
Second Edition

Intelligent Systems
for

Engineers and
Scientists

Adrian A. Hopgood

Second Edition

Intelligent Systems
for

Engineers and
Scientists

Boca Raton London New York Washington, D.C.
CRC Press

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

 Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0456-3

Library of Congress Card Number 00-010341
Printed in the United States of America 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Hopgood, Adrian A.
Intelligent systems for engineers and scientists / Adrian A.

Hopgood.--2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-0456-3
1. Expert systems (Computer science) 2. Computer-aided engineering.

I. Title.
QA76.76.E95 H675 2000
006.3

′3′

02462--dc21 00-010341

disclaimer3 Page 1 Thursday, August 2, 2001 1:50 PM

http://www.crcpress.com

Preface

“Intelligent systems” is a broad term, covering a range of computing

techniques that have emerged from research into artificial intelligence. It

includes symbolic approaches — in which knowledge is explicitly expressed

in words and symbols — and numerical approaches such as neural networks,

genetic algorithms, and fuzzy logic. In fact, many practical intelligent systems

are a hybrid of different approaches. Whether any of these systems is really

capable of displaying intelligent behavior is a moot point. Nevertheless, they

are extremely useful and they have enabled elegant solutions to a wide variety

of difficult problems.

There are plenty of other books available on intelligent systems and

related technologies, but I hope this one is substantially different. It takes a

practical view, showing the issues encountered in the development of applied

systems. I have tried to describe a wide range of intelligent systems

techniques, with the help of realistic problems in engineering and science. The

examples included here have been specifically selected for the details of the

techniques that they illustrate, rather than merely to survey current practice.

The book can be roughly divided into two parts. Chapters 1 to 10 describe

the techniques of intelligent systems, while Chapters 11 to 14 look at four

broad categories of applications. These latter chapters explore in depth the

design and implementation issues of applied systems, together with their

advantages and difficulties. The four application areas have much in common,

as they all concern automated decision making, while making the best use of

the available information.

The first edition of this book was published as Knowledge-Based Systems

for Engineers and Scientists. It was adopted by the Open University for its

course T396: Artificial Intelligence for Technology and, as a result, I have

received a lot of useful feedback. I hope that this new edition addresses the

weaknesses of the previous one, while retaining and building upon its

strengths. As well as updating the entire book, I have added new chapters on

intelligent agents, neural networks, optimization algorithms (especially genetic

algorithms), and hybrid systems. A new title was therefore needed to reflect

the broader scope of this new edition. Intelligent Systems for Engineers and

Scientists seems appropriate, as it embraces both the explicit knowledge-based

models that are retained from the first edition and the implicit numerical

models represented by neural networks and optimization algorithms.

I hope the book will appeal to a wide readership. In particular, I hope that

students will be drawn toward this fascinating area from all scientific and

engineering subjects, not just from the computer sciences. Beyond academia,

the book will appeal to engineers and scientists who either are building

intelligent systems or simply want to know more about them.

The first edition was mostly written while I was working at the Telstra

Research Laboratories in Victoria, Australia, and subsequently finished upon

my return to the Open University in the UK. I am still at the Open University,

where this second edition was written.

Many people have helped me, and I am grateful to them all. The following

all helped either directly or indirectly with the first edition (in alphabetical

order): Mike Brayshaw, David Carpenter, Nicholas Hallam, David Hopgood,

Sue Hopgood, Adam Kowalzyk, Sean Ogden, Phil Picton, Chris Price, Peter

Richardson, Philip Sargent, Navin Sullivan, Neil Woodcock, and John Zucker.

I am also indebted to those who have helped in any way with this new

edition. I am particularly grateful to Tony Hirst for his detailed suggestions for

inclusion and for his thoughtful comments on the drafts. I also extend my

thanks to Lars Nolle for his helpful comments and for supplying Figures 7.1,

7.7, and 8.18; to Jon Hall for his comments on Chapter 5; to Sara Parkin and

Carole Gustafson for their careful proofreading; and to Dawn Mesa for making

the publication arrangements. Finally, I am indebted to Sue and Emily for

letting me get on with it. Normal family life can now resume.

Adrian Hopgood

www.adrianhopgood.com

Email me: adrian.hopgood@ntu.ac.uk

http://www.adrianhopgood.com
mailto:adrian.hopgood@ntu.ac.uk

The author

Adrian Hopgood has earned his BSc from Bristol University, PhD from

Oxford University, and MBA from the Open University. After completing his

PhD in 1984, he spent two years developing applied intelligent systems for

Systems Designers PLC. He subsequently joined the academic staff of the

Open University, where he has established his research in intelligent systems

and their application in engineering and science. Between 1990 and 1992 he

worked for Telstra Research Laboratories in Australia, where he contributed to

the development of intelligent systems for telecommunications applications.

Following his return to the Open University he led the development of the

course T396 – Artificial Intelligence for Technology. He has further developed

his interests in intelligent systems and pioneered the development of the

blackboard system, ARBS.

