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Abstract

Online learning is a well established learning paradigm which has both
theoretical and practical appeals. The goal of online learning is to
make a sequence of accurate predictions given knowledge of the cor-
rect answer to previous prediction tasks and possibly additional avail-
able information. Online learning has been studied in several research
fields including game theory, information theory, and machine learning.
It also became of great interest to practitioners due the recent emer-
gence of large scale applications such as online advertisement placement
and online web ranking. In this survey we provide a modern overview
of online learning. Our goal is to give the reader a sense of some of
the interesting ideas and in particular to underscore the centrality of
convexity in deriving efficient online learning algorithms. We do not
mean to be comprehensive but rather to give a high-level, rigorous yet
easy to follow, survey.



1
Introduction

Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information. The study of
online learning algorithms is an important domain in machine learn-
ing, and one that has interesting theoretical properties and practical
applications.

Online learning is performed in a sequence of consecutive rounds,
where at round t the learner is given a question, xt, taken from an
instance domain X , and is required to provide an answer to this ques-
tion, which we denote by pt. After predicting an answer, the correct
answer, yt, taken from a target domain Y, is revealed and the learner
suffers a loss, l(pt,yt), which measures the discrepancy between his
answer and the correct one. While in many cases pt is in Y, it is some-
times convenient to allow the learner to pick a prediction from a larger
set, which we denote by D.
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Online Learning

for t = 1,2, . . .
receive question xt ∈ X
predict pt ∈ D

receive true answer yt ∈ Y
suffer loss l(pt,yt)

The specific case of yes/no answers and predictions, namely D =
Y = {0,1}, is called online classification. In this case it is natural to
use the 0–1 loss function: l(pt,yt) = |pt − yt|. That is, l(pt,yt) indicates
if pt = yt (the prediction is correct) or pt �= yt (the prediction is wrong).

For example, consider the problem of predicting whether it is going
to rain tomorrow. On day t, the question xt can be encoded as a vector
of meteorological measurements. Based on these measurements, the
learner should predict if it’s going to rain tomorrow. In the following
day, the learner knows the correct answer.

We can also allow the learner to output a prediction in [0,1], which
can be interpreted as the probability of raining tomorrow. This is an
example of an application in which D �= Y. We can still use the loss
function l(pt,yt) = |pt − yt|, which can now be interpreted as the prob-
ability to err if predicting that it’s going to rain with probability pt.

The learner’s ultimate goal is to minimize the cumulative loss suf-
fered along its run, which translates to making few prediction mistakes
in the classification case. The learner tries to deduce information from
previous rounds so as to improve its predictions on present and future
questions. Clearly, learning is hopeless if there is no correlation between
past and present rounds. Classic statistical theory of sequential predic-
tion therefore enforces strong assumptions on the statistical properties
of the input sequence (e.g., that it is sampled i.i.d. according to some
unknown distribution).

In this review we survey methods which make no statistical assump-
tions regarding the origin of the sequence of examples. The sequence is
allowed to be deterministic, stochastic, or even adversarially adaptive
to the learner’s own behavior (as in the case of spam email filtering).
Naturally, an adversary can make the cumulative loss to our online
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learning algorithm arbitrarily large. For example, the adversary can ask
the same question on each online round, wait for the learner’s answer,
and provide the opposite answer as the correct answer. To make non-
trivial statements we must further restrict the problem. We consider
two natural restrictions.

The first restriction is especially suited to the case of online classi-
fication. We assume that all the answers are generated by some target
mapping, h� : X → Y. Furthermore, h� is taken from a fixed set, called
a hypothesis class and denoted by H, which is known to the learner.
With this restriction on the sequence, which we call the realizable case,
the learner should make as few mistakes as possible, assuming that
both h� and the sequence of questions can be chosen by an adversary.
For an online learning algorithm, A, we denote by MA(H) the max-
imal number of mistakes A might make on a sequence of examples
which is labeled by some h� ∈ H. We emphasize again that both h�

and the sequence of questions can be chosen by an adversary. A bound
on MA(H) is called a mistake-bound and we will study how to design
algorithms for which MA(H) is minimal.

Alternatively, the second restriction of the online learning model
we consider is a relaxation of the realizable assumption. We no longer
assume that all answers are generated by some h� ∈ H, but we require
the learner to be competitive with the best fixed predictor from H. This
is captured by the regret of the algorithm, which measures how “sorry”
the learner is, in retrospect, not to have followed the predictions of
some hypothesis h� ∈ H. Formally, the regret of the algorithm relative
to h� when running on a sequence of T examples is defined as

RegretT (h�) =
T∑
t=1

l(pt,yt) −
T∑
t=1

l(h�(xt),yt), (1.1)

and the regret of the algorithm relative to a hypothesis class H is

RegretT (H) = max
h�∈H

RegretT (h�). (1.2)

We restate the learner’s goal as having the lowest possible regret
relative to H. We will sometime be satisfied with “low regret” algo-
rithms, by which we mean that RegretT (H) grows sub-linearly with
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the number of rounds, T , which implies that the difference between the
average loss of the learner and the average loss of the best hypothesis
in H tends to zero as T goes to infinity.

1.1 Examples

We already mentioned the problem of online classification. To make the
discussion more concrete, we list several additional online prediction
problems and possible hypothesis classes.

Online Regression In regression problems, X = R
d which cor-

responds to a set of measurements (often called features), and
Y = D = R. For example, consider the problem of estimating the fetal
weight based on ultrasound measurements of abdominal circumference
and femur length. Here, each x ∈ X = R

2 is a two-dimensional vector
corresponds to the measurements of the abdominal circumference and
the femur length. Given these measurements the goal is to predict the
fetal weight. Common loss functions for regression problems are the
squared loss, �(p,y) = (p − y)2, and the absolute loss, �(p,y) = |p − y|.
Maybe the simplest hypothesis class for regression is the class of linear
predictors, H = {x �→∑d

i=1w[i]x[i] : ∀i,w[i] ∈ R}, where w[i] is the ith
element of w. The resulting problem is called online linear regression.

Prediction with Expert Advice On each online round the
learner has to choose from the advice of d given experts. Therefore,
xt ∈ X ⊂ R

d, where xt[i] is the advice of the ith expert, and
D = {1, . . . ,d}. Then, the learner receives the true answer, which is a
vector yt ∈ Y = [0,1]d, where yt[i] is the cost of following the advice of
the ith expert. The loss of the learner is the cost of the chosen expert,
�(pt,yt) = yt[pt]. A common hypothesis class for this problem is the
set of constant predictors, H = {h1, . . . ,hd}, where hi(x) = i for all x.
This implies that the regret of the algorithm is measured relative to
the performance of the strategies which always predict according to
the same expert.

Online Ranking On round t, the learner receives a query xt ∈ X
and is required to order k elements (e.g., documents) according to
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their relevance to the query. That is, D is the set of all permuta-
tions of {1, . . . ,k}. Then, the learner receives the true answer yt ∈ Y =
{1, . . . ,k}, which corresponds to the document which best matches the
query. In web applications, this is the document that the user clicked
on. The loss, �(pt,yt), is the position of yt in the ranked list pt.

1.2 A Gentle Start

We start with studying online classification problem, in which Y = D =
{0,1}, and �(p,y) = |p − y| is the 0–1 loss. That is, on each round, the
learner receives xt ∈ X and is required to predict pt ∈ {0,1}. Then, it
receives yt ∈ {0,1} and pays the loss |pt − yt|. We make the following
simplifying assumption:

• Finite Hypothesis Class: We assume that |H| < ∞.

Recall that the goal of the learner is to have a low regret relative to
the hypotheses set, H, where each function in H is a mapping from X
to {0,1}, and the regret is defined as

RegretT (H) = max
h∈H

(
T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt) − yt|
)
.

We first show that this is an impossible mission — no algorithm
can obtain a sublinear regret bound even if |H| = 2. Indeed, consider
H = {h0,h1}, where h0 is the function that always returns 0 and h1 is
the function that always returns 1. An adversary can make the number
of mistakes of any online algorithm to be equal to T , by simply waiting
for the learner’s prediction and then providing the opposite answer as
the true answer. In contrast, for any sequence of true answers, y1, . . . ,yT ,
let b be the majority of labels in y1, . . . ,yT , then the number of mistakes
of hb is at most T/2. Therefore, the regret of any online algorithm
might be at least T − T/2 = T/2, which is not a sublinear with T .
This impossibility result is attributed to Cover [13].

To sidestep Cover’s impossibility result, we must further restrict the
power of the adversarial environment. In the following we present two
ways to do this.
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1.2.1 Realizability Assumption

The first way to sidestep Cover’s impossibility result is by making one
additional assumption:

• Realizability: We assume that all target labels are generated
by some h� ∈ H, namely, yt = h�(xt) for all t. Our goal is to
design an algorithm with an optimal mistake bound. Namely,
an algorithm for which MA(H) is minimal. See definition of
MA(H) in the prequel.

Next, we describe and analyze online learning algorithms assuming
both a finite hypothesis class and realizability of the input sequence.
The most natural learning rule is to use (at any online round) any
hypothesis which is consistent with all past examples.

Consistent

input: A finite hypothesis class H
initialize: V1 = H
for t = 1,2, . . .

receive xt
choose any h ∈ Vt
predict pt = h(xt)
receive true answer yt = h�(xt)
update Vt+1 = {h ∈ Vt : h(xt) = yt}

The Consistent algorithm maintains a set, Vt, of all the hypothe-
ses which are consistent with (x1,y1), . . . ,(xt−1,yt−1). This set is often
called the version space. It then picks any hypothesis from Vt and
predicts according to this hypothesis.

Obviously, whenever Consistent makes a prediction mistake, at
least one hypothesis is removed from Vt. Therefore, after making M

mistakes we have |Vt| ≤ |H| − M . Since Vt is always nonempty (by the
realizability assumption it contains h�) we have 1 ≤ |Vt| ≤ |H| − M .
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Rearranging, we obtain

Corollary 1.1. Let H be a finite hypothesis class. The Consistent

algorithm enjoys the mistake bound MConsistent(H) ≤ |H| − 1.

It is rather easy to construct a hypothesis class and a sequence of
examples on which Consistent will indeed make |H| − 1 mistakes.
Next, we present a better algorithm in which we choose h ∈ Vt in a
smarter way. We shall see that this algorithm is guaranteed to make
exponentially fewer mistakes. The idea is to predict according to the
majority of hypotheses in Vt rather than according to some arbitrary
h ∈ Vt. That way, whenever we err, we are guaranteed to remove at
least half of the hypotheses from the version space.

Halving

input: A finite hypothesis class H
initialize: V1 = H
for t = 1,2, . . .

receive xt
predict pt = argmaxr∈{0,1} |{h ∈ Vt : h(xt) = r}|

(in case of a tie predict pt = 1)
receive true answer yt
update Vt+1 = {h ∈ Vt : h(xt) = yt}

Theorem 1.2. Let H be a finite hypothesis class. The Halving algo-
rithm enjoys the mistake bound MHalving(H) ≤ log2(|H|).

Proof. We simply note that whenever the algorithm errs we have
|Vt+1| ≤ |Vt|/2. (Hence the name Halving.) Therefore, if M is the total
number of mistakes, we have

1 ≤ |VT+1| ≤ |H|2−M .

Rearranging the above inequality we conclude our proof.

Of course, Halving’s mistake bound is much better than
Consistent’s mistake bound. Is this the best we can do? What is an
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optimal algorithm for a given hypothesis class (not necessarily finite)?
We will get back to this question in Section 3.

1.2.2 Randomization

In the previous subsection we sidestepped Cover’s impossibility result
by relying on the realizability assumption. This is a rather strong
assumption on the environment. We now present a milder restriction on
the environment and allow the learner to randomize his predictions. Of
course, this by itself does not circumvent Cover’s impossibility result as
in deriving the impossibility result we assumed nothing on the learner’s
strategy. To make the randomization meaningful, we force the adver-
sarial environment to decide on yt without knowing the random coins
flipped by the learner on round t. The adversary can still know the
learner’s forecasting strategy and even the random bits of previous
rounds, but it doesn’t know the actual value of the random bits used
by the learner on round t. With this (mild) change of game, we analyze
the expected 0–1 loss of the algorithm, where expectation is with respect
to the learner’s own randomization. That is, if the learner outputs ŷt
where P[ŷt = 1] = pt, then the expected loss he pays on round t is

P[ŷt �= yt] = |pt − yt|.

Put another way, instead of having the predictions domain being
D = {0,1} we allow it to be D = [0,1], and interpret pt ∈ D as the
probability to predict the label 1 on round t. To summarize, we assume:

• Randomized Predictions and Expected Regret : We allow the
predictions domain to be D = [0,1] and the loss function is
still l(pt,yt) = |pt − yt|.

With this assumption it is possible to derive a low regret algorithm
as stated in the following theorem.

Theorem 1.3. Let H be a finite hypothesis class. There exists an algo-
rithm for online classification, whose predictions come from D = [0,1],
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that enjoys the regret bound
T∑
t=1

|pt − yt| − min
h∈H

T∑
t=1

|h(xt) − yt| ≤
√

0.5ln(|H|)T .

We will provide a constructive proof of the above theorem in the next
section.

To summarize, we have presented two different ways to sidestep
Cover’s impossibility result: realizability or randomization. At first
glance, the two approaches seem to be rather different. However, there
is a deep underlying concept that connects them. Indeed, we will show
that both methods can be interpreted as convexification techniques.
Convexity is a central theme in deriving online learning algorithms.
We study it in the next section.

1.3 Organization and Scope

How to predict rationally is a key issue in various research areas such
as game theory, machine learning, and information theory. The semi-
nal book of Cesa-Bianchi and Lugosi [12] thoroughly investigates the
connections between online learning, universal prediction, and repeated
games. In particular, results from the different fields are unified using
the prediction with expert advice framework.

We feel that convexity plays a central role in the derivation of online
learning algorithms, and therefore start the survey with a study of the
important sub-family of online learning problems, which is called online
convex optimization. In this family, the prediction domain is a convex
set and the loss function is a convex function with respect to its first
argument. As we will show, many previously proposed algorithms for
online classification and other problems can be jointly analyzed based
on the online convex optimization framework. Furthermore, convexity
is important because it leads to efficient algorithms.

In Section 3 we get back to the problem of online classification.
We characterize a standard optimal algorithm for online classification.
In addition, we show how online convex optimization can be used for
deriving efficient online classification algorithms.

In Section 4 we study online learning in a limited feedback model,
when the learner observes the loss value l(pt,yt) but does not observe
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the actual correct answer yt. We focus on the classic multi-armed ban-
dit problem and derive an algorithm for this problem based on the
online convex optimization algorithmic framework. We also present a
low regret algorithm for the general problem of bandit online convex
optimization.

Finally, in Section 5 we discuss several implications of online learn-
ing to batch learning problems, in which we assume that the examples
are sampled i.i.d. from an unknown probability source.

Part of our presentation shares similarities with other surveys on
online prediction problems. In particular, Rakhlin’s lecture notes [34]
and Hazan’s book section [22] are good recent surveys on online
convex optimization. While part of our presentation shares similari-
ties with these surveys, we sometimes emphasize different techniques.
Furthermore, we connect and relate the new results on online convex
optimization to classic results on online classification, thus providing
a fresh modern perspective on some classic algorithms. A more classic
treatment can be found in Blum’s survey [8].

1.4 Notation and Basic Definitions

We denote scalars with lower case letters (e.g., x and λ), and vectors
with bold face letters (e.g., x and λ). The ith element of a vector x
is denoted by x[i]. Since online learning is performed in a sequence
of rounds, we denote by xt the tth vector in a sequence of vectors
x1,x2, . . . ,xT . The ith element of xt is denoted by xt[i].

The inner product between vectors x and w is denoted by 〈x,w〉.
Whenever we do not specify the vector space we assume that it is the
d-dimensional Euclidean space and then 〈x,w〉 =

∑d
i=1x[i]w[i]. Sets

are designated by upper case letters (e.g., S). The set of real numbers
is denoted by R and the set of non-negative real numbers is denoted
by R+. The set of natural numbers is denoted by N. For any k ≥ 1,
the set of integers {1, . . . ,k} is denoted by [k]. Given a predicate π, we
use the notation 1[π] to denote the indicator function that outputs 1
if π holds and 0 otherwise. The hinge function is denoted by [a]+ =
max{0,a}.

