Foundations and Trends® in
Machine Learning

Vol. 4, No. 2 (2011) 107-194
© 2012 S. Shalev-Shwartz

now

DOI: 10.1561/2200000018 the essence of knowledge

Online Learning and Online
Convex Optimization

By Shai Shalev-Shwartz

Contents

1 Introduction

1.1 Examples

1.2 A Gentle Start

1.3 Organization and Scope

1.4 Notation and Basic Definitions

2 Online Convex Optimization

2.1 Convexification

2.2 Follow-the-leader

2.3 Follow-the-Regularized-Leader

2.4 Online Gradient Descent: Linearization
of Convex Functions

2.5 Strongly Convex Regularizers

2.6 Online Mirror Descent

2.7 The Language of Duality

2.8 Bounds with Local Norms

2.9 Bibliographic Remarks

3 Online Classification

3.1 Finite Hypothesis Class and Experts Advice
3.2 Learnability and the Standard Optimal Algorithm

108

111
112
116
117

119

120
124
127

130
134
141
146
152
155

157

158
160

3.3
3.4

Perceptron and Winnow
Bibliographic Remarks

4 Limited Feedback (Bandits)

4.1
4.2
4.3
4.4

Online Mirror Descent with Estimated Gradients
The Multi-armed Bandit Problem

Gradient Descent Without a Gradient
Bibliographic Remarks

5 Online-to-Batch Conversions

5.1

Bibliographic Remarks

Acknowledgments

References

168
175
177

178
179
182
185

186

190

191

192

Foundations and Trends® in
Machine Learning

Vol. 4, No. 2 (2011) 107-194 n‘w

© 2012 S. Shalev-Shwartz
DOI: 10.1561/2200000018 the essence of knowledge

Online Learning and Online
Convex Optimization

Shai Shalev-Shwartz

Benin School of Computer Science and Engineering, The Hebrew University
of Jerusalem, Israel, shais@cs.huji.ac.il

Abstract

Online learning is a well established learning paradigm which has both
theoretical and practical appeals. The goal of online learning is to
make a sequence of accurate predictions given knowledge of the cor-
rect answer to previous prediction tasks and possibly additional avail-
able information. Online learning has been studied in several research
fields including game theory, information theory, and machine learning.
It also became of great interest to practitioners due the recent emer-
gence of large scale applications such as online advertisement placement
and online web ranking. In this survey we provide a modern overview
of online learning. Our goal is to give the reader a sense of some of
the interesting ideas and in particular to underscore the centrality of
convexity in deriving efficient online learning algorithms. We do not
mean to be comprehensive but rather to give a high-level, rigorous yet
easy to follow, survey.

1

Introduction

Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information. The study of
online learning algorithms is an important domain in machine learn-
ing, and one that has interesting theoretical properties and practical
applications.

Online learning is performed in a sequence of consecutive rounds,
where at round ¢ the learner is given a question, Xy, taken from an
instance domain X', and is required to provide an answer to this ques-
tion, which we denote by p;. After predicting an answer, the correct
answer, 1;, taken from a target domain), is revealed and the learner
suffers a loss, I(ps,y:), which measures the discrepancy between his
answer and the correct one. While in many cases p; is in), it is some-
times convenient to allow the learner to pick a prediction from a larger
set, which we denote by D.

108

109

Online Learning

fort=1,2,...
receive question x; € X
predict p € D
receive true answer y; € Y
suffer loss I(ps, yt)

The specific case of yes/no answers and predictions, namely D =
Y =1{0,1}, is called online classification. In this case it is natural to
use the 0-1 loss function: {(ps,y:) = [pr — y¢|. That is, I(ps,y:) indicates
if p, = y; (the prediction is correct) or p; # y; (the prediction is wrong).

For example, consider the problem of predicting whether it is going
to rain tomorrow. On day ¢, the question x; can be encoded as a vector
of meteorological measurements. Based on these measurements, the
learner should predict if it’s going to rain tomorrow. In the following
day, the learner knows the correct answer.

We can also allow the learner to output a prediction in [0,1], which
can be interpreted as the probability of raining tomorrow. This is an
example of an application in which D #). We can still use the loss
function (ps,y) = |pr — Y|, which can now be interpreted as the prob-
ability to err if predicting that it’s going to rain with probability p;.

The learner’s ultimate goal is to minimize the cumulative loss suf-
fered along its run, which translates to making few prediction mistakes
in the classification case. The learner tries to deduce information from
previous rounds so as to improve its predictions on present and future
questions. Clearly, learning is hopeless if there is no correlation between
past and present rounds. Classic statistical theory of sequential predic-
tion therefore enforces strong assumptions on the statistical properties
of the input sequence (e.g., that it is sampled i.i.d. according to some
unknown distribution).

In this review we survey methods which make no statistical assump-
tions regarding the origin of the sequence of examples. The sequence is
allowed to be deterministic, stochastic, or even adversarially adaptive
to the learner’s own behavior (as in the case of spam email filtering).
Naturally, an adversary can make the cumulative loss to our online

110 Introduction

learning algorithm arbitrarily large. For example, the adversary can ask
the same question on each online round, wait for the learner’s answer,
and provide the opposite answer as the correct answer. To make non-
trivial statements we must further restrict the problem. We consider
two natural restrictions.

The first restriction is especially suited to the case of online classi-
fication. We assume that all the answers are generated by some target
mapping, h* : X — Y. Furthermore, h* is taken from a fixed set, called
a hypothesis class and denoted by H, which is known to the learner.
With this restriction on the sequence, which we call the realizable case,
the learner should make as few mistakes as possible, assuming that
both h* and the sequence of questions can be chosen by an adversary.
For an online learning algorithm, A, we denote by M4(#H) the max-
imal number of mistakes A might make on a sequence of examples
which is labeled by some h* € H. We emphasize again that both A*
and the sequence of questions can be chosen by an adversary. A bound
on Ma(H) is called a mistake-bound and we will study how to design
algorithms for which M4(#H) is minimal.

