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In this paper, we propose a new wavelet shrinkage algorithm based on fuzzy logic. In particular, intra-scale
dependency within wavelet coefficients is modeled using a fuzzy feature. This feature space distinguishes
between important coefficients, which belong to image discontinuity and noisy coefficients. We use this
fuzzy feature for enhancing wavelet coefficients' information in the shrinkage step. Then a fuzzy
membership function shrinks wavelet coefficients based on the fuzzy feature. In addition, we extend our
noise reduction algorithm for multi-channel images. We use inter-relation between different channels as a
fuzzy feature for improving the denoising performance compared to denoising each channel, separately. We
examine our image denoising algorithm in the dual-tree discrete wavelet transform, which is the new
shiftable and modified version of discrete wavelet transform. Extensive comparisons with the state-of-the-
art image denoising algorithm indicate that our image denoising algorithm has a better performance in noise
suppression and edge preservation.
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1. Introduction

Denoising has become an essential step in image analysis. Indeed,
due to sensor imperfections, transmission channels defects, as well as
physical constraints, noise weakens the quality of almost every
acquired image. Three main types of noise exist: impulse noise,
additive noise, and multiplicative noise. Impulse noise is usually
characterized by some portion of image pixels that are corrupted,
leaving the remaining pixels unchanged. Examples of impulse noise
are fixed-valued impulse noise and randomly valued impulse noise.
We consider here additive noise when a value from a certain
distribution is added to each image pixel, for example, a Gaussian
distribution. Multiplicative noise is generally more difficult to remove
from images than additive noise because the intensity of the noise
varies with the signal intensity (e.g., speckle noise) [1].

Because of the importance and commonality of preprocessing in
most image and video systems, there has been an enormous amount
of research dedicated to the subject of noise removal, and many
different mathematical tools have been proposed. Variable coefficient
linear filters [2,3], adaptive nonlinear filters [4,5], DCT-based solutions
[6], cluster filtering [7], genetic algorithms [8], fuzzy logic [9,10], etc.,
have all been proposed in the literature.

The main goal of an image denoising algorithm is then to reduce
the noise level, while preserving the image features (such as edges,
textures, etc.). The multi-resolution analysis performed by the
wavelet transform has been shown to be a powerful tool to achieve
these goals [11]. Indeed, in the wavelet domain, the noise is uniformly
spread throughout the coefficients, while most of the image
information is concentrated in the few largest ones. Classical
wavelet-based denoising methods consist of three steps (see Fig. 1):

1) Compute the discrete wavelet transform (DWT) or other kinds of
multi-resolution transforms.

2) Remove noise from the wavelet coefficients.
3) Reconstruct the enhanced image by using the inverse wavelet

transformation.

Due to the linearity of the wavelet transform, additive noise in the
image domain remains additive in the transform domain. If γs,d(i,j)
and xs,d(i, j) denote the noisy and the noise-free wavelet coefficients of
scale s and orientation d respectively, then we can model the additive
noise in the transform domain as:

ys;d i; jð Þ = xs:d i; jð Þ + ns;d i; jð Þ ð1Þ

where ns,d(i, j) is the corresponding noise component. We will only
consider additive Gaussian white noise following a normal law
defined by a zero mean and a known1 variance, that is n∼N(0,σ2).

The denoising process is known as wavelet shrinkage or thresh-
olding. Among the various thresholding strategies, soft thresholding is
the most popular and has been theoretically justified by Donoho and
Johnstone [12]. These researchers have shown that the shrinkage rule
noise standard deviation can be accurately estimated using a
ator [11].
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Fig. 1. Principle of wavelet denoising.

1612 J. Saeedi et al. / Image and Vision Computing 28 (2010) 1611–1623
is near-optimal in the minimax sense and provided the expression of
the optimal threshold value T, called the “universal threshold” as a
function of the noise powerσ2 when the number of samplesN is large:
T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 logN

p
. The use of the universal threshold for denoising

images in the wavelet domain is known as VisuShrink [13]. VisuShrink
is very simple, but its disadvantage is to yield to overly smoothed
images because the universal threshold T is too large. Just like
VisuShrink, SureShrink also applies to the soft shrinkage rule, but it
uses independently chosen thresholds for each sub-band through the
minimization of the Stein's unbiased risk estimate (SURE) [14].
SureShrink performs better than VisuShrink, producing more detailed
images.

After the influential work of Donoho and Johnstone, many
alternative methods have come forth. One of the most popular was
proposed by Chang et al., who derived their threshold in a Bayesian
framework, assuming a generalized Gaussian distribution for the
wavelet coefficients. This solution to the wavelet denoising problem is
known as BayesShrink [15] and has a better MSE performance than
SureShrink.

However, algorithms that exploit the different kinds of depen-
dencies between the wavelet coefficients can result in better
denoising performance, compared with the ones derived using an
independence assumption. The wavelet coefficients are statistically
dependent mainly due to two properties of the wavelet transform of
natural images:

1) Large coefficients will propagate across the scales (inter-scale
dependencies).

2) If a coefficient is large/small, some of the neighboring coefficients
are also likely to be large/small (intra-scale dependencies).

Among the methods in which inter-scale dependency for image
denoising have used: Sendur and Selesnick used a bivariate shrinkage
function, which models the statistical dependence between a wavelet
coefficient and its parent. It needs to estimate themarginal variance of
the coefficient in a local neighborhood [16,17]; Luisier et al. directly
parameterized the denoising process as a sum of elementary
nonlinear processes with unknown weights. It need not hypothesize
a statistical model for the noiseless image while it minimizes an
estimate of the mean squared error between the noiseless image and
the denoised one by the SURE. Consequently, it computes the
unknown weights by solving a linear system of equations [18], and
among the methods in which intra-scale dependency for image
denoising have used: Chen et al. used local mean of neighbor
coefficients in wavelet sub-bands as a feature to shrink wavelet
coefficients and their method is called NeighShrink [19]; Pizurica and
Philips used a probabilistic shrinkage function. Its core is estimating
the probability that a given coefficient contains a significant noise-free
component. Then the wavelet coefficient is multiplied with the
probability [20]; Schulte et al. introduced a fuzzy version of
probabilistic shrinkage method. Its core is shrinkage based on local
mean of wavelet coefficients and some fuzzy rules [21].

