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  This paper evaluates a new and simple controller design method based on QFT 
(quantitative feedback theory) for a two-link manipulator whose first link is rigid and the 
second is flexible. A piezoelectric patch is attached to the surface of the flexible link for 
vibration suppression of it. This system is modeled as a nonlinear multi-input multi-
output (MIMO) control systems whose inputs are two motor torques which are applied 
on the joints and a voltage which is applied on the piezoelectric patch. To control the 
manipulator’s end point position, motion of the manipulator is divided to two rigid and 
flexible parts. To control  both parts, nonlinear equations of the motion is replaced by a 
family of uncertain linear time-invariant equivalent systems using Rafeeyan-Sobhani’s 
method(RS method) which results in three decoupled transfer functions established in 
the Laplace domain. Then the QFT method is used to design a diagonal matrix as the 
prefilter of the system an another diagonal matrix as the system controller. Results 
demonstrate the remarkable performance of the proposed controllers in reduction of 
residual vibration of elastic link and tracking a circular trajectory by the manipulator end 
point. 

 
1. Introduction 
 In the last two decades, the modeling and control 

of lightweight manipulators has attracted the 
serious attention of researchers due to their 
excellent characteristics. Compared with their 
rigid-arm counterparts, flexible manipulators have 
the advantages of less material and power 
consumption, larger workspace, higher operation 
speed, smaller actuators and more maneuverability. 
However, the disadvantages of lightweight 
manipulators are the elastic deformation and tip 
vibration caused by the structural flexibility of the 
long reach and slender links. As a consequence, the 
tip position and orientation of flexible manipulators 
are difficult to control. Thus, trajectory following 
control of robotic manipulator system has been an 
important research area in the last decade([1]-[3]). 
Most of the proposed control strategies in the 
literature require knowledge of an accurate 
mathematical model of the system and the stability 
of the closed-loop system critically depends on 
how well the actual flexible manipulator dynamics 
is modeled. In real applications, however, the 
inertial and elastic characteristics of a flexible 
manipulator are not known precisely. More control 

difficulties such as distributed parameter nature of 
the system, highly nonlinearity and rigid mode 
coupling effects compensation, are encountered 
while controlling flexible robots. To this end, the 
solutions suggested in the literature involve use of 
adaptive methods [4], the robust controllers ([5], 
[6]), soft computing approaches such as fuzzy logic 
and neural network techniques ([7]-[9]).  
     One of the robust control strategies based on the 
classical frequency domain is the quantitative 
feedback theory (QFT) [10]. The inherent 
characteristics of the QFT control include 
robustness of the performance to structured plant 
uncertainties, avoidance of noise amplification, fast 
adaptability of redesign for desirable specifications 
and transparency between dynamics and control 
specifications. Choi et al. proposed a control 
method based on QFT for robust position control of 
a single-link flexible manipulator [11]. The off-
diagonal elements of the inertia matrix are 
separated as system disturbance and transfer 
functions of system are decoupled. Then, two QFT 
type compensators are designed for two actuators 
on the basis of a stability criterion which specifies 
disturbance rejection and tracking performance 
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bounds.This proposedapproach cannot be extended 
to flexible manipulators that have more than one 
link.  

In this paper, a controller design method based on 
QFT is used for a two-link rigid-flexible 
manipulator system. To control the manipulator’s 
end point position for accurate tracking of a desired 
trajectory, motion of the manipulator is divided to 
two rigid and flexible parts. To control the rigid 
part of the motion, nonlinear equations of the 
motion of a two link rigid manipulator is replaced 
by a family of uncertain linear time-invariant 
equivalent systems using Rafeeyan-Sobhani’s 
method [12] which results in two decoupled 
transfer functions established in the Laplace 
domain; one is from input torque of the first motor 
to the first output hub angle and the other is from 
input torque of the second motor to the second 
output hub angle. To control the flexible part of 
motion, the third equation of the motion of the two-
link rigid-flexible manipulator (elastic deflection 
equation) is treated in the same approach (RS 
method) and another transfer function is obtained. 
This transfer function is from input voltage to 
output tip-deflection of the second link. Since the 
equations of motion are decoupled by the RS 
method, the three input-three output robot system is 
reduced to three uncertain and linear single input-
single output systems. Then the QFT method (a 
known robust control method) is used for each of 
these SISO systems. Thus, three controllers and 
prefilters are synthesized independently using the 
QFT method and a diagonal matrix is developed as 
the system controller. This proposed method can be 
extended to manipulators with more flexible links. 
 
