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Outline. The Fourier series representation of analytic functions is derived from Laurent expan-
sions. Elementary complex analysis is used to derive additional fundamental results in harmonic
analysis including the representation of C∞ periodic functions by Fourier series, the representation
of rapidly decreasing functions by Fourier integrals, and Shannon’s sampling theorem. The ideas
are classical and of transcendent beauty.

§1. Laurent series yield Fourier series.

A difficult thing to understand and/or motivate is the fact that arbitrary periodic functions have
Fourier series representations. In this section we prove that periodic analytic functions have such
a representation using Laurent expansions.

Definition. A function f(z) defined on a strip

{z : |Im z| < a} , a > 0 , (1.1)

is 2π periodic if for all such z,
f(z + 2π) = f(z) . (1.2)

Examples of periodic analytic functions. The elementary functions sinnz, cosnz, and e±inz

are the building blocks. Any finite linear combination is an example. Nonlinear functions too, for
example

1

1 + sin2 z

is analytic in any strip on which sin z 6= ±i. An entire function h =
∑∞

0 an z
n yields the entire

example

h(eiz) =
∞∑

0

an e
inz .

An analysis related to the last example yields the general case. Consider the mapping

z 7→ w = eiz . (1.3)

It maps the strip (1.1) onto the annulus

{w : e−a < |w| < ea} . (1.4)

It maps the real axis infinitely often around the unit circle in the w plane. The preimages of a
point w = eiθ are the points z = θ + 2πn with n ∈ Z. Since the derivative dw/dz is nowhere
zero, the mapping is locally invertible with analytic inverse. The local inverses are branches of the
function z = (lnw)/i.

Theorem 1.1. The correspondence g(w) 7→ f(z),

f(z) = g(eiz) (1.5)
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establishes a one to one correspondence between the analytic functions g(w) on the annulus (1.4)
the 2π periodic analytic functions f(z) in the strip (1.1).

Proof. That each such g yields an analytic periodic f on the strip and that distinct functions g
yield distinct f is clear. It suffices to show that every f has such a representation.

Suppose that f is analytic and periodic in the strip. For each point w in the annulus, the preimages
z lie in the strip and differ by integer multiples of 2π. Thus, the function f has the same value
at all the preimages. It follows that a function g on the annulus is well defined by the formula
g(w) = f(z) since it does not matter which z one takes.

For any w choose a preimage z. The Inverse Function Theorem implies that w has a local inverse
z = F (w) analytic on a neighborhood of w and satisfying F (w) = z. Near w, g(w) = f(F (w)) is
therefore analytic. Thus g provides the desired representation of f .

Theorem 1.2. If f(z) is a 2π periodic analytic function in the strip (1.2) then f has a Fourier
series representation

f(z) =
∞∑

n=−∞

cn e
inz , (1.6)

uniformly convergent on each thinner strip. The coefficients are given by the formulas

cn =
1

2π

∫ 2π

0

f(θ) e−inθ dθ . (1.7)

Proof. Choose g so that (1.5) holds. Then use the Laurent expansion of g

g(w) =
∞∑

−∞

cn w
n , cn =

1

2πi

∮

|w|=1

g(w)

wn+1
dw , (1.8)

uniformly convergent on each subannulus.

Since f(z) = g(eiz), one has

f(z) =
∞∑

−∞

cn (e
iz)n

which is formula (1.6).

Parameterizing the curve |w| = 1 by w = eiθ with 0 ≤ θ ≤ 2π, one has dw = i w dθ and the formula
for cn becomes

cn =
1

2πi

∫ 2π

0

g(eiθ)

wn+1
i w dθ =

1

2π

∫ 2π

0

f(θ)

wn
dθ ,

which proves (1.7).

Fourier series were discovered before Laurent expansions. If history were more logical they might
have been found this way.

§2. Paley-Weiner for Fourier series.

Every 2π periodic function that is analytic in a neighborhood of the real axis has a Fourier series
representation (1.6)-(1.7). If (1.6) holds, multiplying by e−imx then integrating over [−π, π] yields
the formula (1.6) for the coefficients since

∫ π

−π

e−imx einx dx =

{
2π when m = n
0 when m 6= n .
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Periodic functions that need not be analytic have Fourier expansion of the same form. The smoother
are the functions, the more rapidly decreasing are the coefficients cn and the faster is the conver-
gence in (1.6). Analytic periodic f are characterized by the fact that the cn are exponentially
decreasing as |n| → ∞.