Many other techniques have combined inter- and intra-scale
dependencies. For example, denoising methods based on Gaussian
Scale Mixture models, often employ the neighboring coefficients on
the same and adjacent scales [22]. Local contextual HMT models have
been developed, which capture both inter-scale and intra-scale
information [23,24].

In image denoising, where a trade-off between noise suppression
and the maintenance of actual image discontinuity must be made,
solutions are required to detect important image details and
accordingly adapt the degree of noise smoothing. In this paper, we
model the intra-scale dependency in wavelet transform domain as a
fuzzy feature. We always postulate that noise is uncorrelated in the
spatial domain; it is also uncorrelated in the wavelet domain. With
respect to this principle, we use a fuzzy feature for single channel
image denoising to enhance image information in wavelet sub-bands,
and then using a fuzzy membership function to shrink wavelet
coefficients, accordingly. This feature space distinguishes between
important coefficients, which belong to image discontinuity and noisy
coefficients. In multi-channel images, different channels are correlat-
ed: an image discontinuity from one channel is probably to occur in at
least some of the remaining channels. As for this reason and
uncorrelated nature of noise, we use a new feature to extend our
method for denoising multi-channel images.

DWT provides a good time frequency analysis of the signal, with a
non-redundant signal representation and an optimal representation
of singularities. Nevertheless, DWT suffers from five fundamental,
intertwined shortcomings [25]: oscillations, aliasing, shift-variance,
poor directionality, and absence of phase information. Shift invariance
and directional selectivity are essential to the quality of wavelet-
based image denoising results. Because of the down-sampling
operation in the DWT filter bank (FB), it is shift-variance and will
cause some visual artifacts (such as Gibbs phenomena) in threshold-
ing-based denoising [26]. In addition, if the directional selectivity of a
FB is defined as the ability to extract directional features into separate
images, then the 2-D DWT has very poor directional selectivity
because 2-D DWT has four sub-images, which are usually referred to
as LL, LH, HL, and HH images.

Many solutions to the shift-variance and lack of directionality of
the DWT have been suggested in the literature. A simple approach to
shift-variance is to remove the decimation blocks in the FB, so that
there is no aliasing in the output sub-band signals. In this case, the
sub-bands signals are perfectly shift-invariant (undecimated discrete
wavelet transform). The new properties resulting from the use of this
highly redundant transformation have been obtained at the expense
of the loss of orthogonality, a considerably more intensive memory
usage, and a higher computational cost than that of the original DWT.
The latter point becomes a major concern in multi-channel image
denoising, particularly when the number of channels is large.
However, a reduced form of translation invariance exists, namely,
energy shift-invariance or “shiftability” [27], which means that the
energy of the output signal is shift-invariant. In this paper, we
examine our image denoising algorithm in the dual-tree DWT (DT-
DWT), which provides both shiftable sub-bands and good directional
selectivity and low redundancy [28,29] and [30].

This paper is organized as follows: In Section 2, the new fuzzy
image denoising scheme for single channel image is explained. In
addition, we formulate our image denoising algorithm for multi-
channel image in Section 3. Section 4 gives various experimental
results and performance comparisons. Finally, we conclude with a
brief summary in Section 5.



Fig. 2. From top left, clockwise: a sub-band of DT-DWT for “Barbara” image, noisy sub-
band, the fuzzy feature, and local mean.
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2. Single channel image denoising

In image denoising, where a trade-off between noise suppression
and the maintenance of actual image discontinuity must be made,
solutions are required to detect important image details and
accordingly adapt the degree of noise smoothing. We always
postulate that noise is uncorrelated in the spatial domain; it is also
uncorrelated in the wavelet domain.With respect to this principle, we
use a fuzzy feature for single channel image denoising to enhance
image information in wavelet sub-bands and then using a fuzzy
membership function to shrink wavelet coefficients, accordingly. This
feature space distinguishes between important coefficients, which
belong to image discontinuity and noisy coefficient.

2.1. Fuzzy feature

We want to give large weights to neighboring coefficients with
similar magnitude, and a small weight to neighboring coefficients
with dissimilar magnitude. The larger coefficients, which are
produced by noise, are always isolated or unconnected, but edge
coefficients are clustered and persistent. It is well known that the
more adjacent points aremore similar inmagnitude. Sowe use a fuzzy
function m(l,k) of magnitude similarity and a fuzzy function s(l,k) of
spatial similarity [31], which is defined as:

m l; kð Þ = exp −
ys;d i; jð Þ−ys;d i + l; j + kð Þ

Thr

� �2
 !

ð2Þ

s l; kð Þ = exp − l2 + k2

N

 ! !
ð3Þ

where ys,d(i, j) and ys,d(i+ l, j+k) are central coefficient and neighbor
coefficients in the wavelet sub-bands, respectively. Thr=c×σ̂n,
3≤c≤4, σn̂ is estimated noise variance, and N is the number of
coefficients in the local window k2 [−K…K], and l2 [−L…L].

The following example shows spatial similarity for a 5×5 local
window (i.e. L=2, and K=2). The central weight is set to zero that is
very useful for removing isolated noise:

s l; kð Þ =

0:73 0:82 0:85 0:82 0:73
0:82 0:92 0:96 0:92 0:82
0:85 0:96 0 0:96 0:85
0:82 0:92 0:96 0:92 0:82
0:73 0:82 0:85 0:82 0:73

0
BBBB@

1
CCCCA

According the two fuzzy functions, we can get adaptiveweightw(l,k)
for each neighboring coefficient:

w l; kð Þ = m l; kð Þ × s l; kð Þ ð4Þ

Using the adaptive weightsw(l,k), we can obtain the fuzzy feature
for each coefficient in the wavelet sub-bands as follows:

f i; jð Þ =
∑
L

l=−L
∑
K

k=−K
w l; kð Þ × jys;d i + l; j + kð Þj
∑
L

l=−L
∑
K

k=−K
w l; kð Þ

ð5Þ

In the literature, the local mean also is used for improving the
wavelet coefficients' information in the shrinkage step [19,20] and
[21]. Fig. 2 shows the difference between the fuzzy feature and local
mean for distinguishing between important coefficients, which
belong to edge structure and noisy coefficient in wavelet transform
domain. As it can be seen in Fig. 2, the new fuzzy feature can
effectively distinguish between edge structure and noise compare to
the local mean.
2.2. Fuzzy shrinkage rule

The second step in the wavelet denoising procedure usually
consists of shrinking the wavelet coefficients: the coefficients that
contain primarily noise should be reduced to negligible values, while
the ones containing a significant noise-free component should be
reduced less. Here, we use a fuzzy rule based on the fuzzy feature for
shrinking the wavelet coefficients.