Alternatively, the second restriction of the online learning model
we consider is a relaxation of the realizable assumption. We no longer
assume that all answers are generated by some h* € H, but we require
the learner to be competitive with the best fixed predictor from H. This
is captured by the regret of the algorithm, which measures how “sorry”
the learner is, in retrospect, not to have followed the predictions of
some hypothesis h* € H. Formally, the regret of the algorithm relative
to h* when running on a sequence of T examples is defined as

T T
Regrety (h*) = Zl(ptvyt) N Zl(h*(l‘t)ayt), (1.1)
t=1 t=1

and the regret of the algorithm relative to a hypothesis class H is
Regretp(H) = max Regret,(h*). (1.2)
*e

We restate the learner’s goal as having the lowest possible regret
relative to H. We will sometime be satisfied with “low regret” algo-
rithms, by which we mean that Regret;(#H) grows sub-linearly with

1.1 Examples 111

the number of rounds, T', which implies that the difference between the
average loss of the learner and the average loss of the best hypothesis
in ‘H tends to zero as T goes to infinity.

1.1 Examples

We already mentioned the problem of online classification. To make the
discussion more concrete, we list several additional online prediction
problems and possible hypothesis classes.

Online Regression In regression problems, X =R? which cor-
responds to a set of measurements (often called features), and
Y = D = R. For example, consider the problem of estimating the fetal
weight based on ultrasound measurements of abdominal circumference
and femur length. Here, each x € X = R? is a two-dimensional vector
corresponds to the measurements of the abdominal circumference and
the femur length. Given these measurements the goal is to predict the
fetal weight. Common loss functions for regression problems are the
squared loss, £(p,y) = (p — y)?, and the absolute loss, £(p,y) = [p — y|.
Maybe the simplest hypothesis class for regression is the class of linear
predictors, H = {x — Zle wli]z[i] : Vi,w[i] € R}, where w[i] is the ith
element of w. The resulting problem is called online linear regression.

Prediction with Expert Advice On each online round the
learner has to choose from the advice of d given experts. Therefore,
x; € X CRY where x4[i] is the advice of the ith expert, and
D ={1,...,d}. Then, the learner receives the true answer, which is a
vector y; € Y = [0,1]¢, where y;[i] is the cost of following the advice of
the ith expert. The loss of the learner is the cost of the chosen expert,
U(p,ye) = y¢[pe]. A common hypothesis class for this problem is the
set of constant predictors, H = {h1,...,hq}, where h;(x) =1 for all x.
This implies that the regret of the algorithm is measured relative to
the performance of the strategies which always predict according to
the same expert.

Online Ranking On round ¢, the learner receives a query x; € X
and is required to order k elements (e.g., documents) according to

112 Introduction

their relevance to the query. That is, D is the set of all permuta-
tions of {1,...,k}. Then, the learner receives the true answer y; € Y =
{1,...,k}, which corresponds to the document which best matches the
query. In web applications, this is the document that the user clicked
on. The loss, (pt,yt), is the position of y; in the ranked list py.

1.2 A Gentle Start

We start with studying online classification problem, in which Y =D =
{0,1}, and £(p,y) = |p — y| is the 0-1 loss. That is, on each round, the
learner receives x; € X and is required to predict p; € {0,1}. Then, it
receives y; € {0,1} and pays the loss |p; — y|. We make the following
simplifying assumption:

e Finite Hypothesis Class: We assume that |H| < oco.

Recall that the goal of the learner is to have a low regret relative to
the hypotheses set, H, where each function in H is a mapping from X
to {0,1}, and the regret is defined as

T T
Regretp(H) = max (; Pt — ye| — ; |h(x¢) — yt|)

We first show that this is an impossible mission — no algorithm
can obtain a sublinear regret bound even if |H| = 2. Indeed, consider
H = {ho,h1}, where hg is the function that always returns 0 and h; is
the function that always returns 1. An adversary can make the number
of mistakes of any online algorithm to be equal to T', by simply waiting
for the learner’s prediction and then providing the opposite answer as
the true answer. In contrast, for any sequence of true answers, y1,...,yr,
let b be the majority of labels in g1, ...,yr, then the number of mistakes
of hy is at most T'/2. Therefore, the regret of any online algorithm
might be at least T'— T'/2 =T/2, which is not a sublinear with 7'
This impossibility result is attributed to Cover [13].

To sidestep Cover’s impossibility result, we must further restrict the
power of the adversarial environment. In the following we present two
ways to do this.

1.2 A Gentle Start 113

1.2.1 Realizability Assumption

The first way to sidestep Cover’s impossibility result is by making one
additional assumption:

® Realizability: We assume that all target labels are generated
by some h* € H, namely, y; = h*(x;) for all t. Our goal is to
design an algorithm with an optimal mistake bound. Namely,
an algorithm for which M4 (H) is minimal. See definition of
Ma(H) in the prequel.

Next, we describe and analyze online learning algorithms assuming
both a finite hypothesis class and realizability of the input sequence.
The most natural learning rule is to use (at any online round) any
hypothesis which is consistent with all past examples.

Consistent

input: A finite hypothesis class H
initialize: V1 = H
fort=1,2,...

receive x;

choose any h € V;

predict p; = h(x;)

receive true answer y; = h*(xy)

update Vi1 ={h € Vi: h(xt) =y}

The Consistent algorithm maintains a set, V4, of all the hypothe-
ses which are consistent with (x1,1),...,(x¢—1,y:—1). This set is often
called the version space. It then picks any hypothesis from V; and
predicts according to this hypothesis.

