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Abstract

Explicit deformations of the Lorentz (Conformal) algebra are performed by re-
curring to Clifford algebras. In particular, deformations of the boosts generators
are possible which still retain the form of the Lorentz algebra. In this case there is
an invariant value of the energy that is set to be equal to the Planck energy. A dis-
cussion of Clifford-Hopf κ-deformed quantum Poincare algebra follows. To finalize
we provide further deformations of the Clifford geometric product based on Moyal
star products associated with noncommutative spacetime coordinates.
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Sometime ago Magueijo and Smolin [5] proposed a modification of special relativity
in which a physical energy, which may be the Planck energy, joins the speed of light
as an invariant. This was accomplished by a nonlinear modification of the action of the
Lorentz group on momentum space, generated by adding a dilatation to each boost in such
a way that the Planck energy remains invariant. The associated algebra has unmodified
structure constants, and they highlighted the similarities between the group action found
and a transformation previously proposed by Fock [6].

In this work we shall take a different approach and construct deformations of the
Lorentz (Conformal) algebra by recurring solely to Clifford algebras and leading to an
invariant value of the energy. A discussion of Clifford-Hopf κ-deformed quantum Poincare
algebra follows based on the work by [2].

We begin by reviewing [7] how the conformal algebra in four dimensions admits a
Clifford algebra realization; i.e. the generators of the conformal algebra can be expressed
in terms of the Clifford algebra basis generators. The conformal algebra in four dimensions
so(4, 2) is isomorphic to the su(2, 2) algebra.
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Let ηab = (−,+,+,+) be the Minkowski spacetime (flat) metric in D = 3 + 1-
dimenisons. The epsilon tensors are defined as ε0123 = −ε0123 = 1, The real Clifford
Cl(3, 1, R) algebra associated with the tangent space of a 4D spacetime M is defined by
the anticommutators

{ Γa, Γb } ≡ Γa Γb + Γb Γa = = 2 ηab (1.1a)

such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (1.1b)

Γabcd = εabcd Γ5; Γab =
1

2
(ΓaΓb − ΓbΓa). (1.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (1.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1

2
εabcd Γcd, (1.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (1.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (1.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (1.2f)

Γab Γcd = εabcd Γ5 − 4δ
[a
[c Γ

b]
d] − 2δabcd . (1.2g)

δabcd =
1

2
(δac δ

b
d − δad δ

b
c ). (1.2.h)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum of the
anti-symmetrizated products of the gammas.

At this stage we may provide the relation among the Cl(3, 1) algebra generators and
the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D . It is well known to the experts that
the operators of the Conformal algebra can be written in terms of the Clifford algebra
generators as

Pa =
1

2
Γa (1 − Γ5); Ka =

1

2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1

2
Γab. (1.3)

Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D is
the dilation generator and Lab are the Lorentz generators. In order to match the physical
dimensions of momentum in (1.3) a mass parameter should be introduced. For convenience
it is set to unity as well as c = 1. The total number of generators is respectively 4 + 4 +
1 + 6 = 15. From the above realization of the conformal algebra generators (1.3), the
explicit evaluation of the commutators yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab
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[Pa, Pb] = 0; [Ka, Kb] = 0

[Lab, Lcd] = gbc Lad − gac Lbd + gad Lbc − gbd Lac, . . . (1.4)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations. We should notice
that the Ka, Pa generators in (1.3) are both comprised of Hermitian Γa and anti-Hermitian
±ΓaΓ5 generators, respectively. The dilation D operator is Hermitian, while the Lorentz
generator Lab is anti-Hermitian. The fact that Hermitian and anti-Hermitian generators
are required is consistent with the fact that U(2, 2) is a pseudo-unitary group

If one wishes to deform the Clifford generators ΓA one may choose for deformation
generator the following

F =
P0

2κ
Γ5 (1.5)

such that upon exponentiation it yields

Γ̃A = eF ΓA e
−F = e[F, ] ΓA =

ΓA + [ F, ΓA ] +
1

2!
[ F, [ F, ΓA ] ] +

1

3!
[ F, [ F, [ F, ΓA ] ] ] + . . . (1.6)

The first order deformations of the Lorentz generators Γµν are

Γ̃µν = Γµν + [
P0

2κ
Γ5,Γµν ] = Γµν +

1

2κ
( ηµ0Pν − ην0Pµ )Γ5 (1.7)