Fuzzy logicwas proposed by Zadeh [32], and has application in a large
number of fields. The fuzzy sets and fuzzy rules form the knowledge base
of a fuzzy rule-based reasoning system. Fuzzy rules are linguistic IF-THEN
constructions thathave thegeneral form “IFATHENB”,whereAandBare
(collections of) propositions containing linguistic variables. A is called the
premise or antecedent and B is the consequence of the rule [33]. After
finding the fuzzy feature, we will form Linguistic IF-THEN rules for
shrinking wavelet coefficients as follows:

IF the fuzzy feature f(i, j) is large THEN shrinkage of wavelet
coefficients ys,d(i, j) is small.

In fact, the fuzzy feature indicates how coefficients in the noisy
sub-band should be shrunk. Fuzzy membership function (MF) is a
curve that defines how each point in the input space is mapped to a
membership value (or degree of membership) between 0 and 1.MF is
often given the designation of μ. The input space is sometimes referred
to as the universe of discourse, a fancy name for a simple concept. The
only condition a membership function must really satisfy is that it
must vary between 0 and 1. The function itself can be an arbitrary
curve whose shape we can define as a function that suits us from the
point of view of simplicity, convenience, speed and efficiency. MF is
built from several basic functions such as: piece-wise linear functions,
the Gaussian distribution function, the sigmoid curve, quadratic and
cubic polynomial curves.



Fig. 3. 3D curves to obtain best values for the K1 and K2 at the different noise variances, from top left, clockwise: 5, 15, 25, 35, 40, and 50.
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Here, we use the spline-based curve, which is a mapping on the
vector x, and is named because of its S- shape. The parameters T1 and
T2 locate the extremes of the sloped portion of the curve as given by:

μ xð Þ =

0 x≤ T1

2 ×
x−T1
T2−T1

� �2
T1 ≤ x≤ T1 + T2

2

1−2 × T2−
x

T2−T1

� �2 T1 + T2
2

≤ x≤ T2

1 x≥ T2

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

Finally, the estimated noise-free signal is obtained using the
following formula:

x̂s;d i; jð Þ = μ f i; jð Þð Þ × ys;d i; jð Þ ð7Þ

where s and d are scale and orientation ofwavelet sub-bands, and f(i, j)
is the fuzzy feature obtained using Eq. (5).
Fig. 4. K1 and K2 versus estimated noise variances
For building fuzzy membership function, two thresholds (T1 and
T2), must be determined. We found out that T1 and T2 are related with
the σn̂, which is the estimated noise variance. In order to find these
relations, we have done some experiments using test images. We
found out that T1 and T2 have nonlinear relation with the σn̂. For
achieving the nonlinear relation, we have tested our noise reduction
algorithm with the different noisy images. In each different noise
variance, we obtained best values for T1 and T2. As it can be observed
in Fig. 3, best values for K1 and K2 based on following equations are
obtained for different noise variances:

T1 = K1 × σ̂n ð8Þ

T2 = K2 × σ̂n ð9Þ

where K1 and K2 are constant values, and σn̂ is the estimated noise
variance using median estimator [12].

We use polynomial curve fitting in MATLAB toolbox, and fit a fifth
order polynomial on the points of K1 and K2 versus estimated noise
, and the fitted polynomials on these points.



Fig. 5. Noisy coefficients versus original ones in the different level of decompositions. From top left, clockwise: first level, second level, third level and fourth level of decomposition.

Table 1
The size of local window and level of wavelet decomposition at different noise levels.

Estimated noise variance 0bσ̂nb10 0bσ̂nb20 30bσ̂nb40 40bσ̂nb50

Window size 3×3 5×5 7×7 9×9
Level of decomposition N−5 N−4 N−3 N−2

N is the possible number of decomposition level for an image (for a 512×512 image,
N=8).
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variances (see Fig. 4). We use polynomial coefficients to obtain best
values for T1 and T2 at different noise variances:

T1 = ∑
5

i=1
p1i

× σ̂n
� �i !

× σ̂n ð10Þ

T2 = ∑
5

i=1
p2i

× σ̂n
� �i !

× σ̂n ð11Þ

where p1 and p2 are the polynomials coefficients:

p1 = −8:87e + 04;4:64e + 04;−8:5e + 03;595:8;−4:58;−0:0037;

p2 = 1:11e + 05;−6:67e + 04;1:52e + 04;−1:63e + 03;82:8;0:0027

When a noisy image passes low frequency filter banks of wavelet
transform at each level, it will be smoother, and therefore, noise and
high frequency regions in image (i.e. edges) are reduced. Fig. 5 shows
noisy coefficients versus original ones in the different level of wavelet
decomposition for a sample image. As it can be seen in Fig. 5, in
coarser level, linearity of this curve is increased, which means in
coarser level of wavelet decomposition, because of low-pass filtering
of the noisy image, it will be more similar to the noise-free image. For
this reason, we add a descending term to the T2. In other words,
wavelet coefficients in lower levels are less shrunk. Here, we use
exponential descending function for this purpose; however, it is
possible to use other descending functions:

T2 = ∑
5

i=1
p2i

× σ̂n
� �i !

× σ̂n × exp − l−1
T3

� �� �
ð12Þ

where l is the level of decomposition, and 8bT3b10.
In order to implement our fuzzy-shrink method, two parameters

(the size of local window for fuzzy feature extraction and level of
wavelet decomposition), must be defined. We found out that these
two parameters are directly related to the estimated noise variance
(using median estimator). Therefore, we use an adaptive method for
selecting the parameters. Indeed, this method is a simple fuzzy IF-
THEN rule, which assigns smaller local window and smaller level of
decomposition when the estimated noise variance is small, and vice
versa. Table 1 shows the choices for the size of local window and level
of wavelet decomposition in the different noise variances, which are
obtained using test images and try and error.