Obviously, whenever Consistent makes a prediction mistake, at
least one hypothesis is removed from V;. Therefore, after making M
mistakes we have |V;| < |H| — M. Since V; is always nonempty (by the
realizability assumption it contains h*) we have 1 < |Vi| < |H| — M.

114 Introduction

Rearranging, we obtain

Corollary 1.1. Let H be a finite hypothesis class. The Consistent
algorithm enjoys the mistake bound Mconsistens(H) < |H| — 1.

It is rather easy to construct a hypothesis class and a sequence of
examples on which Consistent will indeed make |H| — 1 mistakes.
Next, we present a better algorithm in which we choose h € V; in a
smarter way. We shall see that this algorithm is guaranteed to make
exponentially fewer mistakes. The idea is to predict according to the
majority of hypotheses in V; rather than according to some arbitrary
h € V;. That way, whenever we err, we are guaranteed to remove at
least half of the hypotheses from the version space.

Halving

input: A finite hypothesis class H
initialize: V; = H
fort=1,2,...
receive X;
predict p; = argmax, o1y [{h € Vi : h(x¢) = 1}
(in case of a tie predict py = 1)
receive true answer iy

update Vi1 ={h € Vi: h(x;) =y}

Theorem 1.2. Let H be a finite hypothesis class. The Halving algo-
rithm enjoys the mistake bound Myaiving(H) < logy(|H]).

Proof. We simply note that whenever the algorithm errs we have
|Vit1] < |V4|/2. (Hence the name Halving.) Therefore, if M is the total
number of mistakes, we have

1< V| < [H|27M.

Rearranging the above inequality we conclude our proof. a

Of course, Halving’s mistake bound is much better than
Consistent’s mistake bound. Is this the best we can do? What is an

1.2 A Gentle Start 115

optimal algorithm for a given hypothesis class (not necessarily finite)?
We will get back to this question in Section 3.

1.2.2 Randomization

In the previous subsection we sidestepped Cover’s impossibility result
by relying on the realizability assumption. This is a rather strong
assumption on the environment. We now present a milder restriction on
the environment and allow the learner to randomize his predictions. Of
course, this by itself does not circumvent Cover’s impossibility result as
in deriving the impossibility result we assumed nothing on the learner’s
strategy. To make the randomization meaningful, we force the adver-
sarial environment to decide on gy without knowing the random coins
flipped by the learner on round t. The adversary can still know the
learner’s forecasting strategy and even the random bits of previous
rounds, but it doesn’t know the actual value of the random bits used
by the learner on round ¢. With this (mild) change of game, we analyze
the expected 0—1 loss of the algorithm, where expectation is with respect
to the learner’s own randomization. That is, if the learner outputs
where P[j; = 1] = py, then the expected loss he pays on round ¢ is

P[?}t # yt] = ’pt - yt\.

Put another way, instead of having the predictions domain being
D ={0,1} we allow it to be D =10,1], and interpret p, € D as the
probability to predict the label 1 on round ¢. To summarize, we assume:

® Randomized Predictions and Fxpected Regret: We allow the
predictions domain to be D = [0,1] and the loss function is

still 1(pe,ye) = [pe — yel-

With this assumption it is possible to derive a low regret algorithm
as stated in the following theorem.

Theorem 1.3. Let H be a finite hypothesis class. There exists an algo-
rithm for online classification, whose predictions come from D = [0,1],

116 Introduction

that enjoys the regret bound

T T
- — mi h — <4/0.51 T.
> lpe =l = iy D) = il < VOS]

We will provide a constructive proof of the above theorem in the next
section.

To summarize, we have presented two different ways to sidestep
Cover’s impossibility result: realizability or randomization. At first
glance, the two approaches seem to be rather different. However, there
is a deep underlying concept that connects them. Indeed, we will show
that both methods can be interpreted as converification techniques.
Convexity is a central theme in deriving online learning algorithms.
We study it in the next section.

1.3 Organization and Scope

How to predict rationally is a key issue in various research areas such
as game theory, machine learning, and information theory. The semi-
nal book of Cesa-Bianchi and Lugosi [12] thoroughly investigates the
connections between online learning, universal prediction, and repeated
games. In particular, results from the different fields are unified using
the prediction with expert advice framework.

We feel that convexity plays a central role in the derivation of online
learning algorithms, and therefore start the survey with a study of the
important sub-family of online learning problems, which is called online
convex optimization. In this family, the prediction domain is a convex
set and the loss function is a convex function with respect to its first
argument. As we will show, many previously proposed algorithms for
online classification and other problems can be jointly analyzed based
on the online convex optimization framework. Furthermore, convexity
is important because it leads to efficient algorithms.

In Section 3 we get back to the problem of online classification.
We characterize a standard optimal algorithm for online classification.
In addition, we show how online convex optimization can be used for
deriving efficient online classification algorithms.

In Section 4 we study online learning in a limited feedback model,
when the learner observes the loss value I(p¢,y;) but does not observe

1.4 Notation and Basic Definitions 117

the actual correct answer y;. We focus on the classic multi-armed ban-
dit problem and derive an algorithm for this problem based on the
online convex optimization algorithmic framework. We also present a
low regret algorithm for the general problem of bandit online convex
optimization.

Finally, in Section 5 we discuss several implications of online learn-
ing to batch learning problems, in which we assume that the examples
are sampled i.i.d. from an unknown probability source.

Part of our presentation shares similarities with other surveys on
online prediction problems. In particular, Rakhlin’s lecture notes [34]
and Hazan’s book section [22] are good recent surveys on online
convex optimization. While part of our presentation shares similari-
ties with these surveys, we sometimes emphasize different techniques.
Furthermore, we connect and relate the new results on online convex
optimization to classic results on online classification, thus providing
a fresh modern perspective on some classic algorithms. A more classic
treatment can be found in Blum’s survey [8].

