@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533

Static and Strong Typing for Extended Mathematica

Peter Fritzson

Department of Computer and Information Science
Linkoping University, S-581 83 Linkdping, Sweden
Email: petfr@ida.liu.se

Phone:+46 13 281484, Fax: +46 13 284499

Abstract

There are at least three reasons why a static type system is a useful extension to
Mathematica: A type checker can find errors during software development in Math-
ematica; Object oriented typing is useful for handling complexity when building
large applications or equation-based simulation models; Precise static type informa-
tion is needed for efficient internal compilation of Mathematica as well as for auto-
matic translation to efficient code in languages such as C++ or Fortran.

This paper presents a short overview of the syntax and semantics as well as ra-
tionale for a static type system designed to be well integrated into Mathematica. A
static type system makes it possible to find type errors in the whole program before
execution starts, in contrast to the standard dynamic type checking of Mathematica
which only finds type errors in parts of the program during execution. The type sys-
tem includes basic types, array types, record types, typed variables, typed functions
and object oriented constructs. The syntax of the type extensions is standard Math-
ematica, and the implementation is entirely within Mathematica.

1 Introduction

This paper informally presents a static type system designed to be well integrated
into Mathematica. Declarations are introduced to associate static types with Math-
ematica objects. The syntax is Mathematica compatible, which makes it possible to
use the type extensions in ordinary Mathematica code. There are several reasons
why a static type system is a useful extension to Mathematica:

® Precise static type information is needed for generation of efficient executable
code.

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533

154 Innovation In Mathematics

® A type checker is useful for finding errors during software development in
Mathematica.

® Object oriented typing is useful to handle complexity when building large
applications and equation-based simulation models.

Additional requirements of a type system are:

® Fase of use. The type system should be easy to understand and use.

® Readability and standardization. The type notation should be readable, and
conform to common program language standards, as well as conform to relevant
Mathematica conventions.

® Compatibility. Typed Mathematica code should execute together with untyped
code. Adding type information should be a pure extension—existing code
should in general not need to be changed.

First we discuss the motivation behind a static type system in some more detail.

1.1 Types for code generation

Precise static type information is needed for translating Mathematica into efficient
code in languages such as Fortran90 and C++. It is also needed for more efficient
internal compilation of Mathematica to efficient code as evidenced by the type in-
formation parameters to the standard Mathematica Compile function. Experience
from our earlier work on code generation to C++ and Fortran from the ObjectMath
[1,2,4] extension to Mathematica made it clear that precise static type information
could not be automatically deduced from dynamically typed Mathematica code in
all cases, especially when arrays are involved. Therefore declaration of static type
information was introduced. However, in many cases static type information can be
derived automatically through type inference.

1.2 The need for type checking

Debugging Mathematica programs can be hard. Simple spelling errors and other
mistakes may cause pattern matching to fail, which causes huge unevaluated ex-
pressions to be returned to the user. It is usually not so easy to realize where the
source of the error is located. Partial dynamic type checking of function parameters
can be turned on, but will only be able to catch errors for the particular test cases
which are used during debugging and testing.

A static type checker can be of great help here, in finding simple mistakes such
as spelling errors of variables or function names, wrong number of arguments to
functions, mismatch of actual argument types and formal parameter types, etc.
Concerning parameter types, most builtin Mathematica functions have numeric
parameters which will be assigned the type Real in the static type system. The
static type Real is of course an approximation, since there are several numeric

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533

Innovation In Mathematics 155

forms in Mathematica such as infinite precision numbers and fractions. However,
the approximation to Real fits well with code generation to statically type
languages such as Fortran90 or C++ as well as being a reasonable static type
approximation for execution within Mathematica, since the exact numeric type may
change dynamically during execution.

A relevant question is whether the static type system will be able to detect
enough errors, since most functions are numeric anyway, and declaring the type
Real for function parameters and results will not add that much information. There
are however many functions which accept parameters that are vectors and arrays of
different forms, and for which precise type information is quite useful for type
checking. Additionally, checking the number of function parameters and whether a
function or variable has been declared will catch many common mistakes by
Mathematica programmers.

1.3 Types for object oriented simulation modeling

Simulation models are usually constructed to simulate some model of aspects of the
external world. This is precisely where object orientation is most useful. For exam-
ple, typical mechanical systems consist of a number of mechanical components
which can be described by classes containing equations that describe motion, forc-
es, material properties, etc. Simulation models of mechanical and other systems can
be put together by connecting such objects from class libraries. For example, a car
contains connected objects such as motor, transmission, wheels, etc. Inheritance
provides reuse of equations and function definitions when inheriting from general
classes to more application specific instances. Thus, object oriented type and class
mechanisms provide structuring and reuse when building mathematical simulation
models of physical systems.