The Euclidean (or �2) norm of a vector w is ‖w‖2 =
√〈w,w〉. We

omit the subscript when it is clear from the context. We also use other �p



118 Introduction

norms, ‖w‖p = (
∑

i |w[i]|p)1/p, and in particular ‖w‖1 =
∑

i |w[i]| and
‖w‖∞ = maxi |w[i]|. A generic norm of a vector w is denoted by ‖w‖
and its dual norm is defined as

‖x‖� = max{〈w,x〉 : ‖w‖ ≤ 1}.
The definition of the dual norm immediately implies the inequality

〈w,z〉 ≤ ‖w‖‖z‖�. (1.3)

For the �2 norm (which is dual to itself), this is the well known Cauchy–
Schwartz inequality. For p,q ≥ 1 such that 1

p + 1
q = 1 we have that

the �p and �q norms are dual, and Equation (1.3) becomes Holder’s
inequality.

A function f is called L-Lipschitz over a set S with respect to a
norm ‖·‖ if for all u,w ∈ S we have |f(u) − f(w)| ≤ L‖u − w‖.

The gradient of a differentiable function f is denoted by ∇f and
the Hessian is denoted by ∇2f .

Throughout the review, we make use of basic notions from convex
analysis. A set S is convex if for all w,v ∈ S and α ∈ [0,1] we have
that αw + (1 − α)v ∈ S as well. Similarly, a function f : S → R is con-
vex if for all w,v and α ∈ [0,1] we have f(αw + (1 − α)v) ≤ αf(w)+
(1 − α)f(v).

It is convenient to allow convex functions to output the value ∞.
The domain of a function f is the set of points on which f is finite.
This is convenient, for example, for constraining the solution of an opti-
mization problem to be within some set A. Indeed, instead of solving
minx∈A f(x) we can solve minx f(x) + IA(x), where IA is the function
that outputs 0 if x ∈ A and ∞ if x /∈ A. In the next section we make
use of some additional definitions and tools from convex analysis. For
clarity, we define them as per need.

The expected value of a random variable, ψ, is denoted by E[ψ].
In some situations, we have a deterministic function h that receives a
random variable as input. We denote by E[h(ψ)] the expected value of
the random variable h(ψ). Occasionally, we omit the dependence of h
on ψ. In this case, we may clarify the meaning of the expectation by
using the notation Eψ[h] or Eψ∼P [h] if ψ is distributed according to
some distribution P .



2
Online Convex Optimization

In recent years, the design of many efficient online learning algorithms
has been influenced by convex optimization tools. Furthermore, it was
observed that most previously proposed efficient algorithms can be
jointly analyzed based on the following elegant model:

Online Convex Optimization (OCO)

input: A convex set S
for t = 1,2, . . .

predict a vector wt ∈ S

receive a convex loss function ft : S → R

suffer loss ft(wt)

In this section we describe algorithms for online convex optimization
and analyze their regret. Recall that the regret of an online algorithm
with respect to a competing hypothesis, which here will be some vector
u, is defined as

RegretT (u) =
T∑
t=1

ft(wt) −
T∑
t=1

ft(u). (2.1)

119
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As before, the regret of the algorithm relative to a set of competing
vectors, U , is defined as

RegretT (U) = max
u∈U

RegretT (u).

Remark 2.1. (U vs. S) In the online convex optimization problem,
the predictions of the learner should come from the set S, while we
analyze the regret with respect to the set U . While in some situations
it makes sense to set U = S, this is not always the case. Whenever we do
not specify the value of U we use the default value U = S. Additionally,
our default setting for S will be S = R

d.

The rest of this section is organized as follows. We start with
convexification techniques, showing how to utilize the online convex
optimization framework in nonconvex problems. Next, we start
describing and analyzing an algorithmic framework for online convex
optimization. First, we describe the Follow-the-Leader approach, in
which the learner simply picks the vector which performed best on
past rounds. Next we describe a regularized form of Follow-the-Leader,
which stabilizes the predictions of the algorithm, and show how stability
leads to low regret. We proceed with deriving Online Gradient Descent
and Online Mirror Descent from Follow-the-Regularized-Leader by
a linearization trick. We derive several specific algorithms from the
Online Mirror Descent framework. Finally, we describe additional proof
techniques and also derive local-norm bounds, that will be used in the
next sections.

2.1 Convexification

Some online prediction problems can be seamlessly cast in the online
convex optimization framework.

Example 2.1 (Online linear regression). Recall the online linear
regression problem described in Section 1.1. On each online round the
learner first receives a vector of features, xt ∈ A ⊂ R

d, and then needs to
predict a scalar, pt. Next, the learner receives the “true” target, yt ∈ R,
and pays the loss |pt − yt|. The learner should be competitive with the
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set of linear predictors of the form x �→ 〈w,x〉. If the predictions of
the learner are also based on linear functions, then we can easily cast
this online prediction problem in the online convex optimization frame-
work as follows. The learner should decide on a vector wt, which yields
the prediction pt = 〈wt,xt〉. The loss function becomes |pt − yt| =
|〈wt,xt〉 − yt|. Therefore, letting ft(w) = |〈w,xt〉 − yt|, which is indeed
a convex function, we obtain that ft(wt) = l(pt,yt).

Other online prediction problems do not seem to fit into the online
convex optimization framework. For example, in online classification
problems, the predictions domain or the loss functions are not convex.
In this section we describe two convexification techniques that allow
us to utilize the online convex optimization framework in additional
scenarios.

2.1.1 Convexification by Randomization

To demonstrate the randomization technique, consider the problem
of prediction with expert advice, where on each online round the
learner has to choose from the advice of d given experts. Denote by
pt ∈ {1, . . . ,d} the chosen expert. Then, the learner receives a vector
yt ∈ [0,1]d, where yt[i] is the cost of following the advice of the ith
expert. The learner pays the loss yt[pt]. In this prediction problem, the
decision space is discrete, hence nonconvex.

Furthermore, the problem of online classification with a finite
hypothesis class we encountered in Section 1.2 can be easily cast as
a special case of the prediction with expert advice problem. Therefore,
Cover’s impossibility result (see again Section 1.2) implies that there is
no algorithm that can attain low regret for the prediction with expert
advice problem.

However, as we show below, by allowing the learner to random-
ize his predictions we can cast the problem in the online convex opti-
mization framework, and therefore can obtain low regret algorithm for
this problem. Formally, let S = {w ∈ R

d : w ≥ 0 ∧ ‖w‖1 = 1} be the
probability simplex, which forms a convex set. At round t, the learner
chooses wt ∈ S and based on wt picks an expert at random according
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to P[pt = i] = wt[i]. Then, the cost vector yt is revealed and the learner
pays for his expected cost

E[yt[pt]] =
d∑
i=1

P[pt = i]yt[i] = 〈wt,yt〉.

Note that by analyzing the expected cost of the learner we implicitly
restrict the power of the adversarial environment — it cannot base the
vector yt on the random bits the learner employs on round t.

Now we can cast the problem as online convex optimization since
S is a convex set and the loss function, ft(w) = 〈w,yt〉, happens to be
a linear function (hence, convex). Let the set of competing vectors, U ,
be the d singletons, namely the vectors of the form (0, . . . ,0,1,0, . . . ,0).
These vectors correspond to always following the advice of a single
expert. Hence, a regret bound with respect to U implies a regret bound
with respect to always predicting the advice of a single expert.

2.1.2 Convexification by Surrogate Loss Functions

To explain the second convexification technique we again start with
the specific problem of online classification with a finite hypothesis
class. Recall that one of the techniques we used to sidestep Cover’s
impossibility result relied on the realizability assumption. That is, we
assumed that there exists h� ∈ H such that yt = h�(xt) for all t. With
this assumption at hand, we described the Halving algorithm and
showed that it makes at most log2(|H|) prediction mistakes.

We now derive a similar guarantee using the language of online
convex optimization. Let us write H = {h1, . . . ,hd} and let S = {w ∈
[0,1]d :

∑
iw[i] = 1} be the probability simplex. For each online round,

define vt = (h1(xt), . . . ,hd(xt)) ∈ {0,1}d. Our algorithm will maintain
wt ∈ S and will predict the label according to

pt =
{

1 if 〈wt,vt〉 ≥ 1/2
0 if 〈wt,vt〉 < 1/2

Let M = {t : pt �= yt} be the rounds on which our algorithm makes a
prediction mistake. We define

ft(w) =
{

2|〈w,vt〉 − yt| if t ∈ M
0 if t /∈ M.
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Note that ft depends on M, and thus depends on wt. This does not
pose any problem since in the online convex optimization model the
environment picks the function ft after observing wt. The two key
properties of ft are

• ft is a convex function
• ft(wt) ≥ |pt − yt|, namely, the convex loss upper bounds the

original nonconvex loss.

Hence the name surrogate convex loss. Since S is a convex set and
ft is a convex function for all t we have obtained an online convex
optimization problem.

In the next sections we will derive algorithms for online convex
optimization problems. In particular, one of these algorithms enjoys
the regret bound

∀u ∈ S,

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) +
log(d)
η

+ 2η
T∑
t=1

Lt,

where η is a parameter, which we will set here to be η = 1/4, and Lt is
a Lipschitz parameter of the function ft (with respect to the �1 norm).
In our case, Lt = 1 if t ∈ M and Lt = 0 if t /∈ M. Hence,

∀u ∈ S,

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) + 4log(d) +
1
2
|M|.

By the surrogate property of ft, we can lower bound the left-hand side
by |M|. Rearranging, we obtain:

|M| ≤ 2
T∑
t=1

ft(u) + 8log(d).

This type of bound, where the number of mistakes is upper bounded
by the convex surrogate loss of a competing hypothesis, is often called
a relative loss bound.

In the realizable case, we can further simplify the relative loss bound
as follows. Since the bound holds for all u ∈ S it holds in particu-
lar for the vector u = (0, . . . ,0,1,0, . . . ,0), where the 1 is placed in the
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coordinate corresponding to the true hypothesis h�. By our construc-
tion, ft(u) = 0 for all t, which yields

|M| ≤ 8log(d).

We have obtained a mistake bound of the same order as the Halving’s
mistake bound.

More generally, the first step of the technique involves a re-
parameterization of the problem such that the decision space becomes
convex (instead of maintaing the set Vt in Halving we now maintain
the vector wt ∈ S). In the second step we construct a function ft of
the predicted parameter that satisfies two requirements: It should be
convex and it should upper bound the original loss function. Last, we
would of course like to construct a convex surrogate for which there
exists some u ∈ S that attains a low cumulative loss. Otherwise, the
resulting bound will be meaningless. Typically, this is done by assuming
more on the problem at hand. For example, in the above, the realiz-
ability assumption enabled us to construct a surrogate for which there
was u ∈ S such that ft(u) = 0 for all t.

2.2 Follow-the-leader

By now, we hope that the reader is convinced that the online convex
optimization framework is an important model, so we turn to deriving
algorithms for online convex optimization.

The most natural learning rule is to use (at any online round) any
vector which has minimal loss on all past rounds. This is in the same
spirit of the Consistent algorithm we encountered in Section 1.2 but
in the context of online convex optimization it is usually referred to as
Follow-The-Leader.

Follow-The-Leader (FTL)

∀ t, wt = argmin
w∈S

t−1∑
i=1

fi(w) (break ties arbitrarily)

To analyze FTL, we first show that the regret of FTL is upper
bounded by the cumulative difference between the loss of wt and wt+1.
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Lemma 2.1. Let w1,w2, . . . be the sequence of vectors produced by
FTL. Then, for all u ∈ S we have

RegretT (u) =
T∑
t=1

(ft(wt) − ft(u)) ≤
T∑
t=1

(ft(wt) − ft(wt+1)).

Proof. Subtracting
∑

t ft(wt) from both sides of the inequality and
rearranging, the desired inequality can be rewritten as

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u).

We prove this inequality by induction. The base case of T = 1 follows
directly from the definition of wt+1. Assume the inequality holds for
T − 1, then for all u ∈ S we have

T−1∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u).

Adding fT (wT+1) to both sides we get

T∑
t=1

ft(wt+1) ≤ fT (wT+1) +
T−1∑
t=1

ft(u).

The above holds for all u and in particular for u = wT+1. Thus,

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(wT+1) = min
u∈S

T∑
t=1

ft(u),

where the last equation follows from the definition of wT+1. This con-
cludes our inductive argument.

We next use Lemma 2.1 to derive a regret bound for the following
sub-family of online convex optimization.

Definition 2.1 (Online Quadratic Optimization). This is an
online convex optimization problem where at each round ft(w) =
1
2‖w − zt‖2

2 for some vector zt.
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We further assume that S = R
d. For this case, it is easy to verify that

the FTL rule becomes

wt =
1

t − 1

t−1∑
i=1

zi,

namely, wt is the average of z1, . . . ,zt−1. Note that we can rewrite

wt+1 =
1
t
(zt + (t − 1)wt) =

(
1 − 1

t

)
wt +

1
t
zt

which yields

wt+1 − zt =
(

1 − 1
t

)
(wt − zt).

Therefore,

ft(wt) − ft(wt+1) =
1
2
‖wt − zt‖2 − 1

2
‖wt+1 − zt‖2

=
1
2

(
1 −

(
1 − 1

t

)2
)

‖wt − zt‖2

≤ 1
t
‖wt − zt‖2.

Let L = maxt ‖zt‖. Since wt is the average of z1, . . . ,zt−1 we have that
‖wt‖ ≤ L and therefore, by the triangle inequality, ‖wt − zt‖ ≤ 2L. We
have therefore obtained:

T∑
t=1

(ft(wt) − ft(wt+1)) ≤ (2L)2
T∑
t=1

1
t
.

Combining the above with Lemma 2.1 and using the inequality∑T
t=1 1/t ≤ log(T ) + 1 we conclude that

Corollary 2.2. Consider running FTL on an Online Quadratic Opti-
mization problem with S = R

d and let L = maxt ‖zt‖. Then, the regret
of FTL with respect to all vectors u ∈ R

d is at most 4L2(log(T ) + 1).

While the above result seems promising, we next show that the FTL
rule does not guarantee low regret for another important sub-family.



2.3 Follow-the-Regularized-Leader 127

Definition 2.2 (Online Linear Optimization). This is an online
convex optimization problem where at each round ft(w) = 〈w,zt〉 for
some vector zt.

Example 2.2 (Failure of FTL). Let S = [−1,1] ⊂ R and consider
the sequence of linear functions such that ft(w) = ztw where

zt =




−0.5 if t = 1
1 if t is even
−1 if t > 1 ∧ t is odd

Then, the predictions of FTL will be to set wt = 1 for t odd and wt = −1
for t even. The cumulative loss of the FTL algorithm will therefore be T
while the cumulative loss of the fixed solution u = 0 ∈ S is 0. Thus, the
regret of FTL is T !

Intuitively, FTL fails in the above example because its predictions
are not stable — wt shifts drastically from round to round where we
only added a single loss function to the objective of the optimization
problem in the definition of wt. In contrast, FTL works fine for the
quadratic game since wt+1 is “close” to wt. One way to stabilize FTL
is by adding regularization, which is the topic of the next section.

2.3 Follow-the-Regularized-Leader

Follow-the-Regularized-Leader is a natural modification of the basic
FTL algorithm in which we minimize the loss on all past rounds plus
a regularization term. The goal of the regularization term is to stabi-
lize the solution. Formally, for a regularization function, R : S → R we
define

Follow-the-Regularized-Leader (FoReL)

∀ t, wt = argmin
w∈S

t−1∑
i=1

fi(w) + R(w)
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Naturally, different regularization functions will yield different algo-
rithms with different regret bounds. We discuss properties of different
regularization functions later. But, first, let us specify FoReL for the
case of linear functions and squared-�2-norm regularization, which we
often call the Euclidean regularization case.

Example 2.3. Consider the Online Linear Optimization problem
where ft(w) = 〈w,zt〉 and let S = R

d. Suppose we run FoReL with
the regularization function R(w) = 1

2η‖w‖2
2 for some positive scalar η.