For Sue and Emily

Contents

Chapter one: Introduction

1.1 Intelligent systems

1.2 Knowledge-based systems

1.3 The knowledge base

1.4 Deduction, abduction, and induction

1.5 The inference engine

1.6 Declarative and procedural programming

1.7 Expert systems

1.8 Knowledge acquisition

1.9 Search

1.10 Computational intelligence

1.11 Integration with other software

References

Further reading

Chapter two: Rule-based systems

2.1 Rules and facts

2.2 A rule-based system for boiler control

2.3 Rule examination and rule firing

2.4 Maintaining consistency

2.5 The closed-world assumption

2.6 Use of variables within rules

2.7 Forward-chaining (a data-driven strategy)

2.7.1 Single and multiple instantiation of variables

2.7.2 Rete algorithm

2.8 Conflict resolution

2.8.1 First come, first served

2.8.2 Priority values

2.8.3 Metarules

2.9 Backward-chaining (a goal-driven strategy)

2.9.1 The backward-chaining mechanism

2.9.2 Implementation of backward-chaining

2.9.3 Variations of backward-chaining

2.10 A hybrid strategy

2.11 Explanation facilities

2.12 Summary

References

Further reading

Chapter three: Dealing with uncertainty

3.1 Sources of uncertainty

3.2 Bayesian updating

3.2.1 Representing uncertainty by probability

3.2.2 Direct application of Bayes’ theorem

3.2.3 Likelihood ratios

3.2.4 Using the likelihood ratios

3.2.5 Dealing with uncertain evidence

3.2.6 Combining evidence

3.2.7 Combining Bayesian rules with production rules

3.2.8 A worked example of Bayesian updating

3.2.9 Discussion of the worked example

3.2.10 Advantages and disadvantages of Bayesian updating

3.3 Certainty theory

3.3.1 Introduction

3.3.2 Making uncertain hypotheses

3.3.3 Logical combinations of evidence

3.3.4 A worked example of certainty theory

3.3.5 Discussion of the worked example

3.3.6 Relating certainty factors to probabilities

3.4 Possibility theory: fuzzy sets and fuzzy logic

3.4.1 Crisp sets and fuzzy sets

3.4.2 Fuzzy rules

3.4.3 Defuzzification

3.5 Other techniques

3.5.1 Dempster–Shafer theory of evidence

3.5.2 Inferno

3.6 Summary

References

Further reading

Chapter four: Object-oriented systems

4.1 Objects and frames

4.2 An illustrative example

4.3 Introducing OOP

4.4 Data abstraction

4.4.1 Classes

4.4.2 Instances

4.4.3 Attributes (or data members)

4.4.4 Operations (or methods or member functions)

4.4.5 Creation and deletion of instances

4.5 Inheritance

4.5.1 Single inheritance

4.5.2 Multiple and repeated inheritance

4.5.3 Specialization of methods

4.5.4 Browsers

4.6 Encapsulation

4.7 Unified Modeling Language (UML)

4.8 Dynamic (or late) binding

4.9 Message passing and function calls

4.9.1 Pseudovariables

4.9.2 Metaclasses

4.10 Type checking

4.11 Further aspects of OOP

4.11.1 Persistence

4.11.2 Concurrency

4.11.3 Overloading

4.11.4 Active values and daemons

4.12 Frame-based systems

4.13 Summary

References

Further reading

Chapter five: Intelligent agents

5.1 Characteristics of an intelligent agent

5.2 Agents and objects

5.3 Agent architectures

5.3.1 Logic-based architectures

5.3.2 Emergent behavior architectures

5.3.3 Knowledge-level architectures

5.3.4 Layered architectures

5.4 Multiagent systems

5.4.1 Benefits of a multiagent system

5.4.2 Building a multiagent system

5.4.3 Communication between agents

5.5 Summary

References

Further reading

Chapter six: Symbolic learning

6.1 Introduction

6.2 Learning by induction

6.2.1 Overview

6.2.2 Learning viewed as a search problem

6.2.3 Techniques for generalization and specialization

6.3 Case-based reasoning (CBR)

6.3.1 Storing cases

6.3.2 Retrieving cases

6.3.3 Adapting case histories

6.3.4 Dealing with mistaken conclusions

6.4 Summary

References

Further reading

Chapter seven: Optimization algorithms

7.1 Optimization

7.2 The search space

7.3 Searching the search space

7.4 Hill-climbing and gradient descent algorithms

7.4.1 Hill-climbing

7.4.2 Steepest gradient descent or ascent

7.4.3 Gradient-proportional descent

7.4.4 Conjugate gradient descent or ascent

7.5 Simulated annealing

7.6 Genetic algorithms

7.6.1 The basic GA

7.6.2 Selection

7.6.3 Gray code

7.6.4 Variable length chromosomes

7.6.5 Building block hypothesis

7.6.6 Selecting GA parameters

7.6.7 Monitoring evolution

7.6.8 Lamarckian inheritance

7.6.9 Finding multiple optima

7.6.10 Genetic programming

7.7 Summary

References

Further reading

Chapter eight: Neural networks

8.1 Introduction

8.2 Neural network applications

8.2.1 Nonlinear estimation

8.2.2 Classification

8.2.3 Clustering

8.2.4 Content-addressable memory

8.3 Nodes and interconnections

8.4 Single and multilayer perceptrons

8.4.1 Network topology

8.4.2 Perceptrons as classifiers

8.4.3 Training a perceptron

8.4.4 Hierarchical perceptrons

8.4.5 Some practical considerations

8.5 The Hopfield network

8.6 MAXNET

8.7 The Hamming network

8.8 Adaptive Resonance Theory (ART) networks

8.9 Kohonen self-organizing networks

8.10 Radial basis function networks

8.11 Summary

References

Further reading

Chapter nine: Hybrid systems

9.1 Convergence of techniques

9.2 Blackboard systems

9.3 Genetic-fuzzy systems

9.4 Neuro-fuzzy systems

9.5 Genetic-neural systems

9.6 Clarifying and verifying neural networks

9.7 Learning classifier systems

9.8 Summary

References

Further reading

Chapter ten: Tools and languages

10.1 A range of intelligent systems tools

10.2 Expert system shells

10.3 Toolkits and libraries

10.4 Artificial intelligence languages

10.4.1 Lists

10.4.2 Other data types

10.4.3 Programming environments

10.5 Lisp

10.5.1 Background

10.5.2 Lisp functions

10.5.3 A worked example

10.6 Prolog

10.6.1 Background

10.6.2 A worked example

10.6.3 Backtracking in Prolog

10.7 Comparison of AI languages

10.8 Summary

References

Further reading

Chapter eleven: Systems for interpretation and diagnosis

11.1 Introduction

11.2 Deduction and abduction for diagnosis

11.3 Depth of knowledge

11.3.1 Shallow knowledge

11.3.2 Deep knowledge

11.3.3 Combining shallow and deep knowledge

11.4 Model-based reasoning

11.4.1 The limitations of rules

11.4.2 Modeling function, structure, and state

11.4.3 Using the model

11.4.4 Monitoring

11.4.5 Tentative diagnosis

11.4.6 Fault simulation

11.4.7 Fault repair

11.4.8 Using problem trees

11.4.9 Summary of model-based reasoning

11.5 Case study: a blackboard system

for interpreting ultrasonic images

11.5.1 Ultrasonic imaging

11.5.2 Knowledge sources in ARBS

11.5.3 Rules in ARBS

11.5.4 Inference engines in ARBS

11.5.5 The stages of image interpretation

11.5.6 The use of neural networks

11.5.7 Rules for verifying neural networks

11.6 Summary

References

Further reading

Chapter twelve: Systems for design and selection

12.1 The design process

12.2 Design as a search problem

12.3 Computer aided design

12.4 The product design specification (PDS):

a telecommunications case study

12.4.1 Background

12.4.2 Alternative views of a network

12.4.3 Implementation

12.4.4 The classes

12.4.5 Summary of PDS case study

