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Abstract— In overdeployed sensor networks, one approach to
conserve energy is to keep only a small subset of sensors active at
any instant. In this article, we consider the problem of selecting
a minimum size connected

�
-cover, which is defined as a set of

sensors � such that each point in the sensor network is “covered”
by at least

�
different sensors in � , and the communication

graph induced by � is connected. For the above optimization
problem, we design a centralized approximation algorithm that
delivers a near-optimal (within a factor of �������
	�� ) solution, and
present a distributed version of the algorithm. We also present a
communication-efficient localized distributed algorithm which is
empirically shown to perform well.

I. INTRODUCTION

Wireless sensor networks are often deployed for passive data-
gathering or monitoring in a geographical region. An important
issue here is to maintain the fidelity of the sensed data while
minimizing energy usage in the network. Energy is spent due
to message transmissions among sensor nodes, or due to the
sensing activities by the signal processing electronics. Energy
can be saved if these activities are used only to the extent
absolutely needed, and no more.

In this article, we address the two important characteristics,
viz., coverage and connectivity of a sensor network and design
a fault-tolerance scheme for energy conservation. In most
deployment scenarios, it is cost-effective to deploy sensors
randomly in a redundant fashion [1], [2], since the sensor
hardware is generally cheap relative to the cost of deployment.
In such highly redundant sensor networks, it will be useful to
select a “minimally sufficient subset” of sensors to keep active
at any given time – thus conserving energy and prolonging the
sensor network lifetime. In particular, we can choose to keep
active a minimum 
 -cover which is informally defined as a set
of sensors such that each point in the given region is “covered”
by (i.e., within the sensing radius [3] of) at least 
 distinct
sensors. The set of active nodes must also induce a “connected”
communication topology so that they can collectively transmit
data to a central node. Here, 
 is a configurable parameter, and
larger value of 
 could be used when sensors have a higher
chance for failure, or when sensor data can be very noisy. In
this paper, we design various algorithms to select a minimum
number of sensor nodes that form a connected communication
graph and also provide 
 -coverage.

The rest of the paper is organized as follows. In Section II,
we discuss previous work done in the context of connectivity
and coverage in sensor networks. In the following section,
we present various algorithms for the connected 
 -coverage
problem. Simulation results that compare the performance of

various algorithms is presented in Section IV. We end with
concluding remarks in Section V.

II. RELATED WORK

Recently, there has been a lot of research done to address the
coverage problem in sensor networks. In particular, the authors
in [4] design a centralized heuristic to select mutually exclusive
sensor covers that independently cover the network region. In
[3], the authors investigate linear programming techniques to
optimally place a set of sensors on a sensor field (three dimen-
sional grid) for a complete coverage of the field. Meguerdichian
et al. ([5]) consider a slightly different definition of coverage
and address the problem of finding maximal paths of lowest
and highest observabilities in a sensor network. Connectivity
is also a fundamental issue in wireless ad hoc environment,
and many schemes have been proposed to address the issue of
energy efficiency while maintaining connectivity in the network
topology ([6], [7], [8]).

Researchers have also considered connectivity and coverage
in an integrated platform. In [9], the authors consider an
unreliable sensor network, and derive necessary and sufficient
conditions for the coverage of the region and connectivity of the
network with high probability. The PEAS protocol [1] considers
a probing technique that maintains only a necessary set of
sensors in working mode to ensure converage and connectivity
with high probability under certain assumptions. In our prior
work [10], we designed a greedy approximation algorithm that
delivers a connected � -cover within a ����������� factor of the
optimal solution. Wang et al. [2] is the first and only work
to address the connected 
 -coverage problem. They present a
localized heuristic for the problem, but their heuristic does not
provide a guarantee of the solution size returned. In addition,
they assume that any two sensors with intersecting sensing disks
can communicate directly with each other. In this article, we
generalize our prior work in [10] to the connected 
 -coverage
problem and design a greedy algorithm that returns a solution
within ����������� factor of the optimal. We also design a localized
distributed algorithm based on node priorities that is shown to
perform well in practice.