2.  Dynamic Modeling 
2-1-The robot arm dynamics  

Consider the two link planar manipulator with a 
revolute joint shown in Fig.1. The first link is 
assumed to be rigid, while the second one is 
flexible featuring surface-bonded piezoelectric 
patch. The longitudinal deformation of the second 
link is neglected. It is assumed that the second link 
can be bent freely in the horizontal plane but is stiff 
in the vertical bending and torsion. Thus, the 
Euler–Bernoulli beam theory is sufficient to 
describe the flexural motion of the flexible link. 
The Lagrange’s equation and model expansion 
method can be utilized to develop the dynamic 
equations of this robot. 
As shown in Fig. 1, ଴ ଴ ଴ represents the inertial 
coordinate frame, ଵ ଵ ଵ and ଶ ଶ ଶ are the 
moving coordinate frames with origin at the hubs 
of links 1 and 2, respectively. Fig. 1 shows that ଵ 
and ଶ are the revolving angles of the two links 
with respect to their frames, respectively. ଵ and 
ଶ denote position vectors of an arbitrary point on 

the links 1 and 2 relative to the inertial frame, 
respectively.  is the transverse elastic 

displacement. The axial deformations are not 
considered in this study the flexural motion of the 
beams does not induce significant axial vibrations. 

Two pairs of orthogonal unit vectors ଵ ଵ  and 
ଶ ଶ , which are fixed at the moving coordinate 

frames of the links 1 and 2, are shown in Fig. 1. For 
links 1 and 2, the coordinate of the general points 
ଵ and ଶ can be expressed as shown in Fig. 1. 

 
Fig. 1: The schematic diagram of a two-link rigid-flexible 

manipulator system featuring piezoelectric patch 
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where ଵ and ଶ are the spatial coordinates relative 
to ଵ ଵ ଵ and ଶ ଶ ଶ coordinate frames, 
respectively. ଵ and ଶ are the lengths of links 1 
and 2, respectively. The total kinetic energy T can 
be written as follows: 

ଵ

ଶ ଵ ଵ
ଶ ଵ

ଶ ௛ ଵ ଶ
ଶ ଵ

ଶ ௛ ଵ
ଶ

ଵ
ଶ

ଵ

ଶ ଶ
்௅మ

଴ ଶ ଶ                                              (3) 

where  ଵ is the moment of link 1, ௛ and ௛ are the 
moment of inertia and mass of hub at   ଶand  
is the effective mass per unit length of link 2 
defined as follows: 

௖௢௠ ஺௟

ଶ                                                     (4) 
where ௖௢௠ is the effective mass per unit length of 
the composite part in 0 and  
஺௟is the part in ଶof link 2.  is the length 

of piezoelectric patch. The potential energy can be 
written as 

ଵ

ଶ

௅మ
଴

ᇱᇱ ଶ
                           (5) 

where EI(x) is the flexural rigidity of the flexible 
link that is defined by 

௖௢௠ ஺௟

ଶ                                                    (6) 
where ௖௢௠ is the flexible rigidity of the 
composite part in 0 and ஺௟is the part in 

ଶof link 2. 
 However, there exist other energies, such as the 
potential energy due to shear, potential energy from 
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the centrifugal stiffening, tension–compression 
energy, and so on. The most important and 
dominant term in the potential energy is the strain 
energy described by Eq. (5) in this study. 
     For the continuous model, this system requires 
boundary conditions of: 

                                                        (7a) 
డ

డ௫
                                                     (7b) 

డమ

డ௫మ ଶ                                                  (7c) 
డయ

డ௫య ଶ                                                  (7d) 

and the initial conditions: 
ଶ                                        (8a) 
ଶ                                       (8b) 

்(8)                                                      (8c) 
்                                                    (8d) 

where ଵ ଶ
். 