1.4 Notation and Basic Definitions

We denote scalars with lower case letters (e.g., x and \), and vectors
with bold face letters (e.g., x and A). The ith element of a vector x
is denoted by z[i]. Since online learning is performed in a sequence
of rounds, we denote by x; the tth vector in a sequence of vectors
X1,X2,...,X7. The ith element of x; is denoted by x[i].

The inner product between vectors x and w is denoted by (x,w).
Whenever we do not specify the vector space we assume that it is the
d-dimensional Euclidean space and then (x,w) = Zgzlﬂi]w[i]. Sets
are designated by upper case letters (e.g., S). The set of real numbers
is denoted by R and the set of non-negative real numbers is denoted
by Ry. The set of natural numbers is denoted by N. For any k > 1,
the set of integers {1,...,k} is denoted by [k]. Given a predicate 7, we
use the notation 1) to denote the indicator function that outputs 1
if holds and 0 otherwise. The hinge function is denoted by [a], =
max{0,a}.

The Euclidean (or ¢3) norm of a vector w is ||w]|2 = y/(w,w). We

omit the subscript when it is clear from the context. We also use other £,

118 Introduction

norms, ||w|, = (32, |w[i]|?)!/?, and in particular |w|; = 3", |w[i]| and
|W||co = max;|w[i]|. A generic norm of a vector w is denoted by ||wl|
and its dual norm is defined as

%]l = max{(w,x) : ||w]| < 1}.
The definition of the dual norm immediately implies the inequality
(w,z) < [[w|||z]] (1.3)

For the ¢ norm (which is dual to itself), this is the well known Cauchy—
Schwartz inequality. For p,q > 1 such that %D—}— % =1 we have that
the ¢, and {; norms are dual, and Equation (1.3) becomes Holder’s
inequality.

A function f is called L-Lipschitz over a set S with respect to a
norm ||-|| if for all u,w € S we have |f(u) — f(w)| < L||u — w||.

The gradient of a differentiable function f is denoted by V f and
the Hessian is denoted by V2f.

Throughout the review, we make use of basic notions from convex
analysis. A set S is convex if for all w,v € S and « € [0,1] we have
that aw + (1 — a)v € S as well. Similarly, a function f : S — R is con-
vex if for all w,v and a € [0,1] we have f(aw + (1 — a)v) < af(w)+
(1 - a)f(v).

It is convenient to allow convex functions to output the value oo.
The domain of a function f is the set of points on which f is finite.
This is convenient, for example, for constraining the solution of an opti-
mization problem to be within some set A. Indeed, instead of solving
minge 4 f(x) we can solve miny f(x) + 14(x), where 14 is the function
that outputs 0 if x € A and oo if x ¢ A. In the next section we make
use of some additional definitions and tools from convex analysis. For
clarity, we define them as per need.

The expected value of a random variable, 1), is denoted by E[].
In some situations, we have a deterministic function h that receives a
random variable as input. We denote by E[h(1))] the expected value of
the random variable h(v). Occasionally, we omit the dependence of h
on 1. In this case, we may clarify the meaning of the expectation by
using the notation Ey[h] or Eyp[h] if ¢ is distributed according to
some distribution P.

2

Online Convex Optimization

In recent years, the design of many efficient online learning algorithms
has been influenced by convex optimization tools. Furthermore, it was
observed that most previously proposed efficient algorithms can be
jointly analyzed based on the following elegant model:

Online Convex Optimization (0CO)

input: A convex set S

fort=1,2,...
predict a vector wy € S
receive a convex loss function f; : S - R
suffer loss fi(wy)

In this section we describe algorithms for online convex optimization
and analyze their regret. Recall that the regret of an online algorithm
with respect to a competing hypothesis, which here will be some vector
u, is defined as

T T
Regretp(u) = th(wt) - th(u). (2.1)
t=1 t=1

119

120 Online Convex Optimization
As before, the regret of the algorithm relative to a set of competing
vectors, U, is defined as

Regret(U) = max Regretr(u).
uc

Remark 2.1. (U vs. S) In the online convex optimization problem,
the predictions of the learner should come from the set S, while we
analyze the regret with respect to the set U. While in some situations
it makes sense to set U = S, this is not always the case. Whenever we do
not specify the value of U we use the default value U = S. Additionally,
our default setting for S will be S = R%.

The rest of this section is organized as follows. We start with
convexification techniques, showing how to utilize the online convex
optimization framework in nonconvex problems. Next, we start
describing and analyzing an algorithmic framework for online convex
optimization. First, we describe the Follow-the-Leader approach, in
which the learner simply picks the vector which performed best on
past rounds. Next we describe a regularized form of Follow-the-Leader,
which stabilizes the predictions of the algorithm, and show how stability
leads to low regret. We proceed with deriving Online Gradient Descent
and Online Mirror Descent from Follow-the-Regularized-Leader by
a linearization trick. We derive several specific algorithms from the
Online Mirror Descent framework. Finally, we describe additional proof
techniques and also derive local-norm bounds, that will be used in the
next sections.

2.1 Convexification

Some online prediction problems can be seamlessly cast in the online
convex optimization framework.

Example 2.1 (Online linear regression). Recall the online linear
regression problem described in Section 1.1. On each online round the
learner first receives a vector of features, x; € A C R%, and then needs to
predict a scalar, p;. Next, the learner receives the “true” target, y; € R,
and pays the loss |p; — y¢|. The learner should be competitive with the

2.1 Convexification 121

set of linear predictors of the form x+— (w,x). If the predictions of
the learner are also based on linear functions, then we can easily cast
this online prediction problem in the online convex optimization frame-
work as follows. The learner should decide on a vector wy, which yields
the prediction p; = (wy,x;). The loss function becomes |p; — yi| =
|(w¢,x¢) — y¢|. Therefore, letting f;(w) = |(w,x;) — y:|, which is indeed
a convex function, we obtain that fi(w;) = I(ps,yt)-

Other online prediction problems do not seem to fit into the online
convex optimization framework. For example, in online classification
problems, the predictions domain or the loss functions are not convex.
In this section we describe two convexification techniques that allow
us to utilize the online convex optimization framework in additional
scenarios.

