .14,  12 .12 ml

a

In order to use Grubbs’ test for an outlier, i.e. to test the null hypothesis, H0, that
all measurements come from the same population, the statistic G is calculated:

(3.7.1)

Note that and s are calculated with the suspect value included, as H0 presumes
that there are no outliers.

The test assumes that the population has a normal error distribution.

x

G = ƒ suspect value - x ƒ>s
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The critical values for G for P � 0.05 are given in Table A.5. If the calculated value of
G exceeds the critical value, the suspect value is rejected. The values given are for
a two-sided test, which is appropriate when it is not known in advance at which
extreme of the data range an outlier may occur.

Example 3.7.1

The following values were obtained for the nitrite concentration (mg l-1) in a
sample of river water:

The last measurement is noticeably lower than the others and is thus suspect:
should it be rejected?

The four values have and s � 0.01292, giving from Eq. (3.7.1)

From Table A.5, for sample size 4, the critical value of G is 1.481, (P � 0.05).
Since the calculated value of G does not exceed 1.481, the suspect measurement
should be retained.

G =

ƒ 0.380 - 0.3985 ƒ

0.01292
= 1.432

x = 0.3985

0 .403, 0 .410, 0 .401, 0 .380

In fact, the suspect value in this data set would have to be considerably lower before
it was rejected. Trial and error shows that for the data set

(where ), the value of b would have to be as low as 0.356 before it was
rejected using the Grubbs’ test criterion.

Ideally, further measurements should be made when a suspect value occurs, espe-
cially if only a few values have been obtained initially: when the sample size is small,
one measurement must be very different from the rest before it can safely be rejected.
Extra values may make it clearer whether or not the suspect value should be rejected,
and will also reduce its effect on the mean and standard deviation if it is retained.

b 6 0.401

0 .403, 0 .410, 0 .401, b

Example 3.7.2

Three further measurements were added to those given in the example above,
so that the complete results became:

Should the value 0.380 still be retained?

The seven values have and s � 0.01088.x = 0.4021

0 .403, 0 .410, 0 .401, 0 .380, 0 .400, 0 .413, 0 .408
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The calculated value of G is now:

The critical value of G (P � 0.05) for a sample size 7 is 2.020 so the suspect mea-
surement is now (just) rejected at the 5% significance level.

G =

ƒ 0.380 - 0.4021 ƒ

0.01088
= 2.031

Dixon’s test (sometimes called the Q-test) is another test for outliers, popular be-
cause the calculation is so simple. For small samples (size 3 to 7) the test assesses a
suspect measurement by comparing the difference between it and the measurement
nearest to it in size with the range of the measurements. (For larger samples the form
of the test is modified slightly. The texts by Barnett and Lewis and by Ellison et al.
listed in the Bibliography at the end of this chapter give further details.)

In order to use Dixon’s test for an outlier, that is to test H0: all measurements
come from the same population, the statistic Q is calculated:

(3.7.2)

This test again assumes that the population has a normal error distribution.

Q =

ƒ suspect value - nearest value ƒ

largest value - smallest value

Example 3.7.3

Apply Dixon’s test to the data from Example 3.7.2.

Using Eq. (3.7.2) we have

The critical value of Q (P � 0.05) for a sample size 7 is 0.570. The suspect value
0.380 is thus rejected (as it was using Grubbs’ test).

Q =

ƒ 0.380 - 0.400 ƒ

0.413 - 0.380
= 0.606

Although taking extra measurements can be helpful, as shown above, it is of course
possible that the new values may include further suspect measurements! Moreover if
two suspect values occur, both of them might be at high end of the measurement
range, both at the low end, or one at the high end and one at the low end. This can
complicate the use of the tests. Figure 3.1 illustrates in the form of dot-plots two exam-
ples of such difficulties in the application of the Dixon test. In Fig. 3.1(a) there are two

The critical values of Q for P � 0.05 for a two-sided test are given in Table A.6. If the
calculated value of Q exceeds the critical value the suspect value is rejected.
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results (2.9, 3.1), both of which are suspiciously high compared with the mean of the
data, yet if Q were calculated uncritically using Eq. (3.7.2) we would obtain:

a value which is not significant at the P � 0.05 level and suggests that the suspect
values should be retained. Clearly the possible outlier 3.1 has been masked by the
other possible outlier, 2.9, giving a low value of Q. A different situation is shown in
Fig. 3.1(b), where the two suspect values are at opposite ends of the data set. This
gives a large value for the range, so Q is small and again the null hypothesis might be
wrongly retained. Handling multiple outliers clearly increases the complexity of out-
lier testing, though the Grubbs’ test has been modified to handle data sets which
contain two suspect measurements. These modifications use different formulae for
G, depending on whether the suspect measurements occur at the same or opposite
ends of the range of values, and two further tables of critical values are thus re-
quired. Again, texts by Barnett and Lewis and by Ellison et al. listed in the Bibliogra-
phy give further details.

A more fundamental concern over these outlier tests is that they assume that the
sample comes from a population with a normal error distribution. A result that
seems to be an outlier on the assumption of such a distribution may well not be an
outlier if the sample actually comes from (for example) a log-normal distribution
(Section 2.3). Therefore outlier tests should not be used if there is a suspicion that
the population may not have a normal error distribution. Moreover there are cases
where different outlier tests lead to opposite conclusions. The reader can verify that
if the suspect measurement in examples 3.7.2 and 3.7.3 had been 0.382 rather than
0.380, the Dixon test would have recommended its rejection, while Grubbs’ test
would have recommended its retention. Such conclusions must obviously be re-
garded with extreme caution. These difficulties, along with the complications aris-
ing in cases of multiple outliers, explain the increasing use of the methods described
in Chapter 6, especially the robust methods. Such approaches either are insensitive
to extreme values or at least give them less weight in calculations, so the problem of
whether or not to reject outliers is avoided.

3.8 Analysis of variance

In Section 3.3 a method was described for comparing two means to test whether they
differ significantly. In analytical work there are often more than two means to be com-
pared. Some possible situations are: comparing the mean concentration of protein in
solution for samples stored under different conditions; comparing the mean results

Q =

3.1 - 2.9
3.1 - 2.0

= 0.18

x1 xn

(a)

(b)

2.0 2.2 2.4 2.6 2.8 3.0

Figure 3.1 Dot-plots illustrating the problem of handling outliers: (a) when there are two
suspect results at the high end of the sample data and (b) when there are two suspect
results, one at each extreme of the data.



 

Comparison of several means 53

obtained for the concentration of an analyte by several different methods; comparing
the mean titration results obtained by several different experimentalists using the same
apparatus. In all these examples there are two possible sources of variation. The first,
which is always present, is due to the random error in measurement. This was discussed
in detail in the previous chapter: it is this error which causes a different result to be
obtained each time a measurement is repeated under the same conditions. The second
possible source of variation is due to what is known as a controlled or fixed-effect
factor: for the examples above, the controlled factors are respectively the conditions
under which the solution was stored, the method of analysis used, and the experi-
mentalist carrying out the titration. Analysis of variance (frequently abbreviated to
ANOVA) is an extremely powerful statistical technique which can be used to separate
and estimate the different causes of variation. For the examples above, it can be used to
separate any variation which is caused by changing the controlled factor from the vari-
ation due to random error. It can thus test whether altering the controlled factor leads
to a significant difference between the mean values obtained.

ANOVA can also be used in situations where there is more than one source of
random variation. Consider, for example, the purity testing of a barrelful of sodium
chloride. Samples are taken from different parts of the barrel chosen at random and
replicate analyses performed on these samples. In addition to the random error in the
measurement of the purity, there may also be variation in the purity of the samples
from different parts of the barrel. Since the samples were chosen at random, this varia-
tion will be random and is thus sometimes known as a random-effect factor. Again,
ANOVA can be used to separate and estimate the sources of variation. Both types of
statistical analysis described above are known as one-way ANOVA as there is one factor,
either controlled or random, in addition to the random error in measurements. The
arithmetical procedures are similar in the fixed- and random-effect factor cases: exam-
ples of the former are given in this chapter and of the latter in the next chapter, where
sampling is considered in more detail. More complex situations in which there are two
or more factors, possibly interacting with each other, are considered in Chapter 7.

3.9 Comparison of several means

Table 3.2 shows the results obtained in an investigation into the stability of a fluo-
rescent reagent stored under different conditions. The values given are the fluores-
cence signals (in arbitrary units) from dilute solutions of equal concentration. Three
replicate measurements were made on each sample. The table shows that the mean

Table 3.2 Fluorescence from solutions stored under different conditions

Conditions Replicate measurements Mean

A Freshly prepared 102, 100, 101 101
B Stored for 1 hour in the dark 101, 101, 104 102
C Stored for 1 hour in subdued light 97, 95, 99 97
D Stored for 1 hour in bright light 90, 92, 94 92

Overall mean 98
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values for the four samples are different. However, we know that because of random
error, even if the true value which we are trying to measure is unchanged, the sam-
ple mean may vary from one sample to the next. ANOVA tests whether the differ-
ence between the sample means is too great to be explained by the random error.
Figure 3.2 shows a dot-plot comparing the results obtained in the different condi-
tions. This suggests that there may be little difference between conditions A and B
but that conditions C and D differ both from A and B and from each other.

The problem can be generalised to consider h samples each with n members as in
Table 3.3 where xij is the jth measurement of the ith sample. The means of the samples
are and the mean of all the values grouped together is . The null hypoth-
esis adopted is that all the samples are drawn from a population with mean and vari-
ance . On the basis of this hypothesis can be estimated in two ways, one involving
the variation within the samples and the other the variation between the samples.

1 Within-sample variation

For each sample a variance can be calculated by using the formula

(see Eq. (2.1.2))

Using the values in Table 3.2 we have:

Variance of sample B =

(101 - 102)2
+ (101 - 102)2

+ (104 - 102)2

(3 - 1)
= 3 

Variance of sample A =

(102 - 101)2
+ (100 - 101)2

+ (101 - 101)2

(3 - 1)
= 1

a 1xi - x22>1n - 12

s2
0s2

0

m

xx1, x2, . . . , xh

Table 3.3 Generalisation of Table 3.2

Mean

Sample 1

Sample 2

Sample i

Sample h

Overall mean � x

xhxh2
Á xhj

Á xhnxh1

ooooo

xixi2
Á xij

Á xinxi1

ooooo

x2x22
Á x2j

Á x2nx21

x1x12
Á x1j

Á x1nx11
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Figure 3.2 Dot-plot of results in Table 3.2.
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Similarly it can be shown that samples C and D both have variances of 4. Averag-
ing these values gives a within-sample estimate of .
This estimate has eight degrees of freedom: each sample estimate has two degrees
of freedom and there are four samples. Note that this estimate of does not de-
pend on the means of the samples: for example, if all the measurements for sam-
ple A were increased by say, 4, the estimate of would be unaltered. The general
formula for the within-sample estimate of is:

(3.9.1)

The summation over j and division by gives the variance of each sample;
the summation over i and division by h averages these sample variances. The ex-
pression in Eq. (3.9.1) is known as a mean square (MS) since it involves a sum of
squared (SS) terms divided by the number of degrees of freedom. In this case the
number of degrees of freedom is 8 and the mean square is 3, so the sum of the
squared terms is 

2 Between-sample variation

If the samples are all drawn from a population which has a variance , then their
means come from a population with variance (cf. the sampling distribution
of the mean, Section 2.5). Thus, if the null hypothesis is true, the variance of the
means of the samples gives an estimate of From Table 3.2:

So the between-sample estimate of is This estimate has three
degrees of freedom since it is calculated from four sample means. Note that this
estimate of does not depend on the variability within each sample, since it is
calculated from the sample means. But if, for example, the mean of sample D was
changed, then this estimate of would also be changed.

In general we have:

(3.9.2)

which again is a ‘mean square’ involving a sum of squared terms divided by the
number of degrees of freedom. In this case the number of degrees of freedom is 3
and the mean square is 62, so the sum of the squared terms is 

Summarising our calculations so far:

If the null hypothesis is correct, then these two estimates of should not differ sig-
nificantly. If it is incorrect, the between-sample estimate of will be greater than the
within-sample estimate because of between-sample variation. To test whether it is
significantly greater, a one-sided F-test is used (see Section 3.6):

F = 62>3 = 20.7

s2
0

s2
0

Between-sample mean square = 62 with 3 d.f.

Within-sample mean square = 3 with 8 d.f.

3 * 62 = 186.

Between-sample estimate of s2
0 = na

i
1xi - x22>1h - 12

s2
0

s2
0

(62>3) * 3 = 62.s2
0

= 62>3

(101 - 98)2
+ (102 - 98)2

+ (97 - 98)2
+ (92 - 98)2

(4 - 1)
Sample mean variance =

s2
0>n.

s2
0>n

s2
0

3 * 8 = 24.

(n - 1)

Within-sample estimate of s2
0 = a

i
a

j
1xij - xi2

2>h1n - 12

s2
0

s2
0

s2
0

s2
0 = (1 + 3 + 4 + 4)>4 = 3
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(Remember that each mean square is used so no further squaring is necessary.) The
numerator has three degrees of freedom and the denominator has eight degrees of
freedom, so from Table A.3 the critical value of F is 4.066 (P � 0.05). Since the
calculated value of F is much greater than this the null hypothesis is rejected: the
sample means do differ significantly.

Such a significant difference can arise for several different reasons: for example,
one mean may differ from all the others, all the means may differ from each other,
the means may fall into two distinct groups, etc. A simple way of deciding the rea-
son for a significant result is to arrange the means in increasing order and compare
the difference between adjacent values with a quantity called the least significant
difference. This is given by where s is the within-sample estimate
of and is the number of degrees of freedom of this estimate. For the
example above, the sample means arranged in increasing order of size are:

and the least significant difference is Com-
paring this value with the differences between the means suggests that conditions D
and C give results which differ significantly from each other and from the results ob-
tained in conditions A and B. However, the results obtained in conditions A and B
do not differ significantly from each other. This confirms the indications of the dot-
plot in Fig. 3.2, and suggests that it is exposure to light which affects the intensity of
fluorescence.

The least significant difference method described above is not entirely rigorous: it
can be shown that it leads to rather too many significant differences. However, it is
a simple follow-up test when ANOVA has indicated that there is a significant differ-
ence between the means. Descriptions of other more rigorous tests are given in the
books in the Bibliography at the end of this chapter.

3.10 The arithmetic of ANOVA calculations

In the preceding ANOVA calculation was estimated in two different ways. If the
null hypothesis were true, could also be estimated in a third way by treating the
data as one large sample. This would involve summing the squares of the deviations
from the overall mean:

and dividing by the number of degrees of freedom, 
This method of estimating is not used in the analysis because the estimate de-

pends both on the within- and between-sample variation. However, there is an exact
algebraic relationship between this total variation and the sources of variation
which contribute to it. This leads to a simplification of the arithmetic involved, es-
pecially in more complicated ANOVA calculations,. The relationship between the
sources of variation is illustrated by Table 3.4, which summarises the sums of squares

s2
0

12 - 1 = 11.

 = 210

 a
i
a

j
1xij - x22 = 42

+ 22
+ 32

+ 32
+ 32

+ 62
+ 12

+ 32
+ 12

+ 82
+ 62

+ 42

s2
0

s2
0

23 * 22>3 * 2.31 = 3.27 (P = 0.05).

xD = 92    xC = 97    xA = 101    xB = 102

h(n - 1)s0

s2(2>n) * th(n-1)
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and degrees of freedom. Clearly the values for the total variation given in the last
row of the table are the sums of the values in the first two rows for both the sum of
squares and the degrees of freedom. This additive property holds for all the ANOVA
calculations described in this book.

Just as in the calculation of variance, there are formulae which simplify the calcu-
lation of the individual sums of squares. These formulae are summarised below:

Table 3.4 Summary of sums of squares and degrees of freedom

Source of variation Sum of squares Degrees of freedom

Between-sample

Within-sample

Total hn - 1 = 11a
i
a

j
1xij - x22 = 210

h1n - 12 = 8a
i
a

j
1xij - xi2

2
= 24

h - 1 = 3na
i
1xi - x22 = 186

One-way ANOVA tests for a significant difference between means when there
are more than two samples involved. The formulae used are:

where there are h samples each with n measurements.

N � nh � total number of measurements
Ti � sum of the measurements in the ith sample
T � sum of all the measurements, the grand total

The test statistic is F � between-sample mean square/within-sample mean
square and the critical value is Fh-1, N-h.

Source of variation Sum of squares Degrees of freedom

Between-samples

Within-samples by subtraction by subtraction

Total N - 1a
i
a

j
x2

ij - 1T2>N2

h - 1a
i
1T2

i >n2 - 1T2>N2

These formulae can be illustrated by repeating the ANOVA calculations for the data
in Table 3.2. The calculation is given in full below.

Example 3.10.1

Test whether the samples in Table 3.2 are drawn from populations with equal
means.

In the calculation of the mean squares all the values in Table 3.2 have had 100
subtracted from them, which simplifies the arithmetic considerably. Note that
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SUMMARY

Groups Count Sum Average Variance

A 3 303 101 1
B 3 306 102 3
C 3 291 97 4
D 3 276 92 4

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 186 3 62 20.66667 0.0004 4.06618
Within Groups 24 8 3

Total 210 11

The calculations for one-way ANOVA have been given in detail in order to make the
principles behind the method clearer. In practice such calculations are normally
made on a computer. Both Minitab® and Excel® have an option which performs
one-way ANOVA and, as an example, the output given by Excel® is shown below,
using the original values.

Anova: Single factor

this does not affect either the between- or within-sample estimates of variance
because the same quantity has been subtracted from every value.

A 2 0 1 3 9
B 1 1 4 6 36
C -3 -5 -1 -9 81
D -10 -8 -6 -24 576

a
i

T2
i = 702T = -24

T2
iTi

n = 3, h = 4, N = 12, a
i
a

j
x2

ij = 258

Source of variation Sum of squares Degrees of 
freedom Mean square

Between-sample 3

Within-sample by subtraction � 24 8

Total 11

F = 62>3 = 20.7

258 - 1-2422>12 = 210

24>8 = 3

186>3 = 62702>3 - 1-2422>12 = 186

The critical value Since the calculated value is greater
than this the null hypothesis is rejected: the sample means differ significantly.

F3,8 = 4.066 (P = 0.05).
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Certain assumptions have been made in performing the ANOVA calculations in this
chapter. The first is that the variance of the random error is not affected by the treat-
ment used. This assumption is implicit in the pooling of the within-sample variances
to calculate an overall estimate of the error variance. In doing this we are assuming
what is known as the homogeneity of variance. In the particular example given
above, where all the measurements are made in the same way, we would expect
homogeneity of variance. Methods for testing for this property are given in the
Bibliography at the end of this chapter.

A second assumption is that the uncontrolled variation is truly random. This
would not be the case if, for example, there was an uncontrolled factor such as a
temperature change which produced a trend in the results over a period of time. The
effects of such uncontrolled factors can be overcome to a large extent by the tech-
niques of randomisation and blocking which are discussed in Chapter 7.

An important part of ANOVA is clearly the application of the F-test. Use of this
test (see Section 3.6) simply to compare the variances of two samples depends on the
samples being drawn from a normal population. Fortunately, however, the F-test as
applied in ANOVA is not too sensitive to departures from normality of distribution.

3.11 The chi-squared test

In the significance tests so far described in this chapter the data have taken the form
of observations which, apart from any rounding off, have been measured on a con-
tinuous scale. In contrast, this section is concerned with frequency, i.e. the number of
times a given event occurs. For example, Table 2.2 gives the frequencies of the differ-
ent values obtained for the nitrate ion concentration in water when 50 measure-
ments were made. As discussed in Chapter 2, such measurements are usually assumed
to be drawn from a population with normally distributed errors. The chi-squared
test can be used to test whether the observed frequencies in a particular case differ
significantly from those which would be expected on this null hypothesis.

To test whether the observed frequencies, agree with those expected, ,
according some null hypothesis, the statistic is calculated:

(3.11.1)x2
= a

i

1Oi - Ei2
2

Ei

x2
EiOi,

Since the calculation involved in using this statistic to test for normality is relatively
complicated, it will not be described here. The principle of the chi-squared test is
more easily understood by means of the following example.

Example 3.11.1

The numbers of glassware breakages reported by four laboratory workers over a
given period are shown below. Is there any evidence that the workers differ in
their reliability?

Numbers of breakages: 24, 17, 11, 9
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The null hypothesis is that there is no difference in reliability. Assuming that
the workers use the laboratory for an equal length of time, we would thus
expect the same number of breakages by each worker. Since the total number of
breakages is 61, the expected number of breakages per worker is 
Obviously it is not possible in practice to have a non-integral number of break-
ages, but this number, although it is a mathematical concept, can still be used
in the test. The nearest practicable ‘equal’ distribution is 15, 15, 15, 16 in some
order. The question to be answered is whether the difference between the ob-
served and expected frequencies is so large that the null hypothesis should be
rejected. That there should be some difference between the two sets of frequen-
cies can be appreciated by considering a sequence of throws of a die: we
should, for example, be most surprised if 30 throws yielded exactly equal fre-
quencies for 1, 2, 3, etc. The calculation of is shown below.x2

61>4 = 15.25.

Observed frequency, O Expected frequency, E O � E

24 15.25 8.75 5.020
17 15.25 1.75 0.201
11 15.25 -4.25 1.184
9 15.25 -6.25 2.561

Totals 61 0 x2
= 8.966

1O - E22>E

Note that the total of the O - E column is always zero, thus providing a useful
check on the calculation.

If �2 exceeds a certain critical value, the null hypothesis is rejected. The criti-
cal value depends, as in other significance tests, on the significance level of the
test and on the number of degrees of freedom. The number of degrees of free-
dom is, in an example of this type, one less than the number of classes used,
i.e. 4 � 1 � 3 in this case. The critical values of �2 for P � 0.05 are given in Table
A.7. For three degrees of freedom the critical value is 7.81. Since the calculated
value is greater than this, the null hypothesis is rejected at the 5% significance
level: there is evidence that the workers do differ in their reliability.

The calculation of �2 suggests that a significant result is obtained because of the high
number of breakages reported by the first worker. To study this further, additional
chi-squared tests can be performed. One of them tests whether the second, third and
fourth workers differ significantly from each other: in this case each expected fre-
quency is (Note that the t-test cannot be used here as we are deal-
ing with frequencies and not continuous variates.) Alternatively we can test whether
the first worker differs significantly from the other three workers taken as a group.
In this case there are two classes: the breakages by the first worker with an expected
frequency of 15.25 and the total breakages by the other workers with an expected
frequency of In such cases when there are only two classes
and hence one degree of freedom, an adjustment known as Yates’s correction

15.25 * 3 = 45.75.

(17 + 11 + 9)>3.
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should be applied. This involves replacing O-E by For example, if
and These further tests are given as

an exercise at the end of this chapter.
In general the chi-squared test should be used only if the total number of obser-

vations is 50 or more and the individual expected frequencies are no fewer than 5,
though this is not a rigid rule. Further information on the chi-squared test and its
other applications are provided in the references in the Bibliography at the end of
the chapter.

3.12 Testing for normality of distribution

As has been emphasised in this chapter, many statistical tests assume that the data
used are drawn from a normal population. Although the chi-squared test can be
used to test this assumption it should be used only if there are 50 or more data
points, so it is of limited value in analytical work, when we often have only a small
set of data. A simple way of seeing whether a set of data is consistent with the as-
sumption of normality is to plot a cumulative frequency curve on special graph
paper known as normal probability paper. This method is most easily explained by
means of an example.

ƒ O - E ƒ - 0.5 = 4.O - E = -4.5, ƒ O - E ƒ = 4.5
ƒ O - E ƒ - 0.5.

Example 3.12.1

Use normal probability paper to investigate whether the data below could have
been drawn from a normal population:

Table 3.5 shows the data arranged in order of increasing size. The second
column gives the cumulative frequency for each measurement, i.e. the number

109, 89, 99, 99, 107, 111, 86, 74, 115, 107, 134, 113, 110, 88, 104.

Table 3.5 Data for normal probability paper example

Measurement Cumulative frequency % Cumulative frequency

74 1 6.25
86 2 12.50
88 3 18.75
89 4 25.00
99 6 37.50

104 7 43.75
107 9 56.25
109 10 62.50
110 11 68.75
111 12 75.00
113 13 81.25
115 14 87.50
134 15 93.75
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of measurements less than or equal to that measurement. The third column
gives the percentage cumulative frequency. This is calculated by using the
formula:

where n is the total number of measurements. (A divisor of n � 1 rather than n
is used so that the % cumulative frequency of 50% falls at the middle of the
data set, in this case at the eighth measurement. Note that two of the values, 99
and 107, occur twice.) If the data come from a normal population, a graph of
percentage cumulative frequency against measurement yields an S-shaped
curve, as shown in Fig. 3.3.

Normal probability paper has a non-linear scale for the percentage cumula-
tive frequency axis, which will convert this S-shaped curve into a straight line.
A graph plotted on such paper is shown in Fig. 3.4: the points lie approximately
on a straight line, supporting the hypothesis that the data come from a normal
distribution.

% cumulative frequency = 100 * cumulative frequency>(n + 1)

100

50

0
Measurement

%
 c

um
ul

at
iv

e 
fr

eq
ue

nc
y

Figure 3.3 The cumulative frequency curve for a normal distribution.
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Figure 3.4 Normal probability plot for the example in Section 3.12.
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Minitab® will give a normal probability plot directly. The result is shown in
Fig. 3.5. The program uses a slightly different method to calculate the percent-
age cumulative frequency, but the difference is not important.
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14.57

15
0.973

>0.100

Figure 3.5 Normal probability plot obtained using Minitab®.

One method of testing for normality is to measure how closely the points on a
normal probability plot conform to a straight line. Minitab® gives a test for normal-
ity (the Ryan–Joiner (RJ) test) based on this idea. The value of this test statistic is given
beside the graph in Fig. 3.5 (RJ � 0.973), together with a P value of �0.100, indicat-
ing that the assumption of normality is justified.

The Kolmogorov–Smirnov method can be used to test for normality, among
other applications. The principle of the method involves comparing the sample
cumulative distribution function with the cumulative distribution function of the
hypothesised distribution. The hypothetical and sample functions are drawn on
the same graph. If the experimental data depart substantially from the expected
distribution, the two functions will be widely separated over part of the diagram. If,
however, the data are closely in accord with the expected distribution, the two func-
tions will never be very far apart. The test statistic is given by the maximum vertical
difference between the two functions and is compared in the usual way with a set of
tabulated values.

When the Kolmogorov–Smirnov method is used to test whether a distribution is
normal, we first transform the original data, which might have any values for their
mean and standard deviation, into the standard normal variable, z (see Section 2.2).
This is done by using the equation:

(3.12.1)z =

x - m

s
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Figure 3.6 Kolmogorov’s method used to test for the normal distribution. Maximum
difference between the hypothetical and sample functions is shown by the arrow (D).

where the terms have their usual meanings. The values of the mean and the stan-
dard deviation are estimated by the methods of Chapter 2. The data are next trans-
formed by using Eq. (3.12.1) and then the Kolmogorov–Smirnov method is applied.
This test is illustrated in the following example.

Example 3.12.2

Eight titrations were performed, with the results 25.13, 25.02, 25.11, 25.07,
25.03, 24.97, 25.14 and 25.09 ml. Could such results have come from a normal
population?

First we estimate the mean and the standard deviation (with the aid of
Eqs (2.1.1) and (2.1.2)) as 25.07 and 0.0593 ml respectively. Next we transform
the x-values into z-values by using the relationship 
obtained from Eq. (3.12.1). The eight results are transformed into 1.01, -0.84,
0.67, 0, -0.67, -1.69, 1.18 and 0.34. These z-values are arranged in order of
increasing size to give -1.69, -0.84, -0.67, 0, 0.34, 0.67, 1.01, 1.18, and plotted
as a stepped cumulative distribution function with a step height of 1/n, where
n is the number of measurements. Thus, in this case the step height is 0.125
(i.e. 1/8). (Note that this is not quite the same approach as that used in Exam-
ple 3.12.1.) Comparison with the hypothetical function for z (Table A.2) indi-
cates (Fig. 3.6) that the maximum difference is 0.132 when z � 0.34. The critical
values for this test are given in Table A.14. The table shows that, for n � 8 and
P � 0.05, the critical value is 0.288. Since 0.132 � 0.288 we can accept the null
hypothesis that the data come from a normal population with mean 25.07 and
standard deviation 0.059.

z = (x - 25.07)>0.059,
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Figure 3.7 Type I and Type II errors.

3.13 Conclusions from significance tests

This section looks more closely at the conclusions which may be drawn from a sig-
nificance test. As was explained in Section 3.2, a significance test at, for example, the
P � 0.05 level involves a 5% risk that a null hypothesis will be rejected even though it
is true. This type of error is known as a Type I error. The risk of such an error can be
reduced by altering the significance level of the test to P � 0.01 or even P � 0.001.
This, however, is not the only possible type of error: it is also possible to retain a null
hypothesis even when it is false. This is called a Type II error. In order to calculate the
probability of this type of error it is necessary to postulate an alternative to the null
hypothesis, known as an alternative hypothesis, H1.

Consider the situation where a certain chemical product is meant to contain 3%
of phosphorus by weight. It is suspected that this proportion has increased. To test
this suspicion the composition is analysed by a standard method with a known stan-
dard deviation of 0.036%. Suppose four measurements are taken and a significance
test is performed at the P � 0.05 level. A one-sided test is required, as we are inter-
ested only in an increase in the phosphorus level. The null hypothesis is:

The solid line in Fig. 3.7 shows the sampling distribution of the mean if H0 is true.
This sampling distribution has mean 3.0 and standard deviation (i.e. standard error
of the mean) If the sample mean lies above the indicated crit-
ical value, the null hypothesis is rejected. Thus the darkest region, with area 0.05,
represents the probability of a Type I error.

Suppose we take the alternative hypothesis:

H1: m = 3.05%

xc,
s>1n = 0.036>14%.

H0: m = 3.0%

The value of this Kolmogorov–Smirnov test statistic, together with its P
value, can be obtained directly from Minitab® in conjunction with a normal
probability plot. The P value is given as �0.150, indicating again that, at P �

0.05, there is no significant difference between the continuous and stepped
cumulative distribution plots.
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Figure 3.8 Type I and Type II errors for increased sample size.

The broken line in Fig. 3.7 shows the sampling distribution of the mean if the alter-
native hypothesis is true. Even if this is the case, the null hypothesis will be retained
if the sample mean lies below The probability of this Type II error is represented
by the lightly shaded area. The diagram shows the interdependence of the two types
of error. If, for example, the significance level is changed to P � 0.01 in order to re-
duce a risk of a Type I error, will be increased and the risk of a Type II error is also
increased. Conversely, a decrease in the risk of a Type II error can be achieved only at
the expense of an increase in the probability of a Type I error. The only way in which
both errors can be reduced (for a given alternative hypothesis) is by increasing the
sample size. The effect of increasing n to 9, for example, is illustrated in Fig. 3.8: the
resultant decrease in the standard error of the mean produces a decrease in both
types of error, for a given value of 

The probability that a false null hypothesis is correctly rejected is known as the
power of a test. That is, the power of a test is (1 � the probability of a Type II error).
In the example above it is a function of the mean specified in the alternative
hypothesis. It also depends on the sample size, the significance level of the test and
whether the test is one- or two-sided. In some circumstances where two or more tests
are available to test the same hypothesis, it may be useful to compare the powers of
the tests in order to decide which is most appropriate.

Type I and Type II errors are also relevant when significance tests are applied
sequentially. An example of this situation is the application of the t-test to the differ-
ence between two means, after first using the F-test to decide whether or not the
sample variances can be pooled (see Sections 3.3 and 3.6). Both Type I and Type II
errors can arise from the initial F-test, and the occurrence of either type will mean
that the stated levels of significance for the subsequent t-test are incorrect, because
the incorrect form of the t-test may have been applied.

3.14 Bayesian statistics

The above example emphasises the general conclusion that significance tests do not
give clear-cut answers: instead they aid the interpretation of experimental data by
giving the probabilities that certain conclusions are valid. Another problem is that

xc.

xc

xc.
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the conclusions drawn from significance tests may not be exactly those that we are
seeking. Suppose, for example, that we need to know whether the sodium content of
a bottle of mineral water exceeds the value of 8 ppm stated on its label. We could
measure the sodium level several times and use the t-test, with the null hypothesis
H0: � 8, to see whether the result is significantly higher than 8 ppm: note that this
will be a one-tailed test, as we are only interested in values above 8 ppm. The result of
the test will provide the probability of obtaining the experimental results if there are 8 ppm
of sodium in the water. What it does not tell us is the inverse of this, i.e. the probability
that there are 8 ppm of sodium in the water, given the experimental data.

It is possible to attach probabilities to hypotheses by using a different approach,
called Bayesian statistics, named after an eighteenth-century clergyman, the
Reverend Thomas Bayes. Bayesian analysis starts by stating that can take different
possible values, each with an associated probability. It may seem strange that the
population mean, which must have a definite fixed value, should be treated in this
way, but the idea is to quantify our beliefs about . For the sodium in mineral water
example in the previous paragraph we might say that we think that lies some-
where in the interval 7 to 9 ppm and that all possible values in that range are equally
likely. Or we might postulate a more complicated distribution, for example a normal
distribution, for the possible values. The distribution that we postulate initially is
called the prior distribution. We can revise this distribution in the light of experi-
mental data using Bayes’ theorem, to find a posterior distribution for . Bayes’
theorem states that:

m

m

m

m

m

(3.14.1)
Posterior distribution r prior distribution * probability of observed values

where the symbol means ‘proportional to’. The application of this equation to
the sodium analysis is shown below.

r

Example 3.14.1

Measurements of the sodium concentration of a bottle of mineral water are
normally distributed with a standard deviation of 0.2 ppm (due to measure-
ment variation) and a mean which is unknown. A single measurement of the
sodium content yields the value x � 7.4 ppm. Find the posterior distribution
of , taking as a prior distribution that is uniformly distributed over the
interval 7–9 ppm.

Figure 3.9(a) shows the prior distribution of . The prior distribution of is
uniform so

where C is a constant.

prior distribution = C

mm

mm

m
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(b)

The probability of an observed value of x � 7.4 ppm is given by the equation for
the normal distribution (Eq. 2.2.1)

so

So from Eq. (3.14.1) we have

where 
This distribution is shown in Fig. 3.9(b). It is a normal distribution, truncated

at 7 (and 9). It combines our prior beliefs and the experimental value of 7.4
ppm to give a distribution that is no longer uniform, but peaks at 7.4 ppm as
the most likely value for . From this distribution we can calculate the probabil-
ity that lies in a certain interval, for example that ppm. This is given by
the area under the curve to the right of x � 8 in Fig. 3.9(b) as a fraction of the
total area under the curve.

m 7 8m

m

7 … m … 9.

Posterior distribution r C * exp3-(7.4 - m)2>2 * 0.224

Probability of an observed value of 7 .4 r exp3-(7.4 - m)2>2 * 0.224

y =

1

s22p
 exp3-(x - m)2>2s24
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Figure 3.9 Bayesian calculation: (a) the prior distribution and (b) the posterior
distribution.

The posterior distribution summarizes our current information about . It shows,
for example, that is much more likely to lie between 7 and 8 ppm than between 8
and 9 ppm. To refine our knowledge about we could obtain additional experimen-
tal data and, taking the posterior distribution as a new prior distribution, update it to
form a new posterior distribution of using Eq. (3.14.1). In our example a new
posterior distribution would be centred on the mean of the experimental values up
to that point, and its standard deviation would be where n is the number
of measurements. (Its calculation would involve the multiplication of two normal
distributions.)

The ability to calculate exact probabilities associated with values of (or other
population parameters), if necessary using an iterative approach as more data are
obtained, is an attractive feature of Bayesian statistics. However, the drawback is that
the choice of the prior distribution is subjective, so that two investigators using
Bayesian methods with the same data but different prior distributions might obtain

m

0.2>2n

m

m

m

m
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significantly different posterior distributions, and hence draw different conclusions.
This would make it difficult for scientists to compare and assess each other’s results.
Nonetheless Bayesian methods have been applied in such areas as the interpretation
of clinical trial data, comparisons of spectra and chromatograms, uncertainty esti-
mates, and in several applications of forensic methods, including the interpretation
of DNA databases. The use of Bayesian statistics has become more widespread as the
necessary computational processing power has become available to handle the
often-difficult calculations involved.
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Exercises

1 Use a normal probability plot to test whether the following set of data could
have been drawn from a normal population:

2 In order to evaluate a spectrophotometric method for the determination of tita-
nium, the method was applied to alloy samples containing different certified
amounts of titanium. The results (% Ti) are shown below.

10.65, 10.91, 10.32, 8.71, 9.83, 9.90, 10.40
11.68, 11.12, 8.92, 8.82, 10.31, 11.88, 9.84, 11.69, 9.53, 10.30, 9.17, 10.04,
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Sample Certified value Mean Standard deviation

1 0.496 0.482 0.0257
2 0.995 1.009 0.0248
3 1.493 1.505 0.0287
4 1.990 2.002 0.0212

Depth of sample (m) Water recovered, %

7 33.3 33.3 35.7 38.1 31.0 33.3
8 43.6 45.2 47.7 45.4 43.8 46.5
16 73.2 68.7 73.6 70.9 72.5 74.5
23 72.5 70.4 65.2 66.7 77.6 69.8

Show that the percentage of water recovered differs significantly at different
depths. Use the least significant difference method described in Section 3.9 to
find the causes of this significant result.

6 The following table gives the concentration of norepinephrine ( mol per gram
creatinine) in the urine of healthy volunteers in their early twenties.

m

Male 0.48 0.36 0.20 0.55 0.45 0.46 0.47 0.23

Female 0.35 0.37 0.27 0.29

(Yamaguchi, M., Ishida, J. and Yoshimura, M., 1998, Analyst, 123: 307)

For each alloy eight replicate determinations were made.

(Xing-chu, Q. and Ying-quen, Z., 1983, Analyst, 108: 641)

For each alloy, test whether the mean value differs significantly from the certi-
fied value.

3 For the data in Example 3.3.3, concerning the concentration of thiol in blood
lysate,

(a) verify that 2.07 is not an outlier for the ‘normal’ group;

(b) show that the variances of the two groups differ significantly.

4 The following data give the recovery of bromide from spiked samples of veg-
etable matter, measured using a gas–liquid chromatographic method. The same
amount of bromide was added to each specimen.

Tomato: 777 790 759 790 770 758 764 �

Cucumber: 782 773 778 765 789 797 782 �

(Roughan, J.A., Roughan, P.A. and Wilkins, J.P.G., 1983, Analyst, 108: 742)

(a) Test whether the recoveries from the two vegetables have variances which
differ significantly.

(b) Test whether the mean recovery rates differ significantly.

5 The following results show the percentage of the total available interstitial water
recovered by centrifuging samples taken at different depths in sandstone.

g g-1

g g-1

(Wheatstone, K.G. and Getsthorpe, D., 1982, Analyst, 107: 731)
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Is there any evidence that concentration of norepinephrine differs between the
sexes?

7 In reading a burette to 0.01 ml the final figure has to be estimated. The following
frequency table gives the final figures of 50 such readings. Carry out an appropri-
ate significance test to determine whether some digits are preferred to others.

8 The following table gives further results from the paper cited in Example 3.3.1
(Sahuquillo, A., Rubio, R. and Rauret, G., 1999, Analyst, 124: 1), in which the
results of the determination of chromium in organic materials were compared
for two different methods.

In each case the mean is the average of five values.

For each material test whether the mean results obtained by the two methods
differ significantly.

9 The data given in the example in Section 3.11 for the number of breakages by
four different workers are reproduced below:

Test whether

(a) the number of breakages by the first worker differs significantly from those
of the other three workers;

(b) the second, third and fourth workers differ significantly from each other in
carefulness.

10 A new flow injection analysis enzymatic procedure for determining hydrogen
peroxide in water was compared with a conventional method involving redox
titration with potassium permanganate by applying both methods to samples
of peroxide for pharmaceutical use. The table below gives the amount of hydro-
gen peroxide found in mg ml-1. Each value is the mean of four replicate
measurements.

24,  17,  11,  9

Digit 0 1 2 3 4 5 6 7 8 9

Frequency 1 6 4 5 3 11 2 8 3 7

Pine needles: Method 1 mean � 2.15 SD � 0.26
Method 2 mean � 2.45 SD � 0.14

Beech leaves: Method 1 mean � 5.12 SD � 0.80
Method 2 mean � 7.27 SD � 0.44

Aquatic plant: Method 1 mean � 23.08 SD � 2.63
Method 2 mean � 32.01 SD � 4.66

Sample no. Enzymatic method Permanganate method

1 31.1 32.6
2 29.6 31.0
3 31.0 30.3

(da Cruz Vieira, I. and Fatibello-Filho, O., 1998, Analyst, 123: 1809)

Test whether the results obtained by the two different methods differ significantly.
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Analyst Paracetamol content (% m/m)

A 84.32 84.51 84.63 84.61 84.64 84.51
B 84.24 84.25 84.41 84.13 84.00 84.30
C 84.29 84.40 84.68 84.28 84.40 84.36
D 84.14 84.22 84.02 84.48 84.27 84.33
E 84.50 83.88 84.49 83.91 84.11 84.06
F 84.70 84.17 84.11 84.36 84.61 83.81

(Trafford, A.D., Jee, R.D., Moffat, A.C. and Graham, P., 1999, Analyst, 124: 163)

11 Six analysts each made six determinations of the paracetamol content of the
same batch of tablets. The results are shown below:

Test whether there is any significant difference between the means obtained by
the six analysts.

12 The following figures refer to the concentration of albumin, in g l-1, in the
blood sera of 16 healthy adults:

(Foote, J.W. and Delves, H.T., 1983, Analyst, 108: 492)

The first eight figures are for men and the second eight for women. Test whether
the mean concentrations for men and women differ significantly.

13 A new flame atomic-absorption spectroscopic method of determining anti-
mony in the atmosphere was compared with the recommended calorimetric
method. For samples from an urban atmosphere the following results were
obtained:

37, 39, 37, 42, 39, 45, 42, 39, 44, 40, 39, 45, 47, 47, 43, 41

Antimony found (mg m�3)Sample no.

New method Standard method

1 22.2 25.0
2 19.2 19.5
3 15.7 16.6
4 20.4 21.3
5 19.6 20.7
6 15.7 16.8

(Castillo, J.R., Lanaja, J., Marinez, M.C. and Aznarez, J., 1982, Analyst, 107: 1488)

Do the results obtained by the two methods differ significantly?

14 For the situation described in Section 3.13
calculate the minimum size of sample required to make the proba-

bility of a Type I error and the probability of a Type II both equal to 0.01 at most.
s = 0.03%)

(H0:  m = 3.0%,  H1:  m = 3.05%,
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15 The concentrations (g 100 ml-1) of immunoglobulin G in the blood sera of
10 donors were measured by radial immunodiffusion (RID) with the following
results:

Use the Kolmogorov–Smirnov method to test the hypothesis that immunoglob-
ulin G levels in blood serum are normally distributed.

16 This question refers to Example 3.14.1. Three further measurements of the
sodium concentration in the mineral water are made, the results being 7.7, 7.3
and 7.7 ppm.

(a) Calculate the posterior distribution of from all the information available.

(b) Show that the probability that lies between 7.3 and 7.7 ppm is approxi-
mately 0.95.

m

m

Donor 1 2 3 4 5 6 7 8 9 10

RID result 1.3 1.5 0.7 0.9 1.0 1.1 0.8 1.8 0.4 1.3
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4.1 Introduction

Chapter 1 showed that in analytical science quantitative studies predominate, so
estimates of the inevitable errors are essential. The results of almost all analyses are
supplied to a customer or user, and these users must be satisfied as far as possible with
the quality – the fitness for purpose – of the measurements. This has important impli-
cations for analytical practice. First, any assessment of the measurement errors must
take into account the whole analytical process – including the sampling steps, which
often contribute to the overall error very significantly. Second, the performance of
the analyses undertaken in each laboratory must be checked internally on a regular
basis, usually by applying the methods to standard or reference materials. Third, in
many cases the results from different laboratories must be compared with each other,
so that the users can be satisfied that the performance of the laboratories meets statu-
tory, regulatory and other requirements. Finally, the analytical results must be sup-
plied with a realistic estimate of their uncertainty, i.e. the range within which the
true value of the quantity being measured should lie. These are the major topics
discussed in this chapter. The statistical methods used are often very simple, most of
them being based on techniques described in Chapters 2 and 3. But their regular
application has been a major advance in analytical sciences in recent years, with a

Major topics covered in this chapter
• Sampling

• Quality control

• Control charts

• Proficiency testing schemes

• Method performance studies

• Uncertainty

• Acceptance sampling

• Method validation

The quality of analytical
measurements
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large improvement in the quality and acceptability of many analytical results. Some
of the methods discussed here have broader applications. For example the principles
used to monitor the performance of a single analysis in a single laboratory over a
period of time can also be applied to the monitoring of an industrial process.

4.2 Sampling

In most analyses we rely on chemical samples to give us information about a whole
object. Unless the sampling stages of an analysis are considered carefully, the statis-
tical methods discussed in this book may be invalidated, as the samples studied may
not be properly representative of the whole object under study. For example it is not
possible to analyse all the water in a stream for a toxic pollutant, and it is not possi-
ble to analyse all the milk in a tanker lorry to see if it contains a prohibited steroid
hormone. Sometimes a small sample has to be used because the analytical method is
destructive, and we wish to preserve the remainder of the material. So in each case
the sample studied must be taken in a way that ensures as far as possible that it is
truly representative of the whole object.

To illustrate some aspects of sampling we can study the situation in which we have
a large batch of tablets and wish to obtain an estimate for the mean weight of a
tablet. Rather than weigh all the tablets, we take a few of them (say ten) and weigh
each one. In this example the batch of tablets forms the population and the ten
weighed tablets form a sample from this population (see Section 2.2). If the sample is
to be used to deduce the properties of the population, it must be what is known sta-
tistically as a random sample, i.e. a sample taken in such a way that all the members
of the population have an equal chance of inclusion. Only then will equations such
as Eq. (2.7.1), which gives the confidence limits of the mean, be valid. Note that the
term ‘random’ has, in the statistical sense, a different meaning from ‘haphazard’.
Although in practice an analyst might spread the tablets on a desk and attempt to
pick a sample of ten in a haphazard fashion, such a method could conceal an uncon-
scious bias. The best way to obtain a random sample is by the use of a random num-
ber table. Each member of the population is allocated a number in such a way that all
the numbers have an equal number of digits, e.g. 001, 002, 003. Random numbers
are then read off from a random number table (see Table A.8), starting at an arbitrary
point to give, for example, 964, 173, etc., and the corresponding members of the
population form the sample. An alternative (and much simpler) method which is
sometimes used is to select the population members at regular intervals, for example
to take every hundredth tablet off a production line. This is not wholly satisfactory,
however, since there might be a coinciding periodicity in the weight of the tablets.
The sampling method, which is not truly random, would then not reveal the true ex-
tent of the variations in weight. Similarly, if the last few tablets in the batch were taken
and there had been a gradual decrease in weight during its production, then this sam-
ple would give a wholly misleading value for the mean weight of the batch.

In the tablet example the population is made up of obvious discrete members
that are nominally the same. Sampling from materials for which this is not true,
such as rocks, powders, gases and liquids, is called bulk sampling. If a bulk material
were perfectly homogeneous, then only a small portion or test increment would
be needed to determine the properties of the bulk. In practice bulk materials are
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non-homogeneous for a variety of reasons. For example ores and sediments consist
of macroscopic particles with different compositions, and these may not be uniformly
distributed in the bulk. Fluids may be non-homogeneous on a molecular scale owing
to concentration gradients. Such inhomogeneity can be detected only by taking a
sample of test increments from different parts of the bulk. If possible this should be
done randomly by considering the bulk as a collection of cells of equal size and se-
lecting a sample of cells by using random numbers as described above.

From the random sample, the mean, , and variance, s2, can be calculated. There
are two contributions to s2: the sampling variance, , due to differences between
the members of the sample, e.g. the tablets having different weights, and the
measurement variance, , e.g. the random errors in weighing each tablet. The
next section describes how these two contributions can be separated and estimated
by using ANOVA. For bulk materials the sampling variance is dependent on the size
of the test increment relative to the scale of the inhomogeneities: as the test incre-
ment size increases, the inhomogeneities tend to be averaged out and so the sam-
pling variance decreases.

4.3 Separation and estimation of variances using ANOVA

Sections 3.8–3.10 described the use of one-way ANOVA to test for differences between
means when there was a possible variation due to a fixed-effect factor in addition to the
measurement error. We now consider the situation where the additional factor is a
random-effect factor, the sampling variation. In this case one-way ANOVA is used to sep-
arate and estimate the two sources of variation. Table 4.1 shows the results of the purity
testing of a barrelful of sodium chloride. Five sample increments, A–E, were taken from
different parts of the barrel chosen at random, and four replicate analyses were per-
formed on each sample. As noted above, there are two possible sources of variation:
that due to the random error in the measurement of purity, given by the measurement
variance, , and that due to real variations in the sodium chloride purity at different
points in the barrel, given by the sampling variance, . Since the within-sample mean
square does not depend on the sample mean (Section 3.9) it can be used to give an
estimate of . The between-sample mean square cannot be used to estimate directly,
because the between-sample variation is caused both by the random error in measure-
ment and by the possible variation in the purity. It can be shown that the between-
sample mean square gives an estimate of � n , where n is the number of replicate
measurements of each sample, in this case four. However, before an estimate of is
made, a test should be carried out to see whether it differs significantly from 0. This is

s2
1

s2
1s2

0

s2
1s2

0

s2
1

s2
0

s2
0

s2
1

x

Table 4.1 Purity testing of sodium chloride

Sample Purity (%) Mean

A 98.8, 98.7, 98.9, 98.8 98.8
B 99.3, 98.7, 98.8, 99.2 99.0
C 98.3, 98.5, 98.8, 98.8 98.6
D 98.0, 97.7, 97.4, 97.3 97.6
E 99.3, 99.4, 99.9, 99.4 99.5
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Sample A Sample B Sample C Sample D Sample E

98.8 99.3 98.3 98.0 99.3
98.7 98.7 98.5 97.7 99.4
98.9 98.8 98.8 97.4 99.9
98.8 99.2 98.8 97.3 99.4

One-Way Anova

SUMMARY

Groups Count Sum Average Variance

Sample A 4 395.2 98.8 0.006667
Sample B 4 396 99 0.086667
Sample C 4 394.4 98.6 0.06
Sample D 4 390.4 97.6 0.1
Sample E 4 398 99.5 0.073333

Source of Variation SS df MS F P-value F crit

Between-sample 7.84 4 1.96 30 5.34E-07 3.056
Within-sample 0.98 15 0.0653

Total 8.82 19

done by comparing the within- and between-sample mean squares: if they do not dif-
fer significantly then � 0 and both mean squares estimate .

The one-way ANOVA output from Excel® for this example is shown below. It
shows that the between sample mean square is greater than the within-sample mean
square: the F-test shows that this difference is very significant, i.e. does differ sig-
nificantly from 0. The within-sample mean square, 0.0653, is the estimate of , so
we can estimate using:s2

1

s2
0

s2
1

s2
0s2

1

4.4 Sampling strategy

If one analysis is made on each of the h sample increments (example above, Sec-
tion 4.3) then the confidence limits of the mean are given by Eq. (2.7.1):

(between sample mean square � within sample mean square)/n

� (1.96 � 0.0653)/4

� 0.47

s2
1 =

(4.4.1)m = x ; tn-1s/1h
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where is the mean of the h measurements and s2 is the variance of the measure-
ments. The total variance, , is estimated by s2 and is the sum of the measurement
and sampling variances, i.e. (see Section 2.11): σ2/h (estimated by s2/h) is
the variance of the mean, . If the value for each sample increment is the mean of n
replicate measurements, then the variance of the mean is

Obviously, for maximum precision, we require the variance of the mean to be
as small as possible. The term due to the measurement variance, can be re-
duced either by using a more precise method of analysis or by increasing n, the num-
ber of replicate measurements. However, there is no point in striving to make this
measurement variance much less than (say) a tenth of the sampling variance, as any
further reduction will not greatly improve the total variance, which is the sum of the
two variances. Instead it is preferable to take a larger number of sample increments,
since the confidence interval decreases with increasing h. If a preliminary sample
has been used to estimate s, then the sample size required to achieve a given size of
confidence interval can also be estimated (see Chapter 2, Exercise 4).

A possible sampling strategy with bulk material is to take h sample increments
and blend them before making n replicate measurements. The variance of the mean
of these replicate measurements is This total variance should be com-
pared with that when each sample increment is analysed n times and the increment
means are averaged, the variance then being (see above). Obviously
the latter variance is the smaller, resulting in greater precision of the mean, but more
measurements (nh against h) are required. Knowledge of the values of and 
from previous experience, and the costs of sampling and analysis, can be used to cal-
culate the relative costs of these sampling strategies. Improving the precision of the
measurements to an unnecessary extent by increasing n and/or h will incur greater
costs in terms of time, equipment use, etc., so in general the most economical
scheme to give the required degree of precision will be used.

For bulk materials the sampling variance depends on the size of the sample incre-
ment relative to the scale of the inhomogeneities and decreases with increasing sam-
ple increment size. In some experiments it may be necessary to set an upper limit on
the sampling variance so that changes in the mean can be detected. Preliminary
measurements can be made to decide the minimum sample increment size required
to give an acceptable level of sampling variance.

The heterogeneity of many materials encountered in analytical practice, and
therefore the importance of using suitable sampling protocols, is closely related to
the important topic of sampling uncertainty, which is considered in more detail in
Section 4.13.

4.5 Introduction to quality control methods

If a laboratory is to produce analytical results of a quality that is acceptable to its
clients, and allow it to perform well in proficiency tests or method performance
studies (see below), it is obviously essential that its results should show excellent
consistency from day to day. Checking for such consistency is complicated by
the inevitable occurrence of random errors, so several statistical techniques have
been developed to show whether or not time-dependent trends are occurring in
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the results, alongside the random errors. These are referred to as quality control
methods.

Suppose that a laboratory uses a chromatographic method for determining the
level of a pesticide in fruits. The results may be used to determine whether a large
batch of fruit is acceptable or not, and their quality is thus of great importance. The
performance of the method will be checked at regular intervals by applying it, with
a small number of replicate analyses, to a standard reference material (SRM), in
which the pesticide level is certified by a regulatory authority. Alternatively an inter-
nal quality control (IQC) standard of known composition and high stability can
be used. The SRM or IQC standard will probably be inserted at random into the
sequence of materials analysed by the laboratory, so that the IQC materials are not
separately identified to the laboratory staff, and are studied using exactly the same
procedures as the routine samples. The known concentration of the pesticide in 
the SRM/IQC materials is the target value for the analysis, . The laboratory needs
to be able to stop and examine the analytical method quickly if it seems to be giving
erroneous results. On the other hand, time and other resources will be wasted if the
analyses are halted unnecessarily, so the quality control methods should allow their
continued use as long as they are working satisfactorily. If the values for the IQC
samples do not show significant time-dependent trends, and if the random errors in
the measurements are not too large, the analytical process is said to be under control
or in control.

