
1 Mathematica Basics

This  chapter  is  an  introduction  to  Mathematica.  We  briefly  describe  many  of  the  most

important  and  basic  elements  of  Mathematica  and  discuss  a  few  of  the  more  common

technical issues related to using Mathematica. Since our primary goal is to use Mathematica

to help us understand calculus, you should not initially spend a great amount of time pouring

over  the  details  of  this  chapter,  except  as  directed  by  your  professor.  Simply  familiarize

yourself with what’s here, and refer back to it later as needed.

1.1  Getting Started

Any  new  user  of  Mathematica  must  understand  several  basic  facts  concerning  the  user

interface, syntax, and the various types of objects that one encounters in using Mathematica.

This section is a cursory look at some of these fundamentals.

‡ The Mathematica “Front End”

When you start up Mathematica, the first thing you see is a window displaying the contents

of a “notebook.” This window is displayed by Mathematica’s front end.   The front end is

the  interface between you and the Mathematica  kernel,  which does  the computations.  The

following is a typical (simple) notebook in a front end window.

A Mathematica notebook is composed of cells. On the right side of the window you see cell

brackets. Each cell in the notebook shown above is either an input cell, an output cell, or a

graphics cell. There are several other kinds of cells. Some of these are text, title, and section. 



Also notice  the  horizontal  line near  the bottom of  the window. This  indicates the insertion

point for the next new cell. To enter a command into a notebook, simply begin typing. The

default cell type is input. When you’re done typing, just press shift-return (on a Macintosh,

you can also use the “enter” key.) To evaluate an existing input cell, simply click anywhere

inside the cell (or on the cell bracket) and press shift-return (or enter).

To create a cell  between  two existing cells,  move your cursor over one of the cells  toward

the other until the “I-beam” cursor becomes horizontal. Then click, and a horizontal line will

appear, indicating the desired insertion point. To delete a cell, click on its bracket and then

choose Clear from the Edit menu or simply press the „ key

Palettes. You can enter mathematical expressions so that they appear essentially the same as

you would write them on paper or see them in your textbook. For example, to define the 

function f HxL = x2 + 1 , we could use the “Input Form”

f@x_D := Sqrt@x^2 + 1D

or we could use “Standard Form”:

f@x_D := x2 + 1

There  is  a  vast  set  of  keystroke  combinations  for  typing  such

expressions.  However,  at  first,  you  will  probably  want  to  take

advantage  of  one  or  more  or  the  standard  palettes  that  are  avail-

able.  The  image  to  the  right  shows  the  BasicInput  palette.

Clicking on one of the palette’s buttons places the corresponding

characterêexpression  at  the  current  input  location.  This  particular

palette  probably appears by default  when you start  Mathematica,

but  if  not,  you  can  access  it  or  any  of  the  other  palettes  through

your Palette menu.
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‡ The Documentation Center

Mathematica’s Documentation Center may be accessed by selecting Documentation Center

from the  Help  menu.  Among the  wealth  of  information  available  through the  Documenta-

tion  Center  are  descriptions  of  all  of  Mathematica’s  built-in  functions,  including  examples

of  their  use  and  links  to  related  tutorials.  You  can  also  enter  commands  from  within  the

Documentation Center. (Whatever you change there will not be saved.)

The  Documentation  Center  provides  a  great  deal  of  tutorial  material.  If  you’re  a  beginner,

we  suggest  that  you  peruse  the  tutorials  found  by  entering  each  of  the  following  in  the

Documentation Center search field.

tutorial/UsingTheMathematicaSystemOverview

tutorial/InputAndOutputInNotebooksOverview

tutorial/BuildingUpCalculationsOverview

tutorial/EnteringTwoDimensionalExpressionsOverview

tutorial/GraphicsAndSoundOverview

(Hopefully future updates to the Documentation Center will provide a more convenient way

to access these and other tutorials.)
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‡ Basic Calculations

Mathematica allows multiplication to be indicated in three ways. Expressions separated by a

space are multiplied. (Note that the system automatically replaces the space with µ.)

217µ5713

1239721

An asterisk between expressions indicates multiplication.

321*5.479

1758.76

When  there  is  no  ambiguity,  juxtaposed  expressions  (without  spaces)  are  understood  and

multiplied.

2x

2 x

More than one command can be given in one input cell. A single input cell may consist of

two  or  more  lines.  A  new  line  within  the  current  cells  is  obtained  by  pressing  “return.”

Commands  on  the  same line  within a  cell  must  be  separated  by semicolons.  The output  of

any command that ends with a semicolon is not displayed. 

a = 17ê13 + 211ê93;
b = 23 a; c = Ha + bLê51
34 592

20 553

The percent sign % refers to the last output (not necessarily the preceding cell).

3ê17 + 1ê5
32

85

%2

1024

7225

If the last command on any line is not followed by a semicolon, its result is displayed. This

effect is very handy for showing intermediate steps in a calculation. The following computes
25!

3! µ22!
 H.1L3 H.9L22 (a binomial probability).

25!

%êH3! µ22!L
% *.1

3
 .9

22

15511210043330985984000000

2300

0.226497

¤ You should avoid use of the percent sign as much as possible~especially in separate cells.

It is far better to give names to results and to use those names in subsequent calculations.
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‡  Parentheses, Brackets, and Braces

The syntax of Mathematica is absolutely strict and consistent (and quite simple once you get

used  to  it).  For  that  reason,  there  are  some differences  between  Mathematica’s  syntax  and

the  often  inconsistent  and  sometimes  ambiguous  mathematical  notation  that  we’re  all  used

to. For example:

Parentheses are used only for grouping expressions.

x Hx + 2L2

x H2 + xL2

Brackets are used only to enclose the argument(s) of a function.

Cos@p ê3D
1

2

Braces  are  used  only  to  enclosed  the  elements  of  a  list  (which  might  represent  a  set,  an

ordered pair, or even a matrix).

81, 2, 3, 4<
81, 2, 3, 4<

Consequently,  Mathematica  does  not  understand  what  you  intend by  entering  any of  these

expressions, for example:

@x + y H1 - yLD2
Syntax::tsntxi : "@x+ y H1 - yLD" is incomplete; more input is needed.

Syntax::sntxi : Incomplete expression; more input is needed.

H1, 2L
Syntax::sntxf : "H" cannot be followed by "1, 2L".

Syntax::tsntxi : "1, 2" is incomplete; more input is needed.

Sin HpL
p Sin

In  these  first  two  instances,  we  were  lucky  to  get  an  error  message.  But  in  the  last  one,

Mathematica simply multiplied the expressions p and Sin~with no complaint at all!

‡ Symbolic vs. Numerical Computation

Computations  are  typically  done  symbolically  (and  therefore  exactly),  unless  we  request

otherwise.

123 í 768

41 3

16

One way to obtain a numerical result is to use the numerical evaluation function, N.
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One way to obtain a numerical result is to use the numerical evaluation function, N.

NA123 ë 768 E
4.43838

We also get a numerical result if any of the numbers in the expression are made numerical

by use of a decimal point.

123. í 768

4.43838

Unless we cause  a numerical result, Mathematica  typically returns an exact  form, which in

many cases is identical to the expression entered.

CosB p

12
F

1 + 3

2 2

Log@2D
Log@2D

‡ Names and Capitalization; Basic Functions 

All  built-in  Mathematica  objects~functions,  constants,  options,  etc.~have  full  names  that

begin  with  a  capital  letter  (or  in  the  case  of  certain  “global”  parameters,  a  dollar  sign

followed by a capital letter). 

Sin@p ê3D
3

2

PrimeQ@22801763489D
True

SolveAx2 + x - 12 ã 0, xE
88x Ø -4<, 8x Ø 3<<

These full names are used internally by Mathematica, even when it is far more natural for us

to use a symbolic form such as x + 7. FullForm  lets  us see the internal representation of

an expression.

FullForm@x + 7D
Plus@7, xD

FullFormAx == x2E
Equal@x, Power@x, 2DD

¤ When the name of a built-in Mathematica  object  is  made of two or more words,  all  of  the

component  words  are  capitalized.  Some  typical  Mathematica-style  names  are  FindRoot,

PlotRange,  AspectRatio,  NestList,  etc.  In  almost  all  cases  the  component  words

are spelled out in full.
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¤

When the name of a built-in Mathematica  object  is  made of two or more words,  all  of  the

component  words  are  capitalized.  Some  typical  Mathematica-style  names  are  FindRoot,

PlotRange,  AspectRatio,  NestList,  etc.  In  almost  all  cases  the  component  words

are spelled out in full.

All  of the familiar “elementary functions” are built-in.  In some cases~if  you remember to

capitalize  the  first  letter  and  to  use  brackets  instead  of  braces~you  would  guess  correctly

how to use one of those functions. For example,

Sin@p ê12D
-1+ 3

2 2

There are a few things in this regard that should be pointed out. First, the inverse trigonomet-

ric functions use the “arc-function” convention:

ArcTan@1D
p

4

ArcCos@1ê2D
p

3

¤ Also, the natural logarithm is Log, not Ln. 

Log@ED
1

‡ Algebraic Manipulation

Mathematica  is  an  example  of  a  type  of  software  system  that  is  often  called  a  computer

algebra system. In addition to numerical computations, a computer algebra system also does

symbolic computation including the manipulation of algebraic expressions. Mathematica has

a  number  of  functions  for  this  purpose.  Among these are  Expand,  Factor,  Together,

and Apart.

ExpandAHx + 5L3 H2 x - 1L2E
125 - 425 x + 215 x2 + 241 x3 + 56 x4 + 4 x5

FactorAx3 + 2 x2 - 5 x - 6E
H-2 + xL H1 + xL H3 + xL

TogetherBx + 2

x2 + 1
F

2+x+x3

1+x2

ApartB x

x2 + 3 x + 2
F

-
1

1+x
+

2

2+x
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Notice that Mathematica does not automatically simplify algebraic expressions: 

x H3 - xL - 5 x2 + Hx - 1L H2 x + 3L
H3 - xL x - 5 x2 + H-1 + xL H3 + 2 xL

Simplify can be used for this purpose.

