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1. INTRODUCTION

In this survey, we will focus on some results related to the explicit location of
zeros of the Riemann zeta function.

We have few techniques to know the exact behavior of zeros of zeta functions.
For the author’s study on zeros of zeta functions, the Riemann-Siegel formula
[33], [45] plays the central role. For this formula, see the next section. We have
collected several examples whose structures look like the Riemann-Siegel formula
and which satisfy the analogue of the Riemann hypothesis. The Riemann-Siegel
formula can be simplified by

f(s)+ f(1=75),

where f(s) satisfies certain nice conditions. Due to the symmetry, zeros of this
formula tend to lie on Re(s) = 1/2. Thus, our strategy to the Riemann hypothesis
(RH) is to find a nice representation of the Riemann zeta function satisfying the
above formula: if we are able to prove that complex zeros of f(s) are in Re(s) > 1/2
or in Re(s) < 1/2, then we essentially derive RH.

For T > 0, we have

T T T
N(T)= —log— — — logT
where N (7') is the number of zeros of the Riemann zeta function in 0 < Im(s) < 7.
For this, see [52]. Thus, the average gap of consecutive zeros of the Riemann zeta
function in 0 < Im(s) < T'is

27
logT"

What can we say about gaps of zeros of the Riemann zeta function? This question
is one of the most important questions in studying the behavior of zeros of the
Riemann zeta function. Together with the Riemann-Siegel formula, Montgomery’s
pair correlation conjecture [39] should be realized as the intrinsic property for the
behavior of zeros of the Riemann zeta function.
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Montgomery’s Pair correlation conjecture (PCC) Assume the Riemann hy-
pothesis. Then we have

3 1~N(T)/jl—(sm7m)2dx 0<a<p)

T
0<vy,y'<T
2T / 27
1ogT <Y <i5gT

where 1/2 4 i7y, 1/2 + i+ are zeros of the Riemann zeta function.

This conjecture says that there are arbitrarily small gaps of consecutive zeros
and arbitrarily big gaps of consecutive zeros in comparison with the average gap
of zeros of the Riemann zeta function. So called, locally zeros of the Riemann
zeta function behave randomly, but globally there exists the beautiful harmony
(PCC) of gaps of zeros. It should be noted that any true zeta function like the
Riemann zeta function must fulfill PCC. Unfortunately, all examples in this survey
that satisfy the analogue of RH do not have PCC, namely zeros of the examples
behave regularly. Even we don’t know any example satisfying PCC. In spite of
the reconditeness, PCC causes a negative effect in resolving RH.

Recently, Weng [54] — [60] discovered new zeta functions. In fact, Weng’s zeta
functions are Arthur’s periods for the Eisenstein series. Actually, Weng’s zeta
functions are linear combinations of the complete Riemann zeta function with
coefficients of rational functions and satisfy functional equations. Thus, Weng’s
zeta functions do not have Euler products. Usually, without Euler product, we
expect that zeta functions do not have RH, because we believe that the validity of
RH comes from arithmetic properties (e.g., Euler products). Remarkably, several
Weng’s zeta functions satisfy the analogue of RH. Indeed, the author with Komori
and Suzuki [30]| shows that Weng’s zeta functions for Chevalley groups satisfy
the weak RH. Thus, as Weng [60] conjectured the truth of RH for Weng’s zeta
functions, we expect that any Weng’s zeta function must have RH. We recall that
we obtain Weng’s zeta functions based on deep structures in Langlands’ program.
Hence it should be very important to investigate the behavior of zeros of Weng’s
zeta functions.

2. THE RIEMANN-SIEGEL FORMULA

It seems that without proof, Riemann [43] asserted that almost all zeros of the
Riemann zeta function ((s) are on the critical line Re(s) = 1/2. However, this
statement still remains open, and we are puzzled what Riemann really said. In
fact, Selberg [44] justified the presence of a positive proportion of zeros of ((s)
on Re(s) = 1/2. After 32 years, Levinson [37] showed that based on a wonderful
property of the derivative of ((s), there are at least 1/3 ‘one third’ on the critical
line. Then, Conrey [7] followed Levinson’s method to improve that there are at
least 2/5 ‘two fifth’ on the line, and recently Bui, Conrey and Young [5] did 41%
on the line. Also, see [12]. Note that any of these results rely on arithmetic
properties of ((s) and with current techniques, it looks unlikely to achieve a result
like ‘45%’. We are not even halfway through what Riemann claimed. Thus, we
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are anxious to know Riemann’s argument. One candidate is the Riemann-Siegel
formula [33], [45]

73T (g) C(s) = F(s)+ F(1—3), (2.1)

where I'(s) is the Gamma function and

2
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Here the symbol 0 1 means that the path of integration is a line of slop 1
crossing the real axis between 0 and 1 and directed from upper right to lower left.
Dividing by 772T (£) and moving the path in the integral of F(s) to the right,
we obtain

C(s) = Z ni + x(s) Z nll_s +0 (77, (2.2)
n<y/3m n<y/ 5
where s =0 + it (-1 <o <1,t>10),
()
T30 (5)

X(s) =

This Riemann-Siegel approximation formula has been very practical in investigat-
ing the behavior of ((s). In deed, the term Zn<\/I -L in (2.2) looks like {(s) and
= 27

we can observe a strong symmetry from the formula. This strongly suggests the
validity of RH.