Quality control methods are also very widely used to monitor industrial processes.
Again it is important to stop a process if its output falls outside certain limits, but it
is equally important not to stop the process if it is working well. For example, the
weights of pharmaceutical tablets coming off a production line can be monitored by
taking small samples of tablets from time to time. The tablet weights are bound to
fluctuate around the target value because of random errors, but if these random
errors are not too large, and are not accompanied by time-dependent trends, the
process is under control.

4.6 Shewhart charts for mean values

In Chapter 2 we showed how the mean, , of a sample of measurements could be
used to provide an estimate of the population mean, , and how the sample stan-
dard deviation, s, provided an estimate of the population standard deviation, . For
a small sample size, n, the confidence limits of the mean are normally given by
Eq. (2.7.1), with the t-value chosen according to the number of degrees of freedom,
(n � 1), and the confidence level required. Similar principles can be applied to qual-
ity control work, but with one important difference. Over a long period, the
population standard deviation, , of the pesticide level in the fruit (or, in the second
example above, of the tablet weights), will become known from experience. In qual-
ity control work, is called the process capability. Equation (2.7.1) can be replaced
by Eq. (2.6.3) with the estimate s replaced by the known . In practice z � 1.96 is
often rounded to 2 for 95% confidence limits and z � 2.97 is rounded to 3 for 99.7%
confidence limits.
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These equations are used in the construction of the most common type of control
chart, a Shewhart chart (Fig. 4.1). The vertical axis of a Shewhart chart displays the
process mean, , of the measured values, e.g. of the pesticide concentration in the
fruit, and the horizontal axis is a time axis, so that the variation of these values
with time can be plotted. The target value, , is marked by a horizontal line. The
chart also includes two further pairs of horizontal lines. The lines at are
called the warning lines, and those at are called the action lines. 
The purpose of these lines is indicated by their names. Suppose a measured value
falls outside the action lines. The probability of such a result when the process is
under control is known to be only 0.3%, i.e. 0.003, so in practice the process is usu-
ally stopped and examined if this occurs. There is a probability of ca. 5% (0.05) of a
single point falling outside either warning line (but within the action lines) while the
process remains in control. This alone would not cause the process to be stopped, but
if two successive points fall outside the same warning line, the probability of such an
occurrence ( in total for both warning lines) is again so
low that the process is judged to be out of control. These two criteria – one point out-
side the action lines, or two successive points outside the same warning line – are the

p = 0.0252
* 2 = 0.00125
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Figure 4.1 Shewhart chart for mean values.
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ones most commonly applied in the interpretation of Shewhart charts. Others are
often used in addition: for example the probability of eight successive points lying
on one specific side of the target value line is clearly low, i.e. , and
such an occurrence again suggests that the process is out of control. A process might
also be stopped in cases where the plotted values show a trend (e.g. six increasing
or decreasing points in succession, even if the points are within the warning lines),
or where they seem to oscillate (e.g. 14 successive points, alternating up and down).
Users of control charts must establish clearly all the criteria to be used in declaring
their own particular process out of control.

4.7 Shewhart charts for ranges

If a Shewhart chart for mean values suggests that a process is out of control, there
are two possible explanations. The most obvious is that the process mean has
changed: detecting such changes is the main reason for using control charts which
plot values. An alternative explanation is that the process mean has remained
unchanged but that the variation in the process has increased. This means that the
action and warning lines are too close together, giving rise to indications that
changes in have occurred when in fact they have not. Errors of the opposite kind
are also possible. If the variability of the process has diminished (i.e. improved), then
the action and warning lines will be too far apart, perhaps allowing real changes in

to go undetected. Clearly we must monitor the variability of the process as well
as its mean value. This monitoring has its own intrinsic value: the variability of a
process or an analysis is a measure of its quality, and in the laboratory situation is
directly linked to the repeatability (within-laboratory precision) of the method (cf.
Chapter 1).

The variability of a process can be displayed by plotting another Shewhart chart
to display the range, R (� highest value – lowest value), of each of the samples
taken. A typical control chart for the range is shown in Fig. 4.2. The general format
of the chart is the same as for the mean values, with a line representing the target
value and pairs of action and warning lines. The most striking difference between
the two charts is that these pairs of lines are not symmetrical with respect to the tar-
get value for the range, . The value of can be calculated using the value of , and
the positions of the action and warning lines can be derived from , using multiply-
ing factors obtained from statistical tables. These factors take values depending on
the sample size, n. The relevant equations are:
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Figure 4.2 Shewhart chart for range.

Range

Time

Upper action line: Ra2

Upper warning line: Rw2

Target value: R

Lower warning line: Rw1

Lower action line: Ra1

Example 4.7.1

Determine the characteristics of the mean and range control charts for a
process in which the target value is 57, the process capability is 5, and the sam-
ple size is 4.

For the control chart on which mean values will be plotted, the calculation is
simple. From Eq. (4.6.1) the warning lines will be at i.e. at

and from Eq. (4.6.2) the action lines will be at i.e. at
This chart is shown in Fig. 4.3(a).

For the control chart on which ranges are plotted, we must first calculate
using Eq. (4.7.1). This gives , where the d1 value of 2.059
is taken from statistical tables for n � 4. (See for example the table in the collec-
tion by Neave, the details of which are given in the Bibliography for Chapter 1.)
The value of is then used to determine the lower and upper warning and
action lines using Eqs (4.7.2)–(4.7.5). The values of w1, w2, a1 and a2 for n � 4
are 0.29, 1.94, 0.10, and 2.58 respectively, giving on multiplication by 10.29 posi-
tions for the four lines of 2.98, 19.96, 1.03 and 26.55 respectively. These lines
are shown in Fig. 4.3(b).

R

R = 5 * 2.059 = 10.29
R

57 ; 7.5.
57 ; 3 * 5>14,57 ; 5;
57 ; 2 * 5>14,

It is not always the practice to plot the lower action and warning lines on a control
chart for the range, as a reduction in the range is not normally a cause for concern.
However, the variability of a process is one measure of its quality, and a reduction in

represents an improvement in the process capability; if this is not detected andR
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Figure 4.3 (a) Shewhart chart for mean values (example). (b) Shewhart chart for range
(example).

acted upon, real changes in might go undetected, as previously noted. So plotting
both sets of warning and action lines is recommended.

4.8 Establishing the process capability

In the previous section we showed that, if the process capability, , is known, it is
possible to construct control charts for both the sample mean and the sample range.
Using these charts we can distinguish the situation where a process has gone out of
control through a shift in the process mean from the one where the mean is
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unchanged but an undesirable increase in the variability of the process has occurred.
The establishment of a proper value for is therefore very important, and such a
value should be based on a substantial number of measurements. But in making
such measurements the same problem – distinguishing a change in the process
mean from a change in the process variability – must be faced. If is calculated
directly from a long sequence of measurements, its value may be overestimated by
any changes in the mean that occur during that sequence, so proper control charts
could not then be plotted.

The solution to this problem is to take a large number of small samples, measure
the range, R, for each, and thus determine . This procedure ensures that only the
inherent variability of the process is measured, any drift in the mean values being
eliminated. The -value can then be used with Eqs (4.7.2)–(4.7.5) to determine the
action and warning lines for the range control chart. The warning and action lines
for the control chart for the mean can be determined by calculating using 
Eq. (4.7.1), and then applying Eqs (4.6.1) and (4.6.2). In practice this two-stage cal-
culation is unnecessary, as most statistical tables provide values of W and A, which
give the positions of the warning and action lines for the mean directly from:

s

R

R

s

s

These methods are illustrated by the following example.

Warning lines at (4.8.1)

Action lines at (4.8.2)x ; AR

x ; WR

Example 4.8.1

An internal quality control standard with an analyte concentration of 50mg kg-1

is analysed in a laboratory for 25 consecutive days, the sample size being four
on each day. The results are given in Table 4.2, which is in the form of an
Excel® spreadsheet. Determine the value of and hence plot control charts for
the mean and range of the laboratory analyses.

When the results are studied there is some evidence that over the 25-day
period the sample means are drifting up and down. All the sample means from
days 3–15 inclusive are greater than the target value of 50, whereas four of the
next six means are below the target value, and the last four are all above it.
These are the circumstances in which it is important to estimate using the
method described above. Using the R-values in the last column of data, is
found to be 4.31. Application of Eq. (4.7.1) estimates as 4.31/2.059 � 2.09.
Table 4.2 also shows that the standard deviation of the 100 measurements,
treated as a single sample, is 2.43: because of the drifts in the mean this would
be a significant overestimate of .

The control chart for the mean is then plotted with the aid of Eqs (4.8.1)
and (4.8.2), with W � 0.4760, A � 0.7505, showing that the warning and
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action lines are at and respectively. Figure 4.4 is the
Excel® control chart, which shows that the process mean is not under control,
since several of the points fall outside the upper action line. Similarly, 
Eqs (4.7.2)–(4.7.5) show that in the control chart for the range the warning
lines are at 1.24 and 8.32 and the action lines are at 0.42 and 11.09. Excel®

does not automatically produce control charts for ranges, though it does gen-
erate charts for standard deviations, which in some cases are used instead of
range charts. However, with one exception, the range values in the last column
of Table 4.2 all lie within the warning lines, indicating that the process vari-
ability is under control.

Minitab® can be used to produce Shewhart charts for the mean and the
range. The program calculates the value of directly from the data. Figure 4.5
shows the charts for the data in Table 4.2. Minitab® (like some texts) calculates
the warning and action lines for the range by approximating the asymmetrical
distribution of by a normal distribution. This is why the positions of the lines
differ from those calculated above using Eqs (4.8.1) and (4.8.2).

R

R

50 ; 3.2350 ; 2.05

Table 4.2 Excel® Spreadsheet (example)

Sample Number Sample Values Chart Mean Range

1 2 3 4

1 48.8 50.8 51.3 47.9 49.70 3.4
2 48.6 50.6 49.3 50.3 49.70 2.0
3 48.2 51.0 49.3 52.1 50.15 3.9
4 54.8 54.6 50.7 53.9 53.50 4.1
5 49.6 54.2 48.3 50.5 50.65 5.9
6 54.8 54.8 52.3 52.5 53.60 2.5
7 49.0 49.4 52.3 51.3 50.50 3.3
8 52.0 49.4 49.7 53.9 51.25 4.5
9 51.0 52.8 49.7 50.5 51.00 3.1
10 51.2 53.4 52.3 50.3 51.80 3.1
11 52.0 54.2 49.9 57.1 53.30 7.2
12 54.6 53.8 51.5 47.9 51.95 6.7
13 52.0 51.7 53.7 56.8 53.55 5.1
14 50.6 50.9 53.9 56.0 52.85 5.4
15 54.2 54.9 52.7 52.2 53.50 2.7
16 48.0 50.3 47.5 53.4 49.80 5.9
17 47.8 51.9 54.3 49.4 50.85 6.5
18 49.4 46.5 47.7 50.8 48.60 4.3
19 48.0 52.5 47.9 53.0 50.35 5.1
20 48.8 47.7 50.5 52.2 49.80 4.5
21 46.6 48.9 50.1 47.4 48.25 3.5
22 54.6 51.1 51.5 54.6 52.95 3.5
23 52.2 52.5 52.9 51.8 52.35 1.1
24 50.8 51.6 49.1 52.3 50.95 3.2
25 53.0 46.6 53.9 48.1 50.40 7.3

s.d. = 2.43 Mean = 4.31
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4.9 Average run length: CUSUM charts

An important property of a control chart is the speed with which it detects that a
change in the process mean has occurred. The average number of measurements
necessary to detect any particular change in the process mean is called the average
run length (ARL). Since the positions of the action and warning lines on a Shewhart
chart for the process mean depend on the value of , the ARL for that chart will
depend on the size of the change in the mean compared with . A larger change
will be detected more rapidly than a smaller one, and the ARL will be reduced by
using a larger sample size, n. It may be shown that if a change equal to 1
occurs, then the ARL is about 50 if only the action line criterion is used, i.e. about 
50 samples will be measured before a value falls outside the action lines. If the
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Figure 4.4 Shewhart chart for means (Table 4.2 example data).
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Figure 4.5 Shewhart charts for means and range produced using Minitab®. The abbreviation
‘3SL’, for example, means three standard deviation control limits.
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process is also stopped if two consecutive measurements fall outside the same warn-
ing line, then the ARL falls to ca. 25. These values are quite large: for example it
would be serious if a laboratory continued a pesticide analysis for 25 days before
noticing that the procedure had developed a systematic error. This represents a sig-
nificant disadvantage of Shewhart charts. An example of the problem is shown in
Table 4.3, a series of measurements for which the target value is 80, and is 2.5.
When the sample means are plotted on a Shewhart chart (Fig. 4.6) it is clear that
from about the seventh observation onwards a change in the process mean may well
have occurred, but all the points remain on or inside the warning lines. (Only the
lower warning and action lines are shown in the figure.)

The ARL can be reduced significantly by using a different type of control chart, a
CUSUM (cumulative sum) chart. This approach is again illustrated by the data in
Table 4.3. The calculation of the CUSUM is shown in the last two columns of the
table, which show that the sum of the deviations of the sample means from the tar-
get value is carried forward cumulatively, careful attention being paid to the signs of
the deviations. If a manufacturing or analytical process is under control, positive

s>1n

Table 4.3 Example data for CUSUM calculation

Observation Sample Sample mean � CUSUM
number mean target value

1 82 2 2
2 79 -1 1
3 80 0 1
4 78 -2 -1
5 82 2 1
6 79 -1 0
7 80 0 0
8 79 -1 -1
9 78 -2 -3

10 80 0 -3
11 76 -4 -7
12 77 -3 -10
13 76 -4 -14
14 76 -4 -14
15 75 -5 -23
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Figure 4.6 Shewhart chart for Table 4.3 data.
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Figure 4.8 Use of a V-mask with the process (a) in control and (b) out of control.

and negative deviations from the target value are equally likely and the CUSUM
should oscillate about zero. If the process mean changes the CUSUM will move away
from zero. In the example given, the process mean seems to fall after the seventh
observation, so the CUSUM becomes more and more negative. The resulting control
chart is shown in Fig. 4.7.

Proper interpretation of CUSUM charts, to show that a genuine change in the
process mean has occurred, requires a V-mask. The mask is engraved on a transpar-
ent plastic sheet, and is placed over the control chart with its axis of symmetry hor-
izontal and its apex a distance, d, to the right of the last observation (Fig. 4.8). If all
the points on the chart lie within the arms of the V, then the process is in control
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Figure 4.7 CUSUM chart for Table 4.3 data.



 

Zone control charts (J-charts) 89

(Fig. 4.8a). The mask is also characterised by tan , the tangent of the semi-angle, ,
between the arms of the V. Values of d and tan are chosen so that significant
changes in the process mean are detected quickly, but false alarms are few. The unit
of d is the distance between successive observations. The value of tan used clearly
depends on the relative scales of the two axes on the chart: a commonly used con-
vention is to make the distance between successive observations on the x-axis equal
to 2 on the y-axis. Using this convention a V-mask with d � 5 units and tan �

0.35 gives an ARL of 10 if the process mean changes by 1 and only 4 if the
change is 2 . The ARL for a zero change in process mean, i.e. before a false alarm
occurs, is ca. 350.

The corresponding figures for a Shewhart chart are ca. 25 (for a change in the
mean of 1 ) and 320, so it is clear that the CUSUM chart is superior in both re-
spects. The ARL provided by the CUSUM chart can be reduced to about 8 (for a
change of 1 ) by using , but inevitably the chance of a false alarm
is then also increased, occurring once in ca. 120 observations.

In summary CUSUM charts have the advantage that they react more quickly than
Shewhart charts to a change in the process mean (as Fig. 4.7 clearly shows), without
increasing the chances of a false alarm. Moreover, the point of the slope change in a
CUSUM chart indicates the point where the process mean has changed, and the
value of the slope indicates the size of the change. Naturally, if a CUSUM chart sug-
gests that a change in the process mean has occurred, we must also test for possible
changes in . This can be done using a Shewhart chart, but CUSUM charts for ranges
can also be plotted.

4.10 Zone control charts (J-charts)

The zone control chart (also known as the J-chart) is a control chart for the mean
that combines features of the Shewart chart and the CUSUM chart. It is simple to
use, but effective. First it is necessary to establish a value for , as was done in Exam-
ple 4.7.1. Then the chart is set up with horizontal lines at the target value, , and at

and . These horizontal lines divide the chart
into bands, or ‘zones’, of equal width, as shown in Fig. 4.9. This figure shows a zone
control chart for the data in Table 4.2 (Example 4.8.1) obtained using Minitab®. At
the right-hand side of the chart the horizontal lines are labelled with the values of ,

and , where , and .
The sample means are plotted as circles in the appropriate zone and have been
joined with straight lines. The chart thus looks similar to the Shewart chart in Fig. 4.4.
However, the sample means are also assigned scores, dependent on the zone in which
they fall. These scores are indicated on the left-hand side of the chart. For example,
a mean between and is assigned a score of 4.

The sample mean for the first sample scores 0, and this value has been written
in its circle on the chart. As each sample mean is obtained it is assigned a score and
the scores are added cumulatively. The total score is then written in the appropriate
circle on the chart. The next two samples (2 and 3) each contribute 0 to the total.
Sample number 4 contributes 8. Sample number 5 contributes 0, leaving the total
at 8. Sample number 6 contributes 8, making a total of 16. This procedure is

m - 3(s>1n)m - 2(s>1n)

n = 4s = 2.09m = 50m ; 3(s>1n)m ; 2(s>1n)m ; (s>1n),
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Figure 4.9 Zone control chart for the data in Table 4.2 produced using Minitab®.

continued until an observation falls on the opposite side of the centre line from
the previous one, when the total is reset to 0. For example the total is reset for
sample number 16.

The total performs the same function as the CUSUM. When the process is under
control the total stays close to zero. However, a change in the process mean will
result in a run of values on one side of the target value and a corresponding increase
in the total. The system is deemed to be out of control if the total score equals or
exceeds 8. The zone control chart in Fig. 4.9 confirms the suspicions aroused in
Example 4.8.1 that the process mean is not under control. The zone chart suggests
that the process mean has drifted upwards at sample 4. At sample 16 it has returned
to the target value but then goes up again at sample 23.

It is also possible to set up a zone chart for single measurements, rather than
for the means of replicates. Even if replicate measurements are not made, it is still
possible to obtain an estimate of from the average range, . This is achieved
by treating each successive pair of measurements as a sample, size 2. Taking succes-
sive pairs of measurements ensures that, as is required (see Section 4.8), the effect
of any drift in the process mean is minimised. Considering only the values in col-
umn 1 of Table 4.2 (i.e. assuming that no replicate measurements are made), the
first and second measurements (48.4, 48.6) have a range of 0.2, the second and
third measurements (48.6, 48.2) have a range of 0.4, the third and fourth measure-
ments (48.2, 54.8) have a range of 6.6, and so on. The sum of these ranges is 65 so

� 65/24 � 2.708. (Note that although there are 25 values, there are only 24 dif-
ferences.) Then from Eq. (4.7.1), where the d1 value is taken
from statistical tables for n = 2. The zones for single measurements are then
formed by drawing lines at , , and .

A number of ISO publications deal with control charts. References in this area are
given in the Bibliography at the end of this chapter.

m ; 3sm ; 2sm ; sm

s = R>1.1284 = 2.40,
R

Rs
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4.11 Proficiency testing schemes

The quality of analytical measurements is enhanced by two types of testing scheme, in
each of which a number of laboratories might participate simultaneously. The more
common are proficiency testing (PT) schemes, in which aliquots from homogeneous
materials are circulated to a number of laboratories for analysis at regular intervals
(every few weeks or months), and the resulting data are reported to a central organiser.
The circulated material is designed to resemble as closely as possible the samples nor-
mally submitted for analysis in the relevant field of application, and each laboratory
analyses its portion using its own usual method. The results of all the analyses are circu-
lated to all the participants, who thus gain information on how their measurements
compare with those of others, how their own measurements improve or deteriorate
with time, and how their own measurements compare with an external quality stan-
dard. In short, the aim of such schemes is the evaluation of the competence of analyti-
cal laboratories. PT schemes have now been developed for use in a wide range of
application fields, including several areas of clinical chemistry, the analysis of water
and various types of food and drink, forensic analysis, and so on. Experience shows
that in such schemes widely divergent results will arise, even between experienced and
well-equipped and well-staffed laboratories. In one of the commonest of clinical analy-
ses, the determination of blood glucose at the mM level, most of the results obtained
for a single blood sample approximated to a normal distribution with values between
9.5 and 12.5 mM, in itself a not inconsiderable range. But the complete range of results
was from 6.0 to 14.5 mM, i.e. some laboratories obtained values almost 2.5 times those
of others. The worrying implications of this discrepancy in clinical diagnosis are
obvious. In more difficult areas of analysis the results can be so divergent that there is
no real consensus between different laboratories. The importance of PT schemes in
highlighting such alarming differences, and in helping to minimise them by encour-
aging laboratories to compare their performance, is very clear, and they have unques-
tionably helped to improve the quality of analytical results in many fields. Here we are
concerned only with the statistical evaluation of the design and results of such
schemes, and not with the administrative details of their organisation. Of particular
importance are the methods of assessing participants’ performance, and the need to
ensure that the circulated aliquots are taken from a homogeneous bulk sample.

The recommended method for verifying homogeneity of the sample involves tak-
ing portions of the test material at random, separately homogenising them if
necessary, taking two test samples from each portion, and analysing the 2n portions
by a method whose standard deviation under repeatability conditions is not more
than 30% of the target standard deviation (i.e. the expected reproducibility, see
below) of the proficiency test. If the homogeneity is satisfactory, one-way analysis of
variance should then show that the between sample mean square is not significantly
greater than the within-sample mean square (see Section 4.3).

The results obtained by the laboratories participating in a PT scheme are most
commonly expressed as z-scores, where z is given by (see Section 2.2):

n Ú 10

(4.11.1)z =

x - xa

s
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In this equation the x-value is the result obtained by a single laboratory for a given
analysis, xa is the assigned value for the level of the analyte, and is the target value
for the standard deviation of the test results. The assigned value xa can be obtained by
using a certified reference material (CRM), if one is available and suitable for distribu-
tion. If this is not feasible, the relevant ISO standard (which also provides many nu-
merical examples – see Bibliography) recommends three other possible approaches. In
order of decreasing rigour these are (i) a reference value obtained from one laboratory,
by comparing random samples of the test material against a CRM; (ii) a consensus
value obtained by analysis of random samples of the test material by expert laborato-
ries; and (iii) a consensus value obtained from all the participants in a given round of
the scheme. This last situation is of interest since, when many laboratories participate
in a given PT scheme, there are bound to be a number of suspect results or outliers in
an individual test. (Although many PT schemes provide samples and reporting facili-
ties for more than one analyte, experience shows that a laboratory that scores well in
one specific analysis does not necessarily score well in others.) This problem is over-
come by the use of either the median, which is especially recommended for small data
sets (n � 10), a robust mean, or the mid-point of the inter-quartile range. All these mea-
sures of location avoid or address the effects of dubious results (see Chapter 6). It is
also recommended that the uncertainty of the assigned value is reported to partici-
pants in the PT scheme. This also may be obtained from the results from expert labo-
ratories: estimating uncertainty is covered in more detail below (Section 4.13).

The target value for the standard deviation, , should be circulated in advance to
the PT scheme participants along with a summary of the method by which it has been
established. It will vary with analyte concentration, and one approach to estimating it
is to use a functional relationship between concentration and standard deviation. The
best known relationship is the Horwitz trumpet, dating from 1982, so-called because
of its shape. Using many results from collaborative trials, Horwitz showed that the rel-
ative standard deviation of a method varied with the concentration, c as a mass ratio
(e.g. mg g-1 � 0.001), according to the approximate and empirical equation:

(4.11.2)

This equation leads to the trumpet-shaped curve shown in Fig. 4.10, which can be
used to derive target values of for any analysis. Such values can also be estimated
from prior knowledge of the standard deviations usually achieved in the analysis in
question. Another approach uses fitness for purpose criteria: if the results of the
analysis, used routinely, require a certain precision for the data to be interpreted
properly and usefully, or to fulfil a legislative requirement, that precision provides
the largest (worst) acceptable value of . It is poor practice to estimate from the
results of previous rounds of the PT scheme itself, as this would conceal any improve-
ment or deterioration in the quality of the results with time.

The results of a single round of a PT scheme are frequently summarised as shown
in Fig. 4.11. If the results follow a normal distribution with mean xa and standard de-
viation , the z-scores will be a sample from the standard normal distribution, i.e. a
normal distribution with mean zero and variance 1. Thus a laboratory with a �z� value
of �2 is generally regarded as having performed satisfactorily, a �z� value between
2 and 3 is questionable, and �z� values �3 are unacceptable. Of course even the labora-
tories with satisfactory scores will strive to improve their values in the subsequent

s

ss

ss

RSD = ; 2(1-0.5 log c)

s

s
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rounds of the PT scheme. In practice it is not uncommon to find ‘heavy-tailed’ distri-
butions, i.e. more results than expected with �z� �2.

Some value has been attached to methods of combining z-scores. For example the
results of one laboratory in a single PT scheme over a single year might be combined
(though this would mask any improvement or deterioration in performance over
the year). If the same analytical method is applied to different concentrations of the
same analyte in each round of the same PT scheme, again a composite score might
have limited value. Two functions used for this purpose are the re-scaled sum of z-
scores (RSZ), and the sum of squared z-scores (SSZ), given by RSZ = and
SSZ = respectively. Each of these functions has disadvantages, and the use of
combined z-scores is not to be recommended. In particular, combining scores from
the results of different analyses is dangerous, as very high and very low z-scores
might then cancel out to give a falsely optimistic result.
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4.12 Method performance studies (collaborative trials)

Proficiency testing schemes allow the competence of laboratories to be monitored,
compared and perhaps improved. By contrast a method performance study or
collaborative trial aims to evaluate the precision of an analytical method, and some-
times its ability to provide results free from bias. It is normally a one-off experiment
involving expert or competent laboratories, all of which by definition use the same
technique.

A crucial preliminary experiment is the ruggedness test. As we saw in Chapter 1,
even very simple analytical experiments involve several individual steps and per-
haps the use of a number of reagents. Thus many experimental factors (e.g. temper-
ature, solvent composition, pH, humidity, reagent purity and concentration) will
affect the results, and it is essential that such factors are identified and studied before
any collaborative trial is undertaken. In some cases a method is found to be so sensi-
tive to small changes in one factor that is extremely difficult to control (e.g. very
high reagent purity) that the method is rejected as impracticable before the perfor-
mance study takes place. In other instances the study will continue, but the collabo-
rators will be warned of the factors to be most carefully controlled. Although a more
complete discussion of experimental design is deferred to Chapter 7, we can show
here that much information on the most important factors can be obtained from a
relatively small number of experiments. Suppose it is believed that seven experimen-
tal factors (A–G) might affect the results of an analysis. These factors must be tested
at (at least) two values, called levels, to see whether they are really significant. Thus,
if temperature is thought to affect the result, we must perform preliminary experi-
ments at two temperatures (levels) and compare the outcomes. Similarly, if reagent
purity may be important, experiments with high purity and lower purity reagent
batches must be done. It might seem that 27 preliminary experiments, covering all the
possible combinations of seven factors at two levels, will be necessary. In practice,
however, just eight experiments can provide important information. The two levels
of the factors are called � and -, and Table 4.4 shows how these levels are set in the
eight experiments, the results of which are , , . . . , The effect of altering each
factor from its high to its low level is easily calculated. Thus the effect of changing B
from � to - is (y1 � y2 � y5 � y6)/4 - (y3 � y4 � y7 � y8)/4.

y8.y2y1

Table 4.4 Ruggedness test for seven factors

Experiment Factors Result

A B C D E F G

1 + + + + + + + y1
2 + + - + - - - y2
3 + - + - + - - y3
4 + - - - - + + y4
5 - + + - - + - y5
6 - + - - + - + y6
7 - - + + - - + y7
8 - - - + + + - y8
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When the seven differences for factors A–G have all been calculated in this way, it
is easy to identify any factors that have a worryingly large effect on the results. It
may be shown that any difference that is more than twice the standard deviation of
replicate measurements is significant and should be further studied. This simple set
of experiments, technically known as an incomplete factorial design, has the dis-
advantage that interactions between the factors cannot be detected. This point is fur-
ther discussed in Chapter 7.

In recent years international bodies have moved towards an agreement on how
method performance studies should be conducted. At least eight laboratories 
should be involved. Since the precision of a method usually depends on the analyte
concentration it should be applied to at least five different levels of analyte in the
same sample matrix with duplicate measurements (n � 2) at each level. A crucial re-
quirement of such a study is that it should distinguish between the repeatability stan-
dard deviation, sr, and the reproducibility standard deviation, sR. At each analyte
level these are related by the equation:

Ak Ú 8 B

(4.12.2)C =

w2
 max 

a
j

w2
j

(4.12.1)s2
R = s2

r + s2
L

where j takes values from 1 to k, the number of participating laboratories. The value
of C obtained is compared with the critical values in Table A.15, and the null
hypothesis, i.e. that the largest variance is not an outlier, is rejected if the critical
value at the appropriate value of k is exceeded. When the null hypothesis is rejected,
the results from the laboratory in question are discarded.

where is the variance due to inter-laboratory differences, which reflect different
degrees of bias in different laboratories. Note that in this particular context, repro-
ducibility refers to errors arising in different laboratories and equipment, but using the
same analytical method: this is a more restricted definition of reproducibility than
that used in other instances. As we saw in Section 4.3, one-way ANOVA can be applied
(with separate calculations at each at each concentration level used in the study) to
separate the sources of variance in Eq. (4.12.1). However, the proper use of the equa-
tion involves two assumptions: (1) that at each concentration level the means
obtained in different laboratories are normally distributed; and (2) that at each con-
centration the repeatability variance among laboratories is equal. Both these assump-
tions are tested using standard methods before the ANOVA calculations begin. In
practice the second assumption, that of homogeneity of variance, is tested first using
Cochran’s test. Strictly speaking this test is designed to detect outlying variances
rather than testing for homogeneity of variance as a whole, but other more rigorous
methods for the latter purpose are also more complex. Cochran’s test calculates C by
comparing the largest range, wmax (i.e. difference between the two results from a single
laboratory) with the sum of such ranges, wj, from all the laboratories (if variances
rather than ranges are compared, but here we assume that each participating labora-
tory makes just two measurements at each level):

n 7 2

sL
2
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The first assumption is then tested using Grubbs’ test (Section 3.7) which is applied
first as a test for single outliers, and then (because each laboratory makes duplicate
measurements) in a modified form as a test for paired outliers. In both cases all the
results from laboratories producing outlying results are again dropped from the trial
unless this would result in the loss of too much data. When these outlier tests are
complete, the ANOVA calculation can proceed as in Section 4.3.

In many circumstances it is not possible to carry out a full method performance
study as described above, for example when the test materials are not available with
a suitable range of analyte concentrations. In such cases a simpler system can be
used. This is the Youden matched pairs or two-sample method, in which each par-
ticipating laboratory is sent two materials of similar composition, X and Y, and asked
to make one determination on each. The results are plotted as shown in Fig. 4.12,
each point on the plot representing a pair of results from one laboratory. The mean
values for the two materials, and , are also determined, and vertical and horizon-
tal lines are drawn through the point ( ), thus dividing the chart into four quad-
rants. This plot allows us to assess the occurrence of random errors and bias in the
study. If only random errors occur the X and Y determinations may give results
which are both too high, both too low, X high and Y low, or X low and Y high. These
four outcomes would be equally likely, and the number of points in each of the
quadrants would be roughly equal. But if a systematic error occurs in a laboratory, it
is likely that its results for both X and Y will be high, or both will be low. So if sys-
tematic errors dominate, most of the points will be in the top-right and bottom-left
quadrants. This is indeed the result that is obtained in most cases. In the impossible
event that random errors were absent, all the results would lie on a line at 45° to the
axes of the plot, so when in practice such errors do occur, the perpendicular distance
of a point from that line is a measure of the random error of the laboratory repre-
sented by that point. Moreover the distance from the intersection of that perpendic-
ular with the 45° line to the point ( ) measures the systematic error of the
laboratory. This fairly simple approach to a method performance study is thus capa-
ble of yielding a good deal of information in a simple form. The Youden approach
has the further advantages that participating laboratories are not tempted to censor
one or more replicate determinations, and that more materials can be studied with-
out large numbers of experiments.

X, Y

X, Y
YX

Sa
m

p
le

 Y
Sample X

X, Y

Figure 4.12 A Youden two-sample plot.



 

Method performance studies (collaborative trials) 97

Evaluate the overall inter-laboratory variation, and its random and systematic
components.

In studies of this type there is a difference between the samples as well as the
differences between laboratories. In the normal way, such a situation would be
dealt with by two-way ANOVA (see Section 7.3), and in some cases this is done.
However, in this instance there are only two samples, deliberately chosen to be
similar in their analyte content, so there is little interest in evaluating the dif-
ference between them. The calculation can therefore be set out in a numeri-
cally and conceptually simpler way than a complete two-way ANOVA. We
know that the result obtained by each laboratory for sample X may include a
systematic error. The same systematic error will presumably be included in that
laboratory’s result for the similar sample Y. The difference D (� X � Y) will
thus have this error removed, so the spread of the D values will provide an es-
timate of the random or measurement errors. Similarly, X and Y can be added
to give T, the spread of which gives an estimate of the overall variation in the
results. The measurement variance is then estimated by:

(4.12.3)

and the overall variance, , due to all sources of error, is estimated by:

(4.12.4)

Notice that each of these equations includes a 2 in the denominator. This is be-
cause D and T each give estimates of errors in two sets of results, subtracted and

s2
R =

a
i

(Ti - T )2

2(n - 1)

s2
R

s2
r =

a
i

(Di - D)2

2(n - 1)

Example 4.12.1

The lead levels (in ng g-1) in two similar samples (X and Y) of solid milk formula-
tions for infants were determined in nine laboratories (1–9) by graphite-furnace
atomic-absorption spectrometry. The results were:

Sample Laboratory

1 2 3 4 5 6 7 8 9

X 35.1 23.0 23.8 25.6 23.7 21.0 23.0 26.5 21.4
Y 33.0 23.2 22.3 24.1 23.6 23.1 21.0 25.6 25.0

Youden plots provide a good deal of information in an immediately accessible
form, but we still need methods for calculating the variances and The follow-
ing example shows how this can also be done in a simple way.

s2
r .s2

R
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added in D and T respectively. The results of this trial can be expressed in a table
as follows:

1 2 3 4 5 6 7 8 9

X 35.1 23.0 23.8 25.6 23.7 21.0 23.0 26.5 21.4
Y 33.0 23.2 22.3 24.1 23.6 23.1 21.0 25.6 25.0
D 2.1 -0.2 1.5 1.5 0.1 -2.1 2.0 0.9 -3.6
T 68.1 46.2 46.1 49.7 47.3 44.1 44.0 52.1 46.4

From the third and fourth rows of the table, and . Equa-
tions (4.12.3) and (4.12.4) then give the overall variance and the measurement
variance as (5.296)2 and (1.383)2 respectively. These can be compared as usual
using the F-test, giving F = 14.67. The critical value, F8,8, is 3.44 (P � 0.05), so
the inter-laboratory variation cannot simply be accounted for by random errors.
The component due to bias, , is given here by

(4.12.5)

Note again the appearance of the 2 in Eq. (4.12.5), because two sample materi-
als are studied. Using this equation gives The mean of all the
measurements is 49.33/2 � 24.665, so the relative standard deviation is
(100 � 5.296)/24.665 � 21.47%. This seems to be a high value, but the Horwitz
trumpet relationship would predict an even higher value of ca. 28% at this con-
centration level. It should be noted that possible outliers are not considered in
the Youden procedure, so the question of whether we should reject the high re-
sults from laboratory 1 does not arise.

s2
L = 3.6152.

s2
R = 2s2

L + s2
r

s2
L

T = 49.33D = 0.244

4.13 Uncertainty

In Chapter 1 we learned that analytical procedures will be affected both by random
errors and by bias. For some years now analytical chemists have recognised the im-
portance of providing for each analysis a single number which describes their com-
bined effect. The uncertainty of a result is a parameter that describes a range within
which the value of the quantity being measured is expected to lie, taking into ac-
count all sources of error. Two symbols are used to express uncertainty. Standard
uncertainty (u) expresses the concept as a standard deviation. Expanded uncer-
tainty (U ) defines a range that encompasses a large fraction of the values within
which the quantity being measured will lie and is obtained by multiplying u by a
coverage factor, k, chosen according to the degree of confidence required for the
range, i.e. U � u � k. Since u is analogous to a standard deviation, if k is 2 (this is
generally taken as the default value if no other information is given), then U gives
approximately one-half of the 95% confidence interval.

In principle, two basic approaches to estimating uncertainty are available. The
bottom-up approach identifies each separate stage of an analysis, including sampling
steps wherever possible (see below), assigns appropriate random and systematic errors
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to each, and then combines these components using the rules summarised in Sec-
tion 2.11 to give an overall u-value. However for a number of reasons this process
may not be as simple as it seems. The first problem is that even simple analytical
processes may involve many individual experimental steps and possible sources of
error. It is easy to overlook some of these sources and thus arrive at an over-optimistic
uncertainty value. If all the sources of error are fully identified, then the whole calcu-
lation process is liable to be long-winded. Examples of error sources that should be
considered but are easily overlooked include operator bias; instrument bias, includ-
ing sample carry-over; assumptions concerning reagent purity; use of volumetric
apparatus at a temperature different from that at which it was calibrated; changes in
the composition of the sample during the analysis, through contamination or be-
cause of inherent instability; use of calculators or computers with inadequate capa-
bilities or with the wrong statistical model applied; and so on. All these factors may
arise in addition to the random errors that inevitably occur in repeated measure-
ments. Whereas the latter may be estimated directly by repeated measurements,
some of the former may not be amenable to experiment, and may have to be esti-
mated using experience, or equipment manufacturers’ information such as calibration
certificates or instrument specifications.

Another problem is that, as shown in Chapter 2, systematic errors do not imme-
diately lend themselves to statistical treatment in the same way as random errors.
How then can they be combined with random errors to give an overall u value? (It is
naturally good practice to minimise systematic errors by the use of standards and
reference materials, but the errors involved in that correction process should be in-
cluded in the overall uncertainty estimate.) The usual method of tackling systematic
errors is to treat them as coming from a rectangular distribution. Suppose for exam-
ple that a manufacturer quotes the purity of a reagent as . This does not
mean that the purity of the reagent in its container varies randomly with a standard
deviation of 0.1%: it means that the purity of the reagent in a single bottle is be-
tween 99.8% and 100.0%. That is, any single bottle provides a systematic error, and
there is no reason to suppose that the actual purity is closer to 99.9% than to any
other value in the range 99.8–100.0%. In other words the purity has a uniform distri-
bution over this range. In such cases, the contribution to the standard uncertainty,
u, is obtained by dividing the error by , giving a value of 
Uncertainty contributions of this kind derived from uniform distributions (or from
triangular distributions, where the corresponding division factor is ) are referred
to as type B uncertainties. Random errors that can be combined using the usual
methods summarised in Chapter 2 are called type A contributions.

The following simplified example of a bottom-up uncertainty calculation shows
some of these principles in operation. Further details, including a numerical calcula-
tion, are given in the Eurachem/CITAC guide (see Bibliography). Suppose we wish to
determine the concentration of a solution of sodium hydroxide by titration with a
standard acid such as potassium hydrogen phthalate (KHP). The molar concentra-
tion of NaOH given by this experiment will depend on the volume of NaOH solution
used in the titration, and the mass, purity and molecular weight of the KHP. The un-
certainty in the molecular weight of the acid can be computed from the atomic
weights table of the International Union of Pure and Applied Chemistry. It would be
treated as a type B uncertainty, but it is so small that it is negligible for most practical
purposes. The mass of the KHP used would almost certainly be determined by differ-
ence, i.e. by weighing a container with the KHP in it, then weighing the container after
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the KHP has been removed for dissolution. Each of these weighings would have an
uncertainty derived as a type B estimate from the calibration certificate of the balance
used. If the certificate indicated a balance error of the uncertainty in each
weighing would be mg � 0.1155 mg. The overall uncertainty in the weighing
stage is then determined using Eq. (2.11.2), as
The contribution of the overall uncertainty of the uncertainty in the purity of the
KHP is another type B estimate, again obtained by dividing the fractional impurity
level by . The uncertainty contribution from the volume of NaOH used will have
several sources, including temperature effects (i.e. using glassware at a temperature
different from that at which it is calibrated), the calibration uncertainty of the burette
(often assumed to derive from a triangular distribution) and possibly indicator end
point errors. Finally, replicate titrations will show the extent of random errors during
the analysis. Although in practice, most attention will be given to the major contri-
butors to the uncertainty, it is clear that even in a simple analysis of this kind a full
uncertainty estimate requires much care.

A further problem, the extent of which seems not to have been fully investigated,
is that the rules for combining errors given in Chapter 2 assume that the sources of
the errors are independent. In reality it seems quite possible that this is not always
true. For example if a series of experiments is conducted over a period in which the
laboratory temperature fluctuates, such fluctuations might have several effects, such
as altering the capacity of volumetric apparatus, causing sample losses through
volatility, affecting the sensitivity of optical or electrochemical detectors, and so on.
Since all these errors would arise from a single source, they would be correlated, and
strictly speaking could not be combined using the simple formulae. In such cases the
actual uncertainty might be less than the u value calculated on the assumption of
independent errors.

Overall the bottom-up approach to uncertainty estimates may be too time-
consuming for many purposes. In some laboratories it may not be necessary to make
such calculations very often, as an uncertainty estimate made in detail for one
analysis may serve as a model for other closely similar analyses over a period of time.
But in other instances, most obviously where legal or regulatory issues arise (see below),
this will not be sufficient and an uncertainty estimate will have to be provided for
each disputed sample. Despite this the bottom-up approach is the one currently rec-
ommended by many authorities.

A completely different approach is the top-down method, which seeks to use the
results of PT schemes in a number of laboratories (see Section 4.11) to give estimates
of the overall uncertainties of the measurements without necessarily trying to iden-
tify every individual source of error. The method is clearly only applicable in areas
where data from properly run proficiency schemes are available, though such
schemes are rapidly expanding in number and may thus provide a real alternative to
bottom-up methods in many fields. It can be argued that uncertainty values calcu-
lated in this way are more realistic than bottom-up values, and there is a great saving
of effort since PT scheme results provide uncertainty estimates directly. However, PT
schemes use a variety of analytical methods, so it might reasonably be claimed that
the uncertainty of results from a single laboratory that has long experience of a sin-
gle well-established method might be better (smaller) than PT results would suggest.
On the other hand, PT schemes strive to use single sample materials prepared with
great care. Some sampling errors that would occur in a genuine analysis might thus
be overlooked (see below).
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These problems have led some bodies to propose simpler methods, explicitly de-
signed to minimise the workload in laboratories that use a range of analytical proce-
dures. One such approach uses the basic following principles:

• Systematic errors are not included in the uncertainty estimates, but are assessed
using reference materials as usual and thus corrected or eliminated.

• At least ten replicate measurements are made on stable and well-characterised
authentic samples or reference materials. (This again implies that sampling uncer-
tainties are not included in the estimates.)

• Uncertainties are calculated from the standard deviations of measurements made
in internal reproducibility conditions, i.e. with different analysts, using different
concentrations (including any that are relevant to legal requirements), and in all
relevant matrices.

These conditions are supposed to mimic those that would arise in a laboratory in
everyday operation. Some provision is made for circumstances where the repro-
ducibility conditions cannot be achieved (for example where samples are intrinsi-
cally unstable). This method seems to be very simple, but it may be adequate: indeed
it may be the only practicable method in some instances.

Uncertainty estimates are important not only to anyone who has provided a sam-
ple for analysis and who requires a range of values in which the true analyte concen-
tration should lie. They also have value in demonstrating that a laboratory has the
capacity to perform analyses of legal or statutory significance. Once an uncertainty
value for a particular analysis in a given laboratory is known, it is simple to interpret
the results in relation to such statutory or other specification limits. Four possible
situations are shown in Fig. 4.13, where it is assumed that a coverage factor of 2 has
been used to determine U at the 95% level (the 95% interval is shown by the vertical
double arrows), and where both upper and lower limits for the concentration of the
analyte have been specified, as indicated by the horizontal lines. In case A the uncer-
tainty interval lies completely between the upper and lower specified limits, so com-
pliance with the specification has been achieved. In case B the 95% interval extends
just beyond the upper limit, so although compliance is more likely than not, it can-
not be fully verified at the 95% level. In case C compliance is very unlikely, though
not impossible, and in case D there is a clear failure to comply.

Although none of the approaches to estimating uncertainties is ideal, and al-
though the term itself still provokes controversy (some scientists think that the word
‘uncertainty’ is too negative or pessimistic in its implications for the lay public), un-
certainty calculations are now an intrinsic part of most areas of modern analytical
chemistry.

A CB D

Figure 4.13 Use of uncertainty to test compliance with specification limits.
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In recent years, a good deal of attention has been given to the component of the
uncertainty arising from the sampling steps of an analysis. This concern arises from
the realisation that in many cases the sampling uncertainty contribution might
be the largest single component of the overall uncertainty of the analysis. The
problem is likely to be most acute when the material under study may be grossly
heterogeneous. This unsurprisingly occurs in the fields of geology or food science,
where heterogeneous solids are commonly found. However liquid samples are often
also heterogeneous, either with respect to time in the case of a flowing stream, or
because their chemical composition may vary with depth below the surface. Recom-
mendations on good sampling practice have been produced (see Bibliography) and as
expected involve taking several samples from the target material. Each of these sam-
ples is divided into two, and duplicate measurements are made on each of the two
sub-samples in repeatability conditions (see Section 1.3). ANOVA can then be used, as
described in Section 4.3, to separate the contributions that the sample and measure-
ment variations make to the uncertainty.

4.14 Acceptance sampling

Previous sections of this chapter have shown how the quality of the analytical re-
sults obtained in a laboratory can be monitored by internal quality control proce-
dures and by participation in proficiency testing schemes. We have also shown how
the concept of uncertainty is designed to help the interpretation of analytical results
by the customers for analytical measurements, including regulatory authorities. In
this section we consider a further important problem involving both analysts and
their customers, called acceptance sampling. The simple statistical principles in-
volved have been discussed in previous chapters. Suppose that the manufacturer of
a chemical is required to ensure that it does not contain more than a certain level of
a particular impurity. This is called the acceptable quality level (AQL) of the prod-
uct and is given the symbol . The manufacturer’s intention to ensure that this im-
purity level is not exceeded is monitored by testing batches of the product. Each test
involves n test portions, whose mean impurity level is found to be . The variation
between portions, , is (as we have seen) normally known from previous experience.
The practical problem that arises is that, even when a batch of manufactured mater-
ial has an actual impurity level of , and is thus satisfactory, values of greater than

will be found in 50% of the analyses. Therefore the manufacturer establishes a
critical value for , given the symbol . If a measured value of the batch is
rejected. This critical value is higher than , thus ensuring that the manufacturer
runs only a small risk of rejecting a satisfactory batch.

At the same time the customer wishes to minimise the risk of accepting a batch
with a mean impurity level greater than . This can be achieved by setting an agreed
tolerance quality level (TQL), , which has a small probability of acceptance. The aim
of acceptance sampling is that the critical value should minimise the risk to the
customer as well as to the manufacturer. At the same time, to minimise the analytical
effort involved, we wish to ensure that n is no larger than necessary. Both these aims
can be achieved using the properties of the sampling distribution of the mean, given
that is known. (The situation can be envisaged by analogy with Fig. 3.7, with the
AQL and the TQL replacing the values 3% and 3.05% respectively in that figure.)

s
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m0

m0

x 7 x0x0x
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xm0
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The value 1.64 can be found in Table A.1 as the z-value corresponding to 
(see also Section 2.2). Suppose also that the customer is prepared to accept a 10% risk
of accepting a batch with the impurity at the TQL. Then we can similarly write:

F(z) = 0.95

Example 4.14.1

Determine n and for the case where the AQL and TQL are 1.00 g kg-1 and
1.05 g kg-1 impurity respectively, the manufacturer’s and customer’s risks are
5% and 10% respectively, and 

The solution to this problem involves the use of Eqs (4.14.1) and (4.14.2) with
and taking values 1.00 and 1.05, the AQL and TQL respectively. Solving

the equations simultaneously we can write:

and

which on subtraction to remove and utilising yield:

from which . Inserting this value into Eq. (4.14.1) gives:

hence . The value of n is 2.922 � 8.53, which is rounded up to 9.
Thus a critical value of 1.028% impurity and sample size of 9 will provide both
manufacturer and customer with the necessary assurances.

x0 = 1.028

x0 - 1
0.05>2.92

= 1.64

1n = 2.92

0.05 = 2.92 * 0.05>1n

s = 0.05x0

x0 - 1.05 = -1.28s>1n

x0 - 1 = 1.64s>1n

m1m0

s is 0.05 g kg-1.

x0

(4.14.1)
x0 - m0

s>2n
= 1.64

(4.14.2)
x0 - m1

s>1n
= -1.28

Suppose the manufacturer accepts a 5% risk of rejecting a batch of the chemi-
cal that is in fact satisfactory, i.e. a batch for which , even though 
Then we can write

m = m0.x 7 x0

This z-value of -1.28 (i.e. -1.30 � 0.02) from Table A.1 corresponds to .
Since in practice the values of and will have been agreed in advance, Eq. (4.14.1)
and Eq. (4.14.2) provide simultaneous equations that can be solved for n and .x0

m1m0

F(z) = 0.10
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4.15 Method validation

Good practice clearly demands that any analytical method in a field of application is
suitable for its intended purpose. To demonstrate this fitness for purpose a method
needs to be validated if it is:

• a new method, the viability of which needs to be tested;

• an existing method to be used in a particular laboratory for the first time; or

• an existing method applied to a new sample matrix, or used in a significantly
different way, e.g. with different instrumentation or at different concentration
ranges.

It is strictly more accurate to speak of validating an ‘analytical system’, the compo-
nents of which are the method itself (with sampling steps), the matrix to which the
method is applied, and the analyte concentration range over which it will be used.
The validation of the methods used by a laboratory will normally be a prerequisite
for the laboratory’s accreditation, i.e. recognition that it performs its work to an ac-
cepted national or international standard. Method transfer, the exporting of an ana-
lytical system from one laboratory to another, will in general be acceptable only for
properly validated methods (though such transfers involve a variety of additional
protocols, and have clear implications for issues such as staff training in the recipi-
ent laboratory). Validation is not a process that needs to be performed frequently
(unless a part of the analytical system is changed): in this respect it clearly differs
from the IQC procedures that all laboratories should use regularly.

In some cases a validation process is designed to support the work of a single
laboratory and its immediate users and customers. But in other situations the ex-
tent and importance of the validation process are far broader. Examples of the
latter include methods of food analysis that must meet legislative requirements,
the methods supporting any submission to regulatory authorities of a possible
new drug substance, the methods used to monitor the quality of approved drug
products, and methods used in forensic work that are liable to be presented 
(and perhaps challenged) as evidence in court. The principal difference between a
‘single laboratory’ validation and a ‘full’ one is that the latter will normally
involve the use of the method in a properly conducted method performance
study (Section 4.12).

Much guidance on carrying out both full and single laboratory validations is pro-
vided by a range of statutory and international advisory bodies (some examples are
given in the books listed in the Bibliography) but unfortunately such bodies are not
in full agreement over the number of method performance characteristics to be
specified, and their terminology and definitions differ. Here we follow the terminol-
ogy and recommendations of the ‘Harmonized guidelines for single-laboratory vali-
dation of methods of analysis’. The characteristics which can be assessed using
statistical methods include the following:

• Trueness. This is the measure of agreement between the analytical result when
the method is applied to a reference material, and the accepted reference value of
the analyte. A high level of trueness is equivalent to a lack of bias in the method
(see Chapter 1). As we have seen, bias is tested with the aid of reference materials:
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the method is used to measure the analyte content of such a material several
times, and a significance test (Section 3.2) can be applied to the null hypothesis
that the method is free from bias. If reference materials are not available, trueness
is sometimes assessed by analysing a test portion of the sample before and after
adding a known mass of analyte to it, a process known as ‘spiking’. If the differ-
ence between the two measurements is not equivalent to the amount added, i.e.
the recovery is not 100%, some bias in the method is indicated. Spiking methods
and recovery calculations have some drawbacks. One is that the added analyte
may not always behave in the same way as the analyte naturally present in the
test material. For example, a hormone added to a blood plasma sample may not
bind to the plasma proteins to the same extent as the hormone already present.
For this reason it is wise to assume that, while a recovery of less than or greater
than 100% indicates a degree of bias, a recovery close to 100% does not necessar-
ily indicate the absence of bias. Trueness can also be tested by comparing the re-
sults from the method which is being validated with the results obtained when a
standard or reference method is applied to the same test materials. If this ap-
proach is adopted a number of test materials containing different analyte levels
should be used, and the results evaluated using the paired t-test (Section 3.4) or
by regression methods (see Section 5.9).

• Precision. This reflects the level of agreement between replicate measurements
and is normally expressed as a standard deviation or relative standard deviation.
As shown in Section 1.3 it is important to distinguish between repeatability, i.e.
within-run precision, and reproducibility, between-run precision. If the method
to be validated is applied to the same test material on successive occasions, i.e. in
between-run conditions, the observed variation will include the within-run com-
ponent, and the two contributions to the random variation can be separated by
one-way ANOVA (Sections 3.8–3.10). Good validation practice involves the use of
typical ‘real’ test materials (preferably not reference materials, which may be
atypically homogeneous), and precision should be measured at several concentra-
tions covering the operating range of the method. A separate source of variation,
which should be studied independently, is the extent to which different speci-
mens of the intended sample matrix affect the results. Soils and blood plasma
specimens are good examples of matrices showing wide variations in properties.
The chemical composition, particle size and particle size distribution of soils may
vary substantially, and in blood plasma studies variations in protein content and
composition, viscosity, colour, etc. are inevitable. The effects such variations have
on the method under study can be studied by collecting a number of specimens
of the matrix, and for each one measuring the recoveries of spiked samples at dif-
ferent concentration levels covering the intended range of the method.

