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INTRODUCTION

There are three different types of Personal Navigation Assistants (PNAs). First-
generation PNAs simply provide the user with a map and the ability to search the
map in a variety of ways (e.g., search for an address, search for a landmark, scroll
and pan). Second generation PNAs provide both a map and the user’s current
location/position. Third generation PNAs provide a map, the user’s location, and
directions of some kind.

It should be clear why we distinguish first-generation PNAs systems from
second- and third-generation systems. Clearly, a system that provides the user’s
current location is much more complicated than one that doesn’t, and generally
requires both additional hardware and software. What may not be clear is why we
distinguish between second- and third-generation PNAs.

The rationale for doing so is actually quite simple. In second-generation sys-
tems the location that is provided to the user need not coincide with the street
system (or subway system, etc: : :) system). However, in order to provide direc-
tions, the user’s location must coincide with a street (or subway line, etc: : :) when
appropriate.

There are, in essence, three different ways to determine the user’s location.
The first is to use some form ofdead reckoning(DR) in which the user’s speed of
movement, direction of movement, etc: : : is continuously used to update her/his
location (1). The second is to use some form of ground-basedbeaconthat broad-
casts its location to nearby users (2). The third is to use some form ofradio/satellite
positioning systemthat transmits information that the PNA can use to determine
the user’s location. This last approach is by far the most popular; a great many
PNAs use theGlobal Positioning System(GPS) to determine the user’s location
(3).

Given a GPS receiver, it is almost trivial to convert a first-generation PNA
into a second generation PNA (i.e., one that provides both a map and the user’s
location), and many people have done so. However, reconciling the user’s location
with the underlying map (or network) can be much more complicated. In other
words, converting a second-generation PNA into a third-generation PNA can be
quite difficult.

When both the user’s location and the underlying network are very accurate,
the reconciliation problem is thought to be straightforward – simply “snap” the
location obtained from the GPS receiver to the nearest node or arc in the network.
Hence, it is not surprising that a number of people are working on improving the
accuracy of both the underlying network and the positioning system.
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In order to develop more accurate maps/networks, enormous “surveying” ef-
forts are underway (4, 5, and 6). Some of these efforts are being undertaken by
government agencies and others are being undertaken by private companies.

In order to develop more accurate positioning systems, a great deal of attention
is being given to combining data from multiple sources. Some systems combine
GPS with dead reckoning systems (7, 8 and 9), others use differential GPS (10),
and others user multiple sources of data (sometimes including maps) and then
filter or fuse the data in some way (11, 12, 13, 14, 15, 16, and 17).

We are interested in situations in which it is not possible or desirable to im-
prove the accuracy of the map/network and the user’s location enough to make
a simple “snapping” algorithm feasible. Such situations arise for many reasons.
First, not all PNAs are vehicle-based [e.g., hand-held Personal Travel Assistants
of the kind discussed in (18)]. Hence, it may not be possible to use dead reckoning
or other data sources. Second, even if it is possible to develop a network/map that
is accurate enough, such a network may not always be available. For example,
the PNA may not have sufficient capacity to store the complete, accurate network
at all times and hence, may need to either store inaccurate/incomplete networks
or download less-detailed networks from either a local or central server. Third,
many facilities will probably never be available from map/network vendors and
will need to be obtained on-the-fly from the facility, probably with limited accu-
racy. For example, vendors may not provide detailed networks/maps of airports,
campuses (both corporate and university), large parking facilities, and shopping
centers.

Hence, the purpose of this paper is to exploremap-matching algorithmsthat
can be used to reconcile inaccurate locational data with an inaccurate map/network.
We begin in the next section with a formal definition of the problem. We then dis-
cuss point-to-point, point-to-curve and curve-to-curve matching. In all three cases
we consider algorithms that only use geometric information and algorithms that
also use topological information. Finally, we conclude with a discussion of possi-
ble future research directions.

PROBLEM STATEMENT

Our concern is with a person (or vehicle) moving along a finite system (or set) of
streets,N . At a finite number of points in time, denoted byf0; 1; : : : ; Tg, we are
provided with an estimate of this person’s location. The person’s actual location at
timet is denoted byP

t
and the estimate is denoted byP t. Our goal is to determine
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the street inN that containsP
t
. That is, we want to determine the street that the

person is on at time,t.
Of course, we do not know the street system,N , exactly. Instead, as illus-

trated in Figure 1, we have anetwork representation, N , consisting of a set of
curves inR2 , each of which is called anarc. Each arc is assumed to be piecewise
linear. Hence, arcA 2 N can be completely characterized by a finite sequence of
points(A0; A1; : : : ; Ana) (i.e., the endpoints of the individual line segments that
compriseA), each of which is inR2 . The pointsA0 andAna are referred to as
nodeswhile (A1; A2; : : : ; Ana�1) are referred to asshape points. A nodes is a
point at which an arc terminates/begins (e.g., corresponding to a dead-end in the
street system) or a point at which it is possible to to move from one arc to another
(e.g., corresponding to an intersection in the street system).