     Note that Eqs. (7c) and (7d) are due to the 
absence of bending moment and shearing forces at 
the tip of the link 2. 
 
2-2-Finite-dimensional approximation 

The flexible-link manipulator system is a 
distributed-parameter system. This system can be 
approximated by a finite-dimensional model, which 
ignores the high-frequency modes. There exist 
different techniques to discretize a continuous 
system. The basic idea is to approximate the 
distributed parameters by a finite set of trial 
functions. In present case, the flexure variable 

 can be approximated as follows: 
 

௜ ࢏
௡
௜ୀଵ                                    (9) 

 

where ௜ can be obtained by solving the 
eigenfunctions that arise from the linearized 
problem, and ࢏  is the position vector in joint 
space. 
     The selection of function ௜ is rather crucial. 
The best way to choose ௜  is to use the 
eigenfunctions. However, for practical purpose, 
solving the eigenvalue problem may not be easy, 
sometimes impossible. Therefore, to discretize the 
system, a set of functions needs to be chosen. The 
approximation is known as ‘‘assumed mode’’ 
method. The trial functions in this case are derived 
by fixing the rigid link and setting the external 
inputs as zero. Therefore, the dynamics of flexible 
link can be reduced to the dynamics of an Euler–
Bernoulli beam with clamped- free boundary 
conditions. 

Thus, the dynamic motion equation of the two-
link rigid–flexible manipulator system can be 
derived in terms of the Lagrange-Euler formulation 
ௗ

ௗ௧

డ௅

డఏഢሶ
డ௅

డఏ೔
௜(i=1,2)                                 (10) 
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௝
ᇱ

௏                                 (11) 

where L is the Lagrangian function i.e.L = T – U 
and ௜are the generalized torques applied to the 

system at joint . ௏ is the moment resulting from 
the applied voltage to the piezoelectric actuator and 
can be expressed by 
௏                                       (12) 

The variable is the nominal (known) constant 
dependent on material and geometrical properties 
of the flexible manipulator, while the variable is 
the deviation part (unknown, but bounded) of the 
variable , which directly represents the magnitude 
of the hysteresis loop of the piezoelectric actuator-
based structure. 
     Substituting Eqs. (3) and (5) which are 
incorporated with Eq. (9) into Eqs. (10) and (11) 
yields the following dynamic equations: 

ଵ ௛ ௛ ଵ
ଶ

ଵ
ଶ ଶ

௅మ

଴

௜
ଶ

௜
ଶ

ଵ ଶ

ଵ ଶ ௜ ௜ ଵ 

௛
ଶ

௜
ଶ

௜
ଶ

ଵ ଶ

௅మ

଴

ଵ ଶ ௜ ௜ ଶ 

ଵ ଶ ଵ ଶ ௜ ௜

௅మ

଴
ଶ
ଶ 

ଵ ଶ

௅మ

଴

ଵ ଶ ௜ ௜ ଵ ଶ 

ଵ ଶ ௜ ప

௅మ

଴

௜ ௜ ௜ ప ଵ

ଶ  

௜ ప ଵ ଶ ௜ ప
௅మ
଴ ଵ(13) 

௛
ଶ

௜
ଶ

௜
ଶ

ଵ ଶ

௅మ

଴

ଵ ଶ ௜ ௜ ଵ 

௛
ଶ

௜
ଶ

௜
ଶ

௅మ

଴
ଶ 

௜ ప

௅మ

଴

௜ ௜ ௜ ప

௅మ

଴
ଵ ଶ  

ଵ ଶ
௅మ
଴

ଵ ଶ ௜ ௜ ଵ
ଶ

ଶ                            (14) 

