
ELSWIER

DISCRETE
APPLIED

Discrete Applied Mathematics 76 (1997) 21L4t
MATHEMATICS

Distributed processing of divisible jobs with communication
startup costs*

Jacek B&ewicz,* Maciej Drozdowski

institute of Computing Science, Poznak lJniw-sity of Technology, ul. Pioirowo 3~. 60-965 Poznari, Poland

Received 3 October 1995; revised 18 December 1995

Abstract

In this work we analyze the problem of an optimal distribution of a computational task
among a set of processors. We assume that the task can be arbitrarily divided and its parts can
be processed in parallel on different processors. A wide range of interconnection architectures of
distributed computer systems is taken into consideration: a chain, a loop, a tree, a star of
processors, a set of processors using shared buses, and a hypercube of processors. It is assumed
that the communication time is equal to some startup value plus some amount proportional to
the volume of transferred data. Using a uniform methodology we present a method to find the
distribution of the load so that the minimum completion time is achieved for the considered
data distribution scheme. The results can also be used to find such parameters of the processor
network as equivalent speed, speedup and utilization. Moreover, the methodology presented
here can be a model of the application roll-in time, and can be applied in load balancing in
a heterogeneous multiprocessor system.

Keywords: Distributed processing: Scheduling; Communication delays; Performance
evaluation

1. Introduction

Parallel processing is the focus of research these days. As the classical computer

systems approach their physical limitations in processing speed, the distributed

computer systems are becoming the only known way to increase the speed of

computations further. One of important problems related to this field is scheduling in

parallel computer systems. Scheduling algorithms always require some assumptions

on the computer system and the computation process. Hence, a good model of

* The research has been partially supported by the KBN grant and CRITZ project.
*Corresponding author. Tel.: + 4861 782-375; fax: + 48 61771-525:

e-mail: blazewic@sol.put.poznan.pl

0166-218X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PI1 SO166-218X(96)00115-1

22 J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 2I-41

parallel computation is required. The models, on the other hand, are closely related to

the estimations of the system performance. There exists a great variety of scheduling

algorithms [12,8,9] based on different assumptions. A new branch related to the
scheduling of parallel applications has appeared recently in the scheduling theory. It is

called multiprocessor task scheduling (or parallel task scheduling or coscheduling)

[6,15,19,16,14,7]. It is assumed that a task may require more than one processor at

a time. Also, in this work we assume that a task may be executed by more than one
processor at a time. The performance models of computer systems are often based on

statistic approaches. A disadvantage of the stochastic analysis is that certain probabil-
ity distribution parameters, sometimes without experimental justification, are as-
sumed arbitrarily. In this work we adapt a strictly deterministic approach.

Contemporary supercomputers are very often multicomputers, i.e. a set of process-
ing elements (PEs) connected by a high-speed network e.g. CSCC Paragon, CM-5,

CRAY-T3D and many others. A cluster of workstations or computers in a wide area

network can be harnessed to work in the above way. In such distributed systems
communication delays cannot be neglected. In this work we assume that a task not
only can be executed by more than one processor at a time, but can also be arbitrarily

divided between the cooperating processors. This model is useful both in practical and
theoretical considerations. In the computations on large data files like searching for
a pattern, fast Fourier transformation, filtering, etc., the volume of data can be divided
into parts of different sizes analyzed separately. It is also the case of modelling
behavior of a large number of particles because particles interact mainly locally and

the whole set of particles can be divided into areas considered separately. Similarly,
parallel implementations of metaheuristics (tabu search, genetic search) based on
a master-slave model of computations can be analyzed in this way because analysis of
potential new solutions can be done independently in parallel. Furthermore, some
problems of linear algebra can be analyzed in this way [3]. What is more, it can be
a model of an application roll-in in a multicomputer system, i.e. of the “unstable state”

due to the application startup: unfolding of the code or distributing data on PEs. This
is an important element of computer system efficiency as I/O operations become
a bottleneck in contemporary supercomputers. The model is also interesting due to its
simplicity and the results obtained.

Before going into details we will present roughly the model of the computational
process (more detailed discussion of implementation issues takes place at the end of
Section 2.1). At the beginning of the computation the data to be processed are stored
in one processing element (PE). We will call this first PE originator. The originator
intercepts some part a1 of all the data for local processing and transmits the rest to its
neighbors. Then, each neighbor i intercepts for local processing some part Cli of the
whole data volume from the part it receives, and then retransmits the rest to its still
idle neighbors. The process is repeated until the last processor N. The interceptions
are instantaneous, i.e. the time for interception is negligible. As it can be observed, it is
a model of store-and-forward communication. We assume that the processes of
computation and communication are independent and can take place in the same

J. Blaiewicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41 23

moment of time. It is justified for PEs with independent communication channels (e.g.
transputer family of processors, or computers with Direct Memory Access). The whole
computational task can be executed on one standard processor in time T,,. When

processor i has different than standard processing speed, the processing time of the

whole task would last U’iTcp, where wi is a reciprocal of the processor’s speed. The
communication channel j is described by two parameters [171 the startup time rj and

the transfer rate (l/Zj). Thus, the time needed to transfer b bytes is equal to Yj + zjh. We

assume that the total amount of the data that can be transferred is equal to T,,.
Hence, the whole data would be transferred through the link with the transfer rate

equal to 1 and Y = 0 in time T,,. The main objective of the further analysis is to
distribute the computation in such a way that it is completed in the minimal time.