Then, it is easy to verify that

wt+1 = −η
t∑
i=1

zi = wt − ηzt. (2.2)

Note that zt is the gradient of ft at wt (in fact, at any point). Therefore,
the recursive rule, wt+1 = wt − ηzt, can be rewritten as wt+1 = wt −
η∇ft(wt). Hence, this rule is often called Online Gradient Descent.
We shall re-visit the Online Gradient Descent rule for general convex
functions in the next section.

We next turn to the analysis of FoReL. As with the analysis of FTL,
we first relate the regret of FoReL to the cumulative difference between
the loss of wt and wt+1.

Lemma 2.3. Let w1,w2, . . . be the sequence of vectors produced by
FoReL. Then, for all u ∈ S we have

T∑
t=1

(ft(wt) − ft(u)) ≤ R(u) − R(w1) +
T∑
t=1

(ft(wt) − ft(wt+1)).

Proof. Observe that running FoReL on f1, . . . ,fT is equivalent to run-
ning FTL on f0,f1, . . . ,fT where f0 = R. Using Lemma 2.1 we obtain

T∑
t=0

(ft(wt) − ft(u)) ≤
T∑
t=0

(ft(wt) − ft(wt+1)).

Rearranging the above and using f0 = R we conclude our proof.
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Based on the above lemma we can easily derive a regret bound for
online linear optimization with the regularizer R(w) = 1

2η‖w‖2
2.

Theorem 2.4. Consider running FoReL on a sequence of linear func-
tions, ft(w) = 〈w,zt〉 for all t, with S = R

d, and with the regularizer
R(w) = 1

2η‖w‖2
2, which yields the predictions given in Equation (2.2).

Then, for all u we have

RegretT (u) ≤ 1
2η

‖u‖2
2 + η

T∑
t=1

‖zt‖2
2.

In particular, consider the set U = {u : ‖u‖ ≤ B} and let L be such
that 1

T

∑T
t=1 ‖zt‖2

2 ≤ L2, then by setting η = B
L

√
2T

we obtain

RegretT (U) ≤ BL
√

2T .

Proof. Using Lemma 2.3 and Equation (2.2),

RegretT (u) ≤ R(u) − R(w1) +
T∑
t=1

(ft(wt) − ft(wt+1))

=
1
2η

‖u‖2
2 +

T∑
t=1

〈wt − wt+1,zt〉

=
1
2η

‖u‖2
2 + η

T∑
t=1

‖zt‖2
2.

The parameter η in the above theorem depends on the time hori-
zon T . It is possible to derive a similar result without using the time
horizon. In the next subsection we show a generic way (although not
always optimal) to get rid of the dependence on the time horizon.

We see that the Euclidean regularization function guarantees low
regret for linear functions with bounded �2-norm because it stabi-
lizes the predictions. We shall later generalize the above result in two
aspects. First, we allow any sequence of Lipschitz functions (rather
than linear functions with bounded norm). Second, we consider other
regularization functions which guarantee stability in other scenarios.
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2.3.1 The Doubling Trick

In Theorem 2.4, the parameter η depends on the time horizon T . We
now show how to get rid of this dependence by a simple trick.

Consider an algorithm that enjoys a regret bound of the form α
√
T ,

but its parameters require the knowledge of T . The doubling trick,
described below, enables us to convert such an algorithm into an algo-
rithm that does not need to know the time horizon. The idea is to divide
the time into periods of increasing size and run the original algorithm
on each period.

The Doubling Trick

input: algorithm A whose parameters depend on the time horizon
for m = 0,1,2, . . .

run A on the 2m rounds t = 2m, . . . ,2m+1 − 1

The regret of A on each period of 2m rounds is at most α
√

2m.
Therefore, the total regret is at most

�log2(T )�∑
m=1

α
√

2m = α

�log2(T )�∑
m=1

(
√

2)m

= α
1 − √

2
�log2(T )�+1

1 − √
2

≤ α
1 − √

2T
1 − √

2

≤
√

2√
2 − 1

α
√
T .

That is, we obtain that the regret is worse by a constant multiplicative
factor.

2.4 Online Gradient Descent: Linearization
of Convex Functions

In the previous section we introduced the FoReL approach and analyzed
it for the case of linear functions, S = R

d, and Euclidean regularization.
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We now generalize this result by deriving a simple reduction from
convex functions to linear functions.

To do so, we use an important property of convex functions, which
is in fact an alternative characterization of convexity, as given by the
following lemma.

Lemma 2.5. Let S be a convex set. A function f : S → R is convex
iff for all w ∈ S there exists z such that

∀u ∈ S, f(u) ≥ f(w) + 〈u − w,z〉. (2.3)

In words, convexity is characterized by the existence of tangents
that lie below the function. The proof of this lemma can be found in
many convex analysis textbooks (e.g., [9]).

Definition 2.3 (sub-gradients). A vector z that satisfies Equa-
tion (2.3) is called a sub-gradient of f at w. The set of sub-gradients of
f at w is denoted ∂f(w). Furthermore, if f is differentiable at w then
∂f(w) contains a single element — the gradient of f at w, ∇f(w).

An illustration of sub-gradients is given in Figure 2.1.
Getting back to online convex optimization, for each round t, there

exists zt such that for all u,

ft(wt) − ft(u) ≤ 〈wt − u,zt〉.

Fig. 2.1 Left: The right-hand side of Equation (2.3) is the tangent of f at w. For a convex
function, the tangent lower bounds f . Right: Illustration of several sub-gradients of a non-
differentiable convex function.



132 Online Convex Optimization

It follows that for any sequence of convex functions f1, . . . ,fT and vec-
tors w1, . . . ,wT , if for all t, zt ∈ ∂ft(wt) (namely, it is a sub-gradient)
then

T∑
t=1

(ft(wt) − ft(u)) ≤
T∑
t=1

(〈wt,zt〉 − 〈u,zt〉). (2.4)

In words, the regret of a procedure that generates the vectors
w1, . . . ,wT for the sequence of linear functions upper bounds the regret
with respect to the convex functions f1, . . . ,fT .

Note that in this construction, zt depends on wt. As mentioned pre-
viously, this does not pose any problem since we allow the adversarial
environment to base its loss function on the vector predicted by the
learner.

Combining the above observation with the FoReL procedure with
Euclidean regularization (see Equation (2.2)) yields the Online Gradi-
ent Descent algorithm:

Online Gradient Descent (OGD)

parameter: η > 0
initialize: w1 = 0
update rule: wt+1 = wt − ηzt where zt ∈ ∂ft(wt)

To analyze OGD, we combine Equation (2.4) with the analysis of
FoReL for linear functions given in Theorem 2.4, to get that

RegretT (u) ≤ 1
2η

‖u‖2
2 + η

T∑
t=1

‖zt‖2
2. (2.5)

This regret bound depends on the norms of the sub-gradients of the
vectors produced by the algorithm, and is therefore not satisfactory.
To derive a more concrete bound, we must assure that the norms of
sub-gradients will not be excessively large. One way to do this is by
assuming that the functions are Lipschitz. The following lemma relates
norms of sub-gradients to Lipschitzness of ft.
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Lemma 2.6. Let f : S → R be a convex function. Then, f is L-
Lipschitz over S with respect to a norm ‖·‖ iff for all w ∈ S and
z ∈ ∂f(w) we have that ‖z‖� ≤ L, where ‖·‖� is the dual norm.

Proof. Assume that f is Lipschitz. Choose some w ∈ S,z ∈ ∂f(w).
Let u be such that u − w = argmaxv:‖v‖=1〈v,z〉. Therefore, 〈u −
w,z〉 = ‖z‖�. From the definition of the sub-gradient,

f(u) − f(w) ≥ 〈z,u − w〉 = ‖z‖�.
On the other hand, from the Lipschitzness of f we have

L = L‖u − w‖ ≥ f(u) − f(w).

Combining the above two inequalities we conclude that ‖z‖� ≤ L. For
the other direction, since z ∈ ∂f(w) we also have

f(w) − f(u) ≤ 〈z,w − u〉.
Combining the above with Equation (1.3) we obtain

f(w) − f(u) ≤ ‖z‖�‖w − u‖ ≤ L‖w − u‖,
hence f is L-Lipschitz.

Therefore, the term
∑T

t=1 ‖zt‖2
2 given in Equation (2.5) can be

bounded by
∑T

t=1L
2
t , where Lt is the Lipschitz constant of ft. We

conclude:

Corollary 2.7. Assume that OGD is run on a sequence f1, . . . ,fT of
convex functions. Then, for all u we have

RegretT (u) ≤ 1
2η

‖u‖2
2 + η

T∑
t=1

‖zt‖2
2.

If we further assume that each ft is Lt-Lipschitz with respect to ‖·‖2,
and let L be such that 1

T

∑T
t=1L

2
t ≤ L2. Then, for all u, the regret of

OGD satisfies

RegretT (u) ≤ 1
2η

‖u‖2
2 + ηTL2.
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In particular, if U = {u : ‖u‖2 ≤ B} and η = B
L

√
2T

then

RegretT (U) ≤ BL
√

2T .

Let us now discuss the consequences of Corollary 2.7, starting with
the online linear regression problem (Example 2.1). Recall that for this
example, ft(w) = |〈w,xt〉 − yt|, where xt comes from a set A. If the
set A is contained in a ball of �2 radius L, then ft is L-Lipschitz with
respect to the �2 norm. We therefore obtain a regret bound of BL

√
2T

which holds for all competing vectors u with ‖u‖2 ≤ B.
For the problem of prediction with expert advice (see Section 2.1.1),

we cannot apply the OGD framework as it does not guarantee that wt

will always be in the probability simplex. In the next section we describe
the FoReL framework with other regularization functions. In particu-
lar, we present regularization functions appropriate for the problem of
prediction with expert advice.

2.5 Strongly Convex Regularizers

So far we applied FoReL with the Euclidean regularization function. As
mentioned at the end of the previous section, this regularization can-
not be used for the learning with expert advice problem. In this section
we consider other regularization functions and underscore strong con-
vexity as an important property of regularization functions that yields
meaningful regret bounds.

2.5.1 Strong Convexity

Intuitively, a function is strongly convex if it grows faster than a linear
function. To give a precise definition, recall that for a convex func-
tion f , at any point w we can find a linear function (the “tangent”)
which equals to f at w and does not exceed f at any other point (see
Lemma 2.5). A function is strongly convex if f is strictly above the
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tangent, and the difference can be quantified as follows:

Definition 2.4. A function f : S → R is σ-strongly-convex over S with
respect to a norm ‖·‖ if for any w ∈ S we have

∀z ∈ ∂f(w), ∀u ∈ S, f(u) ≥ f(w) + 〈z,u − w〉 +
σ

2
‖u − w‖2.

A graphical illustration is given in Figure 2.2.
An important property of strong convexity that we use is the fol-

lowing:

Lemma 2.8. Let S be a nonempty convex set. Let f : S → R be a
σ-strongly-convex function over S with respect to a norm ‖·‖. Let w =
argminv∈S f(v). Then, for all u ∈ S

f(u) − f(w) ≥ σ

2
‖u − w‖2.

Proof. To give intuition, assume first that f is differentiable and w is
in the interior of S. Then, ∇f(w) = 0 and therefore, by the definition
of strong convexity we have

∀u ∈ S, f(u) − f(w) ≥ 〈∇f(w),u − w〉 +
σ

2
‖u − w‖2 =

σ

2
‖u − w‖2,

Fig. 2.2 Illustrating strong-convexity: the distance between f and its tangent at w is at
least σ

2 ‖u − w‖2.
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as required. Even if w is on the boundary of S we still have that for all
u ∈ S, 〈∇f(w),u − w〉 ≥ 0 (otherwise, w would not have been optimal
since we can make a small step in the direction u − w and decrease the
value of f). So, the desired inequality still holds. Finally, to give the
formal proof for a non-differentiable f , let g : R

d → R ∪ {∞} be such
that g(w) = f(w) if w ∈ S and g(w) = ∞ otherwise. We can therefore
rewrite w = argminv g(v). Since g is a proper1 convex function we have
that 0 ∈ ∂g(w). The inequality follows by using the strong-convexity
of g.

If R is twice differentiable, then it is easy to verify that a sufficient
condition for strong convexity of R is that for all w,x, 〈∇2R(w)x,x〉 ≥
σ‖x‖2, where ∇2R(w) is the Hessian matrix of R at w, namely, the
matrix of second-order partial derivatives of R at w [39, Lemma 14].

Example 2.4 (Euclidean regularization). The function R(w) =
1
2‖w‖2

2 is 1-strongly-convex with respect to the �2 norm over R
d. To see

this, simply note that the Hessian of R at any w is the identity matrix.

Example 2.5 (Entropic regularization). The function R(w) =∑d
i=1w[i] log(w[i]) is 1

B -strongly-convex with respect to the �1 norm
over the set S = {w ∈ R

d : w > 0 ∧ ‖w‖1 ≤ B}. In particular, R is
1-strongly-convex over the probability simplex, which is the positive
vectors whose elements sum to 1.

To see this note that

〈∇2R(w)x,x〉 =
∑
i

x[i]2

w[i]
=

1
‖w‖1

(∑
i

w[i]

)(∑
i

x[i]2

w[i]

)

≥ 1
‖w‖1

(∑
i

√
w[i]

|x[i]|√
w[i]

)2

=
‖x‖2

1
‖w‖1

, (2.6)

where the inequality follows from Cauchy–Schwartz inequality.

1 A convex function is proper if it never receives the value −∞ and it receives a finite value
at least once. For such functions, an optimality condition for w being a minimum is that
the zero vector is a sub-gradient of the function at w.
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Additional useful properties are given in the following lemma, whose
proof follows directly from the definition of strong convexity.

Lemma 2.9. If R is 1-strongly convex over S with respect to some
norm then σR is σ-strongly-convex over S with respect to the same
norm. In addition, if S′ is a convex subset of S, then R is 1-strongly
convex over S′ as well.

2.5.2 Analyzing FoReL with Strongly Convex Regularizers

We now analyze FoReL with strongly convex regularizers. Recall the
regret bound given in Lemma 2.3:

T∑
t=1

(ft(wt) − ft(u)) ≤ R(u) − R(w1) +
T∑
t=1

(ft(wt) − ft(wt+1)).

If ft is L-Lipschitz with respect to a norm ‖·‖ then

ft(wt) − ft(wt+1) ≤ L‖wt − wt+1‖.
Therefore, we need to ensure that ‖wt − wt+1‖ is small. The following
lemma shows that if the regularization function R(w) is strongly convex
with respect to the same norm, then wt will be close to wt+1.

Lemma 2.10. Let R : S → R be a σ-strongly-convex function over S
with respect to a norm ‖·‖. Let w1,w2, . . . be the predictions of the
FoReL algorithm. Then, for all t, if ft is Lt-Lipschitz with respect
to ‖·‖ then

ft(wt) − ft(wt+1) ≤ Lt‖wt − wt+1‖ ≤ L2
t

σ
.

Proof. For all t let Ft(w) =
∑t−1

i=1 fi(w) + R(w) and note that the
FoReL rule is wt = argminw∈S Ft(w). Note also that Ft is σ-strongly-
convex since the addition of a convex function to a strongly convex
function keeps the strong convexity property. Therefore, Lemma 2.8
implies that:

Ft(wt+1) ≥ Ft(wt) +
σ

2
‖wt − wt+1‖2.
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Repeating the same argument for Ft+1 and its minimizer wt+1 we get

Ft+1(wt) ≥ Ft+1(wt+1) +
σ

2
‖wt − wt+1‖2.

Summing the above two inequalities and rearranging we obtain

σ‖wt − wt+1‖2 ≤ ft(wt) − ft(wt+1). (2.7)

Next, using the Lipschitzness of ft we get that

ft(wt) − ft(wt+1) ≤ Lt‖wt − wt+1‖.
Combining with Equation (2.7) and rearranging we get that ‖wt −
wt+1‖ ≤ L/σ and together with the above we conclude our proof.

Combining the above Lemma with Lemma 2.3 we obtain

Theorem 2.11. Let f1, . . . ,fT be a sequence of convex functions such
that ft is Lt-Lipschitz with respect to some norm ‖·‖. Let L be such
that 1

T

∑T
t=1L

2
t ≤ L2. Assume that FoReL is run on the sequence with

a regularization function which is σ-strongly-convex with respect to the
same norm. Then, for all u ∈ S,

RegretT (u) ≤ R(u) − min
v∈S

R(v) + TL2/σ.