For the explicit behavior of zeros of ((s), we need to understand the original
form (2.1). With the Riemann-Siegel formula, can we justify RH (or Riemann’s
statement)? For instance, we would get RH if F(s) in (2.1) has no zeros in
Re(s) < 1/2 or in Re(s) > 1/2. Unfortunately, it seems that F'(s) has a positive
proportion of zeros in Re(s) < 1/2 and in Re(s) > 1/2 both. This phenomenon for
F(s) is not weird, for the term an\/; - in (2.2) behaves like a zeta function:

namely, zeros of a zeta function without an Euler product can be located arbitrary
off the critical line. Under this circumstance, it is very difficult to prove RH or
even Riemann’s statement using (2.1). We note that even the behavior of zeros
of F(s) to the left half is obscure. We expect that for any real number o, F(s) in
(2.1) has infinitely many zeros in Re(s) < o.

Concerning (2.2), we refer to [14] for an interesting study on zeros of ((s).

We have seen why the Riemann-Siegel formula is not suitable to resolve RH.
However, we still ask if we can have alternative representations of ((s) like the
Riemann-Sigel formula. Namely, we want to look for functions F'(s) such that it
satisfies the similar formula as in (2.1) and F'(s) has no zeros in Re(s) < 1/2 or
in Re(s) > 1/2. If we achieve this, the Riemann hypothesis will follow. Thus,
heuristically, we can say that RH is valid if and only if there exists F'(s) such that
(2.1) holds and F'(s) has no zeros in Re(s) < 1/2 or in Re(s) > 1/2. As a sufficient
condition of this [26], we have
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Proposition 2.1 Let W(z) be a function in C. Suppose W (z) satisfies

W(2) = H(z)e™ ﬁ {(1 - i) (1 + é)} ,

el Pn Pn

where H(z) is a nonzero polynomial having N many (counted with multiplicity)
in the lower half-plane, o € R, Imp,, > 0 (n = 1,2,...), and the infinite product

converges uniformly in any compact subset of C. Then, W(z)+ W (Z) (or W(z) —
W (Z)) has at most N pair of conjugate complex zeros (counted with multiplicity).

Concerning ((s), we rotate the critical line to the real axis, i.e., W(z) = F(1/2+
iz). In this way, we often are able to have better understanding of the behavior
of zeros of zeta functions.

In this proposition, one important ingredient is that « is real and often, this
is related to some intrinsic properties of the function W(z). We will see from
some examples that W (z) comes from zeta functions and we can say that the

corresponding « characterizes the nature of W (z) + W (Z) (or W(z) — W (Z)).
Proposition 2.1 can be justified by the following lemma [4].

Lemma 2.2 Let U(z) and V (z) be real polynomials. Assume that U % 0 and that
W(z) =U(z) +iV(2) has exactly n zeros (counted with multiplicity) in the lower
half-plane. Then U(z) can have at most n pairs of conjugate complex zeros (again
counted with multiplicity).

We note that W(z) + W (zZ) = 2U(z) and W(z) — W (Z) = 2iV(z). This lemma
immediately follows from checking arg(W(t)) from —oo to oc.

We have very limited techniques in knowing the exact location of zeros of zeta
functions. Proposition 2.1 is one of them and it turns out that the proposition is
quiet universally applicable to know the explicit behavior of zeros of zeta functions.
We might develop other techniques rather than this, but essentially they are based
on the sign change method or the argument principle.

3. THE RIEMANN ZETA FUNCTION

In this section, we will introduce recent progresses for the behavior of zeros of
functions related to ((s).

3.1. The zeros of Fourier transforms. For this section, we refer to [22]. We
denote the Riemann =-function Z(z) by

=(2) = s )¢,

where s = 1/2 4+ iz. Then =(z) is an entire function with order 1. See [52| for
this. The Riemann hypothesis is equivalent to the statement that the Riemann
=-function has real zeros only. The Riemann =-function has the following Fourier
transform [52]

=(z) = / T (et

—00
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where
x

O(t) =2 Z(2n47r269t/2 — 3n27re5t/2) —nimert
n=1
Here ®(t) = ®(—t) and ®(t) > 0 for any ¢ € R. Thus we get =(z) = Z(—2) and
=(z) = Z(%) for any complex number z.
Polya considered the approximations of the Riemann =-function =(z);

E*(z):/ 872 cosh(Et)e’QWCOSh(%)e“tht;

o0

27(z) = / <87r2 cosh gt — 127 cosh 52&) e~ 2mcosh2t pizt 1t

o0

Theorem 3.1 (Polya, [42|) Z*(z) and Z**(z) have real zeros only.

Hejhal [15] considered general approximations to Z(z). He took

Za(2) = / D, (t)e* dt,

o0

where for each n =1,2,.. .,
D, (t) = Zn: e 2mk* cosh(20) | 82 cosh(gt) — 127k? cosh(§t)
" 2 2
k=1

Clearly, the approximation =,(z) does not converge to =(z). Thus, it is mean-
ingless to study these approximations concerning a possible proof of the Riemann
hypothesis. However, the distribution of zeros of those approximations has their
own interests.