From eq-(1.7) one can infer that Γ̃ij = Γij so that the rotation generators remain unde-
formed to first oder. Due to the vanishing commutator [P0 Γ5, Γij] = 0 the higher order
contributions remain zero and the rotation generators remain undeformed to all orders
Γij = Γ̃ij . The second order contributions to the deformed boosts are

1

4κ2
[ P0 Γ5 , [ P0 Γ5, Γ0i ] ] =

1

4κ2
[ P0 Γ5, Pi Γ5 ] = 0 (1.8)

and similar findings occur with the higher order nested commutators. Therefore, the
higher order contributions to the deformed boost generators are zero and one has then
that the deformed boosts are given by

Γ̃0i = Γ0i −
1

2κ
Pi Γ5 (1.9)

and the following commutator becomes

[Γ̃0i, P0] = Pi (1− P0

κ
) (1.10)

so that P0 = κ is an invariant energy under deformed boosts because the commutator
(1.10) vanishes when P0 = κ. The deformed boosts (1.9) can also be rewritten in terms
of the dilatation generator D = −1

2
Γ5 of eq-(1.3) as Γ̃0i = Γ0i + 1

κ
Pi D in agreement

with the results of [5].
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From eqs-(1.6, 1.7,1.9) one learns that

[Γ̃0i, Γ̃0j] = Γij = Γ̃ij (1.11)

and

[Γ̃ij, Γ̃0k] = [Γij, Γ̃0k] = − ηik Γ0j + ηjk Γ0i +
1

2κ
ηikPjΓ5 −

1

2κ
ηjkPiΓ5 =

ηjk Γ̃0i − ηik Γ̃0j (1.12)

such that the Lorentz algebra (1.11, 1.12) remains unmodified despite having deformed
the boost generators in eq-(1.9).

The procedure in this work is based entirely on Clifford algebras and differs from the
approach made by [5]. Many other deformations of the boosts/rotation generators are
possible. Some of these deformations will not affect the Lorentz (Conformal) algebra while
others will also deform the Lorentz (Conformal) algebra. Let us provide examples where
the Lorentz (Conformal) algebra is also modified. Choosing for instance the following
exponential operator

eF = eP0Γ03/κ (1.13)

it leads to

[ Γ̃03, P3 ] = [ Γ03 +
P3

κ
Γ30, P3 ] = P0 (1− P3

κ
) (1.14)

Let us study the higher order contributions to the deformed boost generators Γ̃0i, i =
1, 2, 3. Given

(Γ0)2 = −1, (Γ1)2 = (Γ2)2 = (Γ3)2 = 1, (Γ5)2 = 1, {Γ5, Γa} = 0 (1.15)

one can show that

(P0)2 =
1

4
(Γ0 − Γ0Γ5) (Γ0 − Γ0Γ5) = 0 (1.16)

and similarly

(P1)2 = (P2)2 = (P3)2 = 0 (1.17)

consequently the Clifford algebraic realization of the conformal algebra generators (1.3)
yields nilpotent momentum generators. As a result of the nilpotent conditions of eqs-
(1.16,1.17) the higher order contributions to the deformed boost generators are zero

1

2κ2
[ P0 Γ03 , [ P0 Γ03, Γ03 ] ] = 0 (1.18)

and similar findings occur with the higher order nested commutators. Hence the deformed
boost generator is given by Γ̃03 = Γ03− P3

κ
Γ03, and the deformed commutator to all orders

becomes
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[ Γ̃03, P3 ] = [ Γ03 −
P3

κ
Γ03, P3 ] = P0 (1− P3

κ
) (1.19)

such that P3 = κ is now an invariant momentum value under the deformed boost
generators Γ̃03 to all orders since the commutator (1.19) vanishes when P3 = κ. Despite
that there is an invariant momentum, there is now no condition on the energy because

[ Γ̃03, P0 ] = P3 (1.20)

as it occurs under ordinary Lorentz boost transformations.
Conversely, one can find a deformed boost generator such that there is an invariant

energy given by κ, with no no condition on the momentum. For example, let us choose
in this case F = eP3Γ03/κ instead of F = eP0Γ03/κ. Repeating the same process with the
new value of F one gets

[ Γ̃03, P0 ] = P3 (1− P0

κ
) (1.21)

such that the commutator (1.21) vanishes when P0 = κ leading to an invariant energy
P0 = κ, with no condition on the momentum since

[ Γ̃03, P3 ] = P0 (1.22)

as it occurs under ordinary Lorentz boost transformations. The key difference among
these three examples is that only in the case of deformed boost generators given by eq-
(1.5, 1.9) the Lorentz algebra (1.11, 1.12) still remains unmodified.