௜ ଵ ଶ

௅మ

଴
ଵ

௜

௅మ

଴
ଶ

௜
ଶ

ప

௅మ

଴
 



International Journal of Robotics, Vol.3, No.1, (2013)/M. S. Mirshamsi, M. Mirshamsi 

52 

௜
ଶ௅మ

଴ ଵ ଶ
ଶ

ଵ ଵ
ଶ

ଶ ௜
௅మ
଴ ௜

ᇱᇱଶ
௜

௝
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If we use the first n eigenfunctions , the following 
lumped representation of the system is obtained 
 

                               (16) 
 
where ଵ ଶ ଵ ଶ ௡   , , ,  and  
are the inertia, stiffness, vector of nonlinearities 
due to Coriolis and centrifugal forces, and input 
matrix, respectively. 
 
3- Qft Controller Design 
3-1-General formulation 

Equations (10) to (12) show that the dynamic of 
this robot is a nonlinear multi-input multi-output 
(MIMO) system from control theory point of view. 
This system is reduced to three single input-single 
output (SISO) linear uncertain equivalent systems 
using RS method as it will be shown in section 
III.B. Figure 2 shows the block-diagram of the 
proposed control system. The prefilter ଵ and 
compensator ଵ for the motor 1 and prefilter ଶ and 
compensator ଶ for the motor 2 synthesized by 
employing the QFT on the basis of an equivalent 
rigid-link dynamic system to set the hub angle 

21, . The prefilter ଷ and regulating 

compensator ଷ for the piezoelectric actuator is 
also designed by applying QFT to actively suppress 
undesirable oscillation of the flexible link. 
     Using the open-loop transmission, ௜

௜ ௜ , eachcontroller ௜  
should be synthesized such that all the above SISO 
closed-loop systems be stable and also satisfy the 
following  conditions. 
1) Robust stability  

The stability margin can be specified in terms of 
a phase margin, a gain margin or the corresponding 
௅ contour on the NC (Nichols Chart) using its 

magnitude in dB [10]. If any one of the three 
stability requirements is specified, the remaining 
two can be calculated. The ௅contour is the 
stability specification used directly for the QFT 
design technique, placing an upper limit on the 
magnitude of the closed-loop frequency response; 
 

ଵ

ଵା௅೔ሺ௝ఠሻ
௅dB for all ௜,                   (17) 

 

 

 
Fig. 2.Control scheme of the system with MIMO plant and 

decoupled plant 
 

The ௅contour on the NC therefore forms a 
boundary which must not be violated by a plot of 
the open-loop transmission ௜ ௜ ௜ . 
Throughout the design, ௅ is chosen to be 1.58 dB. 

2) Robust performance 
The following design constraint is used to ensure 
adequate tracking performance: 

௅
௅೔ሺ௝ఠሻ

ଵା௅೔ሺ௝ఠሻ
௎  for all ௜ , 

௛      (18) 
Eq. (18) implies that the system’s response to the 
step input should be placed in a predefined region 
specified by upper and lower bounds, denoted as 
௎  and ௅ , respectively. Suppose that (i) 

the system’s response to the step input is required 
to settle in ௦ , and (ii) an over shoot of 
௣ is appropriate. The following transfer 

functions can be selected so as to define the desired 
tracking bounds with the aforementioned 
specifications: 

௎
ଵଽ.଻ହଶሺ௦ ସ⁄ ାଵሻ

ሺ௦ାଶേ௝ଷ.ଽ଺ଽሻ
                                      (19a) 

௅
଼ସ଴଴ሺ௦ ଼⁄ ାଵሻ

ሺ௦ାଷሻሺ௦ାସሻሺ௦ାଵ଴ሻሺ௦ା଻଴ሻ
                        (19b) 

 
  These two specifications generate robust bounds 
on ௜଴  which is a nominal loop transmission at 
selected frequencies and the bounds are plotted on 
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the NC. The synthesized ௜଴ must lie on or just 
above the bound at each frequency to satisfy the 
required performance.The proposed compensator 
௜ is designed by adding appropriate poles and 

zeros to the nominal loop function so that it lies 
inside the acceptable regions. Also, based on QFT 
method, a prefilter must be synthesized to complete 
the design process. 
 