2.1.1 Convexification by Randomization

To demonstrate the randomization technique, consider the problem
of prediction with expert advice, where on each online round the
learner has to choose from the advice of d given experts. Denote by
pt € {1,...,d} the chosen expert. Then, the learner receives a vector
y: € [0,1]4, where 1[i] is the cost of following the advice of the ith
expert. The learner pays the loss y;[p]. In this prediction problem, the
decision space is discrete, hence nonconvex.

Furthermore, the problem of online classification with a finite
hypothesis class we encountered in Section 1.2 can be easily cast as
a special case of the prediction with expert advice problem. Therefore,
Cover’s impossibility result (see again Section 1.2) implies that there is
no algorithm that can attain low regret for the prediction with expert
advice problem.

However, as we show below, by allowing the learner to random-
ize his predictions we can cast the problem in the online convex opti-
mization framework, and therefore can obtain low regret algorithm for
this problem. Formally, let S ={w € R?:w >0 A |w|1 =1} be the
probability simplex, which forms a convex set. At round ¢, the learner
chooses w; € S and based on w; picks an expert at random according

122 Online Convex Optimization

to P[p = i] = wy[i]. Then, the cost vector y; is revealed and the learner
pays for his expected cost

d
Elye[p]] = ZP[Pt = ilye[i] = (W, y1).

Note that by analyzing the expected cost of the learner we implicitly
restrict the power of the adversarial environment — it cannot base the
vector y; on the random bits the learner employs on round t.

Now we can cast the problem as online convex optimization since
S is a convex set and the loss function, f;(w) = (w,y;), happens to be
a linear function (hence, convex). Let the set of competing vectors, U,
be the d singletons, namely the vectors of the form (0,...,0,1,0,...,0).
These vectors correspond to always following the advice of a single
expert. Hence, a regret bound with respect to U implies a regret bound
with respect to always predicting the advice of a single expert.

2.1.2 Convexification by Surrogate Loss Functions

To explain the second convexification technique we again start with
the specific problem of online classification with a finite hypothesis
class. Recall that one of the techniques we used to sidestep Cover’s
impossibility result relied on the realizability assumption. That is, we
assumed that there exists h* € H such that y; = h*(x;) for all t. With
this assumption at hand, we described the Halving algorithm and
showed that it makes at most log,(|#|) prediction mistakes.

We now derive a similar guarantee using the language of online
convex optimization. Let us write H = {h1,...,hq} and let S ={w €
[0,1]4: 3" w[i] = 1} be the probability simplex. For each online round,
define v; = (h1(x¢),...,ha(x¢)) € {0,1}¢. Our algorithm will maintain
w; € S and will predict the label according to

1 i (wy,vy) > 1/2
b= {o if (wy,vy) < 1/2

Let M = {t : p+ # y+} be the rounds on which our algorithm makes a
prediction mistake. We define

2w, ve) — | ifte M
ft(w)_{o if ¢ ¢ M.

2.1 Convexification 123

Note that f; depends on M, and thus depends on w;. This does not
pose any problem since in the online convex optimization model the
environment picks the function f; after observing w;. The two key
properties of f; are

® f, is a convex function
e fi(wy) > |pt — yt|, namely, the convex loss upper bounds the
original nonconvex loss.

Hence the name surrogate conver loss. Since S is a convex set and
ft is a convex function for all ¢ we have obtained an online convex
optimization problem.

In the next sections we will derive algorithms for online convex
optimization problems. In particular, one of these algorithms enjoys
the regret bound

T T log(d) T
Yue S, E ft(wt) < E ft(u) + n + 27] E Lt’
t=1 t=1 t=1

where 7 is a parameter, which we will set here to be n =1/4, and L, is
a Lipschitz parameter of the function f; (with respect to the ¢; norm).
In our case, Ly =1 if t € M and Ly =0 if t ¢ M. Hence,

T T
vues, 3 fulw) < 3 fiw) + dlog(d) + LIM|
t=1 t=1

By the surrogate property of f;, we can lower bound the left-hand side
by |M]. Rearranging, we obtain:

T
(M <2} filu) + 8log(d).
t=1

This type of bound, where the number of mistakes is upper bounded
by the convex surrogate loss of a competing hypothesis, is often called
a relative loss bound.

In the realizable case, we can further simplify the relative loss bound
as follows. Since the bound holds for all u € .S it holds in particu-
lar for the vector u = (0,...,0,1,0,...,0), where the 1 is placed in the

124 Online Convex Optimization

coordinate corresponding to the true hypothesis h*. By our construc-
tion, fy(u) =0 for all ¢, which yields

|IM| < 8log(d).

We have obtained a mistake bound of the same order as the Halving’s
mistake bound.

More generally, the first step of the technique involves a re-
parameterization of the problem such that the decision space becomes
convex (instead of maintaing the set V; in Halving we now maintain
the vector wy € S). In the second step we construct a function f; of
the predicted parameter that satisfies two requirements: It should be
convex and it should upper bound the original loss function. Last, we
would of course like to construct a convex surrogate for which there
exists some u € S that attains a low cumulative loss. Otherwise, the
resulting bound will be meaningless. Typically, this is done by assuming
more on the problem at hand. For example, in the above, the realiz-
ability assumption enabled us to construct a surrogate for which there
was u € S such that fi(u) =0 for all ¢.

2.2 Follow-the-leader

By now, we hope that the reader is convinced that the online convex
optimization framework is an important model, so we turn to deriving
algorithms for online convex optimization.