2 Typed declarations

When introducing declarations and static typing as an extension to Mathematica,
some keywords and names need to be reserved. The chosen keywords should pref-
erably not be used for other purposes within Mathematica, be intuitive and easy to
understand, and correspond to common practice in other programming languages.

The same requirements hold for the syntax of typed definitions. It should be
readable, easy to use, be compatible with Mathematica syntax, and correspond to
common programming language conventions.

2.1 Declarations in packages

The notion of declaration is already present in standard Mathematica, although it is
not very pronounced. A Mathematica package can be regarded as a sequence of un-
typed variable and function declarations each of which may be ended by semicolon.

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533

156 Innovation In Mathematics

For example:
BeginPackage ["ExamplePackage"]

varnamel;
varname?2;

funclla_,b_] = ...;
func2[x_,v_1 = ...;

EndPackage[]

The untyped “declarations” of variables varnamel and varname2 introduce these
names into the name context of the package. The “declarations” of functions funcl
and func2 define these functions.

Declaration separators and end-markers

Notice the use of semicolon in the above package example as an end-marker and
separator between declarations, which is allowed for definitions at the package level
in standard Mathematica. This is consistent with declaration syntax in common pro-
gramming languages such as Java, C, and C++, etc.

Unfortunately, currently there are three mutually inconsistent syntax options for
ending or separating declarations in Mathematica: At the package level declarations
are ended by a semicolon or new line, whereas declarations of local variables are
separated by comma. Such inconsistency easily gives rise to unnecessary syntax
errors, especially when cutting and pasting declarations between different scope
levels.

Therefore, regarding typed declarations we will chose semi-colon as a universal
separator and end-marker for declarations at all levels, including declarations within
classes and packages, local declarations, and field declarations within records.
However, the other two syntax options are still supported as in standard
Mathematica for reasons of compatibility.

2.2 Basic types

The basic type names Real, Integer, Complex, Symbol, and String etc. are al-
ready defined by Mathematica to be used in patterns and as head tags of basic ob-
jects. However, since the meaning of these words are essentially the same when
used in a static type system, there should not be a problem to reuse these type names.
To choose other names would be confusing for the user.

We introduce the type name Boolean as the type of values True or False, and
Null to indicate the empty type or absence of type, e.g. for a procedure that does
not return any data value.

The type name AnyType indicates that an object may have any type, which is
useful to describe the type of certain objects, e.g. the element type of an array that

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533
Innovation In Mathematics 157

may contain a mixture of objects such as real numbers, integers, strings, etc.

2.3 Patterns versus types

Are Mathematica patterns the same as static types? One might be tempted to answer
yes to this question since both notions describe sets of objects which fulfill a pattern
or type constraint. There are however certain differences between patterns and

types:

® A pattern language is designed to express structural properties to be dynamically
tested during execution, whereas a static type system describes properties to be
checked statically before execution starts. This tends to influence the pattern and
type notation.

® (Certain aspects of the static type system, e.g. user-defined type names, record
types, arrays, classes, etc. do not fit well into the Mathematica pattern language.

® Static type information can be approximate when used for type checking. For
example, our Real type is an annotation that tells the system that a certain object
(e.g. a function call) has a potential numeric (non-integer, Real or Rational)
value if all arguments to such an object are numeric and not symbolic.

® Precise static type information is needed for generation of efficient code in
statically compiled languages. Sometimes this information must be provided by
the user to obtain the precise intended meaning for generated code.

Since one of our basic requirements is that static type information should not change
the behavior or degrade performance of interpreted Mathematica code, we have
made the design choice to declare static type information for functions separated
from the function parameter patterns.

2.4 Typed function declarations

Regard the following three variants of the same untyped function £2 in Mathemat-
ica, for which the second and third rules are attempts to include some type informa-
tion:

f2[(x_]1 := x+2;
f2[x:_Integer] := x+2;
f2[x:(_ | _Integer)] := x+2;

The first definition of £2 works for both symbolic and numeric arguments, which
is often what the user intends, e.g. when producing symbolic expressions that will
eventually be computed numerically. If an _Integer pattern is provided as a pa-
rameter “type” in the second definition, the function will unfortunately no longer
work for symbolic arguments such as names of variables with potential integer val-

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533
158 Innovation In Mathematics

ues. The third definition can both handle symbolic arguments and provide some
type information, but may collide with some uses of Alternative (|) and still
does not specify a function return type.

Therefore, for reasons mentioned in the previous section we provide the
argument types and the function type separately in a function signature in front of
the function head, similar to Java, C, C++. An arrow in the signature indicates
mapping from input argument types to output result types. Some examples are
shown below.