Paley-Weiner Theorem 2.1. i. If f is an analytic periodic function in the strip (1.1), then its
Fourier coefficients cn satisfty for any ǫ > 0 there is C(ǫ) so that

|cn| ≤ C(ǫ) e(−a+ǫ)|n| . (2.1)

ii. Conversely, if f is given by (1.6) with cn satisfying (2.1) then f has an analytic continuation
to the strip (1.1).

Exercise 2.1. Prove i. Hint. For n > 0 start from the formula for cn in (1.8). For 1 < b < ea

move the contour to |z| = b using Cauchy’s Theorem. On that contour, 1/wn+1 is exponentially
small as n → ∞. Perform an analogous estimate to treat n < 0. Alternatively use the fact that
the Laurent expansion is convergent to estimate the Laurent coefficients.

Exercise 2.2. Prove ii. Hint. The Fourier series is uniformly convergent on any strip thinner
than (1.1)

§3. Fourier series for nonanalytic periodic functions.

For infinitely differentiable periodic f the cn decrease faster than any negative power of |n|, that
is,

∀N, ∃CN , ∀n, |cn| ≤ CN

〈n〉N , 〈n〉 := (1 + |n|2)1/2 . (3.1)

This is a consequence of the formula for the Fourier coefficients of the derivative,

cn(f
′) = in cn(f) , (3.2)

valid for example if f is continuously differentiable. The proof of (3.2) is by integrating by parts
with boundary terms cancelling by periodicity to give,

2π cn(f
′) =

∫ π

−π

f ′(x) e−inx dx = −
∫ π

−π

f(x)
de−inx

dx
dx = 2π in cn(f) . (2.3)

Therefore if f ∈ CN ,

∣∣(−in)Ncn(f)
∣∣ =

∣∣cn(f (N))
∣∣ ≤ 1

2π

∫ π

−π

∣∣∣
dNf

dxN
(x)

∣∣∣ dx (2.4)

which implies (2.1).

For smooth periodic f the Fourier series and each differentiated series converges uniformly. For less
regular f the convergence is less strong. For example, for f which are merely square integrable,
one has only

∑ |cn|2 < ∞, the convergence is in the root mean square sense. For periodic
distributions in the sense of Schwartz, the convergence is in the sense of distributions. The C∞

result implies the others (see remarks below). We prove the C∞ result using complex analysis.

Theorem 3.1. If f is an infinitely differentiable 2π periodic function on the real line, then the
representation (1.6)–(1.7) is valid. The Fourier coefficients (1.7) satisfy the rapid decay estimate
(3.1) so the series and all differentiated series converge uniformly on R.
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Historically, many examples of expansions (1.6) were discovered before it was realized how general
was the phenomenon. For example if |a| < 1, one has

1

1− a sin θ
=

∞∑

n=0

(
a sin θ

)n
.

It was Fourier who uncovered the fact that the representations were general and their utility in
analysing differential equations. This preceded the flowering of complex analysis.

§4. The Fourier transform.

Our treatment of Fourier series is intimately entangled with the Fourier transform representation

g(x) =

∫ ∞

−∞

ĝ(ξ) eixξ dξ , (4.1)

ĝ(ξ) =
1

2π

∫ ∞

−∞

ĝ(x) e−ixξ dx := F(g)(ξ) , (4.2)

for functions g defined on R so that g and ĝ tending to zero sufficiently fast at ±∞. Using contour
integration, this reciprocal relation is verified in the two concrete cases,

g(x) = e−a|x|, a > 0 , ĝ(ω) =

√
2

π

a

a2 + ξ2
, (4.3)

and
g(x) = e−x2/2 , ĝ(ω) = e−ξ2/2 . (4.4)

The standard proofs of (4.1), (4.2) rely on one of these two examples.

A convenient class of functions for studying the Fourier transform is the Schwartz class S consisting
of those g so that for all 0 < n,m there is a C(n,m) so that

∣∣∣
dmg

dxm

∣∣∣ ≤ C 〈x〉−n .

For such g, an integration by parts as in (3.3) shows that

F(g′) = iξ ĝ . (4.5)

Differentiating the definition of ĝ yields

d

dξ
ĝ = F(−ix g) . (4.6)

It follows that the Fourier transform of a function in S belongs to S so that in (4.1), (4.2) the
integrals are very rapidly convergent.