• Calibration parameters. Almost all analyses now involve the use of calibration
graphs (see Chapter 5). These plot the responses of the analytical system (y)
against the concentrations of a series of standards of known analyte composition
(x). The graph is then used to obtain concentrations of test materials, studied
under identical conditions to the standards, from their system responses. The sta-
tistical principles and implications of this approach are so important that the
next chapter is devoted to them. Here we can simply note that the calibration
graph can be used to assess the range of a method, and its limit of detection and
limit of quantitation.
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• Ruggedness. The ruggedness of a method is a measure of the extent to which its
experimental conditions (e.g. pH, temperature, reagent purity, instrument, operator)
can be changed without significantly affecting the results it gives. As we saw in Sec-
tion 4.12 this property of a method can be studied economically by changing the
conditions, i.e. studying each experimental factor (variable) at two levels and using a
fractional factorial design to summarise the results. These show which factors need
the closest control, and which are of less significance: it may be possible to estimate
the ranges over which each factor can be allowed to vary in practice.

• Performance in inter-laboratory comparisons. A method is unlikely to be broadly
acceptable to the analytical science community unless it has given satisfactory re-
sults over a significant period in an appropriate proficiency testing scheme, assum-
ing that one is available (see Section 4.11). A Youden two-sample test (see Section
4.12) would give further information on its precision and freedom from bias.

• Fitness for purpose and uncertainty. A validation process must clearly show
that the method being studied is suitable for its intended use and users. For exam-
ple it must be able to provide satisfactory outcomes, with modest sample sizes, in
terms of the acceptance sampling principles outlined in Section 4.14. In many
cases the principal criterion that decides whether or not a method is fit for pur-
pose will be its overall uncertainty, determined as described in Section 4.13.
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Day Albumin concentrations 
(normalised, arbitrary units)

1 63 61 62
2 57 56 56
3 50 46 46
4 57 54 59

Show that the mean concentrations for different days differ significantly. Estimate
the variance of the day-to-day variation (i.e. ‘sampling variation’).

3 In order to estimate the measurement and sampling variances when the halofug-
inone concentration in chicken liver is determined, four sample increments
were taken from different parts of the liver and three replicate measurements
were made on each. The following results were obtained (mg kg-1):

Verify that the sampling variance is significantly greater than the measurement
variance and estimate both variances.

Sample Replicate measurements

A 0.25 0.22 0.23
B 0.22 0.20 0.19
C 0.19 0.21 0.20
D 0.24 0.22 0.22

Exercises

1 Two sampling schemes are proposed for a situation in which it is known, from
past experience, that the sampling variance is 10 and the measurement variance
4 (arbitrary units).

Scheme 1: Take five sample increments, blend them and perform a duplicate
analysis.

Scheme 2: Take three sample increments and perform a duplicate analysis on each.

Show that the variance of the mean is the same for both schemes.

What ratio of the cost of sampling to the cost of analysis must be exceeded
for the second scheme to be the more economical?

2 The data in the table below give the concentrations of albumin measured in the
blood serum of one adult. On each of four consecutive days a blood sample was
taken and three replicate determinations of the serum albumin concentration
were made.
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Two possible sampling schemes are proposed:

Scheme 1: Take six sample increments, blend them and make four replicate
measurements. 

Scheme 2: Take three sample increments and make two replicate measurements
on each.

Calculate the total variance of the mean for each scheme.

4 In order to estimate the capability of a process, measurements were made on six
samples of size 4 as shown in the table below (in practice at least 25 such samples
would be needed). Estimate the process capability, . If the target value is 50,
calculate the positions of the action and warning lines for the Shewhart charts
for the sample mean and the range.

s

Sample Values

1 48.8 50.8 51.3 47.9
2 48.6 50.6 49.3 49.7
3 48.2 51.0 49.3 50.3
4 54.8 54.6 50.7 53.9
5 49.6 54.2 48.3 50.5
6 54.8 54.8 52.3 52.5

Laboratory Cd levels (ppm)

A B

1 8.8 10.0
2 3.8 4.7
3 10.1 12.1
4 8.0 11.0
5 5.0 4.7
6 5.2 6.4
7 6.7 8.7
8 9.3 9.6
9 6.9 7.5

10 3.2 2.8
11 9.7 10.4
12 7.2 8.3
13 6.5 6.8
14 9.7 7.2
15 5.0 6.0

5 In a collaborative trial, two closely similar samples of oil shale (A and B) were
sent to 15 laboratories, each of which performed a single inductively coupled
plasma determination of the cadmium level in each sample. The following
results were obtained:
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Plot the Shewhart chart for the mean, and the CUSUM chart, for these results,
and comment on the outcomes.

Day Concentration 
(mg 100 ml-1)

1 79.8
2 80.2
3 79.4
4 80.3
5 80.4
6 80.1
7 80.4
8 80.2
9 80.0

10 79.9
11 79.7
12 79.6
13 79.5
14 79.3
15 79.2
16 79.3
17 79.0
18 79.1
19 79.3
20 79.1

Plot the two-sample chart for these data, and comment on the principal source of
error in the collaborative trial. Estimate the overall variance, the measurement
variance, and the systematic error component of the variance of the results.

6 The target value for a particular analysis is 120. If preliminary trials show that
samples of size 5 give an value of 7, set up Shewhart charts for the mean and
range for samples of the same size.

7 An internal quality control sample of blood, used for checking the accuracy of
blood alcohol determinations, contains 80.0 mg 100 ml-1 of ethanol. Successive
daily measurements of the alcohol level in the sample were made using four
replicates. The precision (process capability) of the method was known to be
0.6 mg 100 ml-1. The following results were obtained:

R
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5.1 Introduction: instrumental analysis

Classical or ‘wet chemistry’ analysis techniques such as titrimetry and gravimetry
remain in use in many laboratories. They are ideal for high-precision analyses, espe-
cially when small numbers of samples are involved, and are sometimes necessary for
the analysis of standard materials. In practice, however, almost all analyses are now
performed using instrumental methods. Techniques using absorption and emission
spectrometry at various wavelengths, electrochemistry, mass spectrometry, chro-
matographic and electrophoretic separations, thermal and radiochemical methods
probably account for at least 90% of all current analytical work. There are several
reasons for this.

Major topics covered in this chapter
• Calibration in instrumental analysis

• Product–moment correlation coefficient

• Plotting the best straight line

• Errors and confidence limits in linear calibration

• Limits of detection

• Standard additions

• Regression lines used for method comparisons

• Weighted regression

• Intersecting straight lines

• ANOVA and regression calculations

• Curve fitting

• Outliers in regression

Calibration methods in
instrumental analysis:
regression and correlation
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Instrumental methods can perform analyses that are difficult or impossible by
classical methods. The latter can only rarely detect materials at sub-microgram
levels, while instrumental methods can provide the ultimate in terms of sensitivity:
in recent years fluorescence and electrochemical methods have been used to detect
single organic molecules in very small volumes of solution. While ‘wet chemical’
methods can usually determine only one analyte at a time, many instrumental
methods have multi-analyte capability, especially with the aid of modern chemo-
metrics to interpret the data (see Chapter 8). Most classical methods only operate
over a concentration range of two to three orders of magnitude (i.e. powers of 10),
but many instrumental techniques work well over a range of six or more orders of
magnitude: this characteristic has important implications for the statistical treat-
ment of the results, as we shall see in the next section.

When there are many samples to be analysed instrumental methods are generally
quicker and often cheaper than the labour-intensive manual methods. In clinical
analysis, for example, there is frequently a requirement for the same analyses to be
done on scores or even hundreds of whole blood or blood serum/plasma samples
every day. Despite the high initial cost of the equipment, such work is generally
performed using completely automatic systems. Automation has become such an
important feature of analytical chemistry that the ease with which a particular
technique can be automated often determines whether or not it is used. A typical
automatic method may be able to process samples at the rate of 100 per hour or
more. The equipment will take a measured volume of sample, dilute it appropriately,
conduct one or more reactions with it, and determine and record the concentration
of the analyte or of a derivative produced in the reactions. Other areas where the use
of automated equipment is now crucial include environmental monitoring and the
rapidly growing field of industrial process analysis. Special problems of error estima-
tion will evidently arise in all these applications of automatic analysis: systematic
errors, for example, must be identified and corrected as rapidly as possible.

An important trend in modern instrumental analysis is the development of
miniaturised systems, which often combine modern micro-electronic components
with micro-fluidic sample handling systems. Such tiny analytical systems have great
potential in process analysis, in vivo diagnostics, security-related detection systems
and many other areas.

Lastly, modern analytical instruments are invariably interfaced with personal
computers to provide sophisticated system control, and the storage, treatment and
reporting of data. Such systems can also evaluate the results statistically, and com-
pare the analytical results with data libraries so as to match spectral and other infor-
mation. All these facilities are now available from low-cost computers operating at
high speeds. Also important is the use of ‘intelligent’ instruments, which incorpo-
rate automatic set-up and fault diagnosis and can perform optimisation processes
(see Chapter 7).

Instrumental analysis methods – why?

• Extreme sensitivity, sometimes single molecule detection.

• Very wide concentration ranges.

• Multi-analyte capability in conjunction with suitable data handling.
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The statistical procedures used with instrumental analysis methods must provide, as
always, information on the precision and accuracy of the measurements. They must
also reflect the technical advantages of such methods, especially their ability to
cover a great range of concentrations (including very low ones), and to handle many
samples rapidly. (In this chapter we shall not cover methods that facilitate the simul-
taneous determination of more than one analyte: these topics are outlined in
Chapter 8.) In practice instrumental analysis results are calculated and the errors
evaluated using an approach that differs from that used when a single measurement
is repeated several times.

5.2 Calibration graphs in instrumental analysis

The usual procedure is as follows. The analyst takes a series of samples (preferably at
least six, and possibly several more) in which the concentration of the analyte is
known. These calibration standards are measured in the analytical instrument under
the same conditions as those subsequently used for the test (i.e. the ‘unknown’)
samples. The results are used to plot a calibration graph, which is then used to deter-
mine the analyte concentrations in test samples by interpolation (Fig. 5.1). This gen-
eral procedure raises several important statistical questions:

• Automation: high sample throughput and low cost per sample.

• Miniaturised systems.

• Computer interfacing for control, rapid data handling, optimisation.
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Figure 5.1 Calibration procedure in instrumental analysis: � calibration points; • test sample.
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Before tackling these questions in detail, we must consider a number of aspects of
plotting calibration graphs. First, it is usually essential that the calibration standards
cover the whole range of concentrations required in the subsequent analyses. With the
important exception of the ‘method of standard additions’, which is treated separately
in a later section, concentrations of test samples are normally determined by interpo-
lation and not by extrapolation. Second, it is crucially important to include the value
for a ‘blank’ sample in the calibration curve. The blank contains no deliberately added
analyte, but does contain the same solvent, reagents, etc., as the other test samples,
and is subjected to exactly the same sequence of analytical procedures. The instru-
ment signal given by the blank sample will sometimes not be zero. This signal is sub-
ject to errors like all the other points on the calibration plot, so it is wrong in principle
to subtract the blank value from the other standard values before plotting the calibration
graph. This is because, as shown in Chapter 2, when two quantities are subtracted, the
error in the final result cannot also be obtained by simple subtraction. Subtracting the
blank value from each of the other instrument signals before plotting the graph thus
gives incorrect information on the errors in the calibration process.

Several assumptions are implicit in the usual methods for plotting calibration
graphs. The calibration curve is always plotted with the instrument signals on the ver-
tical (y) axis and the standard concentrations on the horizontal (x) axis. This is because
many of the procedures to be described in the following sections assume that all the er-
rors are in the y-values and that the standard concentrations (x-values) are error-free.
In many routine instrumental analyses this assumption may well be justified. The
standards can usually be made up with an error of ca. 0.1% or better (see Chapter 1),
whereas the instrumental measurements themselves might have a coefficient of varia-
tion of 1–3% or worse. So the x-axis error is indeed negligible compared with the y-axis
one. In recent years, however, the advent of high-precision automatic methods with
coefficients of variation of 0.5% or better has put the assumption under question, and
has led some users to make up their standard solutions by weight rather than by the
less accurate combination of weight and volume. This approach is intended to ensure
that the x-axis errors remain small compared with the y-axis ones. If for any reason this
assumption is not valid, then separate, though more complex, approaches to plotting
the calibration graph are available. These are discussed further in Section 5.9.

Other common assumptions are that if several measurements are made on a given
standard material, the y-values obtained have a normal (Gaussian) error distribution,
and that the magnitude of the random errors in the y-values is independent of the

• Is the calibration graph linear? If it is a curve, what is the form of the curve?

• Since each of the points on the calibration graph is subject to errors, what is
the best straight line (or curve) through these points?

• Assuming that the calibration plot is actually linear, what are the errors and
confidence limits for the slope and the intercept of the line?

• When the calibration plot is used for the analysis of a test sample, what are
the errors and confidence limits for the determined concentration?

• What is the limit of detection of the method? That is, what is the least con-
centration of the analyte that can be detected with a predetermined level of
confidence?
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analyte concentration. The first of these two assumptions is normally sound, but the
second requires further discussion. If true, it implies that all the points on the graph
should have equal weight in our calculations, i.e. that it is equally important for the
line to pass close to points with high y-values and to those with low y-values. Such
calibration graphs are said to be unweighted, and are treated in Sections 5.4–5.8
below. However, in practice the y-value errors often increase as the analyte concentra-
tion increases. This means that the calibration points should have unequal weights in
our calculation, as it is more important for the line to pass close to the points where
the errors are least. These weighted calculations are now becoming more common de-
spite their additional complexity, and are treated in Section 5.10.

In subsequent sections we shall assume that straight line calibration graphs take
the algebraic form:

(5.2.1)y = a + bx

where b is the slope of the line and a its intercept on the y-axis. The individual
points on the line will be referred to as (x1, y1 – normally the ‘blank’ reading), (x2, y2),
(x3, y3) . . . (xi, yi) . . . (xn, yn), i.e. there are n points altogether. The mean of the x-values
is, as usual, called , and the mean of the y-values is : the position is then
known as the ‘centroid’ of all the points.

5.3 The product–moment correlation coefficient

In this section we discuss the first problem listed in the previous section: is the cali-
bration plot linear? A common method of estimating how well the experimental
points fit a straight line is to calculate the product–moment correlation
coefficient, r. This statistic is often referred to simply as the ‘correlation coefficient’
because in quantitative sciences it is much more commonly used than the other types
of correlation coefficient that we shall meet in Chapter 6. The value of r is given by:

(x, y)yx

The numerator of Eq. (5.3.1) divided by n, that is is called

the covariance of the two variables x and y: it measures their joint variation. If x and
y are not related their covariance will be close to zero. The correlation coefficient r
equals the covariance of x and y divided by the product of their standard 
deviations, so if x and y are not related r will also be close to zero. Covariances are
also discussed in Chapter 8.

It can be shown that r can only take values in the range �1 � r � �1. As indicated
in Fig. 5.2, an r value of �1 describes perfect negative correlation, i.e. all the experi-
mental points lie on a straight line of negative slope. Similarly, when r � �1 we have

a
i

[(xi - x )(yi - y)]>n,
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r = +1

r = –1

r = 0

y

x

Figure 5.2 The product–moment correlation coefficient, r.

perfect positive correlation, all the points lying exactly on a straight line of positive
slope. When there is no linear correlation between x and y the value of r is close to
zero. In analytical practice, calibration graphs frequently give numerical r-values
greater than 0.99, and r values less than about 0.90 are relatively uncommon. A typ-
ical example of a calculation of r illustrates a number of important points.

Example 5.3.1

Standard aqueous solutions of fluorescein are examined in a fluorescence spec-
trometer, and yield the following fluorescence intensities (in arbitrary units):

Fluorescence intensities: 2.1 5.0 9.0 12.6 17.3 21.0 24.7

Concentration, pg ml�1 0 2 4 6 8 10 12

Determine the correlation coefficient, r.

In practice, such calculations will almost certainly be performed on a calcula-
tor or computer, alongside other calculations covered below, but it is impor-
tant and instructive to examine a manually calculated result. The data are
presented in a table, as follows:

xi yi xi � (xi � )2 yi � (yi � )2 (xi � )(yi � )

0 2.1 �6 36 �11.0 121.00 66.0
2 5.0 �4 16 �8.1 65.61 32.4
4 9.0 �2 4 �4.1 16.81 8.2
6 12.6 0 0 �0.5 0.25 0
8 17.3 2 4 4.2 17.64 8.4

10 21.0 4 16 7.9 62.41 31.6
12 24.7 6 36 11.6 134.56 69.6

Sums: 42 91.7 0 112 0 418.28 216.2

yxyyxx
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Figure 5.3 Calibration plot for the data in Example 5.3.1.

The figures below the line at the foot of the columns are in each case the sums
of the figures in the table: note that ∑(xi � ) and ∑(yi � ) are both zero. Using
these totals in conjunction with Eq. (5.3.1), we have:

r =

216.2

2112 * 418.28
=

216.2
216.44

=  0 .9989

yx

Two observations follow from this example. Figure 5.3 shows that, although several
of the points deviate noticeably from the ‘best’ straight line (which has been
calculated as shown in the following section), the r-value is very close indeed to 1.
Experience shows that even quite poor-looking calibration plots give very high 
r-values. In such cases the numerator and denominator in Eq. (5.3.1) are nearly
equal. It is thus very important to perform the calculation with an adequate number
of significant figures. In the example above, neglecting the figures after the decimal
point would have given an obviously incorrect r-value of exactly 1, and the use of
only one place of decimals would have given the incorrect r-value of 0.9991. So it is
important when using a calculator or computer to determine r to ensure that it pro-
vides sufficient significant figures.

Correlation coefficients are simple to calculate, but are easily very misinterpreted.
It must always be borne in mind that the use of Eq. (5.3.1) will generate an r-value
even if the data do not warrant plotting a straight line graph. Figure 5.4 shows two
examples in which a calculation of r would be misleading. In Fig. 5.4(a), the points
of the calibration plot clearly lie on a curve; this curve is sufficiently gentle, however,
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Figure 5.4 Misinterpretation of the correlation coefficient, r. Broken lines are “least Squares”
straight lines, calculated as in Section 5.4.

to yield quite a high correlation coefficient when Eq. (5.3.1) is applied. The lesson of
this example is that the calibration curve must always be plotted (i.e. on graph paper
or a computer monitor) and inspected by eye: otherwise a straight-line relationship
might wrongly be deduced from the calculation of r. Figure 5.4(b) is a reminder that
a zero correlation coefficient does not mean that y and x are entirely unrelated; it
only means that they are not linearly related.

As we have seen, r-values obtained in instrumental analysis are normally very
high, so a calculated value, together with the calibration plot itself, is often suffi-
cient to assure the analyst that a useful linear relationship has been obtained. In
some circumstances, however, much lower r-values are obtained: one such situation
is further discussed in Section 5.9. In these cases it will be necessary to use a proper
statistical test to see whether the correlation coefficient is significant, bearing in
mind the number of points used in the calculation. The simplest method of doing
this is to calculate a t-value (see Chapter 3 for a fuller discussion of the t-test), using
the following equation:

To test for a significant correlation, i.e. H0 � zero correlation, calculate

(5.3.2)

The calculated value of t is compared with the tabulated value at the desired signifi-
cance level, using a two-sided t-test and (n – 2) degrees of freedom. The null hypothesis
in this case is that there is no correlation between x and y. If the calculated value of

t =

ƒ r ƒ 2n - 2

21 - r2
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t is greater than the tabulated value, the null hypothesis is rejected and we conclude
that a significant correlation does exist. As expected, the closer is to 1, i.e. as the
straight line relationship becomes stronger, the larger the values of t that are obtained.

5.4 The line of regression of y on x

In this section we assume that there is a linear relationship between the analytical sig-
nal (y) and the concentration (x), and show how to calculate the ‘best’ straight line
through the calibration graph points, each of which is subject to experimental error.
Since we are assuming for the present that all the errors are in y (cf. Section 5.2 above),
we are seeking the line that minimises the deviations in the y-direction between the ex-
perimental points and the calculated line. Since some of these deviations (technically
known as the y-residuals – see below) will be positive and some negative, it is sensible to
try to minimise the sum of the squares of the residuals, since these squares will all be
positive. This explains the frequent use of the term method of least squares for the
procedure. The straight line required is calculated on this principle: as a result it is
found that the line must pass through the centroid of the points, .

It can be shown that the least-squares straight line is given by:

Slope of least-squares line, (5.4.1)

(5.4.2)

Notice that Eq. (5.4.1) contains some of the terms from Eq. (5.3.1), previously used
to calculate r: this facilitates calculator or computer operations. The line determined
from Eqs (5.4.1) and (5.4.2) is known as the line of regression of y on x, i.e. the line
indicating how y varies when x is set to chosen values. It is very important to notice
that the line of regression of x on y is not the same line (except in the highly improb-
able case where all the points lie exactly on a straight line, i.e. when r � 1 exactly).
The line of regression of x on y (which also passes through the centroid of the
points) assumes that all the errors occur in the x-direction. If we maintain rigidly the
convention that the analytical signal is always plotted on the y-axis and the concen-
tration on the x-axis, it is always the line of regression of y on x that we must use in
calibration experiments.

Intercept of least-squares line, a = y - bx

b =

a
i

[(xi - x)(yi - y)]

a
i

(xi - x)2

(x, y)

|r |

Example 5.4.1

Calculate the slope and intercept of the regression line for the data given in the
previous example (see Section 5.3).

In Section 5.3 we calculated that, for this calibration curve:

a
i

(xi - x)(yi - y) = 216.2;    a
i

(xi - x)2
= 112;    x = 6;     y = 13.1
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Using Eqs (5.4.1) and (5.4.2) we calculate that

b � 216.2/112 � 1.93

a � 13.1 � (1.93 � 6) � 13.1 � 11.58 � 1.52

The equation for the regression line is thus y � 1.93x � 1.52.

The results of the slope and intercept calculations are depicted in Fig. 5.3. Again it is
important to emphasise that Eqs (5.4.1) and (5.4.2) must not be misused – they will
only give useful results when prior study (calculation of r and a visual inspection of
the points) has indicated that a straight line relationship is realistic for the experi-
ment in question.

Non-parametric methods (i.e. methods that make no assumptions about the na-
ture of the error distribution) can also be used to calculate regression lines, and this
topic is treated in Chapter 6.

5.5 Errors in the slope and intercept of the regression line

The line of regression calculated in the previous section will be used to estimate the
concentrations of test samples by interpolation, and perhaps also to estimate the
limit of detection of the analytical procedure. The random errors in the values for
the slope and intercept are therefore important, and we need further equations to
calculate them. We must first calculate the statistic sy�x, which estimates the random
errors in the y-direction.

(5.5.1)

It will be seen that this equation utilises the y-residuals, , where the -values
are the points on the calculated regression line corresponding to the individual 
x-values, i.e. the ‘fitted’ y-values (Fig. 5.5). The -value for a given value of x is readily
calculated from the regression equation. Equation (5.5.1) is clearly similar in form to
the equation for the standard deviation of a set of repeated measurements (Eq. (2.1.2)).
In Eq. (5.5.1) the deviations, ( ), are replaced by residuals, , and the denom-
inator contains the term (n – 2) rather than (n – 1). In linear regression calculations the
number of degrees of freedom (cf. Section 2.4) is (n � 2). This reflects the obvious con-
sideration that only one straight line can be drawn through two points.

Armed with a value for sy/x we can now calculate sb and sa, the standard devia-
tions for the slope (b) and the intercept (a). These are given by:

yi - yN iyi - y

Nyi

Nyiyi - Nyi

sy>x = Q
a

i
(yi - yN i)

2

n - 2

(5.5.2)Standard deviation of slope:  sb =

sy>x

Aai (xi - x)2
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Figure 5.5 The y-residuals of a regression line.

(5.5.3)

Note that the term appears again in both these equations. The values of sb

and sa can be used in the usual way (cf. Chapter 2) to estimate confidence limits for
the slope and intercept. Thus the confidence limits for the slope of the line are given
by b ; t(n�2)sb, where the t-value is taken at the desired confidence level and (n � 2) degrees
of freedom. Similarly the confidence limits for the intercept are given by a ; t(n�2)sa.

a
i

(xi -  x)2

Standard deviation of intercept:  sa = sy>x

a
a

i
xi

2

na
i

(xi - x)2

Example 5.5.1

Calculate the standard deviations and confidence limits of the slope and inter-
cept of the regression line calculated in Section 5.4.

This calculation may not be accessible on a simple calculator, but suitable
computer software is available. Here we perform the calculation manually,
using a tabular layout.

i

0 0 2.1 1.52 0.58 0.3364
2 4 5.0 5.38 0.38 0.1444
4 16 9.0 9.24 0.24 0.0576
6 36 12.6 13.10 0.50 0.2500
8 64 17.3 16.96 0.34 0.1156

10 100 21.0 20.82 0.18 0.0324
12 144 24.7 24.68 0.02 0.0004

a
i
1yi - yNi2

2
= 0.9368a

i
xi

2
= 364

(yi - Nyi )2
ƒ yi - yN i ƒNyyixi

2xi
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From the table and using Eq. (5.5.1) we obtain

From Section 5.3 we have , and Eq. (5.5.2) can be used to show

that:

The t-value for (n � 2) � 5 and the 95% confidence level is 2.57 (Table A.1).
The 95% confidence limits for b are thus

Equation (5.5.3) requires knowledge of , calculated as 364 from the table.
We can thus write:

so the 95% confidence limits are

a = 1 .52 ; (2 .57 * 0 .2950) = 1 .52 ; 0 .76

sa = 0.4329A
364

7 * 112
= 0.2950

a
i

xi
2

b = 1 .93 ; (2 .57 * 0 .0409) = 1 .93 ; 0 .11

sb = 0.4329>2112 = 0.4329>10.58 = 0.0409

a
i

(xi - x)2
= 112

sy>x = 20.9368>5 = 20.18736 = 0.4329

In this example, the number of significant figures necessary was not large, but it is
always a useful precaution to use the maximum available number of significant fig-
ures during such a calculation, rounding only at the end.

There is no necessity in practice for the manual calculation of all these results,
which would clearly be too tedious for routine use. The application of a spreadsheet
program to some regression data is demonstrated in Section 5.9. Every advantage
should also be taken of the extra facilities provided by programs such as Minitab®,
for example plots of residuals against x or values, normal probability plots for the
residuals, etc. (see also Section 5.15).

Error calculations are also minimised through the use of single point calibration, a
simple method often used for speed and convenience. The analytical instrument in use
is set to give a zero reading with a blank sample (see Section 5.2), and in exactly the
same conditions is used to provide k measurements on a single reference material with
analyte concentration x. The ISO recommends that k is at least 2, and that x is greater
than any concentration to be determined using the calibration line. This line is ob-
tained by joining the single point for the average of the k measurements, , to the
point (0, 0), so its slope is . In this case the only measure of is the standard
deviation of the k measurements, and the method clearly does not guarantee that the
calibration plot is indeed linear over the concentration range 0 to x. It should be used
only as a quick check on the stability of a properly established calibration line.

5.6 Calculation of a concentration and its random error

Once the slope and intercept of the regression line have been determined, it is very
simple to calculate the concentration (x-value) corresponding to any measured in-
strument signal (y-value). But it will also be necessary to find the error associated

sy/xb = y>x
(x, y)

yN
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with this concentration estimate. Calculation of the x-value from the given y-value
using Eq. (5.2.1) involves the use of both the slope (b) and the intercept (a) and, as
we saw in the previous section, both these values are subject to error. Moreover, the
instrument signal derived from any test sample is also subject to random errors. As a
result, the determination of the overall error in the corresponding concentration is
extremely complex, and most workers use the following approximate formula:

(5.6.1)

In this equation, y0 is the experimental value of y from which the concentration
value x0 is to be determined, is the estimated standard deviation of x0, and the
other symbols have their usual meanings. In some cases an analyst may make several
readings to obtain the value of y0: if there are m such readings, then the equation for

becomes:

(5.6.2)

As expected, Eq. (5.6.2) becomes the same as Eq. (5.6.1) if m � 1. Confidence limits
can be calculated as , with (n � 2) degrees of freedom. Again, a simple
computer program will perform all these calculations, but most calculators will not
be adequate.

x0 ; t(n-2)sx0

sx0
=

sy>x

b Q
1
m

+

1
n

+

(y0 - y)2

b2
a

i
(xi - x)2

sx0

sx0

sx0
=

sy>x

b Q
1 +

1
n

+

(y0 - y)2

b2
a

i
(xi - x)2

Example 5.6.1

Using the data from Example 5.3.1, determine x0- and -values and x0
confidence limits for solutions with fluorescence intensities of 2.9, 13.5 and
23.0 units.

The x0-values are easily calculated by using the regression equation determined
in Section 5.4, y � 1.93x � 1.52. Substituting the y0-values 2.9, 13.5 and 23.0,
we obtain x0-values of 0.72, 6.21 and 11.13 pg ml-1 respectively.

To obtain the -values corresponding to these x0-values we use Eq. (5.6.1), 
recalling from the preceding sections that n � 7, b � 1.93, sy/x � 0.4329, 

� 13.1 and . The y0-values 2.9, 13.5 and 23.0 then yield 

-values of 0.26, 0.24 and 0.26 respectively. The corresponding 95% confi-
dence limits (t5 � 2.57) are 0.72 ; 0.68, 6.21 ; 0.62 and 11.13 ; 0.68 pg ml-1

respectively.

sx0

a
i

(xi - x)2
= 112y

sx0

sx0

This example illustrates an important point. Although the confidence limits 
for the three concentrations are similar (we expect this, as we have used an 
unweighted regression calculation), the limits are rather smaller (i.e. better) for the
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Figure 5.6 General form of the confidence limits for a concentration determined by using an
unweighted regression line.

result y0 � 13.5 than for the other two y0-values. Inspection of Eq. (5.6.1) confirms
that as y0 approaches , the third term inside the bracket approaches zero, and 
thus approaches a minimum value. The general form of the confidence limits for a
calculated concentration is shown in Fig. 5.6. Thus in a practice a calibration exper-
iment of this type will give the most precise results when the measured instrument
signal corresponds to a point close to the centroid of the regression line.

If we wish to improve (i.e. narrow) the confidence limits in this calibration experi-
ment, Eqs (5.6.1) and (5.6.2) show that at least two approaches should be consid-
ered. We could increase n, the number of calibration points on the regression line,
and/or we could make more than one measurement of y0, using the mean value of m
such measurements in the calculation of x0. The results of these approaches can be
assessed by considering the three terms inside the brackets in the two equations. In
the example above, the dominant term in all three calculations is the first one –
unity. It follows that in this case (and many others) an improvement in precision
might be made by measuring y0 several times and using Eq. (5.6.2) rather than Eq.
(5.6.1). If, for example, the y0-value of 13.5 had been calculated as the mean of four
determinations, then the -value and the confidence limits would have been 0.14
and 6.21 ; 0.36 respectively, both results showing much improved precision. Of
course, making too many replicate measurements (assuming that sufficient sample
is available) generates much more work for only a small additional benefit: the
reader should verify that eight measurements of y0 would produce an -value of
0.12 and confidence limits of 6.21 ; 0.30.

The effect of n, the number of calibration points, on the confidence limits of 
the concentration determination is more complex. This is because we also have to
take into account accompanying changes in the value of t. Use of a large number of
calibration samples involves the task of preparing many accurate standards for only
marginally increased precision (cf. the effects of increasing m described in the previous
paragraph). On the other hand, small values of n are not permissible. In such cases
1/n will be larger and the number of degrees of freedom, (n � 2), will become very
small, necessitating the use of very large t-values in the calculation of the confidence

sx 0

sx0

sx0
y



 

124 5: Calibration methods in instrumental analysis: regression and correlation

limits. As in the example above, six or so calibration points will be adequate in many
experiments, the analyst gaining extra precision if necessary by repeated measure-
ments of y0. If considerations of cost, time or availability of standards or samples
limit the total number of experiments that can be performed, i.e. if m � n is fixed,
then it is worth recalling that the last term in Eq. (5.6.2) is often very small, so it is
crucial to minimise (1/m � 1/n). This is achieved by making m � n.

An entirely distinct approach to estimating uses control chart principles (see
Chapter 4). We have seen that these charts can be used to monitor the quality of lab-
oratory methods used repeatedly over a period of time, and this chapter has shown
that a single calibration line can in principle be used for many individual analyses.
It thus seems natural to combine these two ideas, and to use control charts to mon-
itor the performance of a calibration experiment, while at the same time obtaining
estimates of . The procedure recommended by the ISO involves the use of q (�2 or 3)
standards or reference materials, which need not be (and perhaps ought not to be)
from among those used to set up the calibration graph. These standards are mea-
sured at regular time intervals and the calibration graph is used to estimate their analyte
content in the normal way. The differences, d, between these estimated concentra-
tions and the known concentrations of the standards are plotted on a Shewhart type
control chart, the upper and lower control limits of which are given by 0 ; (tsy/x/b).
Here sy/x and b have their usual meanings as characteristics of the calibration line,
while t has (n � 2) degrees of freedom, or (nk � 2) degrees of freedom if each of the
original calibration standards was measured k times to set up the calibration graph.
For a confidence level of a (commonly a � 0.05), the two-tailed value of t at the 
(1�a/2q) level is used. If any point derived from the monitoring standard materials
falls outside the control limits, the analytical process is probably out of control, and
may need further examination before it can be used again. Moreover, if the values of
d for the lowest concentration monitoring standard, measured J times over a period,
are called dl1, dl2, . . ., dlJ, and the corresponding values for the highest monitoring stan-
dards are called dq1, dq2, . . ., dqJ, then is given by:

(5.6.3)

Strictly speaking this equation estimates for the concentrations of the highest
and lowest monitoring reference materials, so the estimate is a little pessimistic for
concentrations between those extremes (see Fig. 5.6). As usual the -value can be
converted to a confidence interval by multiplying by t, which in this case has 2J
degrees of freedom.

5.7 Limits of detection

As we have seen, one of the principal benefits of using instrumental methods of
analysis is that they are capable of detecting and determining trace and ultra-trace
quantities of analytes. These benefits have led to the appreciation of the importance

sx 0

sx 0

sx0
= J a

J

j=1
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Figure 5.7 Definitions of the limit of decision and the limit of detection.

of very low concentrations of many materials, for example in biological and envi-
ronmental samples, and thus to the development of many further techniques in
which ever-lower limits of detection become available. Statistical methods for assess-
ing and comparing limits of detection are therefore important. In general terms, the
limit of detection of an analyte may be described as that concentration which gives
an instrument signal (y) significantly different from the ‘blank’ or ‘background’ signal.
This description gives the analyst a good deal of freedom to decide the exact defini-
tion of the limit of detection, based on a suitable interpretation of the phrase ‘signif-
icantly different’. There is still no full agreement between researchers, publishers,
and professional and statutory bodies on this point. But there is an increasing trend
to define the limit of detection as the analyte concentration giving a signal equal to
the blank signal, yB, plus three standard deviations of the blank, sB:

(5.7.1)

The significance of this last definition is illustrated in more detail in Fig. 5.7. An an-
alyst studying trace concentrations is confronted with two problems: it is important
to avoid claiming the presence of the analyte when it is actually absent, but it is
equally important to avoid reporting that the analyte is absent when it is in fact
present. (The situation is analogous to the occurrence of Type I and Type II errors in
significance tests – see Section 3.13.) The possibility of each of these errors must be
minimised by a sensible definition of a limit of detection. In the figure, curve A rep-
resents the normal distribution of measured values of the blank signal. It would be
possible to identify a point, y � P, towards the upper edge of this distribution, and
claim that a signal greater than this was unlikely to be due to the blank (Fig. 5.7),
whereas a signal less than P would be assumed to indicate a blank sample. However,
for a sample giving an average signal P, 50% of the observed signals will be less than
this, since the signal will have a normal distribution (of the same shape as that for
the blank – see below) extending below P (curve B). The probability of concluding
that this sample does not differ from the blank when in fact it does is therefore 50%.
Point P, which has been called the limit of decision, is thus unsatisfactory as a limit
of detection, since it solves the first of the problems mentioned above, but not the
second. A more suitable point is at y � Q (Fig. 5.7), such that Q is twice as far as P

Limit of detection = yB + 3sB
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from yB. It may be shown that if the distance from yB to Q in the x-direction is 3.28
times the standard deviation of the blank, sB, then the probability of each of the two
kinds of error occurring (indicated by the shaded areas in Fig. 5.7) is only 5%. If, as
suggested by Eq. (5.7.1), the distance from yB to Q is only 3sB, the probability of each
error is about 7%: many analysts would consider that this is a reasonable definition
of a limit of detection.

It must be re-emphasised that this definition of a limit of detection is quite arbi-
trary, and it is entirely open to an analyst to provide an alternative definition for a
particular purpose. For example, there may be occasions when an analyst is anxious
to avoid at all costs the possibility of reporting the absence of the analyte when it is
in fact present, but is relatively unworried about the opposite error. Evidently when-
ever a limit of detection is cited in a paper or report, the definition used to calculate
it must also be provided. Some attempts have been made to define a further limit,
the limit of quantitation (or limit of determination), which is regarded as the
lower limit for precise quantitative measurements, as opposed to qualitative
detection. A value of yB � 10sB has been suggested for this limit.

We must now discuss how the terms yB and sB are found when a regression line is
used for calibration as described in the preceding sections. A fundamental assump-
tion of the unweighted least-squares method is that each point on the plot (includ-
ing the point representing the blank or background) has a normally distributed
variation (in the y-direction only) with a standard deviation estimated by sy/x
(Eq. (5.5.1)). This is the justification for drawing the normal distribution curves with
the same width in Fig. 5.7. It is therefore appropriate to use sy/x in place of sB in the
estimation of the limit of detection. It is, of course, possible to perform the blank ex-
periment several times and obtain an independent value for sB, and if our underly-
ing assumptions are correct these two methods of estimating sB should not differ
significantly. But multiple determinations of the blank are time-consuming and the
use of sy/x is quite suitable in practice. The value of a, the calculated intercept, can be
used as an estimate of yB, the blank signal itself; it should be a more accurate esti-
mate of yB than the single measured blank value, yl.

Example 5.7.1

Estimate the limit of detection for the fluorescein determination studied in the
previous sections.

We use Eq. (5.7.1) with the values of yB (�a) and sB (�sy/x) previously calculated.
The value of y at the limit of detection (L.o.d.) is found to be 1.52 � (3 �

0.4329), i.e. 2.82. Use of the regression equation then yields a detection limit 
of 0.67 pg ml-1. Figure 5.8 summarises all the calculations performed on the 
fluorescein determination data.

It is important to avoid confusing the limit of detection of a technique with its sen-
sitivity. This very common source of confusion probably arises because there is no
single and generally accepted English word synonymous with ‘having a low limit of
detection’. The word ‘sensitive’ is generally used for this purpose, giving rise to
much ambiguity. The sensitivity of a technique is correctly defined as the slope of
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b = 1.93 ± 0.04
r = 0.9989
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Figure 5.8 Summary of the calculations using the data in Example 5.3.1.

the calibration graph and, provided the plot is linear, can be measured at any point
on it. In contrast, the limit of detection of a method is calculated with the aid of the
section of the plot close to the origin, and utilises both the slope and the intercept.

5.8 The method of standard additions

Suppose that we wish to determine the concentration of silver in samples of photo-
graphic waste by atomic-absorption spectrometry. Using the methods of the previ-
ous sections, an analyst could calibrate the spectrometer with some aqueous
solutions of a pure silver salt and use the resulting calibration graph in the determi-
nation of the silver in the test samples. This method is valid, however, only if a pure
aqueous solution of silver and a photographic waste sample containing the same
concentration of silver give the same absorbance values. In other words, in using
pure solutions to establish the calibration graph it is assumed that there is no reduc-
tion (or enhancement) of the silver absorbance signal by other sample components.
In many areas of analysis this assumption is often invalid. Matrix effects of this type
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Figure 5.9 The method of standard additions (see text for details).

occur even with methods such as plasma spectrometry which have a reputation
for being relatively free from interferences. Such effects are normally propor-
tional to the analyte signal, and are hence often called proportional effects. Since
they result in a change of the slope of the calibration graph, they are also called
rotational effects.

The first possible solution to this problem might be to make up the calibration
standards in a matrix that is similar to the test sample but free of the analyte. Thus
in the example given above we might try to take a sample of photographic waste
that is similar to the test sample, but free from silver, and add known amounts of a
silver salt to it to make up the standard solutions. The calibration graph will then be
set up using an apparently suitable matrix. In many cases, however, this matrix
matching approach is impracticable. It will not eliminate matrix effects that differ in
magnitude from one sample to another, and it may not be possible even to obtain a
sample of the matrix that contains no analyte – for example a silver-free sample of
photographic waste is unlikely to occur!

A better solution to the problem is that all the analytical measurements, includ-
ing the establishment of the calibration graph, must in some way be performed
using the sample itself. This is achieved in practice by using the method of standard
additions. The method is widely practised in atomic-absorption and emission spec-
trometry and has also been applied in electrochemical analysis and many other
areas. Equal volumes of the sample solution are taken, each is separately ‘spiked’
with known and different amounts of the analyte, and all are then diluted to the
same volume. The instrument signals are then determined for all these solutions
and the results plotted as shown in Fig. 5.9. As usual, the signal is plotted on the y-
axis; in this case the x-axis is graduated in terms of the amounts of analyte added
(either as an absolute weight or as a concentration). The (unweighted) regression
line is calculated in the normal way, but space is provided for it to be extrapolated
to the point on the x-axis at which y � 0. This negative intercept on the x-axis cor-
responds to the amount of the analyte in the test sample. Simple geometry shows
that this value is given by a/b, the ratio of the intercept and the slope of the regres-
sion line. Since both a and b are subject to error (Section 5.5) the calculated concen-
tration is clearly subject to error as well. However, this concentration is not
predicted from a single measured value of y, so the formula for the standard
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deviation, , of the extrapolated x-value (xE) is not the same as that in Eq. (5.6.1). 
Instead we use:

(5.8.1)

Confidence limits for xE can as before be determined as xE ; t(n�2) . Increasing the
value of n again improves the precision of the estimated concentration: in general
at least six points should be used in a standard-additions experiment. Moreover,
the precision is improved by maximising , so the calibration solutions 

should, if possible, cover a considerable range. To extend this principle, it can be
argued that instead of using six separate calibration standards (the points marked •
in Fig. 5.9), it is better to make (say) three measurements on the original sample, i.e.
with no added analyte, and three replicate measurements on a spiked sample con-
taining a substantial amount of added analyte (the points marked � in Fig. 5.9). The
latter approach also significantly reduces the work involved in preparing the calibra-
tion graph for each sample (see below). It gives no information on, or confirmation
of, the linear response of the system over the range of the graph, but in practice the
prior validation of the method (see Section 4.15) will have established this linearity.
(If the response of the system is non-linear, the extrapolation involved in the stan-
dard additions method is problematic, to say the least.) Provided that linearity has
been demonstrated it has been suggested that the single spiked sample should have
an analyte level at least five times that of the test sample. In all standard additions
experiments the added analyte must obviously be in the same chemical form as the
analyte in the test sample: thus, in analysis of Fe(III) ion levels in a material, the
added iron must be in the form of Fe(III) ions, not Fe(II) ions or an Fe(III) complex.
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Example 5.8.1

The silver concentration in a sample of photographic waste was determined by
atomic-absorption spectrometry with the method of standard additions. The
following results were obtained.

Added Ag: �g added per ml 
of original sample solution 0 5 10 15 20 25 30

Absorbance 0.32 0.41 0.52 0.60 0.70 0.77 0.89

Determine the concentration of silver in the sample, and obtain 95% confi-
dence limits for this concentration.

Equations (5.4.1) and (5.4.2) yield a � 0.3218 and b � 0.0186. The ratio of
these figures gives the silver concentration in the test sample as 17.3 �g ml-1.
The confidence limits for this result can be determined with the aid of 
Eq. (5.8.1). Here sy/x is 0.01094, � 0.6014 and . The value a

i
(xi - x)2

= 700y

of is thus 0.749 and the confidence limits are 17.3 � 2.57 � 0.749, i.e. 17.3 ;
1.9 �g ml-1.

sxE
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Although it is an elegant approach to the common problem of matrix interference
effects, the method of standard additions has a number of disadvantages. The principal
one is that each test sample requires its own calibration graph, in contrast to conven-
tional calibration experiments, where one graph can provide concentration values for
many test samples. As well as requiring more effort for this reason, the standard addi-
tions method may also use larger quantities of sample than other methods. Moreover
the interference in the measurements may be of a different type, i.e. when another
component of the matrix affects the analyte signal by a fixed amount at all analyte con-
centrations. These so-called translational or baseline interferences (which may occur
alongside other rotational interferences) do not affect the slope of a calibration graph,
but simply shift the whole graph in the y-direction. In such cases the standard addi-
tions approach described above provides no correction (though more advanced meth-
ods do). Baseline interferences must usually be corrected quite separately, for example
by comparing the results with those obtained using an entirely different method.

In statistical terms the standard additions approach is an extrapolation method,
and although it is difficult to formulate a model that would allow exact comparisons
it seems that it should in principle be less precise than interpolation techniques. In
practice, the loss of precision is not very serious.

5.9 Use of regression lines for comparing analytical methods

If an analytical chemist develops a new method for the determination of a particular
analyte, the method must be validated by (amongst other techniques) applying it to
a series of materials already studied using another reputable or standard procedure.
The main aim of such a comparison will be the identification of systematic errors –
does the new method give results that are significantly higher or lower than the
established procedure? In cases where an analysis is repeated several times over a
very limited concentration range, such a comparison can be made using the statisti-
cal tests described in Sections 3.2 and 3.3. Such procedures will not be appropriate in
instrumental analyses, which are often used over large concentration ranges.

When two methods are to be compared over a range of different analyte concen-
trations the procedure illustrated in Fig. 5.10 is normally adopted. One axis of a re-
gression graph is used for the results obtained by the new method, and the other
axis for the results obtained by applying the reference or comparison method to the
same samples. (The question of which axis should be allocated to each method is
further discussed below.) Each point on the graph thus represents a single sample
analysed by the two separate methods. (Sometimes each method is applied just once
to each test sample, while in other cases replicate measurements are used in the
comparisons.) The methods of the preceding sections are then applied to calculate
the slope (b), the intercept (a) and the product–moment correlation coefficient (r) of
the regression line. Clearly if each sample yields an identical result with both analyt-
ical methods the regression line will have a zero intercept, a slope of 1 and a correla-
tion coefficient of 1 (Fig. 5.10a). In practice this never occurs: even if systematic
errors are entirely absent, random errors ensure that the two analytical procedures
will not give results in exact agreement for all the samples.

Deviations from the ‘ideal’ situation (a � 0, b � r � 1) can occur in a number of dif-
ferent ways. First, it is possible that the regression line will have a slope of 1, but a
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Figure 5.10 Use of a regression line to compare two analytical methods: (a) shows perfect
agreement between the two methods for all the samples; (b)–(f) illustrate the results of various
types of systematic error (see text).

non-zero intercept. That is, one method of analysis may yield a result higher or lower
than the other by a fixed amount. Such an error might occur if the background signal
for one of the methods was wrongly calculated (Fig. 5.10b). A second possibility is
that the slope of the regression line is 	1 or 
1, indicating that a systematic error may
be occurring in the slope of one of the individual calibration plots (Fig. 5.10c). These
two errors may occur simultaneously (Fig. 5.10d). Further possible types of systematic
error are revealed if the plot is curved (Fig. 5.10e). Speciation problems may give
surprising results (Fig. 5.10f). This last type of plot might arise if an analyte occurred
in two chemically distinct forms, the proportions of which varied from sample to
sample. One of the methods under study (here plotted on the y-axis) might detect
only one form of the analyte, while the second method detected both forms.

In practice, the analyst most commonly wishes to test for an intercept differing
significantly from zero, and a slope differing significantly from 1. Such tests are per-
formed by determining the confidence limits for a and b, generally at the 95% sig-
nificance level. The calculation is very similar to that described in Section 5.5, and is
most simply performed by using a program such as Excel®. This spreadsheet is 
applied to the following example.

Example 5.9.1

The level of phytic acid in 20 urine samples was determined by a new cata-
lytic fluorimetric (CF) method, and the results were compared with those
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Sample number CF result EP result

1 1.87 1.98
2 2.20 2.31
3 3.15 3.29
4 3.42 3.56
5 1.10 1.23
6 1.41 1.57
7 1.84 2.05
8 0.68 0.66
9 0.27 0.31

10 2.80 2.82
11 0.14 0.13
12 3.20 3.15
13 2.70 2.72
14 2.43 2.31
15 1.78 1.92
16 1.53 1.56
17 0.84 0.94
18 2.21 2.27
19 3.10 3.17
20 2.34 2.36

obtained using an established extraction photometric (EP) technique. The
following data were obtained (all the results, in mg l-1, are means of tripli-
cate measurements).

(March, J.G., Simonet, B.M. and Grases, F., 1999, Analyst, 124: 897)

This set of data shows why it is inappropriate to use the paired t-test, which
evaluates the differences between the pairs of results, in such cases (Section 3.3).
The range of phytic acid concentrations (ca. 0.14–3.50 mg l-1) in the urine
samples is so large that a fixed discrepancy between the two methods will be of
varying significance at different concentrations. Thus a difference between the
two techniques of 0.05 mg l-1 would not be of great concern at a level of ca.
3.50 mg l-1, but would be more disturbing at the lower end of the concentra-
tion range.

Table 5.1 shows the summary output of the Excel® spreadsheet used to calculate
the regression line for the above data. The CF data have been plotted on the 
y-axis, and the EP results on the x-axis (see below). The output shows that the 
r-value (called ‘Multiple R’ by this program because of its potential application
to multiple regression methods) is 0.9966. The intercept is �0.0497, with upper
and lower confidence limits of �0.1399 and �0.0404: this range includes the
ideal value of zero. The slope of the graph, called ‘X variable 1’ because b is the
coefficient of the x-term in Eq. (5.2.1), is 0.9924, with a 95% confidence inter-
val of 0.9521–1.0328: again this range includes the model value, in this case
1.0. (The remaining output data are not needed in this example, and are dis-
cussed further in Section 5.11.) Figure 5.11 shows the regression line with the
characteristics summarised above.
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Figure 5.11 Comparison of two analytical methods: data from Example 5.9.1.

Table 5.1 Excel output for Example 5.9.1

Regression statistics

Multiple R 0.9966
R square 0.9933
Adjusted R square 0.9929
Standard error 0.0829
Observations 20

ANOVA
df SS MS F Significance F

Regression 1 18.341 18.341 2670.439 5.02965E-21
Residual 18 0.124 0.007
Total 19 18.465

Coefficients Standard t stat P-value
error

Intercept -0.0497 0.0429 -1.158 0.262
X variable 1 0.9924 0.0192 51.676 5.03E-21

Lower 95% Upper 95%

Intercept -0.1399 0.0404
X variable 1 0.9521 1.0328

Two further points are important in connection with this example. First, the litera-
ture of analytical chemistry shows that authors frequently place great stress on the
value of the correlation coefficient in such comparative studies. In the above exam-
ple, however, this coefficient played no direct role in establishing whether or not
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systematic errors had occurred. Even if the regression line had been slightly curved,
the correlation coefficient might still have been close to 1 (cf. Section 5.3 above).
This means that the calculation of r is less important in the present context than the
establishment of confidence limits for the slope and the intercept. In some cases it
may be found that the r-value is not very close to 1, even though the slope and the
intercept are not significantly different from 1 and 0 respectively. Such a result
would suggest very poor precision for either one or both of the methods under
study. The precisions of the two methods can be determined and compared using the
methods of Chapters 2 and 3. In practice it is desirable that this should be done before
the regression line comparing the methods is plotted – the reason for this is explained
below. The second point to note is that it is desirable to compare the methods over
the full range of concentrations, as in the example given where the urine samples
examined contained phytic acid concentrations that covered the range of interest
fairly uniformly.

Although very widely adopted in comparative studies of instrumental methods,
the approach described here is open to some theoretical objections. First, as has been
emphasised throughout this chapter, the line of regression of y on x is calculated on
the assumption that the errors in the x-values are negligible – all errors are assumed
to occur in the y-direction. While generally valid in a calibration plot for a single an-
alyte, this assumption is evidently not justified when the regression line is used for
comparison purposes: it is certain that random errors will occur in both analytical
methods, i.e. in both the x- and y-directions. Thus the equations used to calculate the
regression line are not really valid for this application. However the regression
method is still widely used, as the graphs obtained provide valuable information on
the nature of any differences between the methods (Fig. 5.10). Simulations show,
moreover, that the approach does give surprisingly acceptable results, provided that
the more precise method is plotted on the x-axis (this is why we investigate the
precisions of the two methods – see above), and that a reasonable number of points
(ca. ten at least) uniformly covering the concentration range of interest is used. Since
the confidence limit calculations are based on (n – 2) degrees of freedom, it is partic-
ularly important to avoid small values of n.

A second objection to using the line of regression of y on x, as calculated in Sec-
tions 5.4 and 5.5, in the comparison of two analytical methods is that it also assumes
that the error in the y-values is constant. Such data are said to be homoscedastic. As
previously noted, this means that all the points have equal weight when the slope
and intercept of the line are calculated. This assumption is obviously likely to be 
invalid in practice. In many analyses, the data are heteroscedastic, i.e. the standard
deviation of the y-values increases with the concentration of the analyte, rather than
having the same value at all concentrations (see below). This objection to the use of
unweighted regression lines also applies to calibration plots for a single analytical
procedure. In principle weighted regression lines should be used instead, as shown
in the next section.

Both these problems are overcome by the use of a technique known as functional
relationship estimation by maximum likelihood (FREML). This calculation can be
applied both to the comparison of analytical methods as discussed in this section,
and to conventional calibration graphs in instrumental analyses if the assumption
that the x-direction errors are negligible compared with the y-direction ones is
not justifiable. The latter situation can arise in at least two ways. If solid reference ma-
terials are used for the calibration standards, they are quite likely to be heterogeneous,
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so x-direction errors may be significant. In other cases, the opposite situation occurs, i.e.
the y-direction errors are so small that they become comparable with the x-direction
ones. Such data may occur in the use of highly automated flow analysis methods, such
as flow injection analysis or high-performance liquid chromatography. The FREML
method provides for both y- and x-direction errors. It assumes that the errors in the
two directions are normally distributed, but that they may have unequal variances,
and it minimises the sums of the squares of both the x- and y-residuals, divided by the
corresponding variances. This result cannot be obtained by the simple calculation
used when only y-direction errors are considered, but requires an iterative method,
which can be implemented using, for example, a macro for Minitab® (see Bibliography).
The method is reversible (i.e. in a method comparison it does not matter which method
is plotted on the x-axis and which on the y-axis) and can also be used in weighted
regression calculations (see Section 5.10).