12.5 Conceptual design

12.6 Constraint propagation and truth maintenance

12.7 Case study: the design of a lightweight beam

12.7.1 Conceptual design

12.7.2 Optimization and evaluation

12.7.3 Detailed design

12.8 Design as a selection exercise

12.8.1 Overview

12.8.2 Merit indices

12.8.3 The polymer selection example

12.8.4 Two-stage selection

12.8.5 Constraint relaxation

12.8.6 A naive approach to scoring

12.8.7 A better approach to scoring

12.8.8 Case study: the design of a kettle

12.8.9 Reducing the search space by classification

12.9 Failure mode and effects analysis (FMEA)

12.10 Summary

References

Further reading

Chapter thirteen: Systems for planning

13.1 Introduction

13.2 Classical planning systems

13.3 STRIPS

13.3.1 General description

13.3.2 An example problem

13.3.3 A simple planning system in Prolog

13.4 Considering the side effects of actions

13.4.1 Maintaining a world model

13.4.2 Deductive rules

13.5 Hierarchical planning

13.5.1 Description

13.5.2 Benefits of hierarchical planning

13.5.3 Hierarchical planning with ABSTRIPS

13.6 Postponement of commitment

13.6.1 Partial ordering of plans

13.6.2 The use of planning variables

13.7 Job-shop scheduling

13.7.1 The problem

13.7.2 Some approaches to scheduling

13.8 Constraint-based analysis

13.8.1 Constraints and preferences

13.8.2 Formalizing the constraints

13.8.3 Identifying the critical sets of operations

13.8.4 Sequencing in the disjunctive case

13.8.5 Sequencing in the nondisjunctive case

13.8.6 Updating earliest start times and latest finish times

13.8.7 Applying preferences

13.8.8 Using constraints and preferences

13.9 Replanning and reactive planning

13.10 Summary

References

Further reading

Chapter fourteen: Systems for control

14.1 Introduction

14.2 Low-level control

14.2.1 Open-loop control

14.2.2 Feedforward control

14.2.3 Feedback control

14.2.4 First- and second-order models

14.2.5 Algorithmic control: the PID controller

14.2.6 Bang-bang control

14.3 Requirements of high-level (supervisory) control

14.4 Blackboard maintenance

14.5 Time-constrained reasoning

14.5.1 Prioritization of processes and knowledge sources

14.5.2 Approximation

14.5.3 Single and multiple instantiation

14.6 Fuzzy control

14.6.1 Crisp and fuzzy control

14.6.2 Firing fuzzy control rules

14.6.3 Defuzzification

14.6.4 Some practical examples of fuzzy controllers

14.7 The BOXES controller

14.7.1 The conventional BOXES algorithm

14.7.2 Fuzzy BOXES

14.8 Neural network controllers

14.8.1 Direct association of state variables

with action variables

14.8.2 Estimation of critical state variables

14.9 Statistical process control (SPC)

14.9.1 Applications

14.9.2 Collecting the data

14.9.3 Using the data

14.10 Summary

References

Further reading

Chapter fifteen: Concluding remarks

15.1 Benefits

15.2 Implementation

15.3 Trends

References

Chapter one

Introduction

1.1 Intelligent systems

Over many centuries, tools of increasing sophistication have been developed to

serve the human race. Physical tools such as chisels, hammers, spears, arrows,

guns, carts, cars, and aircraft all have their place in the history of civilization.

The human race has also developed tools of communication — spoken

language, written language, and the language of mathematics. These tools have

not only enabled the exchange and storage of information, but have also

allowed the expression of concepts that simply could not exist outside of the

language.

The last few decades have seen the arrival of a new tool — the digital

computer. Computers are able to perform the same sort of numerical and

symbolic manipulations that an ordinary person can, but faster and more

reliably. They have therefore been able to remove the tedium from many tasks

that were previously performed manually, and have allowed the achievement

of new feats. Such feats range from huge scientific “number-crunching”

experiments to the more familiar electronic banking facilities.

Although these uses of the computer are impressive, it is actually only

performing quite simple operations, albeit rapidly. In such applications, the

computer is still only a complex calculating machine. The intriguing idea now

is whether we can build a computer (or a computer program) that can think. As

Penrose [1] has pointed out, most of us are quite happy with machines that

enable us to do physical things more easily or more quickly, such as digging a

hole or traveling along a freeway. We are also happy to use machines that

enable us to do physical things that would otherwise be impossible, such as

flying. However, the idea of a machine that can think for us is a huge leap

forward in our ambitions, and one which raises many ethical and philosophical

questions.

Research in artificial intelligence (or simply AI) is directed toward

building such a machine and improving our understanding of intelligence. The

ultimate achievement in this field would be to construct a machine that can

mimic or exceed human mental capabilities, including reasoning, under-

standing, imagination, recognition, creativity, and emotions. We are a long

way from achieving this, but some successes have been achieved in mimicking

specific areas of human mental activity. For instance, machines are now able to

play chess at the highest level, to interpret spoken sentences, and to diagnose

medical complaints. An objection to these claimed successes might be that the

machine does not tackle these problems in the same way that a human would.

This objection will not concern us in this book, which is intended as a guide to

practical systems and not a philosophical thesis.

In achieving these modest successes, research into artificial intelligence,

together with other branches of computer science, has resulted in the

development of several useful computing tools that form the basis of this book.

These tools have a range of potential applications, but this book emphasizes

their use in engineering and science. The tools of particular interest can be

roughly divided among knowledge-based systems, computational intelligence,

and hybrid systems. Knowledge-based systems include expert and rule-based

systems, object-oriented and frame-based systems, and intelligent agents.

Computational intelligence includes neural networks, genetic algorithms and

other optimization algorithms. Techniques for handling uncertainty, such as

fuzzy logic, fit into both categories.

Knowledge-based systems, computational intelligence, and their hybrids

are collectively referred to here as intelligent systems. Intelligent systems have

not solved the problem of building an artificial mind and, indeed, some would

argue that they show little, if any, real intelligence. Nevertheless, they have

enabled a range of problems to be tackled that were previously considered too

difficult, and have enabled a large number of other problems to be tackled

more effectively. From a pragmatic point of view, this in itself makes them

interesting and useful.