Exercise 4.1. Define the inverse transform h(ξ) 7→ F∗h by

F∗h(x) :=
1

2π

∫ ∞

−∞

e−ixξ h(ξ) dx .
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Derive formulas analogous to the preceding two for F∗h′ and F∗(ξh). From those prove that the
operator F∗F from S to itself commutes with multiplicalion by x and also with d/dx.

The analysis requires the following fundamental result.

Riemann-Lebesgue Lemma 4.1. If g(x) is an absolutely integrable function on R, then

lim
|ξ|→∞

ĝ(ξ) = 0 .

Proof. For ǫ > 0, choose ψ ∈ S so that

∫ ∞

−∞

∣∣g(x)− ψ(x)
∣∣ dx < ǫ .

Then
∀ξ ∈ R ,

∣∣ĝ(ξ) − ψ̂(ξ)
∣∣ < ǫ

2π
.

Since ψ̂(ξ) → 0 as |ξ| → ∞, one has

lim sup
|ξ|→∞

|ĝ(ξ)| ≤ ǫ

2π
.

Since this is true for any ǫ > 0, the proof is complete.

Example. This result applied to g = χ[−π,π](x) f(x) with g a 2π-periodic function implies that
the Fourier coefficients of an periodic function tend to zero as n→ ∞.

§5. Uniqueness of Fourier transforms, proof of Theorem 3.1.

The key step in the proof of (1.6), (1.7) is to prove that if a periodic function f has all its Fourier
coefficients equal to zero, then the function vanishes. Similarly if an absolutely integrable function
g on R, has Fourier transform ĝ identically equal to 0, then g = 0. Equivalently, if two periodic
functions f1 and f2 have the same Fourier coefficients, then f1 = f2, and if g1 and g2 are absolutely
integrable functions on R that have the same Fourier transforms, then g1 = g2. These equivalences
follow from applying the preceding assertions to f := f1 − f2 and g := g1 − g2 respectively.

Theorem 5.1. 1. If g(x) is an absolutely integrable function on R whose Fourier transform is
identically equal to zero, then g = 0.

2. If f(x) is a 2π periodic function absolutely integrable over each period whose Fourier coefficients
are all equal to zero, then f = 0.

Proof. 1. Write (ingeneously!)

ĝ = F− + F+ , F−(ζ) :=

∫ 0

−∞

g(x) e−ixζ dx , F+(ζ) :=

∫ ∞

0

g(x) e−iζx dx .

The first observation is a Paley-Weiner result. The function F+ has an analytic continuation into
the lower half plane and F− into the upper. Write ζ = ξ + iη in terms of its real and imaginary
parts. Then

e−iζx = e−iξx eηx .
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For x ≥ 0, eiζx is uniformly bounded in Im ζ ≤ 0 and for Im ζ < 0 decays exponentially as x→ ∞.
The functions F+, are continuous and uniformly bounded on {Im ζ ≤ 0}. Differentiating under
the integral shows that F+ is analytic in the interior, {Im ζ < 0}. Similarly F− is analytic in
{Im ζ > 0} and continuous and uniformly bounded in {Im ζ ≥ 0}.
On the boundary of the two half spaces one has F+ + F− = ĝ = 0. Therefore the function

H(ζ) := ±F± when ∓ Im ζ ≥ 0 ,

is holomorphic and uniformly bounded on each half space. The relation F+ = −F− on the real
axis establishes the continuity of H at those points.

Cauchy’s Theorem implies that ∮

∂R

H(z) dz = 0

for all rectangles contained in either the upper or lower half planes. If a rectangle crosses the x-axis
as in the figure

R−

x

R+

denote by R± the intersection with ±Im z > 0}. Since the integrals over the bounding edges on
the x axis cancel exactly one has

∮

∂R

H(z) dz =

∮

∂R+

H(z) dz +

∮

∂R
−

H(z) dz = 0 + 0 = 0 .

Morera’s theorem implies thatH is an entire analytic function by constructing an antiderivative by
integration along arcs consisting of a finite number of horizontal and vertical segments. Therefore
H is a bounded entire function. Liouville’s Theorem implies that H is constant.

The Riemann-Lebesgue Lemma implies that H tends to zero at infinity on the real axis, so the
constant must be 0. Therefore H = 0. In particular,

0 = H(0) = F+(0) =

∫ 0

−∞

g(θ) dθ .