III. CONNECTED 
 -COVER

In this section, we address the problem of constructing a
connected sensor 
 -cover, wherein each point in the query
region is covered by at least 
 distinct sensors. Each sensor�

is stationary and is associated with a fixed sensing region
which is assumed to be a disk of radius ��� . Also, each sensor



can directly communicate with some of the sensors around it
based on a fixed communication graph (as defined below).

Definition 1: (Sensor Covering a Point) A sensor
�

is said
to cover a point � , if the distance �����! � � between � and

�
is

less than �"� , the sensing radius of the sensor.
Definition 2: (Communication Graph; Communication Dis-

tance) Given a sensor network consisting of a set of sensors#
, the communication graph for the sensor network is the

undirected graph $�% with
#

as the set of vertices and an
edge between any two sensors if they can communicate directly
with each other. The communication subgraph induced by a
set of sensors & is the subgraph of $�% involving only the
vertices/sensors in & .

Definition 3: (Connected 
 -Cover) Consider a sensor net-
work consisting of a set

#
of � sensors and a query region ')( .

A set of sensors *,+ # is said to be a connected 
 -cover for
the query region if the following two conditions hold:

1) each point � in '-( is covered (as defined above) by at
least 
 distinct sensors in * ,

2) the communication graph induced by * is connected.
A set of sensors that satisfies only the first condition is called
a sensor 
 -cover for the query region '�( .

Connected 
 -Coverage Problem: Given a sensor network and
a query over the network, the connected 
 -coverage problem
is to find a connected 
 -cover of smallest size.

The connected 
 -coverage problem is NP-hard as it is a
generalization of the connected 1-coverage problem which is
already known to be NP-hard [10].

A. Greedy Algorithm for Connected 
 -Cover

In this section, we present the Greedy Algorithm for the
connected sensor 
 -coverage problem. The Greedy Algorithm
is a generalization of the centralized approximation algorithm
in [10] for the connected 1-coverage problem. Informally,
the Greedy Algorithm maintains a set * of selected sensors
and at each stage, adds a candidate path of sensors with
most “ 
 -Benefit” (defined later). We show that the greedy
algorithm based on the above concept of adding a candidate
with maximum 
 -Benefit will deliver a solution that is within
����./��01�2
3��� factor of the optimal sensor 
 -cover (not neces-
sarily connected), where . is the link radius (defined later) and
� is the size of the sensor network.

Definition 4: (Candidate Sensor; Candidate Path) Let *
be a set of already selected sensors. A sensor 4 is called a
candidate sensor if 4657 * and there is a sensor 8 7 *
such that ���94: ;8<�>=?�A@/BC�"D , i.e., the sensing region �!@ of 4
intersects with the sensing region ��D of some sensor 8 in * .

Given a set * of already selected sensors, a candidate path
is a sequence/path of sensors =E��F1 G�IHJ LKLKMKL G�ONQP such that ��F is a
candidate sensor, ��N 7 * , ��RS57 * for T2=VU , and the sequence
of sensors forms a communication path in the communication
graph of the sensor network.

Definition 5: (Subelement; Valid Subelement) A subelement
is a set of points. Two points belong to same subelement if

and only if they are covered by the same set of sensors. If
a subelement intersects with a given query region, then it is
called a valid subelement.

Definition 6: ( 
 -Value of a Sensor Set) Given a sensor
network and a query region, the 
 -Value of a set of sensors
� is denoted as WX�G�E Y
Z� and is defined as the sum of the
total number of times (bounded by 
 ) each valid subelement
is covered by the sensors in set � . More formally, the 
 -Value
of a set � of sensors, WX�G�E Y
Z� , is computed as:

WX�G�E Y
Z�\[^]_Y`1a �98cbed
�9
3 f]gY`ih �9jk�Gli nmo�;�;�p 
where q is the set of valid subelements, and jk�9le Ymo� is 1 if the
subelement l is covered by the sensor m , and else 0.

Definition 7: ( 
 -Benefit of Candidate Path) Consider a can-
didate path r and set of already selected sensors * . The 
 -
Benefit of r with respect to * is defined as: �GWs�t*vuwrx Y
Z�Oy
Ws�t*? z
{�;�z5|�z} *~ucrs}oy�} *�} �pK

Algorithm 1: (Greedy Algorithm)
Input: A set of sensors

#
and a query region 'w( .

Output: A connected 
 -cover * .
BEGIN

Let * be the set of sensors already selected
by the algorithm at a given stage.
*���[?� �O� , where

�
is any sensor whose

sensing region intersects with ' ( .
while ( ' ( is not 
 -covered by * )

Find the candidate path �r that has the
maximum 
 -Benefit with respect to *
*�[�*�u �r ;

end while
RETURN M;

END �
Definition 8: (Communication Distance; Link Radius) The

communication distance between a pair of sensors is the
distance (minimum number of hops) between the two sensors
in the communication graph.