SimplifyAx H3 - xL - 5 x2 + Hx - 1L H2 x + 3LE
-3 + 4 x - 4 x2

‡ Plotting Graphs: An Introduction to Options

Mathematica is extremely good at creating graphics to help us analyze problems. We will be

primarily interested in graphing functions of one variable. This is done with Plot.

The function f HxL = sinHp x H3 - xLL is graphed on the interval 0 § x § 3 as follows.

Plot@ Sin@p x H3 - xLD, 8x, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Notice that two arguments are provided to Plot. The first is our function in the form of an

expression,  and  the  second  is  a  list  with  three  members,  specifying  (i)  the  name  of  the

variable, (ii|iii) the left and right endpoints of the interval.

There are numerous ways that we could have affected the appearance of the plot by specify-

ing  options.  Among  the  options  for  Plot  are  PlotRange,  Ticks,  AxesLabel,

AspectRatio, and PlotStyle. 

The  following  creates  a  plot  with  labelled  axes  with  no  tick  marks.  Note  that  the  arrow

character is typed as Â->Â. (Actually, just -> will do.)

Plot@Sin@p x H3 - xLD, 8x, 0, 3<,
Ticks Ø 881, 2, 3<, 8-1, 1<<, AxesLabel Ø 8x, y<D

1 2 3
x

-1

1

y

Notice that the following plot chops off  high and low parts of the curve.
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Notice that the following plot chops off  high and low parts of the curve.

PlotB
SinA2 x2E
x2 + 1

, 8x, 0, 10<F

2 4 6 8 10

-0.15

-0.10

-0.05

0.05

0.10

0.15

0.20

This can be cured with the PlotRange option.

PlotB
SinA2 x2E
x2 + 1

, 8x, 0, 10<, PlotRange Ø AllF

2 4 6 8 10

-0.2

0.2

0.4

0.6

Without our specifying AspectRatioØAutomatic,  the following semicircle would be

stretched vertically.

PlotB 1 - x2 , 8x, -1, 1<, AspectRatio Ø AutomaticF

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0
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To plot more than one function at once, we give Plot a list of functions.

PlotA9x ‰-xê2 Cos@p xD, x ‰-xê2 Sin@p xD=, 8x, 0, 12<E

2 4 6 8 10 12

-0.6

-0.4

-0.2

0.2

0.4

0.6

When plotting multiple functions, it is often desirable to plot them with different styles. The

PlotStyle option lets us do that.

PlotA9 x
3

, x, x3=, 8x, 0, 2<, PlotRange Ø 80, 1.6<,
PlotStyle Ø 88Dashing@8.02<D<, 8Red<, 8Thickness@.007D<<E

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

‡ Variables

As we  mentioned  earlier,  all  built-in  Mathematica  objects  begin  with  an  upper-case  letter.

For that reason, it is usually a good idea to use variable names that begin with a lower-case

letter. In this manual we will loosely follow that convention. It is also good practice to give

meaningful names to variables and never to make assignments to single letter variables.

¤ Assignments to variables are remembered by Mathematica  (for the duration of one “kernel

session”) until the variable is “cleared.” This is probably the single most important thing to

remember when you run into difficulties using Mathematica. (We will have more to say on

this in Section 1.8.)

piSixths = N@p ê6D
0.523599

Clear@piSixthsD; piSixths
0.523599

piSixths
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Assignments in Mathematica are made in two ways: (i) with a single equal sign, or (ii) with

a colon followed by an equal sign. For simple assignments such as

radius := 10.êp

it  makes little  difference which method is  used.  In  this  particular  case,  the consequence of

using := is that radius has not yet been computed. (Also notice that no output is produced

when := is used.) The evaluation has been delayed until we cause it to be done~for exam-

ple, by entering

radius

1.78412

A better example to illustrate delayed evaluation with := is as follows. If we assign a plot to

a variable with :=,  then no plot is created. The variable is assigned the command itself,  not

the result.

graph := PlotBx 1 - x2 , 8x, -1, 1<F

graph

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

If we assign a plot to a variable with =, then the plot is created and the variable is assigned

the resulting graphics object.

graph = PlotBx 1 - x2 , 8x, -1, 1<F

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

We will address these issues again in Section 1.2. (See also Exercise 9 in this section.)
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‡ Tips and Shortcuts

We end this quick tour of Mathematica  with a few tips and shortcuts with respect to typing

expressions.

† Entering Exponents, Radicals, and Fractions

To enter an exponent or superscript, press ‚-[6]. (Note that this is analogous to the ˜-

[6]  caret  (^),  which  is  used  for  exponentiation  in  InputForm.)  To  leave  the  resulting

exponent “box,” press [Ø] or ‚-¯.

To  enter  a  subscript,  press  ‚-[-].  (This  is  analogous  to  the  ˜-[-]  underscore  character

(_),  which  is  used  to  create  subscripts  in  the  T E X  typesetting   language.)  To  leave  the

resulting subscript “box,” press [Ø] or ‚-¯.

To enter an expression involving a square root, press ‚-[2]. To leave the resulting square

root box, press [Ø] or ‚-¯.

To enter a fraction, press ‚-[/]. To move from the numerator box to the denominator box,

press Í To exit the fraction, press [Ø] or ‚-¯.

† Greek Letters and Other Special Characters

Many special characters and symbols can be typed easily by pressing the Â key before and

after  typing some easily remembered standard character(s).  For instance,  to type the Greek

letter  a  (alpha),  just  type  ÂaÂ  or  ÂalphaÂ.  Other  Greek  letters  can  be  typed

similarly.

Other shortcuts for common special characters include:

ÂeeÂ produces the constant ‰, the base of the natural logarithm.

ÂiiÂ produces the imaginary number Â = -1 .

ÂintÂ produces an integral sign Ÿ .
ÂpdÂ produces a derivative operator !.

ÂinfÂ produces an infinity symbol ¶ .

Of course, you may prefer to use the buttons on the BasicInput palette.

We should also point out that the familiar numbers denoted by ‰, Â, and p can be entered as

such or as E, I, and Pi, respectively. 

8‰ ã E, Â ã I, p ã Pi<
8True, True, True<

Be careful to notice, however, that an ordinary e is not the same as ‰, and an ordinary i is not

the same as Â.
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Ï Exercises

1. Compute both an exact and a numerical value for each of the following numbers.

a)  I23
3 - 3 H117 - 48L2Mì 75 - 57        b)  cos

319 p

12
c)  

83!

111!
    d)  ln 2981

2. Use Simplify on each of the following.

a)  lnI2‰5M b)  1 + cos 2x c)  
x + Hx Hx - 1LL3 - 4

x2 + x - 6

3. Factor each of these polynomials:

a)  6x3 + 47x2 + 71x - 70 b)  12x6 - 56x5 + 100x4 - 80x3 + 20x2 + 8x - 4

4. Plot the function f HxL =
sinHx3L

x3
 on the interval 0 § x § 1 with:

a)  no options b)  PlotRangeØAll  

c)  PlotRangeØAll, AspectRatioØAutomatic

5. Create a plot containing the graphs of y = x2 and y = x5 over  0 § x § 2 with:

a)  no options b)  PlotRangeØAll c)  PlotRangeØ{0,2} 

d)  PlotStyleØ{Red,Blue}         e)  PlotStyleØ{{Red,Thick},{Blue,Thick}}

6. Look up each of  the  following functions  in  the  Documentation Center,  and then plot  them

on the indicated interval.

a)  Floor,  0 § x § 10 b)  PrimePi,  0 § x § 100

7. Use  the  Documentation  Center  to  learn  what  RandomReal[]  and  RandomInteger[]

do. Then enter and the following and explain the output:

GraphicsRow@8Plot@RandomReal@D x, 8x, 0, 1<D,
Plot@RandomInteger@D x, 8x, 0, 1<D<D

8. RandomReal  and  RandomInteger  provide  a  good  illustrations  of  the  difference

between using = and using := in an assignment. Enter each of the following several times.

Describe and explain the difference in the results.

r = RandomInteger@100D; Table@r, 810<D
and 

r := RandomInteger@100D; Table@r, 810<D
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1.2  Functions

‡ Defining Functions

† Blank

When  defining  a  function,  it  is  essential  to  follow  each  argument  by  a  Blank  (or

“underscore”).  Also,  recall  that  the arguments  of  a  function are enclosed by brackets.  For

example, we would define the function f HxL = x3 - 2 by entering

f@x_D := x3 - 2 x

Then we can evaluate the function at any number

f@3D
21

or plot its graph:

Plot@f@xD, 8x, -2, 2<D

-2 -1 1 2

-4

-2

2

4

‹ Note that  the Blank  appears  next  to x  only on the left  side of  the expression.  Also,  when

defining  a  function  with  more  than  one  argument,  a  Blank  must  follow  each  one.  For

instance:

g@x_, y_, z_D := x + y + z

g@1, 2, 3D
6

† Set (=) versus SetDelayed (:=)

Definitions  of  functions~and  assignments  of  expressions  to  variables  in  general~can  be

made  using  either  “equal”  or  “colon-equal.”  The  difference  between  these  two  ways  is

described  by  the  full  Mathematica  names  of  the  =  and  :=  symbols,  which  are  Set  and

SetDelayed. 

When an assignment is made using Set, any calculations that are indicated on the right side

are  done  as  the  assignment  is  entered.  When an  assignment  is  made  using  SetDelayed,

any calculations that are indicated on the right side are delayed until the defined expression

is used. 