For any a ∈ R, the function g(x− a) also has vanishing Fourier Transform since

∫
g(x− a) e−ixξ dx =

∫
f(x) e−i(x+a)ξ dx = e−iaξ

∫
g(x) e−ixξ dx = 0 .

Therefore

0 =

∫ 0

−∞

g(x− a) dx =

∫ −a

−∞

g(x) dx .
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Since this is true for all a it follows that g = 0.

2. For ζ ∈ C, introduce the Fourier Transform

F (ζ) :=

∫ π

−π

f(θ) e−iθζ dθ , ζ = ξ + iη , ξ, η ∈ R . (5.1)

The vanishing of the Fourier coefficients yields

F (n) = 0 , for all n ∈ Z . (5.2)

Differentiating under the integral sign shows that F is an entire analytic function of ζ.

Since e−iθζ = e−iθξeηθ, it follows that for θ ∈ [−π, π],

|e−iθζ | ≤ eπ|Im ζ| , so, |F (ζ)| ≤ eπ|Im ζ|

∫ π

−π

|g(θ)| dθ . (5.3)

The strategy is to prove that F = 0. Then part 1 implies that fχ[−π,π] = 0 and therefore that
f = 0. Define

G(ζ) :=
F (ζ)

sin πζ
.

G is analytic except possibly for isolated singularities at the zeroes ζ = n ∈ Z of sinπζ. These are
simple zeroes of sin z and F vanishes at these points by (5.2). Consequently, G has a removable
singularity at each of these points. Therefore, G is an entire analytic function.

II

III III

III

II

III

II II IIII

II

For |Im ζ| ≥ 1 (region I in the figure), there is a C > 0, so that | sin πζ | ≥ C eπ|Im ζ|. Therefore
(5.3) shows that G is uniformly bounded on region I.

Fix 1 > ρ > 0 and consider the region III which consists of the points in |Im ζ| ≤ 1 and outside
the union of disks of radius ρ and centers n. Both F (ζ) and 1/ sinπζ are bounded in III, so G is
bounded there.

Since F is bounded on Im ζ ≤ 1 Cauchy’s inequalities imply that F ′ is bounded on region II which
consists of the union of disks. Since F vanishes at the centers, there is a constant independent of
n so that |F | ≤ C|ζ − n| on the nth disk. In addition there is a C ′ > 0 independent of n so that
| sin πζ| ≥ C ′|ζ − n| on the nth disk. Therefore G = F/ sinπζ is bounded on region II.

Since the three regions exhaust the complex plane, it follows that G is uniformly bounded on C.
Liouville’s Theorem implies that G is constant.

Take ζ = 2m+ 1/2 with m ∈ Z so G(2m+ 1/2) = F (2m+ 1/2) → 0 as m→ ∞ by the Riemann-
Lebesgue Lemma. Thus, the constant value of G must be 0. Therefore

F = G sinπζ = 0 sinπζ = 0 .
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Thus the Fourier transform of χ[−π,π] f is identically equal to 0. Part 1. implies that χ[−π,π] f = 0.
Therefore f = 0 on [−π, π]. Since f is 2π-periodic it follows that f = 0.

Proof of Theorem 3.1. Estimate (2.1) implies that the Fourier series on the right of (1.6)
converges uniformly with all of its derivatives to an infinitely differentiable 2π periodic function
f̃ . Passing the integral through the sum shows that the Fourier coefficients of f̃ are equal to the
Fourier coefficients of f . Thus h := f − f̃ is an infinitely differentiable smooth periodic function
all of whose Fourier coefficients vanish. Part 2. of Theorem 4.1 implies that h = 0.

Remarks on the Theorem 3.1.

1. Part 1 implies that {einθ/
√
2π} is a complete orthonormal family in the square integrable

periodic functions.

2. Convergence of the Fourier expansion of periodic distributions follows from the Theorem by a
duality argument.

3. The division by sin in the proof is a close cousin of the use of the residue theorem applied
to g(z)/ sinπz to sum the series

∑
(−1)ng(n). It will be employed again to prove the Sampling

Theorem.

Exercise 5.1. Derive the Fourier inversion formula from the preceding exercise of this section by
showing that the only linear map S to itself that commute with x and d/dx are multiples of the
identity. Hint. Denote by L such a map. Use commutation with x show that (Lu)(0) vanishes if
u(0) vanishes. Conclude that there is a constant c so that (Lu)(0) = c u(0). Then, Lu = c(x)u(x)
with c ∈ C∞. Commuting with d/dx prove that c′ = 0.