The ideas are presented in this work stem from the series of works [lo, 11, 1,2]. In

[lo] the problem of optimal distributing computation on a chain of processors has

been addressed. The processing elements could have communication co-processors or
not, and their speeds were assumed to be different. In [1 l] this model has been applied

to solve the problem of a job distributing on a tree network of processors, and in [l]
~ on the processors interconnected through a bus type medium. Finally, in [2] the
performance limits are given for infinite chain and tree networks of processors. The
same methodology has been applied to analyze two-dimensional mesh of processors

[4] and hypercube of processors [S]. In all the above works it was assumed that
communication startup time is zero. In this work we differ in a more sophisticated
model of communication cost, a wider set of interconnection architectures is con-
sidered, and finally, more general treatment has been applied.

The rest of the paper is divided on the basis of analyzed interconnection architec-
tures. In Section 2 various cases of the linear network (chain) architecture is analyzed.

A tree of processors is considered in Section 3. In Section 4 a set of processors
connected by shared buses is considered. The hypercube architecture is analyzed in
Section 5.

2. Linear networks

2. I, Chain - originator at the end

In this section we will analyze a simple interconnection architecture - the chain of
processors (Fig. 1). The methodology introduced here will be used for other intercon-
nection types.

Assume that the originator is positioned at one of the chain’s ends. For the time
being, let us ignore the process of the solutions consolidation because, as it will be
explained later, it can be incorporated into our model. The process of distributing the
data and processing it is presented in Fig. 2. The originator intercepts al of the whole
data volume and sends (1 - t~i) to its neighbor. The second processor processes
locally CI~ of the whole volume of data and retransmits (1 - a1 - a2). Processor

24 J. Blaiewicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41

9sw1 cx21w2 ‘?3pw3 %J-~wN-l “NlwN
n

O “r’1 ” 5’2
o___,,____@----a

1 2 3 . . . N-l N

Fig. 1. Chain interconnection architecture.

ummlmication

computation

$2
C

i!

3
&

N-l

communication

computation

N

-

computation ;yj

Fig. 2. Communication-computation diagram for a chain.

time

i intercepts Cli of the whole data volume. The interceptions are instantaneous. The
process is continued until the last Nth processor. The communication from the
originator to the second PE takes rl + (1 - aI)zI T,, time, from the second PE to the
third r2 + (1 - 01~ - x2)z2T,,, etc. The computations on the first processor are
executed in xlwl T,, time, on the second processor c~~w~T=~, etc. The computations on
all processors must finish at the same moment of time. This very basic observation can
be explained as follows. When one of the PEs finishes earlier, one can find a better
(shorter) schedule in which this PE is more loaded and computes some part of the data
which was processed by the processors finishing later. This argument will be widely
applied in this paper (for more formal proof see the appendix). Now, we are ready to
compute the ccI)s. Let us observe that for each of the communication links the
communication time is equal to the difference of computing times on the transmitter

J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 25

and the receiver. Hence, we can write the following set of equations and inequalities:

~2w2Tcp = r2 + (cl3 + ct4 + ... + ccN)z2Tcm + ct3w3Tcp,

i_w_T N 2 N 2 cp = yN-2 + (MN-1 + ~N)ZN-~T,, + ~N-IWN-ITC~, (1)

~N-IWN-,TC~ = rN-l + ~N(zN-IT,, + WNT~J,

There are N equations and N unknowns in the above formulation. By solving it we
obtain a set of coefficients CQ, . . . ,aN describing the division of the load among the
PEs. Let us note that Eqs. (1) can be solved recursively in linear time (if the solution
exists). It iS possible to express EN-i, for i = 1, . . . , N - 1, as a linear fUnCtiOn of UN.

Hence, from the first N - 1 equations of (l), we have

EN-i=lN-i+ffNkN-i for i= 1, . . . ,N- 1,

where

lNpl = yN-l kN_l = ZN- 1Tcm + WNTC~

WN-lTcp' WN-IT~~ ’

lN_i _ rN-i I ZN-iTcm

WN-iTcp &I&Si+llj+lN-i+l~
for i = 2, . . . ,N - 1

kN_i _ ‘N-iTcm ~ kj+kN-i+l~
WN-iTcp j=N-i+l

for i = 2, . . . ,N - 1.

Of course, kN = 1, lN = 0. From the last equation of (1) we obtain Cy= 1 (kj@lN + lj) = 1,

and

The rest of the load distribution coefficients can be found recursively from the above
equations.

The set of equations (1) may not always be solvable. It is the case when the number
of processors one wants to use is too big and it is impossible to transfer data to the last
processor(s) during the time of computation on the first processor. In such a case
UN calculated recursively becomes negative. Thus, instead of formulation (1) it would

26 J. Blaiewicz, M. Drozdowski J Discrete Applied Mathematics 76 (1997) 21-41

be more precise to solve for CQ, . . . , a,,,, implicitly stated formulation:

when OZi+iaO (for i=l,N-1)
@iWiTcp

>O I
= Ti + ZiTcm 5 aj + ‘%+lWi+lTcp

j=i+l

when Cli+l = ... = CI~ =O

(2)

ai = o*ai+l = ... =aN=O fori=l,...,N-1

al+C(z+aJ+ “’ +aN=l, a1 ,..., EN > 0.