5.10 Weighted regression lines

In this section the application of weighted regression methods is outlined. It is as-
sumed that the weighted regression line is to be used for the determination of a single
analyte rather than for the comparison of two separate methods. In any calibration
analysis the overall random error of the result will arise from a combination of the
error contributions from the several stages of the analysis (cf. Section 2.11). In some
cases this overall error will be dominated by one or more steps in the analysis
where the random error is not concentration-dependent. Such errors will also occur
in the ‘blank’ calibration solution and can be regarded as baseline errors (as such
they are related to limits of detection; see Section 5.7). In such cases we shall expect
the y-direction errors in the calibration curve to be approximately equal for all the
points (homoscedasticity), and an unweighted regression calculation is legitimate.
In many calibration experiments there will also be errors that are approximately pro-
portional to the analyte concentration: if these are predominant the relative error
will be roughly constant. In the most common situation, both types of error will
occur, with the result that the y-direction error will increase as x increases, but less
rapidly than the concentration. Both these types of heteroscedastic data should be
treated by weighted regression methods. Usually an analyst can only learn from ex-
perience whether weighted or unweighted methods are appropriate. Predictions are
difficult: examples abound where two apparently similar methods show very differ-
ent error behaviour. Weighted regression calculations are rather more complex than
unweighted ones, and they require more information (or the use of more assump-
tions). Nonetheless they should be used whenever heteroscedasticity is suspected,
and they are now more widely applied than formerly, partly as a result of pressure
from regulatory authorities in the pharmaceutical industry and elsewhere.

Figure 5.12 shows – perhaps with some exaggeration! – the situation that arises when
the y-direction error in a regression calculation gets larger as the concentration in-
creases. The regression line must be calculated to give additional weight to those points
where the error bars are smallest, i.e. it is more important for the calculated line to pass
close to such points than to pass close to the points representing higher concentrations
with the largest errors. This result is achieved by giving each point a weighting inversely
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Figure 5.12 The weighting of errors in a regression calculation.

proportional to the corresponding y-direction variance, si
2. If the individual points are

denoted by (x1, y1), (x2, y2), etc. as usual, and the corresponding standard deviations are
s1, s2, etc., then the individual weights, w1, w2, etc., are given by:

(5.10.1)

By using the n divisor in the denominator of the equation the weights have been
scaled so that their sum is equal to the number of points on the graph: this simpli-
fies the subsequent calculations. The slope and the intercept of the recession line are
then given by:

(5.10.2)

and

(5.10.3)

In these equations and represent the co-ordinates of the weighted centroid,
through which the weighted regression line must pass. These co-ordinates are given
as expected by and .yw = a
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Example 5.10.1

Calculate the unweighted and weighted regression lines for the following cali-
bration data. For each line calculate also the concentrations of test samples
with absorbances of 0.100 and 0.600.
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Application of Eqs (5.4.1) and (5.4.2) shows that the slope and intercept of the
unweighted regression line are respectively 0.0725 and 0.0133. The concentra-
tions corresponding to absorbances of 0.100 and 0.600 are then found to be
1.20 and 8.09 �g ml-1 respectively.

The weighted regression line is a little harder to calculate: in the absence of a
suitable computer program it is usual to set up a table as follows.

Concentration, µg ml-1 0 2 4 6 8 10

Absorbance 0.009 0.158 0.301 0.472 0.577 0.739
Standard deviation 0.001 0.004 0.010 0.013 0.017 0.022

xi yi si 1/si2 wi wixi wiyi wixiyi wixi2

0 0.009 0.001 106 5.535 0 0.0498 0 0
2 0.158 0.004 62 500 0.346 0.692 0.0547 0.1093 1.384
4 0.301 0.010 10 000 0.055 0.220 0.0166 0.0662 0.880
6 0.472 0.013 5 917 0.033 0.198 0.0156 0.0935 1.188
8 0.577 0.017 3 460 0.019 0.152 0.0110 0.0877 1.216

10 0.739 0.022 2 066 0.011 0.110 0.0081 0.0813 1.100

Sums 1 083943 5.999 1.372 0.1558 0.4380 5.768

These figures give , and . By
Eq. (5.10.2), bw is calculated from

so aw is given by 0.0260 � (0.0738 � 0.229) � 0.0091.
These values for aw and bw can be used to show that absorbance values of 0.100

and 0.600 correspond to concentrations of 1.23 and 8.01 �g ml-1 respectively.

bw =

0.438 - (6 * 0.229 * 0.026)

5.768 - 36 * (0.229)24
= 0.0738

xw = 1.372>6 = 0.229yw = 0.1558>6 = 0.0260

Comparison of the results of the unweighted and weighted regression calculations
is very instructive. The effects of the weighting process are clear. The weighted cen-
troid is much closer to the origin of the graph than the unweighted centroid

and the weighting given to the points nearer the origin (particularly to the first
point (0, 0.009) which has the smallest error) ensures that the weighted regression
line has an intercept very close to this point. The slope and intercept of the weighted
line are remarkably similar to those of the unweighted line, however, with the result
that the two methods give very similar values for the concentrations of samples hav-
ing absorbances of 0.100 and 0.600. This is not simply because in this example the
experimental points fit a straight line very well. In practice the weighted and un-
weighted regression lines derived from a set of calibration data have similar slopes
and intercepts even if the scatter of the points about the line is substantial.

(x, y)
(xw, yw)
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It thus seems on the face of it that weighted regression calculations have little
value. They require more information (in the form of estimates of the standard devi-
ation at various points on the graph), and are significantly more complex to execute,
but they seem to provide results very similar to those obtained from the simpler
unweighted regression method. This feeling may indeed account for some of the
neglect of weighted regression calculations in practice. But we do not employ regres-
sion calculations simply to determine the slope and intercept of the calibration plot
and the concentrations of test samples. There is also a need to obtain estimates of
the errors or confidence limits of those concentrations, and it is here that the
weighted regression method provides much more realistic results. In Section 5.6 we
used Eq. (5.6.1) to estimate the standard deviation and hence the confidence
limits of a concentration calculated using a single y-value and an unweighted regres-
sion line. If we apply this equation to the data in the example above we find that the
unweighted confidence limits for the solutions having absorbances of 0.100 and
0.600 are 1.20 ; 0.65 and 8.09 ; 0.63 �g ml-1 respectively. As in Example 5.6.1,
these confidence intervals are very similar. In the present example, however, such a
result is entirely unrealistic. The experimental data show that the errors of the ob-
served y-values increase as y itself increases, as expected for a method with a roughly
constant relative standard deviation. We would expect that this increase in si with
increasing y would also be reflected in the confidence limits of the determined con-
centrations: the confidence limits for the solution with an absorbance of 0.600
should be much greater (i.e. worse) than those for the solution with an absorbance
of 0.100.

In weighted recession calculations, the standard deviation of a predicted concen-
tration is given by

(5.10.4)

In this equation, s(y/x)w is given by:

(5.10.5)

and w0 is a weighting appropriate to the value of y0. Equations (5.10.4) and (5.10.5)
are clearly similar in form to Eqs (5.6.1) and (5.5.1). Equation (5.10.4) confirms that
points close to the origin, where the weights are highest, and points near the cen-
troid, where (y0 � ) is small, will have the narrowest confidence limits (Fig. 5.13).
The major difference between Eqs (5.6.1) and (5.10.4) is the term 1/w0 in the latter.
Since w0 falls significantly as y increases, this term ensures that the confidence lim-
its increase with increasing y0, as we expect.
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Applying Eq. (5.10.4) to the above example above we find that the test samples
with absorbance of 0.100 and 0.600 have confidence limits for the calculated con-
centrations of 1.23 ; 0.12 and 8.01 ; 0.72 �g ml-1 respectively: these confidence
intervals are, as expected, proportional in size to the observed absorbances of the
two solutions. The confidence interval for the less concentrated of the two samples
is much smaller than in the unweighted regression calculation. By contrast the con-
fidence limits for the higher of the two concentrations are quite similar in the un-
weighted and weighted calculations. This emphasises the particular importance of
using weighted regression when the results of interest include those at low concen-
trations. Similarly detection limits may be more realistically assessed using the inter-
cept and standard deviation obtained from a weighted regression graph. All these
results accord much more closely with the reality of such a calibration experiment
than do the results of the unweighted regression calculation.

Weighted regression calculations can also be applied in standard additions experi-
ments. The equation for the standard deviation of a concentration obtained from a
weighted standard additions calibration graph is:

(5.10.6)

In addition, weighted regression methods may be essential when a straight line graph
is obtained by algebraic transformations of an intrinsically curved plot (see below,
Section 5.13). Computer programs for weighted regression calculations are available,
mainly through the more advanced statistical software products, and this should
encourage the more widespread use of this method.
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Figure 5.13 General form of the confidence limits for a concentration determined using a
weighted regression line.
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5.11 Intersection of two straight lines

A number of problems in analytical science are solved by plotting two straight line
graphs from the experimental data and determining the point of their intersection.
Common examples include potentiometric and conductimetric titrations, the deter-
mination of the composition of metal–chelate complexes, and studies of ligand–
protein and similar bio-specific binding interactions. If the equations of the two
(unweighted) straight lines, y1 � a1 � b1x1 and y2 � a2 � b2x2 (with n1 and n2 points 
respectively) are known, then the x-value of their intersection, xI, is easily shown to
be given by:

(5.11.1)

where Δa � a1 – a2 and Δb � b1 – b2. Confidence limits for this xI value are given by
the two roots of the following quadratic equation:

(5.11.2)

The value of t used in this equation is chosen at the appropriate P-level and at 
n1 � n2 � 4 degrees of freedom. The standard deviations in Eq. (5.11.2) are calcu-
lated on the assumption that the sy/x values for the two lines, s(y/x)1 and s(y/x)2 are suf-
ficiently similar to be pooled using an equation analogous to Eq. (3.3.1):

(5.11.3)

After this pooling process we can write:

(5.11.4)

(5.11.5)

(5.11.6)

These equations seem formidable, but if a spreadsheet such as Excel® is used to
obtain the equations of the two lines, the point of intersection can be determined
at once. The sy/x values can then be pooled, , etc. calculated, and the confidenceS2
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limits found using the program’s equation-solving capabilities. Some dedicated sta-
tistics software packages also provide facilities for studying intersecting straight lines
and their associated errors and confidence limits.

5.12 ANOVA and regression calculations

When the least-squares criterion is used to determine the best straight line through a
single set of data points there is one unique solution, so the calculations involved are
relatively straightforward. However, when a curved calibration plot is calculated using
the same criterion this is no longer the case: a least-squares curve might be described
by polynomial functions such as (y � a � bx � cx2 � . . .) containing different num-
bers of terms, a logarithmic or exponential function, or in other ways. So we need a
method which helps us to choose the best way of plotting a curve from amongst the
many that are available. Analysis of variance (ANOVA) provides such a method in all
cases where we maintain the assumption that the errors occur only in the y-direction.
In such situations there are two sources of y-direction variation in a calibration plot.
The first is the variation due to regression, i.e. due to the relationship between the instru-
ment signal, y, and the analyte concentration, x. The second is the random experi-
mental error in the y-values, which is called the variation about regression. As we have
seen in Chapter 3, ANOVA is a powerful method for separating two sources of varia-
tion is such situations. In regression problems, the average of the y-values of the cali-
bration points, , is important in defining these sources of variation. Individual values
of yi differ from for the two reasons given above. ANOVA is applied to separating the
two sources of variation by using the relationship that the total sum of squares (SS)
about is equal to the SS due to regression plus the SS about regression:

(5.12.1)

The total sum of squares, i.e. the left-hand side of Eq. (5.12.1), is clearly fixed once
the experimental yi values have been determined. A line fitting these experimental
points closely will be obtained when the variation due to regression (the first term on
the right-hand side of Eq. (5.12.1) is as large as possible. The variation about regres-
sion (also called the residual SS as each component of the right-hand term in the
equation is a single residual) should be as small as possible. The method is quite gen-
eral and can be applied to straight line regression problems as well as to curvilinear
regression. Table 5.1 (see p. 133) shows the Excel® output for a linear plot used to com-
pare two analytical methods, including an ANOVA table set out in the usual way. The
total number of degrees of freedom (19 in that example) is, as usual, one less than the
number of measurements (20), as the y-residuals always add up to zero. For a straight
line graph we have to determine only one coefficient (b) for a term that also contains x,
so the number of degrees of freedom due to regression is 1. Thus there are (n � 2) � 18
degrees of freedom for the residual variation. The mean square (MS) values are deter-
mined as in previous ANOVA examples, and the F-test is applied to the two mean
squares as usual. The F-value obtained is very large, as there is an obvious relationship
between x and y, so the regression MS is much larger than the residual MS.
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The Excel® output also includes ‘multiple R�, which as previously noted is in this
case equal to the correlation coefficient, r, the standard error (�sy/x), and the further
terms ‘R square’ (R2) and ‘adjusted R square,’ usually abbreviated R�2. The two latter
statistics are given by Excel® as decimals, but are often given as percentages instead.
They are defined as follows:

(5.12.2)

(5.12.3)

In the case of a straight line graph, R2 is equal to r2, the square of the correlation co-
efficient, i.e. the square of ‘multiple R’. The applications of R2 and R�2 to problems of
curve-fitting will be discussed below.

5.13 Introduction to curvilinear regression methods

In many instrumental analysis methods the instrument response is proportional to
the analyte concentration over substantial concentration ranges. The simplified calcu-
lations that result encourage analysts to take significant experimental precautions to
achieve such linearity. Examples of such precautions include the control of the emis-
sion line width of a hollow-cathode lamp in atomic absorption spectrometry, and the
size and positioning of the sample cell to minimise inner filter artefacts in molecular
fluorescence spectrometry. However, many analytical methods (e.g. immunoassays
and similar competitive binding assays) produce calibration plots that are intrinsically
curved. Particularly common is the situation where the calibration plot is linear (or
approximately so) at low analyte concentrations, but becomes curved at higher ana-
lyte levels. When curved calibration plots are obtained we still need answers to the
questions listed in Section 5.2, but those questions will pose rather more formidable
statistical problems than occur in linear calibration experiments.

The first question to be examined is, how do we detect curvature in a calibration
plot? That is, how do we distinguish between a plot that is best fitted by a straight
line, and one that is best fitted by a gentle curve? Since the degree of curvature may
be small, and/or occur over only part of the plot, this is not a straightforward ques-
tion. Moreover, despite its widespread use for testing the goodness of fit of linear
graphs, the product–moment correlation coefficient (r) is of little value in testing for
curvature: we have seen (Section 5.3) that lines with obvious curvature may still give
very high r values. An analyst would naturally hope that any test for curvature could
be applied fairly easily in routine work without extensive calculations. Several such
tests are available, based on the use of the y-residuals on the calibration plot.

We have seen (Section 5.5) that a y-residual, , represents the difference be-
tween an experimental value of y and the -value calculated from the regression
equation at the same value of x. If a linear calibration plot is appropriate, and if the
random errors in the y-values are normally distributed, the residuals themselves
should be normally distributed about the value of zero. If this turns out not to be
true in practice, then we must suspect that the fitted regression line is not of the cor-
rect type. In the worked example given in Section 5.5 the y-residuals were shown to
be �0.58, �0.38, �0.24, �0.50, �0.34, �0.18 and �0.02. These values sum to zero

yN
yi - yN i

 R¿
2

= 1 - (residual MS/total MS) 

 R2
=  SS due to regression/total SS = 1 - (residual SS/total SS) 
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(allowing for possible rounding errors, this must always be true), and are approxi-
mately symmetrically distributed about 0. Although it is impossible to be certain, es-
pecially with such small numbers of data points, that these residuals are normally
distributed, there is certainly no contrary evidence in this case, i.e. no evidence to
support a non-linear calibration plot. As previously noted, Minitab®, Excel® and
other statistics packages provide extensive information, including graphical dis-
plays, on the sizes and distribution of residuals.

A second test uses the signs of the residuals given above. As we move along the
calibration plot, i.e. as x increases, positive and negative residuals will be expected to
occur in random order if the data are well fitted by a straight line. If, in contrast, we
attempt to fit a straight line to a series of points that actually lie on a smooth curve,
then the signs of the residuals will no longer have a random order, but will occur
in sequences of positive and negative values. Examining again the residuals given
above, we find that the order of signs is � - - - � � �. To test whether these se-
quences of � and - residuals indicate the need for a non-linear regression line, we
need to know the probability that such an order could occur by chance. Such calcu-
lations are described in the next chapter. Unfortunately the small number of data
points makes it quite likely that these and other sequences could indeed occur by
chance, so any conclusions drawn must be treated with caution. The choice between
straight line and curvilinear regression methods is therefore probably best made by
using the curve-fitting techniques outlined in the next section.

In the common situation where a calibration plot is linear at lower concentra-
tions and curved at higher ones, it is important to be able to establish the range over
which linearity can be assumed. Approaches to this problem are outlined in the fol-
lowing example.

Example 5.13.1

Investigate the linear calibration range of the following fluorescence experiment.

Fluorescence intensity 0.1 8.0 15.7 24.2 31.5 33.0
Concentration, �g ml-1 0 2 4 6 8 10

Inspection of the data shows that the part of the graph near the origin corre-
sponds rather closely to a straight line with a near-zero intercept and a slope of
about 4. The fluorescence of the 10 �g ml-1 standard solution is clearly lower
than would be expected on this basis, and there is some possibility that the de-
parture from linearity has also affected the fluorescence of the 8 �g ml-1 stan-
dard. We first apply (unweighted) linear regression calculations to all the data.
Application of the methods of Sections 5.3 and 5.4 gives the results a � 1.357, b �

3.479 and r � 0.9878. Again we recall that the high value for r may be deceptive,
though it may be used in a comparative sense (see below). The y-residuals are
found to be �1.257, �0.314, �0.429, �1.971, �2.314 and �3.143, with the sum
of squares of the residuals equal to 20.981. The trend in the values of the residu-
als suggests that the last value in the table is probably outside the linear range.

We confirm this suspicion by applying the linear regression equations to the
first five points only. This gives a � 0.100, b � 3.950 and r � 0.9998. These slope
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Figure 5.14 Curvilinear regression: identification of the linear range. The data in Example
5.13.1 are used; the unweighted linear regression lines through all the points (—), through
the first five points ( ) and through the first four points only (....) are shown.

and intercept values are much closer to those expected for the part of the graph
closest to the origin, and the r-value is higher than in the first calculation. The
residuals of the first five points from this second regression equation are 0, 0,
�0.2, �0.4 and �0.2, with a sum of squares of only 0.24. Use of the second re-
gression equation shows that the fluorescence expected from a 10 �g ml-1 stan-
dard is 39.6, i.e. the residual is �6.6. Use of a t-test (Chapter 3) would show that
this last residual is significantly greater than the average of the other residuals:
alternatively a test could be applied (Section 3.7) to demonstrate that it is an
‘outlier’ amongst the residuals (see also Section 5.15 below). In this example,
such calculations are hardly necessary: the enormous residual for the last point,
coupled with the very low residuals for the other five points and the greatly re-
duced sum of squares, confirms that the linear range of the method does not
extend as far as 10 �g ml-1. Having established that the last data point can be
excluded from the linear range, we can repeat the process to study the point
(8, 31.5). We do this by calculating the regression line for only the first four
points in the table, with the results a � 0, b � 4.00, r � 0.9998. The correlation
coefficient value suggests that this line is about as good a fit of the points as the
previous one, in which five points were used. The residuals for this third calcu-
lation are �0.1, 0, �0.3 and �0.2, with a sum of squares of 0.14. With this cali-
bration line the y-residual for the 8 �g ml-1 solution is �0.5: this value is larger
than the other residuals but probably not by a significant amount. It can thus
be concluded that it is reasonably safe to include the point (8, 31.5) within the
linear range of the method. In making a marginal decision of this kind, the
analytical chemist will take into account the accuracy required in their results,
and the reduced value of a method for which the calibration range is very short.
The calculations described above are summarised in Fig. 5.14. It will be seen
that the lines calculated for the first four points and the first five points are in
practice almost indistinguishable.



 

Curve fitting 145

Once a decision has been taken that a set of calibration points cannot be satisfacto-
rily fitted by a straight line, the analyst can play one further card before using the
more complex curvilinear regression calculations. It may be possible to transform the
data so that a non-linear relationship is changed into a linear one. Such transforma-
tions are regularly applied to the results of certain analytical methods. For example,
modern software packages for the interpretation of immunoassay data frequently
offer a choice of transformations: commonly used methods involve plotting log y
and/or log x instead of y and x, or the use of logit functions (logit x � ln [x/(l � x)]).
Such transformations may also affect the nature of the errors at different points on
the calibration plot. Suppose, for example, that in a set of data of the form y � pxq,
the sizes of the random errors in y are independent of x. Any transformation of the
data into linear form by taking logarithms will obviously produce data in which the
errors in log y are not independent of log x. In this case, and in any other instance
where the expected form of the equation is known from theoretical considerations
or from longstanding experience, it is possible to apply weighted regression equa-
tions (Section 5.10) to the transformed data. It may be shown that, if data of the
general form y � f(x) are transformed into the linear equation Y � BX � A, the
weighting factor, w, used in Eqs (5.10.1)–(5.10.4) is obtained from the relationship:

(5.13.1)

Unfortunately, there are not many cases in analytical chemistry where the exact
mathematical form of a non-linear regression equation is known with certainty (see
below), so this approach may not be very valuable.

In contrast to the situation described in the previous paragraph, experimental data
can sometimes be transformed so that they can be treated by unweighted methods.
Data of the form y � bx with y-direction errors strongly dependent on x are some-
times subjected to a log–log transformation: the errors in log y then vary less seriously
with log x, so the transformed data can reasonably be studied by unweighted regres-
sion equations.

5.14 Curve fitting

In view of the difficulties that arise from transforming the data, and the increasing
ease with which curves can be calculated to fit a set of calibration points, curvilinear
regression methods are now relatively common in analytical chemistry. In practice
curved calibration plots often arise from the combination of two or more physical or
chemical phenomena. In molecular fluorescence spectrometry, for example, signal
vs. concentration plots will often be approximately linear in very dilute solution,
but will show increasing (negative) curvature at higher concentrations. This is
because of (a) optical artefacts (inner filter effects) in the fluorescence detection
method, (b) molecular interactions (e.g. quenching, excimer formation) and (c) the
failure of the algebraic assumptions on which a linear plot is predicted. Effects
(a)–(c) are independent of one another, so many curves of different shapes may
appear in practice. This example shows why calibration curves of a known and pre-
dictable form are so rarely encountered in analytical work (see above). Thus the
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analyst has little a priori guidance on which of the many types of equation that gen-
erate curved plots should be used to fit the calibration data in a particular case. In
practice, much the most common strategy is to fit a curve which is a polynomial in
x, i.e. y � a � bx � cx2 � dx3 � . . . . The mathematical problems to be solved are
then (a) how many terms should be included in the polynomial and (b) what values
must be assigned to the coefficients a, b, etc.? Computer software packages that
tackle these problems are normally iterative: they fit first a straight line, then a qua-
dratic curve, then a cubic curve, and so on, to the data, and present to the user the
information needed to decide which of these equations is the most suitable. In prac-
tice quadratic or cubic equations are often entirely adequate to provide a good fit to
the data: polynomials with many terms are almost certainly physically meaningless
and do not significantly improve the analytical results. In any case, if the graph has
n calibration points, the largest polynomial permissible is that of order (n � 1).

To decide whether (for example) a quadratic or a cubic curve is the best fit to a cali-
bration data set we can use the ANOVA methods introduced in Section 5.12. ANOVA
programs generate values for R2, the coefficient of determination. Equation (5.12.2)
shows that, as the least-squares fit of a curve (or straight line) to the data points im-
proves, the value of R2 will get closer to 1 (or 100%). It would thus seem that we have
only to calculate R2 values for the straight-line, quadratic, cubic, etc. equations, and
end our search when R2 no longer increases. Unfortunately it turns out that the addi-
tion of another term to the polynomial always increases R2, even if only by a small
amount. ANOVA programs thus provide R�2 (‘adjusted R2�) values (Eq. (5.12.3)),
which utilise mean squares (MS) rather than sums of squares. The use of 2 takes
into account that the number of residual degrees of freedom in the polynomial
regression (given by (n � k � 1) where k is the number of terms in the regression
equation containing a function of x) changes as the order of the polynomial changes.
As the following example shows, R�2 is always smaller than R2.

R¿

Example 5.14.1

In an instrumental analysis the following data were obtained (arbitrary units).

Concentration 0 1 2 3 4 5 6 7 8 9 10
Signal 0.2 3.6 7.5 11.5 15.0 17.0 20.4 22.7 25.9 27.6 30.2

Fit a suitable polynomial to these results, and use it to estimate the concentrations
corresponding to signal of 5, 16 and 27 units.

Even a casual examination of the data suggests that the calibration plot
should be a curve, but it is instructive nonetheless to calculate the least-squares
straight line through the points using the method described in Section 5.4.
This line turns out to have the equation y � 2.991x � 1.555. The ANOVA table
in this case has the following form:

Source of variation Sum of squares d.f. Mean square

Regression 984.009 1 984.009

Residual 9.500 9 1.056

Total 993.509 10 99.351
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Source of variation Sum of squares d.f. Mean square

Regression 992.233 2 494.116
Residual 1.276 8 0.160
Total 993.509 10 99.351

As already noted the number of degrees of freedom (d.f.) for the variation due
to regression is equal to the number of terms (k) in the regression equation con-
taining x, x2, etc. For a straight line, k is 1. There is only one constraint in the
calculation (viz. that the sum of the residuals is zero, see above), so the total
number of degrees of freedom is n � 1. Thus the number of degrees of freedom
assigned to the residuals is (n � k � 1) � (n � 2) in this case. From the ANOVA
table R2 is given by 984.009/993.509 � 0.99044. i.e. 99.044%. An equation
which explains over 99% of the relationship between x and y seems quite satis-
factory but, as with the correlation coefficient, r, we must use great caution in
interpreting absolute values of R2: we shall see that a quadratic curve provides a
much better fit for the data. We can also calculate the R�2 value from equation
(5.12.3): it is given by (1 � [1.056/99.351]) � 0.98937, i.e. 98.937%.

As always an examination of the residuals provides valuable information on
the success of a calibration equation. In this case the residuals are as follows:

x yi y -residual

0 0.2 1.0 -1.4
1 3.6 4.5 -0.9
2 7.5 7.5 0
3 11.5 10.5 1.0
4 15.0 13.5 1.5
5 17.0 16.5 0.5
6 20.4 19.5 0.9
7 22.7 22.5 0.2
8 25.9 25.5 0.4
9 27.6 28.5 -0.9

10 30.2 31.5 -1.3

yN i

In this table, the numbers in the two right-hand columns have been rounded to
one decimal place for simplicity. The trend in the signs and magnitudes of the
residuals, which are negative at low x-values, rise to a positive maximum, and
then return to negative values, is a sure sign that a straight line is not a suitable
fit for the data.

When the data are fitted by a curve of quadratic form the equation turns out
to be y � 0.086 � 3.970x � 0.098x2, and the ANOVA table takes the form:

The numbers of degrees of freedom for the regression and residual sources of
variation have now changed in accordance with the rules described above, but
the total variation is naturally the same as in the first ANOVA table. Here R2 is
992.233/993.509 � 0.99872, i.e. 99.872%. This figure is noticeably higher than
the value of 99.044% obtained from the linear plot, and the R�2 value is also
higher at [1 � (0.160/99.3511)] � 0.99839, i.e. 99.839%. When the y-residuals are
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Linear Quadratic Cubic

y � 5 1.15 1.28 1.27
y � 16 4.83 4.51 4.50
y � 27 8.51 8.61 8.62

calculated, their signs (in increasing order of x-values) are � � - � � - � - � - �.
There is no obvious trend here, so on all grounds we must prefer the quadratic
over the linear fit.

Lastly we repeat the calculation for a cubit fit. Here, the best–fit equation is
y � -0.040 � 4.170x � 0.150x2 � 0.0035x3. The cubic coefficient is very small,
so it is questionable whether this equation is a significantly better fit than the
quadratic one. The R2 value is, inevitably, slightly higher than that for the qua-
dratic curve (99.879% compared with 99.872%), but the value of R�2 is slightly
lower than the quadratic value at 99.827%. The order of the signs of the resid-
uals is the same as in the quadratic fit. As there is no value in including unnec-
essary terms in the polynomial equation, we can be confident that a quadratic
fit is satisfactory in this case.

When the above equations are used to estimate the concentrations corre-
sponding to instrument signals of 5, 16 and 27 units, the results (x-values in
arbitrary units) are:

As expected, the differences between the concentrations calculated from the
quadratic and cubic equations are insignificant, so the quadratic equation is
used for simplicity.

Since non-linear calibration graphs often result from the simultaneous occurrence of
a number of physicochemical and/or mathematical phenomena it is sensible to
assume that no single mathematical function could describe the calibration curve
satisfactorily. It thus seems logical to try to fit the points to a curve that consists of sev-
eral linked sections whose mathematical forms may be different. This is the approach
used in the application of spline functions. Cubic splines are most commonly used in
practice, i.e. the final curve is made up of a series of linked sections of cubic form. These
sections must clearly form a continuous curve at their junctions (‘knots’), so the first
two derivatives (dy/dx and d2y/dx2) of each curve at any knot must be identical. Several
methods have been used for estimating both the number of knots and the equations of
the curves joining them: these techniques are too advanced to be considered in detail
here, but many commercially available statistics software packages now provide such
facilities. Spline functions have been applied successfully to a variety of analytical
methods, including gas–liquid chromatography, competitive binding immunoassays
and similar receptor-based methods, and atomic-absorption spectrometry.

It is legitimate to ask whether we could use the spline idea in its simplest form, and
just plot the curve (provided the curvature is not too great) as a series of straight lines
joining the successive calibration points. The method is obviously non-rigorous, and
would not provide any information on the precision of the interpolated x-values.
However, its value as a simple initial data analysis (IDA) method (see Chapter 6) is in-
dicated by applying it to the data in the above example. For y-values of 5, 16 and 27
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this method of linear interpolation between successive points gives x-values of 1.36,
4.50 and 8.65 units respectively. Comparison with the above table shows that these
results, especially the last two, would be quite acceptable for many purposes.

5.15 Outliers in regression

In this section we return to a problem already discussed in Chapter 3, the occurrence
of suspect values – possible outliers – in our data. These anomalous results inevitably
arise in calibration experiments, just as they occur in replicate measurements, but it
is rather harder to deal with them in regression statistics. The least-squares method
described in this chapter minimises the sum of the squares of the y-residuals, so a
suspect point with a large y-residual can have a significant effect on the calculated
slope and intercept of the regression line, and thus on the analytical information de-
rived from the latter. In cases where an obvious error such as a transcription mistake
or an instrument malfunction has occurred, it is both natural and permissible to
reject the resulting measurement (and, if possible, to repeat it). If there are suspect
measurements for which there are no obvious sources of error or explanation, three
distinct approaches are available, just as in the case of replicate measurements.
These are (a) the use of a significance test or similar method to decide whether a
measurement should be accepted or rejected; (b) the use of median-based methods,
in which suspect or outlying values are discounted; and (c) the use of robust meth-
ods, in which such values may be included in our calculations, but given less weight,
i.e. importance, in plotting the regression line.

Unfortunately simple tests for outliers cannot be directly applied to the points
forming regression lines. This is because, although the individual yi-values in a cali-
bration experiment are assumed to be independent of one another, the residuals

are not independent of one another, as their sum is always zero. It is there-
fore not permissible to treat the residuals as if they were a conventional set of
replicate measurements, and apply a familiar test such as the Grubbs’ test to iden-
tify any outliers. (If the number of yi-values is large, a condition not generally met
in analytical work, this prohibition can be relaxed.) Most computer programs han-
dling regression data provide residual diagnostics routines (see above). Some of
these are simple, including plots of the individual residuals against yi-values
(Fig. 5.15). Such plots would normally be expected to show that, if the correct
calibration model has been used, the residuals are approximately uniform in size
across the range of yi-values, and normally distributed about zero. The figure also
illustrates cases where the y-direction errors increase with yi (Section 5.10), and
where the wrong regression equation has been used (Sections 5.11 and 5.12). Simi-
larly, the y-residuals can be plotted against time if instrument drift or any other
time-dependent effect is suspected. These plots show up suspect values very
clearly, but do not provide criteria that can be immediately used to reject or accept
them. Moreover, they are of limited value in many analytical chemistry experi-
ments, where the number of calibration points is often small.

Some simple numerical criteria have been used in computer software to identify
possible outliers. Some packages ‘flag’ calibration points where the y-residual is more
than twice (or sometimes three times) the value of sy/x. (A residual divided by sy/x is
referred to as a standardised residual, so standardised residuals greater than 2 or 3 are

(yi - yN i)
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Figure 5.15 Residual plots in regression diagnosis: (a) satisfactory distribution of residuals;
(b) the residuals tend to grow as yi grows, suggesting that a weighted regression plot would be
suitable; (c) the residuals show a trend, first becoming more negative, then passing through
zero, and then becoming more positive as yi increases, suggesting that a (different) curve
should be plotted; and (d) a satisfactory plot, except that y6 might be an outlier.

flagged.) Several more advanced methods have been developed, of which the best
known is the estimation for each point of Cook’s squared distance, CD2 (some-
times abbreviated to ‘Cook’s distance’), first proposed in 1977. This is an example of
an influence function, i.e. it measures the effect that rejecting the calibration point in
question would have on the regression coefficients. For a straight line graph it can
be calculated from:

(5.15.1)

In this equation is a predicted y-value obtained when all the data points are used,
and is the corresponding predicted y-value obtained when the ith point is omit-
ted: is calculated using all the data points. Values of CD2 greater than 1 justify the
omission of the suspect point.

In practice the Cook’s squared distance method turns out to be better at identify-
ing some types of outlier than others: outliers in the middle of a data set are less read-
ily detected than those at the extremes. However, the alternative non-parametric
and robust methods can be very effective in handling outliers in regression: robust
regression methods have proved particularly popular in recent years. These topics are
covered in the next chapter.
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Glucose concentration, mM 0 2 4 6 8 10

Absorbance 0.002 0.150 0.294 0.434 0.570 0.704

Concentration, ng ml-1 0 5 10 15 20 25 30

Absorbance 0.003 0.127 0.251 0.390 0.498 0.625 0.763

Bibliography

Analytical Methods Committee, Royal Society of Chemistry, Cambridge. This body
publishes a series of Technical Briefs on several aspects of regression and calibra-
tion methods, including weighted regression, errors and confidence limits, stan-
dard additions, etc. Along with associated software and datasets these short
papers can be downloaded from www.rsc.org.

Draper, N.R. and Smith, H., 1998, Applied Regression Analysis, 3rd edn, John Wiley,
New York. An established work with comprehensive coverage of many aspects of
regression and correlation problems.

Kleinbaum, D.G., Kupper, L.L. and Muller, K.E. 2007. Applied Regression Analysis and
other Multivariable Methods, 4th edn, Duxbury Press, Boston, MA. Extensive treat-
ment of regression problems and the applications of ANOVA.

Mark, H. and Workman Jr, J., 2008, Chemometrics in Spectroscopy, Academic Press,
London. A major work, with a substantial emphasis on calibration and regression
methods. Also covers basic statistics, experimental designs and collaborative studies.

Snedecor, G.M. and Cochran, W.G., 1989, Statistical Methods, 8th edn, Iowa State
University Press, Ames, IA. Gives an excellent general account of regression and
correlation procedures.

Distance from polarograph, m 1.4 3.8 7.5 10.2 11.7 15.0

Mercury concentration, ng g-1 2.4 2.5 1.3 1.3 0.7 1.2

Examine the possibility that the mercury contamination arose from the 
polarograph.

2 The response of a colorimetric test for glucose was checked with the aid of stan-
dard glucose solutions. Determine the correlation coefficient from the following
data and comment on the result.

Determine the slope and intercept of the calibration plot, and their confidence
limits.

3 The following results were obtained when each of a series of standard silver
solutions was analysed by flame atomic-absorption spectrometry.

Exercises

1 In a laboratory containing polarographic equipment, six samples of dust were
taken at various distances from the polarograph and the mercury content of
each sample was determined. The following results were obtained.
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Gold added, 
ng per ml of 
concentrated 
sample 0 10 20 30 40 50 60 70

Absorbance 0.257 0.314 0.364 0.413 0.468 0.528 0.574 0.635

Concentration, ng ml�1 0 10 20 30 40 50

Fluorescence intensity 4 22 44 60 75 104

(arbitrary units) 3 20 46 63 81 109

4 21 45 60 79 107

5 22 44 63 78 101

4 21 44 63 77 105

4 Using the data of exercise 3, estimate the confidence limits for the silver concen-
trations in (a) a sample giving an absorbance of 0.456 in a single determination,
and (b) a sample giving absorbance values of 0.308, 0.314, 0.347 and 0.312 in
four separate analyses.

5 Estimate the limit of detection of the silver analysis from the data in exercise 3.

6 The gold content of a concentrated seawater sample was determined by using
atomic-absorption spectrometry with the method of standard additions. The
results obtained were as follows.

Sample: 1 2 3 4 5 6 7 8 9 10

Sulphide (ISE method): 108 12 152 3 106 11 128 12 160 128

Sulphide (gravimetry): 105 16 113 0 108 11 141 11 182 118

Lead concentration, ng ml-1 10 25 50 100 200 300

Absorbance 0.05 0.17 0.32 0.60 1.07 1.40

Estimate the concentration of the gold in the concentrated seawater, and deter-
mine confidence limits for this concentration.

7 The fluorescence of each of a series of acidic solutions of quinine was deter-
mined five times. The results are given below.

Determine the slopes and intercepts of the unweighted and weighted regression
lines. Calculate, using both regression lines, the confidence limits for the con-
centrations of solutions with fluorescence intensities of 15 and 90 units.

8 An ion-selective electrode (ISE) determination of sulphide from sulphate reducing
bacteria was compared with a gravimetric determination. The results obtained
were expressed in milligrams of sulphide.

Comment on the suitability of the ISE method for this sulphide determination. 
(Al-Hitti, I.K., Moody, G.J. and Thomas, J.D.R, 1983, Analyst, 108: 43)

9 In the determination of lead in aqueous solution by electrochemical atomic-
absorption spectrometry with graphite-probe atomisation, the following results
were obtained:

Investigate the linear calibration range of this experiment.
(Based on Giri, S.K., Shields, C.K., Littlejohn D. and Ottaway, J.M., 1983, Analyst,
108: 244)
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Fluorescence intensity 36 69 184 235 269 301 327

Spermine, ng 6 18 30 45 60 75 90

Use these data to determine the slopes and intercepts of two separate straight
lines. Estimate their intersection point and its standard deviation, thus deter-
mining the composition of the DPA–europium complex formed. 
(Based on Arnaud, N., Vaquer, E. and Georges, J., 1998, Analyst, 123: 261)

11 In an experiment to determine hydrolysable tannins in plants by absorption
spectroscopy the following results were obtained:

Absorbance 0.008 0.014 0.024 0.034 0.042 0.050 0.055 0.065

DPA : Eu 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Absorbance 0.068 0.076 0.077 0.073 0.066 0.063 0.058

DPA : Eu 1.8 2.0 2.4 2.8 3.2 3.6 4.0

Absorbance 0.084 0.183 0.326 0.464 0.643

Concentration, mg ml�1 0.123 0.288 0.562 0.921 1.420

Use a suitable statistics or spreadsheet program to calculate a quadratic relation-
ship between absorbance and concentration. Using R2 and R�2 values, comment
on whether the data would be better described by a cubic equation.
(Based on Willis, R.B. and Allen, P.R., 1998, Analyst, 123: 435)

12 The following results were obtained in an experiment to determine spermine
by high-performance thin layer chromatography of one of its fluorescent 
derivatives:

Determine the best polynomial calibration curve through these points. 
(Based on Linares, R.M., Ayala, J.H., Afonso, A.M. and Gonzalez, V., 1998,
Analyst, 123: 725)

10 In a study of the complex formed between europium (III) ions and pyridine-2,
6-dicarboxylic acid (DPA), the absorbance values of solutions containing different
DPA : Eu concentrations were determined, with the following results:
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6.1 Introduction

The statistical tests described in the previous chapters have all assumed that the data
being analysed follow the normal (Gaussian) distribution. Some support for this
assumption is provided by the central limit theorem, which shows that the
sampling distribution of the mean may be approximately normal even if the parent
population has quite a different distribution (see Section 2.5). However, the theorem
is not really valid for the very small data sets (often only three or four readings)
frequently used in analytical work.

Methods that do not require the assumption of normally distributed measurements
are important for other reasons. Some sets of data occurring in the analytical sciences
certainly have different distributions. For example the antibody concentrations in the

Major topics covered in this chapter
• Occurrence of non-Gaussian error distributions

• Initial data analysis and median-based methods

• Sign test and Wald–Wolfowitz runs test

• Rank-based methods

• Mann–Whitney and Tukey tests

• Tests for more than two samples

• Rank correlation

• Non-parametric regression methods

• Robust statistics: trimming and winsorisation

• Robust measures of location and spread

• Robust ANOVA

• Robust regression methods

• Re-sampling methods; the bootstrap

Non-parametric and 
robust methods
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blood sera of a group of different people can be expressed approximately as a log-
normal distribution (see Section 2.3): similar results are often obtained when a single
analysis is made on each member of a group of human or animal subjects. More inter-
estingly, there is growing evidence that, even when repeated measurements are made
on a single test material, the distribution of the results is sometimes symmetrical but
not normal: the data include more results than expected which are distant from the
mean. Such heavy-tailed distributions can be regarded as normal distributions with
the addition of outliers (see Chapter 3) arising from gross errors. Alternatively heavy-tailed
data may arise from the superposition of two or more normal distributions with the
same mean value, but with significantly different standard deviations. This result
could occur if, for example, the measurements were made by more than one individual
or by using more than one piece of equipment.

This chapter introduces two groups of statistical tests for handling data that may
not be normally distributed. Methods which make no assumptions about the shape
of the distribution from which the data are taken are called non-parametric or
distribution-free methods. Many of them use greatly simplified calculations: with
small data sets some non-parametric significance tests can be performed mentally.
By contrast robust methods are based on the belief that the underlying population
distribution may indeed be approximately normal, but with the addition of data
such as outliers that may distort this distribution. Robust techniques in essence
operate by down-weighting the importance of outliers, so are appropriate in the cases
of heavy-tailed distributions, and their acceptance and use have increased dramati-
cally in recent years. They differ from non-parametric methods in that they often
involve iterative calculations that would be lengthy or complex without a computer,
and their rise in popularity certainly owes much to the universal availability of desk-
top computers.

6.2 The median: initial data analysis

In previous chapters we have used the arithmetic mean or average as the ‘measure of
central tendency’ or ‘measure of location’ of a set of results. This is logical enough
when the (symmetrical) normal distribution is assumed, but in non-parametric
statistics, the median is usually used instead. To calculate the median of n observa-
tions, we arrange them in ascending order: in the unlikely event that n is very large,
this sorting process can be performed very quickly by programs available for most
computers.

The median is the value of the (n � 1)th observation if n is odd, and the 

average of the nth and the (n � 1)th observations if n is even.1
2

1
2

1
2

Determining the median of a set of experimental results usually requires little or no
calculation. Moreover, in many cases it may be a more realistic measure of central
tendency than the arithmetic mean.



 

This simple example illustrates one valuable property of the median: it is unaffected
by outlying values. Confidence limits (see Chapter 2) for the median can be estimated
with the aid of the binomial distribution. This calculation can be performed even
when the number of measurements is small, but is not likely to be required in analyt-
ical chemistry, where the median is generally used only as a rapid measure of an aver-
age. The reader is referred to the Bibliography for further information.

In non-parametric statistics the usual measure of dispersion (replacing the
standard deviation) is the interquartile range (IQR). As we have seen, the median
divides the sample of measurements into two equal halves; if each of these halves is
further divided into two the points of division are called the upper and lower
quartiles. Several different conventions are used in making this calculation (the
interested reader should again consult the bibliography): here we use the method
adopted by the Minitab® program. The IQR is not widely used in analytical work,
but various statistical tests can be performed on it.

The median and the IQR of a set of measurements are just two of the statistics
which feature strongly in initial data analysis (IDA), often also called exploratory
data analysis (EDA). This is an aspect of statistics that has grown rapidly in popu-
larity in recent years. One reason for this is, yet again, the ability of modern com-
puters and dedicated software to present data almost instantly in a wide range of
graphical formats: as we shall see, such pictorial representations form an important
element of IDA. A second reason for the rising importance of IDA is the increasing
acceptance of statistics as a practical and pragmatic subject not necessarily
restricted to the use of techniques whose theoretical soundness is unquestioned:
some IDA methods seem almost crude in their principles, but have nonetheless
proved most valuable.
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Example 6.2.1

Determine the mean and the median for the following four titration values:

It is easy to calculate that the mean of these four observations is 25.08 ml, and
that the median – in this case the average of the second and third values, the
observations already being in numerical order – is 25.05 ml. The mean is greater
than any of the three closely grouped values (25.01, 25.04 and 25.06 ml) and
may thus be a less realistic measure of location than the median. Instead of
calculating the median we could use the methods of Chapter 3 to test the
value 25.21 as a possible outlier, and determine the mean according to the
result obtained, but this approach involves extra calculation and assumes that
the data come from a normal population.

25.01, 25.04, 25.06, 25.21  ml

The main advantage of IDA methods is their ability to indicate which (if any)
further statistical methods are most appropriate to a given data set.

Several simple presentation techniques are obviously useful. We have already used
dot-plots to summarise small data sets (see Chapters 1 and 3). These plots help in
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the visual identification of outliers and other unusual features of the data. Here is a
further example illustrating their value.

Example 6.2.2

In an experiment to determine whether Pb2� ions interfered with the
enzymatic determination of glucose in various foodstuffs, nine food materials
were treated with a 0.1 mM solution of Pb(II), while four other materials (the
control group) were left untreated. The rates (arbitrary units) of the enzyme-
catalysed reaction were then measured for each food and corrected for the
different amounts of glucose known to be present. The results were:

Treated foods 21 1 4 26 2 27 11 24 21
Controls 22 22 32 23

Comment on these data.
Written out in two rows as above, the data do not convey much immediate

meaning, and an unthinking analyst might proceed straight away to perform a
t-test (Chapter 3), or perhaps one of the non-parametric tests described below, to
see if the two sets of results are significantly different. But when the data are pre-
sented as two dot-plots, or as a single plot with the two sets of results given sep-
arate symbols, it is clear that the results, while interesting, are so inconclusive
that little can be deduced from them without further measurements (Fig. 6.1).

The medians of the two sets of data are similar: 21 for the treated foods and
22.5 for the controls. But the range of reaction rates for the Pb(II)-treated mate-
rials is enormous, with the results apparently failing into at least two groups:
five of the foods seem not to be affected by the lead (perhaps because in these
cases Pb(II) is complexed by components other than the enzyme in question),
while three others show a large inhibition effect (i.e. the reaction rate is much
reduced), and another lies somewhere in between these two extremes. There is
the further problem that one of the control group results is distinctly different
from the rest, and might be considered as an outlier (see Chapter 3). In these
circumstances it seems most unlikely that a conventional significance test will
reveal chemically useful information: the use of the simplest IDA method has
guided us away from thoughtless and valueless significance testing and (as so
often happens) towards more experimental measurements.

0 8 16 24 32

0 8 16 24 32

Treated foods

Controls

Figure 6.1 Dot-plots for Example 6.2.2.
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Another simple data representation technique, of greater value when rather larger
samples are studied, is the box-and-whisker plot. In its normal form such a diagram
consists of a rectangle (the box) with two lines (the whiskers) extending from oppo-
site edges of the box, and a further line in the box, crossing it parallel to the same
edges. The ends of the whiskers indicate the range of the data, the edges of the box
from which the whiskers protrude represent the upper and lower quartiles, and the
line crossing the box represents the median of the data (Fig. 6.2).

Lowest
value

Highest
value

Lower
quartile

Upper
quartile

Median

Figure 6.2 Box-and-whisker plot.

The box-and-whisker plot, with a numerical scale, is a graphical representation
of the five-number summary: the data set is described by its extremes, its
lower and upper quartiles, and its median. The plot shows at a glance the
spread and the symmetry of the data.

Some computer programs enhance box-and-whisker plots by identifying possible
outliers separately, the outliers often being defined as data points which are lower
than the lower quartile, or higher than the upper quartile, by more than 1.5 times
the inter-quartile range. The whiskers then only extend to these upper and lower
limits or fences and outlying data are shown as separate points. (These refinements
are not shown in Fig. 6.2.)

Example 6.2.3

The levels of a blood plasma protein in 20 men and 20 women (mg 100 ml�1)
were found to be:

Men 3 2 1 4 3 2 9 13 11 3
18 2 4 6 2 1 8 5 1 14

Women 6 5 2 1 7 2 2 11 2 1
1 3 11 3 2 3 2 1 4 8

What information can be gained about any differences between the levels of
this protein in men and women?

As in the previous example, the data as presented convey very little, but the
use of two box-and-whisker plots or five-number summaries is very revealing.
The five-number summaries are:

Min. Lower quartile Median Upper quartile Max.

Men 1 2 3.5 8.75 18
Women 1 2 2.5 5.5 11
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While it is usual for analysts to handle relatively small sets of data there are occasions
when a larger set of measurements is to be examined. Examples occur in the areas
of clinical and environmental analysis, where in many instances there are large nat-
ural variations in analyte levels. Table 6.1 shows, in numerical order, the levels of a
pesticide in 30 samples of butter beans. The individual values range from 0.03 to
0.96 mg kg�1. They might be expressed as a histogram. This would show that, for
example, there are four values in the range 0–0.095 mg kg�1, four in the range 0.10�

0.195 mg kg�1, and so on. But a better IDA method uses a stem-and-leaf diagram, as
shown in Fig. 6.3.

The left-hand column of figures – the stem – shows the first significant digit for
each measurement, while the remaining figures in each row – the leaves – provide
the second significant digit. The length of each row thus corresponds to the length
of the bars on the corresponding histogram, but the advantage of the stem-and-leaf
diagram is that it retains the value of each measurement. The leaves use only whole
numbers, so some indication of the scale used must always be given. In this case a key
is used to provide this information. Minitab® provides facilities for stem-and-leaf
diagrams.

Table 6.1 Levels of pp-DDT in 30 butter bean specimens (mgkg�1)

0.03 0.05 0.08 0.08 0.10 0.11 0.18 0.19 0.20 0.20
0.22 0.22 0.23 0.29 0.30 0.32 0.34 0.40 0.47 0.48
0.55 0.56 0.58 0.64 0.66 0.78 0.78 0.86 0.89 0.96
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Key: 1|1 = 0.11mgkg–1

Figure 6.3 Stem-and-leaf diagram for data from Table 6.1.

It is left as a simple sketching exercise for the reader to show that (a) the distri-
butions are very skewed in both men and women, so statistical methods that
assume a normal distribution are not appropriate (as we have seen this is often
true when a single measurement is made on a number of different subjects, par-
ticularly when the latter are living organisms); (b) the median concentrations
for men and women are similar; and (c) the range of values is considerably
greater for men than for women. The conclusions suggest that we might apply
the Siegel–Tukey test (see below, Section 6.6) to see whether the greater varia-
tion in protein levels amongst men is significant.
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They can of course be extended to the area of calibration and other regression tech-
niques: the very crude method of plotting a curved calibration graph suggested at
the end of the previous chapter can be regarded as an IDA approach. Many IDA
methods are described in the books by Chatfield and by Velleman and Hoaglin listed
in the Bibliography at the end of this chapter.

6.3 The sign test

The sign test is amongst the simplest of all non-parametric statistical methods, and
was first discussed in the early eighteenth century. It can be used in a number of
ways, the simplest of which is demonstrated by the following example.

In summary, IDA methods are simple, readily handled by computers, and most
valuable in indicating features of the data not apparent on initial inspection.
They are helpful in deciding the most suitable significance tests or other statis-
tical procedures to be adopted in further work, and sometimes even in suggest-
ing that statistics has no further role to play until more data are obtained.

Example 6.3.1

A pharmaceutical preparation is claimed to contain 8% of a particular compo-
nent. Successive batches were found in practice to contain 7.3, 7.1, 7.9, 9.1,
8.0, 7.1, 6.8 and 7.3% of the constituent. Are these results consistent with the
manufacturer’s claim?

In Section 3.2 it was shown that such problems could be tackled by using the 
t-test after calculation of the mean and standard deviation of the experimental
data. The t-test assumes, however, that the data are normally distributed. The
sign test avoids this assumption and is much easier to perform. The same un-
derlying principles are used as in other significance tests: a null hypothesis is
established, the probability of obtaining the experimental results is deter-
mined, and the null hypothesis is rejected if this probability is less than a cer-
tain critical level. In this case the null hypothesis is that the data come from a
population with a median value of 8.0% of the constituent. This postulated
median is subtracted from each experimental value in turn, and the sign of
each result is considered. Values equal to the postulated median are ignored
entirely. In this case, therefore, we effectively have seven experimental values,
six of them lower than the median and hence giving minus signs, and one
higher than the median and hence giving a plus sign. To test whether this pre-
ponderance of minus signs is significant we use the binomial theorem. This
theorem shows that the probability of r out of n signs being minus is given by

(6.3.1)P(r) =
nCr p

rq(n-r)
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This example shows that the sign test will involve using the binomial distribution
with p � q � . This approach to non-parametric statistics is so common that most
sets of statistical tables include the necessary data, allowing such calculations to be
made instantly (see Table A.9). Moreover, in many practical situations, an analyst will
always take the same number of readings or samples, and will be able to memorise
easily the probabilities corresponding to the various numbers of plus or minus signs.

The sign test can also be used as a non-parametric alternative to the paired t-test
(Section 3.4) to compare two sets of results for the same samples. Thus if ten samples
are examined by each of two methods, A and B, we can test whether the two methods
give significantly different readings by calculating for each sample (result obtained
by method A � result obtained by method B). The null hypothesis will be that the
two methods do not give significantly different results – in practice this will again
mean that the probability of obtaining a plus sign (or a minus sign) for each differ-
ence is . The number of plus or minus signs actually obtained can be compared
with the probability derived from Eq. (6.3.1). An example of this application of the
sign test is given in the exercises at the end of the chapter.

Yet another use of the sign test is to indicate a trend. This application is illustrated
by the following example.