§6. Fourier integral representation from Fourier series. *

The Fourier integral representation follows from the Fourier series representation of periodic func-
tions. We first present the idea of the derivation, then fill in the details.

Choose a function χ ∈ C∞(R) so that 0 ≤ χ ≤ 1, and,

χ(x) =

{
1 for −1 ≤ x ≤ 1 ,
0 for |x| ≥ π .

For L >> 1, the truncated function χ(x/L) g(x) vanishes outside the the interval [−πL, πL].
Define gL(x) to be the 2πL periodic function which is equal to χ(x/L) g(x) on [−πL, πL]. The
Fourier representation of gL is then

gL(x) =
∑

aLn einx/L , aLn =
1

2πL

∫ πL

−πL

e−inx/L gL(x) dx .

For large L one has

aLn =
1

2πL

∫ ∞

−∞

e−inx/L χ(x/L) g(x) dx ≈ 1

L
ĝ(n/L) , (6.1)

so the Fourier series representation of gL yields

gL(x) ≈
∑

n

ĝ(n/L) einx/L
1

L
. (6.2)

* This section is not needed for the Sampling Theorem.
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For |x| ≤ L, g = gL, so

g(x) ≈
∑

n

ĝ(n/L) einx/L
1

L
, |x| ≤ L . (6.3)

The right hand side of (6.3) is a Riemann sum with nodes at the points ξn = n/L and ∆ξ = 1/L.
Therefore

g(x) ≈
∫ ∞

−∞

ĝ(ξ) einξ dξ . (6.4)

We will prove that the approximations become more and more accurate in the limit L → ∞,
thereby proving the Fourier integral representation (3.1), (3.2) from Fourier series.

Theorem 5.1. If g ∈ S then ĝ ∈ S and the Fourier Inversion Formula (3.2) holds.

Proof. That ĝ ∈ S has already been proved. We will justify the derivation of (3.2) from Fourier
series by showing that the errors in the expressions indicated by ≈ tend to zero in the limit L→ ∞.
There is an error committed in (6.1) that is equal to

∑

n

(
1

2πL
einx/L

∫ ∞

−∞

e−inx/L
(
χ(x/L)− 1

)
g(x) dx

)
. (6.5)

The other error is the replacement of a Riemann sum by an integral passing from (6.3) to (6.4).
This second error is equal to.

∫ ∞

−∞

ĝ(ξ) eixξ dξ −
∑

n

ĝ(n/L) einx/L
1

L
. (6.6)

Integrating by parts r times yields the estimate for the Fourier coefficient in (6.5),

∣∣∣
∫ ∞

−∞

e−inx/L
(
χ(x/L)− 1

)
g(x) dx

∣∣∣ ≤ Lr

|n|r
∫ ∞

−∞

∣∣∣
dr

dxr

((
χ(x/L)− 1

)
g(x)

)∣∣∣ dx .

Since g ∈ S, the integral on the right hand side is ≤ C(N)L−N for any N . Choosing r = 2 one
sees that the error (4.4) is ≤ C(N)L−N+1, and in particular tends to zero.

For the error (6.6), let

γ(ξ) := eixξ g(ξ) , ∆ξ :=
1

L
, ξn := n∆ξ , and In := [ξn, ξn+1] ,

so the error is equal to

∫ ∞

−∞

γ(ξ) dξ −
∑

n

γ(ξn)∆ξ =
∑

n

(∫ ξn+1

ξn

γ(ξ) dξ − γ(ξn)∆ξ
)
.

For x fixed, γ ∈ S so one has the estimate

∣∣∣
∫ ξn+1

ξn

γ(ξ) dξ − γ(ξn)∆ξ
∣∣∣ ≤ OSCIn(γ)∆ξ ≤ max

In
|γ′| (∆ξ)2 ≤ C(N)

〈ξn〉N
(∆ξ)2 .
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Taking N = 2 and summing yields the estimate

∣∣∣
∫ ∞

−∞

γ(ξ) dξ −
∑

n

γ(ξn)∆ξ
∣∣∣ ≤ C (∆ξ)2

∑

n

1

1 + (n/L)2
.