A set of processors that can take part in minimal-time execution of a task will be called
usable. Now the key question is how to determine the usable set of processors. When

(1) is not solvable we propose to apply an iterative method as follows. Set N = 1. Solve
(1) for the current value of N. If a feasible solution exists, check if the following

inequality holds for the current value of N:

Ti + ZiTcm (3)

In the above inequality we check whether it is possible to add to the current sequence

of communications at least a startup time for the communication to processor N + 1.
If it is not possible ((3) does not hold) N is the maximal number of processors that can

be used for the given parameters. If yes (i.e. (3) holds), then set N = N + 1 and repeat
this procedure. Keep on increasing N until (1) is not solvable, or the maximum
number of available processors is reached. We can further improve this procedure by

applying a binary search. Hence, in O(log N) trials and O(N log N) time we can
identify the maximal usable set of processors.

We are now able to derive several parameters describing the whole computer

network. The equivalent speed of the whole network is the ratio of the execution time
on a standard processor to the execution time on the chain. It is equal to (cf. Fig. 2)

T 1
E&z=_

aiwi T,, alwl

The speedup and utilization of the processors achieved in the network are, respective-
ly, equal to

WI Tc, 1
sN=_=-

alwiTcp ai’

Let us present a simple example.

J. Bttiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 21

Example 1. Consider a chain of five processors: w1 = w2 = w3 = 1, wq = wg = 0.5,
zi = z2 = 1, z3 = zq = 0.5, r1 = r2 = 0.2, r3 = r4 = 0.1. The parameters of the task are

Tcp = 2, T,, = 1. This means that the fourth and the fifth processors are twice as fast
as the first three processors. The communication links to the second and the third

processor have only half of the speed of the remaining two links. The solution of the

equation set (1) for N = 5 does not exist. For N = 4, the solution is: al z 0.5794,

a2 = 0.2692, a3 z 0.0934, ~1~ z 0.0579, and since the last processor does not take part
in computations c(~ = 0. The whole computation is executed in 1.159 units of time.
The equivalent speed of the whole network is ES4 = ES5 z 1.73 (compare with
l/~lr = l), speedup is S4 = S5 z 1.73 and utilization U4 z 0.431. Fig. 3 presents the

momentary utilization of the five processor chain during the computation.
In the following paragraph we will illustrate that the above model can be used to

analyze the performance of the computer system. Namely, we show the influence of

the model parameters on the execution time, speedup and utilization in a homogene-
ous network. If not stated otherwise, parameters for the network were Wi = 1, Zi = 1,
rl = 0.0001 for i = 1, . . . , N, Tcp = 7’,, = 1. In Fig. 4 the execution time of the whole
computational task versus the number of PEs, r and z is depicted. The upper set of
curves is for Zi = 1, and the lower for zi = 0.1. As it can be seen, small values of r do not
influence significantly the execution time. On the other hand, if r is close to

z (z = r = O.l), then it does contribute to the execution time. What is more, in slow
network (e.g. z = l), r influences mainly the number of processors that can be
efficiently used. In Fig. 5 the number of usable processors is depicted as a function of r.

1

I

/ I , 1 1
I ,

0 0.2 0.4 0.6
time

Fig. 3. Example 1: momentary utilization of the processor set

28 J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41

1

0.2 I---

0

8 -- .----

0

+ I I I I

I I I

2 4 6 8 10
N

I e Fo.0001 $E Fo.001 Eb d.01 + HI.1 j

Fig. 4. Chain architecture: execution time vs. N, r, z.

lE-4 0.001 0.01
r

0.1 1

Fig. 5. Chain architecture: number of usable processors vs r.

J. Blaiewicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41 29

In Fig. 6 we have presented the speedup achieved in the network versus N, r and z. The
upper set of curves represents zi = 0.1, and the lower for Zi = 1. The same conclusions
as for Fig. 4 can be derived from Fig. 6. z is a parameter which has a significant

influence on the speedup; it is illustrated for a wider set of z values in Fig. 7.
Now, we are going to comment on including the results consolidation process in

our model. To our knowledge there are two main forms of returning the results. Either

each of the PEs returns a message of a constant length, like saying “yes”, “found”,

returning an identifier of some object, or (otherwise) the PE returns some amount of

data proportional to the data volume it received for processing, e.g. after sorting,
filtering, etc. The first case can be handled in this way: the constant time of the return
communication can be included in r parameter, while the secondcase can be handled

by adding the return communication time coefficient to the z parameters describing
distribution of unprocessed data. Thus, in the second case, the total communication
cost per unit of data in link i would be (1 + B)Zi, where /I is a fraction of the received

data returned in form of the results. Furthermore, if merging of the results on a higher
level PE is necessary we can include it in a similar way by adding, on the right-hand
side of the first N - 2 equations in (l), the merging time as a function of the load. Let

us note that it would not be difficult to incorporate in the proposed model a startup
time related not only to using some communication link, but also a startup time

related to starting computation on a PE. In such a case formulation (1) must be

. .