2.5.3 Derived Bounds

We now derive concrete bounds from Theorem 2.11. We start with the
simplest case of Euclidean regularization, which is 1-strongly convex
over R

d, hence the following corollary follows.

Corollary 2.12. Let f1, . . . ,fT be a sequence of convex functions
such that ft is Lt-Lipschitz with respect to ‖·‖2. Let L be such that
1
T

∑T
t=1L

2
t ≤ L2. Assume that FoReL is run on the sequence with the

regularization function R(w) = 1
2η‖w‖2

2. Then, for all u,

RegretT (u) ≤ 1
2η

‖u‖2
2 + ηTL2.
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In particular, if U = {u : ‖u‖2 ≤ B} and η = B
L

√
2T

then

RegretT (U) ≤ BL
√

2T .

Observe that the bound we obtained is identical to the bound of
Online-Gradient-Descent given in Corollary 2.7.

As mentioned in the previous section, the Euclidean regularization
cannot be applied to the problem of prediction with expert advice since
it does not enforce wt to be in the probability simplex. A simple solu-
tion is to enforce the constraint wt ∈ S by setting R(w) = ∞ whenever
w /∈ S. In light of Lemma 2.9, the resulting regularization function
remains strongly convex on S and we obtain the following corollary.

Corollary 2.13. Assume that the conditions of Corollary 2.12 hold.
Let S be a convex set and consider running FoReL with the regular-
ization function

R(w) =




1
2η

‖w‖2
2 if w ∈ S

∞ if w /∈ S

Then, for all u ∈ S,

RegretT (u) ≤ 1
2η

‖u‖2
2 + ηTL2.

In particular, if B ≥ maxu∈S ‖u‖2 and η = B
L

√
2T

then

RegretT (S) ≤ BL
√

2T .

We can apply the regularization function given in the above corol-
lary to the problem of prediction with expert advice. In this case, S is
the probability simplex and xt ∈ [0,1]d. Hence, we can set B = 1 and
L =

√
d which leads to the regret bound

√
2dT . We next show another

regularization function which leads to a regret bound of
√

2log(d)T .
The improvement is based on the following corollary of Theorem 2.11.
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Corollary 2.14. Let f1, . . . ,fT be a sequence of convex functions
such that ft is Lt-Lipschitz with respect to ‖·‖1. Let L be such that
1
T

∑T
t=1L

2
t ≤ L2. Assume that FoReL is run on the sequence with

the regularization function R(w) = 1
η

∑
iw[i] log(w[i]) and with the set

S = {w : ‖w‖1 = B ∧ w > 0} ⊂ R
d. Then,

RegretT (S) ≤ B log(d)
η

+ ηBTL2.

In particular, setting η =
√

logd
L

√
2T

yields

RegretT (S) ≤ BL
√

2log(d)T .

The Entropic regularization used in the above corollary is strongly
convex with respect to the �1 norm, and therefore the Lipschitzness
requirement of the loss functions is also with respect to the �1-norm.
For linear functions, ft(w) = 〈w,xt〉, we have by Holder inequality that,

|ft(w) − ft(u)| = |〈w − u,xt〉| ≤ ‖w − u‖1‖xt‖∞.

Therefore, the Lipschitz parameter grows with the �∞ norm of xt rather
than the �2 norm of xt. Applying this to the problem of prediction with
expert advice (with B = 1 and L = 1), we obtain the regret bound of√

2log(d)T .
More generally, it is interesting to compare the two bounds given

in Corollaries 2.13 and 2.14. Apart from the extra log(d) factor
that appears in Corollary 2.14, both bounds look similar. However,
the parameters B,L have different meanings in the two bounds.
In Corollary 2.12, the parameter B imposes an �2 constraint on u
and the parameter L captures Lipschitzness of the loss functions with
respect to the �2 norm. In contrast, in Corollary 2.14 the parameter B
imposes an �1 constraint on u (which is stronger than an �2 constraint)
while the parameter L captures Lipschitzness with respect to the �1
norm (which is weaker than Lipschitzness with respect to the �2 norm).
Therefore, the choice of the regularization function should depend on
the Lipschitzness of the loss functions and on prior assumptions on
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the set of competing vectors (does a competing vector have a small �1
norm or only a small �2 norm). In the prediction with expert advice,
the competing vector would be a singleton, for which both the �2 and
�1 norms are 1. On the other hand, the gap between Lipschitzness with
respect to �2 norm (which was

√
d) and Lipschitzness with respect to �1

norm (which was 1) is large. Therefore, we should prefer the Entropic
regularization for the problem of prediction with expert advice.

2.6 Online Mirror Descent

In the previous section we analyzed the FoReL approach in the pres-
ence of a general regularization. A possible disadvantage of the FoReL
approach is that it requires solving an optimization problem at each
online round. In this section we derive and analyze the family of Online
Mirror Descent algorithms from the FoReL framework. We will show
that Online Mirror Descent achieves the same regret bound as FoReL
but the update step is much simpler.

The starting point is to apply FoReL on a sequence of linear func-
tions in which ft(w) = 〈w,zt〉 with some regularization function R(w).
Throughout, we assume that R(w) = ∞ for w �∈ S. Using the notation
z1:t =

∑t
i=1 zi we can rewrite the prediction of FoReL as follows:

wt+1 = argmin
w

R(w) +
t∑
i=1

〈w,zt〉

= argmin
w

R(w) + 〈w,z1:t〉

= argmax
w

〈w,−z1:t〉 − R(w).

Letting

g(θ) = argmax
w

〈w,θ〉 − R(w), (2.8)

we can rewrite the FoReL prediction based on the following recursive
update rule:

1. θt+1 = θt − zt
2. wt+1 = g(θt+1)
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Now, if ft is convex but nonlinear, we can use the same technique
we used for deriving the Online Gradient Descent algorithm and use
sub-gradients of ft at wt to linearize the problem. That is, letting zt
be a sub-gradient of ft at wt we have that for all u

ft(wt) − ft(u) ≤ 〈wt,zt〉 − 〈u,zt〉.

Summing over t we obtain that the regret with respect to the nonlinear
loss functions is upper bounded by the regret with respect to the linear
functions. This yields the Online Mirror Descent framework.

Online Mirror Descent (OMD)

parameter: a link function g : R
d → S

initialize: θ1 = 0
for t = 1,2, . . .

predict wt = g(θt)
update θt+1 = θt − zt where zt ∈ ∂ft(wt)

Clearly, Online Gradient Descent is a special case of Online Mirror
Descent that is obtained by setting S = R

d and g(θ) = ηθ, for some
η > 0. When g is nonlinear we obtain that the vector θ is updated
by subtracting the gradient out of it, but the actual prediction is
“mirrored” or “linked” to the set S via the function g. Hence the name
Online Mirror Descent, and this is why g is often referred to as a link
function.

Before we derive concrete algorithms from the OMD framework we
give a generic bound for the OMD family based on our analysis of the
FoReL rule.

Theorem 2.15. Let R be a (1/η)-strongly-convex function over S with
respect to a norm ‖·‖. Assume that OMD is run on the sequence with
a link function

g(θ) = argmax
w∈S

(〈w,θ〉 − R(w)). (2.9)
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Then, for all u ∈ S,

RegretT (u) ≤ R(u) − min
v∈S

R(v) + η

T∑
t=1

‖zt‖2
�,

where ‖·‖� is the dual norm. Furthermore, if ft is Lt-Lipschitz with
respect to ‖·‖, then we can further upper bound ‖zt‖� ≤ Lt.

Proof. As we have shown previously,

T∑
t=1

(ft(wt) − ft(u)) ≤
T∑
t=1

〈wt − u,zt〉,

and the OMD algorithm is equivalent to running FoReL on the sequence
of linear functions with the regularization R(w). The theorem now
follows directly from Theorem 2.11 and Lemma 2.6.

2.6.1 Derived Algorithms

We now derive additional algorithms from the OMD framework.
The first algorithm we derive is often called normalized Exponen-

tiated Gradient. In this algorithm, S = {w : ‖w‖1 = 1 ∧ w ≥ 0} is the
probability simplex and g : R

d → R
d is the vector valued function whose

ith component is the function

gi(θ) =
eηθ[i]∑
j e
ηθ[j] . (2.10)

Therefore,

wt+1[i] =
eηθt+1[i]∑
j e
ηθt+1[j] =

eηθt+1[i]∑
j e
ηθt+1[j] ·

∑
k e

ηθt[k]∑
k e

ηθt[k]

=
eηθt[i]e−ηzt[i]∑
j e
ηθt[j]e−ηzt[j]

·
∑

k e
ηθt[k]∑

k e
ηθt[k]

=
wt[i]e−ηzt[i]∑
jwt[j]e−ηzt[j]

.
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Normalized Exponentiated Gradient

(normalized-EG)

parameter: η > 0
initialize: w1 = (1/d, . . . ,1/d)

update rule ∀ i, wt+1[i] = wt[i]e−ηzt[i]
∑

jwt[j]e−ηzt[j]
where zt ∈ ∂ft(wt)

To analyze the normalized-EG algorithm, we rely on Theorem 2.15.
Let R(w) = 1

η

∑
iw[i] log(w[i]) be the entropic regularization, let S be

the probability simplex, and recall that R is (1/η)-strongly convex over
S with respect to the �1 norm. Using the technique of Lagrange mul-
tipliers, it is easy to verify that the solution to the optimization prob-
lem given in Equation (2.9) is the value of the link function given in
Equation (2.10). Therefore, Theorem 2.15 yields:

Corollary 2.16. The normalized EG algorithm enjoys the regret
bound given in Corollary 2.14 (with B = 1).

Next, we derive an algorithm which is called Online Gradient
Descent with Lazy Projections. To derive this algorithm, let S be a
convex set and define

g(θ) = argmin
w∈S

‖w − ηθ‖2.

That is, g(θ) returns the point in S which is closest to ηθ.

Online Gradient Descent with Lazy Projections

parameters: η > 0 and a convex set S
initialize: θ1 = 0
for t = 1,2, . . . ,T

wt = argminw∈S ‖w − ηθt‖2

θt+1 = θt − zt where zt ∈ ∂ft(wt)

To analyze the above algorithm we consider the Euclidean regular-
ization function R(w) = 1

2η‖w‖2
2, which is (1/η)-strongly convex over S
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with respect to the �2 norm. We have that

argmax
w∈S

(〈w,θ〉 − R(w)) = argmax
w∈S

(〈w,ηθ〉 − 1
2
‖w‖2

2)

= argmin
w∈S

1
2
‖w − ηθ‖2

2 = argmin
w∈S

‖w − ηθ‖2.

We therefore conclude that:

Corollary 2.17. Online Gradient Descent with Lazy Projections
enjoys the same regret bound given in Corollary 2.13.

Finally, we derive the p-norm algorithm, in which S = R
d and

gi(θ) = η
sign(θ[i])|θ[i]|p−1

‖θ‖p−2
p

,

where p ≥ 2 is a parameter and

‖θ‖p =

(
d∑
i=1

|θ[i]|p
)1/p

.

p-norm

parameters: η > 0 and p > 2
initialize: θ1 = 0
for t = 1,2, . . . ,T

∀ i, wt,i = η sign(θt[i])|θt[i]|p−1

‖θt‖p−2
p

θt+1 = θt − zt where zt ∈ ∂ft(wt)

To analyze the p-norm algorithm consider the regularization func-
tion R(w) = 1

2η(q−1)‖w‖2
q , where q = p/(p − 1). It is possible to show

that if q ∈ (1,2] then G is (1/η)-strongly convex over R
d with respect

to the �q norm (see for example [39, Lemma 17]). It is also possible to
verify that g(θ) = argmaxw〈w,θ〉 − R(w). We therefore conclude:

Corollary 2.18. Let f1, . . . ,fT be a sequence of convex functions such
that ft is Lt-Lipschitz over R

d with respect to ‖·‖q. Let L be such
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that 1
T

∑T
t=1L

2
t ≤ L2. Then, for all u, the regret of the p-norm algorithm

satisfies

RegretT (u) ≤ 1
2η(q − 1)

‖w‖2
q + ηTL2.

In particular, if U = {u : ‖u‖q ≤ B} and η = B

L
√

2T/(q−1)
then

RegretT (U) ≤ BL

√
2T
q − 1

.

When q = 2 the link function becomes g(θ) = ηθ and the p-norm
algorithm boils down to the Online Gradient Descent algorithm.
When q is close to 1 it is not very hard to see that the p-norm algorithm
behaves like the Entropic regularization. In particular, when p = log(d)
we can obtain a regret bound similar to the regret bound of the EG
algorithm. Intermediate values of q enables us to interpolate between
the properties of the Entropic and Euclidean regularizations.

2.7 The Language of Duality

In the previous sections we relied on the FoReL framework for deriv-
ing online learning algorithms. In this section we present a different
proof technique that relies on duality. There are several reasons to con-
sider this different approach. First, in some cases, it is easier to derive
tighter bounds based on the duality approach. In particular, we will
tighten the regret bounds we derived for the OMD framework by a
factor of

√
2 and we will also derive tighter bounds that involve the

so-called local norms rather than fixed norms. Second, it may become
convenient for developing new algorithms. Last, many previous papers
on online learning uses the language of duality, so the reader may find
this section useful for understanding the previous literature.

We start by giving some background on Fenchel conjugacy and dual-
ity. For more details, see for example [9].

2.7.1 Fenchel Conjugacy

There are two equivalent representations of a convex function. Either
as pairs (x,f(x)) or as the set of tangents of f , namely pairs of the form
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Fig. 2.3 Illustrating Fenchel Conjugacy. We can represent a function as a set of points (left)
or as a set of tangents (right).

(slope,intersection-with-y-axis). See Figure 2.3 for an illustration. The
function that relates slopes of tangents to their intersection with the
y axis is called the Fenchel conjugate of f , and is formally defined as

f�(θ) = max
u

〈u,θ〉 − f(u).

It is possible to show that f = (f�)� if and only if f is a closed2

and convex function (see [9, Theorem 4.2.1]). From now on, we always
assume that our functions are closed and convex.

The definition of Fenchel conjugacy immediately implies Fenchel–
Young inequality:

∀u, f�(θ) ≥ 〈u,θ〉 − f(u). (2.11)

It is possible to show that equality holds if u is a sub-gradient of
f� at θ and in particular, if f� is differentiable, equality holds when
u = ∇f�(θ).

2 f is closed if its epigraph, i.e., the set {(w,y) : f(w) ≤ y}, is a closed set.
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Table 2.1. Example of Fenchel conjugate pairs.

f(w) f�(θ) Comments

1
2‖w‖2

2
1
2‖θ‖2

2
1
2‖w‖2

q
1
2‖θ‖2

p where 1
p

+ 1
q

= 1
∑

iw[i] log(w[i]) + I{v≥0:‖v‖1=1}(w) log(
∑

i e
θ[i]) (normalized Entropy)

∑
iw[i](log(w[i]) − 1)

∑
i e

θ[i] (un-normalized Entropy)
1
η
g(w) 1

η
g�(ηθ) where η > 0

g(w) + 〈w,x〉 g�(θ − x)

Table 2.1 lists several Fenchel conjugate pairs. Recall that given a
set S, we use the notation

IS(w) =
{

0 if w ∈ S

∞ if w /∈ S

2.7.2 Bregman Divergences and the Strong/Smooth
Duality

A differentiable function R defines a Bregman divergence between two
vectors as follows:

DR(w‖u) = R(w) − (R(u) + 〈∇R(u),w − u〉) . (2.12)

That is, the Bregman divergence is the difference, at the point w,
between R and its linearization around u. When R is convex the Breg-
man divergence is always non-negative. However, it is not a metric
measure because it is not symmetric and also does not satisfy the
triangle inequality. An illustration is given in Figure 2.4.

When R(w) = 1
2‖w‖2

2 the Bregman divergence becomes
DR(w‖u) = 1

2‖w − u‖2
2. When R(w) =

∑
iw[i] log(w[i]) the Bregman

divergence between two vectors in the probability simplex becomes
the Kullback–Leibler divergence, DR(w‖u) =

∑
iw[i] log w[i]

u[i] .