1.2 Knowledge-based systems

The principal difference between a knowledge-based system (KBS) and a

conventional program lies in the structure. In a conventional program, domain

knowledge is intimately intertwined with software for controlling the

application of that knowledge. In a knowledge-based system, the two roles are

explicitly separated. In the simplest case there are two modules — the

knowledge module is called the knowledge base, and the control module is

called the inference engine (Figure 1.1). In more complex systems, the

inference engine itself may be a knowledge-based system containing meta-

knowledge, i.e., knowledge of how to apply the domain knowledge.

The explicit separation of knowledge from control makes it easier to add

new knowledge, either during program development or in the light of

experience during the program’s lifetime. There is an analogy with the brain,

the control processes of which are approximately unchanging in their nature

(cf. the inference engine), even though individual behavior is continually

modified by new knowledge and experience (cf. updating the knowledge base).

Suppose that a professional engineer uses a conventional program to

support his or her everyday work. Altering the behavior of the program would

require him or her to become immersed in the details of the program’s

implementation. Typically this would involve altering control structures of the

form:

if...then...else...

or

for x from a to b do...

To achieve these changes, the engineer needs to be a proficient programmer.

Even if he or she does have this skill, modifications of the kind described are

unwieldy and are difficult to make without unwittingly altering some other

aspect of the program’s behavior.

The knowledge-based system approach is more straightforward. The

knowledge is represented explicitly in the knowledge base, not implicitly

within the structure of a program. Thus, the knowledge can be altered with

knowledge base inference engine

interface to the outside world

knowledge
acquisition module

explanation
module

humans hardware other software

essential
components

extra frills,
common in

expert systems

data

Figure 1.1 The main components of a knowledge-based system

relative ease. The inference engine uses the knowledge base to tackle a

particular task in a manner that is analogous to a conventional program using a

data file.

1.3 The knowledge base

The knowledge base may be rich with diverse forms of knowledge. For the

time being, we will simply state that the knowledge base contains rules and

facts. However, the rules may be complex, and the facts may include

sequences, structured entities, attributes of such entities, and the relationships

between them. The details of the representation used vary from system to

system, so the syntax shown in the following examples is chosen arbitrarily.

Let us consider a knowledge-based system for dealing with the payroll of

ACME, Inc. A fact and a rule in the knowledge base may be:

/* Fact 1.1 */

Joe Bloggs works for ACME

/* Rule 1.1 */

IF ?x works for ACME THEN ?x earns a large salary

The question marks are used to indicate that x is a variable that can be replaced

by a constant value, such as Joe Bloggs or Mary Smith.

Let us now consider how we might represent the fact and the rule in a

conventional program. We might start by creating a “record” (a data structure

for grouping together different data types) for each employee. The rule could

be expressed easily enough as a conditional statement (IF...THEN...), but it

would need to be carefully positioned within the program so that:

• the statement is applied whenever it is needed;

• all relevant variables are in scope (the scope of a variable is that part of the

program to which the declaration of the variable applies);

• any values that are assigned to variables remain active for as long as they

are needed; and

• the rest of the program is not disrupted.

In effect, the fact and the rule are “hard-wired,” so that they become an

intrinsic part of the program. As many systems need hundreds or thousands of

facts and rules, slotting them into a conventional program is a difficult task.

This can be contrasted with a knowledge-based system in which the rule and

the fact are represented explicitly and can be changed at will.

Rules such as Rule 1.1 are a useful way of expressing many types of

knowledge, and are discussed in more detail in Chapter 2. It has been assumed

so far that we are dealing with certain knowledge. This is not always the case,

and Chapter 3 discusses the use of uncertainty in rules. In the case of Rule 1.1,

uncertainty may arise from three distinct sources:

• uncertain evidence

(perhaps we are not certain that Joe Bloggs works for ACME)

• uncertain link between evidence and conclusion

(We cannot be certain that an ACME employee earns a large salary,

we just know that it is likely)

• vague rule

(what is a “large” salary anyway?)

The first two sources of uncertainty can be handled by Bayesian updating, or

variants of this idea. The last source of uncertainty can be handled by fuzzy

sets and fuzzy logic.

Let us now consider facts in more detail. Facts may be static, in which

case they can be written into the knowledge base. Fact 1.1 falls into this

category. Note that static facts need not be permanent, but they change

sufficiently infrequently that changes can be accommodated by updating the

knowledge base when necessary. In contrast, some facts may be transient.

Transient facts (e.g., “Oil pressure is 3000 Pa,” “the user of this program is

Adrian”) apply at a specific instance only, or for a single run of the system.

The knowledge base may contain defaults, which can be used as facts in the

absence of transient facts to the contrary. Here is a collection of facts about my

car:

My car is a car (static relationship)

A car is a vehicle (static relationship)

A car has four wheels (static attribute)

A car’s speed is 0mph (default attribute)

My car is red (static attribute)

My car is in my garage (default relationship)

My garage is a garage (static relationship)

A garage is a building (static relationship)

My garage is made from brick (static attribute)

My car is in the High Street (transient relationship)

The High Street is a street (static relationship)

A street is a road (static relationship)

Notice that in this list we have distinguished between attributes and

relationships. Attributes are properties of object instances (such as my car) or

object classes (such as cars and vehicles). Relationships exist among instances

of objects and classes of objects. In this way we can begin to build a model of

the subject area of interest, and this reliance on a model will be a recurring

topic throughout this book. Attributes and relationships can be represented as a

network, known as an associative or semantic network, as shown in Figure 1.2.

In this representation, attributes are treated in the same way as relationships. In

Chapter 4 we will explore object-oriented systems, in which relationships and

attributes are represented explicitly in a formalized manner. Object-oriented

systems offer many other benefits, which will also be discussed.

The facts that have been described so far are all made available to the

knowledge-based system either at the outset (static facts) or while the system is

running (transient facts). Both may therefore be described as given facts. One

or more given facts may satisfy the condition of a rule, resulting in the

generation of a new fact, known as a derived fact. For example, by applying

Rule 1.1 to Fact 1.1, we can derive:

/* Fact 1.2 */

Joe Bloggs earns a large salary

car

my car

vehicle
number

of wheels

four

red

co
lor

is-in
(default)

my garage

garage

building

instance of

is-a

instance of

is-a

0 mph

sp
ee

d

(d
efa

ult
)

High Street

street road

is-in

instance of

is-a

brick

material

Figure 1.2 A semantic network with an overridden default

The derived fact may satisfy, or partially satisfy, another rule, such as:

/* Rule 1.2 */

IF ?x earns a large salary OR ?x has job satisfaction

THEN ?x is professionally content

This in turn may lead to the generation of a new derived fact. Rules 1.1 and 1.2

are interdependent, since the conclusion of one can satisfy the condition of the

other. The interdependencies amongst the rules define a network, as shown in

Figure 1.3, known as an inference network.