P

1
DI

.._._ ..____. _~ ., ..,

c
i

0 2 4 6 8 10
N

I-l-F=o.0001+=0.001 8Fo.01 *Fo.1 I

Fig. 6. Chain architecture: speedup vs. N, r and z.

J. Blaiewicz, M. Drozdowski J Discrete Applied Mathematics 76 (1997) 21-41

8

2

*?F1 8 FO.1 8FO.01 +2=0.001

Fig. 7. Chain architecture: Speedup vs. z.

appropriately adjusted. Computation startup and the computation itself on the

transmitter takes place while transmitting to, starting computation on the receiver
and computing on the receiver. Hence, we should add computing startup time of the
transmitter on the left-hand side and the computation startup time of the receiver on
the right-hand side of the first N - 1 equations in formulation (1). The case when the

interception of the load is not instantaneous can be dealt analogously.
Finally, let us remark on the way a PE can split the received load into parts for local

processing and for its neighbors. The distribution of the load can be calculated by the
originator or, when the volume of data is fixed, by the compiler. The distribution
information i.e. how to split the received volumes can be transmitted together with the
data volume. The PE strips the information directed to itself, intercepts the required
amount of the load and sends everything else further on. Hence, the division can be

done in constant time. To include the above in formulation (1) it is necessary to
increase the right-hand sides of the first N - 1 equations by the time spent on
transmission of the additional distribution information.

2.2. Originator inside chain

In this case the originator is not positioned at one of the chain’s ends, but it is some
PE number j. The communication-computation diagram for this interconnection

J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 31

type is analogous to the one in Fig. 2. The set of equations (1) can be reformulated as
follows:

CljUljTcp = rj + (aj+l + Clj+z + .‘. + C(N)ZjTc, + Uj+lWj+lTcp,

aj+Iwj+lTcp = rj+l + (Ej+z + aj+3 + ‘.. + aN)Zj+lTcm + “j+zwj+zTcp,

&IWN-~Tcp = yN-l + ~N(ZN-ITC, + WNT&

(4)

EjWjTcp = lj- 1 + (tll + ~12 + ‘.’ + Clj- l)zj- 1 Tc, + Uj- IWj- ITcp,

Mj-1Wj-1Tcp = rj-2 + (011 + ~(2 + ‘.. + aj-2)Zj-2Tcm + aj-2Wj-2Tcpy

i2w2Tcp = ~1 + ~(~1Tcm + wlTc,)>

a1+a2+a3+ ... +%N=l, a1)..., QBO.

It can be solved in a similar way as (1). Again, the above set of equations and
inequalities is not always solvable. Let us consider an example.

Example 2. Consider a chain consisting of N = 11 identical processors. The origin-
ator is the central PE (j = 6). Tcp = 1, T,, = 1, Wi = 1 for i = 1, . . . , lland zi = 0.1,
ri=O.O5fOri= 1, . . . , 10. Formulation (4) cannot be solved for all possible configura-
tions of the processor numbers in the left and in the right branch of the chain. In Fig. 8
the area of usable PEs configurations is presented. The piecewise line separates the

B the am of usable processor numbers in
.3 the lefi and in the right branch
8 8 ---- .. .- ~~--. --.-.. --.--....--- -... -“--~ .. H0.281

5 4 3 2 1

usable nodea in the kh branch

Fig. 8. Example 2: the area of usable configurations of processors in the chain branches and related

execution times.

32 J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41

area of usable configurations from the area where (4) is not solvable. Each configura-
tions on this line has attached a number describing the processing time for the task in

a given configuration of processors in the left and in the right branch.

Obviously, the shortest execution times are achieved by configurations where the
numbers of usable processors in branches of the chain are maximal. From Example 2,

however, we conclude that the shape of the line separating unsable configurations
(where (4) is solvable) from configurations where some processors are idle ((4) is not

solvable) can be rather complex even for homogeneous network (cf. Fig. 8). Moreover,
if communication links and PEs have different speeds then shape of the line, and the
position of the best configuration, can be less predictable. Hence, when (4) is not

solvable, we suggest to find the best distribution of the load (and PEs configuration)
on the basis of try-and-error search along the line separating usable and not usable
configurations. This can be implemented in O(N) tries. The parameters like equivalent

speed, speedup and utilization can be derived analogously to the case analyzed

previously.

