
Understanding and Using Context

ANIND K. DEY

Future Computing Environments Group

College of Computing & GVU Center

Georgia Institute of Technology

Atlanta, GA, 30332-0280, USA

Tel: +1-404-894-5103

Fax: +1-404-894-2970

E-mail: anind@cc.gatech.edu

Abstract

Context is a poorly used source of information in our computing environments. As a result, we

have an impoverished understanding of what context is and how it can be used. In this paper, we

provide an operational definition of context and discuss the different ways that context can be used

by context-aware applications. We also present the Context Toolkit, an architecture that supports

the building of these context-aware applications. We discuss the features and abstractions in the

toolkit that make the task of building applications easier. Finally, we introduce a new abstraction, a

situation, which we believe wil l provide additional support to application designers.

1. Introduction

Humans are quite successful at conveying ideas to each other and reacting

appropriately. This is due to many factors: the richness of the language they share,

the common understanding of how the world works, and an implicit

understanding of everyday situations. When humans talk with humans, they are

able to use implicit situational information, or context, to increase the

conversational bandwidth. Unfortunately, this abili ty to convey ideas does not

transfer well to humans interacting with computers. In traditional interactive

computing, users have an impoverished mechanism for providing input to

computers. Consequently, computers are not currently enabled to take full

advantage of the context of the human-computer dialogue. By improving the

computer’s access to context, we increase the richness of communication in

human-computer interaction and make it possible to produce more useful

computational services.

In order to use context effectively, we must understand what context is and how it

can be used, and we must have architectural support. An understanding of context

wil l enable application designers to choose what context to use in their

applications. An understanding of how context can be used will help application

designers determine what context-aware behaviors to support in their applications.

Finally, architectural support wil l enable designers to build their applications

more easily. This architectural support has two parts: services and abstractions.

In this paper, we wil l review previous attempts to define and provide a

characterization of context and context-aware computing, and then present our

own definition and characterization. We then discuss how this increased

understanding informs the development of a shared infrastructure, the Context

Toolkit1, for context-sensing and context-aware application development. We

discuss both the services offered by the toolkit and the programming abstractions

it provides to designers.

1 The Context Toolkit can be downloaded at http://www.cc.gatech.edu/fce/contexttoolkit

2. What is Context

To develop a specific definition that can be used prescriptively in the context-

aware computing field, we wil l look at how researchers have attempted to define

context in their own work. While most people tacitly understand what context is,

they find it hard to elucidate. Previous definitions of context are done by

enumeration of examples or by choosing synonyms for context.

2.1 Previous Definitions of Context

In the work that first introduces the term ‘context-aware,’ Schili t and Theimer [7]

refer to context as location, identities of nearby people and objects, and changes to

those objects. These types of definitions that define context by example are

diff icult to apply. When we want to determine whether a type of information not

listed in the definition is context or not, it is not clear how we can use the

definition to solve the dilemma.

Other definitions have simply provided synonyms for context; for example,

referring to context as the environment or situation [1,4,8]. As with the definitions

by example, definitions that simply use synonyms for context are extremely

diff icult to apply in practice. The definitions by Schil it et al. [6] and Pascoe [3]

are closest in spirit to the operational definition we desire. Schil it et al. claim that

the important aspects of context are: where you are, who you are with, and what

resources are nearby. Pascoe defines context to be the subset of physical and

conceptual states of interest to a particular entity. These definitions are too

specific. Context is all about the whole situation relevant to an application and its

set of users. We cannot enumerate which aspects of all situations are important, as

this will change from situation to situation. For this reason, we could not use these

definitions provided.

2.2 Our Definition of Context

Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an

application, including the user and applications themselves.

This definition makes it easier for an application developer to enumerate the

context for a given application scenario. If a piece of information can be used to

characterize the situation of a participant in an interaction, then that information is

context. Take the canonical context-aware application, an indoor mobile tour

guide, as an example. The obvious entities in this example are the user, the

application and the tour sites. We will l ook at two pieces of information – weather

and the presence of other people – and use the definition to determine whether

either one is context. The weather does not affect the application because it is

being used indoors. Therefore, it is not context. The presence of other people,

however, can be used to characterize the user’s situation. If a user is traveling with

other people, then the sites they visit may be of particular interest to her.