Recall the definition of strong-convexity (Definition 2.4). If R is
differentiable, we can rewrite the σ-strong-convexity requirement as

DR(w‖u) ≥ σ

2
‖w − u‖2.

A related property is strong-smoothness.



2.7 The Language of Duality 149

Fig. 2.4 Illustrating the Bregman divergence.

Definition 2.5. A function R is σ-strongly-smooth with respect to a
norm ‖·‖ if it is differentiable and for all u,w we have

DR(w‖u) ≤ σ

2
‖w − u‖2.

Not surprisingly, strong convexity and strong smoothness are dual
properties.

Lemma 2.19. (Strong/Smooth Duality) Assume that R is a closed
and convex function. Then R is β-strongly convex with respect to a
norm ‖·‖ if and only if R� is 1

β -strongly smooth with respect to the
dual norm ‖·‖�.

The proof can be found, for instance, in [44] (In particular, see
Corollary 3.5.11 on p. 217 and Remark 3.5.3 on p. 218). The above
lemma implies in particular that if R is strongly convex then R� is
differentiable. Based on Section 2.7.1, this also implies that

∇R�(θ) = argmax
w

(〈w,θ〉 − R(w)) . (2.13)

2.7.3 Analyzing OMD using Duality

Recall that the OMD rule is

wt = g(θt) = g(−z1:t−1),
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where the link function g is (see Equation (2.8) in Section 2.6)

g(θ) = argmax
w

(〈w,θ〉 − R(w)).

Based on Equation (2.13) we can also rewrite g(θ) = ∇R�(θ).
To analyze OMD, we first use the following lemma.

Lemma 2.20. Suppose that OMD is run with a link function g = ∇R�.
Then, its regret is upper bounded by

T∑
t=1

〈wt − u,zt〉 ≤ R(u) − R(w1) +
T∑
t=1

DR�(−z1:t‖ − z1:t−1).

Furthermore, equality holds for the vector u that minimizes R(u) +∑
t〈u,zt〉.

Proof. First, using Fenchel–Young inequality we have

R(u) +
T∑
t=1

〈u,zt〉 = R(u) − 〈u,−z1:T 〉 ≥ −R�(−z1:T ),

where equality holds for the vector u that maximizes 〈u,−z1:T 〉 − R(u)
hence minimizes R(u) + 〈u,z1:T 〉. Second, using the fact that wt =
∇R�(−z1:t−1) and the definition of the Bregman divergence, we can
rewrite the right-hand side as

−R�(−z1:T ) = −R�(0) −
T∑
t=1

(R�(−z1:t) − R�(−z1:t−1))

= −R�(0) +
T∑
t=1

(〈wt,zt〉 − DR�(−z1:t‖ − z1:t−1)).

(2.14)

Note that R�(0) = maxw〈0,w〉 − R(w) = −minwR(w) = −R(w1).
Combining all the above we conclude our proof.

It is interesting to compare the above lemma to Lemma 2.3, which for
linear functions yields the regret bound

T∑
t=1

〈wt − u,zt〉 ≤ R(u) − R(w1) +
T∑
t=1

〈wt − wt+1,zt〉.
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In both bounds we have a stability term but the way we measure it is
different.

We can easily derive concrete bounds from Lemma 2.20 if R is
strongly convex.

Theorem 2.21. Let R be a (1/η)-strongly convex with respect to a
norm ‖·‖ and suppose the OMD algorithm is run with the link function
g = ∇R�. Then,

T∑
t=1

〈wt − u,zt〉 ≤ R(u) − R(w1) +
η

2

T∑
t=1

‖zt‖2
�.

Proof. The proof follows directly from Lemma 2.20 and the strong/
smooth duality given in Lemma 2.19.

The reader can easily obtain the bounds we derived in Section 2.6 using
the above theorem. Consider for example the case in which the regu-
larization function is R(w) = 1

2η‖w‖2
2, which is (1/η)-strongly convex

with respect to the Euclidean norm. Since the Euclidean norm is dual
to itself, we obtain the bound

T∑
t=1

〈wt − u,zt〉 ≤ 1
2η

‖u‖2
2 +

η

2

T∑
t=1

‖zt‖2
2. (2.15)

Letting L2 = 1
T

∑
t ‖zt‖2

2 and setting η = B
L

√
T

then for all u with
‖u‖2 ≤ B we obtain the bound

T∑
t=1

〈wt − u,zt〉 ≤ BL
√
T .

Comparing this bound to the bound we derived in Corollary 2.7, we
observe that we have obtained a factor of

√
2 improvement in the regret

bound.

2.7.4 Other Proof Techniques

In the previous subsection we used Fenchel–Young inequality to derive
bounds for OMD, which is equivalent to FoReL when the loss functions
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are linear. It is possible to extend this proof technique, based on Fenchel
duality, and to derive a larger family of online convex optimization
algorithms. The basic idea is to derive the Fenchel dual of the opti-
mization problem minwR(w) +

∑
t ft(w) and to construct an online

learning algorithm by incrementally solving the dual problem. We refer
the reader to [39] for more details.

Another popular approach is to derive regret bounds by monitoring
the Bregman divergence DR(wt‖u), where u is the competing vec-
tor. A detailed description of this approach can be found in [12, 34]
and is therefore omitted from this survey. It is important to note that
the analysis using the Bregman divergence potential requires that R
will be a Legendre function (see a precise definition in [12, p. 294]).
In particular, Legendre functions guarantee the property that ∇R
and ∇R� are inverse mappings. We do not require that R is Legen-
dre and in particular, the normalized entropy regularization function,
R(w) =

∑
iw[i] log(w[i]) + IS(w), where S is the probability simplex,

is not a Legendre function. Therefore, when analyzing the normalized
EG algorithm using Bregman divergences we need to use the unnormal-
ized Entropy as a regularization function and to include an additional
Bregman projection step on the simplex, which leads to the desired
normalization. To the best of our knowledge, the two proof techniques
lead to the same regret bounds.

2.8 Bounds with Local Norms

Consider running the normalized EG algorithm, namely, running
FoReL on linear loss functions with the normalized entropy R(w) =
1
η

∑
iw[i] log(w[i]) + IS(w), where S = {w ≥ 0 : ‖w‖1 = 1}. Previously,

we have derived the regret bound,

T∑
t=1

〈wt − u,zt〉 ≤ log(d)
η

+ η
T∑
t=1

‖zt‖2
∞.

We now derive a refined bound for the normalized EG algorithm, in
which each term ‖zt‖2∞ is replaced by a term

∑
iwt[i]zt[i]

2. Since wt is
in the probability simplex, we clearly have that

∑
iwt[i]zt[i]

2 ≤ ‖zt‖2∞.
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In fact, we can rewrite
∑

iwt[i]zt[i]
2 as a local norm ‖zt‖2

t where

‖z‖t =
√∑

i

wt[i]z[i]2.

Note that this is indeed a valid norm. In the next sections we will show
cases in which the refined local-norm bounds lead to much tighter regret
bounds.

Theorem 2.22. Assume that the normalized EG algorithm is run on a
sequence of linear loss functions such that for all t, i we have ηzt[i] ≥ −1.
Then,

T∑
t=1

〈wt − u,zt〉 ≤ log(d)
η

+ η

T∑
t=1

∑
i

wt[i]zt[i]2.

Proof. Using Lemma 2.20, it suffices to show that

DR�(−z1:t‖ − z1:t−1) ≤ η
∑
i

wt[i]zt[i]2,

where, based on Table 2.1, the conjugate function is

R�(θ) =
1
η

log

(∑
i

eηθ[i]

)
.

Indeed,

DR�(−z1:t‖ − z1:t−1) = R�(−z1:t) − R�(−z1:t−1) + 〈wt,zt〉 (2.16)

=
1
η

log

( ∑
i e

−ηz1:t[i]∑
i e

−ηz1:t−1[i]

)
+ 〈wt,zt〉 (2.17)

=
1
η

log

(∑
i

wt[i]e−ηzt[i]

)
+ 〈wt,zt〉. (2.18)

Using the inequality e−a ≤ 1 − a + a2 which holds for all a ≥ −1 (and
hence holds by the assumptions of the theorem) we obtain

DR�(−z1:t‖ − z1:t−1) ≤ 1
η

log

(∑
i

wt[i](1 − ηzt[i] + η2zt[i]2)

)
+〈wt,zt〉.
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Next, we use the fact that
∑

iwt[i] = 1 and the inequality log(1 − a) ≤
−a, which holds for all a ≤ 1 we obtain

DR�(−z1:t‖ − z1:t−1) ≤ 1
η

∑
i

wt[i](−ηzt[i] + η2zt[i]2) + 〈wt,zt〉

= η
∑
i

wt[i]zt[i]2.

Next, we describe another variant of the EG algorithm in which we
do not normalize the weights to the simplex on each round. We show
a similar regret bounds for this variant as well.

Unnormalized Exponentiated Gradient

(unnormalized-EG)

parameters: η,λ > 0
initialize: w1 = (λ, . . . ,λ)
update rule ∀ i, wt+1[i] = wt[i]e−ηzt[i]

The following theorem provides a regret bound with local-norms for
the unnormalized EG algorithm.

Theorem 2.23. Assume that the unnormalized EG algorithm is run
on a sequence of linear loss functions such that for all t, i we have
ηzt[i] ≥ −1. Then, for all u ≥ 0,

T∑
t=1

〈wt − u,zt〉 ≤ dλ +
∑d

i=1u[i] log(u[i]/(eλ))
η

+ η

T∑
t=1

d∑
i=1

wt[i]zt[i]2.

In particular, setting λ = 1/d yields

T∑
t=1

〈wt − u,zt〉 ≤ 1 + (log(d) − 1)‖u‖1 +
∑d

i=1u[i] log(u[i])
η

+η
T∑
t=1

d∑
i=1

wt[i]zt[i]2.
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Proof. To analyze the unnormalized-EG algorithm, we first note that it
is equivalent to running FoReL on the sequence of linear loss functions
with the following unnormalized entropy regularization function:

R(w) =
1
η

∑
i

w[i](log(w[i]) − 1 − log(λ)).

Using Lemma 2.20, it suffices to show that

DR�(−z1:t‖ − z1:t−1) ≤ η
∑
i

wt[i]zt[i]2,

where, based on Table 2.1, the conjugate function is

R�(θ) =
λ

η

∑
i

eηθ[i].

We have:

DR�(−z1:t‖ − z1:t−1) = R�(−z1:t) − R�(−z1:t−1) + 〈wt,zt〉

=
λ

η

∑
i

e−ηz1:t−1[i](e−ηzt[i] − 1) + 〈wt,zt〉

=
1
η

∑
i

wt[i](e−ηzt[i] − 1) + 〈wt,zt〉

≤ η
∑
i

wt[i]zt[i]2,

where in the last inequality we used the inequality e−a ≤ 1 − a + a2

which holds for all a ≥ −1 (and hence holds by the assumptions of the
lemma).

2.9 Bibliographic Remarks

The term “online convex programming” was introduced by
Zinkevich [46] but this setting was introduced some years earlier by
Gordon [20]. This model is also closely related to the model of relative
loss bounds presented by Kivinen and Warmuth [26, 27, 28]. Our
presentation of relative mistake bounds follows the works of Little-
stone [31], and Kivinen and Warmuth [28].
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Zinkevich presented and analyzed the online gradient descent (with
projections or with lazy projections). The name “Follow the Leader” is
due to [25]. Analysis of “Follow the Regularized Leader” was given in
[40, 39] using Fenchel duality as part of the analysis of a larger algo-
rithmic framework. The more direct analysis we give here is adapted
from [34, 22]. The duality based analysis we present is due to [39, 24].
Similar ideas in a more limited context have been introduced in [21].

The EG update is due to [26]. See also [6, 28]. The p-norm algo-
rithm was developed by Gentile and Littlestone [19]. Local norms were
introduced in [2]. See also [34].



3
Online Classification

In this section we return to the problem of online classification, in
which the target domain is Y = {0,1}. We already mentioned this set-
ting in Section 1.2, where we introduced the Consistent and Halving

algorithms. These algorithms rely on two simplifying assumptions: real-
izability of the problem and finiteness of H. While trying to relax
the realizability assumption, we presented Cover’s impossibility result,
which shows that even if |H| = 2, no algorithm can have low regret
in the unrealizable case. We sidestepped the impossibility result by
allowing the learner to randomize his predictions (i.e., the predictions
domain is allowed to be D = [0,1]). As discussed in Section 2.1.1, this
can be thought of as a convexification of the problem. Based on this con-
vexification, we start the section by deriving the Weighted Majority

algorithm for prediction with expert advice. We will see that this is
a specific instance of the normalized EG algorithm discussed in the
previous section. The analysis of Weighted Majority implies online
learnability of finite hypothesis classes.

Next, in Section 3.2, we study the fundamental question of
online learnability, namely, what is an optimal algorithm for a given
hypothesis class. We shall characterize learnability for the general case,
namely, without assuming neither realizability nor finiteness of H.

157
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Finally, in Section 3.3, we study the important and practically
relevant hypothesis class of halfspaces with margin and derive the clas-
sic Perceptron and Winnow algorithms from the online convex opti-
mization framework.

3.1 Finite Hypothesis Class and Experts Advice

Consider the problem of classification, where on round t the learner
receives xt ∈ X , predicts pt ∈ [0,1], receives yt ∈ {0,1}, and pays
|pt − yt|. The goal is to have low regret with respect to a finite hypoth-
esis class H = {h1, . . . ,hd}. As we hinted in Section 2.1.1, this problem
can be reduced to the problem of prediction with expert advice as
follows. Let S = {w ∈ R

d
+ : ‖w‖1 = 1} be the probability simplex. The

learner will maintain a weight vector wt ∈ S and will predict the label
1 with probability pt =

∑d
i=1wt[i]hi(xt). The loss he will pay can there-

fore be rewritten as

|pt − yt| =

∣∣∣∣∣
d∑
i=1

wt[i]hi(xt) − yt

∣∣∣∣∣ =
d∑
i=1

wt[i]|hi(xt) − yt|,

where the last equality follows because both yt and hi(xt) are in {0,1}.
Letting zt = (|h1(xt) − yt|, . . . , |hd(xt) − yt|) we obtain that the loss is
〈wt,zt〉. This is a special case of the prediction with expert advice
problem, where zt ∈ [0,1]d is the costs vector of the different experts.
Applying the normalized-EG algorithm we obtain an algorithm which
is often called Weighted Majority.

Weighted Majority

parameter: η ∈ (0,1)
initialize: w1 = (1/d, . . . ,1/d)
for t = 1,2, . . .

choose i ∼ wt and predict according to the advice of the i’th
expert receive costs of all experts zt ∈ [0,1]d

update rule ∀ i, wt+1[i] = wt[i]e−ηzt[i]
∑

jwt[j]e−ηzt[j]
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The analysis of Weighted Majority follows directly from the anal-
ysis of the normalized-EG algorithm given in the previous section and
is given in the following theorem.

Theorem 3.1. The Weighted Majority algorithm enjoys the bounds

1.
T∑
t=1

〈wt,zt〉 ≤ min
i∈[d]

T∑
t=1

zt[i] +
log(d)
η

+ ηT

2.
T∑
t=1

〈wt,zt〉 ≤ 1
1 − η

(
min
i∈[d]

T∑
t=1

zt[i] +
log(d)
η

)

In particular, setting η =
√

log(d)/T in the first bound we obtain

T∑
t=1

〈wt,zt〉 ≤ min
i∈[d]

T∑
t=1

zt[i] + 2
√

log(d)T ,

and setting η = 1/2 in the second bound we obtain

T∑
t=1

〈wt,zt〉 ≤ 2min
i∈[d]

T∑
t=1

zt[i] + 4log(d).

Proof. We rely on the analysis of the normalized-EG algorithm given in
Theorem 2.22. Since zt ∈ [0,1]d and η > 0 the conditions of the theorem
holds and we obtain that

T∑
t=1

〈wt − u,zt〉 ≤ log(d)
η

+ η

T∑
t=1

∑
i

wt[i]zt[i]2.