2.3. A loop

The loop interconnection can be dealt with analogously to the chain interconnec-
tion. The situation is slightly different because the last processor j (the one furthest

from the originator which has number 1) can receive data from two links (cf. Fig. 9).
Assume that it is possible to communicate to processor j on two paths: using

processors 1,2, . . . ,j-landl,N,N-l,... ,j + 1. Let us denote by CXJ the amount
of data received by PE j from PE number j - 1, and by c$ the amount of data received
from PE number j + 1. The set of equations (1) can be reformulated as follows:

cclwlTC, = r1 + (a2 + ct3 + “’ + aj- 1 + Ct>)Zl Tc, + CIzWzTcp,

~2w2Tc, =r2+(Ct3+&+ ..* + Uj- 1 + c~>)z~TC, + OZ~W~TC~,

~j- lWj_ 1 Tcp = rj- 1 + a;zj- 1 Tc, + (MS + U;)wjTcp,

tij+lWj+lTcp = rj + $zjT,-, + (ai + ay)wjTq,

Ej+zWj+zTcp = rj+l + (aj+l + a;)zj+lTcm + uj+lWj+lTcp,

;~w~Tcp = TN-~ + (MN-~ + ... + Crj+l + c$)zN_~T~,,, + c~N_~wN-IT~~,

alw,Tc, = rN + (UN i- UN-~ •k .‘. •k clj+ 1 + u;)zNT,, i- c~NwNT~~,

tll + a2 + cl3 + “’ + Uj-1 + CtJ + tL; + aj+l + .‘. + cliy = 1,

ccl, . . .
,

,clj, CC;, ...) UN 2 0.

(5)

In the above formulation we have assumed that the communication to PEj from
both directions must finish at the same time. Only after receiving its whole load can
processor j start computations. Inequalities (5) can be solved in linear time similar

J. Bk&wicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41 33

%W2 ?v3 y-llwj-1

Fig. 9. Loop interconnection.

to the solution of (1) (one has to use the first N - 1 equations to express ai
(i = 1, . . . ,_j - 1,j + 1, . . . , N) as a linear function of aJ and CX~, then the first and Nth

equation describing cr,w,T,, can be used to express a> as a function of a;, finally from
the last equation we obtain a;). Analogous to the case of a chain network, formulation
(5) may not always have a feasible solution. In this case it is not possible to

communicate to the last j-th PE which results in “opening” of the loop. Such an “open”
loop is equivalent to a chain with the originator inside the chain. Thus, we can find
optimal distribution of the load solving (5) O(N’) times by analyzing at most N cases of
differentj locations, and if it results in “opening” of the loop then each of these cases can
be dealt with O(N) trials analogous to a chain with the originator inside the chain.

3. An arbitrary interconnection graph, a tree and a star

In this section we tackle the problem of modelling computations in an arbitrary
interconnection graph. Unfortunately, this problem is NP-hard in general as the
problem of finding the maximum flow in a network with a fixed charging (i.e. when
some cost is imposed if flow on some arc is positive) and Steiner r-branching are
NP-hard [18]. A similar NP-hard problem arises while scheduling file transfers [13].

Thus, finding the optimal schedule of computations and data transfers is computa-
tionally hard.

Suppose, we know which processors in the computer networks are to be used and
by which communication links we have to communicate. We assume that all proces-
sors are accessed by one link, which means that communication in the computer
network takes place over branches of a spanning tree (however, this constraint can be
dealt with analogously to the case of a loop where one processor receives data from
two directions). Without loss of generality, we assume that the originator is placed in the
root of the tree while the other PEs are located in the internal nodes and levels of the
tree. Moreover, for each node which distributes some volume of data we still assume
that it is possible to transmit simultaneously in each link and compute on the node.
The observation that all the processors must stop computation at the same moment of
time is still valid. Hence, for each of the communication links the computation time of

34 J. Blniewicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41

a transmitting PE must be equal to the computation time of a receiver plus the
transmission time. We can formulate a set of constraints on the division of the load
among the PEs:

aiwi Tcp = ‘ij + ZijTcrn C Clk + ajWjTcp for jE O(i), i = 1, . . . , N
kES(.i)

al+a2+a3+ ... +aN=l, al,...,aN>O (6)

where O(i) is a set of PE i immediate descendants, S(j) is a set of all j descendants (not
necessarily immediate), and rij, zij are parameters describing link (i, j) in which i is
a transmitter and j is a receiver.

In the above formulation we have as many equations and unknowns as the number

of the communication links plus 1. When formulation (6) cannot be solved it means
that the given set of PEs and links is infeasible. As it was mentioned at the beginning of
this section, finding the optimum is NP-hard in general.

At the end of this section, let us analyze a simple version of the tree - a star network.
The star network is a very attractive high-level representation of the master - slave
computation model. The communication link parameters can describe not only the

physical layer properties but it can accommodate ail the intermediate layers of the
software and hardware between the master running in the center of the star and the
slave running on a different PE in the arm of the star. Then, solving such a model can
be useful to balance the load between heterogeneous slaves. The complexity of this
problem remains open in general because it is not known whether finding the optimal
set of usable processors and the order of transmissions to the slaves can be determined
in polynomial time. However, special cases can be identified where polynomial-time
solutions exist. Analysis of these cases is based on considering a dual problem to the
one we have considered before. Such a dual problem is finding the maximum volume
of data that can be computed for a given computation time. We assume that the

master intercepts part a1 of the load. The communication links are numbered as the
slaves using them.