1.4 Deduction, abduction, and induction

The rules that make up the inference network in Figure 1.3, and the network

taken as a whole, are used to link cause and effect:

IF <cause> THEN <effect>

Using the inference network, we can infer that if Joe Bloggs works for ACME

and is in a stable relationship (the causes) then he is happy (the effect). This is

the process of deduction. Many problems, such as diagnosis, involve reasoning

in the reverse direction, i.e., we wish to ascertain a cause, given an effect. This

is abduction. Given the observation that Joe Bloggs is happy, we can infer by

abduction that Joe Bloggs enjoys domestic bliss and professional contentment.

However, this is only a valid conclusion if the inference network shows all of

works for ACME

domestic bliss

large salary

happiness

job satisfaction

flexibility

responsibility

professional contentment

stable relationship

stress

AND

OR

AND
NOT

Figure 1.3 An inference network

the ways in which a person can find happiness. This is the closed-world

assumption, the implications of which are discussed in Chapters 2 and 11.

The inference network therefore represents a closed world, where nothing

is known beyond its boundaries. As each node represents a possible state of

some aspect of the world, a model of the current overall state of the world can

be maintained. Such a model is dependent on the extent of the relationships

between the nodes in the inference network. In particular, if a change occurs in

one aspect of the world, many other nodes could be affected. Determining

what else is changed in the world model as a consequence of changing one

particular thing is known as the frame problem. In the description of Joe

Bloggs’ world represented in Figure 1.3, this is equivalent to determining the

extent of the relationships between the nodes. For example, if Joe Bloggs gets

a new job, Figure 1.3 suggests that the only direct change is his salary, which

could change his professional contentment and happiness. However, in a more

complex model of Joe Bloggs’ world, many other nodes could also be affected.

If we have many examples of cause and effect, we can infer the rule (or

inference network) that links them. For instance, if every employee of ACME

that we have met earns a large salary, then we might infer Rule 1.1:

/* Rule 1.1 */

IF ?x works for ACME THEN ?x earns a large salary.

Inferring a rule from a set of example cases of cause and effect is termed

induction.

We can summarize deduction, abduction, and induction as follows:

• deduction: cause + rule effect

• abduction: effect + rule cause

• induction: cause + effect rule

1.5 The inference engine

Inference engines vary greatly according to the type and complexity of

knowledge with which they deal. Two important types of inference engines

can be distinguished: forward-chaining and backward-chaining. These may

also be known as data-driven and goal-driven, respectively. A knowledge-

based system working in data-driven mode takes the available information (the

“given” facts) and generates as many derived facts as it can. The output is

therefore unpredictable. This may have either the advantage of leading to novel

or innovative solutions to a problem or the disadvantage of wasting time

generating irrelevant information. The data-driven approach might typically be

used for problems of interpretation, where we wish to know whatever the

system can tell us about some data. A goal-driven strategy is appropriate when

a more tightly focused solution is required. For instance, a planning system

may be required to generate a plan for manufacturing a consumer product. Any

other plans are irrelevant. A backward-chaining system might be presented

with the proposition: a plan exists for manufacturing a widget. It will then

attempt to ascertain the truth of this proposition by generating the plan, or it

may conclude that the proposition is false and no plan is possible. Forward-

and backward-chaining are discussed in more detail in Chapter 2. Planning is

discussed in Chapter 13.

1.6 Declarative and procedural programming

We have already seen that a distinctive characteristic of a knowledge-based

system is that knowledge is separated from reasoning. Within the knowledge

base, the programmer expresses information about the problem to be solved.

Often this information is declarative, i.e., the programmer states some facts,

rules, or relationships without having to be concerned with the detail of how

and when that information is applied. The following are all examples of

declarative programming:

/* Rule 1.3 */

IF pressure is above threshold THEN close valve

/* Fact 1.3 */

valve A is shut /* a simple fact */

/* Fact 1.4 */

valve B is connected to tank 3 /* a relation */

Each example represents a piece of knowledge that could form part of a

knowledge base. The declarative programmer does not necessarily need to

state explicitly how, when, and if the knowledge should be used. These details

are implicit in the inference engine. An inference engine is normally

programmed procedurally — a set of sequential commands is obeyed, which

involves extracting and using information from the knowledge base. This task

can be made explicit by using metaknowledge (knowledge about knowledge),

e.g.:

/* Metarule 1.4 */

Examine rules about valves before rules about pipes

Most conventional programming is procedural. Consider, for example, the

following C program:

/* A program in C to read 10 integers from a file and */

/* print them out */

#include <stdio.h>

FILE *openfile;

main()

{ int j, mynumber;

 openfile = fopen("myfile.dat", "r");

 if (openfile == NULL)

 printf("error opening file");

 else

 {

 for (j=1; j<=10; j=j+1)

 {

 fscanf(openfile,"%d",&mynumber);

 printf("Number %d is %d\n", j, mynumber);

 }

 fclose(openfile);

 }

}

This program contains explicit step-by-step instructions telling the computer to

perform the following actions:

(i) open a data file;

(ii) print a message if it cannot open the file, otherwise perform the

remaining steps;

(iii) set the value of j to 1;

(iv) read an integer from the file and store it in the variable mynumber;

(v) print out the value of mynumber;

(vi) add 1 to j;

(vii) if j 10 repeat steps (iv)–(vi), otherwise move on to step (viii);

(viii) close the data file.

The data file, on the other hand, contains no instructions for the computer at

all, just information in the form of a set of integers. The procedural instructions

for determining what the computer should do with the integers resides in the

program. The data file is therefore declarative, while the program is

procedural. The data file is analogous to a trivial knowledge base, and the

program is analogous to the corresponding inference engine. Of course, a

proper knowledge base would be richer in content, perhaps containing a

combination of rules, facts, relations, and data. The corresponding inference

engine would be expected to interpret the knowledge, to combine it to form an

overall view, to apply the knowledge to data, and to make decisions.