We let f be a meromorphic function. Let 7' > 0. Define N(T'; f) and N*(T’; f)
by

N(T; f) = the number of zeros of f(z) in the region 0 < Re(z) < T

N*(T; f) = the number of simple zeros of f(z) in the region 0 < Re(z) < T.
From the standard argument [52], for 7' > 0 we have
T T T T

— log — log T N(T;=,) = — log — log T
5. 108 5— + O(logT); (T320) = 5 -log 5 — + O(log 7).

Theorem 3.2 (Hejhal, [15]) Almost all zeros of =,(z) are real and simple. More
precisely,

N(T;E) =

TlogT
N(T N3 (T;=,) = — .
(15 - W(TiE) =0 (A )

The author improved this theorem as follows.

Theorem 3.3 (Ki) N(T;=Z,) — N*(T;=,) = O(T).
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Basically, the proof of this theorem follows from the sign change method. One
cannot expect that N(T;Z,,) has real zeros only, and so it is meaningless to ap-
proach to the Riemann hypothesis through this sort of approximations of the
Riemann = function.

We introduce a way to understand the exact behavior of zeros of Fourier trans-
forms.

Question 3.4 (de Bruijn, [4]) Let F(t) be a complex valued function defined on
the real line; and suppose that F(t) is integrable,

<ma:o(5w> (Jt| — oo, t € R)
for some constant b > 2, and
F(-t)=F(t) (teR).
Suppose also that for each € > 0 all but a finite number of the zeros of the Fourier
transform of F(t) lie in the strip |Im(z)| < €. Does it follow from these assump-

tions that for each A > 0 the Fourier transform ofe)‘tQF(t) has only a finite number
of complex zeros?

Theorem 3.5 (Ki-Kim, [27]) De Bruijn’s question is true.

This theorem is very useful to justify the exact location of zeros of Fourier
transforms. Namely, we immediately meet some difficulties to show directly the
explicit location of zeros of Fourier transforms, but due to Theorem 3.5, it suffices
to prove a much weaker statement.

Theorem 3.6 (Ki-Kim, [28]) We define the function f(z) by
)= [ awervea, 2.)

where the function P(t) with even degree is a polynomial with the negative leading
coefficient and Q(t) an arbitrary polynomial. All but a finite number of the zeros
of f(z) are real and simple, if P(—t) = P(t) and Q(—t) = Q(t) for all t € R.

We recall that the Riemann =-function is the Fourier transform of ®(¢). For a
real number \, we define Z,(z) by

a@:/'mmWWw

—00

Thus, Zy(z) = Z(2).

Theorem 3.7 (Ki-Kim-Lee, [29]) For any positive A, all but finitely many zeros
of 2x(z) are real and simple.

For proofs of Theorems 3.6 and 3.7, we need saddle point methods together with
Theorem 3.5. Concerning Theorem 3.7, we note that RH is valid if and only if
for any positive A, Z,(z) has real zeros only. It should be important to ask if we
can prove an uniform version of Theorem 3.7, i.e., the number of zeros of Z,(z)
off the real axis is finite uniformly for any A > 0. Then, this directly implies that
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all but finitely many zeros of ((s) are on the critical line. Unfortunately, using
the same methods as in the proof of Theorem 3.7, the corresponding =, for any
suitable Dirichlet series with degree 1 or 2 and a functional equation satisfies the
analogue of the theorem, for instance ((s)((s — 2k 4+ 1) where k is any positive
integer. Actually, zeros of Z5(z) (A > 0) behave regularly, but zeros of ((s) or
any genuine zeta function do irregularly according to PCC. This signs that our
approach to RH by virtue of Fourier transforms will be unsuccessful.
We have a very interesting application of Theorem 3.7 as follows.

Theorem 3.8 (Ki-Kim-Lee, [29]) We define A by the de Bruijn-Newman constant
A = 40O where A denotes the infimum of the set of real numbers \ such that

the entire function =y has only real zeros. The de Bruijn-Newman constant A is
less than 1/2.

Using the fact that ((s) has no zeros in Re(s) > 1, de Bruijn [4] showed that
for A > 1/8, Z,(z) has real zeros only. Thus, Theorem 3.8 says that we justify the
analogue of the quasi-Riemann hypothesis, in terms of the weighted Riemann =
function Z,(2)! So far, any arithmetic applications of Theorem 3.8 have not been
known. On the other hand, Newman [40] proved that for some A < 0, Z,(2) has
nonreal zeros.

Conjecture 3.9 (Newman, [40]) For any A < 0, Zx(z) has complez zeros.

For some numerical results related to this conjecture, see [9], [41]. This con-
jecture means that as Newman [40] remarked, if the Riemann hypothesis is true,
then it is only barely so. Based on Theorems 3.5 and 3.7, one might try to prove
that for some A < 0, all but a finite number of zeros of Z)(z) lie in |Im(z)| < ¢ for
any 6 > 0. Then it follows from de Bruijn’s question that RH is true, excluding
finite many exceptions. However, one shouldn’t take this seriously for RH because
for A < 0, there is no way to understand a precise behavior of zeros of Z)(z) near
the real axis as z — 0o, and it is also very probable that =, (z) has infinitely many
nonreal zeros.

3.2. The derivative of the Riemann zeta function. Speiser [47] proved that
RH is equivalent to the nonexistence of nonreal zeros of (’(s) in Re(s) < 1/2. It
was reproved by Spira [48]. Levinson and Montgomery improved this result as
follows.