Use ∑

|n|≥1

1

1 + (n/L)2
≤ 2

∫ ∞

0

1

1 + (x/L)2
dx = 2L

∫ ∞

0

1

1 + y2
dy ,

to conclude that ∣∣∣
∫ ∞

−∞

γ(ξ) dξ −
∑

n

γ(ξn)∆ξ
∣∣∣ ≤ C(x)

L
→ 0 ,

as L→ ∞.

Exercise 6.1. Give details of the argument showing that G has removable singularities at ζ = nπ
with n ∈ Z.

Exercise 6.2. The Weierstrass Approximation Theorem asserts that if f is a continuous function
on an interval, then on that interval f can be uniformly approximated by polynomials. Prove
this as follows. Show that it suffices to consider the interval I = [−1, 1]. Given a continuous
function on [−1, 1], show that there is a continuous 2π periodic extension to all of R. Show
that the periodic extension is the uniform limit of infinitely smooth 2π periodic functions. Hint.

Convolution with an approximate delta. Then approximate the smooth periodic function with
a trigonometric polynomial by truncating the Fourier representation. Then approximate by a
polynomial by approximating each exponential by a Taylor polynomial.

§7. The Sampling Theorem.

Definition. A signal is called band limited if f̂ is absolutely integrable and there is an Ω > 0
so that f̂(ω) = 0 for all |ω| > Ω. Ω is called the band width. Such a signal is then given by

f(t) =

∫ Ω

−Ω

f̂(ω) eiωt dω . (7.1)

The formula on the right hand side of (7.1) is defined for all complex numbers t. As in the proof
of part 2 of Theorem 4.1, this defines an extension of f to an entire analytic function f(ζ).

The derivation of (5.3) shows that f(ζ) is of exponential growth in the sense that for all t ∈ C

|f(ζ)| ≤ eΩ|Im ζ|

∫ Ω

−Ω

|f̂(ω)| dω . (7.2)

The analyticity of band limited signals has striking consequences. One is the unintuitive result
that knowlege of the signal f(t) on any arbitrarily short interval of time a < t < b on the real axis
determines its values at all times. This is a consequence of the unique continuation principle for
analytic functions.

Discussion. It is standard engineering wisdom that in practice one cannot generate waves of
arbitrarily short wavelength. Therefore all signals generated in the laboratory are band limited.
It is also standard wisdom that no signals extend infinitely far into the past. There is a T > 0 so
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that f(t) = 0 whenever t is real and t < −T . These two together imply that all signals are entire
analytic functions that vanish on ]−∞,−T ] ⊂ R. The unique continuation principal for analytic
functions implies that all such signals must vanish identically. Thus the only signal satisfying the
two conditions of engineering wisdom is the identically vanishing signal! The resolution of this
paradox is that while it is true that in the laboratory one can only control the spectrum on a
bounded band, frequencies outside −Ω < ω < Ω, are created. And, the insistence that there is
absolutely no signal for large |t| is also falacious. What is true is that any real signal can be
well approximated by one of compact support in x. It can also be approximated by band limited
signals. It cannot be approximated by a signal with both properties.

The proof of part 2 of Theorem 4.1 showed that a band limited signal with Ω = π with the
property that the signal vanished at the points x = n ∈ Z must vanish identically. In this section
we show that if the signal is sampled on a lattice with spacing smaller than 1, then the signal can
be recovered from the sampled values by a stable summation formula.

More precisely, a band limited signal f(t) can be recovered from its regularly spaced values

f(nL) , n ∈ Z

providing that the spacing L of the sampling is sufficiently small. The hypothesis of the theorem
is motivated by the example of the signal

f(t) = sin Λt =
eiΩt − e−iΩt

2π

which is a limit of band limited signals with spectrum concentrated near the two points ±Ω. The
signal vanishes at the points nπ/Ω with spacing π/Ω.

This result dates at least to 1915 when Whittaker named it the cardinal series. Others rediscovered
it including Shannon (1916-2001) in 1949. At that time the result entered into common use in
information technology.

Definition. The sinc function is defined by

sinc(t) :=
sin πt

πt
.

For x = 0 the value of sinc is defined to be 1.

Sampling Theorem 7.1. If f is a band limited signal with band width Ω and L < π/Ω then f
is reconstructed from its values sampled at the times {nL : n ∈ Z} as the sum of the convergent
series,

f(t) =
∞∑

n=−∞

sinc
( t− nL

L

)
f(nL) .