3-2-Application to the proposed system 

In this study, the first flexible mode is considered 
in the design of the QFT controller because the first 
mode is dominant over higher residual modes[11]. 
Motion of the flexible manipulator is a combination 
of the its rigid and lateral deflection. 

To control the rigid part of motion, both two links 
of manipulator are assumed to be rigid at first. The 
dynamic motion equations of the two-link rigid 
manipulator system can be derived by eliminating 
the elastic terms of the dynamic motion equation of 
the two-link rigid–flexible manipulator system 
which is derived in section 2 and can be considered 
as follows: 

ଵ ଵ ଵ ଶ ଵ ଵ ଶ ଵ ଶ
ଶ

ଵ ଵ ଵ 

ଶ ଵ ଶ ଶ ଶ ଵ
ଶ

ଶ ଶ ଶ                    (20) 
Where ଵ ଵ , ଶ ଶ are the damping effects of motor 
1 and 2, respectively. Parameters ௜, ௜, ௜

 and ଵ are functions of manipulator joints 
angles only (not their time derivatives). For 
simplification, these parameters are considered as 
structured uncertainty of systems and their 
minimum and maximum values are computed 
during the desired path. Now, the nonlinear system 
governed by equations (20)is replaced with a 
family of linear time equivalent systems using the 
RS method. This method uses an arbitrary family 
of output functions for construction of this 
equivalent family, substitutes these functions in 
dynamic equations, obtains the Laplace transform 
of the equation and obtains a family of linear 
equivalent uncertain transfer functions for a 
nonlinear system [12]. In this study, a set of step 
functions with uncertain height is considered 
arbitrarily, as follows: 

                                  (21) 
Which are corresponding to ଵ  and ଶ , 
respectively. Substituting these functions in the 
dynamic equations of manipulator (20) and getting 
the Laplace transform of the equations, the transfer 
functions of linear equivalent plants are obtained as 
follows: 

ଵ
ఏభሺ௦ሻ

ఛభሺ௦ሻ

ଵ

൫஺భା஻భ௕ ௔ൗ ൯௦మାቀ஼భ௕ା஽భ௕
మ
௔ൗ ାఉభቁ௦

   (22) 

ଶ
ఏమሺ௦ሻ

ఛమሺ௦ሻ

ଵ

൫஺మ௔ ௕ൗ ା஻మ൯௦మାቀ஼మ௔
మ
௕ൗ ାఉమቁ௦

(23) 

Two QFT compensators and prefilters are 
designed independently for these two families of 
uncertain linear time-invariant equivalent plants. It 
is assumed that . The prefilter ଵ and 

compensator ଵ for the motor 1 are designed as 
follows: 

ଵ
଻.଻ଽ଼ሺ௦ ଴.ଽସହଶ⁄ ାଵሻሺ௦ ସ଴⁄ ାଵሻሺ௦ ଶ଴଴⁄ ାଵሻ

ሺ௦ ହ଴⁄ ାଵሻሺ௦ ଵ଴଴⁄ ାଵሻሺ௦ ଵ଴ହ.଼⁄ ାଵሻሺ௦ ଼଴଴⁄ ାଵሻ
           (24) 

ଵ
ଵ.଴଺ଽ

௦మ ଵ଴.ଽଷమାଶሺ଴.଻଴଻ ଵ଴.ଽଷሻ௦⁄ ାଵ⁄
                           (25) 