(Real->Real) sin2[x_] := Sin([x]+2.0;
(Real->Null) myprint([x_] := Print([x];
({}->Real) myrandom[] := Random|[];
({Integer,Real}->Real) myfunc(x_,y_] 1= xtyry;

({Real,Real}->Integer
) sincos3(x_,y_] := Sin(x]+Cos[y]l+myfunc(x,y];

Below is the FullForm of the first definition (sin2). As can be seen, the blank(s)
between the signature and the function head give rise to a Times [] node, whereas
the arrow from argument types to result type becomes a Rule [] node.

SetDelayed]|
Times [Rule[Real,Real], sin2[Pattern(x,Blank([]]] 1,
Plus[Sin(x],2.]

]

Since Times [] nodes are essentially never used as function names in normal Math-
ematica code, SetDelayed can for Times [] nodes be redefined to perform the
special action of storing away type information in a symbol table, as well as defin-
ing an untyped sin2 function as usual. This stored type information is then used for
type checking and code generation.

Type arguments to the Mathematica Compile function

The example below illustrates the rather drastic changes that need to be done to a
typical user-defined function such as sincos3, in order to use the standard Math-
ematica Compi le function. This violates our requirements of compatibility and co-
existence with interpreted Mathematica code and makes the function definition
much less readable. Therefore this notation is not a viable option for typed Mathe-
matica function definitions.

sincos3 = Compile[{{x, _Real}, {y, _Reall},
Sin[x]+Cos[yl+myfunc(x,vyl,
{{myfunc[__], _Integer}}]

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533
Innovation In Mathematics 159

2.5 Typed declarations

The types of global variables also need to be declared. We introduce the var [] de-
clarator for declaring variables, as in the example package below:

BeginPackage ["TypedExamplePackage"]

Var |
Real varnamel;
Integer varname?2;

1i

({Real,Real}->Real) myfunclx_,y_] := x+y*y;

({Real,Real}->Real) sincos(x_,vy_] =
Sin[x]+Cos[y]+myfunc(x,v];

EndPackage[]

User-defined type names are declared via the Type [] declarator:

Type
MyReal = Real;
MyInt = Integer;

MyArrl1l0 = ArrayOf[Real, {10}];
17

2.6 Type constructors and array types

A type constructor is a constructor that can create types, and may have types or other
entities as arguments.

For example, ArrayOf£ is a type constructor for the creation of array types. As
an example, ArrayOf [Real, {10}] is a type for vectors of length 10 containing
real numbers. The Array0f keyword was chosen to avoid collision with the already
existing Mathematica Array function.

2.7 Record types
Record type declarations are introduced through the RecordType declarator:

RecordType [PersonType = Person[Real age; String name]l];

A record type may contain several variants of records, where each variant is tagged
by a specific data constructor. The vertical bar operator (|) separates the record
variant alternatives. A record alternative may be without field specifiers, in case a
constructor with no parameters is given.

RecordType [SimpleExpr = INT
| REAL

@ Transactions on Engineering Sciences vol 15, © 1997 WIT Press, www.witpress.com, ISSN 1743-3533
160 Innovation In Mathematics

XPLUS [Expr; Expr]

XMINUS [Expr; Expr]

XTIMES [Expr argl; Expr arg2]
XDIV[Expr argl; Expr argl]

1;

This type declaration creates the type SimpleExpr and defines the data construc-
tors INT, REAL, XPLUS, XMINUS, XTIMES and XDIV.

2.8 Object oriented constructs

The static type system also contains object oriented constructs such as Class,
based on the ObjectMath[1,2,4] extension to Mathematica. A Class can contain
functions (i.e methods), variables and other classes. This most recent version of the
object oriented constructs has been designed to be compatible with the Modelica[5]
modeling language, with some influence from Java. A class example is shown be-
low.

Class[BiCycle[C,P]; Extends [TwoWheeler [C]];
Class[frontwheel; Extends|[Wheel[P]]; 1;
Class[rearwheel; Extends [Wheel [P]]; 1;
Class[frame; Extends [Body]; 1;

1; (* end BiCycle *)

Conclusion

We have presented a short overview of some aspects of the syntax, semantics as
well as design rationale for a static type system extension to Mathematica, with ap-
plications in type checking, better code generation and simulation tools based on
Mathematica.

References

[1] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan Herber. High Level Mathemati-
cal Modeling and Programming in Scientific Computing. IEEE Software, pp. 77-
87, July 1995.

[2] Lars Viklund, Peter Fritzson: ObjectMath — An Object-Oriented Language and En-
vironment for Symbolic and Numerical Processing in Scientific Computing. Scien-
tific Programming, Vol. 4, pp. 229-250, 1995.

[3] Stephen Wolfram. The Mathematica Book, Wolfram Media Inc., 1996.

[4] ObjectMath Home Page, http://www.ida.liu.se/labs/pelab/
omath.

5] Modelica Home Page, http://www.Dynasim.se/Modelica.

