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Control reconfiguration of a boiler-turbine unit after actuator faults occurrence
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ABSTRACT: Boiler-turbines are one of the most important parts in power generation plants. The safety 
problem in such systems has always been a special concern. This paper discusses the application of 
control reconfig uration by fault-hiding approach for a boiler-turbine unit. In Fault-hiding approach, after 
occurrence of a fault, nominal controller of the system remains unchanged; instead, a reconfiguration 
block is designed and placed between nominal controller and faulty plant to modify input signals.  Three 
major faults are assumed to occur in three actuators of the system consisting of fuel flow valve, steam 
control valve and water flow valve. Faults cause the outputs of the plant to deviate from desired values 
and in some cases cause instability in the system. Setpoint tracking recovery and optimal performance 
recovery problems to diminish effects of the faults are investigated. The results of simulations show that 
the reconfiguration has been successful in both cases and also confirm the applicability of the method 
for the boiler-turbine unit since the reconfigured closed-loop system has had tolerable properties against 
faults.
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1- Introduction 
In large industrial systems, every component has been 
designed to accomplish a certain function and the overall 
system works satisfactorily only if all components provide 
the usual service they are designed for. The Fault tolerant 
control (FTC) aims to prevent damage in overall system 
when a fault occurs in one component. FTC methods is 
considered in two general approaches: active control and 
passive control. In active approaches, when a fault occurs 
after detection, isolation and maybe identification of the fault, 
proper control law is designed and applied immediately to 
the faulty plant, but in passive control a fixed fault-tolerant 
closed-loop structure is already designed for the system 
such that it’ll be able to tolerate some restricted classes of 
the faults. Control reconfiguration is an active FTC method 
that has been presented comprehensively in [1] and [2]. In 
this method, after detection and isolation of the faults (called 
“fault diagnosis”), the control law is immediately modified 
by a new structured controller for the faulty system. 
A number of control reconfiguration approaches such as 
closed-loop eigenstructure assignment [3], model predictive 
control [4], controller redesign by pseudo-inverse method 
[5], optimal linear control (LQR) for control reconfiguration 
[6], the generalized plant transfer function using  control 
[7], and fault-hiding approach in [1], [2] and [8] have been 
studied. Designing a FTC scheme for industrial processes has 
been carried out in several works. Control reconfiguration 
by means of virtual actuator for a thermofluid process was 
studied in [9]. In this experimental work, some actuator 
faults are applied to the real process and fault tolerability is 

investigated in real experiments. Experimental fault-tolerant 
control of a PMSM drive in [8] is an experimental verification 
of remedial strategies against failures occurring in inverter 
power devices of a permanent-magnet synchronous motor 
drive. A novel simultaneous fault detection and diagnostics 
(FDD) and fault tolerant control (FTC) strategy for nonlinear 
stochastic systems in closed-loops based on a continuously 
stirred tank reactor (CSTR) is described in [10]. The general 
fault tolerant control method in [11] addresses the actuator 
and sensor faults with the proposed fault estimation and 
compensation method based on LQR. Robust adaptive 
control for attitude tracking of spacecraft with unknown dead-
zone has been presented in [12]. This paper examines the 
attitude tracking problem with unknown actuator dead-zone 
nonlinearity and proposes a robust adaptive controller with 
parameter update laws. FTC for boilers and turbines has been 
studied in the following six main works: 1) An adaptive robust 
sliding mode controller (SMC) has been proposed in [13] to 
overcome the faults in heat recovery steam generator boilers 
(HRSG boilers) as one of the main parts of combined cycle 
plant, 2) A fault tolerant model predictive control (FTMPC) 
has been developed to accommodate the fault in the fuel bed 
height sensor in a BioGrate boiler by the active controller 
reconfiguration in [14], 3) Reconfiguration of the air control 
system of a bark boiler has been studied in [15]. In this paper, 
the air control system of a bark boiler is considered as an 
interconnected multivariable system and the configuration of 
the controllers is adapted with the perspective of improving 
the closed-loop performance of the system. 4) In article [16], 
a fault-tolerant control scheme based on stable adaptive 
fuzzy/neural control for a turbine engine has been designed, 
where its online learning capabilities are used to capture the Corresponding author, E-mail: Kazemi_ali@aut.ac.ir
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unknown dynamics caused by faults, 5) paper [17] addresses 
the design and comparison of active and passive fault-
tolerant linear parameter-varying (LPV) controllers for wind 
turbines, and 6) Robust fuzzy fault-tolerant control of wind 
energy conversion systems subject to sensor faults has been 
presented in [18]. In this work, a multi-observer switching 
control strategy for robust active fault tolerant fuzzy control 
(RAFTFC) of variable–speed wind energy conversion 
systems (WECS) in presence of sensor faults is proposed. 
In this paper, control reconfiguration by fault-hiding approach 
is used to minimize harmful effects of actuator faults in 
a boiler-turbine unit. It is assumed that, diagnosis task has 
already been solved and the faulty actuator has been detected 
properly. The main advantage of fault-hiding approach 
over the other reconfiguration methods is that the nominal 
controller of the system remains unchanged; therefore, all of 
the pre-designed important features of the main controller are 
still available in closed-loop system after reconfiguration. 
Furthermore, the type of controller is not important for 
designing the reconfiguration structure in fault-hiding idea, 
so the solution can be obtained with all kinds of controllers. 
In this work, the state space equations of the reconfiguration 
solution is developed in consistent with the boiler-turbine 
dynamical equations. Also, we investigate stability recovery 
and performance recovery of the system as the main FTC 
problems after occurrence of a fault.
The paper is organized as follows: In section II boiler-turbine 
unit model, nominal controller and actuator faults modelling 
are introduced. In section III fault-hiding approach and its 
structure are discussed and a new reconfiguration block 
is presented. Also, in this section solutions of stability and 
performance recovery are proposed. In section IV Application 
of the proposed block on boiler-turbine unit and simulation 
results are presented. Finally, conclusion notes are in section V.
The present paper, has been presented first in 4th International 
Conference on Control, Instrumentation, and Automation 
(ICCIA), 2016 and this paper is the extended version [19].