2.3. Post-processing

Processing artifact usually result from a modification of the spatial
correlationbetweenwavelet coefficients (often causedby zeroingof small
neighboring coefficients) or using DWT, which is shift invariance andwill
cause some visual artifacts (such as Gibbs phenomena) in thresholding-
based denoising. For this reason, we use a fuzzy filter on the results of our
fuzzy-shrink algorithm to reduce artifacts to some extent. First, we use a
window of size (2 L+1)×(2 K+1) centered at (i, j) to filter the current
image pixel at position (i, j). Next, we calculate the similarity of
neighboring pixels to the center pixel using following formula:

m l; kð Þ = exp − X̂ i; jð Þ−X̂ i + l; j + kð Þ
Thr

 !2 !
ð13Þ

where X̂(i,j) and X ̂(i+ l, j+k) are central pixel and neighbor pixels in
the denoised image, respectively. N is the number of pixels in the local
window k∈ [−K…K], and l∈ [−L…L], and 2.55bThrb7.65.



Table 2
Some well-known triangular norms.

T-norms Operation

Minimum min(x,y)
Algebraic product (x,y)

Weak min x; yð Þ if max x; yð Þ = 1

0 otherwise

(

Bounded sum max(0,x,y−1)
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According the fuzzy feature, we can get adaptive weight w(l,k) for
each neighboring coefficient:

w l; kð Þ = m l; kð Þ × s l; kð Þ ð14Þ

where s(l,k) is obtained using Eq. (3).
Finally, the output of post-processing step is determined as

follows:

X̃ i; j; cð Þ =
∑
L

l=−L
∑
K

k=−K
w l; kð Þ × X̂ i + l; j + k; cð Þ

∑
L

l=−L
∑
K

k=−K
w l; kð Þ

ð15Þ

where X̂ is the denoised image, which is obtained via our fuzzy-shrink
algorithm.

3. Multi-channel image denoising

In this section, we consider image with C channels. Typically, C is
equal to three-color channels for RGB images, but for biological
(fluorescence) and multi-channel satellite images, C might be larger.
We denote these multi-channel images by:

X = x i; j;1ð Þ;x i; j;2ð Þ…x i; j;Cð Þ½ � ð16Þ
Fig. 6. Test images used in the experiments. From top left, clockw
These images are corrupted by an additive Gaussian white noise
following a normal law defined by a zero mean and a known σ2

variance, that is n∼N(0,σ2):

N = n i; j;1ð Þ;n i; j;2ð Þ…n i; j;Cð Þ½ � ð17Þ

We denote the resulting noisy image by:

Y = X + N ð18Þ

Due to the linearity of the wavelet transform, additive noise in the
image domain remains additive in the transform domain. Thenwe can
model the additive noise in the transform domain as:

Ys;d = Xs;d + Ns;d ð19Þ

where s and d are the scale and orientation of wavelet sub-bands.
The easiest method for denoising multi-channel image is simply to

apply an existing denoising algorithm separately in each channel.
However, this solution is beyond optimal, due to the presence of
strong common information between the various channels.

In literatures, inter-channel information in both spatial and
wavelet domain is used for image denoising. S. Schulte et al. used a
fuzzy filter in spatial domain for multi-channel image denoising. The
filter consists of two sub-filters. The first sub-filter computes the fuzzy
distance between the color components of the central pixel and its
neighborhood. These distances determine to what degree each
component must be corrected. The second sub-filter corrects pixels
where the color components differences are corrupted so much that
they appear as outliers in comparison to their environment [1].
Luisier's et al. multi-channel Sure-Let work follows their SURE-LET
approach [16] where the denoising algorithm is parameterized as a
linear expansion of thresholds (LET) and optimized using Stein's
unbiased risk estimate (SURE). The proposed wavelet thresholding
function is point-wise and depends on the coefficients of same
location in the other channels, as well as on their parents in the
ise: Barbara, Peppers, Boat, Goldhill, Cameraman and Zelda.
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coarser wavelet sub-band [34]. Pizurica et al. have also adapted their
original ProbShrink by including the inter-channel dependencies in
the definition of their local spatial activity indicator [20].

3.1. Fuzzy multi-channel feature

In multi-channel images, different channels are correlated: an
image discontinuity from one channel is probably to occur in at least
some of remaining channels. As for this reason and uncorrelated
nature of noise, we use a new feature to extend our method for
denoising of multi-channel images.

Improving wavelet coefficients' information in the shrinkage step
is the main idea. We use two fuzzy features for this purpose. The first
feature is similar to the fuzzy feature for single channel image
denoising, which is a nonlinear averaging in the local neighborhood of
central pixels as:

f1 i; j; cð Þ =
∑
L

l=−L
∑
K

k=−K
w l; k; cð Þ × jys;d i + l; j + k; cð Þj
∑
L

l=−L
∑
K

k=−K
w l; k; cð Þ

ð20Þ

where w(i, j,c) is obtained from Eq. (5), and C is the number of image
channels. In addition, we use estimated noise variance in each channel
σn̂
c for calculating the magnitude similaritym(l,k,c) in Eq. (2). In other

words, we use the estimated noise variance in each channel for
calculating its corresponding weights, separately.

The second fuzzy feature that we have used for multi-channel
image denoising is defined as:

f2 i; jð Þ =
∑
C

c=1
∑
L

l=−L
∑
K

k=−K
∏
C

c=1
w l; k; cð Þ

� �
× jys;d i + l; j + k; cð Þj

 !

C × ∑
L

l=−L
∑
K

k=−K
∏
C

c=1
w l; k; cð Þ

� �
ð21Þ

The second fuzzy feature equally is used to shrink wavelet
coefficients in each channel. In fact, for denoising one channel, the
second feature simultaneously takes the remaining channels' infor-
mation into account in the denoising process. Then, we use the
Takagi–Sugeno model based on the two fuzzy features for shrinking
wavelet coefficients [35].

3.2. Fuzzy shrinkage rule

Having the fuzzy features, we will define Linguistic IF-THEN rules
for shrinking wavelet coefficients in each channel as follows:

IF f1(i, j,c) (the first fuzzy feature) is large AND f2(i, j) (the second
fuzzy feature) is large THEN shrinkage of wavelet coefficient in
channel c i.e. ys,d(i, j,c) is small.