The most natural learning rule is to use (at any online round) any
vector which has minimal loss on all past rounds. This is in the same
spirit of the Consistent algorithm we encountered in Section 1.2 but
in the context of online convex optimization it is usually referred to as
Follow-The-Leader.

Follow-The-Leader (FTL)

t—1
Vt, Wi = argmin E fz (W) (break ties arbitrarily)
wes

To analyze FTL, we first show that the regret of FTL is upper
bounded by the cumulative difference between the loss of w; and wy 1.

2.2 Follow-the-leader 125

Lemma 2.1. Let wi,wao,... be the sequence of vectors produced by
FTL. Then, for all u € S we have

T

T
Regretp(u) = Y (fi(wi) — <Y (filwe) = filwegn)).
=1

t=1

Proof. Subtracting), fi(w) from both sides of the inequality and
rearranging, the desired inequality can be rewritten as

T T
D fiwi) <) filu)
t=1 t=1

We prove this inequality by induction. The base case of T =1 follows
directly from the definition of wy,;. Assume the inequality holds for
T — 1, then for all u € S we have

T-1 T-1
D filwi) <) fulu)
t=1 t=1

Adding fr(wp41) to both sides we get

T-1

th wit1) < fr(wryn) + th

The above holds for all u and in particular for u = wp 1. Thus,

T T T
> flwin) D filwrg) = {lneingft(u)
=1 =1 =1

where the last equation follows from the definition of wr,q. This con-
cludes our inductive argument. |

We next use Lemma 2.1 to derive a regret bound for the following
sub-family of online convex optimization.

Definition 2.1 (Online Quadratic Optimization). This is an
online convex optimization problem where at each round f;(w) =
$llw — 2|3 for some vector z,.

126 Online Convex Optimization

We further assume that S = R?. For this case, it is easy to verify that
the FTL rule becomes

=
Wy = —1 : Zy,
=1
namely, w; is the average of z1,...,z;—1. Note that we can rewrite
1 1 1
Wil = ;(Zt + (t — 1)Wt) = <1 — t> Wi + gzt

which yields
1
Witl — Z = 1 - ; (Wt — Zt).

Therefore,

1 1
fr(wi) — fi(wiy1) = §||Wt —z))* — §||Wt+1 — 74|

1 1\2
_2<1— <1_t> >Hwt_ZtH2

1
< ;HWt — 2%,

Let L = maxy ||z;||. Since w; is the average of z1,...,z;—1 we have that
||lw¢|| < L and therefore, by the triangle inequality, ||wy — z:|| < 2L. We
have therefore obtained:

T

> (filwe) = f(wig)) < (20)*

t=1 t=1

~ | =

Combining the above with Lemma 2.1 and using the inequality
ST 1/t <log(T) + 1 we conclude that

Corollary 2.2. Consider running FTL on an Online Quadratic Opti-
mization problem with S = R? and let L = max;||z;||. Then, the regret
of FTL with respect to all vectors u € R? is at most 4L2(log(T) + 1).

While the above result seems promising, we next show that the FTL
rule does not guarantee low regret for another important sub-family.

2.3 Follow-the-Regularized-Leader 127

Definition 2.2 (Online Linear Optimization). This is an online
convex optimization problem where at each round f;(w) = (w,z;) for
some vector zs.

Example 2.2 (Failure of FTL). Let S=[-1,1] CR and consider
the sequence of linear functions such that f;(w) = z;w where

—-0.5 ift=1
z2=¢X1 if ¢ is even
-1 ift>1 A tisodd

Then, the predictions of FTL will be to set w; = 1 for ¢t odd and w; = —1
for t even. The cumulative loss of the FTL algorithm will therefore be T’
while the cumulative loss of the fixed solution v = 0 € S is 0. Thus, the
regret of FTL is T'!

Intuitively, FTL fails in the above example because its predictions
are not stable — wy shifts drastically from round to round where we
only added a single loss function to the objective of the optimization
problem in the definition of wy. In contrast, FTL works fine for the
quadratic game since w1 is “close” to wi. One way to stabilize FTL
is by adding regularization, which is the topic of the next section.

2.3 Follow-the-Regularized-Leader

Follow-the-Regularized-Leader is a natural modification of the basic
FTL algorithm in which we minimize the loss on all past rounds plus
a regularization term. The goal of the regularization term is to stabi-
lize the solution. Formally, for a regularization function, R :S — R we
define

Follow-the-Regularized-Leader (FoReL)

t—1
Vi, wy= argmiani(w) + R(w)
wes

i=1

128 Online Convex Optimization

Naturally, different regularization functions will yield different algo-
rithms with different regret bounds. We discuss properties of different
regularization functions later. But, first, let us specify FoReL for the
case of linear functions and squared-fo-norm regularization, which we
often call the Euclidean regularization case.

Example 2.3. Consider the Online Linear Optimization problem
where f;(w) = (w,z;) and let S =R? Suppose we run FoReL with
the regularization function R(w) = 5|/ w]|3 for some positive scalar 7.

7
Then, it is easy to verify that

¢
Wi = —nZzi =W; — NZt. (2.2)
i=1

Note that z, is the gradient of f; at w; (in fact, at any point). Therefore,
the recursive rule, w11 = wy — 1z, can be rewritten as w11 = wy —
NV fi(wy). Hence, this rule is often called Online Gradient Descent.
We shall re-visit the Online Gradient Descent rule for general convex
functions in the next section.

We next turn to the analysis of FoReL. As with the analysis of FTL,
we first relate the regret of FoReL to the cumulative difference between
the loss of wy and w1 1.