Since wt ∈ S and zt ∈ [0,1]d the right-most term is at most ηT . Further-
more, the bound holds for all u in the probability simplex and in partic-
ular for all singletons, i.e., vectors of the form u = (0, . . . ,0,1,0, . . . ,0).
Rearranging, we obtain,

T∑
t=1

〈wt,zt〉 ≤ min
i∈[d]

T∑
t=1

zt[i] +
log(d)
η

+ ηT.
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To derive the second bound, observe that wt[i],zt[i] ∈ [0,1] and there-
fore wt[i]zt[i]2 ≤ wt[i]zt[i], which yields

T∑
t=1

〈wt − u,zt〉 ≤ log(d)
η

+ η

T∑
t=1

〈wt,zt〉.

Rearranging, we obtain that
T∑
t=1

〈wt,zt〉 ≤ 1
1 − η

(
min
i∈[d]

T∑
t=1

zt[i] +
log(d)
η

)
.

In particular, in the realizable case when mini∈[d]
∑T

t=1 zt[i] = 0 we
obtain that Weighted Majority with η = 1/2 enjoys the bound

T∑
t=1

〈wt,zt〉 ≤ 4log(d).

This is similar to the bound we derived for Halving in Section 1.2.

3.2 Learnability and the Standard Optimal Algorithm

So far, we focused on finite hypothesis classes. In this section we take a
more general approach, and aim at characterizing online learnability. In
particular, we target the following question: what is the optimal online
learning algorithm for a given class H?

We start with the realizable case, where we assume that all target
labels are generated by some h� ∈ H, namely, yt = h�(xt) for all t. Later,
in Section 3.2.1 we generalize the results to the unrealizable case. In the
realizable case, we study the best achievable mistake bound, formally
defined below.

Definition 3.1 (Mistake bounds, online learnability). Let H be
a hypothesis class and let A be an online learning algorithm. Given
any sequence S = (x1,h

�(y1)), . . . ,(xT ,h�(yT )), where T is any integer
and h� ∈ H, let MA(S) be the number of mistakes A makes on the
sequence S. We denote by MA(H) the supremum of MA(S) over all
sequences of the above form. A bound of the form MA(H) ≤ B < ∞
is called a mistake bound. We say that a hypothesis class H is online
learnable if there exists an algorithm A for which MA(H) ≤ B < ∞.
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We present a dimension of hypothesis classes that characterizes the
best possible achievable mistake bound. This measure was proposed by
Nick Littlestone and we therefore refer to it as Ldim(H).

To motivate the definition of Ldim it is convenient to view the
online learning process as a game between two players: the learner
vs. the environment. On round t of the game, the environment picks
an instance xt, the learner predicts a label pt ∈ {0,1}, and finally the
environment outputs the true label, yt ∈ {0,1}. Suppose that the envi-
ronment wants to make the learner err on the first T rounds of the
game. Then, it must output yt = 1 − pt, and the only question is how
to choose the instances xt in such a way that ensures that for some
h� ∈ H we have yt = h�(xt) for all t ∈ [T ] = {1, . . . ,T}.

It makes sense to assume that the environment should pick xt based
on the previous predictions of the learner, p1, . . . ,pt−1. Since in our case
we have yt = 1 − pt we can also say that xt is a function of y1, . . . ,yt−1.
We can represent this dependence using a complete binary tree of
depth T (we define the depth of the tree as the number of edges in a
path from the root to a leaf). We have 2T − 1 nodes in such a tree, and
we attach an instance to each node. Let v1, . . . ,v2T −1 be these instances.
We start from the root of the tree, and set x1 = v1. At round t, we set
xt = vit , where it is the current node. At the end of round t, we go to
the left child of it if yt = 0 or to the right child if yt = 1. That is, it+1 =
2it + yt. Unraveling the recursion we obtain it = 2t−1 +

∑t−1
j=1 yj 2

t−1−j .
The above strategy for the environment succeeds only if for any

(y1, . . . ,yT ) there exists h ∈ H such that yt = h(xt) for all t ∈ [T ]. This
leads to the following definition.

Definition 3.2 (H Shattered tree). A shattered tree of depth d is
a sequence of instances v1, . . . ,v2d−1 in X such that for all labeling
(y1, . . . ,yd) ∈ {0,1}d there exists h ∈ H such that for all t ∈ [d] we have
h(vit) = yt, where it = 2t−1 +

∑t−1
j=1 yj 2

t−1−j .

An illustration of a shattered tree of depth 2 is given in Figure 3.1.

Definition 3.3 (Littlestone’s dimension (Ldim)). Ldim(H) is the
maximal integer T such that there exist a shattered tree of depth T .
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Fig. 3.1 An illustration of a shattered tree of depth 2. The dashed blue path corresponds
to the sequence of examples ((v1,1),(v3,0)). The tree is shattered by H = {h1,h2,h3,h4},
where the predictions of each hypothesis in H on the instances v1,v2,v3 is given in the
table (the “∗” mark means that hj(vi) can be either 1 or 0).

The definition of Ldim and the discussion above immediately imply
the following:

Lemma 3.2. No algorithm can have a mistake bound strictly smaller
than Ldim(H), namely, ∀A, MA(H) ≥ Ldim(H).

Proof. Let T = Ldim(H)and let v1, . . . ,v2T −1 be a sequence that
satisfies the requirements in the definition of Ldim. If the environment
sets xt = vit and yt = 1 − pt for all t ∈ [T ], then the learner makes T
mistakes while the definition of Ldim implies that there exists a hypoth-
esis h ∈ H such that yt = h(xt) for all t.

Let us now give several examples.

Example 3.1. Let H be a finite hypothesis class. Clearly, any tree that
is shattered by H has depth of at most log2(|H|). Therefore, Ldim(H) ≤
log2(|H|). Another way to conclude this inequality is by combining
Lemma 3.2 with Theorem 1.2.

Example 3.2. Let X = {1, . . . ,d} and H = {h1, . . . ,hd}, where
hd(x) = 1 iff x = d. Then, it is easy to show that Ldim(H) = 1 while
|H| = d can be arbitrarily large.

Example 3.3. Let X = [0,1] and H = {x �→ 1[x>a] : a ∈ [0,1]}, namely,
H is the class of thresholds on the segment [0,1]. Then, Ldim(H) = ∞.
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To see this, consider the tree for which v1 = 1
2 ,v2 = 1

4 ,v3 = 3
4 , . . .. Due

to the density of the reals, this tree is shattered by H.

Example 3.4. Let X = {x ∈ {0,1}∗ : ‖x‖0 ≤ r} and H = {x �→
1[〈w,x〉>0.5] : ‖w‖0 ≤ k}. The size of H is infinite. Nevertheless,
Ldim(H) ≤ rk. The proof uses the fact that MPerceptron(H) ≤ rk,
where the Perceptron algorithm will be described in the next section.

Lemma 3.2 states that Ldim(H) lower bounds the mistake bound
of any algorithm. Interestingly, there is a standard algorithm whose
mistake bound matches this lower bound. The algorithm is similar
to the Halving algorithm. Recall that the prediction of Halving is
according to a majority vote of the hypotheses which are consis-
tent with previous examples. We denoted this set by Vt. Put another
way, Halving partition Vt into two sets: V +

t = {h ∈ Vt : h(xt) = 1} and
V −
t = {h ∈ Vt : h(xt) = 0}. It then predicts according to the larger of

the two groups. The rationale behind this prediction is that whenever
Halving makes a mistake it ends up with |Vt+1| ≤ 0.5 |Vt|.

The optimal algorithm we present below uses the same idea, but
instead of predicting according to the larger class, it predicts according
to the class with larger Ldim.

Standard Optimal Algorithm (SOA)

input: A hypothesis class H
initialize: V1 = H
for t = 1,2, . . .

receive xt
for r ∈ {0,1} let V (r)

t = {h ∈ Vt : h(xt) = r}
predict pt = argmaxr∈{0,1} Ldim(V (r)

t )
(in case of a tie predict pt = 1)

receive true answer yt
update Vt+1 = {h ∈ Vt : h(xt) = yt}

The following lemma formally establishes the optimality of the
above algorithm.
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Lemma 3.3. SOA enjoys the mistake bound MSOA(H) ≤ Ldim(H).

Proof. It suffices to prove that whenever the algorithm makes a predic-
tion mistake we have Ldim(Vt+1) ≤ Ldim(Vt) − 1. We prove this claim
by assuming the contrary, that is, Ldim(Vt+1) = Ldim(Vt). If this holds
true, then the definition of pt implies that Ldim(V (r)

t ) = Ldim(Vt) for
both r = 1 and r = 0. But, then we can construct a shattered tree
of depth Ldim(Vt) + 1 for the class Vt, which leads to the desired
contradiction.

Combining Lemma 3.3 and Lemma 3.2 we obtain:

Corollary 3.4. Let H be any hypothesis class. Then, the standard
optimal algorithm enjoys the mistake bound MSOA(H) = Ldim(H) and
no other algorithm can have MA(H) < Ldim(H).

Comparison to VC dimension In the PAC learning model of
Valiant, learnability is characterized by the Vapnik–Chervonenkis (VC)
dimension of the class H. To remind the reader, the VC dimension of
a class H, denoted VCdim(H), is the maximal number d such that
there are instances x1, . . . ,xd that are shattered by H. That is, for any
sequence of labels (y1, . . . ,yd) ∈ {0,1}d there exists a hypothesis h ∈ H
that gives exactly this sequence of labels. The following theorem relates
the VC dimension to the Littlestone dimension.

Theorem 3.5. For any class H, VCdim(H) ≤ Ldim(H), and there are
classes for which strict inequality holds. Furthermore, the gap can be
arbitrarily large.

Proof. We first prove that VCdim(H) ≤ Ldim(H). Suppose
VCdim(H) = d and let x1, . . . ,xd be a shattered set. We now construct
a complete binary tree of instances v1, . . . ,v2d−1, where all nodes at
depth i are set to be xi (see the illustration in Figure 3.2). Now,
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x1

x2

x3 x3

x2

x3 x3

Fig. 3.2 How to construct a shattered tree from a shattered sequence x1, . . . ,xd.

the definition of shattered sample clearly implies that we got a valid
shattered tree of depth d, and we conclude that VCdim(H) ≤ Ldim(H).
To show that the gap can be arbitrarily large simply note that the class
given in Example 3.3 has VC dimension of 1 whereas its Littlestone
dimension is infinite.

3.2.1 The Unrealizable Case

In the previous section we have shown that Littlestone’s dimension
exactly characterizes the achievable mistake bounds in the realizable
case. We now show that the same dimension characterizes online learn-
ability in the unrealizable case as well. Specifically, we will prove the
following.

Theorem 3.6. For any hypothesis class H, there exists an online learn-
ing algorithm such that for any h ∈ H and any sequence of T examples
we have

T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt) − yt| ≤ O(
√

Ldim(H) ln(T )T ),

where pt is the learner’s prediction on round t. Furthermore,
no algorithm can achieve an expected regret bound smaller than
Ω(
√

Ldim(H)T ).

Recall that in the unrealizable case, to sidestep Cover’s impossi-
bility result, the learner is allowed to make randomized predictions
and we analyze his expected regret. We will construct a generic online
algorithm that has the expected regret bound

√
Ldim(H) log(T )T .
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Finally, we provide an almost matching lower bound on the achievable
regret.

Our starting point is the Weighted Majority algorithm, whose
regret depends on log(d). In the case of a finite hypothesis class, we
let each hypothesis be an expert. In the unrealizable case, the main
idea is to construct a set of experts in a more sophisticated way. The
challenge is how to define a set of experts that on one hand is not
excessively large while on the other hand contains experts that give
accurate predictions.

We construct the set of experts so that for each hypothesis h ∈ H
and every sequence of instances, x1,x2, . . . ,xT , there exists at least one
expert in the set which behaves exactly as h on these instances. For each
L ≤ Ldim(H) and each sequence 1 ≤ i1 < i2 < · · · < iL ≤ T we define
an expert. The expert simulates the game between SOA (presented in
the previous section) and the environment on the sequence of instances
x1,x2, . . . ,xT assuming that SOA makes a mistake precisely in rounds
i1, i2, . . . , iL. The expert is defined by the following algorithm.

Expert(i1, i2, . . . , iL)

input A hypothesis class H ; Indices i1 < i2 < · · · < iL
initialize: V1 = H
for t = 1,2, . . . ,T

receive xt
for r ∈ {0,1} let V (r)

t = {h ∈ Vt : h(xt) = r}
define ỹt = argmaxrLdim

(
V

(r)
t

)
(in case of a tie set ỹt = 0)

if t ∈ {i1, i2, . . . , iL}
predict ŷt = ¬ỹt

else
predict ŷt = ỹt

update Vt+1 = V
(ŷt)
t

The following key lemma shows that, on any sequence of instances,
for each hypothesis h ∈ H there exists an expert with the same
behavior.
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Lemma 3.7. Let H be any hypothesis class with Ldim(H) < ∞. Let
x1,x2, . . . ,xT be any sequence of instances. For any h ∈ H, there exists
L ≤ Ldim(H) and indices 1 ≤ i1 < i2 < · · · < iL ≤ T such that when
running Expert(i1, i2, . . . , iL) on the sequence x1,x2, . . . ,xT , the expert
predicts h(xt) on each online round t = 1,2, . . . ,T .

Proof. Fix h ∈ H and the sequence x1,x2, . . . ,xT . We must construct
L and the indices i1, i2, . . . , iL. Consider running SOA on the input
(x1,h(x1)), (x2,h(x2)), . . . ,(xT ,h(xT )). SOA makes at most Ldim(H)
mistakes on such input. We define L to be the number of mistakes made
by SOA and we define {i1, i2, . . . , iL} to be the set of rounds in which
SOA made the mistakes.

Now, consider the Expert(i1, i2, . . . , iL) running on the
sequence x1,x2, . . . ,xT . By construction, the set Vt maintained
by Expert(i1, i2, . . . , iL) equals to the set Vt maintained by SOA
when running on the sequence (x1,h(x1)), . . . ,(xT ,h(xT )). Since the
predictions of SOA differ from the predictions of h if and only if
the round is in {i1, i2, . . . , iL}, we conclude that the predictions of
Expert(i1, i2, . . . , iL) are always the same as the predictions of h.

The above lemma holds in particular for the hypothesis in H that
makes the least number of mistakes on the sequence of examples, and
we therefore obtain the following:

Corollary 3.8. Let (x1,y1),(x2,y2), . . . ,(xT ,yT ) be a sequence of
examples and let H be a hypothesis class with Ldim(H) < ∞. There
exists L ≤ Ldim(H) and indices 1 ≤ i1 < i2 < · · · < iL ≤ T , such that
Expert(i1, i2, . . . , iL) makes at most as many mistakes as the best h ∈ H
does. Namely,

min
h∈H

T∑
t=1

|h(xt) − yt|

mistakes on the sequence of examples.
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Our generic online learning algorithm is now an application of
the Weighted Majority algorithm with the constructed experts. To
analyze the algorithm we combine Corollary 3.8 with the upper bound
on the number of experts,

d =
Ldim(H)∑
L=0

(
T

L

)
≤ (eT/Ldim(H))Ldim(H) , (3.1)

and with Theorem 3.1. This proves the upper bound part of Theo-
rem 3.6. The proof of the lower bound part can be found in [7].

3.3 Perceptron and Winnow

In this section we describe two classic online learning algorithms for
binary classification with the hypothesis class of halfspaces. Through-
out this section, it is more convenient to let the labels set be Y = {−1,1}
instead of Y = {0,1}. Each halfspace hypothesis can be described using
a vector, often called a weight vector. For example, if the vector space
is the two dimensional Euclidean space (the plane), then instances are
points in the plane and hypotheses are lines. The weight vector is per-
pendicular to the line. The prediction is according to whether the point
falls on one side of the line or on the other side. See Figure 3.3 for an
illustration.