The idea behind this simple fuzzy rule is to assign small shrinkage
weights to the wavelet coefficients, which have similar values to the
neighbors and corresponding coefficients in the remaining channels.
For color images, it is important to treat pixels as color components
not as three separate colors. When only the separate channels are
considered, more artifacts are introduced.

For building standard rule from linguistic rule, each linguistic value
is represented by a membership function. The membership functions
that are used to represent the two fuzzy sets of large f1(i, j,c) (the first
fuzzy feature) and large f2(i, j) (the second fuzzy feature), are denoted
as μ(f1(i, j,c)) and μ(f2(i, j)), respectively.

Here, we use the spline-based curve as fuzzy membership
function, which is a mapping on the vector x, and is named because
of its S-shape. The parameters T1 and T2 locate the extremes of the
sloped portion of the curve, as given by Eq. (7). For the pair of values
(μ(f1(i, j,c)),μ(f2(i, j))), the degree of satisfaction of the antecedent
part of the rule determines the firing strength of the rule:

τ i; j; cð Þ = f1 i; j; cð Þ AND f2 i; jð Þ ð22Þ

The AND operation is typically implemented as minimum, but any
other triangular norms (t-norm) may be used. Originally, t-norms
appeared in the context of probabilistic metric spaces [36]. Then
they were used as a natural interpretation of the conjunction in the
semantics of mathematical fuzzy logics and they are used to combine
criteria in multi-criteria decision making [37]. Some well-known
triangular norms are shown in Table 2. In such applications, the
minimum or product t-norm is usually used because of a lack of
motivation for other t-norms [36]. We have chosen algebraic product
for the AND operation, because it is the standard semantics for strong
conjunction in product fuzzy logic and continues as a function.

τ i; j; cð Þ = f1 i; j; cð Þ × f2 i; jð Þ ð23Þ

Finally, the estimated noise-free signal is obtained using the
following formula:

x̂s;d i; j; cð Þ = τ i; j; cð Þ × ys;d i; j; cð Þ ð24Þ

Similar to single channel image denoising, for building fuzzy
membership function we used test images in different noise levels, to
obtain best values for the thresholds. In addition, in the post-
processing step we use the following formula to calculate the
similarity of neighboring pixels to the center pixel instead of using
Eq. (13):

m l; kð Þ = ∏
C

c=1
exp − X̂ i; j; cð Þ−X̂ i + l; j + k; cð Þ

Thr

 !2 !
ð25Þ

where X ̂(i,j,c) and X ̂(i+l,j+k,c) are central pixel and neighbor pixels
in the denoised image of channel c, respectively. N is the number of
pixels in the local window k∈ [−K…K], and l∈ [−L…L], and
2.55bThrb7.65.

4. Experimental results

In this section, we compare our fuzzy denoising algorithm
with some of the best state-of-the-art techniques. First, we demon-
strate the results of single channel image denoising algorithm, and
then, the results of multi-channel image denoising will be illustrated.
Finally, the computation time of different algorithms will be
discussed.

4.1. Single channel image denoising results

In this section, we compare our single channel image denoising
algorithm with some of the best state-of-the-art techniques: Sendur's et
al. bivariate MAP estimator with local variance estimation [18], Pizurica's
ProbShrink [20], Luisier's et al. Sure-Let [16], Chen's et al. NeighShrink [19],
Fan's HMT [24] and Portilla's BLS-GSM [22]. Besides these methods, there
are other promising algorithms such as Dabov's BM3D [38], Takeda's
kernel regression [39], and Elad's K-SVD [40]. Here, we have only used
previous wavelet-based methods for a fair comparison.

It should be mentioned that for comparing some methods, which
are proposed in the discrete wavelet transform domain, we use a
critically sampled orthonormal wavelet basis with eight vanishing
moments (sym8) over four decomposition stages in our fuzzy-shrink
method. In addition, for a fair comparison between methods, which
have used a redundant wavelet transform, we use dual-tree discreet
wavelet transform over four decomposition stages.



Table 3
Comparison of some of the most efficient denoising methods.

σn 5 10 15 20 25 30 50 5 10 15 20 25 30 50

Method Barbara 512×512 Peppers 512×512

Input PSNR 34.14 28.11 24.61 22.13 20.30 18.78 14.75 34.21 28.21 24.74 22.30 20.41 18.92 14.86
HMT (DWT) 31.62 28.18 26.20 25.05 24.27 23.80 22.54 34.34 32.15 30.52 29.23 28.26 27.44 25.01
NeighShrink (DWT) 32.69 29.04 26.87 25.24 24.02 23.33 21.91 33.39 31.49 29.97 28.66 27.62 26.73 24.42
ProbShrink (DWT) 36.00 31.57 29.65 28.06 27.01 26.15 23.63 35.38 33.26 29.88 29.22 28.45 27.93 25.92
Sure-let (DWT) 36.71 32.18 29.66 27.98 26.76 25.83 23.70 35.74 33.66 32.21 31.00 29.88 28.88 25.89
BLS-GSM Non-Redundant 36.63 32.29 29.88 28.24 27.05 26.14 23.82 36.69 33.76 32.05 30.78 29.77 28.94 25.96
Fuzzy-Shrink (DWT) 36.72 32.58 30.21 28.68 27.48 26.57 23.93 36.80 33.72 32.01 30.75 29.69 28.79 25.91

36.90 32.87 30.45 28.90 27.63 26.68 23.91 37.08 34.28 32.50 31.20 30.05 29.08 26.10
Bi-Shrink (DT-DWT) 36.75 33.17 30.85 29.13 27.74 26.47 22.88 37.07 33.52 31.00 29.19 27.51 26.13 22.41
BLS-GSM Best Redundant 37.62 33.66 31.31 29.66 28.40 27.38 24.70 37.17 34.46 32.89 31.71 30.75 29.86 27.71
Fuzzy-Shrink (DT-DWT) 37.81 33.96 31.72 30.22 29.04 28.04 25.38 37.52 34.43 32.71 31.55 30.51 29.62 26.74

37.75 33.99 31.81 30.31 29.11 28.11 25.31 37.56 34.68 33.09 31.79 30.71 29.77 26.86