Lemma 2.3. Let wi,was,... be the sequence of vectors produced by
FoReL. Then, for all u € S we have

T T

> (felwi) = fr(w) < R(w) = R(w1) + Y _(fe(we) = fi(Wit1))-

t=1 t=1

Proof. Observe that running FoReL on fi,..., fr is equivalent to run-
ning FTL on fy, f1,..., fr where fo = R. Using Lemma 2.1 we obtain

T T

D ewi) = fi(w) <D (filwe) = fi(wepn)-

t=0 t=0

Rearranging the above and using fo = R we conclude our proof. a

2.3 Follow-the-Regularized-Leader 129

Based on the above lemma we can easily derive a regret bound for
online linear optimization with the regularizer R(w) = 7177||WH%

Theorem 2.4. Consider running FoRelL: on a sequence of linear func-
tions, fi(w) = (w,z;) for all ¢, with S =R? and with the regularizer
R(w) = ﬁ”w“%, which yields the predictions given in Equation (2.2).
Then, for all u we have

T
1
Regretp(u) < %HU\B + TIZ (A
t=1

In particular, consider the set U = {u: ||u|| < B} and let L be such

T . .
that &>, [|z]|3 < L?, then by setting n = L\fﬁ we obtain

Regret(U) < BLV2T.

Proof. Using Lemma 2.3 and Equation (2.2),

T
Regrety(u) < R(u) — R(w) + Z(ft(wt) — fu(Wiy1))
t=1

T
1
= %HUI!% + ;(Wt — Wit1,%g)

T
1
= %IIUH% + 0y llzll3. O
t=1

The parameter 7 in the above theorem depends on the time hori-
zon T'. It is possible to derive a similar result without using the time
horizon. In the next subsection we show a generic way (although not
always optimal) to get rid of the dependence on the time horizon.

We see that the Euclidean regularization function guarantees low
regret for linear functions with bounded fs-norm because it stabi-
lizes the predictions. We shall later generalize the above result in two
aspects. First, we allow any sequence of Lipschitz functions (rather
than linear functions with bounded norm). Second, we consider other
regularization functions which guarantee stability in other scenarios.

130 Online Convex Optimization

2.3.1 The Doubling Trick

In Theorem 2.4, the parameter n depends on the time horizon 7. We
now show how to get rid of this dependence by a simple trick.

Consider an algorithm that enjoys a regret bound of the form av/T,
but its parameters require the knowledge of T. The doubling trick,
described below, enables us to convert such an algorithm into an algo-
rithm that does not need to know the time horizon. The idea is to divide
the time into periods of increasing size and run the original algorithm
on each period.

The Doubling Trick

input: algorithm A whose parameters depend on the time horizon
for m=0,1,2,...
run A on the 2™ rounds t = 2™,...,2m+1 — 1

The regret of A on each period of 2" rounds is at most av/2™.
Therefore, the total regret is at most

[log ()] [og ()]
Z aVv2m =« Z (vV2)™
m=1 m=1

Il
Q

That is, we obtain that the regret is worse by a constant multiplicative
factor.

2.4 Online Gradient Descent: Linearization
of Convex Functions

In the previous section we introduced the FoReL approach and analyzed
it for the case of linear functions, S = R?, and Euclidean regularization.

2.4 Online Gradient Descent: Linearization of Convex Functions 131

We now generalize this result by deriving a simple reduction from
convex functions to linear functions.

To do so, we use an important property of convex functions, which
is in fact an alternative characterization of convexity, as given by the
following lemma.

Lemma 2.5. Let S be a convex set. A function f:S — R is convex
iff for all w € S there exists z such that

VuesS, f(u)> f(w)+ (u—w,z). (2.3)

In words, convexity is characterized by the existence of tangents
that lie below the function. The proof of this lemma can be found in
many convex analysis textbooks (e.g., [9]).

Definition 2.3 (sub-gradients). A vector z that satisfies Equa-
tion (2.3) is called a sub-gradient of f at w. The set of sub-gradients of
f at w is denoted 0 f(w). Furthermore, if f is differentiable at w then
Of(w) contains a single element — the gradient of f at w, V f(w).

An illustration of sub-gradients is given in Figure 2.1.
Getting back to online convex optimization, for each round ¢, there
exists z; such that for all u,

fr(wi) — fr(u) < (wy — u,zy).

Fig. 2.1 Left: The right-hand side of Equation (2.3) is the tangent of f at w. For a convex
function, the tangent lower bounds f. Right: Illustration of several sub-gradients of a non-
differentiable convex function.

132 Online Convex Optimization

It follows that for any sequence of convex functions f1,..., fr and vec-
tors wy,...,wrp, if for all ¢, z; € 0f;(w;) (namely, it is a sub-gradient)
then

T T

D (filwe) = fi(w) <D ((wi,ze) — (w,2)). (2.4)

t=1 t=1

In words, the regret of a procedure that generates the vectors
wi1,...,wr for the sequence of linear functions upper bounds the regret
with respect to the convex functions fi,..., fr.

Note that in this construction, z; depends on w;. As mentioned pre-
viously, this does not pose any problem since we allow the adversarial
environment to base its loss function on the vector predicted by the
learner.

Combining the above observation with the FoReL procedure with
Euclidean regularization (see Equation (2.2)) yields the Online Gradi-
ent Descent algorithm:

Online Gradient Descent (0GD)

parameter: > (
initialize: w; =0
update rule: wy 1 = w; — nz; where z; € 0fi(wy)

To analyze OGD, we combine Equation (2.4) with the analysis of
FoReL for linear functions given in Theorem 2.4, to get that

T
1
Regrety(u) < %Hullg + 0y llzll3. (2.5)
t=1

This regret bound depends on the norms of the sub-gradients of the
vectors produced by the algorithm, and is therefore not satisfactory.
To derive a more concrete bound, we must assure that the norms of
sub-gradients will not be excessively large. One way to do this is by
assuming that the functions are Lipschitz. The following lemma relates
norms of sub-gradients to Lipschitzness of f;.