In many cases, such as in the definitions of f and g above, it makes no difference which is

used.  To  see  a  simple  example  that  indicates  the  importance  of  using  Set  rather  than

SetDelayed,  let’s suppose we want to define f HxL  to be the derivative of Hx + 1L cos x.  If

we enter
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In many cases, such as in the definitions of f and g above, it makes no difference which is

used.  To  see  a  simple  example  that  indicates  the  importance  of  using  Set  rather  than

SetDelayed,  let’s suppose we want to define f HxL  to be the derivative of Hx + 1L cos x.  If

we enter

f@x_D := !xHHx + 1L Cos@xDL
notice what happens when we try to evaluate f H2L:

f@2D
General::ivar : 2 is not a valid variable. à

!2H3 Cos@2DL
However, if we enter

f@x_D = !xHHx + 1L Cos@xDL
Cos@xD - H1 + xL Sin@xD

then f  works the way we want it to:

f@2D
Cos@2D - 3 Sin@2D

When  is  it  important  to  use  SetDelayed  rather  than  Set?  Here’s  a  simple  example:

Suppose that we want to plot the graph of sin kx for several values of k and that we decide to

define a function as follows to create each of the desired plots. 

plotSin@k_D := Plot@Sin@k xD, 8x, 0, 2 p<D
For instance, with k = 2, we get the following graph:

 

plotSin@2D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

But what would have happened if we used = rather than := in the definition of plotSin?

Mathematica would  attempted to plot the graph of sin kx immediately when the definition is

entered. This doesn’t work because k has no numerical value, and an empty plot results.

plotSin@k_D = Plot@Sin@k xD, 8x, 0, 2 p<, PlotRange Ø AllD

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The empty plot that was produced and assigned to plotSin[k_] will now be the “value”

of plotsin[k] for any k; for instance:
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The empty plot that was produced and assigned to plotSin[k_] will now be the “value”

of plotsin[k] for any k; for instance:

plotSin@2D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

‡ Applying Functions with @ and //

Suppose that we define a simple function such as

f@x_D := x Hx - 1L
Naturally, we could evaluate this function at, say, x = 3, by entering

f@3D
6

There are two other ways to do the same thing. We can evaluate f  at 3 by entering

fü3

-1

On the other hand, we can apply f  to 3 like this:

3 êê f

6

We will use this postfix  method of function application frequently, often for the purpose of

applying  either  Simplify  to  some  expression  or  N  to  some  numerical  calculation.  For

example, we will use the following style when doing a symbolic calculation:

2 x + x H5 x + 1L êê Simplify

x H3 + 5 xL

When doing an exact numerical calculation, we will commonly use a style that is similar but

displays the exact value followed by the numerical value:

585 í 33

% êê N

65

11

0.732933

‡  Piecewise-defined Functions
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‡  Piecewise-defined Functions

Mathematica  has  two  primary  logical  functions  that  we  can  use  to  enter  definitions  of

piecewise- defined functions. These are If and Which. If usually works best for functions

with two pieces, such as

f HxL = ; x, if x § 1;

x - 2, if x > 1.

This function can be entered and plotted as follows.

f@x_D := If@x § 1, x, x - 2D
Plot@f@xD, 8x, -1, 3<D

-1 1 2 3

-1.0

-0.5

0.5

1.0

More complicated functions are better handled with Which. For example, the function

f HxL =

1, if x § -1

-x, if - 1 < x § 1

-1, if x > 1

can be entered and plotted as follows.

f@x_D := Which@x § -1, 1, -1 < x § 1, -x, x > 1, -1D
Plot@f@xD, 8x, -3, 3<D

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

† Piecewise

Piecewise was new in Mathematica 5.1 and is similar to Which. While Which must be

supplied with an alternating sequence of conditions and values, i.e., 

Which[ cond1, val1, cond2, val2, …],

Piecewise takes a single list containing value-condition pairs, as in
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Piecewise takes a single list containing value-condition pairs, as in

Piecewise[ {{val1, cond1}, {val2, cond2}, …} ]

For example, the function

f HxL =

1, if x § -1

-x, if - 1 < x § 1

-1, if x > 1

can be input as follows. Notice the automatic display of the output in “left-bracket form.”

f@x_D = Piecewise@881, x § -1<, 8-x, -1 < x § 1<, 8-1, 1 < x<<D
1 x § -1

-x -1 < x § 1

-1 1 < x

It  is  also possible to enter such a definition in the same left-bracket form as follows: Press
ÂpwÂ followed by ‚Á. Then you’ll have a template like this:

µ Ñ Ñ
Ñ Ñ

Pressing  ‚Á again will add another row.

† Abs, Floor, and Mod

There  are  a  handful  of  built-in   piecewise-defined  functions,  including  Abs,  Floor,  and

Mod, whose graphs are shown below.

GraphicsRow@
8Plot@Abs@xD, 8x, -1, 1<D, Plot@Floor@xD, 8x, -2, 3<D,
Plot@Mod@x, 1D, 8x, 0, 3<D<D
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1.0
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The following functions are built with Abs.

GraphicsRow@8Plot@Abs@Cos@xD - .5D, 8x, 0, 4 p<D,
Plot@Abs@Abs@xD - 1D, 8x, -3, 3<D<D

2 4 6 8 10 12

0.2
0.4
0.6
0.8
1.0
1.2
1.4

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

Floor helped create each of these step functions:
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Floor helped create each of these step functions:

GraphicsRowA9PlotAH-1LFloor@xD, 8x, -2, 3<E,
Plot@Sin@p Floor@6 xDê6D, 8x, 0, 2<D=E

-2 -1 1 2 3

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

A periodic function based on a piece of any graph can be constructed with Mod.

GraphicsRow@8Plot@Sin@p Mod@x, 1Dê2D, 8x, 0, 3<D,
Plot@Abs@Mod@x, 2D - 1D, 8x, -4, 4<D<D

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

Ï Exercises

1. Enter definitions for each of f HxL = x Hx - 2L2,  gHxL = x - 3,  and hHxL = x2 - 1 and then

compute and simplify each of the following:

a)  f HgHhHxLLL b)  hHgH f HxLLL c)  f HhHgHxLLL
2. Enter a definition for f HxL = I1 + x2M-1

. Then create a plot (over -3 § x § 3) showing the 

graphs of:

a)   f HxL, f Hx - 1L, and f Hx + 1L b)   f HxL, f H2xL, and f H8xL 
3. Using If, define and plot each of  a) f HxL = -x, if x < 0

x2 - 1, if x ¥ 0
      b) f HxL = ; 1, if x § p ê2

sin x, if x > p ê2

4. Using Which, define and plot each of

a)  f HxL =

1, if x < 0

1 - x2, if 0 § x § 2

-3, if x > 2

   b)  f HxL =

x + 1, if x < 0

1 - 2 x, if 0 § x § 1

x - 2, if x > 1

5. Redo Exercise 4 with Piecewise.

6.   Plot each of the functions:
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6.   Plot each of the functions:

a)  f HxL = Hx - FloorHxLL2 b)  f HxL = x H-1LFloorHxL
7. The function Mod  provides an easy way to create a periodic  function from a simpler func-

tion that describes a single period. For example, the function

f0@x_D := 1 - Hx - 1L2

describes the top half of the circle with radius 1 centered at H1, 0L. Plot its graph by entering

Plot@f0@xD, 8x, 0, 2<,
AspectRatio Ø Automatic, PlotRange Ø 8-.5, 1.5<D

The corresponding periodic function with period 2 is

f@x_D := f0@Mod@x, 2DD
In  a  similar  manner,  define  and  plot  (for  0 § x § 9)  a  periodic  function  with  period  3  that

agrees with f0HxL = ‰-x on the interval 0 § x < 3.

8. The unit step function is defined by uHxL = ; 0, x < 0,

1, x ¥ 0.
    Its Mathematica name is UnitStep.

a) Using UnitStep, plot the graph of u on -1 § x § 2.

b) Plot f HxL = uHx - 1L on -1 § x § 2 and express f HxL in piecewise form.

c) Plot f HxL = uHx - 1L sinH2pxL on -1 § x § 2 and express f HxL in piecewise form.

d) Plot f HxL = uHx - 2L - hHx - 1L  on 0 § x § 3 and express f HxL in piecewise form.

e) Plot f HxL = HuHx - 2L - uHx - 1LL sinH2pxL on 0 § x § 3 and express f HxL in piecewise form.

1.3  Equations

Certainly  one  of  the  most  frequent  mathematical  tasks  that  we  need  to  do  is  to  solve  an

equation.  In  order  to  be  able  to solve equations with Mathematica,  we first  need to under-

stand how equations are formed. The important thing to remember is that double equal signs

are used to form an equation. 

Actually, double equal signs constitute a logical test that returns either True, False, or the

equation itself.

2*17 - 34 == 0

True

3 == 4

False

x2 - 4 == 0

-4 + x2 ã 0

Notice,  however,  that  Mathematica  returns  True  only  when  the  expressions  on  each  side

are identical. Only the most superficial simplification is done prior to the test, as in:
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Notice,  however,  that  Mathematica  returns  True  only  when  the  expressions  on  each  side

are identical. Only the most superficial simplification is done prior to the test, as in:

2 x + x - 2 == 3 x + 5 - 7

True

Notice that for this equation:

x2 - 4 == Hx + 2L Hx - 2L
-4 + x2 ã H-2 + xL H2 + xL

a nontrivial operation must be done to one side or the other before the expressions become

truly identical. Finally, notice that Mathematica  returns an error message if we use a single

equal sign improperly.

3 = 4

Set::setraw : Cannot assign to raw object 3. à

4

The single equal sign is used only for assignments such as

area = p r2

p r2

Mathematica  has  three  functions  for  solving  ordinary  equations.  These  are  Solve,

NSolve,  and  FindRoot.  Solve  works  very  well  on  polynomial  and  many  other  alge-

braic equations.