Theorem 3.10 (Levinson-Montgomery, [38|) Let N—(T') be the number of zeros
of ((s) in0<t<T,0<o<1/2. Let N{ (T) be the number of zeros of ('(s) in
the same region. Then, we have

N (T)=N"(T)+ O(logT).

Unless N~ (T') > T/2 for all large T, there exists a sequence (T;), T; — oo as
J — oo such that

Ny (Ty) = N™(T3)

Applying this theorem, Speiser’s theorem was reproved in [38|.
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The most essential part of the proof of Theorem 3.10 is of the functional equation
for ¢(s). With this theorem, we understand a beautiful relationship between zeros
of ((s) and zeros of {'(s).

We discuss the importance of (’(s) for RH. From the functional equation

((s) = x(s)¢(1 = s),

we readily deduce
X'(s)
x(s)

where H(s) = m*/2I'(s/2). Thus, this fulfills the Riemann-Siegel formula (2.1).
We should recall that RH if and only if ('(s) does not have complex zeros in
Re(s) < 1/2. Thus it is expected that ¢'(s) does not have complex zeros in
Re(s) < 1/2. We notice that H(s)('(s) has simple poles at s = 0,—2,—4, ...
and one simple real zero in each interval (—2n — 2, —2n) (n = 1,2,3,...). These
poles play a positive role and these real zeros do the other way that zeros of ((s)
tend to be located on Re(s) = 1/2. The important point is that they are equally
distributed on the negative real axis and so they can be ignored. Thus, it suffices
to know the behavior of complex zeros of ('(s). We must realize that after we
differentiate ((s), zeros of ('(s) move to the right of the critical line Re(s) = 1/2.
This is an extremely important phenomenon in studying zeros of ((s). Applying
this wonderful property, Levinson achieved his landmark theorem [37], that is,
at least one third of zeros of ((s) are on Re(s) = 1/2. Probably, (3.1) is the
representation what we have been looking for. One can ask what if we consider
higher derivatives of ((s). Namely, we can definitely enjoy the phenomena that
zeros of higher derivatives move to the right further and further. However, for
higher derivatives of ((s), we do not have functional equations and so it seems
very difficult to recover zeros of ((s) from zeros of higher derivatives. If we can
do so, for instance we immediately prove that almost all zeros of ((s) are on
Re(s) = 1/2. For this, we refer to [31].

We have a heuristic argument for the simple zeros of ((s). We assume RH.
Suppose ((s) has a zero on Re(s) = 1/2 with multiplicity n > 1. Then, certainly,
this multiple zero remains the same zero for ’(s) on Re(s) = 1/2 with multiplicity
n — 1 and the other one more zero moves to the right or disappears. Based on
this, we rearrange (2.1) as follows:

H(s)¢(s) = H(s)¢'(s) + H(1 = s)¢"(1 = s), (3.1)

X'(s) / /
o O = 16) (H)T )+ HO =) (1=5)

where f(s) is the obvious product from zeros of (’(s) on Re(s) = 1/2. Clearly, we
have

F(s) = F(1—5).

Then, one can justify the following.

Theorem 3.11 (Ki) Assuming RH, all complez zeros of H(s)C'(s)+H(1—s)¢'(1—
s) are simple and on Re(s) =1/2.
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Through the function in this theorem, we reproduce zeros of ((s). It is unrea-
sonable that these reproduced zeros overlap with the zeros of f(s). Under this
hypothesis, we can deduce that all zeros of ((s) are simple.

3.3. Gaps of zeros of the Riemann zeta function. In order to understand
the explicit behavior of zeros of ((s), we need to understand gaps of zeros of the
function. We should know deep arithmetic properties of ((s) in acquiring that
gaps are arbitrary small in comparison with the average gap of zeros of ((s).
The property of small gaps is heavily related to the Landau-Siegel zero problem.
Indeed, this is the origin of PCC [39]. For more detailed accounts, we refer to [§],
and also see [18]. In [11], using the derivative of {(s), the authors introduced a new
point of view for the Landau-Siegel zero problems. Thus, especially, the explicit
behavior of zeros of the derivative of ((s) becomes very important. For this, we
will briefly introduce a theorem [25].

p' = [’ + 1y denotes a zero of ('(s). Under RH, K. Soundararajan [46] demon-
strated the presence of zeros of ('(s) in the region o < 1/2+v/log T for all v > 2.6.
Assuming the truth of RH, K. Soundararajan in the same paper conjectured that
the following two statements are equivalent:

(i) liminf(8" — 1/2)log~y’ = 0;

(i) liminf(y* — ) logy = 0 where 1/2 +iv, 1/2+iy™ are zeros of ((s) and
is the least ordinate with 4+ > ~.

Y. Zhang [61] has shown that (ii) implies (i) as follows.

Theorem 3.12 (Zhang, [61]) Assume RH. Let a; and as be positive constants

satisfying oy < 21 and
~1
a
g >ap |1 —4/— .
o> (1-/5)

If p = 1/2 +ivy is a zero of ((s) such that ~y is sufficiently large and v© — v <
ai(logvy)™t, then there exists a zero p' of '(s) such that

0" = p| < as(logy)™.