1
2

1
2

where nCr is the number of combinations of r items from a total of n items (cal-
culated using ), p is the probability of getting a minus sign in
a single result, and q is the probability of not getting a minus sign in a single
result, i.e. q � 1 � p. Since the median is defined so that half the experimental
results lie above it and half below it, it is clear that if the median is 8.0 in this
case then both p and q should be . Using Eq. (6.3.1) we find that P(6) � 7C6 �

( )6 � � 7 � ( )6 � � 7/128. Similarly we can calculate that the chance of
getting seven minus signs, P(7), is 1 � ( )7 � 1 � 1/128. Overall, therefore, the
probability of getting six or more negative signs in our experiment is 8/128. We
are only asking, however, whether the data differ significantly from the postu-
lated median, so we perform a two-sided test (see Chapter 3). We must find the
probability of obtaining six or more identical signs (i.e. �6 plus or �6 minus
signs) when seven results are taken at random. This is clearly 16/128 � 0.125.
Since this value is �0.05, the critical probability level usually used, the null
hypothesis that the data come from a population with median 8.0 cannot be
rejected. As pointed out in Chapter 3, we have not proved that the data do
come from such a population; we have only concluded that such a hypothesis
cannot be rejected.

1
2

1
2

1
2

1
2

1
2

1
2

nCr = n!>r!(n - r)!

Example 6.3.2

The level of a hormone in a patient’s blood plasma is measured at the same
time each day for 10 days. The resulting data are:

Day 1 2 3 4 5 6 7 8 9 10
Level, ng ml�1 5.8 7.3 4.9 6.1 5.5 5.5 6.0 4.9 6.0 5.0

Is there any evidence for a trend in the hormone concentration?
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Using parametric methods, it would be possible to make a linear regression
plot of such data and test whether its slope differed significantly from zero
(Chapter 5). Such an approach would assume that the errors were normally
distributed, and that any trend that did occur was linear. The non-parametric
approach is again simpler. The data are divided into two equal sets, the
sequence being retained:

The price paid for the extreme simplicity of the sign test is some loss of statistical
power. The test does not utilise all the information offered by the data, so it is not
surprising to find that it also provides less discriminating information. In later sec-
tions, non-parametric methods that do use the magnitudes of the individual results
as well as their signs will be discussed.

6.4 The Wald–Wolfowitz runs test

In some instances we are interested not merely in whether observations generate
positive or negative signs, but also in whether these signs occur in a random
sequence. In Section 5.13, for example, we showed that if a straight line is a good fit
to a set of calibration points, positive and negative residuals will occur more or less
at random. By contrast, attempting to fit a straight line to a set of points that actu-
ally lie on a curve will yield non-random sequences of positive or negative signs:
there might, for example, be a sequence of � signs, followed by a sequence of � signs,
and then another sequence of � signs. Such sequences are technically known as
runs – the word being used here in much the same way as when someone refers to
‘a run of bad luck’ or ‘a run of high scores’. In the curve-fitting case, it is clear that a
non-random sequence of � and � signs will lead to a smaller number of runs than a
random sequence.

5.8 7.3 4.9 6.1 5.5
5.5 6.0 4.9 6.0 5.0

(If there is an odd number of measurements, the middle one in the time
sequence is ignored.) The result for the sixth day is then subtracted from that
for the first day, that for the seventh day from that for the second day, etc. The
signs of the differences between the pairs of values in the five columns are
determined in this way to be �, �, 0, �, �. As usual the zero is ignored com-
pletely, leaving four results, all positive. The probability of obtaining four iden-
tical signs in four trials is 2 � (1/16) � 0.125. (Note that a two-sided test is again
used, as the trend in the hormone level might be upwards or downwards.) The
null hypothesis, that there is no trend in the results, can therefore not be
rejected at the P � 0.05 probability level.

The Wald–Wolfowitz method tests whether the number of runs is small
enough for the null hypothesis of a random distribution of signs to be rejected.
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The number of runs in the experimental data is compared with the numbers in Table
A.10, which refers to the P � 0.05 probability level. The table is entered by using the
appropriate values for N, the number of � signs, and M, the number of � signs. If
the experimental number of runs is smaller than the tabulated value, then the null
hypothesis can be rejected.

Example 6.4.1

Linear regression equations are used to fit a straight line to a set of 12 calibra-
tion points. The signs of the resulting residuals in order of increasing x value
are: � � � � � � � � � � � �. Comment on whether it would be better to
attempt to fit a curve to the points.

Here M � N � 6, and the number of runs is 3. Table A.10 shows that, at the
P � 0.05 level, the number of runs must be �4 if the null hypothesis is to be re-
jected. So in this instance we can reject the null hypothesis, and conclude that
the sequence of � and � signs is not a random one. The attempt to fit a
straight line to the experimental points is therefore unsatisfactory, and a curvi-
linear regression plot is indicated instead.

The Wald–Wolfowitz test can be used with any results that can be divided or con-
verted into just two categories. Suppose, for example, that it is found that 12 suc-
cessively used spectrometer light sources last for 450, 420, 500, 405, 390, 370, 380,
395, 370, 370, 420 and 430 hours. The median lifetime, in this case the average of
the sixth and seventh numbers when the data are arranged in ascending order, is
400 hours. If the lamps with lifetimes less than the median are given a minus sign,
and those with longer lifetimes are given a plus sign, then the sequence becomes:
� � � � � � � � � � � �. This is the same sequence as in the regression example
above, where it was shown to be significantly non-random. In this case, the signif-
icant variations in lifetime might be explained if the lamps came from different
batches or different manufacturers.

We may be concerned with unusually large numbers of short runs, as well as un-
usually small numbers of long runs. If six plus and six minus signs occurred in the
order � � � � � � � � � � � � we would strongly suspect a non-random se-
quence. Table A.10 shows that, with N � M � 6, a total of 11 or 12 runs indicates
that the null hypothesis of random order should be rejected, and some periodicity
in the data suspected.

6.5 The Wilcoxon signed rank test

Section 6.3 described the use of the sign test. Its value lies in the minimal assump-
tions it makes about the experimental data. The population from which the sample
is taken is not assumed to be normal, or even to be symmetrical. On the other hand
a disadvantage of the sign test is that it uses so little of the information provided.
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The only material point is whether an individual measurement is greater than or less
than the median – the size of this deviation is not used at all.

For many data sets the measurements may be approximately symmetrically distrib-
uted, but not necessarily normally distributed (see Section 6.1). In such cases the mean
and the median of the population will be equal, allowing more powerful significance
tests to be developed. Important advances were made by Wilcoxon, and his signed
rank test has several applications. Its mechanism is best illustrated by an example.

Example 6.5.1

The blood lead levels (in pg ml�1) of seven children were found to be 104, 79,
98, 150, 87, 136 and 101. Could such data come from a population, assumed
to be symmetrical, with a median/mean of 95 pg ml�1?

On subtraction of the reference concentration (95) the data give values of

These values are first arranged in order of magnitude without their signs:

Their signs are then restored to them (in practice these last two steps can be
combined):

The numbers are then ranked: in this process they keep their signs but are
assigned numbers indicating their order (or rank):

The positive ranks add up to 20, and the negative ones to 8. The lower of these
two figures (8) is taken as the test statistic. If the data came from a population
with median 95 the sums of the negative and positive ranks would be expected
to be approximately equal numerically; if the population median was very
different from 95 the sums of the negative and positive ranks would be un-
equal. The probability of a particular sum occurring in practice is given by a set
of tables (see Table A.11). In this test the null hypothesis is rejected if the experi-
mental value is less than or equal to the tabulated value, i.e. the opposite of the
situation encountered in most significance tests. For this example Table A.11
shows that, for n � 7, the test statistic must be less than or equal to 2 before the
null hypothesis – that the data do come from a population of median (mean)
95 – can be rejected at a significance level of P � 0.05. Since the test statistic is
8 the null hypothesis must be retained. As usual, a two-sided test is used, though
there may be occasional cases where a one-sided test is more appropriate.

1, 2, -3, 4, -5, 6, 7

3, 6, -8, 9, -16, 41, 55

3, 6, 8, 9, 16, 41, 55

9, -16, 3, 55, -8, 41, 6

An important advantage of the signed rank test is that it can also be used on paired
data, as they can be transformed into the type of data given in the previous example.
The signed rank method can thus be used as a non-parametric alternative to the
paired t-test (Section 3.4).
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Example 6.5.2

The following table gives the percentage concentration of zinc, determined by
two different methods, for each of eight samples of health food.

Is there any evidence for a systematic difference between the results of the two
methods?

The approach to this type of problem is simple. If there is no systematic differ-
ence between the two methods, then we would expect that the differences be-
tween the results for each sample, i.e. titration result � spectrometry result,
should be symmetrically distributed about zero. The signed differences are:

Arranging these values in numerical order while retaining their signs, we have:

The ranking of these results presents an obvious difficulty, that of tied ranks.
There are two results with the numerical value 0.2, two with a numerical value
of 0.4, and two with a numerical value of 0.7. How are the ranks to be calcu-
lated? This problem is resolved by giving the tied values average ranks, with ap-
propriate signs. Thus the ranking for the present data is:

In such cases, it is worth verifying that the ranking has been done correctly by
calculating the sum of all the ranks without regard to sign. This sum for the
numbers above is 36, which is the same as the sum of the first eight integers (for
the first n integers the sum is ), and therefore correct. The sum of the
positive ranks is 7.5, and the sum of the negative ranks is 28.5. The test statistic
is thus 7.5. Inspection of Table A.11 shows that, for n � 8, the test statistic has
to be 	3 before the null hypothesis can be rejected at the level P � 0.05. In the
present case, the null hypothesis must be retained – there is no evidence that
the median (mean) of the difference is not zero, and hence no evidence for a
systematic difference between the two analytical methods.

n(n + 1)>2

-1.5, 1.5, -3, -4.5, -4.5, 6, -7.5, -7.5

-0.2, 0.2, -0.3, -0.4, -0.4, 0.6, -0.7, -0.7

-0.4, -0.7, 0.6, 0.2, -0.7, -0.2, -0.4, -0.3

Sample EDTA titration Atomic spectrometry

1 7.2 7.6
2 6.1 6.8
3 5.2 4.6
4 5.9 5.7
5 9.0 9.7
6 8.5 8.7
7 6.6 7.0
8 4.4 4.7

The signed rank test is seen from these examples to be a simple and valuable
method. Its principal limitation is that it cannot be applied to very small sets of
data: for a two-tailed test at the significance level P � 0.05, n must be at least 6.
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6.6 Simple tests for two independent samples

The signed rank test described in the previous section is valuable for the study of sin-
gle sets of measurements, and for paired sets that can readily be reduced to single
sets. In many instances, however, it is necessary to compare two independent sam-
ples that cannot be reduced to a single set of data, and may contain different num-
bers of measurements. Several non-parametric tests to tackle such problems have
been devised. The simplest to understand and perform is the Mann–Whitney 
U-test, the operation of which is most easily demonstrated by an example.

Example 6.6.1

A sample of photographic waste was analysed for silver by atomic absorption
spectrometry, five successive measurements giving values of 9.8, 10.2, 10.7,
9.5 and 10.5 μg ml�1. After chemical treatment, the waste was analysed again
by the same procedure, five successive measurements giving values of 7.7, 9.7,
8.0, 9.9 and 9.0 μg ml�1. Is there any evidence that the treatment produced a
significant reduction in the levels of silver?

The Mann–Whitney procedure involves finding the number of results in one
sample that exceeds each of the values in the other sample. In the present case,
we believe that the silver concentration of the treated solution should, if any-
thing, be lower than that of the untreated solution so a one-sided test is appro-
priate. We thus expect to find that the number of cases in which a treated
sample has a higher value than an untreated one should be small. Each of the
values for the untreated sample is listed, and the number of instances where
the values for the treated sample are greater is counted in each case.

Untreated sample Higher values in treated sample Number of higher values

9.8 9.9 1
10.2 – 0
10.7 – 0
9.5 9.7, 9.9 2

10.5 – 0

The total of the numbers in the third column, in this case 3, is the test statistic.
Table A.12 is used for the Mann–Whitney U-test: again the critical values lead-
ing to the rejection of the null hypothesis are those which are less than or equal
to the tabulated numbers. The table shows that for a one-sided test at P � 0.05,
with five measurements of each sample, the test statistic must be 	4 if the null
hypothesis is to be rejected. In our example we can thus reject H0: the treat-
ment of the silver-containing material probably does reduce the level of the
metal.
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When, as in this example, the numbers of measurements are small the Mann–Whitney
calculation can be done mentally, a great advantage. If ties (identical values) occur
in the U-test, each tie is assigned a value of 0.5 in the count of U.

A further convenient method with some interesting features is Tukey’s quick
test. Its use can be shown using the same example.

Tukey’s quick test involves counting the total number of measurements in the
two independent samples that are not included in the overlap region of the
two data sets.

Example 6.6.2

Apply Tukey’s quick test to the data of the previous example.

The test can be regarded as having two stages, though when only a few results
are available, these two steps can be combined in one rapid mental calculation.
In the first step, the number of results in the second set of data that are lower
than all the values in the first set are counted. If there are no such values, the test
ends at once, and the null hypothesis of equal medians is accepted. In the pre-
sent example, there are three such values, the readings 7.7, 8.0 and 9.0 being
lower than the lowest value from the first set (9.5). The test thus continues to
the second step, in which we count all the values in the first data set that are
higher than all the values in the second set. Again, if there are no such values, the
test ends and the null hypothesis is accepted. Here, there are again three such
values, the readings 10.2, 10.5 and 10.7 exceeding the highest value in the sec-
ond set (9.7). (This approach contrasts with that of the Mann–Whitney U-test,
which identifies high values in the sample that might be expected to have the
lower median.) Overall there are thus six values that are not within the range
over which the two samples overlap. This total (often called T ) is the test statistic.
The most interesting and valuable aspect of Tukey’s quick test is that statistical
tables are not normally needed to interpret this result. Provided that the num-
ber of readings in each sample does not exceed about 20, and that the two
sample sizes are not greatly different (conditions that would probably be valid
in most analytical experiments), the critical values of T for a particular level of
significance are independent of sample size. For a one-sided test the null hypoth-
esis may be rejected if T � 6 (for P � 0.05), �7 (P � 0.025), �10 (P � 0.005) and
�14 (P � 0.0005). (For a two-tailed test the critical T values at P � 0.05, 0.025,
0.005 and 0.0005 are 7, 8, 11 and 15 respectively.) In the present example,
therefore, the experimental T value is big enough to be significant at P � 0.05
in a one-sided test. We can thus reject the null hypothesis and report that the
treatment does reduce the silver content of the photographic waste signifi-
cantly, a result in accord with that of the Mann–Whitney U-test.

If ties occur in Tukey’s quick test (i.e. if one of the values in the hypothetically
higher sample is equal to the highest value in the other sample, or if one of the
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values in the ‘lower’ sample is equal to the lowest value in the ‘higher’ sample)
then each tie counts 0.5 towards the value of T.

A test which is distantly related to the Mann–Whitney method has been devel-
oped by Siegel and Tukey to compare the spread of two sets of results: it thus offers a
genuinely non-parametric alternative to the F-test (see Section 3.6). The data from
the two sets of measurements are first pooled and arranged in numerical order, but
with one set of results distinguished by underlining. Then they are ranked in an
ingenious way: the lowest measurement is ranked one, the highest measurement
ranked two, the highest but one measurement ranked three, the lowest but one
ranked four, the lowest but two ranked five, and so on. (If the total number of mea-
surements is odd, the central measurement is ignored.) This paired alternate ranking
produces a situation in which the low and high results receive low ranks, and the
central results receive high ranks. If one data set has a significantly wider spread
than the other, its sum of ranks should thus be much lower, while if the dispersion
of the two sets of results is similar, their rank sums will be similar. Application of this
method to the data from Example 6.6.1 gives the following rankings:

Two rank sums are then calculated. The sum of the underlined ranks (treated silver-
containing samples) is 26, and the rank sum for the untreated samples is 29. In this
example the sample sizes for the two sets of measurements are equal, but this will
not always be the case. Allowance is made for this by subtracting from the rank sums
the number , where the ni values are the sample sizes. In our example
ni � 5 in each case, so 15 must be subtracted from each rank sum. The lower of the
two results is the one used in the test, and the critical values are the same as those
used in the Mann–Whitney test (Table A.12). The test statistic obtained in this exam-
ple is (26 � 15) � 11, much higher than the critical value of 2 (for a two-tailed test
at P � 0.05). The null hypothesis, in this case that the spread of the results is similar
for the two sets of data, is thus retained.

ni(ni + 1)>2

Data 7.7 8.0 9.0 9.5 9.7 9.8 9.9 10.2 10.5 10.7

Ranks 1 4 5 8 9 10 7 6 3 2

The Siegel–Tukey test pools the two data samples with identification, ranks
them, applies paired alternate ranking to generate rank sums, and allows for
the sample sizes, to provide a test statistic that can be evaluated using the same
tables as for the Mann–Whitney U-test.

A little thought will show that the validity of this useful test will be reduced if the
average values for the two sets of data are substantially different. In the extreme
case where all the measurements in one sample are lower than all the measure-
ments in the other sample, the rank sums will always be as similar as possible,
whatever the spread of the two samples. If it is feared that this effect is apprecia-
ble, it is permissible to estimate the means of the two samples, and add the differ-
ence between the means to each of the measurements of the lower set. This will
remove any effect due to the different means, while preserving the dispersion of
the sample. An exercise of the application of this test is provided at the end of the
chapter.
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6.7 Non-parametric tests for more than two samples

The previous section described tests in which two statistical samples were compared
with each other. Non-parametric methods are not, however, limited to two sets of
data: several methods which compare three or more samples are available. Before
two of these tests are outlined, it is important to mention one pitfall that should be
avoided in all multi-sample comparisons. When (for example) three sets of measure-
ments are examined to see whether or not their medians are similar, there is a great
temptation to compare only the two samples with the highest and lowest medians.
This simplistic approach can give misleading results. When several samples are
taken from the same parent population, there are cases where the highest and lowest
medians, considered in isolation, appear to be significantly different. This is
because, as the number of samples increases, the difference between the highest and
the lowest medians will tend to increase. The correct approach is to perform first a
test that considers all the samples together: if it shows that they might not all come
from the same population, then separate tests may be performed to try to identify
where the significant differences occur. Here we describe in outline the principles of
two non-parametric tests for three or more sets of data; further details are given in
the books listed in the Bibliography.

The Kruskal–Wallis test is applied to the comparison of the medians of three or more
unmatched samples. (An extension of the silver analysis described in the previous
section, with three samples of photographic waste, one untreated and the other two
treated by different methods, would provide an instance where the test would be
useful.) The results from the three (or more) samples are pooled and arranged in rank
order. The rank totals for the data from the different samples are determined: tied ranks
are averaged, as shown above, though a special correction procedure is advisable if
there are numerous ties. If each sample has the same number of measurements (this
is not a requirement of the test), and if the samples have similar medians, then the
rank totals for each sample should be similar, and the sum of their squares should be a
minimum. For example, if we have three samples, each with five measurements, the
rankings will range from 1 to 15 and the sum of all the ranks will be 120. Suppose
that the three medians are very similar, and that the rank totals for each sample are
thus equal, each being 40. The sum of the squares of these totals will thus be 402 �

402 � 402 � 4800. If the medians are significantly different, then the rank totals will
also be different from one another � say 20, 40 and 60. The sum of the squares of
such totals will always be larger than 4800 (202 � 402 � 602 � 5600).

The probability of obtaining any particular sum of squares can be determined by
using the chi-squared statistic (see Chapter 3). If the samples are referred to as A, B, C,
etc. (with k samples in all), with numbers of measurements nA, nB, nC, etc. and rank
totals RA, RB, RC, etc., then the value of x2 is given by:

(6.7.1)

where N � nA � nB � nC, etc. This x2 value is compared as usual with tabulated
values. The latter are identical to the usual values when the total number of
measurements is greater than ca. 15, but special tables are used for smaller numbers

x2
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of measurements. The number of degrees of freedom is k � 1. Experimental values of
x2 that exceed the tabulated values allow the null hypothesis (that the medians of
the samples are not significantly different) to be rejected. As already noted, in the
latter situation further tests can be performed on individual pairs of samples; texts
listed in the Bibliography provide more details. Minitab® provides facilities for per-
forming the Kruskal–Wallis test.

We have already seen (Sections 3.4 and 6.3) that when paired results are compared,
special statistical tests can be used. These tests use the principle that, when two experi-
mental methods that do not differ significantly are applied to the same chemical sam-
ples, the differences between the matched pairs of results should be close to zero. This
principle can be extended to three or more matched sets of results by using a non-
parametric test devised in 1937 by Friedman. In analytical chemistry, the main appli-
cation of Friedman’s test is in the comparison of three (or more) experimental
methods applied to the same chemical samples. The test again uses the x2 statistic, in
this case to assess the differences that occur between the total rank values for the dif-
ferent methods. The following example illustrates the simplicity of the approach:

Example 6.7.1

The levels of a pesticide in four plant extracts were determined by (A) high-
performance liquid chromatography, (B) gas–liquid chromatography and (C)
radioimmunoassay. The following results (all in ng ml�1) were obtained:

Sample Method

A B C

1 4.7 5.8 5.7
2 7.7 7.7 8.5
3 9.0 9.9 9.5
4 2.3 2.0 2.9

Do the three methods give values for the pesticide levels that differ significantly?

This problem is solved by replacing the values in the table by ranks. In each
row the method with the lowest result is ranked 1, and that with the highest
result is ranked 3:

Sample Method

A B C

1 1 3 2
2 1.5 1.5 3
3 1 3 2
4 2 1 3

The use of an average value is necessary in the case of tied ranks in sample 2 (see
Section 6.5). The sums of the ranks for the three methods A, B and C are 5.5, 8.5
and 10 respectively. These sums should total (� 24 here), where k isnk(k + 1)>2
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The Friedman test could alternatively be used in the reverse form: assuming that the
three analytical methods give indistinguishable results, the same procedure could be
used to test differences between the four plant extracts. In this case k and n are 4 and
3 respectively, and the reader may care to verify that R is 270 and that the resulting

2 value is 9.0. This is higher than the critical value for P � 0.05, n � 3, k � 4, which
is 7.4. So in this second application of the test we can reject the null hypothesis, and
state that the four samples do differ in their pesticide levels. Further tests, which
would allow selected comparisons between pairs of samples, are then available.

Friedman’s test, which is also available in Minitab®, is clearly much simpler to
perform in practice than the ANOVA method (Sections 3.8–3.10), though it does not
have the latter’s ability to study interaction effects (see Chapter 7).

6.8 Rank correlation

Ranking methods can also be applied to correlation problems. The Spearman rank
correlation coefficient method described in this section is the oldest application of
ranking methods in statistics, dating from 1904. Like other ranking methods, it is
particularly useful when one or both of the sets of observations studied can be
expressed only in terms of a rank order rather than in quantitative units. In the fol-
lowing example, the possible correlation between the sulphur dioxide concentra-
tions in a series of table wines and their taste quality is investigated. The taste
quality of a wine is not easily expressed quantitatively, but it is relatively simple for
a panel of wine-tasters to rank the wines in order of preference. Examples of other
attributes that are easily ranked, but not easily quantified, include the condition of
experimental animals, the quality of laboratory accommodation, and the efficiency
of laboratory staff. If either or both the sets of data under study should happen to be
quantitative, then (in contrast to the methods described in Chapter 5) there is no
need for them to be normally distributed. Like other non-parametric statistics, the
Spearman rank correlation coefficient, rs, is easy to determine and interpret. This is
shown in the following example.

x

the number of methods (3 here) and n the number of samples (4 here). The rank
sums are squared, yielding 30.25, 72.25 and 100 respectively, and these squares
are added to give the statistic R, which here is 202.5. The experimental value of
x2 is then calculated from:

(6.7.2)

which gives a result of 2.625. At the level P � 0.05, and with k � 3, the critical
values of x2 are 6.0, 6.5, 6.4, 7.0, 7.l and 6.2 for n � 3, 4, 5, 6, 7 and 8
respectively. (More extensive data are given in many sets of statistical tables,
and when k � 7 the usual x2 tables can be used at k � 1 degrees of freedom.) In
this instance, the experimental value of x2 is much less than the critical value,
and we must retain the null hypothesis: the three methods give results that do
not differ significantly.

x2
=

12R
nk(k + 1)

- 3n(k + 1)
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The first step is to convert the sulphur dioxide concentrations from absolute
values into ranks (any tied ranks can be averaged as described in previous
sections):

Example 6.8.1

Seven different table wines are ranked in order of preference by a panel of
experts. The best wine is ranked 1, the next best 2, and so on. The sulphur
dioxide content (in parts per million) of each wine is then determined by flow
injection analysis with colorimetric detection. Use the following results to
determine whether there is any relationship between perceived wine quality
and sulphur dioxide content.

Wine A B C D E F G
Taste ranking 1 2 3 4 5 6 7
SO2 content 0.9 1.8 1.7 2.9 3.5 3.3 4.7

Wine A B C D E F G
Taste ranking 1 2 3 4 5 6 7
SO2 content 1 3 2 4 6 5 7

The differences, di, between the two ranks are then calculated for each wine.
They are 0, �1, 1, 0, �1, 1, 0. The correlation coefficient, rs, is then given by:

(6.8.1)

where n is the number of pairs.
In this example, rs is 1 � (24/336), i.e. 0.929. Theory shows that, like the

product–moment correlation coefficient, rs can vary between �1 and �1.
When n � 7, rs must exceed 0.786 if the null hypothesis of no correlation is to
be rejected at the significance level P � 0.05 (Table A.13). Here, we can conclude
that there is a correlation between the sulphur dioxide content of the wines and
their perceived quality: given the way the taste rankings were assigned, there is
strong evidence that higher sulphur dioxide levels produce less palatable wines!

rs = 1 -

6a
i

d2
i

n(n2
- 1)

Another rank correlation method, due to Kendall, was introduced in 1938. It claims
to have some theoretical advantages over the Spearman method, but is harder to
calculate (especially when tied ranks occur) and is not so frequently used.

6.9 Non-parametric regression methods

In the discussion of linear regression methods in Chapter 5, the difficulties in deal-
ing with suspect or outlier calibration points were described and the assumption of
normally distributed y-direction errors was noted. To tackle these issues, several
rapid and non-parametric methods for fitting a straight line to a set of points are
available, of which the simplest is perhaps Theil’s ‘incomplete’ method (the reason
for this rather puzzling title is explained below).
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Theil’s method determines the slope of a regression line as the median of the
slopes calculated from selected and evenly spaced pairs of points: the intercept
of the line is the median of the intercept values calculated from the slope and
the coordinates of the individual points.

The method assumes that a series of points (x1, y1), (x2, y2), etc. is fitted by a line of
the form y � a � bx. The first step in the calculation involves ranking the points in
order of increasing x. If the number of points, x, is odd, the middle point, i.e. the
median value of x, is deleted: the calculation always requires an even number of
points. For any pair of points (xi, yi), (xj, yj) where xj � xi, the slope, bij, of the line
joining the points can be calculated from:

(6.9.1)

Slopes bij are calculated for the pair of points (x1, y1) and the point immediately after
the median x-value, for (x2, y2) and the second point after the median x-value, and
so on until the slope is calculated for the line joining the point immediately before
the median x-value with the last point. Thus, if the original data contained
11 points, five slopes would be estimated (the median point having been omitted).
For eight original points there would be four slope estimates, and so on. These slope
estimates are arranged in ascending order and their median is the estimated slope of
the straight line. With this value of b, intercept values ai are estimated for each point
using the equation y � a � bx. Again the estimates of a are arranged in ascending
order and the median value is chosen as the best estimate of the intercept of the line.
The method is illustrated by the following example.

bij =

(yj - yi)

(xj - xi)

Example 6.9.1

The following results were obtained in a calibration experiment for the absorp-
tiometric determination of a metal chelate complex:

Concentration, 
g ml�1 0 10 20 30 40 50 60 70
Absorbance 0.04 0.23 0.39 0.59 0.84 0.86 1.24 1.42

Use Theil’s method to estimate the slope and the intercept of the best straight
line through these points.

This calculation is simplified by the occurrence of an even number of observa-
tions, and by the fact that the x-values (i.e. the concentrations) occur at regular
intervals and are already in ranking order. We thus calculate slope estimates
from four pairs of points:

b15 � (0.84 � 0.04)�40 � 0.0200
b26 � (0.86 � 0.23)�40 � 0.0158
b37 � (1.24 � 0.39)�40 � 0.0212
b48 � (1.42 � 0.59)�40 � 0.0208
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Figure 6.4 Straight-line calibration graph calculated by Theil’s method (———) and by the least-
squares method of Chapter 5 (- - -).

We now arrange these slope estimates in order, obtaining 0.0158, 0.0200,
0.0208, 0.0212. The median estimate of the slope is thus the average of 0.0200
and 0.0208, i.e. 0.0204. Using this value of b to estimate the intercept, a, the
eight individual ai values are:

a1 � 0.04 � (0.0204 � 0) � �0.040
a2 � 0.23 � (0.0204 � 10) � �0.026
a3 � 0.39 � (0.0204 � 20) � �0.018
a4 � 0.59 � (0.0204 � 30) � �0.022
a5 � 0.84 � (0.0204 � 40) � �0.024
a6 � 0.86 � (0.0204 � 50) � �0.160
a7 � 1.24 � (0.0204 � 60) � �0.016
a8 � 1.42 � (0.0204 � 70) � �0.008

Arranging these intercept estimates in order, we have �0.160, �0.022, �0.018, 
�0.008, �0.016, �0.024, �0.026, �0.040. The median estimate is �0.004. So
the best straight line is given by y � 0.0204x � 0.004. The ‘least-squares’ line,
calculated by the methods of Chapter 5, is y � 0.0195x + 0.019. Figure 6.4
shows that the two lines are quite similar when plotted. However, Theil’s
method has three distinct advantages over the least-squares approach: it does
not assume that all the errors are in the y-direction; it does not assume that ei-
ther the x- or y-direction errors are normally distributed; and it is not affected
by the presence of outlying results. This last advantage is clearly illustrated by
the point (50, 0.86) in the present example. It seems likely to be an outlier, but
its value does not directly influence the Theil calculation, since neither b26 nor
a6 affects the median estimates of the slope and intercept respectively. In
the least-squares calculation, however, this outlying point carries as much
weight as the other points. This is reflected in the calculated results; the least-
squares line has a smaller slope and passes closer to the outlier than does the
non-parametric line.
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Unlike most non-parametric methods, Theil’s method involves some tedious man-
ual calculations, so a simple computer program or a spreadsheet macro is necessary
in practice. Other, still more complex median-based methods have been described,
including Theil’s ‘complete’ method, in which the median slope is obtained from
the slopes of all the possible pairs of points. An experiment such as the one in the
example above with eight points generates 28 such pairs, though programs such as
Minitab® readily perform the calculation of the median slope (in this case it is
0.0199, very similar to the value obtained from the incomplete method). Such
methods are open to the objection that it may not be appropriate to assign equal im-
portance to the slope of the line joining two adjacent points and the slope of the
line joining two well-separated points. However, because each point on the graph is
involved in the calculation several times, these methods may have the advantage of
having a superior breakdown point, i.e. the proportion of outliers amongst the data
they can handle. Non-parametric methods for fitting curves are also available, but
these are beyond the scope of the present book.

6.10 Introduction to robust methods

We have seen (Section 6.1) that there is substantial evidence for the occurrence in
the experimental sciences of heavy-tailed error distributions. These can be regarded
as normal (Gaussian) distributions with the addition of outliers arising from gross
errors, or as the result of the superposition of several normal distributions with simi-
lar means but different variances. In either case, and in other instances where the
departure from a normal distribution is not great, it seems to be a waste of informa-
tion to use non-parametric methods, which make no assumptions at all about the
underlying error distribution. A better approach would be to develop methods
which do not entirely exclude suspicious results, but which reduce the weight given to
such measurements. This is the philosophy underlying the robust methods to be
summarised in the rest of this chapter, which can be applied to repeated measure-
ments, and to calibration/regression data. Many robust methods have been devel-
oped, so only a fairly brief survey of this important field is possible here; the reader
is referred to the Bibliography for sources of further material.

Robust statistical methods can be applied to samples from symmetrical but
heavy-tailed distributions, or when outliers may occur. They should not be
applied in situations where the underlying distribution is bi-modal, multi-
modal or very asymmetrical, for example log-normal distributions.

An obvious problem occurs in virtually all these methods. If we are to downgrade
the significance of some of our measurements, one or more criteria are needed on
which to base such decisions, but we cannot use such criteria unless we initially
consider all the data, i.e. before we know whether some measurements are suspect or
not. This problem is solved by using iterative methods: we estimate or guess a starting
value for some property of the data, use this initial estimate with our weighting
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criteria to arrive at a second estimate, then we re-apply our criteria, etc. Such meth-
ods are practicable only using a computer, though it must be stressed that many
otherwise excellent suites of statistics software do not yet include programs for
robust methods.

6.11 Simple robust methods: trimming and winsorisation

There are some very simple robust methods that do not require iterations because
they arbitrarily eliminate, rather than down-weighting, a proportion of the data. For
example, the trimmed mean for any set of data is found very easily by omitting r
observations at the top and at the bottom of the range of measurements and calcu-
lating the mean of the remainder. This principle can be applied to the set of data in
Example 3.7.2, which represented seven replicate measurements of nitrite ion in
river water (mg l�1):

The data have been arranged in numerical order for convenience: this emphasises
that the obvious question is whether or not the measurement 0.380 is an outlier. If
the value 0.380 is retained, the mean of the seven measurements is 0.4021, and their
standard deviation is 0.0109. If, as Grubbs’ and Dixon’s tests (see Section 3.7) sug-
gest, it is permissible to reject the result 0.380 (at P � 0.05), the mean and standard
deviation then become 0.4058 and 0.0053 respectively. This comparison confirms,
as we noted in Section 3.3, that the mean and (especially) the standard deviation are
vulnerable to the occurrence of outliers. Now suppose that we omit the smallest
(0.380) and the largest (0.413) of the measurements, and recalculate the mean. This
produces a number technically known as the 14.28% trimmed mean, the percentage
being calculated as 100r/n, where r top and bottom measurements have been omit-
ted from n results. The trimmed mean and its standard deviation are 0.4044 and
0.0044 respectively, clearly closer to values obtained after rejection of the suspect
value and possible outlier 0.380. The robustness of this trimmed mean is obvious: it
would have been the same, whatever the values taken by the smallest and largest re-
sults. But this example also illustrates the crudity of the trimmed mean method.
Why should we omit the value 0.413, except for reasons of symmetry? Is it accept-
able to calculate a statistic that completely ignores the suspect result(s) as well as one
or more that seem to be valid? What percentage of the data should be removed by
trimming? (Opinions on this last question have been divided, but in practice
10–25% trimming is common.)

A rather less arbitrary robust approach is provided by winsorisation. In its sim-
plest form, this process reduces the importance of the measurements giving the
largest positive and negative deviations from the mean or median by moving the
measurements so that these deviations become equal to the next largest or smallest
ones (or perhaps the third largest ones). The advantage of this approach is that if it
is applied to a data set lacking suspect values or actual outliers, the effects on the cal-
culated measures of location and spread are small, so no harm is done. For the nitrite
data listed above this simple symmetrical winsorisation would move the initially

0.380, 0.400, 0.401, 0.403, 0.408, 0.410, 0.413
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suspect value 0.380 to the next smallest value, 0.400, and the largest value, 0.413,
would be moved to 0.410. The mean and standard deviation would then be 0.4046
and 0.0046 respectively, values similar to those obtained after rejection of the outlier
0.380, and to those obtained after trimming. The principles of winsorisation are
applied in a more sophisticated way in Huber’s approach to robust estimation (see
Section 6.12).

A simple robust estimate of the standard deviation is provided by the IQR (see
Section 6.2 above). For a normal error distribution, the IQR is ca. 1.35 , i.e. 50%
of the measurements occur in an overall range of 1.35 . This relationship sup-
plies a standard deviation estimate that is not affected by any value taken by the
largest or smallest measurements. Unfortunately, the IQR is not a very meaning-
ful concept for very small data sets. Moreover, and somewhat surprisingly, there
are several different conventions for calculating it. For large samples the method
chosen makes little difference, but for small samples the differences in the calcu-
lated IQR values are large, so the IQR has found little application in analytical
chemistry.

6.12 Further robust estimates of location and spread

A more logical approach to robust estimation can be based on the concept of a
distance function. Suppose we have a series of n replicate measurements, x1 . . . 
xi . . . xn, and we wish to estimate m, the mean of the ‘reliable’ results. The conven-
tional estimate of m, to which in this discussion we give the symbol , is the mean, 

which is found by minimising the sum of squares . (This sum of squared

terms is the source of the sensitivity of the mean to large errors.) The expression 
(xi � m)2 is called a distance function, since it measures the distance of a point
from m. An obvious alternative distance function is xi � m. One widely used
method to test measurements for down-weighting (winsorisation) is to compare 
xi � m with c , where c is usually taken to be 1.5 and is a robust estimate of
the standard deviation. We consider first the estimation of , and then discuss the
down-weighting procedure used to estimate the robust mean, to which we give
the symbol .

The robust variance estimate can be derived from a statistic related to the unfor-
tunately abbreviated median absolute deviation (MAD!), which is calculated from:

(6.12.1)

where median (xi) is the median of all the xi values, i.e. all the measurements.
The MAD is an extremely useful statistic: one rough method for evaluating out-

liers (x0) is to reject them if x0 � median(xi) /MAD � 5. It can be shown that
MAD/0.6745 is a useful robust estimate of , often called the standard deviation
based on MAD, the standardised MAD, or SMAD. The SMAD is sometimes used
unchanged during the iterative estimates of the robust mean, but in the following
example we show the effect of iterating the robust estimate of , which is given the
symbol .sN
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Example 6.12.1

Apply these techniques to the measurements discussed above (0.380, 0.400,
0.401, 0.403, 0.408, 0.410, 0.413).

First it is necessary to calculate the MAD. The median of these numbers is
0.403 (i.e. the fourth of the seven ordered values), so the individual deviations
(without regard to their signs) are 0.023, 0.003, 0.002, 0, 0.005, 0.007
and 0.010. Rewriting these in numerical order we have: 0, 0.002, 0.003, 0.005,
0.007, 0.010 and 0.023. The MAD is the median of these seven numbers, i.e.
0.005, so , and 1.5 is 0.0111.

We are now in a position to begin iterative estimates of . This process is
begun by taking any reasonable estimate for and calculating values
for each measurement. In this example, suppose the initial -value is the
median, 0.403. As we have seen, the individual deviations from this value are
(in numerical order, but neglecting their signs) 0, 0.002, 0.003, 0.005, 0.007,
0.010 and 0.023. In the first iteration for the original measurements are 
retained if these deviations from the median are 0.0111. This applies to all
the deviations listed except the last. In the event that the deviation is �0.0111,
the original value in question is changed to become or de-
pending on whether it was originally below or above the median respectively.
In the present example the value 0.380, which gives rise to the large deviation
of 0.023, has to be changed to i.e. 0.403 � 0.0111 � 0.3919.

There is thus now a new data set, with the measurement 0.380 in the origi-
nal set having been replaced by 0.3919. This new set of numbers is called a set
of pseudo-values , and the calculation is repeated using this new set. The first
step is to calculate the mean of the new values (note that although the initial
value of can be based on the mean or the median or any other sensible esti-
mate, subsequent steps in the iteration always use the mean): this gives the
result 0.4038. The individual deviations from this new estimate of are, in as-
cending numerical order and without signs, 0.0008, 0.0028, 0.0038, 0.0042,
0.0062, 0.0092 and 0.0119. Since the range of the data set has been reduced by
the process of winsorisation, we can also calculate a new value for . This is
given by 1.134s, where s is the standard deviation of the pseudo-values, in this
instance 0.0071. The number 1.134 is derived from the properties of the normal
distribution and is used if c is 1.5. It provides a reminder that our robust
method assumes that we are working with a sample taken from a normal popu-
lation, but with added outliers or heavy tails. Thus 

and In the next iteration of the process, only deviations
from larger than this need further adjustment. The largest deviation in the
pseudo-data set is 0.0119, so no further steps are necessary in this case. (Had the
largest deviation been �0.0121 one or more further winsorisation steps would
have been necessary, with the calculation of a new mean and standard devia-
tion at each stage.)

The Huber method demonstrated in this example has produced a robust
estimate of , 0.4038, with a robust standard deviation, , of 0.0071. This
robust mean is similar to the values obtained after rejection of the suspect
measurement as an outlier, and after trimming or symmetrical winsorisation

NsmN

mN

1.5sN = 0.0121.0.0081,
sN = 0.0071 * 1.134 =
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(see above). The robust standard deviation is, as expected, smaller than the
value calculated when the suspect value is included, but larger than that found
when the suspect value is rejected. These results have been obtained after a sin-
gle application of the Huber approach, but in practice, when the data set is
larger and/or there is more than one suspect measurement, several iterations
may be required. As noted above, it is possible to simplify the process using the
initial estimate (0.0074 in this case) for all the iterations if a reliable robust
estimate of spread is not important. A Minitab® algorithm is available for the
full Huber procedure (see Bibliography).

Ns

This calculation deserves several comments. The first is that, like so many iterative
procedures, it is much more tedious to describe and explain than it is to perform!
The second point to note is that in this example we have applied the conventional
value c � 1.5 to define the distance function. Other values for c have been explored:
if it is too large potential outliers are not winsorised, and if it is too small only the
measurements near the centre of the data carry any weight. Other weighting meth-
ods have also been suggested, including some that reject extreme outliers (for exam-
ple, those from the mean) entirely, and apply winsorisation to moderate
outliers. Lastly it is worth re-emphasising that these robust methods do not have the
worries and ambiguities of outlier tests. In the example just examined, Dixon’s test
(Section 3.7) suggested that the value 0.380 could be rejected as an outlier (P �

0.05), but the simple MAD-based test (see above) suggests that it should not, as
below the (rough) critical

value of 5. Such concerns and contradictions disappear in robust statistics, where
the outliers are neither wholly rejected nor accepted unchanged, but accepted in a
changed or down-weighted form.

6.13 Robust ANOVA

We have seen in Chapters 3, 4 and 5 that analysis of variance (ANOVA) is a very
powerful method for separating and analysing the several sources of variation in a
range of different types of experiment. However, in common with the example dis-
cussed in the previous section, conventional ANOVA methods rely on the use of
squared terms, so the occurrence of suspect or outlying results can seriously distort
the conclusions drawn from the calculations. One area where such problems fre-
quently arise is in the performance of inter-laboratory trials (see Chapter 4). If a sin-
gle material is sent for analysis to several laboratories, and each laboratory analyses
it a number of times, ANOVA will be able to separate inter- and intra-laboratory
sources of variation, but suspect values may occur in two ways: one or more labora-
tories may obtain results out of line with the rest, or one or more results obtained by
a single laboratory may be suspect compared with the remaining results from that
laboratory. It is in such situations that the use of robust ANOVA is extremely helpful.
It is advisable to compare the results of classical and robust ANOVA in interpret-
ing the data. The approach used in the calculations, which again are iterative, is 

3 ƒ x0 - median(xi) ƒ 4>MAD = 3 ƒ 0.380 - 0.403 ƒ 4>0.005 = 4.6,

74s
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analogous to the one used in the example in the previous section, i.e. results that are
more than 1.5 times the SMAD are down-weighted. In essence the mean values from
the laboratories are taken, and robust estimates of their mean (i.e. the mean of the
means) and the sample mean variance are calculated. The results from each labora-
tory are then taken and treated similarly: this gives a robust estimate of the variance
due to the experimental error, , and of the mean for each laboratory. The method
used in Section 4.3 is then applied to get an estimate of the between-laboratory vari-
ance: this utilises the relationship that the between-sample mean square gives an
estimate of , where n is the number of measurements taken by each labora-
tory and is the between-laboratory variance. This is an example of (robust) one-
way ANOVA, i.e. there is only one source of variation apart from the inevitable
experimental error. Robust ANOVA has also been applied where there is more than
one such source (see Chapter 7). Facilities for these calculations are available as a
short program (see Bibliography) but, like other robust procedures, many established
statistics packages do not incorporate them.

6.14 Robust regression methods

The problems caused by possible outliers in regression calculations have been out-
lined in Sections 5.13 and 6.9, where rejection using a specified criterion and 
non-parametric approaches respectively were described. Robust approaches will evi-
dently be useful in regression statistics as well as in the statistics of repeated mea-
surements, and there has indeed been a rapid growth of interest in robust regression
methods amongst analytical scientists. Most of the approaches used in the study of
sets of replicate measurements have been adapted to regression problems. For exam-
ple the conventional least-squares method, which seeks to minimise the sum of the
squares of the y-residuals, has been modified so that the points giving the largest
residuals are trimmed or winsorised.

In Section 6.9 we saw that a single suspect measurement has a considerable effect
on the a and b values calculated for a straight line by the least-squares method. This
is because, just as in the nitrite determination example studied in Section 6.12, the
use of squared terms causes such suspect points to have a big influence on the sum
of squares. A clear and obvious alternative is to seek to minimise the median of
the squared residuals, which will be much less affected by large residuals. This least
median of squares (LMS) method is very robust: its breakdown point, i.e. the propor-
tion of outliers amongst the data that it can tolerate, is 50%, the theoretical maxi-
mum value. (If the proportion of ‘suspect’ results exceeds 50% it clearly becomes
impossible to distinguish them from the ‘reliable’ results.) Simulations using data
sets with deliberately included outliers show that this is a much better performance
than that obtained with Theil’s incomplete method. The LMS method also works well
in the situation discussed in Section 5.11, where we wish to characterise the straight-
line portion of a set of data which are linear near to the origin but non-linear at
higher x- and y-values: this is because it effectively treats the points in the non-
linear portion as outliers. LMS also handles both x- and y-direction outliers, a useful
characteristic when the regression approach is used to compare analytical methods
(see Section 5.9). The LMS slope and intercept can be calculated in a number of

s2
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ways, the most general of which uses a re-sampling technique similar to the bootstrap
method, to be described in the next section. The disadvantage of this method is that it
involves an iterative calculation which converges rather slowly, i.e. many iterations
may be required before the estimated a- and b-values become more or less constant.
A simpler method is to consider all the lines joining all the possible pairs of points
on the graph (for n points there will be pairs). For each line the median of
the squared residuals is determined. The smallest of these medians then defines the
LMS line: of course this means that the latter will have the same slope and intercept
as one of the individual lines, i.e. it will pass exactly through two of the points on
the graph. The LMS method also provides a robust estimate of R2 (see Section 5.12),
which is given by:

(6.14.1)

where ri and yi are respectively the y-residuals and the individual y-values of the
points of the LMS plot.

Other robust regression methods are being increasingly used. The iteratively 
re-weighted least squares method begins with a straightforward least-squares esti-
mate of the parameters of a line. The resulting residuals are then given different
weights, usually via a biweight approach. The biweight method (which is also used
in the treatment of sets of replicate data) rejects completely the points with very
large residuals (e.g. those at least six times greater than the median residual value),
while the remaining points are assigned weights which increase as their residuals get
smaller. A weighted least-squares calculation (Section 5.10) is then applied to the new
data set, and these steps are repeated until the values for a and b converge to stable
levels. In this method convergence is usually fairly rapid.

Trials with a wide range of chemical data sets confirm that, while the conven-
tional least-squares method described in Chapter 5 is the best approach if the mea-
surements fulfil all its requirements and there are no outliers, the robust methods
give better results if suspect values occur, and may thus be more appropriate in
many real-world situations.

6.15 Re-sampling statistics

The development of high-speed computers provides access to a further group of very
useful statistical methods, generally referred to as re-sampling techniques. These
approaches again involve iterative calculations, but are mostly quite distinct from
the robust methods described in the preceding sections. The best-known re-sam-
pling method is known as the bootstrap. (The title refers to people or organisations
succeeding from small beginnings by ‘pulling themselves up by their bootstraps’.)
The method operates as follows. Suppose we have a series of measurements x1, x2, 
x3 . . . xn, and we wish to find a statistical parameter such as the 95% confidence
limits of the mean. As shown in Chapter 2, we can do this by calculating the mean
and the standard deviation of the data, and then applying the properties of the nor-
mal distribution. The bootstrap does not require the assumption of the normal (or
any other) distribution, and involves taking a large number of samples of the same size

R2
= 1 - Bmedian ƒ ri ƒ

MAD(yi)
R

n(n - 1)>2
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with replacement from the original data. So if the original data were (units irrelevant)
1, 2, 3, 4, 5, then one bootstrap sample of the same size might be 2, 4, 3, 5, 2. Note
that the same measurement might well appear more than once in a given bootstrap
sample, since the sampling is done with replacement. That is, when the number 2
has been taken as the first member of the sample, it is replaced in the original set of
five measurements and is thus available for random selection again. As a result some
of the measurements might not appear at all in a single bootstrap sample (e.g. 1 in
this simple example). The number of possible bootstrap samples from n measure-
ments is nn, so even with only five measurements 3125 such samples are possible. In
practice it is commoner to take only a few hundred samples. Once the samples have
been taken, their means are determined and can be plotted as a histogram (or sorted
into numerical order) by the computer. The 95% confidence limits can then be deter-
mined by inspection. For example, with 200 bootstrap samples the 95% confidence
limits of the mean would be given by the 5th and 195th of the mean values sorted
into numerical order. Confidence limits obtained in this way do not depend on any
assumptions about the underlying error distribution, and would be expected to re-
flect (for example) any skewness in the measurements.

Example 6.15.1

The levels of a blood plasma protein in ten men were found to be (in numeri-
cal order) 1, 1, 2, 2, 3, 6, 8, 13, 14 and 18 mg 100 ml�1. Find the 95% confi-
dence limits for the mean of these values.

Inspection of the data shows that the values are skewed towards the lower end
of the measurement range. Using the methods of Chapter 2 we find that the
mean, , of the ten measurements is 6.80, and the standard deviation, s, is
6.20. Using Eq. (2.7.1) we find that the 95% confidence interval is

so the 95% confidence limits are
2.40 and 11.23.

Using the bootstrap approach we take 500 samples with replacement, and
obtain the results summarised in the histogram in Fig. 6.5. The mean value of
these 500 samples is 6.84, and the 95% confidence limits, defined by the
average of the 12th and 13th and the average of the 487th and 488th ordered
values, are 3.5 and 10.9. The confidence interval defined by these values is
narrower than the conventionally calculated one, and is asymmetrical relative
to the mean, so both the interval and the histogram correctly reflect the nega-
tive skewness of the data. No assumptions have been made in the bootstrap
method about the error distribution in the original data, i.e. the method is 
non-parametric.

6.80 ; (2.26 * 6.20)>210 = 6.80 ; 4.43

x

The main principles of bootstrapping are easily understood, and the iterative cal-
culations are simple, for example using a macro written for Minitab® (see Bibliogra-
phy) or add-ins available for Excel®. The most important applications in analytical
practice are likely to be in more complex situations than the one in the above exam-
ple. We have noted that bootstrap principles can be used to generate the LMS line
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when regression methods are applied, and they have been used in curve-fitting as
applied to a range of spectroscopic and other analytical methods. Additional sug-
gested uses have included the estimation of between-laboratory precision in method
performance studies (see Chapter 4) and the determination of the best model to use
in multivariate calibration (see Chapter 8).

6.16 Conclusions

The robust and non-parametric tests described in this chapter are only a small frac-
tion of the total available number of such methods. The examples given exemplify
their strengths and weaknesses. In many cases the speed and convenience of non-
parametric tests give them a distinct advantage over conventional approaches, and
they do not involve the assumption of a normal distribution. They are thus ideally
suited to the preliminary examination of small numbers of measurements, and to
quick calculations made – often without the need for statistical tables – while the
analyst is at the bench or on the shop floor. They can also be used when three or
more samples are studied, and in experiments using regression methods, though in
each case the calculations are inevitably more complex. The power (i.e. the probability
that a false null hypothesis is correctly rejected: see Section 3.13) of a non-parametric
method may be less than that of the corresponding parametric test, but the differ-
ence is only rarely serious. For example, many comparisons have been made of the
comparative powers of the Mann–Whitney U-test and the t-test, using various popu-
lation distributions and sample sizes. The U-test performs very well in almost all cir-
cumstances and is only marginally less powerful than the t-test even when the data
come from a normally distributed population. Many computer programs now
include several non-parametric tests, so it is possible for a particular set of data to be
evaluated rapidly by two or more methods.

Robust methods are not normally so easy to use, in view of the need in most
cases for iterative calculations, but they represent the best way of tackling one
of the most common and difficult problems for practising analysts, the occurrence
of suspicious or outlying results superimposed on an error distribution which is

Figure 6.5 Histogram of 500 bootstrap samples from data in Example 6.15.1. The additional
vertical lines show the 95% confidence limits from the bootstrap method.
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approximately normal. Their popularity is growing, at least in selected areas such as
inter-laboratory comparisons, but they are still not implemented in many popular
statistics programs.

Overall a great variety of significance tests – parametric non-parametric and
robust – are available, and often the most difficult task in practice is to decide which
method is best suited to a particular problem. The diagram in Appendix 1 is designed
to make such choices easier, though inevitably it cannot cover all possible practical
situations.
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Donor: 1 2 3 4 5 6 7 8 9 10

RID result: 1.3 1.5 0.7 0.9 1.0 1.1 0.8 1.8 0.4 1.3

EID result: 1.1 1.6 0.5 0.8 0.8 1.0 0.7 1.4 0.4 0.9

Are the results of the two methods significantly different?

4 Ten carbon rods used successively in an electrothermal atomic-absorption spec-
trometer were found to last for 24, 26, 30, 21, 19, 17, 23, 22, 25 and 25 samples.
Test the randomness of these rod lifetimes.

5 After each drinking three pints of beer, five volunteers were found to have blood
alcohol levels of 104, 79, 88, 120 and 90 mg 100 ml�1. A further set of six volun-
teers drank three pints of lager each, and were found to have blood alcohol lev-
els of 68, 86, 71, 79, 91 and 66 mg 100 ml�1. Use Tukey’s quick test or the
Mann–Whitney U-test to investigate the suggestion that drinking lager produces
a lower blood alcohol level than drinking the same amount of beer. Use the
Siegel–Tukey method to check whether the spreads of these two sets of results
differ significantly.

6 A university chemical laboratory contains seven atomic-absorption spectrome-
ters (A–G). Surveys of the opinions of the research students and of the academic
staff show that the students’ order of preference for the instruments is B, G, A,
D, C, F, E, and that the staff members’ order of preference is G, D, B, E, A, C, F.
Are the opinions of the students and the staff correlated?

7 Use Theil’s incomplete method to calculate the regression line for the data of 
exercise 1 in Chapter 5.

8 The nickel levels in three samples of crude oil were determined (six replicates in
each case) by atomic-absorption spectrometry, with the following results:

Use the Kruskal–Wallis method to decide whether the nickel levels in the three
oils differ significantly.

Exercises

1 A titration was performed four times, with the results: 9.84, 9.91, 9.89, 10.20 ml.
Calculate and comment on the median and the mean of these results.