SolveA6 x3 - 23 x2 + 25 x - 6 == 0, xE

::x Ø
1

3
>, :x Ø

3

2
>, 8x Ø 2<>

SolveAx4 - 2 x3 - x2 + 6 x - 6 == 0, xE

:8x Ø 1 - Â<, 8x Ø 1 + Â<, :x Ø - 3 >, :x Ø 3 >>

SolveB x - 1 + x == 4 + x + 4 , xF

88x Ø 5<<

Solve  will also give solutions to trigonometric (or exponential/logarithmic) equations, but

frequently gives a warning.

SolveA2 Sin@2 xD == Cos@xD2 - 1, xE
Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found;

use Reduce for complete solution information. à

:8x Ø 0<, 8x Ø -p<, 8x Ø p<, :x Ø ArcCosB- 1

17

F>, :x Ø -ArcCosB 1

17

F>>

Solve  will  also  find  solutions  of  a  system  of  equations.  The  equations  must  be  given  as

elements of a list, i.e., separated by commas and enclosed in braces.
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Solve  will  also  find  solutions  of  a  system  of  equations.  The  equations  must  be  given  as

elements of a list, i.e., separated by commas and enclosed in braces.

SolveA9x2 - y == 1, -x + y == 1=, 8x, y<E
88y Ø 0, x Ø -1<, 8y Ø 3, x Ø 2<<

The solutions of polynomial equations of degree five or greater generally cannot be found in

any exact form. Notice how Mathematica “avoids” the problem:

SolveAx5 - 10 x2 + 5 x + 1 == 0, xE

99x Ø RootA1 + 5 Ò1 - 10 Ò12 + Ò15 &, 1E=,

9x Ø RootA1 + 5 Ò1 - 10 Ò12 + Ò15 &, 2E=,

9x Ø RootA1 + 5 Ò1 - 10 Ò12 + Ò15 &, 3E=,

9x Ø RootA1 + 5 Ò1 - 10 Ò12 + Ò15 &, 4E=,

9x Ø RootA1 + 5 Ò1 - 10 Ò12 + Ò15 &, 5E==

In such situations, we can always resort to numerical solutions. NSolve  finds a numerical

approximation to each solution of a polynomial equation, including complex solutions.

NSolveAx5 - 10 x2 + 5 x + 1 == 0, xE
88x Ø -1.22065 - 1.89169 Â<, 8x Ø -1.22065 + 1.89169 Â<,
8x Ø -0.153102<, 8x Ø 0.66946<, 8x Ø 1.92494<<

In many situations where Solve is successful, such as:

SolveAx3 - 10 x2 + 5 x + 1 == 0, xE

99x Ø
10

3
+

85

3 I 1

2
I1523+9 Â 1691 MM

1ê3
+

1

3
I 1

2
I1523 + 9 Â 1691 MM

1ê3
=,

9x Ø
10

3
-

1

6
I1 + Â 3 M I 1

2
I1523 + 9 Â 1691 MM

1ê3
-

85 I1-Â 3 M

3 22ê3 I1523+9 Â 1691 M
1ê3

=,

9x Ø
10

3
-

1

6
I1 - Â 3 M I 1

2
I1523 + 9 Â 1691 MM

1ê3
-

85 I1+Â 3 M

3 22ê3 I1523+9 Â 1691 M
1ê3

==

it may still be preferable to use NSolve:

NSolveAx3 - 10 x2 + 5 x + 1 == 0, xE
88x Ø -0.152671<, 8x Ø 0.692369<, 8x Ø 9.4603<<

Many equations require  the use of FindRoot,  which incorporates a numerical procedure.

For example, consider

x2 = cos x.

FindRoot can find only one solution at a time and requires us to supply an initial guess at

the  solution  we’re  looking  for.  An  appropriate  initial  guess  can  usually  be  determined  by

examining a graph.
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PlotA9x2, Cos@xD=, 8x, 0, 1<E

FindRootAx2 == Cos@xD, 8x, .85<E
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8x Ø 0.824132<

Ï Exercises

1. The  equation  x3 = x + 1  has  one  real  solution.  Find  its  exact  value  with  Solve  and  its

numerical value with NSolve.

2. Use Solve to find the solution(s) of each of the systems:

a)  2 x + 3 y = 1,  x2 + y2 = 1 b)  3 x - 2 y = 5,  7 x + 3 y = 2

c)  x + y + z = 2,  x - y + z = 1,  x2 + y2 + z2 = 2

3. Use Solve on the underdetermined system

x + y + 2 z = 2, x - 2 y + z = 1

and interpret the result. Try each combination of solve variables: {x,y,z}, {x,y}, {x,z},

and {y,z}. Which gives the “cleanest” solution?

4. For each of the following functions, plot the graph to determine the approximate location of

each of its zeros. Then find each of the zeros with FindRoot.

a)  f HxL = ‰-xê2 b)  f HxL = x - 9 cos x c)  f HxL = x2 - tan-1 x

5. For each of the following equations, plot both sides of the equation to determine the approxi-

mate  location  of  each of  its  solutions in  the  specified interval.  Then find each of  the  solu-

tions with FindRoot.

a)  sin x cos 2x = cos x sin 3x,  0 § x § 2p  b)  sin x2 = sin
2
x,  0 § x § p  

c)  tan x = x,  0 § x § 3p  d)  sin x = ‰-x,   0 § x § 4 

6. Two spheres have a combined volume of 148 cubic inches and a combined surface area of

160 square inches. Find the radii of the two spheres.

7. Two spheres have a combined volume of 148 cubic inches and a combined surface area of

160 square inches. Find the radii of the two spheres.

8. An  open-topped  aquarium  holds  40  cubic  feet  of  water  and  is  made  of  60  square  feet  of

glass.  The  length  of  the  aquarium’s  base  is  twice  its  width.  Find  the  dimensions  of  the

aquarium.

9. a) Find the equation of the parabola that passes through the points H-1, 1L, H1, 2L, and H2, 3L.
b) Find the cubic polynomial f HxL such that f H1L = f H2L = f H3L = 1 and f H4L = 7.

1.4  Lists
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1.4  Lists

Lists  are  ubiquitous  in  Mathematica.  A  list  is  anything  that  takes  the  form  of  a  series  of

objects separated by commas and enclosed in braces, such as:

8a, b, c<
881, 3<, 82, 5<<
8x, 1, 2<
9x2 + y == 2, 2 x - y == 0=

Many built-in commands expect lists for certain arguments. For example, in

Plot@Cos@p Sin@xDD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

the second argument is a list that specifies the variable name and the interval over which to

plot. In

SolveA9x2 + y == 2, 2 x - y == 0=, 8x, y<E
99y Ø 2 I-1 - 3 M, x Ø -1 - 3 =, 9y Ø 2 I-1 + 3 M, x Ø -1 + 3 ==

each of the two arguments is a list, and the result is also a list (of lists).

‡ Listable Functions

Most built-in Mathematica functions and operations are listable. When a listable function is

applied to a list,  it  is applied to each element of the list and returns the result as a list. For

example, 

81, 2, 3, 4, 5, 6, 7, 8, 9<2
81, 4, 9, 16, 25, 36, 49, 64, 81<

8882, 3<, 84, 5<<, 886, 7<, 88, 9<<<

999 2 , 3 =, 92, 5 ==, 99 6 , 7 =, 92 2 , 3===
1

81, 2, 3, 4, 5<
:1, 1

2
,
1

3
,
1

4
,
1

5
>

24 Chapter 1



81, 2, 3< + 84, 5, 6<
85, 7, 9<
81, 2, 3< 84, 5, 6<
84, 10, 18<

280,1,2,3,4,5,6,7,8,9,10<

81, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024<
Cos@80, p ê4, p ê2, 3 p ê4, p<D
:1, 1

2
, 0, -

1

2
, -1>

‡ The Parts of a List

Here’s a simple list:

alist = 82, x, y, 8a, b<<
82, x, y, 8a, b<<

Notice that it has four parts.

Length@alistD
4

Here’s the third part:

alist@@3DD
y

The fourth part is itself a list:

alist@@4DD
8a, b<

Here’s the second part of that sublist:

alist@@4, 2DD
b

This gives the first and third parts:

alist@@81, 3<DD
82, y<

This gives the first through the third parts:

alist@@1 ;; 3DD
82, x, y<

This uses First to extract the first part:

First@alistD
2

This uses Last to extract the last part:
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This uses Last to extract the last part:

Last@alistD
8a, b<

‡ Creating Lists

Mathematica  provides three functions that are especially useful for creating lists. These are

Range, Table and NestList.

† Range

Range  can be used with one, two, or three arguments. With one argument, it returns a list

of consecutive natural numbers beginning with 1.

Range@10D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Range[a, b] returns a list containing a, a + 1, a + 2, …, a + n, where a + n § b < a + n + 1.

Range@4.5, 15.1D
84.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5<

A third argument specifies the increment. (The default is 1.)

RangeB0, 1,
1

10
F

:0, 1

10
,
1

5
,

3

10
,
2

5
,
1

2
,
3

5
,

7

10
,
4

5
,

9

10
, 1>

† Table

Table  provides  an easy way of constructing many kinds of lists.  The following computa-

tions illustrate its use.