Method Boat 512×512 Zelda 512×512

Input PSNR 34.15 28.14 24.66 22.17 20.28 18.74 14.58 34.17 28.16 24.67 22.24 20.33 18.83 14.73
HMT (DWT) 34.02 30.88 28.91 27.64 26.70 25.95 23.98 38.20 35.17 33.33 32.07 31.11 30.31 27.78
NeighShrink (DWT) 31.94 29.22 27.50 26.33 25.46 24.76 22.87 36.18 33.57 31.92 30.75 29.95 29.03 26.74
ProbShrink (DWT) 34.51 32.03 30.19 28.88 27.76 26.97 24.70 37.56 35.19 33.60 32.36 31.48 30.66 27.93
Sure-let (DWT) 35.02 32.55 30.72 29.46 28.43 27.63 25.39 38.55 35.89 34.24 32.98 31.97 31.03 28.17
BLS-GSM Non-Redundant 36.13 32.53 30.54 29.14 28.09 27.27 25.13 38.43 35.67 33.94 32.74 31.83 30.93 28.24
Fuzzy-Shrink (DWT) 36.26 32.54 30.52 29.15 28.11 27.26 24.96 38.51 35.69 33.97 32.79 31.82 30.95 28.20

36.30 33.01 30.93 29.47 28.38 27.48 25.07 38.83 36.12 34.40 33.12 32.10 31.15 28.32
Bi-Shrink (DT-DWT) 35.92 32.97 30.71 29.03 27.55 26.27 22.84 38.13 34.80 32.32 30.27 28.76 27.31 23.25
BLS-GSM Best Redundant 36.86 33.38 31.40 30.01 28.94 28.09 25.90 39.21 36.68 35.10 33.93 33.01 32.26 30.11
Fuzzy-Shrink (DT-DWT) 37.02 33.49 31.53 30.13 28.96 28.21 25.56 39.23 36.41 34.96 33.62 32.71 31.86 28.93

36.89 33.67 31.75 30.24 29.18 28.46 25.45 39.03 36.64 35.18 33.85 32.88 31.98 29.12

Method Cameraman 256×256 Goldhill 512×512

Input PSNR 34.12 28.27 24.88 22.44 20.55 19.02 14.91 34.14 28.13 24.64 22.15 20.27 18.73 14.68
HMT (DWT) 35.93 31.57 29.17 27.56 26.26 25.34 22.63 34.74 31.28 29.45 28.29 27.43 26.81 25.06
NeighShrink (DWT) 32.18 28.59 26.79 25.52 24.57 23.65 21.43 31.61 29.17 27.49 26.86 25.98 25.48 23.82
ProbShrink (DWT) 36.52 32.01 29.37 27.90 26.77 25.82 23.11 35.20 31.99 30.03 28.83 27.88 27.14 25.20
Sure-let (DWT) 35.70 32.21 30.12 28.52 27.39 26.51 23.47 35.80 32.54 30.71 29.51 28.60 27.89 25.82
BLS-GSM Non-Redundant 37.22 32.56 30.09 28.49 27.31 26.41 23.32 36.16 32.41 30.52 29.28 28.37 27.66 25.77
Fuzzy-Shrink (DWT) 36.93 32.35 29.88 28.24 27.08 26.01 23.21 36.18 32.29 30.34 29.14 28.20 27.44 25.53

37.74 33.11 30.45 28.66 27.42 26.31 23.38 36.35 32.73 30.74 29.41 28.36 27.56 25.67
Bi-Shrink (DT-DWT) 36.61 32.33 29.96 28.03 26.65 25.27 21.83 35.28 32.20 30.14 28.45 27.06 26.07 22.66
BLS-GSM Best Redundant 37.40 33.03 30.67 29.16 28.05 27.17 24.81 36.77 33.04 31.15 29.90 28.98 28.27 26.48
Fuzzy-Shrink (DT-DWT) 37.65 33.21 30.75 29.24 27.96 26.91 23.83 36.82 33.14 31.25 29.96 29.03 28.35 26.15

37.77 33.63 31.17 29.55 28.26 27.22 24.21 36.56 33.29 31.37 30.11 29.16 28.47 26.23

Output PSNRs have been averaged over five noise realizations. The best redundant results are obtained using the BLS-GSM 3×3 with an 8-orientations full steerable pyramid [22]. In
addition, the results in the second row for our fuzzy method are obtained after post-processing.

Fig. 7. Average PSNRs of different methods for the six test images used in the
experiments.
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The standard grayscale test images: “Barbara”, “Peppers”, “Boat”,
“Zelda”, “Goldhill” (512×512) and “Cameraman” (256×256) were
chosen as the experimental dataset (Fig. 6), which are captured by
simulated additive Gaussian white noise at seven different power
levels σn=[5,10,15,20,25,30,and 50]. We objectively measured the
experimental results by the peak signal-to-noise ratio (PSNR) in
decibels (dB), which is defined:

PSNR = 10 × log10
2552

MSE

 !
ð26Þ

where

MSE =
1

M × N
∑
M

i=1
∑
N

j=1
X̂ i; jð Þ−X i; jð Þ
� �2 ð27Þ

where X(i, j) is the original image, X ̂(i,j) is the estimated noise-free
signal, and M×N is the number of pixels.

The denoising process has been performed over five different noise
realizations for each standard deviation and the resulting PANRs are
averaged over these five runs. The parameters of each method have
been set according to the values given by their respective authors in
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the corresponding referred papers. Table 3 summarizes the results
obtained. As it can be observed in Table 3, our method, which uses a
simple fuzzy rule without taking into account inter-scale dependen-
cies, has better results in almost all cases. In addition, Fig. 7 shows
average PSNRs of different methods for the six images used in the
experiments at the different noise variances.

When looking closer at the results, we observe the following:

• Our method outperforms the Fan's HMT, which integrates both
inter- and the intra-scale dependencies more than +1.76 dB on
average.

• Our method gives better results than Chen's et al. NeighShrink,
which uses only intra-scale dependency (average gain of+2.99 dB).
Fig. 8. A part of noise-free 512×512 “Barbara” image, noisy version of it: PNSR=18.78, an
Denoised result using the Sure-Let (DWT): PSNR=25.83, denoised result using the BLS-GSM
PSNR=26.68 (middle-row, left to right). Denoised result using the Bi-Shrink (DT-DWT): P
denoised result using our Fuzzy-Shrink algorithm: PSNR=28.11 (bottom-row, left to right
• Our method gives better results than Pizurica's ProbShrink, which
integrates the intra-scale dependency (average gain of +0.662 dB).