 
In Figure 2 colored lines show the resulting QFT 
design bounds (stability bounds and performance 
bounds) for the pre-determined set of 
designfrequencies

}800,400,200,100,80,50,10,5,2,1{ and the 

black lineshows the loop shaping )( jL for these 

frequencies. It is noted that the plot at each chosen 
frequency satisfies the specified bound, that is, 

)( jL does not violate the U-contour (for stability) 

and any points of )( jL are on or above the 

performance bound curve for the frequencies. Fig. 
3 demonstrates the Bode plot of the first designed 
controller, )(1 sG .  

 

 
Fig. 3: Nominal loop-shaping [ ૚ ] for hub 1 

 

 
Fig. 4 Nominal loop-shaping [ ૛ ] for hub 2 

 
The prefilter ଶ and compensator ଶ for the motor 
2 are synthesized as follows: 
 

ଶ
଻.ଵ଴଼ሺ௦ ହ.ଶଶ଻⁄ ାଵሻ

௦మ ସଵସ.ଵమାଶሺଵ.ଷ଻ସ ସଵସ.ଵሻ௦⁄ ାଵ⁄
                           (26) 

ଶ
ଵ

ሺ௦ ଻.ଵଵ⁄ ାଵሻ
                                                     (27) 
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To control the elastic part of motion and suppress 
the undesired vibrations of flexible link, the third 
equation of (16) (elastic deflection equation) is 
treated in the same approach. The equation can be 
written as: 

ଷ ଵ ଷ ଶ ଷ ଵ ଷ ଵ ଶ
ଶ

ଵ ଷ ଵ
ଶ

ଷ ଵ
ᇱ
ଵ                                (28) 

 
where ଷ , ଷ , … , ଷ  and ଷ are  functions of 

manipulator joints angles only (not their time 
derivatives) and can be considered as uncertainty. 
Again RS method is used. Desired output set is 
considered as: 

                  (29) 
Which are corresponding to ଵ  , ଶ  and ଵ  
, respectively. Substituting (29) in (28) and getting 
the Laplace transform of equation, a transfer 
function from input voltage to output tip deflection 
is obtained as follows: 

ଷ
௄

൫஺య௔ ௗൗ ା஻య௕ ௗൗ ା஼య൯௦మାሺாయ௔
మ
ௗൗ ሻ௦ାሺிయି஽యሺ௔ା௕ሻమሻ

 (30) 

 
where represents a plant gain which is subject 

to variation with respect to the hysteresis behavior 
of the piezoelectric actuator (refer to in equation 
(28)).Using this family of uncertain linear time-
invariant equivalent plants, the prefilter ଷ and 
regulating compensator ଷ for the piezoelectric 
actuator is also designed by applying 
QFT.(  ) 

ଷ
଻ହଵሺ௦ ଶ.ସ଼ହ⁄ ାଵሻሺ௦ ଻.ହସ଼⁄ ାଵሻሺ௦ ଵଽ.ଶହ⁄ ାଵሻ

ሺ௦ ଴.ଽଽ଻⁄ ାଵሻሺ௦ ଷ.ଷସସ⁄ ାଵሻሺ௦మ ଶ଼ଽ଻మାଶሺଵ.ହହ଺ ଶ଼ଽ଻ሻ௦⁄ ାଵ⁄ ሻ
(31) 

ଷ
ଵ.଴ହହ

௦మ ଵ଴.ହమାଶሺ଴.଻଴଻ ଵ଴.ହሻ௦⁄ ାଵ⁄
                              (32) 

The loop shaping process is performed so that the 
loop transmission satisfies stability and 
performance bounds on the NC in the low 
frequencies and subsequently in the high 
frequencies. Using Matlab QFT tool box which has 
developed by Borgesani et al. [13],figures 3, 4 and 
5 can be obtained.  
Figures 3, 4 and 5show the loop shaping for the 
hubs ( ଵ  , ଶ ) and for the flexible link 
( ଷ ), respectively.Colored lines show the 
resulting QFT design bounds (stability bounds and 
performance bounds) for the pre-determined set of 
designfrequencies  

and the black lineshows the loop shaping for 
these frequencies.It is noted that the plot at each 
chosen frequency, satisfies the specified bound, 
that is, ௜ does not violate the U-contour (for 
stability) and any points of ௜ are on or above 
the performance bound curve for the frequencies. 
The Bode plots of compensators ௜are depicted in 
figures 6, 7 and 8. 
 