TableAk2, 8k, 10<E
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

Table@Table@i - j, 8i, 4<D, 8j, 4<D
880, 1, 2, 3<, 8-1, 0, 1, 2<, 8-2, -1, 0, 1<, 8-3, -2, -1, 0<<

% êê MatrixForm

0 1 2 3

-1 0 1 2

-2 -1 0 1

-3 -2 -1 0
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† NestList

NestList  creates lists whose elements are terms of a recursive sequence; that is, given a

function  f  and  a  starting  point  a1,  it  creates  a  list  containing  a1, a2, a3, …, an,  where

ak+1 = f HakL. For example, ten terms of the arithmetic sequence defined by 

a1 = 3,  ak+1 = 2ak - 1,   k = 1, 2, 3, …

can be computed by first defining

f@x_D := 2 x - 1

and then entering

NestList@f, 3, 9D
83, 5, 9, 17, 33, 65, 129, 257, 513, 1025<

Notice  that  NestList  has  three  arguments.  The  first  is  the  name  of  the  function,  the

second is the first member of the list, and the third is the number of “steps” to be computed

(which is one less than the length of the resulting list).

‡ Manipulating Lists

† Flatten

There  are  occasions  when we need  to  simplify  lists  by  “merging”  smaller  lists  that  it  con-

tains. The Flatten command does this. For example:

Flatten@881, 2, 3<, 84, 5<<D
81, 2, 3, 4, 5<
Flatten@888x, y<, 83<<, 84, q<<D
8x, y, 3, 4, q<

† Append and Prepend

We will often need to add elements to the end or beginning of an existing list. These tasks

can be done with Append and Prepend. Here are two examples:

Append@81, 2<, 3D
81, 2, 3<
Prepend@81, 2<, 0D
80, 1, 2<

† Union and Join

Merging  two  or  more  lists  into  one  can  be  done  with  Union  or  Join.  Union  does  not

maintain the order of elements:

Union@8a, 2<, 8v, 8<, 8h, s<D
82, 8, a, h, s, v<
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but Join does:

Join@8a, 2<, 8v, 8<, 8h, s<D
8a, 2, v, 8, h, s<

‡ Map and Apply

† Map

A very useful  method for  applying a  non-listable  function to  each element  of  a  list  is  pro-

vided by Map. Suppose we have a list of ordered pairs of numbers such as

points = Table@82 i, 5 - i<, 8i, 8<D
882, 4<, 84, 3<, 86, 2<, 88, 1<,
810, 0<, 812, -1<, 814, -2<, 816, -3<<

and we would like to create a list containing the sums of the numbers in each ordered pair in

the list. To do this, we can create the function

addpairs@8x_, y_<D := x + y

and “map” it through the list of ordered pairs:

Map@addpairs, pointsD
86, 7, 8, 9, 10, 11, 12, 13<

As an exercise, explain what goes on in the following:

Map@Flatten, 883, 85, 6<<, 8a, 8b, c<<<D
883, 5, 6<, 8a, b, c<<

† Apply

Suppose that we have a function of two variables, say

vol@r_, h_D := p r2 h

and that we would like to compute its value at a pair of numbers in a list, such as 

measurements := 83.47, 5.12<
Now entering

vol@measurementsD
vol@83.47, 5.12<D

does not work. A very inconvenient, but effective, workaround is 

vol@measurements@@1DD, measurements@@2DDD
193.677

But a far simpler and more versatile approach is provided by Apply function: 

Apply@vol, measurementsD
193.677
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It is usually easy to avoid such a situation (by defining vol@8r_, h_<D := p r2h in this

case), but Apply does give us very nice way to compute the sum or product of the elements

of a list:

Apply@Plus, 82, 5, 8, 12, 13<D
40

Apply@Times, 82, 5, 8, 12, 13<D
12480

Ï Exercises

1. a) Use Table and Prime to generate a list of the first 100 prime numbers.

b) Generate the same list using only Prime and Range.

2. Generate a list of values of the function f HxL =
sin x

x
 for x = .1, .2, …, 1, first using Table,

then without Table.

3. Generate a list of the first 50 odd natural numbers, using:

a)  Table; b)  Range; c)  NestList

4. Generate a list of the first 21 powers of 2 (beginning with 20), using:

a)  Table; b)  Range; c)  NestList

5. Use  Table  to  generate  a  list  of  ordered  pairs  Hx, f HxLL  for  x = 0,
p

12
,
2p

12
 …, p,  where

f HxL = sin x. Can you think of a way to do this without Table?

6. Create a list named waves that contains 
1

k
 sin kx  for k = 1, 2, 3, 4, 5. Then plot the expres-

sions in waves by entering

Plot@Evaluate@wavesD, 8x, 0, 2 p<D
Now enter

colors = Map@Hue, Range@.4, 1, .15DD
Plot@Evaluate@wavesD, 8x, 0, 2 p<, PlotStyle Ø colorsD

Then enter

grays = Map@GrayLevel, Range@.8, 0, -.2DD
Plot@Evaluate@wavesD, 8x, 0, 2 p<, PlotStyle Ø graysD

7. a) The function 

f@x_D := x5 - 2 x2 - 3 x + 3

has  three  real  zeros.  Plot  its  graph,  and  create  a  list  named  guesses  that  contains  a

rough estimate of each of the zeros.

b)   Define the function 

getZero@guess_D := FindRoot@f@xD, 8x, guess<D
and find all three zeros of f  with one command by entering

Map@getZero, guessesD
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1.5  Rules

Understanding rules is essential to making efficient use of Mathematica. For example, note

that the Solve command returns its results as lists of rules:

soln = SolveA9x2 + x + y2 == 2, 2 x - y == 1=, 8x, y<E
99y Ø

1

5
I-2 - 29 M, x Ø

1

10
I3 - 29 M=,

9y Ø
1

5
I-2 + 29 M, x Ø

1

10
I3 + 29 M==

To convert this answer to a list of pairs of numbers, we apply the rules to the list {x,y} as

follows:

8x, y< ê. soln
99 1

10
I3 - 29 M, 1

5
I-2 - 29 M=, 9 1

10
I3 + 29 M, 1

5
I-2 + 29 M==

Anticipating this in advance, we might have combined these steps by entering

8x, y< ê. SolveA9x2 + x + y2 == 2, 2 x - y == 1=, 8x, y<E
99 1

10
I3 - 29 M, 1

5
I-2 - 29 M=, 9 1

10
I3 + 29 M, 1

5
I-2 + 29 M==

The  name  of  the  slash-dot  object  “/.”  that  we  use  to  apply  rules  is  ReplaceAll.  The

following are some simple examples that illustrate its use.

x2 - x + 1 ê. x Ø 3

7

x + y ê. y Ø x

2 x

x y + y z + x z ê. 8x Ø a, y Ø b + c, z Ø 5<
5 a + 5 Hb + cL + a Hb + cL

Ï Exercises

1. Trigonometric identities provide a good context in which to learn about rules and gain a bit

of insight into symbolic computation in general. For example, the sine addition formula can

be applied via the rule

sinAdd := Sin@x_ + y_D Ø Sin@xD Cos@yD + Cos@xD Sin@yD
Notice what happens when the rule is applied to sinH3x + 5yL:

Sin@3 x + 5 yD ê. sinAdd
Cos@5 yD Sin@3 xD + Cos@3 xD Sin@5 yD

The same rule provides the sine difference formula as well.

Sin@t - fD ê. sinAdd
Cos@fD Sin@tD - Cos@tD Sin@fD

This  rule  also  handles  expressions  with  three  or  more  summands,  provided  we  use  //.

(ReplaceRepeated) instead of /.:
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This  rule  also  handles  expressions  with  three  or  more  summands,  provided  we  use  //.

(ReplaceRepeated) instead of /.:

Sin@a + b + cD êê. sinAdd
Cos@b + cD Sin@aD + Cos@aD HCos@cD Sin@bD + Cos@bD Sin@cDL

a) Enter  the  definition  of  sinAdd  and  construct  a  similar  rule,  cosAdd,  for  the  cosine

addition formula. Test both rules on several different expressions.

b) Enter the following multiple-angle expansion formula for sine:

sinMult := Sin@n_Integer x_D Ø Sin@Hn - 1L x + xD ê. sinAdd
Check that this rule works properly by entering

8Sin@2 xD, Sin@3 xD< êê. sinMult
92 Cos@xD Sin@xD, 2 Cos@xD2 Sin@xD + Cos@2 xD Sin@xD=

c) Construct a similar rule, cosMult, for the multiple-angle expansion formula for cosine.

Test it on a few expressions.

d) Notice the result of repeatedly applying all four rules (followed by Expand) by entering

Sin@2 x + yD êê. 8sinAdd, cosAdd, sinMult, cosMult< êê Expand

Then enter Simplify[%] to verify that the expansion is correct.

e)  Define the function

trigExpand@expr_D :=

expr êê. 8sinAdd, cosAdd, sinMult, cosMult< êê Expand

and test it by entering

Cos@x + 2 yD + Sin@3 x - yD êê trigExpand

% êê Simplify

f) Finally, create a table of multiple angle formulas for sine by entering

Table@8Sin@k xD, Sin@k xD êê trigExpand<, 8k, 1, 5<D êê TableForm

and create a similar table of multiple angle formulas for cosine.

2. a) Use  NSolve  to  find  the  zeros  of  the  polynomial  f HxL = x5 - 4 x4 + 12 x2 - 9 x + 1.

Convert the result to a list of numbers.

b) Compute  the  sum  of  the  zeros  of  f  using  Total.  Combine  the  entire  process  into  a

single command.

c) Repeat the process in parts (a) and (b) after changing the coefficient of x4  to 3, and then

once again after changing the coefficient of x4 to 1. Try changing the other coefficients to

see if they affect the result. What do you conjecture about the sum of the zeros of a fifth-

degree polynomial?

d) Compute  the  product  of  the  zeros  of  f  using   Apply  and  Times.  (See  section  1.4.)

Experiment  with  the  coefficients  to  determine  which  affect  the  result.  What  do  you

conjecture about the product of the zeros of a fifth-degree polynomial?

e) Experiment  with  a  few  polynomials  of  other  degrees.  Do  your  conjectures  depend  on

degree? Also, are your conjectures consistent with linear polynomials?