First, let us analyze the case of the star in which the master can transmit to all the
slaves simultaneously. A part a1 of the load is computed by the master in time T. Note
that the load already resides at the master and in the case of the master T consists of
computation only. The volume of data that can be computed in time T by PE i, different
from the master can be calculated from the observation that T is equal to the
communication time to that PE plus computation time for that PE. Therefore, we have

T=
i

aI+ T,, for i = 1, i.e. for the master,

Yi + ai(ziT,, + WiTq) for i = 2, . . . , N. (7)

Hence, from Eqs. (7) the capacity of the star, i.e. the amount of the data that can be
computed as a function of the allowed computation time T is

capacity,,,,(T) = -&
N

+ C max 0,
1 CP i=2

J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 35

The above function is piecewise linear and its slope changes at T = ri for i = 2, . . . , N.
Hence, for a given load (equal 1) one has to sort ri values in O(N log N) time, and then
it is possible to identify in O(log N) tries the proper range of T in relation to ri)s. The
optimal processing time of the computational task can be found by linear interpola-
tion, and C(i can be found from Eq. (7).

In the next two cases we assume that master can transmit to only one slave PE at

a time. Consider two PEs in a star network: PEi and PEj described by parameters wi,

Zi, ri, Wj, Zj, Ij, respectively. Assume that these two PEs receive load one after another

(but not necessarily as the first and the second in the star). When PEi receives its load

first, then we will denote the computation time for the couple by T1. Furthermore,
Cli + aj = k because the two PEs must process some amount k E [0, l] of data assigned
to them. Then, the following equations describe the transmission time to both PEs.

T, = Yi + Cli(ZiTcm + WiTcp),

~iWiT,p = rj + aj(zjTcm + WjTcp),

From the above set of equations we get

T1 = ri + (ZiTc, + WiTcp)
kzjT,=, + kWjTcp + rj

ZjTc, + WjTcp + WiT ’ CP

Analogously, for PEj receiving its load first, we have processing time T2 equal to

Tz = rj + (ZjTc, + WjTcp)
kZiT,m + kWiTq + ri

ZiTcm + WiT,p + w.T ’
J CP

From Eqs. (8) and (9) it can be inferred that in two cases one of the two processing
times is smaller than the second one. Namely, for ri = rj = r and Zi = Zj = z we get

T1 - T2 = zT,,
kzT,, + kwjTcp + r kzT,, + kwiT,p + r

zTcm + WiTcp + WjTcp - zT~, + WiTcp + WjTcp

+ Tcp wi
kzT,, + kWjTcp + r

- Wj
kzT,, + kwiT,p + r

zT~, + WiTcp + WjTcp zT~, + wiT,p + WjTcp

kzTc,Tcp(wj - wi) + (kzTc* + r)Tcp(wi - wj) rTcp(wi - wj) = =
zT~, + WiTcp + WjTcp zT~, + WiTcp + WjTcp’

When communication links to both PEs are identical then communicating to the
faster first produces shorter schedule than for the inverted order. Thus, in any
schedule in which communication links are identical and slower PE receives its load

36 J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41

earlier inverting the order reduces processing time of the two and creates free time

space for processing more load. Hence, we conclude that for the case of identical
communication links faster PEs should receive their data earlier. This order of

communications can be fixed in O(N 1ogN) time. We assume now that PEs are

labelled according to the above order. The optimal distribution of the load can be

found from the observation that the computation time on PE i lasts as long as sending
to PE i + 1 and computing on PE i + 1. Thus, we have

OriWiT,p = li + 1 + Ori+l(Zi+lTc, + Wi+lTc,) for i = 1, . . . ,N - 1,

a,+a,+a,+ ... +aN=l. (10)

The above equation set can be solved in O(N) time analogously to (1). Then, in
O(log N) tries the maximum set of usable processors that can be identified (where
a try is solving (10)) and then the optimal distribution of the load can be
found.

For the case where ri = Yj = 0, expressions for T1 and T, become identical except

for the denominators:

Tt = k(ziT,, + wiTcp)
ZjTcrn + WjTcp

zjT,m + WITCH + WiTcp’

T2 = k(zjTc, + WjT&) z,T Zi~~+Tw~~,T .

I cm 1 CP J CP

when zj > zi then PEi has faster communication channel and should be served first.

The rest of the argument is the same as in the case of ri = Ij = r, Zi = Zj = z. Thus, we
have identified three cases when the distribution of the load for the star architecture

can be found in polynomial time.

4. Bus architecture

The bus interconnection gives to a designer of the computer system a great variety
of possible ways of communicating. We can characterize roughly this flexibility by
answering several questions: (1) how many buses are available? (2) which buses are
available to which PEs? (3) which buses can be simultaneously listened to by a given
PE? and (4) which PEs can simultaneously listen to a given bus? The flexibility can be
even greater if we have a system of hierarchical buses. It can be shown that this
problem is NP-hard in a strong sense.

Theorem 1. Finding an optimal schedule of computations and communications in a bus
interconnection system is NP-hard in general.

J. Blaiewicz, M. Drozdowski 1 Discrete Applied Mathematics 76 (1997) 21-41 31

Proof. The problem is obviously in NP. To show its NP-hardness we refer to 3-D
MATCHING problem.

3-D MATCHING

Instance. Disjoint sets W, X, Z such that 1 W 1 = IX I = 121 = q, set

MgWxXxZ.

Question. Is there a three-dimensional match in M, i.e. set M’ c M such that

IM’I = q and each element of W, X, Z appears in M’ exactly once?