Is it true that (i) implies (ii)? M. Z. Garaev and C. Y. Yildirim [13] proved a
weaker form of the converse; if we assume RH and lim inf(8'—1/2) log 7' (log log7/)?
= 0, then we have lim inf,, o (Yn+1 — n) log v, = 0.

We have the following.

Theorem 3.13 (Ki, [25]) Assume RH. Then, the following are equivalent:

(1) liminf(5" — 1/2)log~" # 0,

(2) For any ¢ > 0 and s = 0 + it with 0 < |0 — 1/2] < ¢/logt (t > to(c)), we
have ¢

S

where p = 1/2+ i is the zero of ¢ closest to s (and to the origin, if there are two
such).

1
(s) = P + O(logt),

By Theorem 3.13 we have
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Corollary 3.14 Assume RH and liminf(5' —1/2)log~" # 0. Then, for any ¢ > 0
and s = o + it (t > t1(c)), we have

¢ 2
Z(S) = O ((log)*™")
uniformly for 1/2 4 c/logt < o < oy < 1.
Assuming RH, we have
C/

E(S) = O ((log)*™")
holds uniformly for 1/2 4+ ¢/loglogt < 0 < 01 < 1, where t > 20, ¢ > 0 and ‘O’
depends upon ¢ and ;. For the proof of thls see [25]. We immediately find a huge
difference between the last two formulas. Assuming RH, with current techniques
it appears difficult to disprove or prove the formula in Corollary 3.14.

Based on Theorems 3.12, 3.13 and Soundararajan’s conjecture, we speculate as
follows.

Conjecture 3.15 Assume RH. Then the following are equivalent:
(i) For any ¢ >0 and s = o + it with t > t5(c), we have

%(S) =0 ((logt)*™*)
uniformly for 1/2 4 ¢/ logt <o <1;
(ii)" The negation of (ii), 1 hm inf(y*t —v)logy # 0.

We expect the negation of (ii)’. It is believed that even after we achieve the
validity of RH, we will not be capable to disprove this.
4. THE EISENSTEIN SERIES

We define the Eisenstein series by

Eo(z;8) = % Z id

2s
ez MZ

S

(Re(s) > 1),

where z = x4y, * € R, y > 0. The Eisenstein series is analytically continued to
the whole complex plane except for the simple pole at s = 1. It has the Fourier
expansion [6] as follows:

[(s —1/2)
['(s)

K, 1,5(2
+ 47_(_8\/@2 n1/2—s Z d28_1$ COS(27TTL.T).
n=1 dn

Eo(z;8) = ((28)y° + VT———2((25 — 1)y~

Also we have the functional equation:

7 °T(s)Eo(2;8) = 7 " T(1 — 5)Ep(2; 1 — s). (4.1)
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The Eisenstein series with class-number 1 has an Euler product, for instance
Eo(i;s) = 4C(s) L(s, X-1)-

Unfortunately, the Eisenstein series with class number > 1 doesn’t have an Euler
product. Thus, we expect that in general, the Eisenstein series doesn’t satisfy the
analogue of RH, for example, the Eisenstein series with class-number 2

Ey(V5iss),  Eo(iv6:s),  Ey(iv10;s).

Namely, applying methods [10], we can prove that the number of zeros of the
Eisenstein series with class-number > 1 is > T in Re(s) > 1 and 0 < Im(s) < 7.
Voronin [53] showed the analogue of this result for any strip inside the interval
(1/2,1). Recently, Lee [36] established that the number of zeros of any given
Eisenstein series with class-number > 1 in Re(s) > 1 and 0 < Im(s) < 7' is

I +o(T) (T — 00),

for any interval (o1, 03), where o1 > 1/2, 01 < 03 and ¢ is depending on o7, 05. Can
we still expect that almost all zeros of the Eisenstein series are on Re(s) = 1/27
For this question, some results are known. We refer to Hejhal’s theorem [16]: for
any L-functions L,(s), Lo(s) satisfying some (rather complicated) conditions, the
number of zeros of a cetain linear combination of L-functions

(cos a)e™' Li(s) + (sin a)e™? Ly(s)
in Re(s) > 1/2+ G/logT and 0 < Im(s) < T is between

c TlogT c TlogT
'Gyloglog T *Gyloglog T’

where (loglogT)" < G < (logT)°, Kk > 1,0 > 0, and C1,Cy (C; < Cy) are
depending on Ly, Ly, wy,wq, K,0. Hejhal [17] proposed a generalization of this
result. We know that the Eisenstein series with class-number 2 can be represented
by a linear combination of L-functions. Thus, it might be very interesting if one
can prove the analogue of Hejhal’s theorem for the Eisenstein series. It can be
shown that the Eisenstein series has at least > 7" many zeros on Re(s) = 1/2 and
in 0 < Im(s) < 7. On the other hand, we refer to [3]: namely, it was shown that
with several assumptions, almost all zeros of a linear combination of L-functions
are on Re(s) = 1/2.
We recall

and

Eq(is s) = 4C(s) L(s, x-4).