Fig. 3.3 An illustration of linear separators in the plane (R2). The solid black line separates
the plane into two regions. The circled point represents an input vector which is labeled 1 by
the linear separator. The arrow designates a weight vector that represents the hypothesis.
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On round t, the learner receives a vector xt ∈ R
d. The learner main-

tains a weight vector wt ∈ R
d and predicts pt = sign(〈wt,xt〉). Then, it

receives yt ∈ Y and pays 1 if pt �= yt and 0 otherwise.
The goal of the learner is to make as few prediction mistakes as

possible. In the previous section we characterized the optimal algo-
rithm and showed that the best achievable regret bound depends on
the Littlestone dimension of the class. In our case, the class of half-
spaces is the class H = {x �→ sign(〈w,x〉) : w ∈ R

d}. We show below
that if d ≥ 2 then Ldim(H) = ∞, which implies that we have no hope
to make few prediction mistakes. Indeed, consider the tree for which
v1 = (1

2 ,1,0, . . . ,0), v2 = (1
4 ,1,0, . . . ,0), v3 = (3

4 ,1,0, . . . ,0), etc. Due to
the density of the reals, this tree is shattered by the subset of H which
contains all hypotheses that are parametrized by w of the form w =
(−1,a,0, . . . ,0), for a ∈ [0,1]. We conclude that indeed Ldim(H) = ∞.

To sidestep this impossibility result, the Perceptron and Winnow
algorithms rely on the technique of surrogate convex losses we discussed
in Section 2.1.2. We now derive these algorithms.

3.3.1 Perceptron

A weight vector w makes a mistake on an example (x,y) whenever the
sign of 〈w,x〉 does not equal to y. Therefore, we can write the 0–1 loss
function as follows:

�(w,(x,y)) = 1[y〈w,x〉≤0].

On rounds on which the algorithm makes a prediction mistake, we shall
define the following surrogate convex loss function

ft(w) = [1 − yt〈w,xt〉]+ ,

where [a]+ = max{a,0} is the hinge function. This loss function is often
called the hinge-loss. It satisfies the two conditions:

• ft is a convex function
• For all w, ft(w) ≥ �(w,(xt,yt)). In particular, this holds for

wt.
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On rounds on which the algorithm is correct, we shall define ft(w) = 0.
Clearly, ft is convex in this case as well. Furthermore, ft(wt) =
�(wt,(xt,yt)) = 0.

Let us now run the Online Gradient Descent (OGD) algorithm
on the sequence of functions. Recall that OGD initializes w1 = 0 and
its update rule

wt+1 = wt − ηzt

for some zt ∈ ∂ft(wt). In our case, if yt〈wt,xt〉 > 0 then ft is the zero
function and we can take zt = 0. Otherwise, it is easy to verify that
zt = −ytxt is in ∂ft(wt). We therefore obtain the update rule

wt+1 =
{
wt if yt〈wt,xt〉 > 0
wt + ηytxt otherwise

Denote by M the set of rounds in which sign(〈wt,xt〉) �= yt. Note that
on round t, the prediction of the Perceptron can be rewritten as,

pt = sign(〈wt,xt〉) = sign

( ∑
i∈M:i<t

yi〈xi,xt〉
)
.

The above form implies that the predictions of the Perceptron
algorithm and the set M do not depend on the actual value of η as
long as η > 0. We have therefore obtained the well known Perceptron
algorithm.

Perceptron

initialize: w1 = 0
for t = 1,2, . . . ,T

receive xt
predict pt = sign(〈wt,xt〉)
if yt〈wt,xt〉 ≤ 0

wt+1 = wt + ytxt
else

wt+1 = wt

To analyze the Perceptron, we rely on the analysis of OGD given
in the previous section. In particular, we rely on Corollary 2.7 and
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its improved version is given in Equation (2.15). In our case, the
sub-gradients of ft we use in the Perceptron are zt = −1[yt〈wt,xt〉≤0] ytxt.
Indeed, the Perceptron’s update is wt+1 = wt − zt, and as discussed
before this is equivalent to wt+1 = wt − ηzt for any η > 0. Therefore,
the bound given in Equation (2.15) tells us that

T∑
t=1

ft(wt) −
T∑
t=1

ft(u) ≤ 1
2η

‖u‖2
2 +

η

2

T∑
t=1

‖zt‖2
2.

Since ft(wt) is a surrogate for the 0–1 loss we know that
∑T

t=1 ft(wt) ≥
|M|. Denote R = maxt ‖xt‖, then we obtain

|M| −
T∑
t=1

ft(u) ≤ 1
2η

‖u‖2
2 +

η

2
|M|R2

Setting η = ‖u‖
R
√

|M| and rearranging, we obtain

|M| − R‖u‖
√

|M| −
T∑
t=1

ft(u) ≤ 0. (3.2)

This inequality implies:

Theorem 3.9. Suppose that the Perceptron algorithm runs on
a sequence (x1,y1), . . . ,(xT ,yT ) and let R = maxt ‖xt‖. Let M
be the rounds on which the Perceptron errs and let ft(w) =
1[t∈M] [1 − yt〈w,xt〉]+. Then, for any u

|M| ≤
∑
t

ft(u) + R‖u‖
√∑

t

ft(u) + R2 ‖u‖2.

In particular, if there exists u such that yt〈u,xt〉 ≥ 1 for all t then

|M| ≤ R2‖u‖2.

Proof. The theorem follows from Equation (3.2) and the following
claim: Given x,b,c ∈ R+, the inequality x − b

√
x − c ≤ 0 implies that

x ≤ c + b2 + b
√
c. The last claim can be easily derived by analyzing

the roots of the convex parabola Q(y) = y2 − by − c.
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The last assumption of Theorem 3.9 is called separability with large
margin. That is, there exists u that not only satisfies that the point xt
lies on the correct side of the halfspace, it also guarantees that xt is
not too close to the decision boundary. More specifically, the distance
from xt to the decision boundary is at least γ = 1/‖u‖ and the bound
becomes (R/γ)2. This classic mistake bound of the Perceptron appears
in [3, 33].

When the separability assumption does not hold, the bound involves
the terms [1 − yt〈u,xt〉]+ which measures how much the separability
with margin requirement is violated.

As a last remark we note that there can be cases in which there
exists some u that makes zero errors on the sequence but the Per-
ceptron will make many errors. Indeed, this is a direct consequence
of the fact that Ldim(H) = ∞. The way we sidestep this impossibility
result is by assuming more on the sequence of examples — the bound in
Theorem 3.9 will be meaningful only if

∑
t ft(u) is not excessively large.

3.3.2 Winnow

Winnow is an online classification algorithm originally proposed for
learning the class of k monotone disjunctive Boolean functions. Namely,
X = {0,1}d and a k monotone disjunction hypothesis takes the form
x[i1] ∨ . . . ∨ x[ik], where {i1, . . . , ik} ⊂ [d]. This can be written as a half-
space as follows. Let w ∈ {0,1}d be a vector with exactly k elements
that equal 1 (we call these elements the relevant variables). Then, 〈w,x〉
will be at least 1 if one of the relevant variables is turned on in x.
Otherwise, 〈w,x〉 is 0. So, sign(〈w,x〉 − 1/2) behaves exactly like a k
monotone disjunction and our hypothesis class is:

H = {x �→ sign(〈w,x〉 − 1/2) : w ∈ {0,1}d,‖w‖1 = k}.
In order to learn H we need to convexify the learning problem.

The first step is to convexify the domain of w by simply enlarging
it to be S = R

d
+. The second step is to construct a surrogate convex

loss function, similarly to the one we used for deriving the Perceptron.
A weight vector w errs on (x,y) if sign(〈w,x〉 − 1/2) �= y, or equiva-
lently if y(2〈w,x〉 − 1) ≤ 0. Therefore, the original 0–1 loss function is

�(w,(x,y)) = 1[y(2〈w,x〉−1)≤0].
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On rounds on which the algorithm errs, we define the hinge-loss
surrogate

ft(w) = [1 − yt(2〈w,xt〉 − 1)]+ .

If the algorithm does not err we set ft(w) = 0. This function satisfies:

• ft is convex.
• ft is a surrogate: ft(wt) ≥ �(wt,(xt,yt)).
• In the realizable case, there exists u ∈ {0,1}d with ‖u‖1 = k

such that ft(u) = 0 for all t.

Before we derive the Winnow algorithm, we note that we can use
the Perceptron algorithm for learning this problem as follows. Denote
φ(x) to be the vector [2x,−1], namely, we concatenate the constant
−1 to the vector 2x. Then, the prediction can be performed according
to sign(〈w,φ(x)〉) and the loss ft(w) becomes the hinge-loss. In the
realizable case, this yields the mistake bound R2‖u‖2

2 = 4(d + 1)k. We
shall see that the mistake bound of Winnow is 8k log(d). That is, we
obtain an exponential improvement in terms of the dependence on the
dimension.

Winnow is a specialization of the unnormalized-EG algorithm, given
in Section 2.8, to the aforementioned surrogate loss. We set the param-
eter λ of the unnormalized-EG algorithm to be 1/d.

Winnow

parameter: η > 0
initialize: w1 = (1/d, . . . ,1/d)
for t = 1,2, . . . ,T

receive xt
predict pt = sign(2〈wt,xt〉 − 1)
if yt(2〈wt,xt〉 − 1) ≤ 0

∀ i, wt+1[i] = wt[i]e−η2ytxt[i]

else
wt+1 = wt
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Theorem 3.10. Suppose that the Winnow algorithm runs with a
parameter η ≤ 1/2 on a sequence (x1,y1), . . . ,(xT ,yT ), where xt ∈
{0,1}d for all t. Let M be the rounds on which Winnow errs and let
ft(w) = 1[t∈M] [1 − yt(2〈w,xt〉 − 1)]+. Then, for any u ∈ {0,1}d such
that ‖u‖1 = k it holds that

|M| ≤
T∑
t=1

ft(wt) ≤ 1
1 − 2η

(
T∑
t=1

ft(u) +
k log(d)

η

)
.

In particular, if there exists such u for which yt(2〈u,xt〉 − 1) ≥ 1 for
all t then we can set η = 1/4 and obtain

|M| ≤ 8k log(d).

Proof. Let M be the set of rounds on which Winnow errs, i.e., M = {t :
yt(2〈wt,xt〉 − 1) ≤ 0}. Winnow is derived from the unnormalized-EG
algorithm with

zt =
{

2ytxt if t ∈ M
0 if t /∈ M

Using Theorem 2.23 (with λ = 1/d) we have

T∑
t=1

〈wt − u,zt〉 ≤ 1 +
∑

iu[i] log(du[i]/e)
η

+ η
T∑
t=1

∑
i

wt[i]zt[i]2.

In our case, u ∈ {0,1}d and ‖u‖1 = k so

1 +
∑
i

u[i] log(du[i]/e) ≤ 1 + k log(d/e) ≤ k log(d).

Plugging this in the above and using the fact that zt is a sub-gradient
of ft at wt we obtain:

T∑
t=1

(ft(wt) − ft(u)) ≤
T∑
t=1

〈wt − u,zt〉 ≤ k log(d)
η

+ η
T∑
t=1

∑
i

wt[i]zt[i]2.

(3.3)
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We next show that for all t,∑
i

wt[i]zt[i]2 ≤ 2ft(wt). (3.4)

To do so, it is convenient to consider three cases:

• If t /∈ M then ft(wt) = 0 and zt = 0. Hence, Equation (3.4)
holds.

• If t ∈ M and yt = 1 then the left-hand side of Equation (3.4)
becomes 4〈wt,xt〉. This is because xt ∈ {0,1}d so xt[i]2 =
xt[i]. But since t ∈ M we also know that 2〈wt,xt〉 ≤ 1 and so∑

iwt[i]zt[i]
2 ≤ 2. On the other hand, by the surrogate prop-

erty of ft and the fact that t ∈ M we know that ft(wt) ≥ 1,
which yields Equation (3.4).

• If t ∈ M and yt = −1 then the left-hand side of Equa-
tion (3.4) becomes again 4〈wt,xt〉. However, now we have
that ft(wt) = 2〈wt,xt〉, which yields Equation (3.4).

Combining Equation (3.4) with Equation (3.3) and rearranging terms
we obtain

T∑
t=1

ft(wt) ≤ 1
1 − 2η

(
T∑
t=1

ft(u) +
k log(d)

η

)
.

Combining the above with the surrogate property we conclude our
proof.

3.4 Bibliographic Remarks

The Weighted Majority algorithm is due to [32] and [43]. The Standard
Optimal Algorithm was derived by the seminal work of Littlestone [29].
A generalization to the nonrealizable case as well as other variants like
margin-based Littlestone’s dimension was derived in [7]. Characteriza-
tions of online learnability beyond classification has been obtained in
[1, 35].

The Perceptron dates back to Rosenblatt [37]. An analysis for the
realizable case (with margin assumptions) appears in [3, 33]. Freund
and Schapire [17] presented an analysis for the unrealizable case with a
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squared-hinge-loss based on a reduction to the realizable case. A direct
analysis for the unrealizable case with the hinge-loss was given by
Gentile [18]. Winnow was invented and analyzed in the realizable case
by Littlestone [29]. An analysis for the unrealizable case was carried
out in [5].



4
Limited Feedback (Bandits)

In Section 2 we studied the general framework of online convex opti-
mization and in particular, derived the family of online mirror descent
algorithms. To apply this algorithm, it is required to find a sub-gradient
of the loss function at the end of each round. In this section we study
online learning problems where the learner knows the value of the loss
function at the predicted vector but he doesn’t know the value of the
loss function at other points.

We first show that to apply the online mirror descent framework
it suffices to know how to calculate an estimate of the gradient. We
next show how this observation leads to a low regret algorithm for a
famous problem called “the multi-armed bandit problem.” This prob-
lem is similar to prediction with expert advice but at the end of each
round the learner only observes the cost of the expert he picked and
does not observe the costs of the rest of the experts.

Finally, we discuss the general problem of online convex optimiza-
tion without gradient information.

177
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4.1 Online Mirror Descent with Estimated Gradients

Recall the Online Mirror Descent (OMD) algorithm we described in
Section 2. Now suppose that instead of setting zt to be a sub-gradient
of ft at wt, we shall set zt to be a random vector with E[zt] ∈ ∂ft(wt).

Online Mirror Descent with Estimated

Gradients

parameter: a link function g : R
d → S

initialize: θ1 = 0
for t = 1,2, . . .

predict wt = g(θt)
pick zt at random such that E[zt|zt−1, . . . ,z1] ∈ ∂ft(wt)
update θt+1 = θt − zt

The following theorem tells us how to extend previous regret bounds
we derived for OMD to the case of estimated sub-gradients.

Theorem 4.1. Suppose that the Online Mirror Descent with

Estimated Gradients is run on a sequence of loss functions, f1, . . . ,fT .
Suppose that the estimated sub-gradients are chosen such that with
probability 1 we have

T∑
t=1

〈wt − u,zt〉 ≤ B(u) +
T∑
t=1

‖zt‖2
t ,

where B is some function and for all round t the norm ‖·‖t may depend
on wt. Then,

E

[
T∑
t=1

(ft(wt) − ft(u))

]
≤ B(u) +

T∑
t=1

E[‖zt‖2
t ],

where expectation is with respect to the randomness in choosing
z1, . . . ,zT .

Proof. Taking expectation of both sides of the first inequality with
respect to the randomness in choosing zt we obtain that

E

[
T∑
t=1

〈wt − u,zt〉
]

≤ B(u) +
T∑
t=1

E[‖zt‖2
t ].
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At each round, let vt = E[zt|zt−1, . . . ,z1]. By the law of total probability
we obtain that

E

[
T∑
t=1

〈wt − u,zt〉
]

= E

[
T∑
t=1

〈wt − u,vt〉
]
.

Since we assume that vt ∈ ∂ft(wt) we know that

〈wt − u,vt〉 ≥ ft(wt) − ft(u).

Combining all the above we conclude our proof.

The above theorem tells us that as long as we can find z1, . . . ,zT which
on one hand are unbiased estimators of sub-gradients and on the other
hand has bounded norms, we can still obtain a valid regret bound. In
the next section we demonstrate how to construct such estimates for a
specific problem and in Section 4.3 we derive a more general approach.

4.2 The Multi-armed Bandit Problem

In the multi-armed bandit problem, there are d arms, and on each
online round the learner should choose one of the arms, denoted pt,
where the chosen arm can be a random variable. Then, it receives a cost
of choosing this arm, yt[pt] ∈ [0,1]. The vector yt ∈ [0,1]d associates a
cost for each of the arms, but the learner only gets to see the cost
of the arm it pulls. Nothing is assumed about the sequence of vectors
y1,y2, . . . ,yT .