The Set of (Actual) Streets 

The Set of (Estimated) Arcs

The Person’s
Actual Location

The Estimated
Location

The Map−Matched
Location

Figure 1: The Map-Matching Problem

This problem is called amap matching problembecause the goal is to match
the estimated location,P t, with an arc,A in the “map”,N , and then determine the
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street,A 2 N , that corresponds to the person’s actual location,P
t
. A secondary

goal is to determine the position onA that best corresponds toP
t
.

In order to simplify the exposition, we assume that there is a one-to-one cor-
respondence between the arcs inN and the streets inN . This assumption can
easily be relaxed, however.

Not surprisingly, the problem considered here is similar to the map-matching
problem in mobile robotics. There, the problem is to establish a correspondence
between a current local map and a stored global map. For a review, see (19).

USING ONLY GEOMETRIC INFORMATION

We begin by considering methods of solving the map-matching problem that make
use only ofgeometricinformation. That is, methods which make use only of the
“shape” of the arcs and not the way in which they are “connected”.

Geometric Point-to-Point Matching

One natural way to proceed is to matchP t to the “closest” node or shape point in
the network. Of course, the question then arises of how to define “close” and the
most natural way to proceed is to use the Euclidean metric (though other metrics
can also be used).

In particular, recall that theEuclidean distancebetween two pointsx andy in
R2 is given by:

jjx� yjj2 =
p

(x1 � y1)2 + (x2 � y2)2: (1)

In a point-to-point matching algorithm, one need only determine the distance be-
tweenP t and each point in the network sequentially, storing the closest point
found along the way.

Of course, in practice, it is not necessary to determine the distance between
P t and every node and shape point in the network. Instead, one can first identify
those node and shape points that are within a “reasonable” distance ofP t, and
then calculate the distance only to “reasonable” points (e.g., those points within
some multiple of the known accuracy of the GPS receiver being used). A number
of data structures and algorithms exist for identifying all of the points “near” a
given point (often called arange query). See, for example, (20 and 21).

While this approach is both reasonably easy to implement and fast, it has many
problems in practice. Perhaps most importantly, it depends critically on the way
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in which shape points are used in the network. To see this, consider the example
shown in Figure 2. Here,P t is much closer toB1 then it is to eitherA0 or A1,
hence it will be matched to arcB even though it is intuitively clear that it should
be matched to arcA. Hence, this kind of algorithm is very sensitive to the way
in which the network was digitized. That is, other things being equal, arcs with
more shape points are more likely to be matched to.

A0 A1
Pt

B0 B1 B2

Figure 2: One Problem with Point-to-Point Matching

One might argue that this problem could be overcome simply by including
more shape points for every arc. Unfortunately, this dramatically increases the
size of the network and is not guaranteed to correct the problem.

Geometric Point-to-Curve Matching

Perhaps the next most natural way to proceed is to attempt to identify the arc inN
that is “closest” toP t, rather than the point that is closes toP t. Again, we must
ask how to define “close” and the most common approach is to use the minimum
distance from the point to the curve. Since we are dealing with piecewise linear
curves, to find the minimum distance from a pointx to a curveA we must find the
minimum distance fromx to each of the line segments that compriseA and select
the smallest.

Of course, it is fairly simple to find the minimum distance between a point and
a line. In particular, suppose that we letf�a + (1 � �)b; � 2 Rg denote the line,
A, througha andb. Then, the minimum distance between some pointc and this
line is given by:

d(c; A) =

s
[(a2 � b2)c1 + (b1 � a1)c2 + (a1b1 � b1a2)]2]

(a2 � b2)2 + (b1 � a1)2
(2)

which is the distance along the “perpendicular” fromc to the line.
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As shown in Figure 3, calculating the minimum distance between a point and
a line segment is slightly more complicated than calculating the minimum dis-
tance between a point and a line in some cases. Calculating the minimum dis-
tance betweenp and the line segment betweenA0 andA1 is straightforward since
it is the same as the minimum distance betweenp and the line throughA0 and
A1. However, when we calculate the distance betweenq and the line through
A0 andA1 we see that the “perpendicular” intersects the line outside of the line
segment. Hence, we must also calculate the distance betweenq and bothA0 and
A1 and choose the smallest. Thus, calculating the minimum distance between
a point,P t, and an arcA, involves finding the minimum distance betweenP t

and the line segmentsf�A0 + (1 � �A1); � 2 [0; 1]g; f�A1 + (1 � �A2); � 2
[0; 1]g; : : : ; f�AnA�1 + (1� �AnA); � 2 [0; 1]g and choosing the smallest.