1.6  Graphics
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1.6  Graphics

‡ Graphics Objects and Show

Graphics commands such as Plot create and display graphics objects.

graph1 = Plot@Sin@xD Cos@10 xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

graph2 = Plot@8Sin@xD, -Sin@xD<, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The Show command displays graphics objects, which may consist of two or more combined

graphics objects. 

Show@graph1, graph2D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

‡  Graphics Primitives
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‡  Graphics Primitives

Graphics  primitives  are  the  simple  objects  of  which  more  complex  graphics  objects  are

built.  Two-  dimensional  graphics  primitives  include  Point,  Line,  Circle,  Disk,

Rectangle, Polygon, and Text.

The following defines a graphics primitive consisting of a series of line sergments connect-

ing the specified points:

zigzag :=

Line@881, 2<, 81, 1<, 83, 2<, 82, 2<, 81, 0<, 83, 1<, 82, 1<, 82, 0<<D
The Graphics command creates a graphics object from the graphics primitive.

Graphics@zigzagD

Here is a list of graphics primitives:

shapes = 8Rectangle@8-2, 1<, 80, 2<D, Circle@81, 1<, 1D,
Disk@80, 0<, .7D, Text@"rectangle", 8-1.5, .8<D,
Text@"disk", 8-1, 0<D, Text@"circle", 81.5, 1.5<D<;

This is the resulting graphics object:

Graphics@shapes, AspectRatio Ø AutomaticD

rectangle

disk

circle

‡ Graphics Directives

Graphics  directives  affect  the  way  graphics  primitives  are  displayed.  Common  graphics

directives  include  Opacity,  PointSize,  and  Thickness,  as  well  as  common  colors

such  as  Red,  Blue,  Orange,  and  so  on.  (RGBColor,  Hue,  GrayLevel,  and  CMYK-

Color are available for mixing your own colors.)
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A  graphics  directive  is  associated  with  a  graphics  primitive  by  creating  a  list  of  the  form

{directive, primitive}. More than one primitive can be specified by creating a list of the form

{directive1, directive2, …, primitive}.  The following suggests the many possibilities:

redRect = 8Red, Opacity@.67D, Rectangle@8-1, 1<, 81, 2<D<;
thickCircle =

8Thickness@.02D, Opacity@.5D, Green, Circle@81, 1<, 1D<;
purpleDisk = 8Purple, Opacity@.4D, Disk@80, 1<, .7D<;
Graphics@8redRect, thickCircle, purpleDisk<D

Often graphics directives are provided through options such as PlotStyle, AxesStyle,

and  Background. For example,

PlotAx2, 8x, -1, 1<, PlotStyle Ø 8Thick, White<,
AxesStyle Ø Green, Background Ø GrayLevel@.5DE

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

‡ Suppressing and Combining Graphics

Suppose that we want to plot the parabola y = x2 along with the circle of radius 1 ê2 cen-

tered at H0, 1 ê2L. The following assigns names to plots of the parabola and the circle. The 

output of each is surpressed by a semicolon. (That’s new in Mathematica 6.)

curve = PlotAx2, 8x, -1.4, 1.4<E;
circ = Graphics@Circle@80, .5<, .5DD;

We can now combine the two graphics with Show.
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We can now combine the two graphics with Show.

Show@curve, circ, AspectRatio Ø AutomaticD

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

The same thing could be accomplished all at once by entering

ShowAPlotAx2, 8x, -1.4, 1.4<E,
Graphics@Circle@80, .5<, .5DD, AspectRatio Ø AutomaticE

(This behavior is new in Mathematica  6; in earlier versions the preceding command would

have produced three separate plots.)

‡ GraphicsRow and GraphicsGrid

Two very useful graphics commands are GraphicsRow and GraphicsGrid. With these

we  can  create  composite  graphics  objects  containing  rectangular  arrays  of  individual

graphics objects. For instance, let’s create the following four graphics objects:

segment = Graphics@Line@880, 0<, 82, 2<<DD;
circ = Graphics@Circle@80, 0<, 1DD;
parabola = PlotAx2, 8x, -1, 1<, Axes Ø NoneE;
rect = Graphics@8Gray, Rectangle@80, 0<, 81, 1<D<D;

The following shows these four graphics objects in a one-by-four array:

GraphicsRow@8segment, circ, parabola, rect<D

We would get a two-by-two array instead if we enter

GraphicsGrid@88segment, circ<, 8parabola, rect<<D

Ï  Exercises
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Ï  Exercises

1. Predict the result of each of the following commands before entering it.

GraphicsRow@Table@Graphics@8Thickness@tD, Orange, Circle@D<D,
8t, .02, .1, .02<DD

GraphicsRow@Table@
Graphics@8PointSize@tD, Point@80, 0<D<D, 8t, .1, 1.1, .25<DD

GraphicsRow@Table@Graphics@8col, Disk@D<D,
8col, 8Red, Blue, Green, Purple<<DD

GraphicsRow@Table@Graphics@8col, Disk@D<D,
8col, NestList@Lighter, Red, 3D<DD

GraphicsRow@
Table@Graphics@8RGBColor@h, 0, 1 - hD, Disk@D<D, 8h, 0, 1, .1<DD
Graphics@Table@8Hue@RandomReal@DD,

Disk@8Cos@tD, Sin@tD<, .25D<, 8t, p ê6, 2 p, p ê6<DD

1.7  Animate and Manipulate

One of  the most instructive and fun features of Mathematica  has  always been its  ability to

animate  graphics.  New  in  Mathematica  6  is  the  function  Animate,  which  provides  a

convenient, simple mechanism for creating animations.

For  the  sake  of  comparison,  let’s  first  create  a  simple  table  containing  graphs  of

y = sinHx - fL for various values of the phase shift f. Here f will go from 0 to 2p in steps of

1 (by default).

Table@Plot@Sin@x - fD, 8x, 0, 6 p<,
PlotRange Ø 880, 6 p<, 8-1.1, 1.1<<, AspectRatio Ø .2,

Ticks Ø 8Range@6D p, None<D, 8f, 0, 2 p<D

:
p 2 p 3 p 4 p 5 p 6 p

,

p 2 p 3 p 4 p 5 p 6 p

,
p 2 p 3 p 4 p 5 p 6 p

,

p 2 p 3 p 4 p 5 p 6 p

,
p 2 p 3 p 4 p 5 p 6 p

,

p 2 p 3 p 4 p 5 p 6 p

,
p 2 p 3 p 4 p 5 p 6 p

>

If we change Table to Animate, we get an animation instead, in which f goes from 0 to

2p continuously. The controls allow you to start, stop, slow down, speed up, and reverse the

animation. Moreover, the slider lets you “manually” move forward or backward through the

animation.
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If we change Table to Animate, we get an animation instead, in which f goes from 0 to

2p continuously. The controls allow you to start, stop, slow down, speed up, and reverse the

animation. Moreover, the slider lets you “manually” move forward or backward through the

animation.

Animate@Plot@Sin@x - fD, 8x, 0, 6 p<,
PlotRange Ø 880, 6 p<, 8-1.1, 1.1<<, AspectRatio Ø .2,

Ticks Ø 8Range@6D p, None<D, 8f, 0, 2 p<D

Φ

Π 2 Π 3 Π 4 Π 5 Π 6 Π

Using  Manipulate  instead,  we  get  only  the  slider  control.  However,  clicking  on  the  

icon at the right end of the slider will reveal animation controls.

Manipulate@
Plot@Sin@x - fD, 8x, 0, 6 p<, PlotRange Ø 880, 6 p<, 8-1.1, 1.1<<,
AspectRatio Ø .2, Ticks Ø 8Range@6D p, None<D, 8f, 0, 2 p<D

¤ Notice  in  the  preceding  examples  the  specification  of  the  PlotRange  option.  This  is

generally necessary to ensure that each plot created corresponds to the same rectangle in the

plane, thereby producing an animation in which any fixed point remains still.

Animate and Manipulate can be used to animate or manipulate any type of expression,

not just graphics.

ManipulateAExpandAHa + bLnE, 8n, 1, 20, 1<E êê boldEdge

n

a7 ! 7 a6 b ! 21 a5 b2 ! 35 a4 b3 ! 35 a3 b4 ! 21 a2 b5 ! 7 a b6 ! b7

Here are two simple examples that use a different ControlType:

ManipulateAExpandAHa + bLnE,
8n, 1, 15, 1<, ControlType Ø SetterBarE

ManipulateAxy, 8x, 1, 15, 1, ControlType Ø SetterBar<,
8y, 1, 15, 1, ControlType Ø SetterBar<E

Ï  Exercises
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Ï  Exercises

1. The following creats a Manipulate object that plots the graph of y = sinHaxL + sinHbxL for

manipulable  angular  frequencies  a  and  b  of  the  individual  terms.  Enter  the  command  and

experiment  with  the  two sliders.  Then describe  what  you observe whenever  the  value of  a

“crosses over” the value of b or vice versa.

Manipulate@Plot@Sin@a tD + Sin@b tD,
8t, 0, 5<, PlotRange Ø 8-2, 2<, PlotPoints Ø 40D,

8a, 50, 100<, 88b, 100<, 50, 100<D
This demonstrates the same phenomenon with sound:

Play@Sin@H950 + 10 tL tD + Sin@1000 tD, 8t, 0, 5<D
And this is the same thing in stereo:

Play@8Sin@H950 + 10 tL tD, Sin@1000 tD<, 8t, 0, 5<D
This is the phenomenon known as beats, which is useful in tuning string instruments by ear.