2 The level of sulphur in batches of an aircraft fuel is claimed by the manufacturer
to be symmetrically distributed with a median value of 0.10%. Successive
batches are found to have sulphur concentrations of 0.09, 0.12, 0.10, 0.11, 0.08,
0.17, 0.12. 0.14 and 0.11%. Use the sign test and the signed rank test to check
the manufacturer’s claim.

3 The concentrations (g 1000 ml�1) of immunoglobulin G in the blood sera of ten
donors are measured by radial immunodiffusion (RID) and by electroimmuno-
diffusion (EID), with the following results:

Sample Measurements (Ni, ppm)

1 14.2 16.8 15.9 19.1 15.5 16.0
2 14.5 20.0 17.7 18.0 15.4 16.1
3 18.3 20.1 16.9 17.7 17.9 19.3



 

Experimental design 
and optimisation

7.1 Introduction

A recurring theme in this book has been that statistical methods are invaluable not
only in the analysis of experimental data, but also in designing and optimising exper-
iments. So many experiments fail in their purpose because they are not properly
thought out and designed in the first place, and in such cases even the best data
analysis procedures cannot compensate for the fatal lack of foresight and planning.
Failure to design an experiment properly may mean that insufficient results – or at
least insufficient results of the right kind – are obtained, or that an unnecessarily
large number of measurements are taken. It is even possible to fall into both traps, i.e.
to take too many measurements of one kind, and not enough of another. In all such
cases the quality of the conclusions drawn will be reduced, and invaluable resources
of time, samples, reagents, etc. wasted. This chapter introduces the basic concepts of
experimental design and optimisation, and summarises the methods that should be
carefully considered and used before any new experimental procedure is started.

Major topics covered in this chapter
• Experimental design: introduction and nomenclature

• Randomisation and blocking in experimental design

• Two-way analysis of variance

• Latin squares

• Interactions in experimental design and their estimation

• Identifying the important factors

• Complete and fractional (incomplete) factorial designs

• Optimisation: aims and principles

• Optimising a single factor

• Alternating variable search and steepest ascent optimisation methods

• Optimisation using simplex and simulated annealing approaches

7
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In Chapter 3 we introduced the idea of a factor, i.e. any aspect of the experimen-
tal conditions which affects the result obtained from an experiment. Section 3.9 de-
scribed the dependence of a fluorescence signal on one factor, the conditions in
which a solution was stored. This factor was called a controlled factor because it
could be altered at will by the experimenter. In another example in Section 4.3, in
which salt from different parts of a barrel was tested for purity, the factor of interest,
i.e. the part of the barrel from which the salt was taken, was chosen at random, so
that factor was called an uncontrolled factor. In both these examples the factors
were qualitative since their possible ‘values’ could not be arranged in numerical
order. A factor for which the possible values can be arranged in numerical order, e.g.
temperature or pH, is a quantitative one. The different values that a factor takes are
called levels, whether the factor is quantitative or qualitative.

These two examples from previous chapters provided an introduction to the cal-
culations involved in the analysis of variance (ANOVA). In each case only a single
factor (apart from the inevitable measurement errors) was considered. But in reality,
even that simple fluorescence experiment might be affected by many additional fac-
tors such as the ambient temperature, pH, ionic strength and chemical composition
of the buffer in which the fluorophore is dissolved, the use of the same or a different
fluorescence spectrometer for each measurement, and the dates, times and staff used
in making the measurements. Any of these factors might have influenced the results
to contribute to the observed behaviour, thus invalidating the conclusions concern-
ing the effect of the storage conditions. Clearly, if the correct conclusions are to be
drawn from an experiment, the various factors affecting the result must be identified
in advance and, if possible, controlled.

The term experimental design is usually used to describe the stages of:

1 identifying the factors which may affect the result of an experiment;

2 designing the experiment so that the effects of uncontrolled factors are
minimised;

3 using statistical analysis to separate and evaluate the effects of the various
factors involved.

Before beginning any experimental design it is crucial to establish the exact purpose
of the proposed experiment. This seems entirely obvious, but in many instances a
failure to define sufficiently the object of an experiment has led to the failure of a
subsequent design. If we wish to analyse a single drug in a urine extract by high-
performance liquid chromatography, the resolution of the chromatogram we obtain
will be affected by many factors, including those related to the mobile phase and sta-
tionary phase properties, the detector, and so on. But the best set of factor levels will
not be the same if, for example, we wish to analyse the drug and its major metabo-
lite, or the drug and as many as possible of its metabolites; so we need to be quite
certain what the aim of the experiment is. In many cases an experiment will not be
a completely new one, so there will be a great deal of literature on the factors studied
by other experimenters aiming for the same result, and the factor levels used by them.
It is of course legitimate to use such information to obtain guidance on the factors
likely to be important, and their levels. At the same time experience shows that it is
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very difficult to reproduce exactly in one laboratory the results obtained in another
(see Chapter 4). In some cases this is because authors omit or obscure (deliberately or
accidentally!) some vital aspect of their described experimental conditions; and in
some cases the results in different laboratories may be affected significantly by
uncontrolled factors, such as reagent or solvent purity, humidity, etc. Taking over
the factor levels previously used by others is thus something to be attempted with
caution.

Since many factors will affect experimental results quite complex experimental
designs may be necessary. (This perhaps helps to explain why experimental design is
not used as much as it should be.) The choice of the best practical levels of these fac-
tors, i.e. the optimisation of the experimental conditions, will also require detailed
study. These methods, along with other multivariate methods covered in the next
chapter, are amongst those given the general term chemometrics.

7.2 Randomisation and blocking

One of the assumptions of the one-way ANOVA calculations such as those in Chap-
ters 3 and 4 is that the uncontrolled variation is truly random. This is also true of
other ANOVA calculations. However, in measurements made over a period of time,
variation in an uncontrolled factor such as pressure, temperature, photodecomposi-
tion of the sample and deterioration of apparatus may produce a trend in the results.
As a result the errors due to uncontrolled variation are no longer random since the
errors in successive measurements are correlated. This can lead to a systematic error in
the results. This problem can be overcome by using the technique of randomisation.
Suppose we wish to compare the effect of a single factor, the concentration of per-
chloric acid in aqueous solution, at three different levels or treatments (0.1 M, 0.5 M
and 1.0 M) on the fluorescence intensity of quinine (which is widely used as a pri-
mary standard in fluorescence spectrometry). Let us suppose that four replicate in-
tensity measurements are made for each treatment, i.e. in each perchloric acid
solution. Instead of making the four measurements in 0.1 M acid, followed by the
four in 0.5 M acid, then the four in 1 M acid, we make the 12 measurements in a ran-
dom order, decided by using a table of random numbers. Each treatment is assigned
a number for each replication as follows:

0.1 M 0.5 M 1 M
01 02 03 04 05 06 07 08 09 10 11 12

(Note that each number has the same number of digits.) We then enter a random
number table (see Table A.8) at an arbitrary point and read off pairs of digits, discard-
ing the pairs 00, 13–99, and also discarding repeats. Suppose this gives the sequence
02, 10, 04, 03, 11, 01, 12, 06, 08, 07, 09, 05. Then, using the numbers assigned
above, the measurements would be made at the different acid levels in the following
order: 0.1 M, 1 M, 0.1 M, 0.1 M, 1 M, 0.1 M, 1 M, 0.5 M, 0.5 M, 0.5 M, 1 M, 0.5 M.
This random order of measurement ensures that the errors at each acid level due to
uncontrolled factors are random.
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One disadvantage of complete randomisation is that it fails to take advantage of
any natural subdivisions in the experimental material. Suppose, for example, that
the 12 measurements in this example could not be made on the same day but were
divided among four consecutive days. Using the same order as before would give:

Day 1 0.1 M, 1 M, 0.1 M
Day 2 0.1 M, 1 M, 0.1 M
Day 3 1 M, 0.5 M, 0.5 M
Day 4 0.5 M, 1 M, 0.5 M

With this design all the measurements using 0.1 M perchloric acid as the quinine
solvent occur (by chance) on the first two days, whereas those using 0.5 M perchloric
acid happen to be made on the last two days. If it seemed that there was a difference
between the effects of these two acid levels it would not be possible to tell whether
this difference was genuine or was caused by the effect of using the two treatments
on different pairs of days. A better design is one in which each treatment is used
once on each day, with the order of the treatments randomised on each day. For
example:

Day 1 0.1 M, 1 M, 0.5 M
Day 2 0.1 M, 0.5 M, 1 M
Day 3 1 M, 0.5 M, 0.1 M
Day 4 1 M, 0.1 M, 0.5 M

A group of results containing one measurement for each treatment (here, the data
obtained on each day) is known as a block, so this design is called a randomised
block design. Further designs that do not use randomisation are considered in Sec-
tion 7.4 below.

7.3 Two-way ANOVA

When two factors may affect the results of an experiment, two-way ANOVA must be
used to study their effects. Table 7.1 shows the general form of a layout for this
method. Each of the N measurements, xij, is classified under the terms treatment
levels and blocks; the latter term was introduced in the previous section. (These
terms are derived from the original use of ANOVA by R.A. Fisher in agricultural ex-
periments, but are still generally adopted.) Using the conventional symbols there are
c treatment levels and r blocks, so N � cr. The row totals (T1., T2., etc.) and the col-
umn totals (T.1, T.2, etc.), and the grand total, T, are also given as they are used in
the calculations. (The dots in the column and row totals remind us that in each case
only one of the two factors is being studied.) The formulae for calculating the varia-
tion from the three different sources, viz. between-treatment, between-block and ex-
perimental error, are given in Table 7.2. Their derivation will not be given in detail
here: the principles are similar to those for one-way ANOVA (Section 3.9) and the
texts listed in the Bibliography provide further details.
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As in one-way ANOVA, the calculations are simplified by the repeated appearance
of the term and by the fact that the residual (random experimental) error
is obtained by subtraction. Note that an estimate of this experimental error can be
obtained, even if only one measurement is made at each combination of treatment
level and block, as in the example below.

T2>N,

Table 7.1 General form of table of two-way ANOVA

Treatment Row total

1 2 . . . j . . . c

Block 1 . . . x1j . . . x1c T1.
Block 2 . . . x2j . . . x2j T2.

. . . . . .
Block i xi1 xi2 . . . xij . . . xic Ti.

. . . . . .
Block r xr1 xr2 xrj xrc Tr.

Column total T.j T.c T = grand  totalT.2T.1

######

######

x22x21

x12x11

Example 7.3.1

In an experiment to compare the percentage efficiency of different chelating
agents in extracting a metal ion from aqueous solution the following results
were obtained:

On each day a fresh solution of the metal ion (with a specified concentration)
was prepared and the extraction performed with each of the chelating agents
taken in a random order.

Table 7.2 Formulae for two-way ANOVA

Source of variation Sum of squares Degrees of freedom

Between-treatment
Between-block
Residual by subtraction by subtraction

Total N - 1ggx2
ij - T2>N

r - 1gT2
i.>c - T2>N

c - 1gT2
.j>r - T2>N

Chelating agent

Day A B C D

1 84 80 83 79
2 79 77 80 79
3 83 78 80 78
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In this experiment the use of different chelating agents is a controlled factor
since the chelating agents are chosen by the experimenter. The day on which
the experiment is performed introduces uncontrolled variation, caused both
by changes in laboratory temperature, pressure, etc., and by slight differences
in the concentration of the metal ion solution, i.e. the day is a random factor.
In previous chapters it was shown that ANOVA can be used either to test for a
significant effect due to a controlled factor, or to estimate the variance of an
uncontrolled factor. In this case, where both types of factor occur, two-way
ANOVA can be used in both ways: (i) to test whether the different chelating
agents have significantly different efficiencies, and (ii) to test whether the day-
to-day variation is significantly greater than the variation due to the random
error of measurement and, if it is, to estimate the variance of this day-to-day
variation. As in one-way ANOVA, the calculations can be simplified by sub-
tracting an arbitrary number from each measurement. The table below shows
the measurements with 80 subtracted from each.

We also have and 

The calculation of the ANOVA table gives the following results:

Since the residual mean square is obtained by subtraction, it is important to use
many significant figures initially in the table to avoid significant errors if this
difference is small.

We can verify that this calculation does indeed separate the between-
treatment and between-block effects. For example, if all the values in one block
are increased by a fixed amount and the sums of squares re-calculated, the
between-block and total sums of squares are changed, but the between-treatment
and residual sums of squares are not.

ggxij
2

= 54r = 3, c = 4, N = 12,

TreatmentsBlocks

A B C D

Row totals, 

Day 1 4 0 3 �1 6 36
Day 2 �1 �3 0 �1 �5 25
Day 3 3 �2 0 �2 �1 1

Column totals, T.j 6 �5 3 �4 0 � Grand total, T

36 25 9 16 gT.j
2

= 86gT.j
2

gTi.
2

= 62

Ti.
2Ti.

Source of variation Sum of squares Degrees of 
freedom

Mean square

Between-treatment 3
Between-block 2
Residual 6

Total 1154 - 02>12 = 54.0

9.8333>6 = 1.6389by subtraction = 9.8333
15.5>2 = 7.7562>4 - 02>12 = 15.5
28.6667>3 = 9.555686>3 - 02>12 = 28.6667
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If there is no difference between the efficiencies of the chelators, and no day-
to-day variation, then all three mean squares should give an estimate of , the
variance of the random variation due to experimental error (cf. Section 3.9). As
in one-way ANOVA, the F-test is used to see whether the variance estimates
differ significantly. Comparing the between-treatment mean square with the
residual mean square gives:

From Table A.3 the critical value of (1-tailed, ) is 4.76, so we find
that there is a difference between the two variances, i.e. between the efficiencies
of the chelating agents, at the 5% level. Comparing the between-block (i.e.
between-day) and residual mean squares gives:

In this case the critical value of (one-tailed, ) is 5.14, so there is no
significant difference between the days. Nevertheless the between-block mean
square is considerably larger than the residual mean square, and had the experi-
ment been ‘unblocked’, so that these two effects were combined in the estimate
of experimental error, the experiment would probably have been unable to detect
whether different treatments gave significantly different results. If the difference
between days had been significant it would indicate that other factors such as
temperature, pressure and the preparation of the solution were having an effect.
It can be shown that the between-block mean square gives an estimate of

where is the variance of the random day-to-day variation. Since the
residual mean square gives an estimate of , an estimate of can be obtained.sb

2s0
2

sb
2s0

2
+ csb

2,

P = 0.05F2,6

F =

7.75
1.6389

= 4.73

P = 0.05F3,6

F =

9.5556
1.6389

= 5.83

s0
2

This example illustrates clearly the benefits of considering carefully the design of an
experiment before it is performed. Given a blocked and an unblocked experiment
with the same number of measurements in each, the former is more sensitive and
yields more information. The sensitivity of the experiment depends on the size of
the random variation: the smaller this is, the smaller the difference between the
treatments that can be detected. In an unblocked experiment the random variation
would be larger since it would include a contribution from the day-to-day variation,
so the sensitivity would be reduced.

The two-way ANOVA calculation performed above is based on the assumption
that the effects of the chelators and the days, if any, are additive, not interactive. This
point is discussed further in Section 7.5.

7.4 Latin squares and other designs

In some experimental designs it is possible to take into account an extra factor
without a large increase in the number of experiments performed. A simple exam-
ple is provided by the study of the chelating agents in the previous section, where
an uncontrolled factor not taken into account was the time of day at which the
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Chelating agents

A B

Day 1 80 85
Day 2 73 78

measurements were made. Systematic variation during the day due to deterioration
of the solutions or an increase in laboratory temperature could have produced a
trend in the results.

In such cases, when there is an equal number of blocks and treatments (this was
not the case in the previous example) it is possible to use an experimental design
which allows the separation of such an additional factor. Suppose that the treat-
ments are simply labelled A, B and C, then a possible design would be:

Day 1 A B C
Day 2 C A B
Day 3 B C A

This block design, in which each treatment appears once in each row and once
in each column, is known as a Latin square. It allows the separation of the varia-
tion into the between-treatment, between-block, between-time-of-day and random
experimental error components. More complex designs are possible which remove
the constraint of equal numbers of blocks and treatments. If there are more than
three blocks and treatments a number of Latin square designs are obviously possible
(one can be chosen at random). Experimental designs of the types discussed so far
are said to be cross-classified designs, as they provide for measurements for every
possible combination of the factors. But in other cases (for example when samples
are sent to different laboratories, and are analysed by two or more different experi-
menters in each laboratory) the designs are said to be nested or hierarchical, because
the experimenters do not make measurements in laboratories other than their own.
Mixtures between nested and cross-classified designs are also possible.

7.5 Interactions

In the example in Section 7.3 the two-way ANOVA calculations used assumed that
the effects of the two factors (chelating agents and days) were additive. This means
that if, for example, we had had only two chelating agents, A and B, and studied them
both on each of two days, the results might have been something like:

That is, using chelating agent B instead of A produces an increase of 5% in extraction
efficiency on both days; and the extraction efficiency on day 2 is lower than that on
day 1 by 7%, whichever chelating agent is used. In a simple table of the kind shown,
this means that when three of the measurements are known, the fourth can easily be
deduced. Suppose, however, that the extraction efficiency on day 2 for chelating
agent B had been 75% instead of 78%. Then we would conclude that the difference
between the two agents depended on the day of the measurements, or that the dif-
ference between the results on the two days depended on which agent was in use.
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That is, there would be an interaction between the two factors affecting the results.
Such interactions are in practice extremely important: a recent estimate suggests that
at least two-thirds of the processes in the chemical industry are affected by interact-
ing, as opposed to additive, factors.

Unfortunately the detection of interactions is not quite as simple as the above
example implies, as the situation is complicated by the presence of random errors. If
a two-way ANOVA calculation is applied to the very simple table above, the residual
sum of squares is found to be zero. But if the extraction efficiency for agent B on day
2 had been, say, 77% instead of 78% because of experimental error, or indeed if any
of the four values in the table had changed, this is no longer so. With this design of
experiment we cannot tell whether a non-zero residual sum of squares is due to ran-
dom measurement errors, to an interaction between the factors, or to both effects. To
resolve this problem the measurement in each cell must be made at least twice. It is
important that the replicate measurements must be performed in such a way that all
the sources of random error are present in every case. For example, if different equip-
ment items have been used in experiments on the different chelating agents, then
the duplicate or replicate measurements applied to each chelating agent on each day
must also use different apparatus. If the same equipment is used for these replicates,
the random error in the measurements may be underestimated. If the replicates are
performed properly the method by which the interaction sum of squares and the ran-
dom error can be separated is illustrated by the following new example.

Example 7.5.1

In an experiment to investigate the validity of a material as a liquid absorbance
standard, the value of the molar absorptivity, , of solutions of three different
concentrations was calculated at four different wavelengths. Two replicate
absorbance measurements were made for each combination of concentra-
tion and wavelength. The order in which the measurements were made was
randomised.

The results are shown in Table 7.3; for simplicity of calculation the calcu-
lated values have been divided by 100.

Table 7.4 shows the result of the Minitab® calculation for these results. (NB
In using this program for two-way ANOVA calculations with interaction, it is
essential to avoid the option for an additive model: the latter excludes the
desired interaction effect. Excel® also provides facilities for including interaction
effects in two-way ANOVA.) Here we explain in more detail how this ANOVA
table is obtained. The first stage of the calculation is to find the cell totals. This

e

e

Table 7.3 Molar absorptivity values for a possible absorbance standard

Concentration, g l−1 Wavelength, nm 

240 270 300 350

0.02 94, 96 106, 108 48, 51 78, 81
0.04 93, 93 106, 105 47, 48 78, 78
0.06 93, 94 106, 107 49, 50 78, 79
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is done in Table 7.5, which also includes other quantities needed in the calcula-
tion. As before, denotes the total of the ith row, the total of the jth col-
umn and T the grand total.

As before, the between-row, between-column and total sums of squares are
calculated. Each calculation requires the term (where n is the number of
replicate measurements in each cell, in this case 2, r is the number of rows and
c is the number of columns). This term is sometimes called the correction
term, C. Here we have:

The sums of squares are now calculated:

with degrees of freedom

 = 11 059.50

 =

1 032 646
2 * 3

- 161 048.17

 Between-column sum of squares = a
j

T.j
2>nr - C

r - 1 = 2
 = 12.33

 =

1 288 484
2 * 4

- 161 048.17

 Between-row sum of squares = a
i

T2
i.>nc - C

= 161 048.17C =

T2

nrc
=

19662

2 * 3 * 4

T2>nrc

T..jTi.

Table 7.4 Minitab® output for Example 7.5.1

Two-way analysis of variance

Analysis of Variance for Response

Source DF SS MS

Conc. 2 12.33 6.17
Wavelength 3 11059.50 3686.50
Interaction 6 2.00 0.33
Error 12 16.00 1.33
Total 23 11089.83

Table 7.5 Cell totals for two-way ANOVA calculation

240 nm 270 nm 300 nm 350 nm

190 214 99 159 662 438 244
186 211 95 156 648 419 904
187 213 99 157 656 430 336

563 638 293 472 T � 1966

316 969 407 044 85 849 222 784

a
i

T2
i. = 1 288 484a

j
T2

.j = 1 032 646

T.j
2

T.j

0.10 g l-1

0.06 g l-1

0.02 g l-1

Ti.
2Ti.

with degrees of freedom.c - 1 = 3
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where is the kth replicate in the ith row and jth column, i.e. is the
sum of the squares of the individual measurements in Table 7.3.

with degrees of freedom.
The variation due to random error (usually called the residual variation) is

estimated from the within-cell variation, i.e., the variation between replicates.
The residual where Tij is the total for the

cell in the ith row and jth column, i.e. the sum of the replicate measurements in
the ith row and jth column.

with degrees of freedom.
The interaction sum of squares and number of degrees of freedom can now

be found by subtraction. Each source of variation is compared with the residual
mean square to test whether it is significant.

1 Interaction. This is obviously not significant since the interaction mean
square is less than the residual mean square.

2 Between-column (i.e. between-wavelength). This is highly significant since
we have:

The critical value of In this case a significant result
would be expected since absorbance is wavelength-dependent.

3 Between-row (i.e. between-concentration). We have:

The critical value of is 3.885 indicating that the between-row
variation is too great to be accounted for by random variation. So the solution
is not suitable as an absorbance standard. Figure 7.1 shows the molar absorptiv-
ity plotted against concentration, with the values for the same wavelength
joined by straight lines. This illustrates the results of the analysis above in the
following ways:

• the lines are parallel, indicating no interaction;

• the lines are not quite horizontal, indicating that the molar absorptivity
varies with concentration;

• the lines are at different heights on the graph, indicating that the molar ab-
sorptivity is wavelength-dependent.

(P = 0.05),F2,12

F =

6.17
1.3333

= 4.63

F3,12 is 3.49 (P = 0.05).

F =

3686.502
1.3333

= 2765

(n - 1)rc = 12

 = 16
 = 172 138 - (344 244>2)

 Residual sum of squares = ax2
ijk - aT2

ij>n

sum of squares = ax2
ijk - aT2

ij>n,

nrc - 1 = 23

 = 11 089.83

 Total sum of squares = 172 138 - 161 048.17

ax2
ijkxijk

Total sum of squares = ax2
ijk - C
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The formulae used in the calculation above are summarised in Table 7.6.
In this experiment both factors, i.e. the wavelength and the concentration of the

solution, are controlled factors. In analytical chemistry an important application of
ANOVA is the investigation of two or more controlled factors and their interactions
in optimisation experiments. This is discussed in Section 7.7.

As discussed in Section 4.11, another important application of ANOVA is in col-
laborative investigations of precision and accuracy between laboratories. In full-scale
method performance studies (collaborative trials) several different types of sample
are sent to a number of laboratories, and each laboratory performs a number of repli-
cate analyses on each sample. Statistical analysis of the results would yield the fol-
lowing sums of squares: between-laboratory, between-samples, laboratory–sample
interaction and residual. The purpose of such an experiment would be to test first
whether there is any interaction between laboratory and sample, i.e. whether some
laboratories showed unexpectedly high or low results for some samples. This is done
by comparing the interaction and residual sums of squares. If there is no interaction,
then we could test whether the laboratories obtained significantly different results,
i.e. if there is any systematic difference between laboratories. If there is, then the
inter-laboratory variance can be estimated. However, if there is a significant interac-
tion, the testing for a significant difference between laboratories has little relevance.

Table 7.6 Formulae for two-way ANOVA with interaction

Source of variation Sum of squares Degrees of freedom

Between-row

Between-column

Interaction by subtraction by subtraction

Residual

Total rcn - 1a x2
ijk - C

rc (n - 1)a x2
ijk - aT2

ij >n

c - 1a
j

T2
.j>nr - C

r - 1a
i

T2
i.>nc - C

100

50

0

0.02 0.06 0.10

Concentration, gl–1

270nm

240nm

350nm

300nm

ε

Figure 7.1 Relationships in the two-way ANOVA example (Example 7.5.1).
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For two-way ANOVA to be valid the following conditions must be fulfilled (see
also Section 3.10):

• The random error is the same for all combinations of the levels of the factors.

• The random errors are approximately normally distributed.

7.6 Identifying the important factors: factorial designs

In Section 7.1 we used the examples of fluorescence measurements in solution, and
the analysis of a drug using high-performance liquid chromatography, to demonstrate
that in many analytical techniques the response of the measurement system depends
on several or many factors under the control of the operator. For a particular applica-
tion it is important to set the levels of these factors such that the system is giving the
best possible results. The process of finding the most suitable factor levels is known as
optimisation (see Sections 7.8–7.12). Before an optimisation process can begin we
must determine which factors, and which interactions between them, are important
in affecting the response: it is also obviously valuable to know which factors have lit-
tle or no effect, so that time and resources are not wasted on unnecessary experiments.

An experiment such as the example in the previous section, where the response
variable (i.e. the molar absorptivity) is measured for all possible combinations of the
chosen factor levels, is known as a complete factorial design. This type of design is
quite different from an approach which is perhaps more obvious, a one-at-a-time
design, in which the effect of changing the level of a single factor on the response,
with all the other factors held at constant levels, is investigated for each factor in
turn. There are two reasons for preferring a factorial design to a one-at-a-time ap-
proach. The fundamental reason is that a suitable factorial design can detect and
estimate the interactions between the factors, while a one-at-a-time methodology
cannot. Second, even if interactions are absent, a factorial design needs fewer mea-
surements than the one-at-a-time approach to give the same precision. This is again
exemplified by the molar absorptivity experiment, in which 24 measurements were
used to estimate the effect of varying the wavelength, and the same 24 used to esti-
mate the effect of varying the concentration. In a one-at-a-time experiment, first the
concentration would have been fixed and, to obtain the same precision for the effect
of varying the wavelength, six measurements would have been needed at each wave-
length, i.e. 24 in all. Then the wavelength would have been fixed and another eight
measurements made at each of the three different concentrations, making a total of
48 altogether. In general, for k factors, a one-at-a-time approach involves k times as
many measurements as a factorial one with the same precision. However, as we shall
see, complete factorial designs still involve a large number of experiments if the
number of factors is substantial (Section 7.7).

In many factorial designs each factor is studied at just two levels, usually called
‘low’ and ‘high’, to minimise the need for numerous experiments. For this reason,
two-level designs are sometimes called screening designs. For a quantitative
variable the terms ‘low’ and ‘high’ have their usual meaning. The exact choice of
levels is determined mainly by the experience and knowledge of the experimenter
and the physical constraints of the system, e.g. in aqueous solutions only tempera-
tures in the range 0–100 °C are practicable. Some problems affecting the choice of
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levels are discussed below. For a qualitative variable ‘high’ and ‘low’ refer to a pair of
different conditions, such as the presence or absence of a catalyst, the use of me-
chanical or magnetic stirring, or taking the sample in powdered or granular form.
Since we have already considered two-factor experiments in some detail we will turn
to one with three factors: A, B and C. This means that there are possible com-
binations of factor levels, as shown in Table 7.7. A plus sign denotes that the factor
is at the high level and a minus sign that it is at the low level. (In three-level designs,
the symbols �1, 0 and �1 are often used to denote the levels.) The first column gives
a notation often used to describe the combinations, where the presence of the appro-
priate lower case letter indicates that the factor is at the high level and its absence
that the factor is at the low level. The number 1 is used to indicate that all factors are
at the low level. Sometimes the experiments in tables summarising experimental
designs are simply given in numerical order (see Section 7.7).

The method by which the effects of the factors and their interactions are esti-
mated is illustrated by the following example.

23
= 8

Table 7.7 Complete factorial design for three factors

Combination A B C Response

1 � � � y1
a � � � y2
b � � � y3
c � � � y4
bc � � � y5
ac � � � y6
ab � � � y7
abc � � � y8

Example 7.6.1

In a high-performance liquid chromatography experiment, the dependence of
the retention parameter, k , on three factors was investigated. The factors were
pH (factor P), the concentration of a counter-ion (factor T) and the concentra-
tion of the organic solvent in the mobile phase (factor C). Two levels were used
for each factor and two replicate measurements made for each combination.
The measurements were randomised. The table below gives the average value
for each pair of replicates.

¿

Combination of factor levels k�

1 4.7
p 9.9
t 7.0
c 2.7
pt 15.0
pc 5.3
tc 3.2
ptc 6.0
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Effect of individual factors

The effect of changing the level of P can he found from the average difference
in response when P changes from high to low level with the levels of C and T
fixed. There are four pairs of responses that give an estimate of the effect of the
level of P as shown in the table below.

The average effects of altering the levels of T and C can be found similarly to be:

Interaction between two factors

Consider now the two factors P and T. If there is no interaction between them,
then the change in response between the two levels of P should be indepen-
dent of the level of T. The first two figures in the last column of the table above
give the change in response when P changes from high to low level with T at
low level. Their average is (5.2 � 2.6)�2 � 3.9. The last two figures in the same
column give the effect of changing P when T is at high level. Their average is
(8.0 � 2.8)�2 � 5.4. If there is no interaction and no random error (see Sec-
tion 7.5) these estimates of the effect of changing the level of P should be equal.
The convention is to take half their difference as a measure of the interaction:

It is important to realise that this quantity estimates the degree to which the
effects of P and T are not additive. It could equally well have been calculated by
considering how far the change in response for the two levels of T is indepen-
dent of the level of P.

The other interactions are calculated in a similar fashion:

Interaction between three factors

The PT interaction calculated above can be split into two parts according
to the level of C. With C at low level the estimate of interaction would be

Effect of CT interaction = -1.55

Effect of CP interaction = -1.95

Effect of PT interaction = (5.4 - 3.9)>2 = 0.75

Average effect of altering the level of T = 2.15

Average effect of altering the level of C = -4.85

Average effect of altering the level of P = 18.6>4 = 4.65

Level of C Level of T Level of P Difference

� �

� � 9.9 4.7 5.2
� � 5.3 2.7 2.6
� � 15.0 7.0 8.0
� � 6.0 3.2 2.8

Total � 18.6
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These calculations have been presented in some detail in order to make the
principles clear. An algorithm due to Yates, which is available as an Excel®

macro, greatly simplifies the calculation in practice.
In order to test which effects, if any, are significant, ANOVA may be used

(provided that there is homogeneity of variance). It can be shown that in a two-
level experiment, such as this one, the required sums of squares can be calcu-
lated from the estimated effects by using

where N is the total number of measurements, including replicates. In this case
N is 16 since two replicate measurements were made for each combination of
factor levels. The calculated sums of squares are given below.

Sum of squares = N *

(estimated effect)2

4

and with C at high level it would be If
there is no interaction between all three factors and no random error, these
estimates of the PT interaction should be equal. The three-factor interaction is
estimated by half their difference The three-factor
interaction measures the extent to which the effect of the PT interaction and
the effect of C are not additive: it could equally well be calculated by consider-
ing the difference between the PC estimates of interaction for low and high
levels of T or the difference between the TC estimates of interaction for low
and high levels of P.

These results are summarised in the table below:

[=  (0.1 - 1.4)>2 = -0.65].

(2.8 - 2.6)>2 = 0.1.(8.0 - 5.2)>2 = 1.4

Effect

Single factor (main effect)
P 4.65
T 2.15
C �4.85

Two-factor interactions
TP 0.75
CT �1.55
CP �1.95

Three-factor interactions
PTC �0.65

Factor(s) Sum of squares

P 86.49
T 18.49
C 94.09
PT 2.25
TC 9.61
PC 15.21
PCT 1.69
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One serious problem with a complete factorial experiment such as this is that the
number of experiments required rises rapidly with the number of factors. For k
factors at two levels, with two replicates for each combination of levels to allow the
estimation of experimental errors, experiments are necessary. So only five fac-
tors generate as many as 64 experiments. Such a workload is normally unacceptable:
some more practicable alternative approaches are outlined in the next section.

Another obvious problem in using a factorial design is that for factors which are
continuous variables, the observed effect depends on the high and low levels used. If
the chosen high and low levels of a factor are too close to each other the effect of the
factor may be found to be not significant, despite the fact that over the whole possi-
ble range of factor levels its effect may be substantial. On the other hand, if the fac-
tor levels are chosen to be too far apart the responses may fall on either side of a
maximum value and thus give a difference that is not significant. An experimenter’s
experience and prior literature may help to avoid these difficulties. The problem can
also be tackled in principle by studying each factor at three rather than two levels.
Such designs are sometimes called response surface designs, as they can be used to
model curved response surfaces. The main problem with three-level designs is, as ex-
pected, the large number of experiments involved. A complete factorial design with
only two factors studied at three levels requires experiments, and with more
than two factors the size of such a design would often be quite impracticable.

When a factorial design involves more than three factors some economy in the
number of experiments is possible by assuming that three-way and higher-order
interactions are negligible. The sums of squares corresponding to these interactions
can then be combined to give an estimate of the residual sum of squares, and repli-
cate measurements are no longer necessary. The rationale for this approach is that

32
= 9

2k+1

It can be shown that each sum of squares has one degree of freedom. Since the
mean square is given as usual by:

each mean square is simply the corresponding sum of squares. To test for the
significance of an effect, the mean square is compared with the error (residual)
mean square. This is calculated from the individual measurements by the
method described in the molar absorptivity example in Section 7.5. In the pre-
sent experiment the calculated residual mean square was 0.012 with eight 
degrees of freedom. Testing for significance, starting with the highest-order
interaction, we have for the PTC interaction:

which is obviously significant. If there is interaction between all three factors
there is no point in testing whether the factors taken in pairs or singly are sig-
nificant, since all factors will have to be considered in any optimisation process.
A single factor should be tested for significance only if it does not interact with
other factors.

F =

1.69
0.012

= 141

Mean square =

sum of squares
number of degrees of freedom
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higher-order effects are usually much smaller than main effects and two-factor
interaction effects. If higher-order interactions can be assumed negligible, a suitable
fraction of all possible combinations of factor levels may be sufficient to provide
an estimate of the main and two-factor interaction effects. As mentioned in Sec-
tion 4.12, such an experimental design is called a fractional (or incomplete)
factorial design.

7.7 Fractional factorial designs

For a given number of factors, fractional factorial designs use one-half, one-quarter,
one-eighth, etc. of the number of experiments that would be used in the complete
factorial design. The individual experiments in the fractional design must be care-
fully chosen to ensure that they give the maximum information. A three-factor 
design provides a simple example that can be illustrated graphically. In this case the
complete factorial design involves, as we have seen, eight experiments, which can be
represented by the vertices of a cube (Fig. 7.2a): in this view the lower left-hand ver-
tex, for example, corresponds to the experiment in which the three factors A, B and
C are all at their low level. A half-factorial design for three factors involves 
experiments, and these can be represented by taking four corners of the cube that
form a tetrahedron (Fig. 7.2b), so that each factor is represented twice at its high
level and twice at its low level. (Of course, it would be equally legitimate to perform
the four experiments represented by the other four vertices of the cube.) This half-
factorial design provides information only on the main effects of the factors A, B
and C and gives no information on any interactions between them.

As the number of factors studied increases, additional complications arise. If we
study four factors, A–D, again at two levels, then a full factorial design without du-
plication will involve 16 experiments and a half-factorial design will require 8 exper-
iments. Four factor designs are not easily shown graphically but the half-factorial
design can be summarised as in Table 7.8.

Again the factor levels are chosen so that each factor is studied at its high and low
levels in half of the experiments (which should be performed in a random order
to minimise the effects of uncontrolled factors). The main effect for each factor is

2k-1
= 4

Figure 7.2 Representation of (a) a complete factorial and (b) a half-factorial design for three
factors, each at two levels.
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easily found. For example the effect of factor C is given by 
. Unlike the half-factorial design for three factors, these eight experi-

ments also give some information on some of the interactions between the factors A
to D. But this is where the complications occur. It can be shown, for example, that
the expression for the three-fold interaction between factors A, B and D (usually
just called ABD for short) is the same as the formula above for the main effect of C,
so when the value of the expression (i.e. y1 � y3 � . . . as above) is calculated it is
actually the sum of C and ABD. Such pairs of effects are called aliases of each other
and the problem is called confounding. In the design above the main effect for
each factor is confounded with the three-fold interaction of the other three factors,
and confounding is a general feature of designs. In some cases the confound-
ing may not be important (in our example, the three-fold interactions might be
neglected entirely) but in other cases it will require careful study. However, it is not
surprising that complications of this kind arise. With four factors, there are four
main effects, six two-factor interactions, four three-factor interactions, and one
four-factor interaction: we can hardly expect to resolve all these effects perfectly in
just eight experiments.

The extent of the confounding problem in any fractional factorial design is given
by the resolution, R, of the design, which by convention is usually expressed 
in Roman numerals. The meaning of R is that there is no confounding between a 
p-factor effect and an effect containing factors. In the above four-factor
example the resolution is IV (i.e. four), so there is no confounding between the main
effects and less than three-fold (4 � 1), i.e. two-fold interactions. If (i.e.
the two-fold interactions), R � , so there is no confounding between these two-
fold interactions and the main effects 

Amongst the simplest and most popular incomplete factorial designs are the
Plackett–Burman designs, which provide information on the main effects of the
factors, but not on their interactions. A feature of these methods is that they all 
depend on performing 4n experiments, when n � 1, 2, 3, etc., giving 4, 8, 12, etc.
experiments. They thus avoid the limitations of factorial and fractional factorial
designs where the number of runs is . A Plackett–Burman design with 4n experi-
ments is suitable for the study of up to 4n � 1 factors. But these designs are widely
used when the number of factors of interest is less than the maximum for a given
design. Suppose, for example, that we wish to study four factors. Since four experi-
ments can handle only three factors we would use the Plackett–Burman design with
eight experiments, which would accommodate up to seven factors. The three remain-
ing factors are called dummy factors and have no chemical meaning at all. They are

2n

(6(R - p) = 1).
p = 2

p = 2(p = 1)

6(R - p)

2k-1

y4 - y6 - y8)>4
(y1 + y3 + y5 + y7 - y2 -

Table 7.8 Half-factorial design for four factors at two levels

Experiment A B C D Response

1 � � � � y1
2 � � � � y2
3 � � � � y3
4 � � � � y4
5 � � � � y5
6 � � � � y6
7 � � � � y7
8 � � � � y8
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valuable nonetheless, because their apparent effects, determined as shown below, can
be used to estimate the measurement error. This attractive feature of the Plackett–
Burman designs, which is analogous to ignoring higher order interactions in some
other designs (see above), allows us to determine which of the real factors are signif-
icant at any given probability level. This method of estimating the measurement
error can be extended by using larger designs. Suppose for example that six factors
are being studied. A Plackett–Burman design with eight experiments could be used,
as it would accommodate up to seven factors, but this would leave only one dummy
factor to use to estimate the measurement error. If a 12-experiment design was used
instead, five dummy factors would be available, so the estimate of the measurement
error, and hence of the significance of the effect of each ‘real’ factor, would be
improved, though at the cost of doing four more experiments.

The way in which a Plackett–Burman design is laid out is simple to understand.
Suppose that we use a 12-experiment design, allowing us to study up to 11 factors.
As usual each factor’s high level is indicated by a plus sign and the low level by a
minus sign. In the first experiment the 11 factors A–K (including dummy ones) are
set using a generating vector as follows:

A B C D E F G H I J K
� � � � � � � � � � �

(Details of generating vectors for different n can be found, for example, in
Minitab®.) In the next experiment the factor levels are set by moving the last sign to
the beginning of the line, giving:

A B C D E F G H I J K
� � � � � � � � � � �

This cyclical process is repeated for the first 11 experiments, in all of which there are
therefore six factors at their high level and five factors at their low level. The twelfth
and last experiment balances this out by setting all the factors to their low level, so
that overall the table contains 66 plus signs and 66 minus signs. The effect of each
factor is then given by:

where y� represents the system responses when the factor in question is set to its
high level and y– the responses when the factor is set to its low level. As described
earlier in this chapter (see Example 7.6.1), the required sums of squares are given 
by where N is the total number of experiments, in this
case 12.

Suppose that this experiment was being used to determine the effect of eight fac-
tors. In this case there would be three dummy factors: the mean of their sums of
squares gives an estimate of the measurement variance, with three degrees of free-
dom. The significance of each factor can then be tested by comparing its mean square
with using an F-test, as in other ANOVA examples. Alternatively we can calculate a
critical difference which is given by where N is the total number of experi-
ments and t has the value appropriate to the required probability level and with the
number of degrees of freedom equal to the number of dummy variables. Any effect for
a real factor that exceeds this critical value is then taken to be a significant effect.

Minitab® provides substantial facilities in the area of factorial designs.

2st/1N,
s2

s2,

N * (estimated effect)2>4,

1>6 Ca ( y+) - a (y-) D
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7.8 Optimisation: basic principles and univariate methods

When the various factors and interactions affecting the results of an experiment
have been identified, separate methods are needed to determine the combination of
factor levels which will provide the optimum response. In Section 7.1 we noted that
an experimental design is likely to fail unless the exact aim of the experiment is care-
fully defined first. Similarly, it is essential to define carefully what is meant by the
‘optimum response’ in a given analytical procedure. In some cases the aim will be to
ensure that the measurement system gives a maximum response signal, i.e. the
largest possible absorbance, current, emission intensity, etc. However, in many other
cases the optimum outcome of an experiment may be the maximum signal to noise or
signal to background ratios, the best resolution in separation methods, or even a
minimum response, for example when the removal of an interfering signal is being
studied. (In mathematical terms, finding maxima and minima are virtually identical
processes, so the last example causes no additional problems.) If the exact aim of an
optimisation experiment is not carefully defined in advance, the optimisation
process may fail simply because the target was not sufficiently clearly laid down.

A good optimisation method has two qualities. It produces a set of experimen-
tal conditions that provides the optimum response, or at least a response that
is close to the optimum; and it does so with the smallest possible number of
trial experimental steps. In practice the speed and convenience of the optimi-
sation procedure are extremely important, and it may be sufficient in some
cases to use a method that gets reasonably close to the true optimum in a small
number of steps.

Even the optimisation of a single factor may present some interesting problems.
Suppose we wish to find the optimum pH of an enzyme-catalysed reaction within
the pH range 2–12, the best pH being that at which the reaction rate is a maximum.
Each rate measurement will be a separate experiment with a different buffer solution
and taking considerable time and effort, so it is particularly important to get the
maximum information from the smallest possible number of experiments. Two ap-
proaches suggest themselves. One is to make a fixed number of rate measurements,
for example by dividing the pH interval of interest up into a number of equal re-
gions. The second and more logical method is to make the measurements sequen-
tially, so that the pH for each experiment depends on the results of the previous
experiments.

Figure 7.3 shows the result of making four rate measurements at pH values of 
4, 6, 8 and 10. In considering the four outcomes we shall assume, as in most of our
other optimisation examples, that there is only one maximum within the range of
the factor level(s) under study. (Inevitably, this is not always true, and we return to
the point later.) The four points on the graph show that the highest reaction rate is
obtained at pH 10, and the next highest at pH 8. But even with the assumption of a
single maximum it is possible to draw two types of curve through the points: the
maximum may occur between pH 8 and 10, or between pH 10 and 12. So the result
of the four experiments is that, starting with the pH range between 2 and 12, we
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conclude that the optimum pH is actually between 8 and 12, i.e. we have narrowed
the possible range for the optimum by a factor of 4/10. This is an example of the
general result that, if n experiments are done using equal intervals of the factor level,
the range for the optimum is narrowed by a factor of or 2/5 here. This
is not a very impressive result! The weakness of the method is emphasised by the
fact that, if we wished to define the optimum pH within a range of 0.2 units, i.e. a
50-fold reduction of the original range of 10 units, 99 experiments would be needed,
an obvious impossibility.

The principle of the superior step-wise approach is shown in Fig. 7.4, which
shows a possible relationship between reaction rate and pH. (This curve would of
course not be known in advance to the experimenter.) In brief, the procedure is as
follows. The first two experiments are carried out at pH A and B, equidistant from
the extremes of the pH range, 2 and 12. (The choice of pH values for these first ex-
periments is discussed below.) The experiment at B will give the higher reaction rate
so, since there is only one maximum in the curve, the portion of the curve between
pH 2 and A can be rejected. The remainder of the pH range, between A and pH 12,
certainly includes the maximum, and it already has one reading, B, within it. A new
measurement, C, is then made at a pH such that the pH difference between C and A
is the same as that between B and pH 12. The pH at C gives a higher reaction rate
than B, so the interval between B and pH 12 can now be rejected, and a new mea-
surement, D, made so that the A–D and C–B distances are equal. Further measure-
ments use the same principle, so it only remains to establish how many steps are
necessary, and where the starting points A and B should be.
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Figure 7.3 Optimisation experiment with equally spaced factor levels.
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Figure 7.4 Step-wise approach to univariate searching.
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In one approach the distances between the pairs of measurements and the ex-
tremes of the corresponding ranges are related to the Fibonacci series. This series of
numbers, known since the thirteenth century, starts with 1 and 1 (these terms are
called F0 and F1), with each subsequent term being the sum of the two previous
ones. Thus F2, F3, etc. are 2, 3, 5, 8, 13, 21, 34, 55, 89. . . . To use this series to opti-
mise a single factor over a defined range we begin by deciding either on the degree of
optimisation required, which automatically determines the number of experiments
necessary, or on the number of experiments we can perform, which automatically
determines the degree of optimisation obtained. Suppose that, as before, we require
the optimum pH to be known within 0.2 units, a 50-fold reduction of the original
pH interval of 10 units. We must then take the first Fibonacci number above 50: this
is 55, F9. The subscript tells us that nine experiments will be needed to achieve the
desired result. The spacing of the first two points, A and B, within the range, is also
given by the series. We use F9 and the member of the series two below it, F7, to form
the fraction F7/F9, i.e. 21/55. Point A is then at pH and point B
is at pH , i.e. 5.8 and 8.2 respectively. (The number 10 appears
in these expressions because the pH range of interest is 10 units in width.) Once
these first points are established, the positions of C, D, etc. follow automatically by
symmetry.

It is striking that the Fibonacci search method achieves in just nine experiments a
degree of optimisation that requires 99 experiments using the ‘equal intervals’
method. This method is the most efficient univariate search procedure for a given
range when the degree of optimisation is known or decided in advance. In some
other optimisation methods it is not necessary to decide in advance either the num-
ber of experiments or the degree of optimisation needed. Further details of such
methods are given in the texts listed in the Bibliography.

The success of the Fibonacci and other optimisation procedures depends on the as-
sumption that the random measurement errors (of the reaction rates in the example
above) are significantly smaller than the rate of change of the response with the fac-
tor level (pH). This assumption is most likely to fail near to the optimum value of the
response, where the slope of the response curve is close to zero. This confirms that in
many practical cases an optimisation method which gets fairly close to the optimum
in a few experimental steps will be most valuable. Trying to refine the optimum by
extra experiments might fail if the experimental errors give misleading results.

7.9 Optimisation using the alternating variable search method

When the response of an analytical system depends on two factors which are con-
tinuous variables, the relationship between the response and the levels of the two
factors can be represented by a surface in three dimensions as shown in Fig. 7.5. This
surface is known as the response surface, with the target optimum being the top of
the ‘mountain’. A more convenient representation is a contour diagram (Fig. 7.6).
Here the response on each contour is constant, and the target optimum is close
to the centre of the contours. The form of the contour lines is, of course, unknown
to the experimenter who wishes to determine the optimum levels, x0 and y0 for the
factors X and Y respectively. A search method using a one-at-a-time approach would
set the initial level of X to a fixed value at x1, say, and vary the level of Y to give a

312 - (10 * 21>55)4
32 + (10 * 21>55)4,
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maximum response at the point A, where the level of Y is y1. Next, holding the level
of Y at y1 and varying the level of X would give a maximum at B. Obviously this is
not the true maximum, as the position obtained depends on the initial value chosen
for x1. A better response can be obtained by repeating the process, varying the levels
of X and Y alternately. This method is known as the alternating variable search
(AVS) or the iterative univariate method. When there is no interaction between
the two factors this method is extremely efficient. In such a case the response surface
has the form of Fig. 7.7(a) or (b) and varying X and then Y just once will lead to the
maximum response. If, however, there is interaction between the two variables then
the response surface has the form of Fig. 7.7(c) and X and Y must then be varied in
turn a number of times. In some cases, even this will not lead to the true maximum:
this is illustrated in Fig. 7.8 where, although C is not the true maximum, the re-
sponse falls on either side of it in both the X and the Y directions. The AVS method
is used infrequently in analytical chemistry. It is practicable only if the response can
be monitored continuously as the factor level is altered easily, for example in spec-
trometry when the monochromator wavelength or slit width is readily changed.
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Figure 7.5 A response surface for two factors.
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Figure 7.6 The contour diagram for a two-factor response surface.
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Otherwise a choice of step size has to be made for the change in each of the factors.
A more sophisticated method would allow changes in these step sizes depending on
the observed change in response, but in practice other optimisation methods involv-
ing fewer separate experiments are superior. A number of other methods are used to
overcome the problems of one-at-a-time optimisation. All of them can be applied to
any number of factors, but the response surface cannot easily be visualised for three
or more factors: our remaining discussion of optimisation methods will thus largely
be confined to experiments involving two factors.

7.10 The method of steepest ascent

The process of optimisation can be visualised in terms of a person standing on a
mountain (Fig. 7.5) in thick fog, with the task of finding the summit! In these cir-
cumstances an obvious approach is to walk in the direction in which the gradient is
steepest. This is the basis of the method of steepest ascent. Figure 7.9 shows two
possible contour maps. The direction of steepest ascent at any point is at right angles
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Figure 7.7 Simplified contour diagrams: (a) and (b) show no X–Y interaction; (c) shows
significant X–Y interaction.

Figure 7.8 Contour diagram: a situation in which the one-at-a-time method fails to locate the
maximum.
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to the contour lines at that point, as indicated by the arrows. When the contour
lines are circular this will be towards the summit but when the contour lines are el-
liptical it may not. The shape of the contour lines depends on the scales chosen for
the axes: the best results are obtained from the method if the axes are scaled so that
a unit change in either direction gives a roughly equal change in response. The first
step is to perform a factorial experiment with each factor at two levels. The levels are
chosen so that the design forms a square as shown in Fig. 7.10. Suppose, for example,
that the experiment is an enzyme-catalysed reaction in which the reaction rate,
which in this case is the response, is to be maximised with respect to the pH (X) and
the temperature (Y). The table below gives the results (reaction rate measured in arbi-
trary units) of the initial factorial experiment.
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Figure 7.9 Contour diagrams: the arrow in each diagram indicates the path of steepest
ascent. In (a) it goes close to the maximum but in (b) it does not.

Figure 7.10 A 2 � 2 factorial design to determine the direction of steepest ascent, indicated
by the broken line.
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The effects of the two factors can be separated as described in Section 7.6. Rewriting
the table above, in the notation of that section, gives:

Combination of levels Rate of reaction

1 30
x 35
y 34
xy 39

Average effect of change in level of Y = 3(34 - 30) + (39 - 35)4>2 = 4

Average effect of change in level of X = 3(35 - 30) + (39 - 34)4>2 = 5

The effects of X and Y indicate that in Fig. 7.10 we should seek for the maximum
response to the right and above the original region. Since the change in the X direc-
tion is greater than that in the Y direction the distance moved in the X direction
should be in the ratio 5:4 to the distance moved in the Y direction, as indicated by
the broken line in Fig. 7.10.

The next step in the optimisation is to carry out further experiments in the direc-
tion indicated by the dotted line in Fig. 7.11, at (for example) the points numbered
5, 6 and 7. These experiments would indicate point 6 as a rough position for the
maximum in this direction. Another factorial experiment is carried out in this re-
gion to determine the new direction of steepest ascent.

This method gives satisfactory progress towards the maximum provided that,
over the region of the factorial design, the contours are approximately straight. This
is equivalent to the response surface being a plane which can be described mathe-
matically by a linear combination of terms in x and y. Nearer the summit terms 
in xy, x2 and y2 are also needed to describe the surface. The xy term represents the
interaction between X and Y and can be estimated by using replication as described
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Figure 7.11 Contour diagram: the initial direction of steepest ascent is shown by the broken
line. Further experiments are done at points 5, 6 and 7.
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in Section 7.6. The squared terms, which represent the curvature of the surface, can
be estimated by comparing the response at the centre of the factorial design with
the average of the responses at the corners. When interaction and curvature effects
become appreciable compared with the experimental error (estimated by replication)
a more elaborate factorial design is used which allows the form of the curved surface,
and thus the approximate position of the maximum to be determined.

We have seen that factorial designs can be very complicated when several factors
are involved, so the same is true of the method of steepest ascent. The next section
describes a method of optimisation which is conceptually much simpler.

7.11 Simplex optimisation

Simplex optimisation may be applied when all the factors are continuous variables.
A simplex is a geometrical figure which has vertices when a response is being
optimised with respect to k factors. For example, in the optimisation of two factors
the simplex will be a triangle. The method of optimisation is illustrated by Fig. 7.12.
The initial simplex is defined by the points labelled 1, 2 and 3. In the first experi-
ments the response is measured at each of the three combinations of factor levels
given by the vertices of this triangle. The worst response in this case would be found
at point 3 and it would be logical to suggest that a better response might be found at
a point which is the reflection of 3 with respect to the line joining 1 and 2, i.e. at 4.
The points 1, 2 and 4 form a new simplex and the response is measured for the com-
bination of factor levels given by 4. (We immediately notice a major advantage of the
simplex method: at each stage of the optimisation, only a single additional experi-
ment is required.) Comparing the responses for the points 1, 2 and 4 will show that
1 now gives the worst response. The reflection process is repeated to give the simplex
defined by 2, 4 and 5. The continuation of this process is shown in the figure. It can
be seen that no further progress is possible beyond the stage shown, since points 6
and 8 both give a worse response than 5 and 7, so the simplex oscillates across the
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Figure 7.12 Simplex optimisation.
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region of the true optimum. Depending on the shape of the response surface, oscilla-
tions of this kind may occur even when the simplex is not close to the optimum. Fur-
ther improvements can then sometimes be made by reflecting the next-worst point
rather than the worst one to continue the simplex in a new direction.