The link radius of a sensor network is the maximum com-
munication distance between any two sensors whose sensing
regions intersect.

Theorem 1: The above described Greedy Algorithm returns
a connected 
 -cover set of size at most .k�9��0i�2
3���M} ��r���} ,
where } ��r���} is the size of the optimal sensor 
 -cover (not
necessarily connected), � is the size of the sensor network, and
. is the link radius of the sensor network.

The proof of the above theorem is similar to the proof in [10]
for the greedy algorithm for connected 1-cover.
Distributed Greedy Algorithm. Now, we briefly describe the
distributed version of the above described Greedy Algorithm.
The distributed version is along the similar lines as the Dis-
tributed Approximation algorithm in [10] for connected 1-cover.
As in [10], we make certain optimizations to reduce the overall
communication overhead.

Initially, a random sensor whose sensing region intersects
with the query region is chosen to be in * . Then, each stage
of the algorithm consists of the following distributed phases:



� Candidate Path Search(CPS): The most recently added
candidate sensor $ broadcasts a Candidate Path Search
(CPS) message to all sensors within �:. -hops, along with
the information about the most recently added path.� Candidate Path Response(CPR): Any unselected sensor�

that receives a CPS message checks whether it is a new
candidate sensor, i.e., if its sensing region intersects with
the sensing region of any sensor already selected in the
most recently added candidate path �r .1 If so, the sensor�

sends back a CPR message to the sensor $ (original
sender of the CPS message) along with the path of sensors
connecting

�
to $ , which forms the candidate path.� Selection of Best Candidate Path/Sensor: At receiving

each CPR message, the node $ adds the received can-
didate path r to the set of candidate paths $�r being
maintained. After gathering all the CPR messages, the
sensor $ finds the candidate path rE� _Q� that has the most

 -benefit. Let the associated candidate sensor be $�� _Q� .
The candidate path rE� _Q� is added to * , and the new *
along with the new set of candidate paths is sent to $�� _Q� .� Repeat: Repeat the above three phases until the query
region ' ( is 
 -covered by * .2

B. Distributed Priority Algorithm

While the Distributed Greedy algorithm is based on an
approximation algorithm with a performance guarantee, it needs
to carry around a central state (the intermediate solution * ) via
messages. This makes the algorithm prone to message losses
and also the size of messages potentially large. In this section,
we present an alternate localized approach that uses small and
constant size messages. We refer to the alternate approach as
the Distributed Priority algorithm, as it uses a notion of node
priorities. In the Distributed Priority algorithm, each sensor uses
only local neighborhood information, thus more fault tolerant
and keeping the number and size of messages small. However,
there is no guarantee on the size of the connected 
 -cover
delivered.

Basic Idea. The distributed priority algorithm is based on
the following idea. A node

�
is not needed for connectivity

if all pairs of immediate neighbors of
�

have an alternate
communication path not involving

�
. And, a node is not needed

for 
 -coverage if each point in its sensing region is covered
by at least 
 other sensors. Thus, if a node

�
satisfies both

the above conditions, its deletion would preserve connectivity
and 
 -coverage of the sensor network. Hence, such a node�

is marked deleted. Node priorities are used to prevent
cyclicity of conditions. In particular, only lower priority and
non-deleted nodes are used for satisfying conditions of a
given node. To determine alternate paths between pairs of
neighbors without incurring unreasonable communication cost,
we limit ourselves to � -hop neighborhood search, i.e., among

1If a node’s sensing region intersects with previously added nodes in � ,
then it would have been added as a candidate sensor at an earlier stage.

2Since, each candidate path added includes some new sensors, the algorithm
is guaranteed to terminate.

neighbors that are within a communication distance of � . We
choose �\[�� for our simulations.