2. In this exercise, we will build up some simple and strangely interesting pieces of Mathemat-

ica-generated “art.” Begin by entering

r := RandomReal@D;

Show@Graphics@Line@88r, r<, 8r, r<<DD, PlotRange Ø 880, 1<, 80, 1<<D

This  simply  plots  a  random  line  segment  within  the  square  -1 § x § 1, -1 § y § 1.  (Re-

enter this a couple of times to observe the difference in the results.) Now enter the following

several times. You should observe forty random segments each time. 

Graphics@Table@Line@88r, r<, 8r, r<<D, 840<D,

PlotRange Ø 880, 1<, 80, 1<<D

Let’s now give random color and thickness to the segments. Enter this a few times:

Graphics@Table@
8RGBColor@r, r, rD, Opacity@‰-1.5 rD, Thickness@.01 + .02 rD,
Line@88r, r<, 8r, r<<D<, 840<D, PlotRange Ø 880, 1<, 80, 1<<D

Now create a composite graphic by entering 

GraphicsRow@Table@Graphics@Table@8RGBColor@r, r, rD,
Thickness@.003 + .01 rD, Line@88r, r<, 8r, r<<D<, 840<DD, 85<DD

Enter the following to produce an animated piece on a black background:

Animate@Graphics@k; Table@
8RGBColor@r, r, rD, Opacity@.9 ‰-2 rD, Thickness@.01 + .02 rD,
Polygon@88r, r<, 8r, r<, 8r, r<<D<, 830<D,

PlotRange Ø 880, 1<, 80, 1<<, Background Ø BlackD, 8k, 1, 20<D
Repeat the animation above, replacing the Line[{{r,r},{r,r}}] primitive with

a)  Circle[.25{1+2r,1+2r},7 r/5]

b)  Disk[{r,r}, .5r] c)  Polygon[{{r,r},{r,r},{r,r}}]

1.8  Avoiding and Getting Out of Trouble
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1.8  Avoiding and Getting Out of Trouble

Ÿ A Top Eleven List: Causes of Mathematica Problems

11. Forgetting that the natural log function is Log, not Ln

This  is  not  peculiar  to  Mathematica;  many  advanced  texts  use  this  convention.

However, if this bothers you, you can always define Ln[x_]:= Log[x].

10. Typing an equation with one equal sign (=) instead of two (==)

A single equal sign is used only for assignments; an equation requires two. Recover-

ing from this mistake often requires that you Clear a variable.

9. Forgetting to type a space between multiplied expressions

For example, if you accidentally type xSin[x], Mathematica assumes that you are

refering to a function named xSin.

8. Using parentheses instead of brackets or braces (or vice-versa)

Parentheses,  brackets,  and braces have very specific and different uses. Parentheses

are used only for grouping within expressions, brackets enclose function arguments,

and braces enclose members of a list.

7. Forgetting to load a package before referencing something in it

To  correct  the  “shadowing”  problem  that  results  from  this,  you  can  enter

Remove[object] where object is what you tried to use prior to loading the package.

6. Entering a command that relies on a previous definition that has 

not been entered during the current session

Whenever  you  resume  work  from  a  previous  session,  be  sure  that  you  re-enter

commands in order from the top of your Mathematica notebook.

5. Doing an enormous symbolic computation instead of a simple 

numerical computation

See † Symbolic versus Numerical Computation below.

4. Making multiple definitions for one variable or function name

See † Multiple Definitions and Using the Question Mark below.

3. Spelling errors (including capitalization)

Enough said.

2. Forgetting to use a Blank when defining a function

See Section 1.3.

1. Forgetting to save your work before the inevitable crash

A word to the wise…

‡  What to Do When You Run into Trouble
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‡  What to Do When You Run into Trouble

„ Check for spelling mistakes, typos, and other syntax errors.

„ Look for online help.

You  can  access  the  Documentation  Center  through  the  Help  menu  or  by  simply  pressing

your “help” key. If you want help on a particular command, option, etc., highlight that item

before pressing “help.”

„ Clear variable names.

Remember that entering Clear[var1, var2,…] clears variables.

„ Clear everything.

Here’s a quick way to clear all previous definitions: 

ClearAll@"Global`*"D

„ Quit and restart the kernel.

Do this by choosing Quit Kernel: Local from your Kernel menu. You can then choose Start

Kernel:  Local  from  your  Kernel  menu  or  simply  enter  a  command  to  start  a  new  kernel

session.

„ Quit and restart Mathematica.

Be sure to save your work first.

„ Quit Mathematica and restart your computer.

Again, be sure to save your work.

„ Quit and restart your day. (Just kidding.)

Seriously though, if you get frustrated, take a break!

¤ Important note:  Although Mathematica  remembers everything you enter during a particu-

lar  session,  it  does  not  remember  anything  from  a  previous  session  or  anything  prior  to

clearing  all  variables  or  restarting  the  kernel.  Since  much  of  what  you  do  in  Mathematica

depends on previously entered commands, you must be careful to reënter the commands that

are needed after clearing all variables or restarting the kernel.

‡ Interrupting Calculations

You will occasionally enter a command that takes Mathematica a very long time to evaluate.

To stop a  computation,  select  Abort  Evaluation  from the  Evaluation  menu.  The keyboard

shortcut for this is Ì-. (command-period) on a Macintosh and ‚-C on an Windows PC. 

It  is  often  necessary  to  press  these  keys  repeated  to  interrupt  a  calculation,  and sometimes

there is no alternative but to quit the kernel.

‡  Interpreting Mathematica Output When Things Don’t Work
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‡  Interpreting Mathematica Output When Things Don’t Work

In  many  circumstances,  Mathematica  will  give  you  a  useful  error  message  when  a  bad

command is entered. Here are two examples:

PlotAx2, 80, 1<E
Plot::pllim : Range specification 80, 1< is not of the form 8x, xmin, xmax<. à

PlotAx2, 80, 1<E

SolveAx2 + 5 x = 2, xE
Set::write : Tag Plus in 5x+ x2 is Protected. à

Solve::eqf : 2 is not a well-formed equation. à

Solve@2, xD

However, it is very common for Mathematica  simply to give a problematic command back

to  you  with  no  message.  Mathematica  does  this  whenever  the  syntax  is  correct,  but  no

currently defined rules affect the result. For example,

aFunctionNotEntered@0D
aFunctionNotEntered@0D

and

Ln@1D
Ln@1D

¤ When Mathematica  simply gives a  command back to you with no error  message,  it  means

that the syntax is okay, but something in the command is unrecognizable.

‡ Symbolic Versus Numerical Computation

It  is  easy  to  run  into  major  trouble  by  inadvertently  asking  Mathematica  to  create  a  huge

symbolic expression. This is most likely to happen as a result of doing some kind of recur-

sive  calculation.  For  example,  suppose  we  want  to  calculate  several  terms  in  the  sequence

defined by

x0 = 1 and xk+1 = 3 sin xk - xk for k = 0, 1, 2, …

Here is a typical Mathematica approach: We’ll define the function

f@x_D := 3 Sin@xD - x

and use NestList to compute terms in the sequence. This computes the first five terms:

NestList@f, 1, 4D

81, -1 + 3 Sin@1D, 1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DD, -1 + 3 Sin@1D +

3 Sin@1 - 3 Sin@1DD + 3 Sin@1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DDD,

1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DD - 3 Sin@1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DDD -

3 Sin@1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DD -

3 Sin@1 - 3 Sin@1D - 3 Sin@1 - 3 Sin@1DDDD<

This is not exactly what we had in mind, is it? If we had asked for ten terms instead of five,

the result  would have filled several  pages.  (Try it.)  If  we had asked for thirty terms, and if

the  computation  had  eventually  succeeded,  the  result  would  have  contained  more  than  1/2

billion copies of the expression Sin! (Do yourself a favor; don’t try it.)
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This is not exactly what we had in mind, is it? If we had asked for ten terms instead of five,

the result  would have filled several  pages.  (Try it.)  If  we had asked for thirty terms, and if

the  computation  had  eventually  succeeded,  the  result  would  have  contained  more  than  1/2

billion copies of the expression Sin! (Do yourself a favor; don’t try it.)

So what  should  we do?  We simply need to  coerce  Mathematica  into  doing the  calculation

numerically  instead  of  symbolically,  which  is  what  we  wanted  to  begin  with!  One  simple

way to do this is to start the sequence with the real number 1. instead of the integer 1. (Can

you think of two other ways to accomplish the same thing?)

f@x_D := 3 Sin@xD - x; NestList@f, 1., 30D
81., 1.52441, 1.47236, 1.51312, 1.48189, 1.50626,

1.4875, 1.5021, 1.49082, 1.49959, 1.49281, 1.49807, 1.494,

1.49716, 1.49471, 1.49661, 1.49514, 1.49628, 1.4954,

1.49608, 1.49555, 1.49596, 1.49564, 1.49589, 1.4957,

1.49585, 1.49573, 1.49582, 1.49575, 1.49581, 1.49576<

¤ A useful  tip:  When attempting a  complicated computation,  start  small!  In  other  words,  see

what happens when you do three steps before you try to do thirty.

‡ Multiple Definitions and Using the Question Mark

Suppose that we enter

f@xD = x2 + 3 x

3 x + x2

and we then realize that we forgot the Blank that we need to put beside the variable. So we

then enter

f@x_D = x2 + 3 x

3 x + x2

and everything seems fine. Later… when working on a different problem, we redefine f as

f@x_D = x - 2

-2 + x

This function behaves as we expect; we find that its graph is the expected straight line, etc.

But then we enter

g@x_D = f@xD2

I3 x + x2M2

which does not give the function g  that we expect.  So what’s going on here? Mathematica

remembers our original, “erroneous” definition of the expression f[x].
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¤ Using the Question Mark

To get information on any variable or other object, just type its name after a question mark.