Next we will discuss why the procedure in this work (based entirely on Clifford al-
gebras) differs from the work [5]. Besides the nilpotent momentum generator conditions
given by eqs-(1.16, 1.17) one can also show that

Pa Pb =
1

4
(Γa − ΓaΓ5) (Γb − ΓbΓ5) = 0 (1.23)

after using eq-(1.15). Consequently the commutator in eq-(1.10) will then reduce to Pi,
as in ordinary boost transformations, since the term PiP0 = 0 in eq-(1.23) vanishes.
The latter result is also compatible with the condition PiΓ5 = −Pi resulting from the
momentum operators realization in eq-(1.3) and leading to a deformed boost Γ̃0i = Γ0i −
1

2κ
PiΓ5 = Γ0i + 1

2κ
Pi given by a linear combination of boosts and momentum generators.

Hence one must distinguish the momentum operator realization of Pa in terms of
Clifford algebra generators and the approach taken by [5] ; i.e. the operators P0, P1, P2, P3

are realized in terms 4×4 matrices associated with the Clifford algebra generators instead
of being the four momentum components corresponding to the momentum four-vector
pa = (po, p1, p2, p3) in momentum space. Upper case letters Pa belong to the momentum
operators realized in terms of Clifford generators (matrices) while lower case letters pa
belong to the momentum four-vector.

The latter approach by [5] recurs to a nonlinear modification of the action of the
Lorentz group on momentum space, generated by adding a dilatation to each boost in
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such a way that the Planck energy remains invariant. The deformed boost (nonlinear
in the momentum) is given in terms of the dilatation generator in momentum space
D = pj ∂

∂pj
as L̃0i = L0i + 1

κ
piD. This should be contrasted with our Clifford algebraic

realization Γ̃0i = Γ0i − 1
2κ
PiΓ5 = Γ0i + 1

κ
PiD = Γ0i + 1

2κ
Pi. A recent study of Lorentz

invariant deformations of momentum space can be found in [13].
Many approaches have been taken in order to formulate a consistent theory of quan-

tum gravity. At very high energies the gravitational effects can no longer be neglected and
spacetime is no longer a smooth manifold, but a fuzzy, noncommutative space [9]. Phys-
ical theories on such noncommutative manifolds require a new framework provided by
noncommutative geometry [10]. In this framework, the search for generalized (quantum)
symmetries that leave the physical action invariant leads to deformations of the Poincare
symmetry, with κ-Poincare symmetry being among the most extensively studied [3].

Let us discuss briefly these deformations of the Lorentz (Poincare algebra) from the
Clifford algebras perspective. The authors [2] formulated the κ-Poincare algebra as a
quantum Clifford-Hopf algebra, using the Wick isomorphism that relates quantum Clif-
ford algebras to their respective standard Clifford algebras. The Minkowski spacetime
quantum Clifford algebra structure associated with the conformal group and the Clifford-
Hopf alternative κ-deformed quantum Poincare algebra was investigated by [2]. The
resulting algebra Uq(SO(2, 3)) turned out to be equivalent to the deformed anti-de Sitter
algebra.

Quantum deformations of the Poincare algebra were introduced by [3] and followed by
the doubly special relativity (DSR), which contains two observer-independent parameters
: the velocity of light and the Planck length [4]. The DSR framework coincides with
the algebraic structure of the Poincare algebra κ-deformation, where the deformation
parameter κ is related to the Planck mass.