2- Boiler-turbine Model Description
In this paper, boiler-turbine model of Bell and Astrom is 
considered as a practical case that has been used in many of 
the previous works. Parameters of this model were estimated 
from experiments on the Synvendska Kraft AB plant in 
Malmo [20]. Bell and Astrom improved this model during 
the years 1971 to 1987 to obtain the most accurate equations 
of the real model. Schematic picture of the boiler turbine unit 
is shown in Fig. 1. Three valves of the system are used to 
control fuel flow, steam flow and water flow for the system. 
Drum boiler in the unit receives oil and water from fuel and 

feed-water valves; the water is heated in the boiler and the 
resulted steam leads into the turbine to produce electricity. 
There is also a control valve that determines the steam flow 
rate to the turbine. Each valve of the plant can confront some 
actuator faults while its operation and any small disorder in 
these valves can cause intense instability in the system.
2- 1- Bell and Astrom model of boiler-turbine unit
The boiler turbine dynamics of Bell and Astrom model is 
given by the following equations [20]:
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where the state variable () denote drum pressure (kg/cm2), 
turbine electric output (MW) and fluid density (kg/m3), 
respectively. Input variables () denote the valves position of 
fuel flow, steam control and feed-water flow, respectively. 
The output  is drum water level (m) and  and  denote 
steam quality and evaporation rate (kg/s). Due to actuator 
limitations, Control inputs of the system have the following 
constraints on magnitude and rate: 
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2- 2- State space linearization of boiler-turbine
Some typical operation points of Bell-Astrom model are 
shown in Table I. Linearization around half-load operation 
point (#4 in Table I) leads to the following state space 
equations:

(3)
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

 = +
 = +



Where

Fig. 1. Schematic of boiler-turbine unit [21]
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2- 3- Boiler-turbine nominal controller
Robust controller for the Bell-Astrom model of boiler-turbine 
has been presented in [22]. In this paper, a  controller based 
on loop shaping method for tracking setpoints and robustness 
against disturbances and modelling errors has been designed.