• Our method outperforms the Luisier's et al. Sure-Let, which
integrates only the inter-scale dependency more than +0.321 dB.

• Our method outperforms the Portilla's BLS-GSM (Non-Redundant),
which integrates both inter and the intra-scale dependencies more
than +0.286 dB.

• Our method outperforms the Portilla's BLS-GSM (Best Redundant),
which integrates both inter and the intra-scale dependencies more
than +0.122 dB.

• Our method provides better results than Sendur's Bi-Shrink, which
integrates both inter and the intra-scale dependencies (average gain
of +2.04 dB).
d denoised result using the ProbShrink (DWT): PSNR=26.15 (top-row, left to right).
(Non-Redundant): PSNR=26.14, and denoised result using our Fuzzy-Shrink (DWT):
SNR=26.47, denoised result using the BLS-GSM (Best Redundant): PSNR=27.38, and
).



Fig. 9. Test images used in the experiments. From left to right: Lena, Peppers, Baboon, and first band of a Landsat image showing a part of southern California.
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• The best result is related to the “Barbara” image, which has many
texture areas and the fuzzy feature can effectively distinguish these
regions from noise. Also in the results for images, which have many
smooth regions such as “Peppers” and “Cameraman”, the differences
between the methods are smaller.

For subjective evaluation of methods, there are two important
criteria: the visibility of processing artifacts and preserving image
edges. Fig. 8 illustrate the results of noisy “Barbara” image from
different methods. Additionally, we would like to stress that our new
fuzzy method exhibits the fewest number of artifacts and preserves
most of edges compared to other methods.
4.2. Multi-channel image denoising results

In the satellite systems, it may be desirable to perform denoising
before the image compression step in order to improve the
compression efficiency. Therefore, we use both color and multispec-
tral satellite images for experimental dataset (Fig. 9), which was
captured by simulated additive Gaussian white noise.

In this section, we compare our multi-channel fuzzy denoising
method with three state-of-the-art wavelet-based techniques:
Pizurica's multi-channel ProbShrink [20] and Luisier's et al. multi-
channel Sure-Let [34]. In addition, we compare our multi-channel
Table 4
Comparison of multi-channel image denoising algorithms (same noise level in each channe

σn 5 10 15 20 25 30

Method Lena 512×512

Input PSNR 34.15 28.16 24.69 22.23 20.37 18.86
ProbShrink-M (DWT) 35.61 33.18 31.40 30.25 29.31 28.51
Sure-let-M (DWT) 37.86 34.64 32.40 30.79 29.60 28.64
Fuzzy-Shrink-M (DWT) 36.81 33.83 32.08 30.88 30.01 29.31

36.75 34.21 32.65 31.50 30.60 29.80
BLS-GSM Best Redundant 37.11 34.23 32.72 31.56 30.55 29.95
Fuzzy-Shrink-M (DT-DWT) 37.56 34.72 33.16 32.13 31.17 30.35

37.42 34.87 33.29 32.23 31.28 30.46

Method Baboon 512×512

Input PSNR 34.15 28.16 24.66 22.21 20.33 18.79
ProbShrink-M (DWT) 33.11 29.03 26.44 24.87 23.73 22.89
Sure-let-M (DWT) 34.46 29.78 26.82 25.00 24.03 23.27
Fuzzy-Shrink-M (DWT) 34.01 29.52 27.25 25.56 24.41 23.47

33.86 29.42 27.44 26.02 24.86 23.96
BLS-GSM Best Redundant 35.01 30.13 27.56 26.03 24.75 24.01
Fuzzy-Shrink-M (DT-DWT) 34.33 29.67 27.66 26.22 25.25 24.57

34.21 29.61 27.56 26.38 25.31 24.72

Output PSNRs have been averaged over five noise realizations. The best redundant results a
and we have simply applied the BLS-GSM in each channel, independently. In addition, the r
image denoising algorithm with the Portilla's BLS-GSM [22], which
denoised each channel, separately.

It should be mentioned that for comparing ProbShrink [20] and
Sure-Let [34] methods, which are proposed in the discrete wavelet
transform domain, we use a critically sampled orthonormal wavelet
basis with eight vanishing moments (sym8) over four decomposition
stages in our fuzzy-shrink method. On the other hand, BLS-GSM
method has used a redundant wavelet transform (an 8-orientations
full steerable pyramid [22]). Therefore, for a fair comparison between
BLS-GSM and our fuzzy-shrink methods, we use dual-tree discreet
wavelet transform over four decomposition stages for wavelet
analysis.

Wemeasured the experimental results by the peak signal-to-noise
ratio (PSNR) in decibels (dB), objectively, which is defined by Eq. (26),
and MSE is defined as:

MSE =
1

C × M × N
∑
C

c=1
∑
M

i=1
∑
N

j=1
X̂ i; j; cð Þ−X i; j; cð Þ
� � !2

ð28Þ

Table 4 summarizes the results obtained. As it can be observed in
Table 4, our fuzzy multi-channel image denoising method is already
competitive with the best techniques.
l).

50 5 10 15 20 25 30 50

Peppers 512×512

14.82 34.25 28.25 24.78 22.33 20.47 18.98 15.01
26.08 34.86 31.49 30.35 29.39 28.12 27.82 25.29
26.20 36.62 33.35 31.79 30.35 29.16 28.28 25.61
26.77 36.13 32.95 31.26 30.14 29.17 28.49 25.86
27.14 36.05 33.21 31.53 30.51 29.61 28.95 26.15
27.89 36.12 33.06 31.63 30.52 29.86 29.03 26.98
27.76 36.57 33.41 31.94 30.84 30.01 29.21 26.64
27.92 36.41 33.62 32.23 30.99 30.24 29.45 26.78

Southern California 512×512

14.75 34.26 28.31 24.81 22.33 20.44 18.92 14.88
20.94 33.29 29.49 27.13 25.54 24.31 23.43 21.06
21.43 33.36 29.94 27.74 26.15 24.95 24.05 21.66
21.49 35.21 30.72 28.25 26.54 25.31 24.41 21.99
21.79 35.35 31.06 28.41 26.86 25.64 24.76 22.42
21.62 35.31 30.79 28.31 26.65 25.32 24.68 22.13
22.28 35.23 31.39 28.94 27.47 26.15 25.23 22.68
22.45 35.19 31.44 29.21 27.69 26.41 25.48 22.84

re obtained using the BLS-GSM 3×3 with an 8-orientations full steerable pyramid [22],
esults in the second row for our fuzzy method are obtained after post-processing.