Thus, the Eisenstein series contains the Riemann zeta function ((s). Hence, it
should be meaningful to investigate zeros of the Eisenstein series. We consider
truncations of the Eisenstein series as follows:

[(s—1/2)

Eoo(z;5) = ¢(28)y" + \/ETC@S —1)y'™;
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s—1/2)
['(s)

K 1/5(2
_|_ 47_‘_5\/52 n1/2—8 Z d23—1# Cos(Qan)‘
n=1 din

Interestingly, these truncations fulfill the same functional equation as in (4.1)

7T (s)Egn(2;8) = 7" T(1 — 8)Eg v (231 — 5)

Eon(z;8) = C(28)y° + VT———~— I ¢(2s —1)y'~

for N =0,1,2,.... Thus, we expect that zeros of truncations Ey y(z;s) tend to
be located on Re(s) = 1/2.

We have several methods to show that all complex zeros of the constant term
of the Eisenstein series in its Fourier series with Im(z) > 1 lie on Re(s) = 1/2.
Hejhal [15] justified this as follows. For his proof, we briefly introduce the Maass-
Selberg formula for the Eisenstein series. F denotes the standard fundamental
domain for the full modular group SI(2,7Z) by

F={2e€C:Im(z) >0, |2] > 1, |Re(2)| < 1/2}.

Applying Green’s Theorem, we derive the Maass-Selberg formula as follows:

dzd
[s(1—=38)—w(l—w //Eostozw)xy

= (s —w) [Y(s)p (W)Y~ = ¢(s)p(w)Y "]
+(1—s—w) [@(s)(w)Y* ™ —(s)p(w) V"] ,

where
b(s) =C(25),  W(s) = w%%ces —1),
~ Ey(z;s) ify<Y
Eo(z;5) = { Eo(z;s) — ((2s) — T F(lf(;)C(QS -1) ify>Y.

Using this formula, we readily prove that all complex zeros of the constant term
of the Eisenstein series for Im(z) > 1 lie on Re(s) = 1/2. Also, this can be readily
obtained by Polya’s method [42]. There is still another way by the author.

Theorem 4.1 (Ki, [24]) For y > 1, all complex zeros of the constant term are
simple and on Re(s) =1/2.

By Proposition 2.1, we can prove this theorem for the second part. It is quite
amazing that this proof relies on an easy classical method. We get the simplicity
of zeros of the constant term by checking the argument change of the constant
term on Re(s) = 1/2. With a careful computation, we have

Theorem 4.2 (Lagarias-Suzuki, [34]) There exists y*(= 4we™7) such that all zeros
of ao(z,s) lie on the critical line Re(s) = 5 for 1 <y < y* and fory > y* there
are exactly two zeros off the critical line. These exceptional zeros are real simple
zeros py, 1 — p, with%<py<1 and p, — 1 as y — oo.
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From the behavior of zeros of the constant term of the Eisenstein series, we
need to investigate the location of zeros of truncations of the Eisenstein series.
We already knew the failure of the analogue of RH. However, Hejhal [15] proved
the similar result as in Theorem 3.2, namely almost all zeros of truncations of
the Eisenstein series are on Re(s) = 1/2. Interestingly, the author proves the
following.

Theorem 4.3 (Ki, [21]) All but finitely many zeros of truncations of the Eisenstein
series in any strip containing the line Re(s) = 1/2 are simple and on Re(s) = 1/2.
If Im(z) > 1, then all but finitely many zeros of truncations of the Eisenstein
series are simple and on Re(s) =1/2.

Concerning this theorem, we also refer to [20], [23].
Based on Theorem 4.3, we can approach RH due to

Eo(i;s) = 4C(s)L(s, X -4)-

The constant term and the first several truncations of this Eisenstein series satisfy
the analogue of RH. Thus, we ask if we can find a sequence (Ey y, (7; s)) such that
all complex zeros of Ey n, (i;s) are on Re(s) = 1/2 and Ny — oo as k — oo. This
immediately implies the validity of the Riemann hypothesis. Unfortunately, in
general, the truncations have off-line zeros! For instance, it turns out that for the
case N = 100, Ey100(i; s) has off-line zeros around 27 N = 2007 and even some of
these off-line zeros are very close to the line Re(s) = 1. This suggests that in this
way, it seems very difficult to demonstrate the validity of RH. However, we still
propose the following.

Conjecture 4.4 For any T > 0, there is a positive integer ng such that for any
n = ng, all zeros of Ey,(i;s) in 0 < Im(s) <T are on Re(s) =1/2.

This implies the validity of RH. Numerical computations show that Conjecture
4.4 tends to be correct up to 1 < N < 120. Thus, we can still pursue RH in this
direction.

5. WENG’S ZETA FUNCTIONS

The constant term for the Eisenstein series belongs to periods. The concept of
periods has widely been studied and applied in mathematics. For instance, this is
one of core concepts in Langlands’ program. We shall introduce this in the theory
of Langlands’ program and shall discuss its relation to our study.

Recently, Weng [60] discovered new zeta functions defined by periods. In order
to introduce Weng’s zeta functions, we need some backgrounds in Automorphic
Forms. For this purpose, we mostly follow [60]. Also, see [1], [19], [51] and [56].
We let F' be a number field with A = Ay its ring of adeles. Let G be a quasi-
split connected reductive algebraic group over F'. Let Z be the central subgroup
of GG. Fix a Borel subgroup F, of G over F. Write Py = MyU, where M, is a
maximal torus and Uy is the unipotent radical of Fy. Let P D F, be a parabolic
subgroup of GG over F. Write P = MU with My C M the standard Levi and U
the unipotent radical. Let W be the Weyl group of the maximal F-split subtorus
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of My in G. Let Ay be the set of simple roots. pp denotes half the sum of roots
in U. We fix a maximal compact subgroup K of G(A) such that P(A) N K =
(M(A)NK)(UA)NK).