This problem is similar to prediction with expert advice. The only
difference is that the learner does not get to see the cost of experts
he didn’t choose. The goal of the learner is to have low regret for not
always pulling the best arm,

E

[
T∑
t=1

yt[pt]

]
− min

i

T∑
t=1

yt[i],

where the expectation is over the learner’s own randomness.
This problem nicely captures the exploration–exploitation tradeoff.

On one hand, we would like to pull the arm which, based on previous
rounds, we believe has the lowest cost. On the other hand, maybe it is
better to explore the arms and find another arm with a smaller cost.



180 Limited Feedback (Bandits)

To approach the multi-armed bandit problem we use the OMD with
estimated gradients method derived in the previous section. As in the
Weighted Majority algorithm for prediction with expert advice, we let
S be the probability simplex and the loss functions be ft(w) = 〈w,yt〉.
The learner picks an arm according to P[pt = i] = wt[i] and therefore
ft(wt) is the expected cost of the chosen arm. The gradient of the loss
function is yt. However, we do not know the value of all elements of yt,
we only get to see the value yt[pt]. To estimate the gradient, we define
the random vector zt as follows:

zt[j] =
{
yt[j]/wt[j] if j = pt
0 else

.

To emphasize the dependence of zt on pt we will sometimes use the
notation z(pt)

t . We indeed have that z(pt)
t is an unbiased estimate of the

gradient because

E[z(pt)
t [j]|zt−1, . . . ,z1] =

d∑
i=1

P[pt = i]z(i)
t [j] = wt[j]

yt[j]
wt[j]

= yt[j].

We update wt using the update rule of the normalized EG algorithm.
The resulting algorithm is given below.

Multi-Armed Bandit Algorithm

parameter: η ∈ (0,1)
initialize: w1 = (1/d, . . . ,1/d)
for t = 1,2, . . .

choose pt ∼ wt and pull the pt’th arm
receive cost of the arm yt[pt] ∈ [0,1]
update
w̃[pt] = wt[pt]e−ηyt[pt]/wt[pt]

for i �= pt, w̃[i] = wt[i]
∀ i, wt+1[i] = w̃[i]∑

j w̃[j]

To analyze the algorithm we combining Theorem 4.1 with Theo-
rem 2.22. The conditions of Theorem 2.22 hold here because zt is a
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non-negative vector. We therefore obtain that

T∑
t=1

〈wt − u,zt〉 ≤ log(d)
η

+ η
T∑
t=1

∑
i

wt[i]zt[i]2.

So Theorem 4.1 gives us that

E

[
T∑
t=1

(ft(wt) − ft(u))

]
≤ log(d)

η
+ η

T∑
t=1

E

[∑
i

wt[i]zt[i]2
]
.

The last term can be bounded as follows:

E

[∑
i

wt[i]z
(pt)
t [i]2 | zt−1, . . . ,z1

]
=
∑
j

P[pt = j]
∑
i

wt[i]z
(j)
t [i]2

=
∑
j

wt[j]wt[j](yt[j]/wt[j])2

=
∑
j

yt[j]2 ≤ d.

Overall, we have obtained the following:

Corollary 4.2. The multi-armed bandit algorithm enjoys the bound

E

[
T∑
t=1

yt[pt]

]
≤ min

i

T∑
t=1

yt[i] +
logd
η

+ ηdT.

In particular, setting η =
√

log(d)/(dT ) we obtain the regret bound of
2
√
d log(d)T .

Comparing the above bound to the bound we derived for the
Weighted Majority algorithm we observe an additional factor of d,
which intuitively stems from the fact that here we only receive 1/d
of the feedback the Weighted Majority algorithm receives. It is possi-
ble to rigorously show that the dependence on d is unavoidable and
that the bound we derived is essentially tight.
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4.3 Gradient Descent Without a Gradient

In this section we consider the general online convex optimization
problem, where we only have a black-box access to the loss func-
tions, and thus cannot calculate sub-gradients directly. The multi-
armed bandit problem discussed in the previous section was a special
case, where the loss function was linear. However, in the multi-armed
bandit problem we had the additional constraint that we can only ask
the value of the loss function at singletons vectors. Here we allow the
learner to predict any vector1 but he only receives the evaluation of the
loss function on the vector he picked.

In Section 2 we derived several gradient-based algorithms for online
convex optimization. How can we utilize these algorithms when we can
only receive the evaluation of the loss function on the predicted vector?
As in the multi-armed bandit problem, the main idea is to derive a
one-shot estimate to the gradient. Below we present a method due to
Flaxman, Kalai, and McMahan [16], which derives a one-shot estimate
to the gradient.

4.3.1 A One-Shot Gradient Estimate

Let Ub be the uniform distribution over the unit Euclidean ball and let
Usp be the uniform distribution over the unit Euclidean sphere. Given
δ > 0 we define a smoothed version of f as follows:

f̂(w) = E
v∼Ub

[f(w + δv)]. (4.1)

As we will show below, the advantage of f̂ is that it is differentiable
and we can estimate its gradient using a single oracle call to f . But,
before that, we show that f̂ is similar to f .

Lemma 4.3. Let f be an L-Lipschitz function and let f̂ be as defined
in Equation (4.1). Then, |f̂(w) − f(w)| ≤ Lδ.

1 We make another simplification, for the sake of simplicity, that the learner does not have
to predict an element from S. In some applications, like the multi-armed bandit problem,
the learner must predict an element from S and then a more careful analysis is required.
See for example [16].



4.3 Gradient Descent Without a Gradient 183

Proof. By the Lipschitzness, |f(w) − f(w + δv)| ≤ Lδ‖v‖. Using the
fact that ‖v‖ ≤ 1 we obtain the desired result.

We next show that the gradient of f̂ can be estimated using a single
oracle call to f .

Lemma 4.4. The function f̂ is differentiable and we have

E
v∼Usp

[
d

δ
f(w + δv)v

]
= ∇f̂(w).

Proof. We prove the theorem for the case d = 1. Given a 1-dimensional
function f , let F be the antiderivative of f , namely, F ′(w) = f(w). By
the fundmental theorem of calculus we have∫ b

a
f(w)dw = F (b) − F (a).

It follows that ∫ δ

−δ
f(w + t)dt = F (w + δ) − F (w − δ).

Note that in the 1-dimensional case we have that v is distributed
uniformly over [−1,1] and

f̂(w) = E[f(w + δv)] =

∫ δ
−δ f(w + t)dt

2δ
=
F (w + δ) − F (w − δ)

2δ
.

It follows that

f̂ ′(w) =
f(w + δ) − f(w − δ)

2δ
=

Ev∼Usp [f(w + δv)v]
δ

.

This concludes the proof for the case d = 1. The proof for d > 1 follows
similarly using Stoke’s theorem and can be found in [16].

4.3.2 The Resulting Algorithm

The algorithm is based on gradient descent with lazy pro-

jections, we described in Section 2.6.
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Bandit Online Gradient Descent

parameters: η,δ > 0 and a convex set S ⊂ R
d

initialize: θ1 = 0
for t = 1,2, . . . ,T

let wt = argminw∈S ‖w − ηθt‖2

pick vt ∼ Usp

predict wt + δvt and receive ft(wt + δvt)
set zt = d

δ ft(wt + δvt)vt
update θt+1 = θt − zt

Let us now analyze the regret of this algorithm. First, applying
Corollary 2.17 we obtain that for all u ∈ S,

∑
t

〈zt,wt − u〉 ≤ 1
2η

‖u‖2
2 + η

T∑
t=1

‖zt‖2.

Taking expectation, using Lemma 4.4, and using the fact that vt is in
the unit sphere, we obtain

E

[∑
t

(f̂t(wt) − f̂t(u))

]
≤ 1

2η
‖u‖2

2 + η

T∑
t=1

d2

δ2
E[ft(wt + δvt)2]. (4.2)

Let B = maxu∈S ‖u‖ and F = maxu∈S,t ft(u). Then, by the Lipschitz-
ness of ft we have ft(wt + δvt) ≤ ft(wt) + Lδ‖vt‖ ≤ F + Lδ. Combin-
ing with Equation (4.2) yields

E

[∑
t

(f̂t(wt) − f̂t(u))

]
≤ B2

2η
+ ηTd2(F/δ + L)2. (4.3)

To derive a concrete bound out of the above we need to relate the
regret with respect to f̂t to the regret with respect to ft. We do this
using Lemma 4.3, which implies

ft(wt + δvt) − ft(u) ≤ ft(wt) − ft(u) + Lδ ≤ f̂t(wt) − f̂t(u) + 3Lδ.

Combining the above with Equation (4.3) yields

Corollary 4.5. Consider running the Bandit Online Convex

Optimization algorithm on a sequence f1, . . . ,fT of L-Lipschitz
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functions. Let S be a convex set and define B = maxu∈S ‖u‖ and
F = maxu∈S,t∈[T ] ft(u). Then, for all u ∈ S we have

E

[∑
t

(ft(wt + δvt) − ft(u))

]
≤ 3LδT +

B2

2η
+ ηTd2(F/δ + L)2.

In particular, setting η = B
d(F/δ+L)

√
2T
, δ =

√
BdF
3L T−1/4 we obtain that

the regret is bounded by O(
√
BdFLT 3/4).

Comparing this bound to the full information bound given in Corol-
lary 2.17, we note two main difference. First, the dependence on T is
T 3/4 as opposed to T 1/2 in the full information case. Second, the regret
depends on the dimensionality. While the dependence on the dimen-
sionality is indeed tight, it is not known if the worse dependence on T
is tight.

4.4 Bibliographic Remarks

Multi-armed bandit problems were originally studied in a stochastic
setting [36]. The adversarial multi-armed bandit problem was studied
in [4].

The algorithm we described for bandit online convex optimization
is a variant of the algorithm given in [16]. Better algorithms have been
derived for the specific case of linear functions. In particular, [15] gave
a non efficient algorithm whose regret is O(poly(d)

√
T ), and later on,

[2] derived an efficient algorithm with a similar regret bound using
self-concordant regularizers.



5
Online-to-Batch Conversions

In this section we discuss conversions from online learning to stochas-
tic learning. In particular, we consider the following general model of
stochastic learning.

Definition 5.1.(Vapnik’s General Setting of Learning) Let S be
a hypothesis class and let Ψ be an example domain set. There is a loss
function, c : S × Ψ → R, which gets a hypothesis and an example and
returns the cost of using the hypothesis on the example. Let Q be an
unknown distribution over Ψ and define1 C(w) = Eψ∼Q[c(w,ψ)]. The
goal of the learner is to approximately minimize C over S. The learner
does not know Q, but can get independent samples from Q. We denote
by A(ψ1, . . . ,ψT ) the output of the learning algorithm when receiving
T samples from Q. We say that a learning algorithm ε-learns S using T

1 Technically, in the above definition, for every w ∈ S, we view the function c(w, ·) : Ψ → R
+

as a random variable, and define C(w) to be the expected value of this random variable.
For that, we need to require that the function c(w, ·) is measurable. Formally, we assume
that there is a σ-algebra of subsets of Ψ, over which the probability Q is defined, and that
the pre-image of every initial segment in R

+ is in this σ-algebra.
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examples if

E[C(A(ψ1, . . . ,ψT ))] ≤ min
w∈S

C(w) + ε,

where expectation2 is over the random choice of ψ1, . . . ,ψT .

This model is also closely related to the problem of Stochastic Opti-
mization or more specifically Stochastic Approximation (for more
details see for example [41]).

Maybe the most simple algorithm for solving a stochastic learning
problem is by sampling T examples, ψ1, . . . ,ψT , and then returning a
hypothesis which minimizes the average cost over these examples. This
is called empirical risk minimization (ERM):

ERMS(ψ1, . . . ,ψT ) ∈ argmin
w∈S

1
T

T∑
t=1

c(w,ψt).

Our goal is to demonstrate how online learning can sometimes yield an
alternative algorithm for solving stochastic learning problems.

The basic idea is as follows. First, we run the online learner on
a sequence of loss functions, where ft(w) = c(w,ψt). This produces a
sequence of predictions w1, . . . ,wT . Second, we produce a single vector
w̄ based on w1, . . . ,wT . There are many ways to produce w̄ and here
we consider two simple approaches: averaging or randomization. This
yields the following skeleton.

Online-To-Batch Conversion

parameters: a set S; a cost function c(·, ·) ;
an online learning algorithm A

input: ψ1, . . . ,ψT are independently sampled from distribution Q over Ψ
for t = 1, . . . ,T

let wt be the prediction of A
provide the loss function ft(w) = c(w,ψt) to A

output: produce w̄ from w1, . . . ,wT . For example:
averaging: w̄ = 1

T

∑T
t=1 wt

randomization: w̄ = wr,
where r is chosen uniformly at random from [T ]

2 It is common to require that the inequality will hold with high probability. By a simple
amplification argument it is possible to convert a guarantee on the expected value to a
guarantee that holds with high probability. Therefore, for the sake of simplicity, we only
require success in expectation.
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The following theorem shows that the average online loss of the
online learner upper bounds the cost of w̄.

Theorem 5.1. Let ψ1, . . . ,ψT be a sequence of independent random
variables, each of which is distributed according to a distribution Q

over Ψ. For the online-to-batch conversion with randomiza-
tion, we have that

E [C(w̄)] = E

[
1
T

T∑
t=1

ft(wt)

]
,

where expectation is with respect to the random choice of ψ1, . . . ,ψT
and r. If we further assume that C is a convex function, then for
online-to-batch conversion with averaging we have that

E [C(w̄)] ≤ E

[
1
T

T∑
t=1

ft(wt)

]
.

Proof. We first show that

E

[
1
T

T∑
t=1

C(wt)

]
= E

[
1
T

T∑
t=1

c(wt,ψt)

]
. (5.1)

Using the linearity of expectation we have,

E

[
1
T

T∑
t=1

c(wt,ψt)

]
=

1
T

T∑
t=1

E[c(wt,ψt)]. (5.2)

Recall that the law of total expectation implies that for any two random
variables R1,R2, and a function f , ER1 [f(R1)] = ER2 ER1 [f(R1)|R2].
Since wt only depends on ψ1, . . . ,ψt−1, we can set R1 = ψ1, . . . ,ψt and
R2 = ψ1, . . . ,ψt−1 to get that

E[c(wt,ψt)] = E[C(wt)].

Combining the above with Equation (5.2) yields Equation (5.1). Now,
for the randomization technique we have that C(w̄) = Er[C(wr)] =
1
T

∑T
t=1C(wt), which concludes our proof for the case of the
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randomization technique. For the averaging technique, since we assume
that C is convex we can apply Jensen’s inequality to get that

C(w̄) = C

(
1
T

T∑
t=1

wt

)
≤ 1
T

T∑
t=1

C(wt).

Clearly, E[ 1
T

∑T
t=1 c(u,ψt)] = C(u). Therefore,

Corollary 5.2. Assume that the conditions of Theorem 5.1 hold and
let u be any vector, then

E[C(w̄)] − C(u) ≤ E

[
1
T

T∑
t=1

(ft(wt) − ft(u))

]
.

The right-hand side is the expected regret of the online algorithm
(divided by T ). Therefore, if we have an online learning algorithm that
is guaranteed to have a low regret with respect to functions of the form
f(w) = c(w,ψ) relative to a set S, we can be assured that the cost of
w̄ is close to the optimal cost.

To demonstrate the usage of this approach, we describe the appli-
cability of online mirror descent to stochastic learning of problems in
which c is convex with respect to its first argument.

Stochastic Online Mirror Descent

parameters: a link function g : R
d → S; number of rounds T

input: sampler from distribution Q over Ψ; cost function c(·, ·)
initialize: θ1 = 0
for t = 1, . . . ,T

predict wt = g(θt)
pick ψt ∼ Q and let ft(w) = c(w,ψt)
let zt ∈ ∂ft(wt)
update θt+1 = θt − zt

output: w̄ = 1
T

∑T
t=1wt
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5.1 Bibliographic Remarks

Littlestone [30] initiated the study of online to batch conversions.
Freund and Schapire [17] demonstrated that using the Perceptron algo-
rithm along with the voting online-to-batch technique [23] yields an
efficient replacement for Support Vector Machines [14, 38, 42]. Concen-
tration bounds on the risk of the ensemble that rely on the online loss
were derived by Zhang [45] and Cesa-Bianchi et al. [10, 11].
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