The simplified form of this controller is in following 
multivariable PI controller:

(5)
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Simulation results in [22] show that the designed controller 
has good tracking properties and acceptable disturbance 
rejection at both input and output channels. Fig. 2 shows the 
behavior of boiler-turbine outputs for a setpoint tracking in 
presence of the introduced controller in closed-loop form. 
2- 4- Actuator faults modelling in boiler-turbine
Almost all kinds of actuator faults are modelled by changing 
input matrix B to the faulty matrix Bf  in state space equations. 
Degradation of actuator can be modelled by scaling the 
corresponding input matrix column by factor , and failure of 
the actuator is modelled by setting the respective column to 
zero. Since the boiler-turbine model in (1) has three actuators, 
the following fault cases are investigated in the sequel: 

1. Fault f1 (fuel flow valve):
 ( ) [ ]

1 1 1 2 3 1,   0,1fB b b bα α= ∈

2. Fault 2f  (steam control valve):
 ( ) [ ]

2 1 2 2 3 2,   0,1fB b b bα α= ∈

3. Fault 3f  (feed-water flow valve):
 ( ) [ ]

3 1 2 3 3 3,   0,1fB b b bα α= ∈

4. Fault 4f  (degradation in all valves)
 ( ) [ ]

4 1 1 2 2 3 3 1,2,3,   0,1fB b b bβ β β β= ∈

In order to include all kinds of boiler-turbine actuator faults in 
reconfiguration problem, we consider all faulty actuators as the 
failed ones in their operating point. Therefore there is no need 
to identify fault intensity for any of fault cases in one actuator. 
Actuator degradation generally is not a severe issue in fault 
problems and can easily be solved by all FTC solutions, but 
fail of an actuator is always an intense difficulty, and there are 
limited approaches to solve this kind of faults in the system. 
In the failed actuators, the valves stick in a position and a 
constant input signal is applied to the system in the following. 
If the system was basically linear, this constant value will be 
equal to zero, but if a nonlinear system is linearized around an 
operating point, the constant input signal will be equal to the 
value of input in that operating point. Next section addresses 
the solution by control reconfiguration in confronting with 
the explained faults.

3- Control Reconfiguration of Boiler-turbine
3- 1- control Reconfiguration by fault-hiding approach
Fault-hiding idea is used in here for the reconfiguration 
of control in boiler-turbine unit. In this idea, a special 
structure is imposed on the reconfigured system such that 
a reconfiguration block is inserted between the nominal 
controller and the faulty plant. This block works by hiding 
the fault from the controller, thus allowing the nominal 
controller to remain in the loop.  Dynamical reconfiguration 
block consists of virtual actuator and virtual sensor. For the 
actuator faults considered in this paper, the virtual actuator 
is used as a reconfiguration block to form the new closed-
loop system. Fig. 3 clearly illustrates how the faulty plant 
is reconfigured by fault-hiding approach. The assumption 
below is always considered before the implementation of 
control reconfiguration. 

Assumption 1. Nominal closed-loop system composed of 
nominal controller and nominal plant is input-to-state stable 
w.r.t reference and disturbance inputs (r,d).
The nominal linear plant and the faulty plant are defined as 
follows:

Table 1. Typical operation points of the boiler turbine unit by 
Bell-Astrom [20]

Fig. 2. Outputs of drum pressure, power and water level of the 
boiler-turbine unit for tracking a setpoint in closed loop form.
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where ( ) nx t ∈  is state vector, ( ) m
cu t ∈  is control input, 

( ) qd t ∈  is disturbance input and ( ) ry t ∈  is output vector. 
,A B  and C  are state space matrices and zC  is controlled 

outputs matrix. Dynamical virtual actuator is obtained in 
following

equations:
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where difference state Äx  denotes the difference of the 
nominal plant and the faulty plant states:

(9)fx x x∆ −

( )fu t  in (8) is the reconfiguration control law. Matrix M in 
the equation is inserted to stabilize the virtual actuator and 
in result guarantees the stability of the overall closed-loop 
system. Matrix N relies on changing zeros of virtual actuator 
that the equilibrium takes the required value. 
Since, there is matrix D in state space equations of the boiler-
turbine unit, we extend the virtual actuator dynamics with 
considering this matrix as the following equations:
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where Df is obtained from D in the similar way as Bf is 
obtained from B. The reconfigured closed-loop system 
formed by the faulty plant (7), the nominal controller and the 
virtual actuator (10) are shown in Fig. 4.
3- 2- Reconfiguration problems
The main problems of control reconfiguration based on fault-
hiding approach are as follows: 
3- 2- 1- Stability recovery after fault occurrence: 
This problem is solvable by means of virtual actuator if 
and only if (A, Bf) is stabilisable. According to separation 
principle, the closed-loop stability depends only on the 
stability of virtual actuator. This condition is satisfied only 
if there exists a matrix M that makes A∆  Hurwitz. Therefore, 
matrix M can be found by using all pole-placement methods. 
To stably analyze the reconfigured closed-loop, it is better to 
represent a new form of the reconfigured closed loop system.  
Reconfigured system by means of virtual actuator.