Therefore, the presence of other people is context because it can be used to

characterize the user’s situation.

3. Defining Context-Aware Computing

Context-aware computing was first discussed by Schil it and Theimer [7] in 1994

to be software that “adapts according to its location of use, the collection of

nearby people and objects, as well as changes to those objects over time.” Since

then, there have been numerous attempts to define context-aware computing, most

of which have been too specific [2].

3.1 Our Definition of Context

A system is context-aware if i t uses context to provide relevant

information and/or services to the user, where relevancy depends on

the user’s task.

We have chosen a general definition of context-aware computing. When we try to

apply previous definitions to established context-aware applications, we find that

they do not fit.

3.2 Features for Context-Aware Applications

Similar to the problem of defining context-aware, researchers have also tried to

specify the important features of a context-aware application [3,6]. Again, these

features have tended to be too specific to particular applications.

Our proposed categorization combines the ideas from previous taxonomies and

attempts to generalize them to satisfy all existing context-aware applications.

There are three categories of features that a context-aware application can support:

• presentation of information and services to a user;

• automatic execution of a service for a user; and

• tagging of context to information to support later retrieval

4. Support for Building Applications

With an understanding of what context is and the different ways in which it can be

used, application builders can more easily determine what behaviors or features

they want their applications to support and what context is required to achieve

these behaviors. However, something is still missing. Application builders may

need help moving from the design to an actual implementation. This help can

come in two forms. The first is a combination of architectural services or features

that designers can use to build their applications from. The second form is

abstractions that allow designers to think about their applications from a higher

level. We have built an architecture, the Context Toolkit, that contains a

combination of features and abstractions to support context-aware application

builders. In this section, we wil l discuss the features and abstractions in the

Context Toolkit, and propose a new abstraction.

4.1 Features for Context-Aware Applications

The Context Toolkit makes it easy to add the use of context to existing non-

context-aware applications and to evolve existing context-aware applications. In

addition, the architecture makes context-aware applications resistant to changes in

the context-sensing layer. It encapsulates changes and the impact of changes, so

applications do not need to be modified.

Our architecture is buil t on the concept of enabling applications to obtain the

context they require without them having to worry about how the context was

sensed. In previous work, we presented the context widget [5], an abstraction that

implements this concept. A context widget is responsible for acquiring a certain

type of context information and it makes that information available to applications

in a generic manner, regardless of how it is actually sensed. Applications can

access context from widgets using traditional poll and subscribe methods,

commonly available with graphical user interface (GUI) widgets.

With most GUI applications, widgets are instantiated, controlled and used by only

a single application. In contrast, our context-aware applications do not instantiate

individual context widgets, but must be able to access existing ones, when they

require. To meet this requirement, context widgets operate independently from the

applications that use them. This eases the programming burden on the application

designer by not requiring her to maintain the context widgets, while allowing her

to easily communicate with them. Because context widgets run independently of

applications, there is a need for them to be persistent, available all the time.

Because an important part of context is historical information, the Context Toolkit

provides support for the storage of context. Context widgets automatically store

all of the context they sense and make this history available to any interested

applications. Applications can use historical information to predict the future

actions or intentions of users. This prediction or interpretations functionali ty is

encapsulated in the context interpreter abstraction. Interpreters accept one or more

types of context and produce a single piece of context. An example is converting

from a name to an e-mail address. A more complicated example is interpreting

context from all the widgets in a conference room to determine that a meeting is

occurring.

Traditional user input comes from the keyboard and mouse. These devices are

connected directly to the computer they are being used with. When dealing with

context, the devices used to sense context most likely are not attached to the same

computer running the application. For example, an indoor infrared positioning

system may consist of many infrared emitters and detectors in a building. The

sensors must be physically distributed and cannot all be directly connected to a

single machine. The Context Toolkit makes the distribution of the context

architecture transparent to context-aware applications, mediating all

communications between applications and components.