q

A0

A1

p

A0

A1

d1

d3

d2

max{d1,d2}>d3

d1

d2

d3

max{d1,d2}<d3

Figure 3: The Distance Between a Point and a Segment

To matchP t to an arc, one must calculate the minimum distance between
P t and all “reasonable” arcs inN and choose the one that is closest. While this
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approach may seem perfectly appropriate at first glance, it does have several short-
comings that make it inappropriate in practice.

First, point-to-curve matching does not make use of “historical” information.
One problem that arises as a result is illustrated in Figure 4. The estimated position
P 2 is equally close to arcsA andB. However, givenP 0 andP 1 it seems clear that
P 2 should be matched to arcA.

P0

A

B

A1

A2
B1B2

P1

P2

Figure 4: One Problem with Point-to-Curve Matching

Another problem with point-to-curve matching is that it can be quite “unsta-
ble”. This is illustrated in Figure 5. The pointsP 0, P 1, andP 2 are all equidistant
from arcsA andB. But, it turns out thatP 0 andP 2 are slightly closer toA and
P 1 is slightly closer toB. Hence, the matching oscillates back and forth between
the two.

Arc  A

Arc  B

A0A1

B0B1

P0
P1

P2

Figure 5: Another Problem with Point-to-Curve Matching

7



Geometric Curve-to-Curve Matching

A better way to proceed is to considerm positions simultaneously by matching
to the arc that is “closest” to the piecewise linear curve,P , defined by the points
P 0; P 1; : : : ; Pm. Of course, this requires that we have some measure of the dis-
tance between curves and there are many ways to define the distance between two
curves inR2 .

One definition of the distance between two curvesA andB is:

jjA� Bjjmin min
a2A;b2B

jja� bjj: (3)

While this definition is quite appropriate in some circumstances, it does not work
well for this type of map-matching as it is quite sensitive to outliers. This is
illustrated in Figure 6 where, using this definition, the curveP is much “closer”
to arcA than it is to arcB. (Obviously, jjA � Bjjmax has the same kinds of
shortcomings.)

B

A

P

Figure 6: A Problem with One Metric for Curve-to-Curve Matching

Instead, it seems more appropriate to use some measure of the average dis-
tance between the curves. Such a measure can be defined relatively easily if we
parametrize the curves that we need to compare. In particular, suppose the curve
A, is parametrized by the functiona : [0; 1] ! A. Then, one possible measure of
the distance between two curves,A andB is:

jjA�Bjj2 =
Z

1

0

jja(t)� b(t)jjdt: (4)
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The problem with this measure is that it is not a terribly good way to compare
curves of different length.

If one has confidence in the length ofP , it makes much more sense to measure
the distance betweenP and equal length portions of the arcs under consideration.
This is illustrated in Figure 7.

A A

P P

The Distance Between Equal
Length Subsets of P and A

The Distance Between 
All of  P and All of A

Figure 7: The Distance Between Curves of Different Length

It is also important to note that this measure of distance depends critically on
the way the endpoints of the two curves are ordered. Hence, one must actually
make the calculation both ways for each pair of arcs and choose the smaller of the
two values.

Unfortunately, even when these issues are dealt with properly, this approach
can still yield some unexpected and undesirable results, as shown in Figure 8.
In this example, the positionsP 1 : : : P 7 have been recorded and there are two
candidate arcs,A andB. The three curves can be parametrized as follows:

a(�) =

�
6t
6

�
; � 2 [0; 1] (5)

b(�) =

�
3
3t

�
; � 2 [0; 1] (6)

p(�) =

�
6
3

�
; � 2 [0; 1]: (7)

Hence, the distance betweenP andA is:
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Z
1

0

jjp(�)� a(�)jjd� =

Z
1

0

p
(p1(�)� a1(�))2 + (p2(�)� a2(�))2d�(8)

=

Z
1

0

p
(6�� 6�)2 + (3� 6)2d� (9)

=

Z
1

0

3d� = 3 (10)

and the distance betweenP andB is:

Z
1

0

jjP (�)� B(�)jjd� =

Z
1

0

p
(p1(�)� b1(�))2 + (p2(�)� b2(�))2d�(11)

=

Z
1

0

p
(6�� 3)2 + (3� 6�)2d� (12)

=

Z
1

0

p
2(36�2 � 36� + 9)d� =

p
4:5: (13)

A

B
B1

A1 A2

B2

P1 P7

Figure 8: A Surprising Result

USING GEOMETRIC AND TOPOLOGICAL INFOR-
MATION

In our experience, the performance of all of the algorithms discussed above can
be improved if topological information is also used. In particular, given a known
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initial point, the topology of the network makes it possible to reduce the set of
“likely” arcs dramatically.