The new transformed reconfigured system can be obtained by
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The block diagram of the transformed closed-loop system is 
shown in Fig. 5. Equations of the system in (11) show that the 
dynamical equations for the reference state x  are decoupled 
from the difference state Äx , therefore the equivalent 
dynamics of the nominal plant is always seen from the 
controller. This state is called “fault hides from controller”. 
The cascade connection of the two subsystems as shown in 

Fig. 3. Reconfiguration by fault-hiding approach

Fig. 4. Reconfigured system by means of virtual actuator.
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Fig. 5 illustrates that by satisfying assumption 1, the stability 
of the overall system depends only on stability of virtual 
actuator [22].
Special case of stability analysis is when an actuator 
degradation fault occurs and the fault intensity is desired 
to measure. In this case, because of the presence of noises 
and inaccuracy in identification methods, exact obtaining 
of matrix Bf is not possible, therefore this uncertainty in 
designing the virtual actuator dynamics can cause instability 
in closed-loop system after reconfiguration. In order to 
investigate stability condition of the system in presence of 
the estimated matrix Bf .

ansformed structure of reconfigured systemwe use special 
form of the reconfigured closed-loop system which is 
introduced in (11):

(12)
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 
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 denotes reference model of nominal plant (6), and 
Ä∑  denotes difference system. By defining ˆ
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The new reconfigured system in (13) is graphically 
represented in Fig. 6. Unlike cascade structure of the 
equations in transformed system (11), the new reconfigured 
system (13) is represented as feedback interconnection of 
subsystems P∑



 and Ä ∑ . Stability condition for the closed 
loop system in presence of the uncertain matrix fB∆  can be 
obtained from theorem below.

Theorem 1. (Small gain theorem) [22]. Let 1∑  and 2∑  be 
finite-gain   stable systems with respect to the input/output 
signals ( 1 1, )u y  and ( 2 2, )u y  and the 2 -gains ( H∞

 norms) 1β  
and 2 β . Then, the feedback interconnection ( 1 2 1u y r= + ), 
( 2 1 2 u y r= + ) is finite-gain stable if 1 2 1β β < .
From Theorem 1, it follows directly that the designed 
reconfigured system using estimated matrix ˆ

fB  (13) is stable 
if

1p HH ∞∞
∆∑ × ∑ <



3- 2- 2- Exact setpoint tracking recovery after fault 
occurrence: 
All setpoints tracking recovery depends on the set of possible 
equilibrium states of the faulty plant and the resulting 
equilibrium outputs. This condition is reachable according to 
[1] if and only if condition (14) holds.

(14)
f f

z zf z zf z

A B A B B
rank rank

C D C D D
   

=   
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This constraint means that the solution space for the faulty 
plant includes the solution space of the nominal plant. If the 
faulty system satisfy (14), matrix  can be found by setting 
frequency zero of corresponding transfer function () equal to 
zero.

(15)
( )

1 † 1

0 0

( ) ( )
cu z

f zf z

T

N C A B D C A B D
∆→

− −
∆ ∆ ∆ ∆

= ⇒

= − + − +

where †  denotes pseudoinverse operator. 
Obtaining matrix N from (15) guarantees that the difference 
state x∆  finally will reach to zero and outputs will rebound to 
their primary value.
3- 2- 3- Optimal performance recovery: 
Optimal performance problem for the faulty plant can 
be divided into two optimization problems: 1) minimum 
amplification of input signals, 2) minimum performance 
loss. These problems can be characterized by their transfer 
functions:

(16)
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fuc u

uc z z z

T s M SI A B N
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Therefore, optimization problems can be defined as:
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u z HN M

u u HN M

T s

T s

γ

γ

∆ ∞

∞

→

→

=

=

 

 

H∞  norm is chosen because it represents the largest peak-to-
peak amplification of harmonic input signals by the system 
over the entire frequency range. Minimizing this norm in 
(17) means the size of signals zΔ and fu  will be minimized 
to obtain maximum recovery of output’s trajectory and 
minimum input amplification.