Remarks. 1. Since the sinc function vanishes at the integers, the function sinc
(
(t − nL)/L

)

vanishes at mL for m 6= n. Therefore, For t = mL, the summands on the right with n 6= m all
vanish and the sampling identity is satisfied.

2. The convergence of the series is not obvious. However, if f has a bit of decay, for example
if (1 + |t|)βf ∈ L1(R) for some β > 0, it follows that f(nL) = O(n−α). * Since sinc decays

* Choose χ ∈ S(R) with χ = 1 on [−L,L] and χ̂ ∈ C∞
0 (R). Then χf̂ = f̂ . Therefore f = F−1(χf̂) =

cF−1(χ) ∗ f . The pointwise decay follows from the L1 decay.

11



as (1 + |t|)−1 the terms of the series are then O(n−1−α), and, the series coverges absolutely and
uniformly.

Proof. Replacing f by f̃(t) := f(Lt) changes the band width to ΩL and the sampling points to
nZ. So, it suffices to prove the result for L = 1 in which case the the limit on the bandwidth is
Ω < π.

The elegant convolution form of the Sampling Theorem for L = 1 is equivalent to

f(t) =

n=∞∑

n=−∞

(−1)n+1 sin(πt)

π (n− t)
f(n) ,

which is the formula we prove.

For t /∈ Z consider the function

g(z) =
f(z)

(z − t) sin(πz)
.

g is analytic at all points of C except t and the roots, n, of sin(πz).

At those roots one has

d sin(πt)

dt

∣∣∣
t=n

= π cos(πn) = (−1)nπ 6= 0. ,

Therefore the roots are simple so g has at worst a simple pole, and

Res(g, n) =
(−1)n f(n)

π (n− t)
. (7.3)

The function g(z) also has a simple pole at t with

Res(g, t) =
f(t)

sin(πt)
. (7.4)

For positive integers N1,N2 and M , define the rectangle

RN1,N2,M :=
{
z ∈ C : −N1 −

1

2
< Re z < N2 +

1

2
and |Im z| < M

}
.

N_2 

−M

M

−N_1 
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The vertical side on the right passes half way between the sampling points N2 and N2 + 1. The
side on the left passes half way between −N1 and −N1 + 1.

Fix t. Consider N1,N2,M > |t|+ 1 The boundary does not hit any of the singularities of g so the
Residue Theorem implies that for t /∈ Z

1

2πi

∮

∂RN1,N2,M

g(τ) dτ = Res(g, t) +

n=N2∑

n=−N1

Res (g, n) =
f(t)

sin(πt)
+

n=N2∑

n=−N1

(−1)n f(n)

π (n− t)
.

On ∂RN1,N2,M one has with constants indpendent of N1,N2,M ,

∣∣∣
1

sin(πz)

∣∣∣ ≤ Ce−π|Im z|, |f(z)| ≤ Ce|Im z|Ω,
∣∣∣

1

z − t

∣∣∣ ≤ C

min{N1,N2,M} . (7.5)

LetM → ∞. The horizontal sides of RN1,N2,M have finite length and the integrand tends uniformly
to zero since the decay of 1/ sin(πz/L) beats the growth of f because of the hypothesis π > Ω.
The integrands on the vertical sides decay exponentially for the same reason. Passing to the limit
yields,

1

2πi

∫

Re τ=N2+1/2

g(τ) dτ − 1

2πi

∫

Re τ=−N1−1/2

g(τ) dτ =
f(t)

sin(πt)
+

n=N2∑

n=−N1

(−1)n f(n)

π (n− t)
.

To complete the proof of the Theorem it suffices to show that each of the integrals on the left tend
to zero as N1,N2 → ∞. From (7.5), the absolute value of the integrand is bounded above by

C

min{N1,N2}
e−π|Im τ |(π−Ω) .

The sampling criterion π > Ω implies that the integrals are O(1/min{N1,N2}). This completes
the proof.

Remark. The function 1/ sinπz with simple poles at the integers serves in a technique to evaluate
sums by contour integration.

Exercise 7.1. Apply the Cauchy integral formula to the function 1/(z2 sinπz) in the disk of radius
N + 1/2 with N ∋ N → ∞ to evaluate

∑∞
1 (−1)nn−2.

Exercise 7.2. Apply the Cauchy integral formula to the function cosπz/(z2 sinπz) to evaluate∑∞
1 n−2.
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