Fig. 10. Average PSNRs of different methods for the four test images used in the
experiments.

Fig. 11. A part of noise-free “Lena” image, noisy version of it, PNSR=18.86, denoised result u
multi-channel Sure-Let (DWT): PSNR=28.64 (second row). Denoised result using our mu
channel BLS-GSM (Best Redundant): PSNR=29.95 (third-row). Denoised result using our m
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When looking closer at the results, we observe the following:

• Our method (Fuzzy-Shrink using DWT) provides better results than
Pizurica's multi-channel ProbShrink, which integrates the intra-scale
dependencies (average gain of +1.199 dB).

• Our method (Fuzzy-Shrink using DWT) outperforms the Luisier's et
al. multi-channel Sure-Let, which is used the inter-scale and inter-
channel dependencies more than +0.449 dB on average.

• Our method (Fuzzy-Shrink using DT-DWT) also gives better results
than Portilla's BLS-GSM (Best Redundant), which is used for each
channel separately (average gain of +0.435 dB).

• The worst result is obtained for the “Baboon” image. Our
explanation for this is that the “Baboon” image is very noisy (i.e.
texture area in this image is similar to noise), and when we use the
fuzzy features for taking into account the neighbor dependency, it
will be smoother in the resulting image.

For better judgment between different methods, Fig. 10 shows
average PSNRs of different methods for the test images used in the
experiments. In addition, Figs. 11 and 12 illustrate the results of noisy
color “Lena” and Multispectral “southern California” images from
different methods. As it can be observed in Figs. 11 and 12, our multi-
channel image denoising is successful in preserving image edges and
fewer artifacts as visual criteria as compared to other methods.
sing the multi-channel ProbShrink (DWT): PSNR=28.51, and denoised result using the
lti-channel Fuzzy-Shrink (DWT): PSNR=29.80, and denoised result using the single-
ulti-channel Fuzzy-Shrink (DT-DWT): PSNR=30.46, and the original “Lena” image.



Fig. 12. A part of first band of noise-free 512×512 multispectral “southern California” image, noisy version of it: PNSR=18.92 (first-row). Denoised result using the multi-channel
ProbShrink (DWT): PSNR=24.43, and denoised result using the multi-channel Sure-Let (DWT): PSNR=24.05 (second row). Denoised result using our multi-channel Fuzzy-Shrink
(DWT): PSNR=24.76, and denoised result using the single-channel BLS-GSM (Best Redundant): PSNR=24.68 (third-row). Denoised result using our multi-channel Fuzzy-Shrink
(DT-DWT): PSNR=25.48, and the original “Southern California” image (last-row).

Table 5
Relative computation time of various denoising techniques.

Method Unite of time

256×256 images 512×512 images

HMT (DWT) 1.89 4.37
NeighShrink (DWT) 3.85 5.11
ProbShrink (DWT) 4.13 5.42
Sure-let (DWT) 0.45 0.93
BLS-GSM (Non-Redundant) 0.72 2.39
Fuzzy-Shrink (DWT) 0.43 1.59
Bi-Shrink (DT-DWT) 0.51 1.35
BLS-GSM (Best Redundant) 4.45 19.12
Fuzzy-Shrink (DT-DWT) 1.70 3.17
ProbShrink-M (DWT) 11.4 17.2
Sure-let-M (DWT) 1.47 2.41
Fuzzy-Shrink-M (DWT) 2.1 4.63
Fuzzy-Shrink-M (DT-DWT) 5.12 10.11

The computation times have been averaged over ten runs.
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4.3. Computation time

It is also interesting to evaluate the various denoising techniques
from a practical point of view that is the computation time. Indeed,
the results achieved by overcomplete representation are admittedly
superior than the ones obtained by critically sampled wavelet
transforms, but their weakness is the time they require (19.12 s for
512×512 images to obtain the redundant result of BLS-GSMmethod).
With our simple fuzzy method, the total denoising process (including
four iterations of an orthonormal wavelet transform) lasts approxi-
mately 0.43 s for 256×256 images (1.59 s for 512×512 images). In
addition, the redundant results of our fuzz-shrink algorithm using DT-
DWT are also promising (1.70 s for 256×256 images and 3.17 s for
512×512 images).

Table 5 summarizes the relative computation time of the various
methods considered in this paper. All computations have been
performed on a Pentium IV personal computer, using a 2.00-GHz
processor, running Windows Vista. Note that our fuzzy-shrink
algorithm is fully implemented in Matlab software. As it can be seen
in Table 5, our fuzzy approach is placed between the methods with
low computation time.
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5. Conclusion

In this paper, we propose a newwavelet shrinkage algorithm using
intra-scale dependency as a fuzzy feature, and then, shrinkage
wavelet coefficients with corresponding fuzzy membership function,
for single channel image denoising. We also extended our image
denoising algorithm for multi-channel images. In multi-channel
images, we use inter-channel relation as a new feature and improve
wavelet coefficients' information at the shrinkage step. We use the
DT-DWT for wavelet analysis, because it is shift-invariant, and has
more directional sub-bands compared to the DWT. In other words,
proposing a new method for shrinking wavelet coefficients in the
second step of the wavelet-based image denoising, for both single and
multi-channel images, is the main novelty of this paper. The
comparison of the denoising results obtained with our algorithm,
and with the best state-of-the-art methods, demonstrate the
performance of our fuzzy approach, which gave the best output
PSNRs for most of the images. In addition, the visual quality of our
denoised images exhibits the fewest number of artifacts and preserves
most of edges compared to other methods. A future improvement of
the proposing method is the ability of incorporate more information
(e.g. inter-scale dependency of wavelet coefficients) by adding other
fuzzy rules to improve the noise reduction performance. Future work
should be done on this promising issue.
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