Algorithm Description. The distributed Priority algorithm
works as follows. First, each sensor node assigns a random
number as a priority to itself.3 Then, each node gathers U�[
8�bid
���f z.J� -hop information (including node priorities), where �
is the constant as described above and . is the link radius of
the sensor network. Let r�� � � be the priority of a node

�
. Each

node
�

periodically tests for the following set of conditions and
marks itself deleted if they are satisfied.4

C1: In the communication subgraph induced over the set
of non-deleted nodes in the U -hop neighborhood
of
�
, each pair of neighbors of

�
is connected by a

communication path with intermediate nodes having
priorities lower than r�� � � . This condition ensures that
deletion of

�
will preserve the connectivity of the

communication subgraph induced by the set of nodes
not marked deleted. In [11], Wu et al. use a similar
condition for constructing a connected dominating set.

C2: There is a set of sensor nodes � within U -hop neigh-
borhood, such that every sensor node in the set � has
a priority lower than r�� � � and the sensing region of

�
is 
 -covered by the sensor nodes in � . Note that �
may contain a sensor node that is marked deleted.

The deleted marking of a node is permanent and at
the end, some of the nodes may be left unmarked. If the
communication graph of the initial sensor network is connected,
the Distributed Priority algorithm guarantees that the set of
nodes that have not been marked deleted forms a connected

 -cover at any intermediate stage of the algorithm.

Message Communications. Initially, each node needs to gather
U/[����J�"���f z.J� -hop neighborhood information. If � is the total
number of sensor nodes in the network, U -hop neighborhood
information can be gathered using U�� messages in U phases as
follows. In the first phase, each node broadcasts its neighbor-
hood information to its neighbors. In each of the remaining
�9U!y���� phases, each node collects information transmitted by
all its immediate neighbors, and broadcast all the collected
information to all its immediate neighbors. At the end of U
phases and U�� total messages, it is easy to see that each node
would have the complete U -hop neighborhood information.

After the initial accumulation of U -hop neighborhood infor-
mation, whenever a node is marked deleted, it informs its
immediate neighbors of its deleted status, so that they could
retest their C1 condition. This can be done using one message
transmission for each node that is marked deleted. Note
that an unsatisfied C1 condition of a node can become true
only by deleted markings of some of its communication
neighbors. In addition, it can be shown ([11]) that once the
C1 condition is satisfied for a node

�
, the deletion of

�
will

3Considering more complicated priority functions based on node degree
and/or overlapping area did not result in any performance improvement.

4The nodes whose sensing region do not overlap with the query region do
not participate in this process.



always preserve connectivity in the communication subgraph
induced by the non-deleted nodes, even if other nodes get
marked deleted. Since, message losses only result in some
nodes not getting marked deleted, the Distributed Priority
algorithm always results in a connected 
 -cover even in case
of loss of messages.

Theorem 2: The Distributed Priority algorithm correctly
computes a connected sensor 
 -cover.

The Distributed Priority algorithm incurs low communication
overhead since each sensor makes a decision based only on
local information. In addition, the Distributed Priority algorithm
generates a connected sensor 
 -cover of size close to that
delivered by the centralized approximation Greedy Algorithm,
as shown in the simulation results in Section IV.

C. K-Connectivity and K-Coverage

In the previous section, we addressed the fault-tolerance
of connected sensor cover from the perspective of coverage.
In this section, we consider fault-tolerance in connectivity as
well as coverage. In particular, we address the problem of 
 -
Connected 
 -Cover, wherein each point in the query region is
covered by at least 
 sensors and there are at least 
 node-
disjoint paths between any pair of sensors in the selected set
of sensors.

Below, we show that in a sensor network wherein each
sensor has the uniform sensing and transmission radius of �
and � respectively where �����1� , 
 -coverage implies 
 -
connectivity. Although this conclusion is also proved in [2] for
convex query region, we show using a much simpler proof
the implication actually holds in any closed area. Below, we
formally define the concept of 
 -connected set.

Definition 9: ( 
 -connected set) The set of sensors * is a

 -connected set if there exists 
 node-disjoint communication
paths between every pairs of nodes in * in the communication
graph induced by * . Note that if * is a 
 -connected set, then
to disconnect the communication graph induced by * , at least

 nodes must be deleted from * .