 
Fig. 5: Nominal loop-shaping [ ૜ ] for the flexible link 

 
Fig. 6: Bode plot of  ૚ 

 
Fig. 7: Bode plot of  ૛ 
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Fig. 8 Bode plot of  ૜ 

 
 

4- Results and Discussion 
In order to demonstrate the superior control 

performance of the proposed QFT control scheme, 
a numerical simulation is considered here. The 
physical parameters of the system are given in 
Table 1. 
 
 
Table.1:Parameters of the rigid–flexible manipulator system 

and piezoelectric materials. ([7] ,[11]) 
Young’s 
modulus(
Gpa) 

Thickness(
mm) 

Density(kg
/ ଷ) 

Moment 
of 
inertia(kg
ଶ) 

Length
(m) 

Link 1 
 
Link 2 
65 
Piezoelect
ric 
64 

 
 
 
1.6 
 
0.815 

 
 
 
2890 
 
7700 

 
0.32 

 
0.61 
 
0.52 
 
0.18 

Moment of inertia of the hub( ௛)                                              
0.02 
Mass of the hub( ௛)                                                                 
0.23       
Capacitance of the piezofilm                                                380 
pF ିଶ 
Piezoelectric stress constant of the piezofilm           

ିଷ ିଵ ିଶ ିଵ 
Piezoelectric strain constant of the piezoceramic          

ିଵଶ ିଵ ିଵ ିଵ 

 
A circular path with radius  was 

considered as the desired trajectory. The end point 
of manipulator should follow it in 6.2 seconds. 
Desired joint angles are obtained by using inverse 
kinematics solution of the two-rigid-link 
manipulator. Also desired input for elastic 
deflection is considered as zero. It is clear from 
figure 9(a) that the imposed desired angular 
displacements are accurately achieved and settled 
within the specified time notwithstanding the 
oscillating disturbance of the flexible link. 
However, the application of these control torques 
to the links causes undesirable vibration of flexible 
link. Figure 9(b) presents measured tracking 
responses with feedback control voltage. It is 
obvious from figure 9(b) that using the 
piezoelectric actuator, the undesirable oscillation of 
the flexible link is quickly reduced, yielding the    

Desired tip position. The tip deflection decreases 
more than 20 times compared with condition 
without applying control voltage to piezoelectric 
actuator. Figures 6, 7 and 8 show that the designed 
controllers are realizable because their bandwidths 
are limited. 
 

 
(a)Without control voltage 

 

 

(b)With control voltage  
Fig. 9: Simulated tracking responses 
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(a)Without control voltage 

 
(b)With control voltage 

 

Fig. 10:Simulatedend point position of manipulator 
 

4-  Conclusions 
A robust position control of a two-link rigid–
flexible manipulator system which features 
piezoelectric actuator and sensor was achieved by 
applying the QFT technique together with RS 
method which is a simple method for replacing the 
nonlinear system by a family of uncertain linear 
systems. Results showed the good performance of 
the proposed controllers in reduction of residual 
vibration of elastic link and tracking the circular 
trajectory by the manipulator end point. Also, the 
simulation results showed that the third controller 
and applying control voltage to piezoelectric patch 
cause quick damping of elastic link vibrations and 
greatly reduce the flexible link tip deflection. Also 
the bandwidth of all designed controllers was limit 
and this implied that these controllers are 
realizable. 
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