We write X (G)p for the additive group homomorphisms from G to GL(1) over
F. We form the real vector space ag = Homp(X(G)p,R). We set ap = ay
(P = MU) and ay = ap,. We write Al for the set of simple roots in P. Let
Ap be the set of linear forms on ap obtained by restriction of elements in the
complement Ay — AF. We write Ay = {w, : a € Ay} for the set of simple
weights. Set Ap = {w, : @ € Ay — AL}, We write 7, for the characteristic
function of the subset

{tcap:w@(t) >0, weAp}.

Fix a sufficiently regular 7" € ay (a(7") > 0 for any simple root «). For a contin-
uous function ¢ on G(F) \ G(A)!, define Arthur’s analytic truncation (A7¢) (z)
by
(AT9) (@) =Y _(~1)mAe/2 X " gp(d2)Tp(H(d2) = T),
P SeP(F)\G(F)
where Ap is the central subgroup of M (P = MU), ¢p(z) = fU(F)\U(A) o(nz)dn

and the sum is over all parabolic subgroups containing Fy (see [1], [2]).
For ¢ an automorphic form of G, we define Arthur’s period A(¢;T) by

A T) = / AT (g)dg.
G(F)\G(A)

For ¢ an M-level automorphic form, we form the associated Eisenstein series
E(¢, A)(g) by
E(¢.N(g)= > mp(g9)"*"é(69)  (ReX €Cf),
s P(F)\G(F)

where mp is the Harish-Chandra homomorphism and C}5 denotes a certain positive
chamber in ap and A = (\y,..., A,) with r the rank of the group. For a cusp form
¢, then we obtain that the Eisenstein period A(E(¢;\);T) is

(1) 0 if P+ Py;
(2) v

€<w)\—pp0,T> /
X
wew HGGAO (WA = ppy, a¥) Mo (F)\Mo(A)xK

(M (w, N)p)(mk)dm dk

if P = Py, where v = vol ({}_,ca, @@’ : aq € [0,1)}), " is the coroot associated
to o and for g € G(A)

(M(w,\))(g) = mp: (g) 0 / mp(w ™l g) M+ or dt
U/ (F)NwU (F)yw—"\U"(A)

with M’ = wMw™ and P’ = M'U’ (see [19]). Following Weng [60], define the
period w8(\) of G over F by

1
wi(A) = x M(w, A),
F wEZW Haer <w>‘ — PPy av>
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where

M (w, \) = mpi(e)“*tre / mp (w0 ) Prdn’,
H(F) U (Fyw=1\U" (A)

A precise formula for G a classical semisimple algebraic group over QQ, can be
found in [35], and also see [57] and [59].

Let P be a fixed maximal parabolic subgroup of G. Then, P corresponds to
a simple root ap € Ag. We write Ag \ {ap} = {f1,...,5—1}, where r = r(G)

denotes the rank of G. Following Weng [60], define the period wg/ P for (G, P)
over Q by

WO/
/" (\p) = Resppsy g, =0 Respopp—o (WGV) . Ap >0,
where with the constraint of taking residues along with (r—1) singular hyperplanes

<A_p75i/> :07"‘)<>\_p7ﬁ7\"/(G)71> :07

there is only one variable \;, left among z;’s, re-scale it when necessary and rename
it A\p. After suitable normalizations, we define the Weng zeta function f(g/ P(s)

from wQ ()\ p) Komori [32| demonstrated that &g/ (s) has the usual functional
equation fQ Pls) = £G/ P(1 = s). Weng [60] conjectured the following.

Conjecture 5.1 The analogue of RH for the Weng zeta function §S/P(s) holds.

Weng [60, pp. 38-43] provides the following ten zeta functions:

é.SL(Q)/PO for SL( )’ 5@ 3)/P12 for SL( ) g@ 4)/P13 5@ /P2 for SL( )
é—SL(5)/P14 é-SL(f))/PQs for SL( ) 557’(4)/131’ 557’(4)/P2 for Sp( )7

é@Q/Plong §G2/Pshort for G27

where each zeta function is associated with a maximal parabolic subgroup for

each group. It is shown in [34], [49], [50], [51], [57], [58] that all zeros of five zeta

SL2)/Po §SL ) P12 fSp )/F1 SGQ/PI‘“‘g G2/Fshort are on Re(s) = 1/2. On

functions & 0

the other hand, the author proved
Theorem 5.2 (Kl [26]) All zeros of ten Weng’s zeta functions fSL )/ Fo fSL @)/ P
SL(4)/P13 4)/ P2 SL(B)/Pra  SL()/ P +Sp(4)/Pr  ¢Sp( 4)/P2 G2/Plong G2/ Psport
g ’ 5@ 5@ 5@ ) 5 ) 5 Q 7 SQ
are on Re(s) =1/2 and simple.
The most complicated one among 10 examples in Theorem 5.2 is fQ 5/ P, “(s)
as follows.
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% +§(5s = 1)§(5s) + 4(53(2—) 3) - £(5s — 1)£(5s)
e S0 = 365 = 2) — S (55— )
s = Ds) — e (s - g5
T A(Gs ﬁ( D) €(5s —2)€(5s — 1) + 3(?22122) - £(5s — 4)€(5s — 3)
" 2(5s — 4)(531— s —1) SO TG =2 + gy (55 —4)E(5s = 3)
- % -§(5s —2)§(5s — 1) — 6(563(22 ) - €£(5s — 4)E(5s — 3)
! -€(55 —3) - ! - £(5s — 3)E(5s — 1)

~ 2(5s —5)(5s — 2)?