Definition 10: (Coverage graph) Let * be a set of sensors
in a sensor network. The coverage graph of * is a graph over
the set of nodes * where an edge exists between two nodes
if their sensing regions intersect.

Lemma 1: In a sensor network with uniform sensing and
transmission radius of � and � respectively, where � �¡�i� ,
the coverage graph of a set of sensors * is a subgraph of the
communication graph of * .

Lemma 2: Given a sensor network with uniform sensing and
transmission radius of � and � , and a closed query region ')( .
If a set of nodes * is a sensor 1-cover, then * ’s coverage
graph is connected.

Theorem 3: Given a sensor network with uniform sensing
and transmission radius of � and � such that �v� �i� , and
a closed query region ' ( . If a set of nodes * is a sensor

 -cover, then * is also a 
 -connected set.

Proof: Since * is a 
 -coverage set, removing less than

 nodes maintains the 1-coverage of * . By Lemma 2 and
lemma 1, that implies that if less that 
 nodes are deleted from

* , the coverage graph of * is still connected and hence, the
communication graph of * remains connected. Thus, * is
also a 
 -connected set.

IV. PERFORMANCE EVALUATION

In this section, we present the result of our simulations
that we ran to compare the various algorithms described in
the previous sections. We ran our algorithms on randomly
generated sensor networks wherein a certain number of sensor
nodes are placed randomly in an area of ¢e£�¤<¢i£ unit square.
We assume that the query region is the entire sensor network
region. Each sensor has a uniform sensing radius of 4 units. We
vary the network size � from 1000 (which is barely enough
to generate a connected 8-cover) to 4000 (which provides
substantial redundancy) randomly placed sensors. Also, we
vary the transmission radius � of sensor nodes from 2 units
to 12 units. Below, we present the comparison of various
algorithms presented in this article for connected 
 -cover,
viz., Centralized Greedy, Distributed Greedy, and Distributed
Priority. In addition, we also plot the performance of the naive

¥�ST¦8�lom-�"y�%�.Jlol��i§ algorithm which works by executing the
centralized greedy algorithm of [10] for connected 1-cover 

times.

Calculation of the link radius ( . ): We use the same method-
ology as in [10] to compute the link radius . of a sensor
network. In particular, we define dense networks as networks
with more than ¢emJ5J� sensors within a distance �im . For a 40 ¤ 40
area, a dense network should have at least �G¨1£©5o�;�Yª sensors.
Thus, for dense networks, we use .�[«�t�1mJ5o��B��o� . For a non-
dense network, we simply use a proportionate density factor
to “inflate” the value of . , i.e., for a network with � sensors
where �{=��9¨i£e5J�;�¬ª , we use .)[­�t�1mJ5o�AB®���A¯-�;�G¨1£©5o�;�;ª�5J��� .
Solution Sizes. We plot the size of connected 
 -cover deliv-
ered by various algorithms in Figure 1 and Figure 2 for various
values of sensor network sizes, transmission radii, and coverage
degree 
 . Figure 1 plots the size of the connected 4-cover
delivered by the algorithms. Note that the size of the solution
selected by the algorithms is much less than the network size.
We see that the solution size does not decrease much with
increase in � implying that the solution obtained for �3[­��£1£i£
itself is of size quite close to the optimum size. Also, we
observed that random sensor network of size even less than
1000 was not redundant enough to yield a connected 4-cover.

From Figures 1 and 2, we can see that the solution size
delivered by the Distributed Greedy algorithm is very close
to that delivered by the Centralized Greedy algorithm. This
observation validates the accuracy of our computation of the
link radius and also shows that the optimizations made in the
Distributed Greedy does not compromise much on the solution
size. Moreover, we can observe that the solution size returned
by the Distributed Greedy is noticeably smaller (better) than
that returned by the Distributed Priority algorithm, which is
expected since the Distributed Priority algorithm is a localized
algorithm. However, the “gap” between the Distributed Priority
and Distributed Greedy algorithm doesn’t increase with the
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(b) Sensor network size = 3000 sensors.
Fig. 1. Size of connected 4-cover delivered by various algorithms for various network sizes and transmission radii.
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(b) Transmission radius = 8 units.
Fig. 2. Size of connected ° -cover delivered by various algorithms for various values of ° . Here, the network size is 3000 sensors.