For example, to get information on f we’ll enter 

?f

Global`f

f@xD = 3 x + x2

f@x_ListD := 3 x

f@x_D := Which@x § -1, 1, -1 < x § 1, -x, x > 1, -1D

f@x_, y_D := x + y

This  shows  us  that  multiple  definitions  are  associated  with  f.  In  fact,  we  could  cause

Mathematica to associate numerous other definitions with f:

f@x_, y_D := x + y

f@x_ListD := 3 x

Now let’s get information on f:

?f

Global`f

f@xD = 3 x + x2

f@x_ListD := 3 x

f@x_D := Which@x § -1, 1, -1 < x § 1, -x, x > 1, -1D

f@x_, y_D := x + y

When  Mathematica  encounters  an  expression  involving  f,  it  looks  through  the  definitions

associated with f until one makes sense for that expression. For example:

f@3, 5D
8

f@13D
11

f@84, 7<D
812, 21<
f@xD
3 x + x2

As you may well imagine, this behavior of Mathematica can potentially be the source of all

kinds of trouble. 

¤ The  key  to  resolving  difficulties  caused  by  multiple  definitions  is  to  Clear  the  culprit

variable. If you get into a really complicated mess, try quitting the kernel or entering

ClearAll@"Global`*"D
The question mark is also useful  for getting the “usage message” for built-in objects.  Here

are a few examples:
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The question mark is also useful  for getting the “usage message” for built-in objects.  Here

are a few examples:

?Plot

Plot@ f , 8x, xmin, xmax<D generates a plot of f as a function of x from xmin to xmax.

Plot@8 f
1
, f
2
,…<, 8x, xmin, xmax<D plots several functions fi. à

?$DisplayFunction

$DisplayFunction gives the default setting

for the option DisplayFunction in graphics functions. à

?NestList

NestList@ f , expr, nD gives a list of the results of applying f to expr 0 through n times.

à

?ê.

expr ê. rules applies a rule or list of rules in an

attempt to transform each subpart of an expression expr. à

‡ Memory

Some  of  the  most  common  difficulties  that  arise  when  using  Mathematica  are  memory

related~or  rather,  lack-of-memory  related.  Mathematica  consists  of  two  applications~the

kernel and the front end~working together. Each of these has its own memory.

† Kernel Memory

The kernel is the part of Mathematica that does the computation. Many of the computations

done by Mathematica  involve highly complex algorithms and require a great deal of mem-

ory.  In  addition,  the  kernel  remembers  (by  default)  every  command  entered  and  every

computation done in a given session. So it is easy to understand why running out of kernel

memory~or experiencing poor performance due to use of virtual memory~can happen.

There are a couple of simple things that you can do to conserve memory:

¤ Set  $HistoryLength  to  some small  value  such  as  10  (i.e.,  enter  $HistoryLength=

10).  This  causes  the  kernel  to  forget  older  input  and  output  lines.  The  default  value  of

$HistoryLength is Infinity.

¤ Use the Share command occasionally:

Share@D
1010880

This  causes  stored  expressions  to  “share”  subexpressions,  thus  reducing  the  amount  of

memory used. The output shows the number of freed bytes.

Also, see † Symbolic versus Numerical Computation in the preceeding section.

†  Front End Memory and File Size
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†  Front End Memory and File Size

Front-end memory and notebook file size usually only become an issue when your notebook

contains  a  lot  of  graphics.  While  the  computations  that  create  a  graphic  are  done  by  the

kernel, the code that actually produces the graphic is stored in the front end’s memory. 

By  deleting  graphics  cells~especially  cells  containing  three-dimensional  graphics  or

graphics created with a high value for the PlotPoints  option~you can greatly decrease

the amount of front-end memory used.

When you save your work, it is information in the front end’s memory that you are saving~

in  the  form of  a  Mathematica  “notebook.”  When a  notebook becomes  very  large,  you  can

usually  remedy the  situation by deleting graphics  cells  before saving.  Graphics can always

be reproduced, as long as the commands are saved.

¤ A handy feature  is  the  Delete All  Output  item in  the  Cell  menu.  This  will  let  you quickly

save the essence of your work in a very small file.

‡ Exercises

1. Purposely  commit  each  of  the  errors  described  in  the  eleven  causes  of  problems  outlined

above~with the exception of numbers 4 and 1. In cases where no consequence is immedi-

ately evident, construct a subsequent scenario that exposes the error.

1.9  Turning a Notebook into a Report

You  will  likely  be  asked  to  put  the  work  you  do  in  Mathematica  into  a  form  that  will  be

presentable  enough  to  submit  to  your  professor.  Fortunately,  the  Mathematica  front  end

serves  as  a  very  versatile  word  processor.  In  fact,  this  entire  manual  was  written  with

Mathematica.

‡ Cell Styles

You should always  provide comments  and narrative  along with  your  calculations (whether

you’re  using  Mathematica  or  pencil  and  calculator).  Any  cell  that  contains  text  should  be

given Text Style by selecting Text from the Style submenu of the Format  menu before you

begin typing text into the cell. You can also give an existing cell Text Style by highlighting

the cell bracket and selecting Text from the same menu.

You should also use Title, Section, Subsection cells, etc., to organize your notebook. These

items are also in the Style submenu of the Format menu.

Aside  from  resulting  in  much  nicer  looking  work,  this  is  also  important  because  when  an

Input  cell  contains  text,  all  kinds  of  errors  and  garbage  can  result  if  it  is  accidentally

evaluated.

For example notice what happens when I enter this

Â enter example For happens notice this what when
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or when I enter this.

Syntax::tsntxi : "this." is incomplete; more input is needed.

Syntax::tsntxi : "this." is incomplete; more input is needed.

Syntax::sntxi : Incomplete expression; more input is needed.

Moreover, if Input cells only contain valid Mathematica commands, it is possible to evalute

all  of  them  in  order  by  selecting  Evaluate  Notebook  from  the  Evaluation  menu  without

making a big mess of your the notebook.

‡ Page Breaks

Bad  page  breaks  usually  involve  a  large  amount  of  blank  space  at  the  bottom  of  a  page.

Frequently this is caused by a graphic being just a little too large to fit on the current page.

The default  size of  Mathematica  graphics  is  larger  than it  usually needs to be for  printing.

So by resizing (i.e.,  shrinking) graphics, you can avoid a lot of bad page breaks. A graphic

can  be  resized  by  clicking  on  it  and  dragging  a  corner.  Also,  a  good  way  to  get  smaller,

consistently-sized graphics from Plot, for instance, is to use SetOptions:

SetOptions@Plot, ImageSize Ø 200D
How  can  you  tell  where  page  breaks  will  occur  before  you  print?  You  can  select  Show

Page Breaks  from the Printing Settings  submenu of  the File  menu.  (In Mathematica  5.x,

this is located in the Format menu.)

You can also force a page break between two cells by selecting Page Break from the Insert

Menu.

‡ Other Tips

In  the  Printing  Settings  submenu  of  the  File  menu,  you’ll  see  Printing  Options...  In  the

resulting dialog box, you can set margins and specify whether or not to print cell brackets.

In  the  Style  Sheet  submenu  of  the  Format  menu,  you  can  choose  from  among  several

standard  style  sheets.  The  choice  of  style  sheet  affects  the  appearance  of  title  and  section

cells, background color, etc. Experiment to find one that you like. But don’t be surprised if

you end up preferring the default.

Ï Exercises

1. Write  a  short  but  detailed  report  (2|3  pages)  in  Mathematica  on  any  one  of  the  following

topics. Your report must include input, output, text, section, and title cells.

a) The rational root theorem for polynomials.

b) How to find the inverse of a one-to-one function.

c) Even functions and odd functions.

d) The unit circle and the graphs of sin x and cos x.

e) The compound interest formula.

f) Rational functions with slant asymptotes.

1.10  Miscellaneous Advice
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1.10  Miscellaneous Advice

‡ The Cube Root Function

When  you  ask  Mathematica  for  the  cube  root  (or  any  odd  root)  of  a  negative  number,  it

returns a complex number. This complex number is indeed the principal value the cube root

function defined on the complex numbers.

-8.
3

1. + 1.73205 Â

However, this is not what we want when we talk about the cube root function defined on the

real numbers. A simple remedy is to define your own cube root function as follows:

Cbrt@x_D := Sign@xD Abs@xD3

Plot@Cbrt@xD, 8x, -4, 4<D
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‡ Custom Initialization

You may find that there are certain commands you want to enter every time you run Mathe-

matica.  For  instance,  if  you prefer  that  the curves drawn by Plot  are  always thicker  than

the default thickness, you can avoid specifying that with the PlotStyle option every time

you use plot by entering 

SetOptions@Plot, PlotStyle Ø Thickness@.005DD
But  that  will  only  be  in  effect  during  the  current  kernel  session;  that  is,  the  next  time you

start Mathematica, you'll have to enter that command again.

Assuming that you have appropriate priviledges on the computer on which you’re working,

you  can  execute  a  group  of  commands  automatically  each  time  the  kernel  starts  up  by

placing those commands in a  file named init.m  that’s  located in a  particular directory.  An

easy way to find and open that file is to enter

ToFileName@8$UserBaseDirectory, "Kernel"<, "init.m"D
NotebookOpen@%D

You can type in the commands you want executed automatically upon startup and then save

and close the file. Actually, it’s best to type the commands in an open notebook, make sure

they work correctly, and then copy and paste them into the init.m file.

Here are a few examples of things you might want to put in init.m:
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Here are a few examples of things you might want to put in init.m:

•!This sets options for Plot so that it draws thicker curves and makes plots 3 inches wide.

SetOptions@Plot,
8PlotStyle Ø Thickness@MediumD, ImageSize Ø 3*72<D;

• This defines a real cube root function.

Cbrt@x_D := Sign@xD Abs@xD3

;

• This sets $HistoryLength to conserve memory.

$HistoryLength = 10
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