The position of the new vertex of a simplex is in practice found by calculation
rather than drawing: this is essential when there are more than two factors. The cal-
culation (using constant step sizes) is most easily set out as shown in Table 7.9, the
calculation lines being labelled (i)–(v). In this example there are five factors and
hence the simplex has six vertices. (Note that it is not essential for each simplex to
have a different level for each of the vertices: for example factor A takes the value 2.5
for each of the vertices 3–6.) In the initial simplex the response for vertex 4 is the
lowest and so this vertex is to be replaced. The co-ordinates of the centroid of
the vertices which are to be retained are found by summing the co-ordinates for the
retained vertices and dividing by the number of factors, k. The displacement of the
new point from the centroid is given by (iv) � (ii) � (iii), and the co-ordinates of
the new vertex, vertex 7, by (v) � (ii) � (iv).

An obvious question in using the simplex method is the choice of the initial sim-
plex. If this is taken as a regular figure in k dimensions, then the positions taken by
the vertices in order to produce such a figure will depend on the scales used for the
axes. As with the method of steepest ascent these scales should be chosen so that unit
change in each factor gives about the same change in response. If there is insufficient
information available to achieve this, the difference between the highest and lowest
feasible value of each factor can be represented by the same distance. One obvious
problem with the method is that, if the initial simplex is too small, too many experi-
ments may be needed to approach the optimum. If the initial simplex is too big, the
accuracy with which the optimum is determined will be poor (see Fig. 7.12). The
size of the initial simplex is not so critical if it can be expanded or contracted as
the method proceeds (see below). Algorithms that can be used to calculate the initial
positions of the vertices have been developed: one vertex is normally positioned at
the currently accepted levels of the factors. This is a reminder that the analyst is

Table 7.9 Simplex optimisation example

Factors Response

A B C D E

Vertex 1 1.0 3.0 2.0 6.0 5.0 7
Vertex 2 6.0 4.3 9.5 6.9 6.0 8
Vertex 3 2.5 11.5 9.5 6.9 6.0 10
Vertex 4 (rejected) 2.5 4.3 3.5 6.9 6.0 6
Vertex 5 2.5 4.3 9.5 9.7 6.0 11
Vertex 6 2.5 4.3 9.5 6.9 9.6 9

(i) Sum (excluding vertex 4) 14.50 27.40 40.00 36.40 32.60

(ii) Sum/k (excluding vertex 4) 2.90 5.48 8.00 7.28 6.52

(iii) Rejected vertex (i.e. 4) 2.50 4.30 3.50 6.90 6.00

(iv) Displacement � (ii) � (iii) 0.40 1.18 4.50 0.38 0.52

(v) Vertex 7 � (ii) � (iv) 3.30 6.66 12.50 7.66 7.04
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rarely completely in the dark at the start of an optimisation process: previous expe-
rience will provide some guidance on feasible values for the vertices of the starting
simplex.

In order to improve the performance of the simplex method many modifications
have been proposed. In particular it is possible to move towards the optimum by
varying the step size according to how the response for the new vertex in a simplex
compares with the other vertices. The principle is illustrated in Fig. 7.13, in which
the three vertices are called W (giving the worst response), B (best response) and M
(middle response). When W is reflected in the line joining B and M the response is
called R. If the response at R is better than that at B, i.e. R gives a new best response,
this indicates that the simplex is moving in the right direction, so the reflection is
extended, normally by a factor of 2, to give a new vertex R . If the response at R is
also better than that at B, R becomes one vertex of a new simplex, BMR . If the R
response is not better than that at B, then the expansion of the simplex has evi-
dently failed, and the conventional simplex BMR is used as the basis of the next
step. In some cases the point R might produce a response that is poorer than that at
B, but still better than that at M, so again the simplex BMR is used for the next reflec-
tion. If the response at R is poorer than that at M, the simplex has apparently moved
too far. In that case a new vertex, C, is used, the reflection being restricted to (usually)
half its normal extent: the new simplex is then BMC. Lastly, if the response at R is
worse even than that at W, then the new vertex, I, should be inside the original sim-
plex, giving a new simplex BMI. All these changes can be calculated by insertion of
the appropriate positive or negative numerical factors in row (iv) of Table 7.9.

The effect of these variable step sizes is that (when two factors are being studied)
the triangles making up each simplex are not necessarily equilateral ones. The bene-
fit of the variable step sizes is that initially the simplex is large, and gives rapid
progress towards the optimum. Near the optimum it contracts to allow the latter to
be found more accurately. When several factors are studied, it may be helpful to alter
some of them by a constant step size, but change others with a variable step size.

It can be seen that in contrast to a factorial design the number of experiments
required in the simplex method does not increase rapidly with the number of fac-
tors. For this reason all the factors which might reasonably be thought to have a
bearing on the response should be included in the optimisation.
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Figure 7.13 Optimisation using variable size simplexes. See text for details.
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Once an optimum has been found, the effect on the response when one factor is
varied while the others are held at their optimum levels can be investigated for each
factor in turn. This procedure can be used to check the optimisation. It also indicates
how important deviations from the optimum level are for each factor: the sharper
the response peak in the region of the optimum, the more critical any variation in
factor level.

Simplex optimisation has been used with success in many areas of analytical sci-
ence, e.g. atomic-absorption spectrometry, gas chromatography, colorimetric meth-
ods of analysis, plasma spectrometry, and the use of centrifugal analysers in clinical
chemistry. When an instrument is interfaced with a computer, the results of simplex
optimisation can be used to initiate automatic improvements in the instrument
variables.

Simplex optimisation has some disadvantages. As always, difficulties may arise if
the random measurement errors are larger than the slope of the response surface
near the optimum (see above). Moreover, the small number of experiments per-
formed, while usually advantageous in practice, means that little information is
gained on the overall shape of the response surface. Occasionally response surfaces
with more than one maximum occur, such as that shown in Fig. 7.14. Both the alter-
nating variable search and simplex optimisation methods may then locate a local
optimum such as A rather than the true optimum B. Starting the optimisation
process in a second region of the factor space and verifying that the same optimum
conditions are obtained is the preferred method for checking this point. Again the
simplex method is valuable here, as it minimises the extra work required.

7.12 Simulated annealing

In recent years there has been much interest in the application of calculation methods
that mimic natural processes: these are collectively known as natural computation
methods. Neural networks (see Chapter 8) are now being applied more frequently in
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Figure 7.14 Contour diagram showing localised optimum (A) and true optimum (B).
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analytical chemistry, and in the area of optimisation simulated annealing (SA) has
found some recent applications. Annealing is the process by which a molten metal or
other material cools slowly in controlled conditions to a low-energy state. In principle
the whole system should be in equilibrium during the whole of the annealing process,
but in practice random processes occur which result in short-lived and/or local
increases in energy. When an analogous process is applied to an optimisation problem
the algorithm used allows access to positions in factor space that give a poorer response
than the previous position. The result is that, unlike the AVS and simplex methods,
which almost inevitably lead to the identification of an optimum which is closest to
the starting point, SA methods can handle any local optima which occur, and success-
fully identify the true overall optimum.

In simple terms the method operates as follows. The first step is to identify, either
at random or from experience, starting values for the levels of the k factors. These
values give an initial response, In the second step a random vector, obtained
using k random numbers, is added to the starting values, and a new set of experi-
mental conditions generated: these yield a new response, As in other optimisa-
tion methods, if R2 is a better response than R1, that is a good outcome, and the
random addition step is repeated. The crucial characteristic of the method, how-
ever, is that even if R2 is a poorer response than R1, it is accepted as long as it is not
much worse. (Clearly, numerical rules have to be applied to make this decision.)
Eventually a situation arises in which a response is rejected, and (for example) five
alternatives generated at random are also rejected as giving unacceptably poorer
responses. In that situation it is assumed that the previous response was the opti-
mum one.

A major application area of SA in analytical science has been in the selection of
suitable wavelengths for multi-component analysis using UV–visible and near-IR
spectroscopy. It has also been used for the refinement of molecular structures deter-
mined by nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallogra-
phy, and in the study of chromatographic systems. Applications in other areas of
chemistry include extensive studies of quantitative structure–activity relationships
(QSAR).
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Exercises

1 Four standard solutions were prepared, each containing 16.00% (by weight) of
chloride. Three titration methods, each with a different technique of end point
determination, were used to analyse each standard solution. The order of the ex-
periments was randomised. The results for the chloride found (% w/w) are
shown below:

Solution Method

A B C

1 16.03 16.13 16.09
2 16.05 16.13 16.15
3 16.02 15.94 16.12
4 16.12 15.97 16.10

Test whether there are significant differences between (a) the concentration of
chloride in the different solutions, and (b) the results obtained by the different
methods.

2 A new microwave-assisted extraction method for the recovery of 2-chlorophe-
nol from soil samples was evaluated by applying it to five different soils on each
of three days. The percentage recoveries obtained were:

Soil Day

1 2 3

1 67 69 82
2 78 66 76
3 78 73 75
4 70 69 87
5 69 71 80

Determine whether there were any significant differences in percentage recov-
ery (a) between soils, and/or (b) between days.
(Data adapted from Egizabal, A., Zuloaga, O., Extebarria, N., Fernández, L.A. and
Madariaga, J.M., 1998, Analyst, 123: 1679)
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3 In studies of a fluorimetric method for the determination of the anionic surfac-
tant sodium dodecyl sulphate (SDS) the interfering effects of four organic com-
pounds at three different SDS:compound molar ratios were studied. The
percentage recoveries of SDS were found to be:

Organic compound Molar ratios

1:1 1:2 1:3

2,3-Naphthalene dicarboxylic acid 91 84 83
Tannic acid 103 104 104
Phenol 95 90 94
Diphenylamine 119 162 222

Determine whether the SDS recovery depends on the presence of the organic
compounds and/or on the molar ratios at which they are present. How should
the experiment be modified to test whether any interaction effects are present?
(Recalde Ruiz, D.L., Carvalho Torres, A.L., Andrés Garcia, E. and Díaz García, M.E.,
1998, Analyst, 123: 2257)

4 Mercury is lost from solutions stored in polypropylene flasks by combination
with traces of tin in the polymer. The absorbance of a standard aqueous solution
of mercury stored in such flasks was measured for two levels of the following
factors:

Factor Low High

A – Agitation of flask Absent Present
C – Cleaning of flask Once Twice
T – Time of standing 1 hour 18 hours

The following results were obtained. Calculate the main and interaction effects.

Combination of factor levels Absorbance

1 0.099
a 0.084
c 0.097
t 0.076
ac 0.082
ta 0.049
tc 0.080
atc 0.051

(Adapted from Kuldvere, A., 1982, Analyst, 107: 179)

5 In an inter-laboratory collaborative experiment on the determination of arsenic
in coal, samples of coal from three different regions were sent to each of three
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laboratories. Each laboratory performed a duplicate analysis on each sample,
with the results shown below (measurements in � ).g g-1

Sample Laboratory

1 2 3

A 5.1, 5.1 5.3, 5.4 5.3, 5.1
B 5.8, 5.4 5.4, 5.9 5.2, 5.5
C 6.5, 6.1 6.6, 6.7 6.5, 6.4

Verify that there is no significant sample–laboratory interaction, and test for sig-
nificant differences between the laboratories.

6 The optimum pH for an enzyme-catalysed reaction is known to lie between 5
and 9. Determine the pH values at which the first two experiments of an optimi-
sation process should be performed in the following circumstances:

(a) The optimum pH needs to be known with a maximum range of 0.1 pH
units.

(b) Only six experiments can be performed.

In (b) what is the degree of optimisation obtained?

7 If the response at vertex 7 in the example on simplex optimisation (p. 214) is
found to be 12, which vertex should be rejected in forming the new simplex and
what are the co-ordinates of the new vertex?
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8.1 Introduction

Modern automatic analysis methods provide opportunities to collect large amounts
of data very easily. For example, in clinical chemistry it is routine to determine
many analytes for each specimen of blood, urine, etc. A number of chromatographic
and spectroscopic methods can provide analytical data on many components of a
single specimen. The widespread use of multi-channel array detectors in spec-
troscopy and the development of miniature sensor arrays based on solid state or bio-
specific detection methods have further encouraged the use of multi-analyte
measurements, and extended their applications to areas such as process analysis.
Situations such as these, where several variables are measured for each specimen,
yield multivariate data. One use of such data in analytical chemistry is in discrimi-
nation, for example determining whether an oil-spill comes from a particular source
by analysing the fluorescence spectrum. Another use is classification, for example
dividing the stationary phases used in gas–liquid chromatography into groups
with similar properties by studying the retention properties of a variety of solutes

Major topics covered in this chapter
• Representing multivariate data: initial analysis

• Principal component analysis (PCA)

• Cluster analysis (CA) methods

• Linear discriminant analysis and canonical variate analysis

• The K-nearest neighbour (KNN) method

• Disjoint class modelling

• Multiple linear regression (MLR)

• Principal component regression (PCR)

• Partial least-squares (PLS) regression

• Natural computation methods: artificial neural networks (ANN)

Multivariate analysis
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with different chemical properties. In each case it would be possible to compare
specimens by considering each variable in turn but modern computers allow more
sophisticated processing methods where all the variables are considered simultane-
ously. The ANOVA approach described in previous chapters can be extended to
multivariate data (the method is called multivariate ANOVA or MANOVA), but in
practice this method seems to have been applied to chemical problems less than
those summarised in the sections below.

Each specimen, or, to generalise, each object, in the methods we shall study is char-
acterised by a set of measurements. When only two variables are measured this infor-
mation can be represented graphically, as shown in Fig. 8.1, where the co-ordinates of
the point give the values taken by the two variables. The point can also be defined by
a vector, called a data vector, drawn to it from the origin. Objects which have similar
properties will have similar data vectors; they will lie close to each other in the space
defined by the variables. Such a group is called a cluster.

A graphical representation is less easy for three variables and no longer possible for
four or more: it is here that computer analysis is particularly valuable in finding pat-
terns and relationships. Matrix algebra is needed in order to describe the methods of
multivariate analysis fully. No attempt will be made to do this here. The aim is to give
an appreciation of the purpose and power of multivariate methods. Simple data sets
will be used to illustrate the methods and some practical applications will be described.

8.2 Initial analysis

Table 8.1 shows an example of some multivariate data. This gives the relative inten-
sities of fluorescence emission at four different wavelengths (300, 350, 400, 450 nm)
for 12 compounds, A–L. In each case the emission intensity at the wavelength of
maximum fluorescence would be 100. As a first step it may be useful to calculate the
mean and standard deviation for each variable. These are also shown in the table.

In addition, since we have more than one variable, it is possible to calculate a
product–moment (Pearson) correlation coefficient for each pair of variables. These
are summarised in the correlation matrix in Table 8.2, obtained using Minitab®.
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Table 8.1 The intensity of the fluorescence spectrum at
four different wavelengths for a number of compounds

Wavelength, nm

Compound 300 350 400 450

A 16 62 67 27
B 15 60 69 31
C 14 59 68 31
D 15 61 71 31
E 14 60 70 30
F 14 59 69 30
G 17 63 68 29
H 16 62 69 28
I 15 60 72 30
J 17 63 69 27
K 18 62 68 28
L 18 64 67 29

Mean 15.75 61.25 68.92 29.25

Standard deviation 1.485 1.658 1.505 1.485

This shows that, for example, the correlation coefficient for the intensities at 300
and 350 nm is 0.914. The relationships between pairs of variables can be illustrated
by a draftsman plot as shown in Fig. 8.2. This gives scatter diagrams for each pair of

Table 8.2 The correlation matrix for the data in Table 8.1

Correlations (Pearson)

300 350 400
350 0.914
400 -0.498 -0.464
450 -0.670 -0.692 0.458
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Figure 8.2 Draftsman plot for the data in Table 8.1.
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variables. Both the correlation matrix and the scatter diagrams indicate that there is
some correlation between some of the pairs of variables.

8.3 Principal component analysis

One problem with multivariate data is that the sheer volume may make it difficult to
see patterns and relationships. For example, a spectrum would normally be charac-
terised by several hundred intensity measurements rather than just four as in Table 8.1
and in this case the correlation matrix would contain hundreds of values. Thus the
aim of many methods of multivariate analysis is data reduction. Quite frequently
there is some correlation between the variables, as there is for the data in Table 8.1, so
some of the information is redundant. Principal component analysis (PCA) is a
technique for reducing the amount of data when there is correlation present. It is
worth stressing that it is not a useful technique if the variables are uncorrelated.

The idea behind PCA is to find principal components Z1, Z2, . . . , Zn
which are linear combinations of the original variables describing each specimen,
X1, X2, . . . Xn, i.e.

etc.

For example, for the data in Table 8.1 there would be four principal components Z1,
Z2, Z3 and Z4, each of which would be a linear combination of X1, X2, X3 and X4, the
fluorescence intensities at the given wavelengths. The coefficients, a11, a12, etc. are
chosen so that the new variables, unlike the original variables, are not correlated
with each other. Creating a new set of variables in this way may seem a pointless ex-
ercise since we obtain n new variables in place of the n original ones, and hence no
reduction in the amount of data. However, the principal components are also cho-
sen so that the first principal component (PC1), Z1, accounts for most of the varia-
tion in the data set, the second (PC2), Z2, accounts for the next largest variation and
so on. Hence, when significant correlation occurs the number of useful PCs is much
less than the number of original variables.

Figure 8.3 illustrates the method when there are only two variables and hence only
two principal components. In Fig. 8.3(a) the principal components are shown by the
dotted lines. The principal components are at right angles to each other, a property
known as orthogonality. Figure 8.3(b) shows the points referred to these two new
axes and also the projection of the points on to PC1 and PC2. We can see that in this
example Z1 accounts for most of the variation and so it would be possible to reduce
the amount of data to be handled by working in one dimension with Z1 rather than
in two dimensions with X1 and X2. (In practice we would not need to use PCA when
there are only two variables because such data are relatively easy to handle.)

Figure 8.3 shows that PCA is equivalent to a rotation of the original axes in such a
way that PC1 is in the direction of maximum variation, but with the angle between
the axes unchanged. With more than two variables it is not possible to illustrate the
method diagrammatically but again we can think of PCA as a rotation of the axes in
such a way that PC1 is in the direction of maximum variation, PC2 is in the direction

 Z2 = a21X1 + a22X2 + a23X3 +
Á a2n Xn

 Z1 = a11X1 + a12X2 + a13X3 +
Á a1n Xn
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X1

X2(a)

PC2

PC1

PC2

PC1

(b)

Figure 8.3 (a) Diagram illustrating the two principal components, PC1 and PC2, for the two
variables and . (b) Points referred to the principal component axes. � indicates data
points, � their projection on to the axes.

X2X1

of next greatest variation, and so on. It is often found that PC1 and PC2 then account
between them for most of the variation in the data set. As a result the data can be rep-
resented in only two dimensions instead of the original n.

The principal components are obtained from the covariance matrix. The term
‘covariance’ (see Section 5.3) is a measure of the joint variance of two variables. The
covariance matrix for the data in Table 8.1 is:

This shows that, for example, the covariance for the fluorescence intensities at
350 and 400 nm is –1.15909. The table also gives the variances of the fluorescence
intensities at each wavelength along the leading diagonal of the matrix. For exam-
ple, for the fluorescence intensities at 350 nm the variance is 2.75. In mathematical
terms the principal components are the eigenvectors of the covariance matrix and the
technique for finding these eigenvectors is called eigenanalysis. Corresponding to
each principal component (i.e. eigenvector) is an eigenvalue, which gives the amount
of variance in the data set which is explained by that principal component.

300 350 400 450
300 2.20455
350 2.25000 2.75000
400 -1.11364 -1.15909 2.26515
450 -1.47727 -1.70455 1.02273 2.20455

Example 8.3.1

Carry out a principal component analysis of the data in Table 8.1.

This can be done using a variety of computer packages (for example, Minitab®,
SAS®, The Unscrambler®). The printout below was obtained from Minitab®.
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Principal Component Analysis

Eigenanalysis of the Covariance Matrix

The sum of the variances of the original variables can be calculated from the
covariance matrix. It is equal to

. It can be seen that the variances of the variables are similar, so each one
accounts for about 25% of the total. The first line of the top table shows how the
total variance is shared among the four principal components and the second
line shows the proportion as a proportion of the total. Thus PC1 has a variance
of 6.8519, which is 72.7% of the total. This is a much greater proportion than
any of the original variables. PC2 accounts for 15.8% of the total variance. The
last line of the first block gives the cumulative proportion. It shows, for example,
that between them PC1 and PC2 account for 88.5% of the variation.

The bottom table gives the coefficients of the principal components. For
example, the first principal component is 

, where X1, X2, X3 and X4 are the intensities at 300, 350,
400 and 450 nm respectively. The values that the principal components take
for each of the compounds can be calculated by substituting the relevant val-
ues of X1, X2, X3 and X4 into this formula. For example, the value of PC1 for
compound A is equal to 

. This value is sometimes referred to as a ‘score’ for PC1.
Figure 8.4 plots the scores of the first two principal components, calculated in
this way, for the compounds A–L. This diagram reveals that the compounds
fall into two distinct groups, a fact which is not readily apparent from the
original data.

(0.470 * 27) = 6.941
(0.529 * 16) + (0.594 *  62) - (0.383 * 67) -

0.383X3 - 0.470X4

Z1 = 0.529X1 + 0.594X2 -

9.42425
2.20455 + 2.75000 + 2.26515 + 2.20455 =

Eigenvalue 6.8519 1.4863 0.8795 0.2066
Proportion 0.727 0.158 0.093 0.022
Cumulative 0.727 0.885 0.978 1.000

Variable PC1 PC2 PC3 PC4
300 0.529 -0.218 -0.343 0.745
350 0.594 -0.319 -0.324 -0.664
400 -0.383 -0.917 0.100 0.050
450 -0.470 0.099 -0.876 -0.041
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Figure 8.4 The scores of the first two principal components for the data in Table 8.1.
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Table 8.3 The data in Table 8.1 rearranged so that compounds with
similar spectra are grouped together

Wavelength, nm

Compound 300 350 400 450

A 16 62 67 27
G 17 63 68 29
H 16 62 69 28
J 17 63 69 27
K 18 62 68 28
L 18 64 67 29

B 15 60 69 31
C 14 59 68 31
D 15 61 71 31
E 14 60 70 30
F 14 59 69 30
I 15 60 72 30

Table 8.3 shows the original data rearranged so that compounds with similar
spectra are grouped together. The differences between the two groups are now appar-
ent. There is a difference at all four wavelengths, and the sizes of these differences
are similar. This corresponds to the fact that the coefficients for the first principal
component are similar in size. The top group in Table 8.3 has higher intensities than
the bottom group at 300 and 350 nm and the opposite is true at 400 and 450 nm.
This corresponds to the fact the first two coefficients of Z1 have the opposite sign
from the second two. Once two or more groups have been identified by using PCA,
it may be possible to explain the differences between them in terms of chemical
structure. Sometimes it may be possible to give a physical interpretation to the prin-
cipal components. For this reason, principal components are sometimes referred to
as latent (i.e. hidden) variables.

In this example the values of the coefficients show that each variable contributes
to PC1 and at least three of them contribute to PC2. In other cases it is found that
some variables do not contribute significantly even to PC1. An important benefit of
PCA is that such variables can then be rejected.

Sometimes the PCA is carried out by analysing the correlation matrix rather than
the covariance matrix, as was done in Example 8.3.1. The effect of using the correla-
tion matrix is to standardise each variable to zero mean and unit variance. For stan-
dardised data, each variable has a variance of 1 and thus the sum of the eigenvalues is
equal to the number of variables. Standardisation is desirable when the variables are
measured on different scales. Another reason for standardising would be that one
variable has a much larger variance than the others and as a result dominates the first
principal component: standardising avoids this by making all variables carry equal
weight. Neither of these considerations applies to the data in Example 8.3.1. It should
be noted that standardisation can have a considerable effect on the results of a PCA
when the original variables have very different variances.

PCA is primarily a mathematical method for data reduction and it does not
assume that the data have any particular distribution. We have seen how PCA can be
used to reduce the dimensionality of a data set and how it may thus reveal clusters.
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It has been used, for example, on the results of Fourier transform spectroscopy in
order to reveal differences between hair from different racial groups and for classify-
ing different types of cotton fibre. In another example the concentrations of a num-
ber of chlorobiphenyls were measured in specimens from a variety of sea mammals.
A PCA of the results revealed differences between species, differences between males
and females, and differences between young and adult individuals. PCA has been
applied in recent years to a very large number of analytical methods and problems,
and it also finds application in multiple regression (see Section 8.10).

8.4 Cluster analysis

Although PCA may reveal groups of like objects, it is not always successful in doing
so: Fig. 8.5 shows a situation in which the first principal component does not give a
good separation between two groups. We now turn to methods whose explicit pur-
pose is to search for groups.

Cluster analysis (CA) is a method for dividing a group of objects into classes so that
similar objects are in the same class. As in PCA, the groups are not known prior to
the mathematical analysis and no assumptions are made about the distribution of the
variables. Cluster analysis searches for objects which are close together in the variable
space. The distance, d, between two points in n-dimensional space with co-ordinates

and is usually taken as the Euclidian distance defined by

(8.4.1)

For example the distance between the compounds E and F in Table 8.3 (if the
unstandardised variables are used) is given by:

As in PCA, a decision has to be made as to whether or not the data are standardised.
Standardising the data will mean that all the variables are measured on a common
scale so that one variable does not dominate the others.

There are a number of methods for searching for clusters. One method starts by
considering each object as forming a ‘cluster’ of size one, and compares the distances
between these clusters. The pair of points which are closest together are joined to

d = 2(14 - 14)2
+ (60 - 59)2

+ (70 - 69)2
+ (30 - 30)2

= 22

d = 2(x1 - y1)
2

+ (x2 - y2)
2 +

Á
+  (xn - yn)

2

(y1, y2, . . . yn)(x1, x2, . . . xn)

X1

X2

PC1

PC2

Figure 8.5 A situation in which the first principal component does not give a good separation
between two groups.
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Figure 8.6 Stages in clustering: the dotted lines enclose clusters.

form a new cluster. The distances between the clusters are again compared and the
two nearest clusters combined. This procedure is repeated and, if continued indefi-
nitely, will group all the points together. There are a variety of ways of computing the
distance between two clusters which contain more than one member. Conceptually
the simplest approach is to take the distance between two clusters as the distance
between nearest neighbours. This is called the single linkage method. It is illustrated
in Fig 8.6. The successive stages of grouping can be shown on a dendrogram as in
Fig. 8.7. The vertical axis can show either the distance, dij, between two points i and j
when they are joined or alternatively the similarity, sij, defined by sij � 100(1 �

dij/dmax) where dmax is the maximum separation between any two points. The result-
ing diagrams look the same but their vertical scales differ. The stage at which the
grouping is stopped, which determines the number of clusters in the final classifica-
tion, is a matter of judgement for the person carrying out the analysis.
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Figure 8.7 A dendrogram illustrating the stages of clustering for Fig. 8.6.

Example 8.4.1

Apply the single linkage method to the (unstandardised) data in Table 8.1.

The printout below was obtained using Minitab®. With this software the link-
ages continue until there is only one cluster, unless the user specifies otherwise.

Hierarchical Cluster Analysis of Observations

Euclidean Distance, Single Linkage

Amalgamation Steps

Step Number of Similarity Distance Clusters New Number of
clusters level level joined cluster Obs in new 

cluster
1 11 80.20 1.414 5 6 5 2
2 10 80.20 1.414 3 5 3 3
3 9 75.75 1.732 7 12 7 2
4 8 75.75 1.732 7 11 7 3
5 7 75.75 1.732 8 10 8 2
6 6 75.75 1.732 4 9 4 2
7 5 75.75 1.732 2 3 2 4
8 4 71.99 2.000 7 8 7 5
9 3 71.99 2.000 2 4 2 6
10 2 68.69 2.236 1 7 1 6
11 1 49.51 3.606 1 2 1 12

The dendrogram in Fig. 8.8 illustrates the stages of the linkage. The vertical scale
gives the distance between the two groups at the point when they were combined.
The table above shows that the first two points to be joined were 5 (compound E)
and 6 (compound F) with a separation of earlier).
The reader can verify that the distance of C from F is also so the next stage
is to join point 3 to the cluster consisting of points 5 and 6. The process contin-
ues until all the points are in one cluster. However, if we ‘cut the tree’, i.e. stop
the grouping, at the point indicated by the dotted line in Fig. 8.8, this analysis
suggests that the compounds A–L fall into two distinct groups. Not surprisingly,
the groups contain the same members as they did when PCA was used.

22
1 .414 (=  22 as calculated
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The CA method described here is hierarchical, meaning that once an object has
been assigned to a group the process cannot be reversed. For non-hierarchical meth-
ods the opposite is the case. One such method is the k-means method which is
available, for example, in Minitab®. This starts by either dividing the points into k
clusters or alternatively choosing k ‘seed points’. Then each individual is assigned to
the cluster (or seed point) whose centroid is nearest. When a cluster loses or gains a
point the position of the centroid is recalculated. The process is continued until all
the points are in the cluster whose centroid is nearest.

This method has the disadvantage that the final grouping reflects the initial
choice of clusters or seed points. Another disadvantage is that the value of k has to
be chosen in advance. Many methods have been suggested for deciding on the best
value of k but none of them is really satisfactory.

Analytical applications of CA are now numerous. It has been used to classify the
many phases used in gas–liquid chromatography. A small preferred set of phases can
then be selected by taking one phase from each cluster: this provides a range of
stationary phases, each with distinctive separation characteristics. Another applica-
tion is the classification of antibiotics in terms of their activity against various types of
bacteria in order to elucidate the relationship between biological activity and molecu-
lar structure. Further recent applications of CA include the classification of wines and
wine vinegars on the basis of a variety of organic and inorganic constituents, organic
vapours detected by an array of semiconductor sensors, ligand–protein interactions,
the properties of foodstuffs such as wheat, rice, tea, coffee and olive oil, protein pat-
terns in human diseases, and metallic elements in oil and petroleum products.

8.5 Discriminant analysis

The methods described so far in this chapter have helped us to see whether objects fall
into groups when we have no prior knowledge of the groups to be expected. Such
methods are sometimes called unsupervised pattern recognition. We will now turn to
so-called supervised pattern recognition. Here we start with a number of objects
whose group membership is known, for example apple juices extracted from different
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Figure 8.8 A dendrogram for the data in Table 8.1.
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varieties of fruit. These objects are sometimes called the learning or training objects.
The aim of supervised pattern recognition methods is to use these objects to find a rule
for allocating a new object of unknown group to the correct group.

The starting point of linear discriminant analysis (LDA) is to find a linear dis-
criminant function (LDF), Y, which is a linear combination of the original mea-
sured variables:

The original n measurements for each object are combined into a single value of Y,
so the data have been reduced from n dimensions to one dimension. The coeffi-
cients of the terms are chosen in such a way that Y reflects the difference between
groups as much as possible: objects in the same group will have similar values of Y
and objects in different groups will have very different values of Y. Thus the LDF
provides a means of discriminating between the two groups.

The simplest situation is that in which there are two classes and two variables, X1
and X2, as illustrated in Fig. 8.9(a). This diagram also shows the distribution of the
individual variables for each group in the form of dot-plots. For both the variables,
there is a considerable overlap in the distributions for the two groups. It can be
shown that the LDF for these data is . This LDF is shown by the
line labelled Y in Fig. 8.9(b) and the value which the function takes for a given point
is given by the projection of the point on to this line. Figure 8.9(b) shows the dot-
plots of the LDF, Y, for each group. It can be seen that there is no overlap between
the distributions of Y for the two groups, so Y is clearly better at discriminating be-
tween the groups than the original variables.

An unknown object will be classified according to its Y value. An initial common-
sense approach would be to compare Y with and , the Y values for the means
of the two groups. If Y is closer to than to then the object belongs to group 1,
otherwise it belongs to group 2. For these data, and . So if

, that is , we classify the object in group 1, otherwise
we classify it in group 2. This method is satisfactory only if the two groups have
similarly shaped distributions. Also, if experience shows that a single object is more

Y 6 7.0Y - 3.15 6 10.85 - Y
Y2 = 10.85Y1 = 3.15

Y2Y1

Y2Y1

Y = 0.91X1 + 0.42X2

Y = a1X1 + a2X2 +  # # #  +  anXn
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Figure 8.9 (a) Two groups and the distributions of each variable for the group. (b) The
distribution of the linear discriminant function for each group.
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likely to belong to one of the groups rather than the other, then the decision rule
will need to be modified. Software such as Minitab® permits such a modification.

The success of LDA at allocating an object correctly can be tested in several ways.
The simplest is to use the classification rule to classify each object in the group and
to record whether the resulting classification is correct. The table summarising the
results of this procedure is sometimes called the confusion matrix (always dis-
played in Minitab®). This method tends to be overoptimistic since the object being
classified was part of the set which was used to form the rule. A better method di-
vides the original data into two groups chosen at random. The first group, known as
the training set, is used to find the LDF. Then the objects in the second group (the
test set) are allocated using this function and a success rate found. A third method,
which uses the data more economically, is cross-validation, sometimes called the
‘leave-one-out method’. As the latter name suggests, this finds the LDF with one
object omitted and checks whether this LDF then allocates the omitted object cor-
rectly. The procedure is then repeated for each object in turn and again a success rate
can be found. This method is an option in Minitab®.

If the distributions do not have similar shapes, then a modification of LDA, known as
quadratic discriminant analysis (QDA), may be used. This method assumes that the
two groups have multivariate normal distributions but with different variances.

LDA and QDA can both be extended to the situation where there are more than
two groups of objects. To avoid complex decision rules of the type given above (if

, etc.) many programs assume a multivariate normal distribu-
tion and find a new function, which includes a constant term, for each group. From
these functions a score is calculated for each new object and the object is assigned to
the group for which the score is highest. This is illustrated in the following example.

y - 3.15 6 10.85 - y

Example 8.5.1

The table below gives the concentration in of sucrose, glucose, fructose
and sorbitol in apple juice from three different sources, A, B and C. Carry out
an LDA and evaluate the method using cross-validation.

g l-1

Variety Sucrose Glucose Fructose Sorbitol

A 20 6 40 4.3
A 27 11 49 2.9
A 26 10 47 2.5
A 34 5 47 2.9
A 29 16 40 7.2
B 6 26 49 3.8
B 10 22 47 3.5
B 14 21 51 6.3
B 10 20 49 3.2
B 8 19 49 3.5
C 8 17 55 5.3
C 7 21 59 3.3
C 15 20 68 4.9
C 14 19 74 5.6
C 9 15 57 5.4
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Summary of Classification

Put into ....True Group....
Group A B C
A 5 0 0
B 0 5 0
C 0 0 5
Total N 5 5 5
N Correct 5 5 5
Proportion 1.000 1.000 1.000

N = 15 N Correct = 15 Proportion Correct = 1.000

Summary of Classification with Cross-validation

Put into ....True Group....
Group A B C
A 5 0 0
B 0 5 0
C 0 0 5
Total N 5 5 5
N Correct 5 5 5
Proportion 1.000 1.000 1.000

A B C
Constant -44.19 -74.24 -114.01
Sucrose 0.39 -1.66 -2.50
Glucose 0.42 1.21 0.54
Fructose 1.46 2.53 3.48
Sorbitol 2.19 3.59 5.48

N = 15 N Correct = 15 Proportion Correct = 1.000

Linear Discriminant Function for Group

The ‘summary of classification’ gives the confusion matrix and shows a 100%
success rate. The ‘summary of classification with cross-validation’ also shows a
100% success rate.

For the new apple juice the linear discriminant scores for each group have
values:

The score for group B is highest, so the unknown apple juice is presumed to
have come from source B.

Group C: -114.01 - 2.5 * 11 + 0.54 * 23 + 3.48 * 50 + 5.48 * 3.9 = 66.282
Group B: -74.24 - 1.66 * 11 + 1.21 * 23 + 2.53 * 50 + 3.59 * 3.9 = 75.831
Group A: -44.19 + 0.39 * 11 + 0.42 * 23 + 1.46 * 50 + 2.19 * 3.9 = 51.301

Classify an apple juice with 11, 23, 50 and of sucrose, glucose, fruc-
tose and sorbitol respectively.

The analysis below was obtained using Minitab®.

Discriminant Analysis

Linear Method for Response: Variety
Predictors: Sucrose Glucose Fructose Sorbitol

3.9 g l-1

Group A B C
Count 5 5 5



 

Unlike the other procedures described in this chapter, standardising the variables
has no effect on the outcome of LDA: it merely re-scales the axes. It may, however, be
useful to work with standardised variables in order to decide which variables are im-
portant in providing discrimination between the groups: in general it will be those
variables which have the larger coefficients in the linear discriminant functions.
Once these important variables have been identified, the performance of the method
with fewer variables can be studied to see whether a satisfactory discrimination be-
tween the groups can still be achieved (see exercise 1 at the end of this chapter).

Some recent applications of LDA include the classification of vegetable oils using
the data obtained from an array of gas sensors, and the use of proton magnetic reso-
nance spectra to discriminate between normal and cancerous ovarian tissue. Brain
tumours of different types studied by infrared spectrometry have been classified
with a high level of accuracy, and studies of many types of food and wine have been
successfully performed, in many cases with near-infrared spectroscopy as the analyt-
ical method in view of its ease of use in the study of solids and suspensions as well as
conventional liquid samples.

Although the above method appears to analyse all the groups simultaneously, the
method is actually equivalent to analysing the groups pairwise. An alternative
method for more than two groups which genuinely analyses them simultaneously is
canonical variate analysis. This is an extension of LDA which finds a number of
canonical variates Y1 , Y2, etc. (which are again linear combinations of the original
variables). As with LDA, Y1 is chosen in such a way that it reflects the difference be-
tween the groups as much as possible. Then Y2 is chosen so that it reflects as much
of the remaining difference between the groups as possible, subject to the constraint
that there is no correlation between Y1 and Y2, and so on. CVA could be thought of
as PCA for groups but, unlike PCA, the results are not dependent on scale, so no pre-
treatment of the data is necessary.

The following section describes an alternative method which can be used when
there are two or more groups.

8.6 K-nearest neighbour method

The K-nearest neighbour (KNN) method is a conceptually simple way to classify an
unknown object when there are two or more groups of objects of known class, often
called a training set. It makes no assumptions about the distributions in the classes,
and can be used when the groups cannot be separated by a plane, as illustrated in
Fig. 8.10. In its simplest form the method involves assigning the members of the
training set to their known classes. The data should not contain outliers or samples
with an ambiguous classification. In addition the classes should be approximately
equal in size, to avoid bias when an unknown sample is assigned to a class. The dis-
tances of an unknown object from all the members of the training set are then
found. The Euclidian distance, Eq. (8.4.1), in multi-dimensional space is usually
used, though other distance measures are available. The K smallest distances be-
tween the unknown object and the training set samples are then identified, K nor-
mally being a small odd number, and the unknown is allocated to the class with the

K-nearest neighbour method 235
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majority of these K distances. (Clearly, the simplest version of the method uses K = 1.)
It may be useful to use more than one value of K: if different K-values result in
changes in an object’s classification, the latter is evidently not very secure. In more
sophisticated versions of the method, voting schemes other than the simple major-
ity can be used: this may be appropriate if, for example, the different classes in the
training set have notably different variances. In some applications each object is
characterised by many variables, some of which may be strongly correlated, while
others may have little value in the classification process. (An example would be the
absorption or emission intensities recorded at scores or hundreds of wavelengths in
spectroscopy.) In such cases a smaller number of variables may be selected before the
KNN method is applied.

KNN methods have been applied to many problems in analytical chemistry and
related areas, including, as expected, classifications based on chromatographic or
spectroscopic data of foodstuffs, soil, water and other environmental samples. In
many cases a range of voting schemes and feature selection methods have been
compared, to enhance the practical value of this attractive and easily understood
approach to classification.

8.7 Disjoint class modelling

The emphasis in the methods described in Sections 8.5 and 8.6 has been on trying to
find a boundary between two or more classes, so that an unknown object may be allo-
cated to the correct class. However, the situation may arise when the unknown object
does not belong to any of the classes being considered. For example, in Example 8.4.1,
it was assumed that the unknown apple juice came from one of the sources A, B or C.
However, it might have come from none of these sources but we would have still (in-
correctly) allocated it to one of them. A different approach is needed if this sort of
error is to be avoided. Instead of having a rule which discriminates between classes,
we need a rule which allows us to discriminate between membership and non-
membership of a given class. This is done by making a separate model for each class

X2

X1

Group 1

Group 2

Figure 8.10 Two groups which cannot be separated by a plane.
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and using the model in order to test whether the unknown object could be a member
of the class. This is called disjoint class modelling. For example, if the number of
variables is small, each class might be modelled by a multivariate normal distribution.
With more variables, some data reduction needs to be carried out first. One such
method, called SIMCA (soft independent modelling of class analogy), makes a
model of each class in terms of the first few principal components for that class.

8.8 Regression methods

We turn now to the situation in which the variables for each sample can be divided
into two groups: response variables and predictor variables. Such a situation arises in
multivariate calibration: an example is the determination of the concentration of
constituents in a mixture of analytes by spectral analysis. Here the concentrations of
the analytes are the predictor variables and the absorbances at the different wave-
lengths are the response variables. Multivariate analysis is appropriate when the
spectra of the constituents overlap so that their concentrations cannot be deter-
mined without previous chemical separation. In order to calibrate the system a
number of specimens containing different mixtures of the analytes are taken and
the spectrum is measured for each specimen. Table 8.4 gives an illustrative data set.
It shows the UV absorbance (� 100) at six different wavelengths for ten calibration
specimens containing different concentrations of three constituents of interest. (In
practice, of course, the absorbance would be recorded at hundreds of wavelengths.)
What we require is a relationship between these two groups of variables that allows
the concentrations of the analytes in a new specimen to be predicted from the spec-
trum of the new specimen.

Table 8.4 The UV absorbance (� 100) recorded at six different wavelengths, A1, A2, etc., of
ten specimens (1–10) and the measured concentrations (mM), c1, c2 and c3 of three
constituents of interest

Specimen c1 c2 c3 A1 A2 A3 A4 A5 A6

A 0.89 0.02 0.01 18.7 26.8 42.1 56.6 70.0 83.2

B 0.46 0.09 0.24 31.3 33.4 45.7 49.3 53.8 55.3

C 0.45 0.16 0.23 30.0 35.1 48.3 53.5 59.2 57.7

D 0.56 0.09 0.09 20.0 25.7 39.3 46.6 56.5 57.8

E 0.41 0.02 0.28 31.5 34.8 46.5 46.7 48.5 51.1

F 0.44 0.17 0.14 22.0 28.0 38.5 46.7 54.1 53.6

G 0.34 0.23 0.20 25.7 31.4 41.1 50.6 53.5 49.3

H 0.74 0.11 0.01 18.7 26.8 37.8 50.6 65.0 72.3

I 0.75 0.01 0.15 27.3 34.6 47.8 55.9 67.9 75.2

J 0.48 0.15 0.06 18.3 22.8 32.8 43.4 49.6 51.1



 

238 8: Multivariate analysis

In the classical approach to this problem, the intensities would be treated as the
dependent variables and the concentrations as the independent variables. The tech-
niques of linear regression, which were described in Chapter 5, can be used to find a
set of regression equations relating the absorbance, Ai, at each wavelength to the
concentrations of the analytes. Assuming that absorbance at each wavelength is the
sum of the absorbances of the individual constituents, the regression equations take
the form , where the coefficients for each constituent
are dependent on wavelength.

In practice this simple additive model may not describe the situation completely.
There are two reasons for this. The first is that the substances of interest may inter-
fere with each other chemically in a way that affects their spectra. The second is that
the specimens from ‘real-life’ sources may well contain substances other than those
of interest, which make a contribution to the absorbance. In these cases it is better to
use inverse calibration and calibrate with ‘real-life’ specimens. The term ‘inverse
calibration’ means that the analyte concentration is modelled as a function of the
spectrum (i.e. the reverse of the classical method). For the data in Table 8.4 the re-
gression equations take the form . Inverse cali-
bration is appropriate because the concentrations can no longer be considered as
controlled variables.

The following sections describe a number of methods for predicting one set of
variables from another set of variables. In each case the inverse calibration method
is illustrated using the data in Table 8.4.

8.9 Multiple linear regression

Multiple linear regression (MLR) involves finding regression equations in the form
. In order to carry out MLR the number of cali-

bration specimens must be greater than the number of predictors. This is true for the
data in Table 8.4 where there are ten specimens and six predictors.

ci = b0i + b1i A1 + b2i A2 +
Á

+  b6i A6

ci = b0i + b1i A1 + b2i A2 +
Á

+  b6i A6

Ai = b0i + b1ic1 + b2ic2 + b3ic3

Example 8.9.1

Find the regression equations for predicting c1, c2 and c3 from A1, A2, etc. for
the data in Table 8.4.

The printout below was obtained using Minitab®.

Regression Analysis: c1 versus A1, A2, A3, A4, A5, A6

The regression equation is

c1 = 0.0501 + 0.00252A1 − 0.00939A2 + 0.00375A3 − 0.00920A4
− 0.00106A5 + 0.0179A6
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Predictor Coef SE Coef T P
Constant 0.05010 0.08945 0.56 0.615
A1 0.002525 0.008376 0.30 0.783
A2 -0.009387 0.008811 -1.07 0.365
A3 0.003754 0.005852 0.64 0.567
A4 -0.009197 0.005140 -1.79 0.172
A5 -0.001056 0.005373 -0.20 0.857
A6 0.017881 0.002249 7.95 0.004

S = 0.0188690 R-Sq = 99.6% R-Sq(adj) = 98.9%

PRESS = 0.0274584 R-Sq(pred) = 90.55%

This printout gives the regression equation for predicting c1 from A1, A2, etc. as

A similar analysis can be carried out in order to find the equations for predict-
ing c2 and c3. These are

As with univariate regression, an analysis of the residuals is important in evalu-
ating the model. The residuals should be randomly and normally distributed.
Figure 8.11 shows a plot of the residuals against the fitted value for c1: the
residuals do not show any particular pattern. Figure 8.12 plots the predicted
values against the measured values. The points are reasonably close to a straight
line with no obvious outliers.

The prediction performance can be validated by using a cross-validation
(‘leave-one-out’) method. The values for the first specimen (specimen A) are
omitted from the data set and the values for the remaining specimens (B–J)
are used to find the regression equation of, for example, c1 on A2, A3, etc.
Then this new equation is used to obtain a predicted value of c1 for the first
specimen. This procedure is repeated, leaving each specimen out in turn.
Then for each specimen the difference between the actual and predicted
value is calculated. The sum of the squares of these differences is called the
predicted residual error sum of squares or PRESS for short: the closer
the value of the PRESS statistic to zero, the better the predictive power of the
model. It is particularly useful for comparing the predictive powers of differ-
ent models. For the model fitted here Minitab® gives the value of PRESS as
0.0274584.

-  0.00510 A5 - 0.00237A6

c3 = -0.0776 + 0.00168 A1 + 0.00754 A2 + 0.00668 A3 + 0.00221A4

-  0.0152A6

c2 = 0.027 + 0.0067A1 - 0.0007A2 - 0.0184A3 + 0.0141A4 + 0.0160A5

-  0.00106A5 + 0.0179A6

c1 = 0.0501 + 0.00252A1 - 0.00939A2 + 0.00375A3 - 0.00920A4

Minitab® also gives values of t (called ‘T’ in the Minitab printout) and associated
P-values for each of the coefficients in the regression equation. This tests the null
hypothesis that each coefficient is zero, given that all the other variables are present
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Figure 8.12 A plot of the predicted values of c1 against the measured values for 
Example 8.9.1.

in the model. Inspection of these suggests that any one of A1 to A5 could be left
out of the model without reducing its effectiveness. We could, if we wished, try all
possible combinations of predictor variables and find the model that predicts most
successfully with the minimum number of predictor variables, using the PRESS sta-
tistic to compare the models. This might seem to be the course that we would have
to follow when we are dealing with a spectrum containing measurements at hun-
dreds of wavelengths because in this case the number of predictor variables far
exceeds the number of specimens. In order to form a regression equation we would
have to select the absorbances at only a small proportion of the wavelengths. How-
ever, it is not the best way to proceed because it means that a large amount of
information is discarded. The next section describes a method that makes better
use of the data.
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Figure 8.11 A plot of the residuals against the fitted values for c1 for Example 8.9.1.
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8.10 Principal component regression

The basis of principal component regression (PCR) is to reduce the number of pre-
dictor variables by using their first few principal components rather than the origi-
nal variables. The method works well when there is a considerable degree of
correlation between the predictor variables. This is usually the case in inverse cali-
bration: it is true for the data in Table 8.4, as can be seen from the correlation matrix
in Table 8.5. In this case only a few of the principal components are needed to
describe most of the variation in the data. These principal components are uncorre-
lated (see Section 8.3).

PCR is also a useful technique when the predictor variables are very highly corre-
lated: this can cause mathematical complications problems with MLR, resulting in
unreliable predictions.

The following example shows the steps involved in carrying out PCR using the
data in Table 8.4. Obviously there is no need for PCR when there are so few predic-
tor variables: the purpose of the example is to illustrate the method.

Table 8.5 Correlation matrix for the data in Table 8.4

c1 c2 c3 A1 A2 A3 A4 A5

c2 -0.637

c3 -0.717 0.088

A1 -0.482 -0.116 0.947

A2 -0.260 -0.194 0.832 0.941

A3 -0.001 -0.413 0.677 0.841 0.936

A4 0.625 -0.355 -0.096 0.148 0.422 0.598

A5 0.899 -0.434 -0.541 -0.293 -0.002 0.227 0.857

A6 0.977 -0.608 -0.603 -0.346 -0.089 0.161 0.771 0.960

Example 8.10.1

Carry out a PCR of the data in Table 8.4 in order to obtain an equation for pre-
dicting c1 from the spectrum.

(The reader needs to be familiar with the material in Section 8.3 before reading
the solution to this example.)

This can be done using a variety of computer packages (for example, The
Unscrambler®). In Minitab® it is necessary to first carry out a principal compo-
nents analysis (PCA) and then perform the regression.

The printout below was obtained from Minitab® and shows the results of a
PCA of the absorbances in Table 8.4.
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Principal Component Analysis: A1, A2, A3, A4, A5, A6

Eigenanalysis of the Covariance Matrix

Then the regression equation of c1 on Z1, Z2 and Z3 is found (using Minitab®):

Regression Analysis: c1 versus z1, z2, z3

The regression equation is
c1 = 0.0685 + 0.0119Z1 + 0.00419Z2 - 0.0171Z3

Eigenvalue 210.01 73.86 4.62 0.93 0.79 0.28
Proportion 0.723 0.254 0.016 0.003 0.003 0.001
Cumulative 0.723 0.977 0.993 0.996 0.999 1.000

Variable PC1 PC2 PC3 PC4 PC5 PC6

A1 -0.124 -0.592 -0.253 -0.048 0.340 0.672

A2 -0.017 -0.513 0.048 0.196 0.493 -0.673

A3 0.066 -0.571 -0.102 0.128 -0.793 -0.118

A4 0.244 -0.239 0.575 -0.743 -0.002 -0.002

A5 0.510 -0.042 0.545 0.602 0.059 0.276

A6 0.813 0.043 -0.544 -0.168 0.091 -0.075

Specimen

A 117.1 -61.7 17.7

B 83.0 -73.4 16.6

C 89.0 -76.1 20.8

D 86.8 -58.4 18.3

E 76.2 -74.0 14.5

F 81.9 -60.5 19.0

G 78.7 -67.0 22.3

H 104.0 -58.1 17.9

I 108.6 -74.1 18.1

J 76.9 -51.5 17.3

Z3Z2Z1

Predictor Coef SE Coef T P

Constant 0.06849 0.06571 1.04 0.337

Z1 0.0118502 0.0003480 34.05 0.000

Z2 0.0041884 0.0005868 7.14 0.000

Z3 -0.017058 0.002345 -7.27 0.000

This shows that between them the first three principal components account for
over 99% of the variation in the absorbances and so the regression will be car-
ried out on these three components.

The scores (see Example 8.3.1) for these three principal components can be
calculated using Minitab® and are given below.

S = 0.0151299 R-Sq = 99.5% R-Sq(adj) = 99.3%

PRESS = 0.00301908 R-Sq(pred) = 98.96%
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As for MLR, an analysis of the residuals should be carried out. The PRESS statistic
is 0.00301908, lower than it was for the MLR. Here the T-values indicate that all
the coefficients other than the constant term are significantly different from
zero. (At this stage the possibility of fitting a model with zero intercept could be
explored.)

The regression equation is

c1 � 0.0685 � 0.0119Z1 � 0.00419Z2 � 0.171Z3

If required an expression for c1 in terms of the absorbances can be obtained by
substituting expressions for Z1, Z2 and Z3 in terms of A1, A2, etc. For example,
referring back to the PCA gives:

Z1 � �0.124A1 � 0.017A2 � 0.066A3 � 0.244A4 � 0.510A5 � 0.813A6

and similarly for Z2 and Z3. This leads to the equation:

c1 � 0.06849 � 0.00037A1 � 0.00317A2 � 0.00014A3 � 0.00792A4
� 0.00343A5 � 0.01909A6

A similar analysis can be carried out to predict c2 and c3.

As already noted, this example illustrates the method very simply. However,
even with a spectrum containing absorbances at several hundred wavelengths we
would expect to find that only a few principal components are needed to describe
most of the variation, provided that the absorbances at the different wavelengths
are correlated.

PCR only utilises the correlations between the predictor variables. If we look at
Table 8.5 we see that there is also considerable correlation between the predictor and
the response variables. The following section describes a regression method that
makes use of both types of correlation.

8.11 Partial least-squares regression

Like PCR, partial least-squares (PLS) regression uses linear combinations of the pre-
dictor variables rather than the original variables. However, the way in which these
linear combinations is chosen is different. In PCR the principal components are cho-
sen so that they describe as much of the variation in the predictors as possible, irre-
spective of the strength of the relationships between the predictor and the response
variables. In PLS, variables that show a high correlation with the response variables
are given extra weight because they will be more effective at prediction. In this way
linear combinations of the predictor variables are chosen that are highly correlated
with the response variables and also explain the variation in the predictor variables.
As with PCR, it is hoped that only a few of the linear combinations of the predictor
variables will be required to describe most of the variation.
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Example 8.11.1

Carry out PLS regression on the data in Table 8.4 in order to obtain an equa-
tion for predicting c1.

PLS can be carried out using a number of computer packages (for example,
Minitab® and The Unscrambler®). The following printout was obtained from
Minitab®.