It would be an oversimplification to think that all knowledge bases are

written declaratively and all inference engines are written procedurally. In real

systems, a collection of declarative information, such as a rule set, often needs

to be embellished by some procedural information. Similarly, there may be

some inference engines that have been programmed declaratively, notably

those implemented in Prolog (described in Chapter 10). Nevertheless, the

declarative instructions must eventually be translated into procedural ones, as

the computer can only understand procedural instructions at the machine-code

level.

1.7 Expert systems

Expert systems are a type of knowledge-based system designed to embody

expertise in a particular specialized domain. Example domains might be

configuring computer networks, diagnosing faults in telephones, or mineral

prospecting. An expert system is intended to act as a human expert who can be

consulted on a range of problems that fall within his or her domain of

expertise. Typically, the user of an expert system will enter into a dialogue in

which he or she describes the problem (such as the symptoms of a fault) and

the expert system offers advice, suggestions, or recommendations. The

dialogue may be led by the expert system, so that the user responds to a series

of questions or enters information into a spreadsheet. Alternatively, the expert

system may allow the user to take the initiative in the consultation by allowing

him or her to supply information without necessarily being asked for it.

Since an expert system is a knowledge-based system that acts as a

specialist consultant, it is often proposed that an expert system must offer

certain capabilities that mirror those of a human consultant. In particular, it is

often claimed that an expert system must be capable of justifying its current

line of inquiry and explaining its reasoning in arriving at a conclusion. This is

the purpose of the explanation module in Figure 1.1. However, the best that

most expert systems can achieve is to produce a trace of the facts and rules that

have been used. This is equivalent to a trace of the execution path for a

conventional program, a capability that is normally regarded as standard and

not particularly noteworthy.

An expert system shell is an expert system with an empty knowledge base.

These are sold as software packages of varying complexity. In principle, it

should be possible to buy an expert system shell, build up a knowledge base,

and thereby produce an expert system. However, all domains are different and

it is difficult for a software supplier to build a shell that adequately handles

them all. The best shells are flexible in their ability to represent and apply

knowledge. Without this flexibility, it may be necessary to generate rules and

facts in a convoluted style in order to fit the syntax or to force a certain kind of

behavior from the system. This situation is scarcely better than building a

conventional program.

1.8 Knowledge acquisition

The representation of knowledge in a knowledge base can only be addressed

once the knowledge is known. There are three distinct approaches to acquiring

the relevant knowledge for a particular domain:

• the knowledge is teased out of a domain expert;

• the builder of the knowledge-based system is a domain expert;

• the system learns automatically from examples.

The first approach is commonly used, but is fraught with difficulties. The

person who extracts the knowledge from the expert and encodes it in the

knowledge base is termed the knowledge engineer. Typically, the knowledge

engineer interviews one or more domain experts and tries to make them

articulate their in-depth knowledge in a manner that the knowledge engineer

can understand. The inevitable communication difficulties can be avoided by

the second approach, in which the domain expert becomes a knowledge

engineer or the knowledge engineer becomes a domain expert.

Finally, there are many circumstances in which the knowledge is either

unknown or cannot be expressed explicitly. In these circumstances it may be

preferable to have the system generate its own knowledge base from a set of

examples. Techniques for automatic learning are discussed in Chapters 6 to 9.

1.9 Search

Search is the key to practically all problem-solving tasks, and has been a major

focus of research in intelligent systems. Problem solving concerns the search

for a solution. The detailed engineering applications discussed in this book

include the search for a design, plan, control action, or diagnosis of a fault. All

of these applications involve searching through the possible solutions (the

search space) to find one or more that are optimal or satisfactory. Search is

also a key issue for the internal workings of a knowledge-based system. The

knowledge base may contain hundreds or thousands of rules and facts. The

principal role of the inference engine is to search for the most appropriate item

of knowledge to apply at any given moment (see Chapter 2).

In the case of searching the knowledge base, it is feasible (although not

very efficient) to test all of the alternatives before selecting one. This is known

as exhaustive search. In the search space of an application such as design or

diagnosis, exhaustive search is likely to be impractical since the number of

candidate solutions is so vast. A practical search therefore has to be selective.

To this end, the candidate solutions that make up the search space can be

organized as a search tree.

The expression search tree indicates that solutions can be categorized in

some fashion, so that similar solutions are clustered together on the same

branch of the tree. Figure 1.4 shows a possible search tree for designing a

house. Unlike a real tree, the tree shown here has its root at the top and its

leaves at the bottom. As we progress toward the leaves, the differences

between the designs become less significant. Each alternative design is either

generated automatically or found in a database, and then tested for suitability.

This is described as a generate and test strategy. If a solution passes the test,

the search may continue in order to find further acceptable solutions, or it may

stop.

Two alternative strategies for systematically searching the tree are depth-

first and breadth-first searches. An example of depth-first search is shown in

Figure 1.5. In this example, a progressively more detailed description of a

single-story house is built up and tested before other classifications, such as a

two-story house, are considered. When a node fails the test, the search resumes

at the previous node where a branch was selected. This process of backtracking

house

single-story two-story

spiral staircase straight staircase

180 turn

radial layout

bedrooms at back bedrooms at front

90 turn

staircase with turn

with hallway

Figure 1.4 A search tree for house designs

(see Chapters 2 and 10) is indicated in Figure 1.5 by the broken arrows, which

are directed toward the root rather than the leaves of the tree.

In contrast, the breadth-first approach (Figure 1.6) involves examining all

nodes at a given level in the tree before progressing to the next level. Each

node is a generalization of the nodes on its subbranches. Therefore, if a node

fails the test, all subcategories are assumed to fail the test and are eliminated

from the search.

house

spiral staircase straight staircase

180 turn

radial layout

bedrooms at back bedrooms at front

90 turn

staircase with turn

with hallway

Start search

single-story two-story

Figure 1.5 Depth-first search (the broken arrows indicate backtracking)

house

spiral staircase straight staircase

180 turn

radial layout

bedrooms at back bedrooms at front

90 turn

staircase with turn

with hallway

single-story two-story

Figure 1.6 Breadth-first search

The systematic search strategies described above are examples of blind

search. The search can be made more efficient either by eliminating unfeasible

categories (“pruning the search tree”) or by ensuring that the most likely

alternatives are tested before less likely ones. To achieve either of these, we

need to apply heuristics to the search process. Blind search is thereby modified

to heuristic search. Barr and Feigenbaum [2] have surveyed the use of the

word heuristic and produced this general description:

A heuristic is a rule of thumb, strategy, trick, simplification, or any other

kind of device which drastically limits search for solutions in large search

spaces. Heuristics do not guarantee optimal solutions; in fact they do not

guarantee any solution at all; all that can be said for a useful heuristic is

that it offers solutions which are good enough most of the time.