Fig. 5. Transformed structure of reconfigured system

Fig. 6. Reconfigured closed loop system in presence of 
estimated matrix 
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Theorem 2 [23]. Consider the linear system (3). H∞  norm of 
the system ∑  is denoted by H∞

∑  . Let 0γ >  be a scalar, 
then the two following statements are equivalent:

1. ( )  
cu y HT s

∞
γ→ < 

2. There exists a feasible solution 0TP P=   to the LMI 
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T T
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

Optimization problems (17) can be solved by applying 
Theorem 2; a tradeoff between two problems is defined 
as [ ]0,1λ∈ , which is specified by the system designer for 
each problem priority. Thus, optimal performance recovery 
problem is solvable by means of virtual actuator, if there exist 
feasible solutions to the following linear matrix inequalities: 

(18)
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LMIs (18) are obtained by applying the Schur lemma and 
congruence transformation 1X P−=  from left and right and 
substitution 1M YX −= .
Matrices X, Y and the feed-forward matrix N are directly 
obtained from solutions of the LMIs, and the matrix M is 
obtained by equation 1M YX −= .
4- Simulation Results
In this section, all actuator fault scenarios mentioned in 
section II-D are investigated for the boiler-turbine unit. For 
each actuator, we have considered setpoint tracking recovery 
and optimal performance recovery after occurrence of a fault. 
Setpoint tracking recovery for all outputs is not possible due 
to state space equations of the plant. Therefore, we have 
considered two outputs of the boiler-turbine as controlled 
outputs in each reconfiguration. Checking condition (14) for 
all fault scenarios yields:

5f f

z zf z zf z

A B A B B
rank rank

C D C D D
   

= =   
   

It is assumed that all actuator faults occur at tf =780s and after 
applying fault diagnosis algorithms to determine the faulty 
actuator, the reconfiguration block is activated at tr =800s. 
4- 1- Reconfiguration after fault f1 (failure of fuel flow valve)
In this case, an actuator blockage at the operating point in 
the fuel flow valve at tf =780s is considered. Furthermore, 
to find out disturbance effects on the system a step input 
disturbance of magnitude 0.1 at all input channels is inserted 
after reconfiguration (td =1200s). Feedback gain M and the 

feed-forward gain N are obtained in two cases:
4- 1- 1- Exact setpoint tracking recovery
M: using pole placement with the target poles 40 Plantσ σ= . 
where Plantσ  is the nominal eigenvalue given in (3,4).
N: is obtained from (15).

1

0 0 0
0.0747 0.0187 0.073

1.9251 0.6023 2.3532
M

 
 = − − − 
 − 

1

0 0 0
25.5496 1 0
760.4823 0 1

N
 
 = − 
 − 

4- 1- 2- Optimal performance recovery 
Virtual actuator parameters are obtained from (18) for 
( 0.8λ = ):

1

0 0 0
593.341 0.1875 59.4101

127.1144 0.0401 12.6136
oM

 
 = − − 
 − − 

1

0 0 0
1.8887 1.0001 0.0001
1.5841 0.0004 1.0003

oN
 
 = − 
 − 

Fig. 7 shows the setpoint tracking recovery results. It is clearly 
seen that after failure of fuel flow valve, two outputs of the 
system have deviated from their normal direction (red lines), 
but after activating the designed virtual actuator, behavior of 
the closed loop system is completely modified; green dashed 
lines indicate the following outputs trajectories. Output 
power of the boiler turbine is not considered in tracking 
recovery, thus it has not been able to recover its primary value 
however it is in stable condition. New generated input signals 
by reconfiguration block is also shown in Fig. 7. 
Fig. 8 illustrates optimal performance recovery simulations. 
It is seen that setpoint tracking recovery is almost satisfactory 
with lower recovering speed, although generated input signals
are in lower energy level. Moreover, results in both cases 
show that disturbance input has been rejected well and is not 
able to affect the stability of closed loop system.
4- 2- reconfiguration after fault f2 (failure of steam control 
valve)
4- 2- 1- exact setpoint tracking recovery:

(tf=780s, tr =800s, td =1350s)

2 2

4.4410 0 0.0010 1 905.7967 0
0 0 0 , 0 0 0

0.004 0 0.0060 0 1.8943 1
M N

   
   = =   
   − −   

4- 2- 2- optimal performance recovery for λ=0.8: 
(tf =780s, tr =800s, td =1350s)

2

0.0085 0.0001 0.0066
0 0 0

0.0011 0.0005 0.0064
OM

 
 =  
 − − 

2

0.0816 0.9559 0.0042
0 0 0

0.0003 0.3824 0.7377
ON

− 
 =  
 − 
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Failure of steam control valve causes intense deviation in 
output power trajectory as shown in Fig. 9 (red line). In exact 
setpoint tracking problem, the output of drum pressure was not 
considered in reconfiguration solution and two other outputs 
was included. Results in Fig. 9 show that reconfiguration 
is completely successful for power output and water level. 
In optimal recovery case, results illustrate that setpoint 

tracking recovery is almost satisfactory for all outputs, and 
input signals are in their lowest energy level (Fig. 10). It is 
clearly perceived that like previous simulation, the inserted 
disturbance input in all channels is rejected well by controller.