PLS Regression: c1 versus A1, A2, A3, A4, A5, A6

Number of components selected by cross-validation: 4
Number of observations left out per group: 1
Number of components cross-validated: 6

Analysis of Variance for c1

Source DF SS MS F P
Regression 4 0.289476 0.0723690 333.84 0.000
Residual Error 5 0.001084 0.0002168
Total 9 0.290560

Model Selection and Validation for c1

Components X Variance Error SS R-Sq PRESS R-Sq (pred)
1 0.457325 0.0287984 0.900887 0.0469069 0.838564
2 0.957200 0.0255230 0.912159 0.0511899 0.823823
3 0.988793 0.0021123 0.992730 0.0078758 0.972894
4 0.992990 0.0010839 0.996270 0.0052733 0.981851
5 0.0010724 0.996309 0.0186933 0.935664
6 0.0010681 0.996324 0.0274584 0.905498

c1 c1 standardized

Constant 0.0426293 0.00000
A1 0.0039542 0.11981
A2 -0.0111737 -0.27695
A3 0.0038227 0.10753
A4 -0.0092380 -0.22261
A5 -0.0003408 -0.01425
A6 0.0176165 1.16114

The results have been evaluated using the ‘leave-one-out’ method (see Exam-
ple 8.9.1). The first block in the printout shows that using this method of
cross-validation the number of components required to model c1 is 4. The
third block in the table gives the reason for this choice: it shows that value of
the PRESS is lowest for a 4-component model, taking the value 0.0052733.
(This, incidentally, is higher than it was for the PCR model.) Note that the pre-
dictive value of the model, as measured by the PRESS value, decreases if more
components are added. The first column of the last block in the table gives the
coefficients in the equation for this model. So the regression equation is:

c1 � 0.0426 � 0.0040A1 � 0.0112A2 � 0.0038A3 � 0.0092A4 � 0.0003A5 �

0.0176A6

Again an analysis of the residuals should be carried out.
Equations for predicting c2 and c3 can be found in a similar way.
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It is interesting to compare the equations for c1 obtained by MLR, PCR and PLS.
These are

MLR: c1 � 0.0501 � 0.00252A1 � 0.00939A2 � 0.00375A3 � 0.00920A4 � 0.00106A5
� 0.0179A6

PCR: c1 � 0.06849 � 0.00037A1 � 0.00317A2 � 0.00014A3 � 0.00792A4 � 0.00343A5
� 0.01909A6

PLS: c1 � 0.0426 � 0.0040A1 � 0.0112A2 � 0.0038A3 � 0.0092A4 � 0.0003A5
� 0.0176A6

Although the coefficients differ from one equation to another, they have the same
sign in each equation and in all three equations the term in A6 dominates.

In Example 8.11.1, each response variable has been treated separately. This is
known as PLS1. The response variables can also be treated collectively. This is known
as PLS2. It is usually used only when the response variables are correlated with each
other. There is often little to choose between the two methods in terms of predic-
tive ability.

Sections 8.9 to 8.11 have given a brief description of methods for making a regres-
sion model for multivariate calibration. To summarise, MLR would rarely be used be-
cause it cannot be carried out when the number of predictor variables is greater than
the number of specimens. Rather than select a few of the predictor variables, it is
better to reduce their number to just a few by using PCR or PLS. These methods give
satisfactory results when there is correlation between the predictor variables. The
preferred method in a given situation will depend on the precise nature of the data:
an analysis can be carried out by each method and the results evaluated in order to
find which method performs better. For example, for the data in Table 8.4 PCR per-
formed better than PLS as measured by the PRESS statistic.

Many recent applications of PCR and PLS have arisen in molecular spectroscopy,
where strongly overlapping absorption and emission spectra often arise, even in
simple mixtures. For example a pesticide and its metabolites have been successfully
analysed using Fourier transform infrared spectroscopy, and a mixture of very simi-
lar phenols was resolved by means of their fluorescence excitation spectra.

8.12 Natural computation methods: artificial neural networks

Recent years have seen a substantial growth in the application to chemical problems
of computation methods that emulate natural, and especially biological, processes.
As with the other methods outlined in this chapter these natural computation
methods require computers for their implementation, but modern desktop computers
are quite adequate in many cases. Simulated annealing, summarised in Chapter 7 as
an approach to optimisation problems, can be regarded as a natural computation
method based on a physical phenomenon. Genetic algorithms have a genuinely
biological background. They are again used for optimisation and for other applications
such as wavelength selection in spectroscopy. In general such an algorithm begins
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with a random selection of the initial population (using this term biologically, not
statistically), for example 10 wavelengths out of the hundreds possible in UV–visible
spectroscopy. Subsequent generations are generated from this initial population by
processes that mirror heredity in living beings, such as the selection of suitable par-
ents, the crossover between the genes of two parents, and mutations. Each new gen-
eration is tested for its output (in our example this might be the accuracy of a
multi-component spectroscopic analysis), and the quasi-genetic processes continue
until an acceptable outcome is generated. The widely used MATLAB® technical soft-
ware provides genetic algorithm facilities.

Artificial neural networks (ANN) are now finding many uses in analytical sci-
ence. In a simple form ANNs attempt to imitate the operation of neurons in the
brain. Brain neurons receive input signals via numerous filamentous extensions
called dendrites, and send out signals through another very long, thin strand called
an axon, which can transmit electrical signals. The axon also has many branches at
the terminus distant from the cell nucleus. At the end of these branches synapses
use neurotransmitter molecules to pass on signals to the dendrites of other neurons.
Analogously, ANNs have a number of linked layers of artificial neurons, including
an input and an output layer (Fig. 8.13). Measured variables are presented to the
input layer and are processed by mathematical operations in one or more intermedi-
ate (‘hidden’) layers, to produce one or more outputs. (More details are given in the
text by Otto, listed in the Bibliography.) In inverse calibration, the inputs could be
the absorbances at various wavelengths and the output could be the concentrations
of one or more analytes. The network is trained by an interactive procedure using a
training set: in the calibration example the ANN would calculate concentrations for
each member of the training set, and any discrepancies between the network’s out-
put and the known concentrations would be used to adjust internal parameters in

Input layer

Hidden layer

Output layer

Figure 8.13 An example of a neural network.
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the network. These prediction and adjustment steps are repeated until the required
degree of accuracy, evaluated with a test set, is achieved. Since the training and test
sets are bound to differ to some extent, it is important not to over-fit the training
set, otherwise the network may perform less well with the test set, and subsequently
with ‘unknown’ samples.

Unlike MLR, PCR and PLS methods, ANNs do not assume any initial mathe-
matical relationship between the input and output variables, so they are particu-
larly useful when the underlying mathematical model is unknown or uncertain.
For example, they are appropriate in multivariate calibration when the analytes
interfere with each other strongly. However, the lack of an assumed mathematical
model has its disadvantages. Larger training sets than those used in the other
techniques described in this chapter may be necessary, and there is no direct way
to extract information about a suitable mathematical model, or to estimate confi-
dence intervals.

Neural networks are versatile and flexible tools for modelling complex relation-
ships between variables. They have been widely used in pattern recognition and cali-
bration studies in conjunction with many spectroscopic, chromatographic and
electrochemical methods. Many neural network designs have been studied, and their
performances have been compared with the other multivariate approaches described
in this chapter. It seems that in at least some cases, ANNs achieve results of high qual-
ity that are not obtainable with the other methods. Again MATLAB® supplies facilities
for ANNs, with a range of options in terms of the number of layers available and the
data propagation methods used.

8.13 Conclusions

The aim of this chapter has been to give an introduction to the methods of multi-
variate analysis which are most commonly used in analytical chemistry. In most
cases there is a choice of several different multivariate methods which could be
applied to the same set of data. For example, in cluster analysis there is a choice
between a hierarchical and a non-hierarchical approach, and each of these ap-
proaches offers a choice of several different methods. In multivariate calibration
there is a choice between multiple regression, PCR and PLS regression. In addi-
tion, several approaches might be tried in the initial analysis. For example cluster
analysis and principal components analysis might be used prior to linear discrim-
inant analysis, in order to see whether the objects being analysed fall naturally
into groups.

This chapter has been able to introduce only a small number of the numerous
multivariate analysis methods that have become relatively commonplace in the ana-
lytical sciences in recent years. This is still a rapidly developing field, with further
new methods becoming ever more widely available as the power and speed of desk-
top computers grow. Similarly there is now a great range of websites, downloads and
software packages to encourage their use (see below), which will doubtless continue
to increase.
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Exercises

1 For the data in Example 8.5.1 carry out a linear discriminant analysis working
with the standardised variables. Hence identify the two variables which are
most effective at discriminating between the two groups. Repeat the discrimi-
nant analysis with these two variables. Use the cross-classification success rate to
compare the performance using two variables with that using all four variables.

2 The data below give the concentration (in mg kg�1) of four elements found in
samples of rice. The rice was one of two types (polished (P) or unpolished (U)),
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was one of two varieties (A or B), and was grown either in the wet season (W) or
the dry season (D).

Variety Type Season P K Ni Mo

A U D 3555 2581 0.328 0.535
A U D 3535 2421 0.425 0.538
A U D 3294 2274 0.263 0.509
A P D 1682 1017 0.859 0.494
A P D 1593 1032 1.560 0.498
A P D 1554 984 1.013 0.478
B U D 3593 2791 0.301 0.771
B U D 3467 2833 0.384 0.407
B P D 2003 1690 0.216 0.728
B P D 1323 1327 0.924 0.393
A U W 3066 1961 0.256 0.481
A P W 1478 813 0.974 0.486
B U W 3629 2846 1.131 0.357
B U W 3256 2431 0.390 0.644
B P W 2041 1796 0.803 0.321
B P W 1745 1383 0.324 0.619

(Adapted from Phuong, T.D., Choung, P.V., Khiem, D.T., and Kokot, S., 1999,
Analyst, 124, 553)

(a) Carry out a cluster analysis. Do the samples appear to fall into groups? What
characteristic is important in determining group membership?

(b) Calculate the correlation matrix. Which pairs of variables are strongly corre-
lated? Which variable(s) show little correlation with the other variables?

(c) Carry out a principal components analysis and obtain a score plot. Does it
confirm your analysis in (a)?

(d) Is it possible to identify the variety of a sample of rice by measuring the concen-
tration of these four elements? Answer this question by carrying out a linear
discriminant analysis. Investigate whether it is necessary to measure the con-
centration of all four elements in order to achieve satisfactory discrimination.

3 The table below shows the fluorescence intensity (arbitrary units) recorded at 10
different wavelengths, I1, I2, I3, etc., for nine specimens containing measured
concentrations (nM), c1 and c2, of two analytes.

c1 c2 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

0.38 0.10 33 31 28 26 24 21 19 17 14 12
0.60 0.90 62 64 62 69 72 74 77 79 82 84
0.88 0.96 89 89 83 91 91 92 92 93 94 94
0.01 0.41 5 8 11 14 18 21 24 28 31 34
0.86 0.14 74 68 61 56 50 44 38 32 26 20
0.25 0.05 21 19 17 16 14 13 11 9 8 6
0.03 0.16 4 5 6 7 9 10 11 12 13 14
0.22 0.02 18 17 15 13 12 10 8 7 5 3
0.29 0.34 27 28 28 29 29 30 30 31 31 32
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(a) Why is not possible to use MLR to carry out an inverse calibration for c1 or c2
for these data if the fluorescence intensities at all the different wavelengths
are used?

(b) Carry out a PCA of the fluorescence intensities and hence obtain a regression
equation for predicting c1 from the first two principal components of the
fluorescence intensities. Check that the residuals are approximately randomly
and normally distributed.

(c) Use PLS1 to obtain a regression equation for predicting c1 from the fluores-
cence intensities. Check that the residuals are approximately randomly and
normally distributed.

(d) Compare the predictive power of the models obtained by PCR and PLS1 using
the PRESS statistic.

(e) The fluorescence intensities, I1, I2, I3, etc., for a new specimen (measured in
the same units and in the same conditions) are 51, 49, 46, 46, 44, 43, 41, 39,
38 and 36. Use the equations obtained in (b) and (c) to calculate the value of
c1 for this specimen.



 

Solutions to exercises

(NB. Outline solutions are provided here: fuller solutions with commentaries are 
included in the Instructors’ Manual.)

Chapter 1

1 Mean results (g l�1) for laboratories A–E are: 41.9, 41.9, 43.2, 39.1, 41.5. Hence 
A – precise, little bias, mean accurate; B – poor precision, little bias, mean
accurate but not very reliable; C – precise but biased to high values, poor accu-
racy; D – poor precision, biased to low values, poor accuracy; E – similar to A,
but the last result might be an ‘outlier’.

2 Laboratory A still shows little bias, but precision is poorer, reflecting repro-
ducibility (i.e. between-day precision) rather than repeatability (within-day
precision).

3 Number of binding sites must be an integer, clearly 2 here, so results are pre-
cise, but biased to low values. The bias does not matter much, as two binding
sites can be deduced.

4 (a) Blood lactate levels vary a lot in healthy patients, so great precision and
accuracy are not needed. (b) Unbiased results could be crucial because of the
great economic importance of U. (c) Speed of analysis is crucial here, so preci-
sion and accuracy are less important. (d) The aim is to detect even small
changes over time, so precision is most important.

5 (a) Sample might not be representative, and/or reduction of Fe(III) to Fe(II)
might be incomplete, giving biased results in each case. Completeness of re-
duction could be tested using a standard material. Random errors in each
stage, including titrimetry, where they should be small. (b) Sampling problem
as in (a), and also incomplete extraction, leading to bias (checked with stan-
dard). Random errors in spectrometry, which again should be relatively small.
(c) Random errors in gravimetry should be very small: more significant will be
chemical problems such as co-precipitation, giving biased results.
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Chapter 2

1 Mean � 0.077 �g ml�1, SD � 0.007 �g ml�1, RSD � 9%.

2 19.01 ; 3.17 (95%); 19.01 ; 4.81 (99%).

3 Mean � 22.3 ng ml�1, SD � 1.4 ng ml�1, RSD � 6.2%, 99% CI � 22.3 ; 1.4 ng
ml�1. Mean � 12.83 ng ml�1, SD � 0.95 ng ml�1, RSD � 7.4%, 99% CI � 12.8 ;
1.6 ng ml�1.

4 10.12 ; 0.18 ng ml�1. Approximately 160.

5 49.5 ; 1.1 ng ml�1. Yes.

6 10.18 ; 0.23 ml. No evidence for systematic error.

7 For weight of reagent: SD � 0.14 mg, RSD � 0.028% (0.029%).
For volume of solvent: RSD � 0.02%.
For molarity: RSD � 0.034% (0.020%).
Values for reagent with formula weight 392 are given in brackets.

8 s.d. � 0.44 � 10�6 M.

Chapter 3

1 The points lie approximately on a straight line, indicating that the data are
drawn from a normal distribution.

2 t � 1.54, 1.60, 1.18, 1.60. None of the means differs significantly from certified
value.

3 (a) Q � 0.565 or G � 1.97. Not significant at P � 0.05. (b) F � 34. Significant
at P � 0.05.

4 (a) F � 1.70. Not significant at P � 0.05. (b) t � ;1.28. Not significant at P � 0.05.

5 Between-sample mean square � 2121.9, within-sample mean square � 8.1. 
F � 262. Highly significant difference between depths. All pairs, except deep-
est pair, differ significantly from each other.

6 t � ;1.20. Sexes do not differ significantly.

7 x2 � 16.8. No evidence that some digits are preferred to others.

8 Pine: t � ;2.27, not significant. Beech: t � ;5.27, significant at P � 0.01.
Aquatic: t � ;3.73, significant at P � 0.01.

9 (a) x2 � 5.95. The first worker differs significantly from the other three.

(b) x2 � 2.81. The last three workers do not differ significantly from each
other.

10 t � ;1.02. Methods do not differ significantly.

11 Between-samples mean square � 0.1144, within-samples mean square �

0.0445. F � 2.57. Just significant at P � 0.05. Least significant difference (0.25)
indicates that A differs from B, D and E.
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12 t � ;2.2. Men and women differ significantly.

13 t � ;3.4. Methods differ significantly.

14 Minimum size is 12.

15 The estimated mean and standard deviation from the data are 1.08 and 0.41
respectively. When the z-values (0.54, 1.02, etc.) are plotted the maximum
difference is only 0.11 at z � 0.54. The critical value is 0.262 so the null hypothe-
sis can be retained: the data fit this normal distribution very well.

16 (a) The posterior distribution is a normal distribution with mean equal to the
mean of the four measurements, that is 7.5, and standard deviation
where n � 4, that is 0.1. The curve is truncated at 7 and 9 but this would not
be apparent in a sketch of the curve since these values are well over 3 standard
deviations from the mean. (b) Taking 2 standard deviations of either side of
the mean gives 7.5 ; 0.2 or 7.3 to 7.5. This range includes approximately 95%
of the area under the curve.

Chapter 4

1 For scheme 1, s2 � (4/2) � (10/5) � 4. For scheme 2, s2 � 4/(2 � 3) � 10/3 �
4. If S is the cost of sampling and A the cost of the analysis, then (cost of
scheme 1/cost of scheme 2) � (5S � 2A)/(3S � 6A). This ratio is >1 if S/A > 2.

2 ANOVA calculations show that the mean squares for the between-days and
within-days variations are 111 and 3.25 respectively. Hence F � 111/3.25 �

34. The critical value of F3,8 is 4.066 (P � 0.05), so the mean concentrations
differ significantly. The sampling variance is given by (111 � 3.25)/3 � 35.9.

3 The mean squares for the between-sample and within-sample variations are
8.31 � 10�4 and 1.75 � 10�4 respectively, so F � 8.31/1.75 � 4.746. The criti-
cal value of F3,8 is 4.066 (P � 0.05), so the between-sample mean square can-
not be explained by measurement variation only. The latter variation, is
estimated as 1.75 � 10-4. The estimate of the sampling variance, is [(8.31 -
1.75) � 10-4]/3 � 2.19 � 10-4. Hence the variance of the mean for scheme 1 is
0.000175/4 � 0.000219/6 � 0.00008025, and the variance of the mean for
scheme 2 is [0.000175/(2 � 3)] � 0.000219/3 � 0.0001022.

4 The six samples give six estimates of s2, which have an average of 2.795. So
s � 1.67. Hence the action and warning lines are at and

respectively, i.e. at 50 ; 1.67 and 50 ; 2.50 respectively.

5 Samples A and B give mean values of 7.01 and 7.75 ppm respectively. Using a
table of D and T values (e.g. for laboratory 1 these are �1.2 and 18.8 respec-
tively), we find that and So F � 11.027/0.793 �

13.905, far higher than the critical F14,14 value of ca. 2.48 (P � 0.05), obtained
from the table by interpolation. Systematic errors are thus significant, and is
found to be 5.117.

6 For the Shewhart chart for the mean, the values of W and A are found from
tables (n � 5) to be 0.3768 and 0.5942 respectively. Hence the warning lines are

s2
i

sr
2

= 0.793.sR
2

= 11.027

50 ; (3 * 1.67)/14
50 ; (2 * 1.67)>14

s1
2,

s0
2,

= 0.2>1n
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at 120 ; (7 � 0.3768) � 120 ; 2.64, and the action lines are at 120 ; (7 �

0.5942) � 120 ; 4.16. For the range chart, the tables give w1, w2, a1 and a2 as
0.3653, 1.8045, 0.1580 and 2.3577 respectively so the lower warning line is at
7 � 0.3653 � 2.56, the upper warning line is at 12.63, and the lower and
upper action lines are at 1.11 and 16.50 respectively.

7 Since s � 0.6 and n � 4, the warning and action lines for the Shewhart chart
for the mean are at 80 ; 0.6 and 80 ; 0.9 respectively. On this chart, the points
for days 14–16 fall between the warning and action lines and point 17 is below
the lower action line. So the chart suggests that the analytical process has
gone out of control at about day 14. The CUSUM chart shows a steady nega-
tive trend from day 9 onwards, suggesting that the method was going out of
control a good deal earlier.

Chapter 5

1 Here r � �0.8569. This suggests a strong correlation; Eq. (5.3.2) gives t � 3.33,
well above the critical value (P � 0.05) of 2.78. But (a) a non-linear relation-
ship is more likely, and (b) correlation is not causation – the Hg contamina-
tion may arise elsewhere.

2 In this case r � 0.99982. But the increase in the value of y (absorbance) with x
is by a slightly decreasing amount at each point, i.e. this is really a curve,
though little harm would come from treating it as a straight line.

3 The usual equations give a � 0.0021, b � 0.0252 and sy/x � 0.00703. We then
obtain sa � 0.00479 and sb � 0.000266. To convert the two latter values into
95% confidence intervals we multiply by t � 2.57, giving intervals for the
intercept and slope of 0.0021 ; 0.0123 and 0.0252 ; 0.0007 respectively.

4 (a) A y-value of 0.456 corresponds to a concentration of 18.04 ng ml�1. The
-value is 0.300 so the confidence limits are 18.04 ; (2.57 � 0.300) � 18.04 ;

0.77 ng ml�1. (b) The Q-test shows that the absorbance reading of 0.347 can
be rejected as an outlier, the mean of the remaining three readings being
0.311, i.e. a concentration of 12.28 ng ml�1. With m � 3 in this case, ,
giving confidence limits of 12.28 ; 0.50 ng ml�1.

5. The absorbance at the limit of detection is given by a � 3sy/x � 0.0021 � (3 �
0.00703) � 0.0232. This corresponds to an x-value of 0.84 ng ml�1, which is
the limit of detection.

6 Here a � 0.2569 and b � 0.005349, so the Au concentration is 0.2569/
0.005349 � 48.0 ng ml�1. The value of sy/x is 0.003693, so is 0.9179. In this
case t � 2.45, so the 95% confidence limits for the concentration are 48.0 ;
(2.45 � 0.9179) � 48.0 ; 2.2 ng ml�1.

7 The unweighted regression line has b � 1.982 and a � 2.924 respectively. Inten-
sity values of 15 and 90 correspond to 6.09 and 43.9 ng ml�1 respectively.
Then sy/x � 2.991 and . So the confidence limits for the two con-
centrations are 6.09 ; 4.9 and 43.9 ; 4.9 ng ml�1. The weighted line is found

sxE
= 1.767

sxE

sx0
= 0.195

sx0
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from the s-values for each point, in increasing order 0.71, 0.84, 0.89, 1.64,
2.24, 3.03. The corresponding weights are 2.23, 1.59, 1.42, 0.42, 0.22 and 0.12
(totalling 6 as expected). The weighted line then has b � 1.964 and a � 3.483,
so the intensity values of 15 and 90 correspond to concentrations of 5.87 and
44.1 ng ml�1 respectively. Estimated weights for these two points are 1.8 and
0.18 respectively, giving -values of 0.906 and 2.716, and confidence limits
of 5.9 ; 2.5 and 44.1 ; 7.6 ng ml�1.

8 If the ISE results are plotted as y and the gravimetric data are plotted as x the
resulting line has a � 4.48 and b � 0.963. The r-value is 0.970. The confi-
dence limits for a are 4.5 ; 20.1, which includes zero, and the limits for b are
0.96 ; 0.20, which includes 1, so there is no evidence of bias between the two
methods.

9 Inspection suggests that the plot is linear up to A � 0.7–0.8. The line through
all six points gives r � 0.9936, and residuals of �0.07, �0.02, �0.02, �0.06,
�0.07 and �0.07. The trend suggests a curve. The SS for these values is 0.0191.
If the last value is omitted, we find r � 0.9972, the residuals are �0.04, 0,
�0.02, �0.04 and �0.02 (SS � 0.0040). Similar calculations show that the
fifth point can be omitted also, at some cost in the range of the experiment.

10 The two straight line graphs are y � 0.0014 � 0.0384x, and y � 0.1058 � 0.012x.
These intersect at an x-value of (0.1058 � 0.0014)/(0.0384 � [�0.012]) �

(0.1044/0.0504) � 2.07, suggesting the formation of a 2 : 1 DPA : europium
complex.

11 The best quadratic fit is y � 0.0165 � 0.600x � 0.113x2. This gives R2 � 0.9991
and R�2 � 0.9981. The cubic fit is y � �0.00552 � 0.764x � 0.383x2 � 0.117x3.
This gives R2 � 0.9999 and R�2 � 0.9997, so is a rather better fit.

12 For a straight line, a quadratic fit and a cubic fit, the R2 values are 0.9238,
0.9786 and 0.9786 respectively, suggesting that a quadratic fit will be excel-
lent. This is confirmed by the R�2 values, which are 0.9085, 0.9679 and 0.9573
respectively, the quadratic fit giving the highest value.

Chapter 6

1 Mean � 9.96 ml, median � 9.90 ml. Q-test shows that the 10.20 value cannot
quite be omitted (P � 0.05). If it is omitted, mean � 9.88, median � 9.89. The
median is insensitive to outliers.

2 Sign test: compared with the median, the values give signs of � � 0 � � � � � �.
So eight signs, of which six are positive. Probability of this is 0.29, i.e. �0.05,
so null hypothesis is retained: median sulphur content could be 0.10%. In the
signed rank test the zero is neglected, and the ranked differences are �0.01,
0.01, 0.01, �0.02, 0.02, 0.02, 0.04, 0.07. So signed ranks are �2, 2, 2, �5, 5, 5,
6, 7. Negative ranks total (�)7, but at P � 0.05, critical region is 3. So the
null hypothesis is again retained.

3 (RID–EID) results give signs of � � � � � � � � 0 �. So nine results, eight
positive. P � 0.04 for this outcome, so the null hypothesis (that the methods

…

sx0w
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give indistinguishable results) can be rejected. In the signed rank test, the neg-
ative ranks total (�)2.5, well below the critical level of 5, so again the null
hypothesis can be rejected.

4 Arranging the results in order, the median is 23.5. So individual values have
signs � � � � � � � � � �. This sequence has three runs, but for M � N � 3,
the critical value is 3, so the null hypothesis of a random sequence must be
retained.

5 Mann–Whitney U-test: ‘beer’ values are expected to be larger than ‘lager’ val-
ues. Number of lager values greater than the individual values � 4.5 (one tie).
Critical value for a one-sided test is 5, so we can just reject the null hypothesis
(P � 0.05). Tukey’s quick test: count is 5.5, just below the critical value of 6. So
tests disagree: more data needed.

6 For instruments A–G student rankings are 3, 1, 5, 4, 7, 6, 2, and staff rankings
are 5, 3, 6, 2, 4, 7, 1. So the d-values are �2, �2, �1, 2, 3, �1, 1, and the d2 val-
ues are 4, 4, 1, 4, 9, 1, 1, totalling 24. Hence rs � 1 � [(6 � 24)/(7 � 48)] �
0.571. For n � 7 the critical value at P � 0.05 is 0.786: no evidence of correla-
tion between student and staff opinions.

7 If the x-values are the distances and the y-values the mercury levels, Theil’s
method gives a � 2.575, b � �0.125. (The least-squares method gives a �

2.573, b � �0.122.)

8 If the nickel levels are replaced by ranks (one tie occurs) the sums of the ranks for
the three samples are 39, 52.5 and 79.5. (These add up to 171, as expected for 18
values, as 1/2 � 18 � 19 � 171.) The corresponding value of x2 � 4.97, below the
critical value of 5.99 (P � 0.05, 2 degrees of freedom) so the null hypothesis of no
significant difference in the nickel levels in the oils must be retained.

Chapter 7

1 This is two-way ANOVA without replication. The between-row (i.e. between-
solution) mean square is 0.00370 (3 d.f.); the between-column (i.e. between-
method) mean square is 0.00601 (2 d.f.); and the residual mean square is
0.00470 (6 d.f.). The between-solution mean square is less than the residual
one, so is not significant. Comparison of the between-method and residual
mean squares gives F � 0.00601/0.00470 � 1.28. The critical value of F2,6 (P �

0.05) is 5.14, so the between-method variation is not significant.

2 Again, a two-way ANOVA experiment without replication. The between-soil,
between-day and residual mean squares are respectively 4.67 (4 d.f.), 144.8 
(2 d.f.) and 26.47 (8 d.f.). The between-soil mean square is less than the residual
mean square, so there are no significant differences between soils. Comparing
the between-day and residual mean squares gives F � 144.8/26.47 � 5.47. The
critical value of F2,8 is 4.46, so this source of variation is significant at P �

0.05. The actual probability (Excel) is 0.0318.

3 Another two-way ANOVA experiment without replication. (Replication would
be needed to study possible interaction effects.) The between-compound,
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between-molar ratio and residual mean squares are respectively 4204 (3 d.f.),
584 (2 d.f.) and 706 (6 d.f.). Thus molar ratios have no significant effect. Com-
paring the between-compound and residual mean squares gives F � 4204/706 �
5.95. The critical value of F3,6 is 4.76 (P � 0.05), so this variation is significant.
(P is given by Excel® as 0.0313.) Common sense should be applied to these
and all other data – diphenylamine seems to behave differently from the other
three compounds.

4 The single-factor effects are A: �0.0215, C: 0.0005, T: �0.0265. The two-factor
effects are AC: �0.0005, CT: 0.0025, AT: �0.0065. The three-factor effect ACT
is �0.0005.

5 This is a two-way ANOVA experiment with replication. The mean squares for
between-row, between-column, interaction and residual variations are respec-
tively 2.53 (2 d.f.), 0.0939 (2 d.f.), 0.0256 (4 d.f.), and 0.0406 (9 d.f.). The inter-
action mean square is less than the residual mean square, so sample–laboratory
interactions are not significant. Comparing the between-column (i.e. between-
laboratory) and the residual mean squares gives F � 0.0939/0.0406 � 2.31. The
critical value of F2,9 is 4.256 (P � 0.05), so the between-laboratory variation is
not significant.

6 (a) Using the Fibonacci approach to achieve a 40-fold reduction in the opti-
mum range, we use the terms F7 and F9 (as F9 is the first Fibonacci term above
40) to give the ratio 21/55. The starting pHs are then 5 � [(21 � 4)/55] � 6.53
and 9 � [(21 � 4)/55] � 7.47. (b) When six experiments are to be performed
the Fibonacci method uses F6 and F4 to form the fraction 5/13, so the starting
pHs are 5 � (20/13) and 9 � (20/13), i.e. 6.54 and 7.46 (similar values again).
The degree of optimisation is 1/F6, i.e. 1/13, so the optimum pH range will be
defined within an envelope of 4/13 � 0.31 pH units.

7 Vertex 1 should be rejected. The new vertex 8 should have co-ordinates 5.8,
9.4, 18.1, 9.2, 8.8 for factors A–E respectively, all values being given to one
decimal place.

Chapter 8

1 The printout below was obtained using Minitab®.

Linear Discriminant Function for Group
A B C

Constant -14.538 -2.439 -8.782
Sucrose 15.039 -3.697 -11.342
Glucose -1.829 2.931 -1.102
Fructose -9.612 0.363 9.249
Sorbitol -2.191 -0.229 2.421

This suggests that sucrose and fructose may be the variables which are most
effective at discriminating between varieties.
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Put into . . . . True Group . . . .
Group A B C
A 5 0 0
B 0 5 1
C 0 0 4
Total N 5 5 5
N Correct 5 5 4
Proportion 1.000 1.000 0.800

N = 15 N Correct = 14 Proportion Correct = 0.933

2 (a) A dendrogram shows two clear groups with group membership depending
on whether the rice is polished or not.

(b)

P K Ni
K 0.954
Ni -0.531 -0.528
Mo 0.150 0.117 -0.527

Eigenvalue 2.4884 1.1201 0.3464 0.0451
Proportion 0.622 0.280 0.087 0.011
Cumulative 0.622 0.902 0.989 1.000

Variable PC1 PC2
P 0.577 0.340
K 0.572 0.366
Ni �0.509 0.357
Mo 0.283 -0.789

Put into . . . .True Group . . . .
Group A B
A 7 1
B 1 7
Total N 8 8
N Correct 7 7
Proportion 0.875 0.875

N = 16 N Correct = 14 Proportion Correct = 0.875

The cross-classification success rate with just these two variables is:

Summary of Classification with Cross-validation

Strong positive correlation between P and K. Little correlation between Mo
and K and between Mo and P.

(c) Carrying out PCA on the standardised values gives:

Eigenanalysis of the Correlation Matrix

A score plot shows two fairly well-defined groups: one for polished and the
other for unpolished samples.

(d) The results of LDA using the standardised values are:

Summary of Classification with Cross-validation
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The discrimination between varieties is good (87.5% success). Results suggest
that P and K are most effective at discriminating between varieties. Using
just these two elements, a cross-classification rate of 15/16 is achieved.

3 (a) MLR cannot be used, as the number of specimens is not greater than the
number of predictors.

(b) The printout below was obtained from Minitab®. Between them the first
two eigenvectors account for virtually all the variance.

Principal Component Analysis: I1, I2, I3, I4, I5, I6, I7, I8, I9, I10

Eigenanalysis of the Covariance Matrix

Linear Discriminant Function for Group
A B

Constant -2.608 -2.608
P 18.016 -18.016
K -19.319 19.319
Ni -0.051 0.051
Mo -1.198 1.198

Eigenvalue 8537.3 659.1 0.5 0.2 0.1 0.1 0.0 0.0 -0.0
Proportion 0.928 0.072 0.000 0.000 0.000 0.000 0.000 0.000 -0.000
Cumulative 0.928 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Eigenvalue -0.0
Proportion -0.000
Cumulative 1.000

Variable PC1 PC2
I1 -0.302 0.502
I2 -0.303 0.398
I3 -0.283 0.301
I4 -0.314 0.181
I5 -0.315 0.065
I6 -0.320 -0.043
I7 -0.324 -0.151
I8 -0.327 -0.263
I9 -0.334 -0.373
I10 -0.336 -0.479

Z1 Z2

�70.155 24.3663
�230.122 �14.0245
�287.257 5.0160

�62.560 �27.0383
�145.815 60.5942

�41.701 16.5704
�29.195 �9.1504
�33.454 16.6590
�93.381 �0.6222

The scores for the first two eigenvectors are
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The regression equation is

c1 � 0.0048163 � 0.0025364I1 � 0.0024281I2 � 0.0097208I3 � 0.0009896I4
� 0.0005505I5 � 0.0002864I6 � 0.0007365I7 � 0.0022379I8
� 0.0016805I9 � 0.0009030I10

The residuals show no patterns and are approximately normally distributed.

(d) The PRESS statistic is 0.00111959 for the model in (b) and 0.000906 for the
model in (c) so PLS1 performs better than PCR by this measure.

(e) PCR: The scores calculated for the new specimen are Z1 � �136.172 and Z2 �

20.3898. Substituting these values in the regression equation gives c1 �

0.552. PLS: Substitution in the regression equation gives c1 � 0.556.

(Minitab® also gives confidence intervals: for PCR (0.544, 0.558), for PLS
(0.549, 0.563).)

Components X Variance Error SS R-Sq PRESS R-Sq (pred)
1 0.929412 0.198592 0.76293 0.310446 0.629402
2 0.999900 0.000299 0.99964 0.001029 0.998772
3 0.999957 0.000137 0.99984 0.000906 0.998919
4 0.000053 0.99994 0.001248 0.998510
5 0.000030 0.99996 0.001756 0.997904
6 0.000006 0.99999 0.001987 0.997628
7 0.000000 1.00000 0.001976 0.997641

Regression Coefficients

The regression equation of c1 on Z1 and Z2 can be obtained from Minitab®.
It is

c1 � 0.0116 � 0.00294 Z1 � 0.00686 Z2

The residuals show no patterns and are approximately normally distributed.

(c) The following printout was obtained from Minitab®.

PLS Regression: c1 versus I1, I2, I3, I4, I5, I6, I7, I8, I9, I10

Number of components selected by cross-validation: 3
Number of observations left out per group: 1
Number of components cross-validated: 7

Model Selection and Validation for c1

c1 c1 standardized
Constant 0.0048163 0.000000
I1 0.0025364 0.240705
I2 0.0024281 0.223514
I3 0.0097208 0.818996
I4 0.0009896 0.089914
I5 -0.0005505 -0.049677
I6 -0.0002864 -0.026187
I7 0.0007365 0.068765
I8 -0.0022379 -0.214303
I9 -0.0016805 -0.167711
I10 -0.0009030 -0.093197



 

Appendix 1: Commonly used
statistical significance tests

Problem Tests available See Comments
Section

1 Dixon’s test
2 Grubbs’ test

3 t-test
4 Sign test
5 Wilcoxon signed

rank test

6 F -test
7 Siegel–Tukey test

8 t-test
9 Mann–Whitney

U-test
10 Tukey’s quick test

11 Paired t-test

12 Sign test
13 Wilcoxon signed 

rank test
14 x–y plot

15 ANOVA
16 Kruskal–Wallis test

17 Friedman’s test

18 Chi-squared test
19 Kolmogorov–

Smirnov tests

3.7
3.7

3.2
6.3
6.5

3.6
6.6

3.3
6.6

6.6

3.4

6.3
6.5

5.9

3.9
6.7

6.7

3.11
3.12

ISO recommended

Non-parametric
Non-parametric

Precedes test 8
Non-parametric

Non-parametric

Non-parametric

Small range of
values

Non-parametric
Non-parametric

Large range of
values

See index
Non-parametric

Non-parametric

Small samples

Testing for outliers

Comparison of mean/
median with standard
value

Comparison of spreads
of two data sets

Comparison of means or
medians of two samples

Comparison of two sets 
of paired data

Comparison of means/
medians of >2 samples

Comparison of >2
matched data sets

Testing for occurrence of 
a particular distribution
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The flow chart

The flow chart is designed for use in conjunction with the table to aid the choice of
appropriate significance test. It is intended only as a guide, and should not be used
blindly. That is, once the chart has indicated which test or tests are most suitable to
a given experimental situation, the analyst must become familiar with the principles
of the selected test, the reasons for its selection, any limitations on its validity and so
on. Only in this way will the results of the test be applied properly in all cases. For
example, most non-parametric tests are not so powerful as parametric ones in condi-
tions where the latter are appropriate, but may be more reliable where serious devia-
tions from the normal distribution are known or suspected.

In the chart ‘cf.’ is used as an abbreviation for ‘comparison of’. The test numbers
refer to the table. Robust methods have not been included in either the table or
the chart. Despite their growing importance they are still applied more usually by
researchers and expert statisticians than by many laboratory workers, and the basic
software packages referred to in Chapter 1 do not give a very comprehensive treat-
ment of such methods. It is important to notice that ANOVA is a very widely used
method, the exact form used depending on the problem to be solved: only the first
reference to one-way ANOVA has been given in the table. The Cochran test (Section 4.12)
and the least significant difference method (Section 3.9) used in conjunction with
ANOVA, and the Wald–Wolfowitz test for runs (Section 6.4) have also been omitted
for simplicity. The broken line linking Tests 6 and 8 is a reminder that, strictly speak-
ing, the F-test should be applied to check whether the variances of the two samples
under study are similar, before the t-test is applied. Some of the tests listed under
‘Comparing means’ actually compare medians; this has also been omitted in places
in the interests of clarity.

Finally it is important to note that there are many tests in everyday use in
addition to the ones listed above, as noted in the reference below.

Bibliography
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Appendix 2: Statistical tables

The following tables are presented for the convenience of the reader, and for use
with the simple statistical tests, examples and exercises in this book. They are
presented in a format that is compatible with the needs of analytical chemists: the
significance level P � 0.05 has been used in most cases, and it has been assumed that
the number of measurements available is fairly small. Most of these abbreviated
tables have been taken, with permission, from Elementary Statistics Tables by Henry
R. Neave, published by Routledge (Tables A.2–A.4, A.7, A.8, A.12–A.14). The reader
requiring statistical data corresponding to significance levels and/or numbers of
measurements not covered in the tables is referred to these sources.

Table A.1 F (z), the standard normal cumulative distribution function

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.4 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005
-3.3 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007
-3.2 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009
-3.1 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013
-3.0 0.0013 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018

-2.9 0.0019 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025
-2.8 0.0026 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034
-2.7 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045
-2.6 0.0047 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060
-2.5 0.0062 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080

-2.4 0.0082 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104
-2.3 0.0107 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136
-2.2 0.0139 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174
-2.1 0.0179 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222
-2.0 0.0228 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281

-1.9 0.0287 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351
-1.8 0.0359 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436
-1.7 0.0446 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537
-1.6 0.0548 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655
-1.5 0.0668 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793
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Table A.1 Continued

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-1.4 0.0808 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951
-1.3 0.0968 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131
-1.2 0.1151 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335
-1.1 0.1357 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562
-1.0 0.1587 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814

-0.9 0.1841 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090
-0.8 0.2119 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389
-0.7 0.2420 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709
-0.6 0.2743 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050
-0.5 0.3085 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409

-0.4 0.3446 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783
-0.3 0.3821 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168
-0.2 0.4207 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562
-0.1 0.4602 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6579
0.5 0.6915 0.6950 0.6965 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998



 

266 Appendix 2

Table A.2 The t-distribution

Value of t for a confidence interval of 90% 95% 98% 99%
Critical value of for P values of 0.10 0.05 0.02 0.01
number of degrees of freedom

1 6.31 12.71 31.82 63.66
2 2.92 4.30 6.96 9.92
3 2.35 3.18 4.54 5.84
4 2.13 2.78 3.75 4.60
5 2.02 2.57 3.36 4.03
6 1.94 2.45 3.14 3.71
7 1.89 2.36 3.00 3.50
8 1.86 2.31 2.90 3.36
9 1.83 2.26 2.82 3.25

10 1.81 2.23 2.76 3.17
12 1.78 2.18 2.68 3.05
14 1.76 2.14 2.62 2.98
16 1.75 2.12 2.58 2.92
18 1.73 2.10 2.55 2.88
20 1.72 2.09 2.53 2.85
30 1.70 2.04 2.46 2.75
50 1.68 2.01 2.40 2.68
q 1.64 1.96 2.33 2.58

The critical values of are appropriate for a two-tailed test. For a one-tailed test the value is
taken from the column for twice the desired P-value, e.g. for a one-tailed test, P = 0.05, 5
degrees of freedom, the critical value is read from the P = 0.10 column and is equal to 2.02.

ƒ t ƒ

ƒ t ƒ

Table A.3 Critical values of F for a one-tailed test (P � 0.05)

v2 v1

1 2 3 4 5 6 7 8 9 10 12 15 20

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45
3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.745 8.703 8.660
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.912 5.858 5.803
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.678 4.619 4.558

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 4.000 3.938 3.874
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.575 3.511 3.445
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.284 3.218 3.150
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.073 3.006 2.936

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.913 2.845 2.774

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.788 2.719 2.646
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.687 2.617 2.544
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.604 2.533 2.459
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.534 2.463 2.388
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.475 2.403 2.328

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.425 2.352 2.276
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.381 2.308 2.230
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.342 2.269 2.191
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.308 2.234 2.155
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.278 2.203 2.124

v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.
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Table A.4 Critical values of F for a two-tailed test (P = 0.05)

v2 v1

1 2 3 4 5 6 7 8 9 10 12 15 20

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17
4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.844 8.751 8.657 8.560
5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.525 6.428 6.329
6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.366 5.269 5.168
7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.666 4.568 4.467
8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.200 4.101 3.999
9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.868 3.769 3.667

10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.621 3.522 3.419
11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.664 3.588 3.526 3.430 3.330 3.226
12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.277 3.177 3.073
13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.153 3.053 2.948
14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 3.050 2.949 2.844
15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.963 2.862 2.756
16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.889 2.788 2.681
17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.825 2.723 2.616
18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.769 2.667 2.559
19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.720 2.617 2.509
20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.676 2.573 2.464

v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.

Table A.5 Critical values of G (P = 0.05)
for a two-sided test

Sample size Critical value

3 1.155
4 1.481
5 1.715
6 1.887
7 2.020
8 2.126
9 2.215

10 2.290

Taken from Barnett, V. and Lewis, T., 1984,
Outliers in Statistical Data, 2nd edn, 
John Wiley & Sons Limited.



 

268 Appendix 2

Table A.7 Critical values of x2 (P � 0.05)

Number of degrees Critical value
of freedom

1 3.84
2 5.99
3 7.81
4 9.49
5 11.07
6 12.59
7 14.07
8 15.51
9 16.92

10 18.31

Table A.8 Random numbers

02484 88139 31788 35873 63259 99886 20644 41853 41915 02944
83680 56131 12238 68291 95093 07362 74354 13071 77901 63058
37336 63266 18632 79781 09184 83909 77232 57571 25413 82680
04060 46030 23751 61880 40119 88098 75956 85250 05015 99184
62040 01812 46847 79352 42478 71784 65864 84904 48901 17115

96417 63336 88491 73259 21086 51932 32304 45021 61697 73953
42293 29755 24119 62125 33717 20284 55606 33308 51007 68272
31378 35714 00941 53042 99174 30596 67769 59343 53193 19203
27098 38959 49721 69341 40475 55998 87510 55523 15549 32402
66527 73898 66912 76300 52782 29356 35332 52387 29194 21591

61621 52967 40644 91293 80576 67485 88715 45293 59454 76218
18798 99633 32948 49802 40261 35555 76229 00486 64236 74782
36864 66460 87303 13788 04806 31140 75253 79692 47618 20024
10346 28822 51891 04097 98009 58042 67833 23539 37668 16324
20582 49576 91822 63807 99450 18240 70002 75386 26035 21459

12023 82328 54810 64766 58954 76201 78456 98467 34166 84186
48255 20815 51322 04936 33413 43128 21643 90674 98858 26060
92956 09401 58892 59686 10899 89780 57080 82799 70178 40399
87300 04729 57966 95672 49036 24993 69827 67637 09472 63356
69101 21192 00256 81645 48500 73237 95420 98974 36036 21781

22084 03117 96937 86176 80102 48211 61149 71246 19993 79708
28000 44301 40028 88132 07083 50818 09104 92449 27860 90196
41662 20930 32856 91566 64917 18709 79884 44742 18010 11599
91398 16841 51399 82654 00857 21068 94121 39197 27752 67308
46560 00597 84561 42334 06695 26306 16832 63140 13762 15598

Table A.6 Critical values of Q (P = 0.05)
for a two-sided test

Sample size Critical value

4 0.829
5 0.710
6 0.625
7 0.568

Adapted with permission from Statistical
treatment for rejection of deviant values:
critical values of Dixon’s “Q” parameter
and related subrange ratios at the 95%
confidence level, Analytical Chemistry, 63(2),
pp. 139–46 (Rorabacher, D.B. 1991),
American Chemical Society. Copyright
1991 American Chemical Society.
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Table A.9 The sign test

n r = 0 1 2 3 4 5 6 7

4 0.063 0.313 0.688
5 0.031 0.188 0.500
6 0.016 0.109 0.344 0.656
7 0.008 0.063 0.227 0.500
8 0.004 0.035 0.144 0.363 0.637
9 0.002 0.020 0.090 0.254 0.500

10 0.001 0.011 0.055 0.172 0.377 0.623
11 0.001 0.006 0.033 0.113 0.274 0.500
12 0.000 0.003 0.019 0.073 0.194 0.387 0.613
13 0.000 0.002 0.011 0.046 0.133 0.290 0.500
14 0.000 0.001 0.006 0.029 0.090 0.212 0.395 0.605
15 0.000 0.000 0.004 0.018 0.059 0.151 0.304 0.500

The table uses the binomial distribution with P = 0.5 to give the probabilities of r or fewer
successes for n � 4 � 15. These values correspond to a one-tailed sign test and should be
doubled for a two-tailed test.

Table A.10 The Wald–Wolfowitz runs test

N M At P = 0.05, the number of runs is significant if it is:

Less than Greater than

2 12–20 3 NA
3 6–14 3 NA
3 15–20 4 NA

4 5–6 3 8
4 7 3 NA
4 8–15 4 NA
4 16–20 5 NA

5 5 3 9
5 6 4 9
5 7–8 4 10
5 9–10 4 NA
5 11–17 5 NA

6 6 4 10
6 7–8 4 11
6 9–12 5 12
6 13–18 6 NA

7 7 4 12
7 8 5 12
7 9 5 13
7 10–12 6 13

8 8 5 13
8 9 6 13
8 10–11 6 14
8 12–15 7 15

Adapted from Swed, F.S. and Eisenhart, C., 1943, Ann. Math. Statist., 14: 66.

The test cannot be applied to data with N, M smaller than the given
numbers, or to cases marked NA.
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Table A.11 Wilcoxon signed rank test. Critical values
for the test statistic at P = 0.05

n One-tailed test Two-tailed test

5 0 NA
6 2 0
7 3 2
8 5 3
9 8 5

10 10 8
11 13 10
12 17 13
13 21 17
14 25 21
15 30 25

The null hypothesis can be rejected when the test
statistic is less than or equal to the tabulated value. 
NA indicates that the test cannot be applied.

Table A.12 Mann–Whitney U-test. Critical values for U
or the lower of T1 and T2 at P � 0.05

n1 n2 One-tailed test Two-tailed test

3 3 0 NA
3 4 0 NA
3 5 1 0
3 6 2 1
4 4 1 0
4 5 2 1
4 6 3 2
4 7 4 3
5 5 4 2
5 6 5 3
5 7 6 5
6 6 7 5
6 7 8 6
7 7 11 8

The null hypothesis can be rejected when U or the
lower T value is less than or equal to the tabulated
value. NA indicates that the test cannot be applied.
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Table A.13 The Spearman rank correlation
coefficient. Critical values for at P = 0.05

n One-tailed test Two-tailed test

5 0.900 1.000
6 0.829 0.886
7 0.714 0.786
8 0.643 0.738
9 0.600 0.700

10 0.564 0.649
11 0.536 0.618
12 0.504 0.587
13 0.483 0.560
14 0.464 0.538
15 0.446 0.521
16 0.429 0.503
17 0.414 0.488
18 0.401 0.472
19 0.391 0.460
20 0.380 0.447

r

Table A.14 The Kolmogorov test for normality.
Critical two-tailed values at P = 0.05

n Critical values

3 0.376
4 0.375
5 0.343
6 0.323
7 0.304
8 0.288
9 0.274

10 0.262
11 0.251
12 0.242
13 0.234
14 0.226
15 0.219
16 0.213
17 0.207
18 0.202
19 0.197
20 0.192

The appropriate value is compared with the
maximum difference between the hypothetical
and sample functions as described in the text.
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Table A.15 Critical values for C (P = 0.05) for n = 2

k Critical value

3 0.967
4 0.906
5 0.841
6 0.781
7 0.727
8 0.680
9 0.638

10 0.602
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resolution, of experimental

designs, 204
response surface designs, 202
response surfaces, in

optimisation, 208–16
robust ANOVA, 179–80
robust mean, 177–9
robust methods, 49, 52, 92, 149,
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sampling variance, 76, 78
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for correlation coefficient, 117
on mean, 37–9
problems in sequential use, 66

significant figures, 29
SIMCA, 237
similarity in cluster analysis, 229
simplex optimisation, 

213–16, 217
simulated annealing, 216–17, 245
single linkage method, 229 
single point calibration, 121
skewness, 182
slope of linear calibration graph,

113, 114, 118–24, 127, 128,
130–1, 136–8, 173–5,
180–1

software, 13–14 
soil samples, 1, 2, 105

Spearman’s rank correlation
coefficient, 171–2, 271 

speciation problems, 131
specimen, 25
spectrometer, 11
spiking, 105, 128–9
spline functions, 148
spreadsheets, 14, 121 
standard additions method, 113,

127–30 
standard deviation, 13, 17–19, 29,

34, 38, 39, 47–9, 79, 84–5,
98, 105, 176–7

of slope and intercept of linear
calibration plot, 119–20 

standard error of the mean
(s.e.m.), 25, 29 

standard flask, 7–8
standard normal cumulative

distribution function,
22–3, 63–5, 264–5 

standard normal variable, 22,
92–3 

standard reference materials, 3,
11, 12, 79, 104–5, 124 

standard uncertainty, 98–102 
standardisation, 22, 227, 228, 235
standardised median absolute

deviation (SMAD), 177, 180
standardised normal variable 

(z), 22
steel samples, 1, 3
steepest ascent, optimisation

method, 210–13
stem-and-leaf diagram, 159
sum of squared z-scores, 93
sums of squares, in nonlinear

regression, 141–7
suspect values, see outliers
systematic errors, 3–12, 20, 25–6,

30, 31, 35, 37–9, 87, 96–8,
99, 101, 111, 131, 188 

t-statistic, 28, 38–9, 40, 41, 42,
56, 60, 66, 117–18, 120,
122, 123, 124, 140, 205,
239–40, 242–3, 266 

t-test, 30, 47, 48, 157, 160, 183,
261–2

target value, 92
in control charts, 80, 87

temperature effects in volumetric
analysis, 7–8
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test extract, 25
test increment, 75, 77–8
test set, 233, 247 
test solution, 25
Theil’s methods for regression

lines, 172–5, 180
thermal analysis methods, 110
tied ranks, 165
titrimetric analysis, 2–9, 33
tolerances, of glassware and

weights, 7
tolerance quality level (TQL),

102–3
top-down method for

uncertainty, 100–1
training objects, 232
training set, 233, 247
transformations, in regression, 145
translational effects, in standard

additions, 130
treatments, 189–92
trend, significance test for, 

161–2 
triangular distribution, 99
trimming, 176, 178, 180
trueness, 4, 104–5
Tukey’s quick test, 167–8, 

261–2 
two-sample method, see Youden

matched pairs method
two-sided test, 41–2, 45–6, 48–9,

117, 162, 164 
two-tailed test, see two-sided test

two-way ANOVA, see ANOVA
type I errors, in significance tests,

65–6, 125 
type II errors, in significance

tests, 65–6, 125 
type A uncertainties, 98–100 
type B uncertainties, 98–100

unbiased estimators, 20
uncertainty, 6, 29, 35, 92, 

98–102, 106 
uncontrolled factor, see random

effect factor
uniform distribution, 99
univariate methods in

optimisation, 206–8
unweighted regression methods,

114, 122–3 
upper quartile, 156, 158
Unscrambler®, The, 14, 225, 

241, 244
UV-visible spectroscopy, 217

V-mask, 88–89
Vamstat®, 14
validation, see method 

validation 
variance, 19, 32, 41, 47–9, 

97–8, 205
volumetric glassware, 7

Wald-Wolfowitz runs test, 
162–3, 269 

warning lines, in control charts,
80–7

water analysis, 91
weighing, 7, 8, 10, 34 

bottle, 7–8
buoyancy effects in, 8 
by difference, 7, 10, 99–100 

weighted centroid, 136–9 
weighted regression methods,

114, 134, 135–9, 145, 181 
weights, of points in weighted

regression, 135–9 
Wilcoxon signed rank test, 163–5,

261–2, 270
winsorisation, 176–9, 180
within-run precision, 6, 105
within-sample variation, 54–5 
word-processors, 13

X-ray crystallography, 217

y-residuals, in calibration plots,
118, 119–20, 142–8,
149–50, 180–1

standardised, 149–50
Yates’s algorithm, 201
Yates’s correction, 60–1
Youden matched pairs method,

96–8, 106

z-scores, 91–3
z-values, 22–3, 63–5, 103 
zone control charts, 89–90 



 



 