The final abstraction supported by our architecture is aggregation. Context

aggregators aggregate or collect context. The notion of an aggregator comes

directly from our definition of context. We defined context as information used to

characterized the situation of an entity. If we think of a context widget as being

responsible for a single piece of information, we need an abstraction to represent

an entity. This abstraction, a context aggregator, is responsible for all the context

for a single entity. When designers think about context and interactions, it is

natural for them to think in terms of entities, and that makes an aggregator the

correct abstraction to use for building applications. Aggregators gather the context

about an entity (e.g., a person) from the available context widgets, behaving as a

proxy to context for applications.

To summarize, the Context Toolkit supports common features required by

context-aware applications: capture and access of context, storage, distribution,

and independent execution from applications. The toolkit provides three

abstractions: widgets, interpreters and aggregators.

4.2 The Situation Abstraction

The support provided by the Context Toolkit has enabled us to build a number of

applications that would otherwise have been difficult to build. However, we have

recently been experimenting with a new type of abstraction for supporting

application builders. This new abstraction, a situation, is at a level above widgets,

interpreters and aggregators.

The idea of the situation abstraction was also derived from our definition of

context. Currently, application designers need to explicitly poll and subscribe to

widgets and aggregators for context information and call on interpreters to

determine when relevant entities are in a particular state so they can take action.

This collection of states can be described as a situation.

The situation abstraction is exactly that: a description of the states of relevant

entities. We believe that providing this description requires less effort than

determining which individual context components need to be contacted and

determining when the collective situation has been realized or satisfied. Instead,

the Context Toolkit is responsible for the translation of the description to the

“wiring” of the context components and for determining when the individual

elements of the situation have been collectively satisfied. Now context-aware

application designers can concentrate on the heart of the design process:

determining what context-aware features their application should support and

when should they be enacted.

We currently have limited support for the situation abstraction. We are struggling

with the tradeoff between supporting extremely complex situations and providing

a simple method for describing situations. Ideally, we would like to support both

simultaneously. By simpli fying the process for determining when interesting

events occur, the situation abstraction may prove to be useful for end users. One

of the holy grails of context-aware computing is to have applications that do the

right thing at the right time for users. While designers who have domain-specific

expertise can determine part of the solution, they will obviously not think of

everything that is needed to support individual users. It is the end user who is in

the best position to further specialize context-aware applications to meet their

individual needs. The situation abstraction may allow users to perform this

specialization.

We would like to carry out user studies to investigate whether the situation

abstraction is appropriate for both application designers and end-users and how it

compares to the original abstractions of widgets, aggregators, and interpreters.

References

1. Schil it, B., Theimer, M. Disseminating Active Map Information to Mobile Hosts. IEEE Network, 8(5).

1994. pp 22-32.

2. Brown, P.J. The Stick-e Document: a Framework for Creating Context-Aware Applications. In:

Proceedings of Electronic Publishing ’96. 1996. pp 259-272

3. Rodden, T., Cheverst, K., Davies, K. Dix, A.. Exploiting Context in HCI Design for Mobile Systems.

Workshop on Human Computer Interaction with Mobile Devices (1998)

4. Ward, A., Jones, A., Hopper, A. A New Location Technique for the Active Off ice. IEEE Personal

Communications 4(5). 1997. pp 42-47

5. Schil it, B., Adams, N. Want, R. Context-Aware Computing Applications. 1st International Workshop on

Mobile Computing Systems and Applications. 1994. pp 85-90

6. Pascoe, J. Adding Generic Contextual Capabilities to Wearable Computers. In: Proceedings of 2nd

International Symposium on Wearable Computers. 1998. pp 92-99

7. Dey, A.K. Abowd, G.D. Towards a Better Understanding of Context and Context-Awareness. CHI 2000

Workshop on the What, Who, Where, When, and How of Context-Awareness (2000)

8. Salber, D., Dey, A.K., Abowd, G.D. The Context Toolkit: Aiding the Development of Context-Enabled

Applications. In: Proceedings of CHI’ 99. 1999. pp 434-441