2.4 Online Gradient Descent: Linearization of Convex Functions 133

Lemma 2.6. Let f:5 — R be a convex function. Then, f is L-
Lipschitz over S with respect to a norm |-|| iff for all w e .S and
z € 0f(w) we have that ||z||« < L, where ||-||. is the dual norm.

Proof. Assume that f is Lipschitz. Choose some w € S,z € 0f(w).
Let u be such that u— w = argmaxy,|y|=1(v,2). Therefore, (u—
w,z) = ||z]|«. From the definition of the sub-gradient,

fa) = f(w) = (z,u — w) = ||z]|..
On the other hand, from the Lipschitzness of f we have
L=Llu—w| = f(u) - f(w).

Combining the above two inequalities we conclude that ||z|/. < L. For
the other direction, since z € 9f(w) we also have

f(w) = f(u) < (z,w —u).
Combining the above with Equation (1.3) we obtain
fw) = f(u) <|lz|[|w —ul| < Lfjw — ul,

hence f is L-Lipschitz. a

Therefore, the term S/, ||z¢||3 given in Equation (2.5) can be
bounded by Z;le L?, where L; is the Lipschitz constant of f;. We
conclude:

Corollary 2.7. Assume that OGD is run on a sequence fi,..., fr of
convex functions. Then, for all u we have

T
1
Regrety(u) < %HuH% + 772 |¢]]3-
t=1

If we further assume that each f; is L;-Lipschitz with respect to |[|-||2,
and let L be such that %Z;le L? < L2 Then, for all u, the regret of
OGD satisfies

1
Regretp(u) < %HuH% +nTL?.

134 Online Convex Optimization

In particular, if U = {u: ||u|ls < B} and n = L\/Bf then

Regret(U) < BLV2T.

Let us now discuss the consequences of Corollary 2.7, starting with
the online linear regression problem (Example 2.1). Recall that for this
example, f;(w)=|(w,x;) — y;|, where x; comes from a set A. If the
set A is contained in a ball of ¢ radius L, then f; is L-Lipschitz with
respect to the £3 norm. We therefore obtain a regret bound of BL\/2T
which holds for all competing vectors u with ||ulj2 < B.

For the problem of prediction with expert advice (see Section 2.1.1),
we cannot apply the OGD framework as it does not guarantee that wy
will always be in the probability simplex. In the next section we describe
the FoReL framework with other regularization functions. In particu-
lar, we present regularization functions appropriate for the problem of
prediction with expert advice.

2.5 Strongly Convex Regularizers

So far we applied FoReL with the Euclidean regularization function. As
mentioned at the end of the previous section, this regularization can-
not be used for the learning with expert advice problem. In this section
we consider other regularization functions and underscore strong con-
vexity as an important property of regularization functions that yields
meaningful regret bounds.

2.5.1 Strong Convexity

Intuitively, a function is strongly convex if it grows faster than a linear
function. To give a precise definition, recall that for a convex func-
tion f, at any point w we can find a linear function (the “tangent”)
which equals to f at w and does not exceed f at any other point (see
Lemma 2.5). A function is strongly convex if f is strictly above the

2.5 Strongly Convex Regularizers 135

tangent, and the difference can be quantified as follows:

Definition 2.4. A function f : S — R is o-strongly-convex over S with
respect to a norm ||-|| if for any w € S we have

Vzedf(w), YuelS, f(u)>f(w)+ (z,u—w)+ %Hu —w|?.

A graphical illustration is given in Figure 2.2.
An important property of strong convexity that we use is the fol-
lowing:

Lemma 2.8. Let S be a nonempty convex set. Let f:S — R be a
o-strongly-convex function over S with respect to a norm ||-||. Let w =
argmingcg f(v). Then, for allu e S

flu) = f(w) 2 Sllu - wl|2.

Proof. To give intuition, assume first that f is differentiable and w is
in the interior of S. Then, V f(w) = 0 and therefore, by the definition
of strong convexity we have

Vues, fu) - f(w) = (VF(w)u—w) + Zu—wl? = Zfu—w|?,

/’.\\
,’/x\“é
f /o a
¢\N
Zlu—wl® — 0/
//\X\
&L
fw) S8
7
¢ \%\% u

Fig. 2.2 Illustrating strong-convexity: the distance between f and its tangent at w is at
least Z|lu — w]|2.

136 Online Convex Optimization

as required. Even if w is on the boundary of S we still have that for all
ucesS, (Vf(w),u—w) >0 (otherwise, w would not have been optimal
since we can make a small step in the direction u — w and decrease the
value of f). So, the desired inequality still holds. Finally, to give the
formal proof for a non-differentiable f, let g: R? — R U {co} be such
that g(w) = f(w) if w € S and g(w) = 0o otherwise. We can therefore
rewrite w = argmin,, g(v). Since g is a proper! convex function we have
that 0 € dg(w). The inequality follows by using the strong-convexity
of g. ad

If R is twice differentiable, then it is easy to verify that a sufficient
condition for strong convexity of R is that for all w,x, (V2R(w)x,x) >
o||x|?, where V2R(w) is the Hessian matrix of R at w, namely, the
matrix of second-order partial derivatives of R at w [39, Lemma 14].

Example 2.4 (Euclidean regularization). The function R(w) =
1|lw]|3 is 1-strongly-convex with respect to the 5 norm over R%. To see
this, simply note that the Hessian of R at any w is the identity matrix.

Example 2.5 (Entropic regularization). The function R(w) =
Z?le[i] log(wli]) is &-strongly-convex with respect to the ¢; norm
over the set S={wcR?:w >0A ||w|; <B}. In particular, R is
1-strongly-convex over the probability simplex, which is the positive
vectors whose elements sum to 1.

To see this note that

(V2R(w)x,x) = Z ﬁz[l] = HW1||1 (ZM[ZO (Z fy[l] >

2
1 ol * I
= fwlh (Z Vel Wu[