Quantum Clifford algebras are denoted as Cl(V,B), where B is an arbitrary bilinear
not necessarily symmetric form, and have been investigated in [8]. Let B = g +A, where
A = 1

2
(B−BT ) is the antisymmetric piece of the bilinear form. The B-dependent Clifford

product is defined as

γµ γν = ( gµν + Aµν ) 1 + γµ ∧ γν (1.24)

resulting in a deformed exterior product ∧̃ given by

γµ ∧̃ γν = Aµν 1 + γµ ∧ γν , Aµν = −Aνµ (1.25)

For example, the B = g + A dependent Clifford product γµγνγρ will now have the
extra terms Aµνγρ, Aµργν −Aνργµ in addition to the gµνγρ, gµργν − gνργµ and γµνρ terms.
Hence the algebra Cl(V,B) clearly differs from Cl(V, g)

It is possible to express every antisymmetric bilinear form A(u, v) as the contraction
of u ∧ v with F where F is an appropriately chosen grade-two element of the exterior
algebra Λ2(V ). The Wick isomorphism between the Quantum Clifford algebra Cl(V,B)
and the ordinary Clifford algebra Cl(V, g) given by [2]

Cl(V,B) = e−F∧ ∧ Cl(V, g) ∧ eF∧ (1.26)
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where the outer exponential is defined as

eF∧ = 1 + F +
1

2
F ∧ F +

1

3!
F ∧ F ∧ F + ..... (1.27)

and which is a finite series when dim V is finite. Full details of the construction of
κ-Poincare algebra as a quantum Clifford-Hopf algebra, using the Wick isomorphism
(1.26) can be found in [2]. Quantum Clifford algebras are essential tools which allow
us to construct quantum deformations of the (Conformal) Poincare algebra which has
been postulated as a fundamental symmetry in the theory of quantum gravity. Other
examples of quantum Clifford-Hopf algebras were found by [11] as the hidden quantum
group symmetry of the eight vertex free fermion model.

To finalize we shall provide further deformations of the Clifford geometric product
based on Moyal star products associated with noncommutative spacetime coordinates.
The associative and noncommutative Moyal star product when the (inverse) symplectic
form Ωµν = −Ωµν does not have an X-dependence is defined as

( A1 ∗ A2 )(Z) = exp
(

1

2
Ωµν ∂Xµ ∂Y ν

)
A1(X) A2(Y )|X=Y=Z =

∞∑
n=0

(1
2
)n

n!
Ωµ1ν1 Ωµ2ν2 .......... Ωµnνn (∂nµ1µ2......µn A1) (∂nν1ν2......νn A2) (1.28)

∂nµ1µ2......µn A1(Z) ≡ ∂µ1 ∂µ2 ...... ∂µn A1(Z). (1.29a)

∂nν1ν2......νn A2(Z) ≡ ∂ν1 ∂ν2 ...... ∂νn A2(Z). (1.29b)

For simplicity we shall take the very special case of canonical noncommutativity of the
spacetime coordinates [xµ, xν ]∗ = iΘµν = Ωµν = constants, such that the star product is
the standard Moyal one. In the particular case when Θ01 = L2

P = κ−2 6= 0, and the rest of
the Θµν components are set to zero, one can construct a star deformed Clifford product
by replacing the derivatives in eq-(1.28) by momentum operators. Due to the (nilpotent)
conditions in eqs-(1.16, 1.17, 1.23) one has in this particular case

γa ∗ γb = γa γb +
i

2κ2
[ (P0 γa) (P1 γb) − (P1 γa) (P0 γb) ] (1.30)

where P0 = 1
2
γ0(1 − γ5); P1 = 1

2
γ1(1 − γ5). The deformed commutator is [γa, γb]∗ =

γa ∗ γb − γb ∗ γa. In the case of D = 2 the product γa ∗ γb becomes γa γb and the
deformation is trivially zero. It remains to verify whether or not the deformed commutator
satisfies the Jacobi identities in higher dimensions than two.

Other star deformed Clifford products can be constructed using ordinary derivatives.
In curved spacetime backgrounds one writes γµ = eaµ(x)γa in terms of the vielbeins eaµ(x)
and the tangent space Clifford algebra generators γa. The star deformed Clifford product
is given by

γµ ∗ γν = (eaµ(x) ∗ ebν(x)) γa γb = γµ γν +
i

2κ2
Θαβ (∂αe

a
µ(x)) (∂βe

b
ν(x)) + . . . (1.31)

7



In flat spacetimes the product (1.31) reduces to the ordinary one, whereas the product
(1.30) does have first order corrections in powers of 1/κ2 in contrast to powers of 1/κ in
κ-deformed Poincare algebras. Moyal Deformations of Clifford Gauge Theories of Gravity
based on the Seiberg-Witten map can be found in [12].
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