Any instance of 3-D MATCHING can be transformed into the instance of decision

version of our problem. Define 3q + 1 PEs and 1 M 1 buses. PEs with numbers 1, . . . , q

correspond to elements in set W, PEs with numbers q + 1, . . ,2q correspond to

elements in the set X, PEs numbered 2q + 1, . . . ,3q correspond to the elements of set

Z. PE number 3q + 1 is an originator. Each bus corresponds to an element of set M.

We assume that each PE can listen to only one bus at a time, while the originator can

transmit on at most q buses simultaneously. No more than three PEs can simulta-
neously listen to the same bus. PEs which correspond to elements of W, X, Z, which

are together in the same element e E M can simultaneously listen to a bus correspond-
ing to e. Furthermore, PEs in range 1, . . . ,3q compute with identical speed equal to 1.
PE number 3q + 1 has wjq + 1 = a= and cannot compute. Communication on each
bus lasts always a unit of time (i.e. Y = 1 and z = 0). We ask if it is possible to compute
the Tcp = T,, = 3q units of data in two units of time.

Suppose the answer to 3-D MATCHING is positive. Then, we use buses corres-
ponding to M’ to communicate to all 3q PEs in the first unit of time. Each PE
computes its share of data in the second unit of time. Now, suppose the answer to our
scheduling problem is positive. This means that all PEs are computing in interval

[l, 21. What is more in the first unit of time there were exactly q groups of three PEs
receiving data, which is equivalent to positive answer to 3-D MATCHING. Other-
wise, some PE does not receive its share of load in time. 0

From the above theorem we conclude that finding optimal distribution of the load
is computationally hard. However, we can still use our methodology provided that we
know which PEs receive on a given bus. Assume that the number of buses is k. The
parameters are rl, zl, r2, z2, . . . ,Q, zk for buses 1,2, . . . , k, respectively. On bus i the
following PEs can receive: il, i2, . . . , iii. PE number y has reciprocal of speed equal to
Wij (cf. Fig. 10 for notation). Originator has reciprocal of speed wl. It can transmit on
all k buses simultaneously. PEs can listen to only one bus and only one PE on a given
bus at a time. We will call such an organization of transfers basic organization.

Note that if we know which PEs use which buses we can establish the order of
receiving data among the PEs on the same bus. It is always advantageous to
communicate to a faster PE first (cf. Eqs. (8) and (9); PEs on bus i have the same Ti and
Zi). In what follows, we assume that PEs on each bus are ordered according to their
speed (the first is the fastest one). As for the previous interconnection types we can

J. Biaiewicz. M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41

al:wl

t’k

Fig. 10. The bus interconnection.

formulate a set of constraints:

QWITC, = r1 + ~IIZITcrn + %lW1lTcp,

~IWIT,, = 2r1 + (aI1 + a12)z1T,, + aI1wIZTcp,

alwlTc, = r2 + a21z2T,, + a21w21T,p, (11)

alwlTcp = 12r2 + z2Tcm f$l azi + wzw2f2Tcp,

alwlTcp = lkrk + z,T,, i ski + akf,wktITcp,
i=l

a1 + i; 5 Czij = 1, 4, all, . . . ,aklt , > 0.
i=l j=l

When the above formulation has no solution then the information about the
feasible assignment of PEs to buses is invalid. Note that there are O(kN) different
assignments of N PEs to k buses in a basic bus organization. Thus, the optimal
solution can be found in polynomial time provided N is fixed. Finding the optimal
solution is NP-hard in general (especially if we admit other bus organizations).

5. Hypercube

A hypercube interconnection of dimension d consists of 2d PEs. Each PE in such
a network can be uniquely labelled by a binary number in the range [0, 2d - 11.

J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 39

A communication link exists between two PEs with labels differing on exactly one
position. PEs and communication networks are homogeneous in hypercube multi-
computers. Let us name by a layer the set of PEs accessed in the same number of hops

(the path to the originator has the same number of intermediate processors). We
assume that the communication-computation process in a hypercube proceeds as

follows. The originator computes locally volume CI~ of data and sends to its d neigh-
bors equal parts of the remaining volume. Neighbors of the originator form layer

number 1. Each of the originator’s neighbors transmits to its d - 1 still idle neighbors

(in layer 2) by d - 1 links. Each of the PEs in layer 2 receives data by 2 links. We can
generalize this and say that in layer i, PEs receive data from i links and retransmits the

rest (not computed locally) in equal shares to d - i still idle neighbors. Due to

symmetric structure of interconnection and the homogeneity of its elements all PEs in
a given layer receive the same amount of data to process. The number of PEs in layer

i is equal to (4). Hence, to find the distribution of the load among the PEs we can
formulate the following set of constraints:

clowTcp = r +
(1 - ~O)ZT,rn + a

d
1

wT

CP’

l-ao- . . -
d

C!iWT,p = r + 0) i
@G zTan

d 0
+ R+lwTcp,

i d-i

=r+.,(++W&),

(12)

There are d equations and d unknowns in (12). If it is unsolvable then not all PEs in
a hypercube can be used for processing of a task because it can be finished in a shorter
time than the communication time needed to reach the furthest processor. By use of

40 J. Blaiewicz, M. Drozdowski j Discrete Applied Mathematics 76 (1997) 21-41

a binary search and dropping of further layers one can find the number of usable

layers in O(log d) tries.