Fig. 7. Exact setpoint tracking recovery after fault f1 

Fig. 8. Optimal performance recovery after fault f1

Fig. 9. Exact setpoint tracking recovery after fault f2 

Fig. 10. Optimal performance recovery after fault f2
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4- 3- reconfiguration after fault f3 (feed-water flow actuator)
4- 3- 1- exact setpoint tracking recovery

(tf=780s, tr=800s, td=1200s):

3

3.4205 1.7782 2.3036
.0984 0.0555 0.0789

0 0 0
M

− 
 = − − 
 
 

3

1 0 670.1835
0 1 23.2452
0 0 0

N
 
 = − 
 
 

4- 3- 2- optimal performance recovery for λ=0.8: 
(tf=780s, tr=800s, td=1200s)

3

29.9624 0.0249 27.1927
35.4619 0.0358 42.7111

0 0 0
OM

− 
 = − 
 
 

3

1.0004 0.0008 0.6264
0.0002 1.0004 1.1912

0 0 0
ON

− 
 = − 
 
 

As shown in Fig. 11, failure of feed water valve causes quick 
deviation in drum pressure and water level of the boiler 
turbine. Power output was not considered in this setpoint 
tracking recovery problem. After reconfiguration, it is seen 
that two other outputs have completely satisfactory setpoint 
tracking recovery and the system becomes stable in all states. 
In optimal case (Fig. 12), it is perceived that the setpoint 
recovery is still satisfactory for two outputs, and we can 
be confident again that the generated input signals by new 
structured controller are in their optimal case. 
4- 4- reconfiguration after degradation fault in all valves f4
         (α1=.3, α1=.5, α1=.1)
It was mentioned before that actuator degradation was not an 
intense issue in FTC designing scheme compared to actuator 
failing. In this section, three degradation faults are assumed 
to occur simultaneous in boiler turbine valves. In this case, 
we just consider the optimal performance recovery problem. 
Virtual actuator parameters are obtained from LMI (19):

D

29.9624 0.0249 27.1927
35.4619 0.0358 42.7111

0 0 0
M

− 
 = − 
 
 

D

1.0004 0.0008 0.6264
0.0002 1.0004 1.1912

0 0 0
N

− 
 = − 
 
 

Fig. 13 shows the simulation result for control reconfiguration 
of boiler-turbine in presence of actuator degradation fault. 
Red line trajectories indicate faulty outputs of the system 
that are unstable after occurrence of the fault; after activating 
the reconfiguration structure, it is seen that all three output’s 
trajectories are rebounding exactly to their primary values 
(green dashed lines) and input signals are applied in optimal 
level of energy.

Fig. 11. Exact setpoint tracking recovery after fault  f3 

Fig. 12. Optimal performance recovery after fault f3
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5- Conclusion
This paper presents the application of control reconfiguration 
by fault-hiding approach for a boiler-turbine unit. Advantages 
of this work are that after occurrence of a fault, nominal 
controller of the system remains unchanged, therefore all 
of the pre-designed features of the nominal controller are 
still available after reconfiguration. Also, this method is not 
dependent on type of controller used for the system, so any 
other types of controllers can be replaced with the controller 
we use here. Famous Bell-Astrom model of boiler turbine is 
studied in this work. This model has three valves of fuel flow, 
steam control and feed water flow that are assumed to get into 
faults respectively in simulations. We investigate both exact 
setpoint tracking recovery and optimal performance recovery 
problems after two main types of actuator faults occur in 
this system. In setpoint tracking recovery, exact rebounding 
of deviated outputs of the system to their primary values are 
obtained and in optimal performance recovery, the solution 
of minimum performance loss and minimum amplification 
of input signal for the faulty plant is presented. The results 
of simulations for all fault scenarios show that control 
reconfiguration of the boiler-turbine unit is indeed successful 
when the system is operating near the equilibrium point.
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