We assume throughout the discussion that follows that the person using the
PNA provides it with their origin and their destination at the beginning of their
trip (and/or at other times). We further assume that the origin and destination
are on the network,N . For example, the user might provide the PNA with the
addresses of their origin and destination. Obviously, the person’s destination is
required if the PNA is going to provide her/him with directions. Requiring the
person to also enter their destination does not seem like much of an additional
burden.

Improving Point-to-Curve Matching

Perhaps the easiest way to understand how topological information can be used is
to consider the point to curve matching algorithm discussed above. In particular,
consider the example shown in Figure 9.

A

BC

D

E
F

P0

P1 P2 P3

Figure 9: Using Topological Information

We know that the person was initially atP 0. Hence, we know thatP 1 can only
be onA, B, C, orD. In fact, given a sufficiently small amount of time between
measurements, we might also know thatP 3 can only be matched toA, B, C, or
D. This kind of information could prevent us from mistakenly matchingP 3 to,
sayE.
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Improving Curve-to-Curve Matching

When topological information is used with curve-to-curve matching the results
can be amazingly good. One such algorithm that we have tested calculates the
distance between the curveP and equal length subsets of all of the arcs reachable
from P 0. It then matches the position to the arc that is closes toP . The distances
are calculated using a discrete approximation of equation (4). Though equation
(4) can, in fact, be calculated exactly for the piecewise linear curves we are using
here, the extra work does not seem warranted, especially given the frequency with
which GPS positions can be obtained.

Perhaps the best way to explain the algorithm is with the simple example
shown in Figure 10. In this example, the person started atP 0, the intersection
of arcsA, B, C, andD (whereA0 = B0 = C0 = D0). Then, three positions
were recorded,P 1, P 2, andP 3. We want to determine the distances between
the piecewise-linear curve formed by connectingP 0 : : : P 3 andA, B, C, andD,
respectively.

A

B

C

D

C1

A1
A2

A3 A4 A5

B1

B2

B3

B4

D1

P1

P2
P3

Figure 10: A Simple Example

The initial steps in the process are illustrated in Figure 11. First, a piecewise-
linear curve is constructed by connectingP 0, P 1, P 2, andP 3. Then piecewise-
linear curves of equal length are constructed along all of the arcs emanating from
this same intersection. (For simplicity, we limit our attention only to arcsA and
B.)

Next, as shown in Figure 12, each of the piecewise-linear curves is divided
into s segments of equal length. (In this example,s = 3.) Finally, the relevant
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A

B

C

D

P3

Figure 11: The Initial Steps of the Algorithm

distances are calculated. In this example, arcA is clearly the closest andP 3 is
matched to it.

A

B

C

D

P3

Figure 12: The Final Steps of the Algorithm

CONCLUSIONS AND FUTURE RESEARCH

In this paper we have described several algorithms (or parts of algorithms) for
matching an estimated position to a network representation of the street system.
We believe two things should be apparent from this discussion.
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First, it should be clear that this is a fairly difficult task. Point-to-point and
point-to-curve matching are unlikely to work very well, especially when there are
errors in the position and/or errors in the network representation. Hence, other,
more complicated algorithms must often be used.

Second, though a number of different algorithms can be used, it seems clear
that it is both important to perform some kind of curve-to-curve matching and to
incorporate topological information in the algorithm. Indeed, in our experience,
the more attention given to the topological information, the better the algorithm
performs.

Though our results thus far have been encouraging, it is clear that a consider-
able amount of research still needs to be done. We put this research falls into two
categories.

On the one hand, attention needs to be given to how different algorithms can
be compared empirically. This is a particularly thorny problem because it is quite
difficult to measure the “true position” outside of a laboratory. In addition, it is
not immediately clear what measures of performance are most appropriate or what
scenarios should be evaluated. In an abstract sense it is clear that we would like
the algorithm to perform perfectly when the errors go to zero, but it is not entirely
clear what that means in practice.

On the other hand, more work needs to be done on the ways in which mistakes
in map matching influence the overall performance of the PNA. In some situations,
directions do not change much as a result of small errors in the map-matched
location. In other cases, the directions change dramatically. Hence, work needs to
be done both on more robust path-finding algorithms [e.g., providing alternative
paths as in (22)] and on varying the map matching algorithm in different situations.
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