In a diagnostic system for plumbing, a useful heuristic may be that pipes

are more likely to leak at joints than along lengths. This heuristic defines a

search strategy, namely to look for leaking joints first. In a design system for a

house, we might use a heuristic to eliminate all designs that would require us to

walk through a bedroom to reach the bathroom. In a short-term planning

system, a heuristic might be used to ensure that no plans looked ahead more

than a week. In a control system for a nuclear reactor, a heuristic may ensure

that the control rods are never raised while the coolant supply is turned off.

1.10 Computational intelligence

The discussion so far has concentrated on types of knowledge-based systems.

They are all symbolic representations, in which knowledge is explicitly

represented in words and symbols that are combined to form rules, facts,

relations, or other forms of knowledge representation. As the knowledge is

explicitly written, it can be read and understood by a human. These symbolic

techniques contrast with numerical techniques such as genetic algorithms

(Chapter 7) and neural networks (Chapter 8). Here the knowledge is not

explicitly stated but is represented by numbers which are adjusted as the

system improves its accuracy. These techniques are collectively known as

computational intelligence (CI) or soft computing.

Chapter 3 describes three techniques for handling uncertainty: Bayesian

updating, certainty factors, and fuzzy logic. These techniques all use a mixture

of rules and associated numerical values, and they can therefore be considered

as both computational intelligence tools and knowledge-based system tools. In

summary, computational intelligence embraces:

• neural networks;

• genetic algorithms or, more generally, evolutionary algorithms;

• probabilistic methods such as Bayesian updating and certainty factors;

• fuzzy logic;

• combinations of these techniques with each other and with KBSs.

1.11 Integration with other software

This book will take a broad view of intelligent systems, and will stress the

interrelationship of the various KBS and CI techniques with each other and

with conventional programming (Figure 1.7). These techniques do not

necessarily represent exclusive alternatives, but can often be used

cooperatively. For example, a designer may already have an excellent

conventional program for simulating the aerodynamic properties of a car. In

this case, a knowledge-based system might be used as an interface to the

program, allowing the program to be used to its full potential.

All software

Expert
systems

Rule-based
systems

Neural networks

Evolutionary
 algorithms

Simulated
annealing

Knowledge-
based systems

Objects, frames,
and agents

Computational
intelligence

Bayesian updating,
certainty theory,

fuzzy logic

Figure 1.7 Categories of intelligent system software

Chapter 9 describes some of the ways in which intelligent systems

techniques can be used cooperatively within hybrid systems. Chapters 11 to 14

describe some practical applications, most of which are hybrids of some form.

If a problem can be broken down into subtasks, a blackboard system

(described in Chapter 9) might provide a suitable way of tackling it.

Blackboard systems allow each subtask to be handled using an appropriate

technique, thereby contributing most effectively to the overall solution.

As with any other technique, KBSs and CI are not suitable for all types of

problems. Each problem calls for the most appropriate tool, but KBSs and CI

can be used for many problems that would be impracticable by other means.

References

1. Penrose, R., The Emperor’s New Mind, Oxford University Press, 1989.

2. Barr, A. and Feigenbaum, E. A., The Handbook of Artificial Intelligence,

vol. 1, Addison-Wesley, 1986.

Further reading

• Finlay, J. and Dix, A., An Introduction to Artificial Intelligence, UCL

Press, 1996.

• Pedrycz, W., Computational Intelligence: an introduction, CRC Press,

1997.

• Sriram, R. D., Intelligent Systems for Engineering: a knowledge-based

approach, Springer-Verlag Telos, 1997.

• Torsun, I. S., Foundations of Intelligent Knowledge-Based Systems,

Academic Press, 1995.

• Winston, P. H., Artificial Intelligence, 3rd ed., Addison-Wesley, 1992.

Chapter two

Rule-based systems

2.1 Rules and facts

A rule-based system is a knowledge-based system where the knowledge base is

represented in the form of a set, or sets, of rules. Rules are an elegant,

expressive, straightforward, and flexible means of expressing knowledge. The

simplest type of rule is called a production rule and takes the form:

IF <condition> THEN <conclusion>

An example of a production rule might be:

IF the tap is open THEN water flows

Part of the attraction of using production rules is that they can often be written

in a form that closely resembles natural language, as opposed to a computer

language. A simple rule like the one above is intelligible to anyone who

understands English. Although rules can be considerably more complex than

this, their explicit nature still makes them more intelligible than conventional

computer code.

In order for rules to be applied, and hence for a rule-based system to be of

any use, the system will need to have access to facts. Facts are unconditional

statements which are assumed to be correct at the time that they are used. For

example, the tap is open is a fact. Facts can be:

• looked up from a database;

• already stored in computer memory;

• determined from sensors connected to the computer;

• obtained by prompting the user for information;

• derived by applying rules to other facts.

Facts can be thought of as special rules, where the condition part is always

true. Therefore, the fact the tap is open could also be thought of as a rule:

IF TRUE THEN the tap is open

Given the rule IF the tap is open THEN water flows and the fact the tap

is open, the derived fact water flows can be generated. The new fact is

stored in computer memory and can be used to satisfy the conditions of other

rules, thereby leading to further derived facts. The collection of facts which are

known to the system at any given time is called the fact base.

Rule-writing is a type of declarative programming (see Section 1.6),

because rules represent knowledge that can be used by the computer, without

specifying how and when to apply that knowledge. The ordering of rules in a

program should ideally be unimportant, and it should be possible to add new

rules or modify existing ones without fear of side effects. We will see by

reference to some simple examples that these ideals cannot always be taken for

granted.

For the declared rules and facts to be useful, an inference engine for

interpreting and applying them is required (see Section 1.5). Inference engines

are incorporated into a range of software tools, discussed in Chapter 10, that

includes expert system shells, artificial intelligence toolkits, software libraries,

and the Prolog language.