increase in any of the parameter values (coverage degree 
 ,
sensor netowrk size � , and transmission radius � ). Finally,
as expected, we see that the solution returned by the 

Times 1-Greedy Algorithm is significantly worse than the other
algorithms except for very low 
 and high transmission radius,
and the performance of 
 Times 1-Greedy Algorithm worsens
with the increase in 
 .
Communication Cost. Let � be the size of the sensor network.
The communication cost incurred during the initial phase of
Distributed Priority is 8cbed!�t�k z.J�!¯2� , the cost of gathering the
8�bid
���f z.J� -hop neighborhood information for each sensor node.
As noted before, we chose �/[�� for our simulations. The later
phases of the Distributed Algorithm incurs communication cost
of the order of ����y{8�� messages, where 8 is the size of the
solution returned. For the Distributed Greedy algorithm the total
communication cost is at most �±¯w² where ² is the number
of sensors in the . -neighborhood of a sensor node. Figure 3
shows the total communication cost incurred by the Distributed
Priority and Distributed Greedy algorithms. We observe that the
cost incurred by the Distributed Priority algorithm is much less
than that incurred by the Distributed Greedy algorithm, except
when the transmission radius �2�C�1m³[´¨ where the link radius
. is 1. For �X�µ¨ , the total communication cost incurred by
both the algorithms is very low and in fact, Distributed Greedy
incurs even less communication cost than Distributed Priority.
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Summary. From the above observations, we can conclude that
the Distributed Greedy algorithm is a very efficient distributed
implementation of the Greedy approximation algorithm, and
that for transmission radius larger than twice the sensing radius,
the Distributed Greedy algorithm outperforms the Distributed
Priority algorithm in terms of the solution size as well as the
communication cost incurred. Thus, for �2�C�1m , the Distributed
Greedy algorithm is the best choice for computing connected

 -cover.

For �¸=¹�1m , the Distributed Priority algorithm incurs sub-
stantially less communication cost than the Distributed Greedy,



 0

 50

 100

 150

 200

 250

 300

 350

 400

 1000  1500  2000  2500  3000  3500  4000

qdp θ 
 V

al
ue

Network Size

Transmission radius=2
Transmission radius=4

Fig. 4. The threshold value ºY»¬¼½ .

but delivers a slightly larger connected 
 -cover. Let ¾ be the
number of messages incurred and 8 be the size of the con-
nected 
 -cover returned by the Distributed Greedy algorithm,
and let ¾�¿;À be the number of messages incurred and 83¿;À be the
size of the connected sensor cover returned by the Distributed
Priority algorithm. Figure 4 plots the threshold value Á ¿;ÀÂ , where
Á ¿;ÀÂ [ Ã�Ä�Ã/ÅtÆªLÇ D ÅtÆJÄ DxÈ . If the given spatial query is run Á times,
then the threshold value Á ¿;ÀÂ is such that for Á¡PÉÁ ¿;ÀÂ the
overall communication cost by using the Distributed Priority
is lower than the communication cost using the Distributed
Greedy algorithm. From the Figure 4, we observe that Á ¿;ÀÂ is
very high (100 to 300). Thus, for applications that do not run
a huge number (less than a couple of hundreds) of queries
on a given query region, the Distributed Priority algorithm is
a better choice for computing the connected 
 -cover for the
given query region.

V. CONCLUSIONS

In this article, we have addressed the connected 
 -coverage
problem of selecting a minimum number of sensors that are
connected and also cover each point in a given query region
with at least 
 distinct sensors. The idea is to keep only these
set of sensors active to provide the necessary coverage and
connectivity, resulting in a fault-tolerant energy conservation
technique. We have designed Centralized Greedy algorithm that
provably returns a near-optimal solution, and a communication-
efficient distributed version of the Greedy algorithm. In addi-
tion, we designed the Distributed Priority which is a localized
algorithm, but delivers a slightly larger size solution. Through
extensive simulations we show that the designed distributed
algorithms indeed deliver a near-optimal connected 
 -cover.
Further analysis shows that, the Distributed Priority algorithm
is more efficient in applications where the query is run for
less than a few hundred times. For longer running queries, the
Distributed Greedy algorithm is more efficient.
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