6. Conclusions

In this paper we have presented a simple method which has enabled us to find

a distribution of a computational task among PEs such that the completion time is
minimized. This method allows one to also describe the process of data distribution

during the application execution initialization as well as gives some insight into the
efficiency of a PE’s network. Moreover, it can be applied to balance the load in
a heterogeneous computer network. This method uses a simple linear formulation to
give optimal solution. The main part of the linear formulation consists of equations

describing for each communication link the following relation: the computation time
of the transmitter is equal to the computation time of the receiver plus the commun-

ication time on the link.
Further research in this area may include, for example, considering other intercon-

nection networks (e.g. meshes and tori), other communication paradigms (e.g. other

broadcasting methods), as well as a deeper analysis of the computational complexity

issues.

Appendix

Lemma A.l. The computer network which has the greatest capacity for a given value of

computation time has also the minimal computation time for a given capacity.

Proof. Consider the function capacity(T). If for some computer system i value of
capacityi is greater than for any other system for any T, then the reciprocal

function capacity; ‘(load) is also always smaller than for any other system. q

Lemma A.2. Computer system in which PEs during the whole computation time T either

receive their load or compute on it, has maximal capacity, provided that communication

and computation times are non-decreasing functions of the load.

Proof. Transmission time from originator to PE number i is non-decreasing function
of the transferred load. Computation time on this PE is also non-decreasing function
of the load. Hence, also their sum and reciprocal function of this sum are non-
decreasing functions. Thus, PE i receives and computes maximal load if T is maximal
possible. This rules out idle times between transmission, computation, the beginning
and the end of the schedule. 0

Corollary A.3. Zf there is no return of the results and no results consolidations all PEs
finish computations at the same moment of time.

J. Blaiewicz, M. Drozdowski / Discrete Applied Mathematics 76 (1997) 21-41 41

References
[l] S. Bataineh and T.G. Robertazzi, Bus-oriented load sharing for network of sensor driven processors,

IEEE Trans. Systems Man Cybernet. 21 (1991) 1202-1205.
[2] S. Bataineh and T.G. Robertazzi, Ultimate performance limits for networks of load sharing proces-

sors, CEAS Technical Report 623, State University of New York at Stony Brook (1992).
[3] J.-Y. Blanc and D. Trystram, Implementation of parallel numerical routines using broadcast com-

munication schemes, in: H. Burkhart, ed., Proceedings of CONPAR 90-VAPP IV, Joint International
Conference on Vector and Parallel Processing, Lecture Notes in Computer Science, Vol. 457
(Springer, Berlin, 1990) 4677478.

[4] J. Blaiewicz and M. Drozdowski, Performance limits of two-dimensional network of load-sharing
processors, Foundations Comput. Decision Sci., 21 (1996) 3-15.

[5] J. BIaiewicz and M. Drozdowski, Scheduling divisible jobs on hypercubes, Parallel Comput. 21(1995)
194551956.

[6] J. Blaiewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule
length, IEEE Trans. Comput. C-35 (1986) 389-393.

[7] J. Blaiewicz, M. Drozdowski and J. Weglarz, Scheduling multiprocessor tasks - a survey, Internat.
J. Microcomput. Appl. 13, (1994) 89-97.

[8] J. Blaiewicz. K. Ecker, G. Schmidt and J. Weglarz, Scheduling in Computer and Manufacturing
Systems (Springer, New York, 2nd Ed., 1994).

[9] T. Casavant and J. Kuhl, A taxonomy of scheduling in general-purpose distributed computing
systems, IEEE Trans. Software Eng. 14 (1988) 141-154.

[lo] Y.C. Cheng and T.G. Robertazzi, Distributed computation with communication delays, IEEE Trans.
Aerospace Electronic Systems 24 (1988) 700-712.

[ll] Y.C. Cheng and T.G. Robertazzi. Distributed computation for a tree network with communication
delays, IEEE Trans. Aerospace Electronic Systems 26 (1990) 511-516.

[12] E.G. Coffman Jr., Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976).
[13] E.G. Coffman Jr., M.R. Garey, D.S. Johnson and A.S. LaPaugh, Scheduling file transfers, SIAM

J. Comput. 14 (1985) 744-780.
[14] M. Drozdowski, Scheduling multiprocessor tasks on hypercubes, Bull. Polish Academy Sci. Tech. Sci.

42 (1994) 437-445.
[15] J. Du and J.Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J. Discrete Math.

2 (1989) 473-487.
[16] D. Feitelson and L. Rudolph, Gang scheduling performance benefits for fine-grain synchronization,

J. Parallel Distributed Comput. 16 (1992) 308-318.
[17] R. Hackney. Performance parameters and benchmarking of supercomputers, in: J.J. Dongarra and

W. Gentzsch, Eds., Computer Benchmarks (Elsevier, Amsterdam, 1993) 41-64.
[lS] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988).
[19] B. Veltmann, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication delays,

Parallel Comput. 16 (1990) 173-182.