£(2)€(3)

2s 1) S5~ LG5 —3) +
£(2)

2(5s —4)(5s = 1)

£(2)
55 ) 69— 1EGs) +

4(5s —2)(5s — 3)

£(2)
2(bs —5)(bs — 1)

- £(5s — 3)E(5s — 2)

+ L €(5s — 3)€(hs — 2) +

£(2)
2(bs —4)(5s — 1)
! ) 2)? 1
i (55 —4)*(bs — 1) £(Bs =2 3(bs —3)(bs — 1)

L ess - 1)es) - 2P e(ms - aye(ss - 3)

55 352 €065~ DE(ss)

+ - £(5s — 2)€(5s — 1)

£(2)-&(bs —3)&(Bs — 1)

 8(5s — 2) 6(5s — 3)
£(2) £(2)
— 4(58 — 2) 5(58 — 4)5(58 — 3) + 2(58——4)(58) 5(58 — 2)6(58 — 1)
1 s &(2)4(3)
T oG —3ms) (O TV T G pyey (O TGS~
@ e (s 1) £2) Ce(5s 112
Bs—5)(5s) o008~ 20— 1) — mem e ey C0s Y
+€(2)'§(55—3)5(5S—1) N £(55 —2)§(5s — 1)
3(bs —4)(bs — 2) 2(5s —4)(5s — 3)(bs — 1)
1 I
g €05~ s — D)~ (D) 55— (s~
B¢ v £2) e(5s_ 3)2
T D B Sl v sy oy S G

£(2)?
3(bs —1)

+ -€(5s — 4)¢(5s — 3);
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As we see, this complicated Weng zeta function does not have an Euler product,
but it is remarkable that this Weng zeta function satisfies the analogue of RH! We
have to recall that any Eisenstein series with class number > 1 that has the similar
structure as Weng’s zeta functions do not satisfy RH. Based on Theorem 5.2, we
strongly believe the truth of RH for Weng’s zeta funtions in general. We have
speculated that the Fuler product for a zeta function is intrinsic and RH mainly
comes from this. However, Theorem 5.2 with the Weng zeta function above is
against to this belief. The functional equation for the Weng zeta function has an
important role for the validity of RH, but the author believes that there must exist
more profound structures to be realized in justifying RH of general cases.

Theorem 5.3 (Ki-Komori-Suzuki, [30]) Let G be a Chevalley group defined over
Q, in other words, G is a connected semisimple algebraic group defined over Q en-
dowed with a maximal (Q-)split torus. Let Py be a Borel subgroup of G containing
the mazimal torus. Let P be a maximal parabolic subgroup of G defined over QQ
containing Fp.

Then all but finitely many zeros of QA“(((QG;}B(S) fg/Pare simple and on the critical
line of its functional equation.

This theorem supports RH for general Weng’s zeta functions. We give a sketch
of the proof of this theorem. The Weng’s zeta function in Theorem 5.3 can be
represented as

f(s)+ f(1=s),

for a suitable function in such a way that f(s) has only finitely many zeros to the
right of the line Re(s) = 1/2. To get these, we heavily introduce properties of the
root system for the Chevalley group. Also, we need to know that the coefficient
in the dominant term of f(s) should not be vanished. Amazingly, the coefficient
is related to the volume of a certain fundamental domain and so we acquire the
nonvanishing property of the coefficient in the dominant term. We then are ready
to use Proposition 2.1. In order to apply Proposition 2.1, we have to understand
analytic behaviors of f(s) which are very complicated. It is quite amazing that
the constant a of the Hadamard factorization of W(z) (W (z) = f(1/2 4 iz)) in
Proposition 2.1 is real. In fact, the realness of « relies on some intrinsic properties
of the Weng’s zeta function. Even if the constant « is not real, we can still
justify Theorem 5.3 using some methods in [21]. However, we have much better
understanding for Weng’s zeta functions if we can follow Proposition 2.1.

Can we improve Theorem 5.37 We note that general Weng’s zeta functions are
extremely complicated, for the size of the Weyl group grows rapidly as the rank
becomes large. Thus, we immediately see how difficult RH of general Weng’s zeta
functions is. So called, is it provable to justify the validity of Weng’s conjecture
or RH for Weng’s zeta functions in general? We note that we don’t know yet
applications of RH for Weng’s zeta functions to Number Theory. However, we
have to recall that we know very little examples that behave like zeta functions
and that fulfill RH, and RH of Weng’s zeta functions might be as hard as the
Riemann hypothesis. Thus, we will understand deeply the behavior of zeros of
zeta functions if we achieve the validity of RH of Weng’s zeta functions.
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