2.2 A rule-based system for boiler control

Whereas the above discussion describes rule-based systems in an abstract

fashion, a physical example is introduced in this section. We will consider a

rule-based system to monitor the state of a power station boiler and to advise

appropriate actions. The boiler in our example (Figure 2.1) is used to produce

steam to drive a turbine and generator. Water is heated in the boiler tubes to

produce a steam and water mixture that rises to the steam drum, which is a

cylindrical vessel mounted horizontally near the top of the boiler. The purpose

of the drum is to separate the steam from the water. Steam is taken from the

drum, passed through the superheater and applied to the turbine that turns the

generator. Sensors are fitted to the drum in order to monitor:

• the temperature of the steam in the drum;

• the voltage output from a transducer, which in turn monitors the level of

water in the drum;

• the status of pressure release valve (i.e., open or closed);

• the rate of flow of water through the control valve.

The following rules have been written for controlling the boiler:

/* Rule 2.1 */

IF water level low THEN open control valve

/* Rule 2.2 */

IF temperature high AND water level low

THEN open control valve AND shut down boiler tubes

/* Rule 2.3 */

IF steam outlet blocked THEN replace outlet pipe

/* Rule 2.4 */

IF release valve stuck THEN steam outlet blocked

/* Rule 2.5 */

IF pressure high AND release valve closed

THEN release valve stuck

/* Rule 2.6 */

IF steam escaping THEN steam outlet blocked

float and
transducer

pressure release
valve

steam
drum

steam

water

steam

steam
superheater

superheated
steam to turbine

steam
outlet pipe

steam and
water

boiler
tubes

control
valve

condensate
from turbine

water

thermometer

Figure 2.1 A power station boiler

/* Rule 2.7 */

IF temperature high AND NOT(water level low)

THEN pressure high

/* Rule 2.8 */

IF transducer output low THEN water level low

/* Rule 2.9 */

IF release valve open AND flow rate high

THEN steam escaping

/* Rule 2.10 */

IF flow rate low THEN control valve closed

The conclusions of three of the above rules (2.1, 2.2, and 2.3) consist of

recommendations to the boiler operators. In a fully automated system, such

rules would be able to perform their recommended actions rather than simply

making a recommendation. The remaining rules all involve taking a low-level

fact, such as a transducer reading, and deriving a higher-level fact, such as the

quantity of water in the drum. The input data to the system (sensor readings in

our example) are low-level facts; higher-level facts are facts derived from

them.

Most of the rules in our rule base are specific to one particular boiler

arrangement and would not apply to other situations. These rules could be

described as shallow, because they represent shallow knowledge. On the other

hand, Rule 2.7 expresses a fundamental rule of physics, namely that the boiling

temperature of a liquid increases with increasing applied pressure. This is valid

under any circumstances and is not specific to the boiler shown in Figure 2.1.

It is an example of a deep rule expressing deep knowledge.

The distinction between deep and shallow rules should not be confused

with the distinction between high-level and low-level rules. Low-level rules are

those that depend on low-level facts. Rule 2.8 is a low-level rule since it is

dependent on a transducer reading. High-level rules make use of more abstract

information, such as Rule 2.3 which relates the occurrence of a steam outlet

blockage to a recommendation to replace a pipe. Higher-level rules are those

which are closest to providing a solution to a problem, while lower-level rules

represent the first stages toward reaching a conclusion.

2.3 Rule examination and rule firing

In Section 2.2, a rule base for boiler control was described without mention of

how the rules would be applied. The task of interpreting and applying the rules

belongs to the inference engine (see Chapter 1). The application of rules can be

broken down as follows:

(i) selecting rules to examine — these are the available rules;

(ii) determining which of these are applicable — these are the triggered rules;

they make up the conflict set;

(iii) selecting a rule to fire (described below).

The distinction between examination and firing of rules is best explained by

example. Suppose the rule-based system has access to the transducer output

and to the temperature readings. A sensible set of rules to examine would be

2.2, 2.7, and 2.8, as these rules are conditional on the boiler temperature and

transducer output. If the transducer level is found to be low, then Rule 2.8 is

applicable. If it is selected and used to make the deduction water level low,

then the rule is said to have fired. If the rule is examined but cannot fire

(because the transducer reading is not low), the rule is said to fail.

The condition part of Rule 2.2 can be satisfied only if Rule 2.8 has been

fired. For this reason, it makes sense to examine Rule 2.8 before Rule 2.2. If

Rule 2.8 fails, then Rule 2.2 need not be examined as it too will fail. The inter-

dependence between rules is discussed further in Sections 2.4 and 2.5.

The method for rule examination and firing described so far is a form of

forward-chaining. This strategy and others are discussed in more detail in

Sections 2.7 through 2.10.

2.4 Maintaining consistency

A key advantage of rule-based systems is their flexibility. New rules can be

added at will, but only if each rule is written with care and without assuming

the behavior of other rules. Consider Rule 2.4:

/* Rule 2.4 */

IF release valve stuck THEN steam outlet blocked

Given the current rule base, the fact release valve stuck could only be

established by first firing Rule 2.5:

/* Rule 2.5 */

IF pressure high AND release valve closed

THEN release valve stuck

Rule 2.5 is sensible, since the purpose of the release valve is to open itself

automatically if the pressure becomes high, thereby releasing the excess

pressure. Rule 2.4, however, is less sensible. The fact release valve stuck

is not in itself sufficient evidence to deduce that the steam outlet is blocked.

The other necessary evidence is that the pressure in the drum must be high.

The reason that the rule base works in its current form is that in order for the

system to believe the release valve to be stuck, the pressure must be high.

Although the rule base works, it is not robust and is not tolerant of new

knowledge being added. Consider, for instance, the effect of adding the

following rule:

/* Rule 2.11 */

IF pressure low AND release valve open THEN release valve stuck

This rule is in itself sensible. However, the addition of the rule has an

unwanted effect on Rule 2.4. Because of the unintended interaction between

Rules 2.4 and 2.11, low pressure in the drum and the observation that the

release valve is open result in the erroneous conclusion that the steam outlet is

blocked. Problems of this sort can be avoided by making each rule an accurate

statement in its own right. Thus in our example, Rule 2.4 should be written as:

/* Rule 2.4a */

IF pressure high AND release valve stuck

THEN steam outlet blocked

A typical rule firing order, given that the drum pressure is high and the release

valve closed, might be:

/* Rule 2.5 */

IF pressure high AND release valve closed

THEN release valve stuck

/* Rule 2.4a */

IF pressure high AND release valve stuck

THEN steam outlet blocked

/* Rule 2.3 */

IF steam outlet blocked THEN replace outlet pipe

The modification that has been introduced in Rule 2.4a means that the

conditions of both Rules 2.5 and 2.4a involve checking to see whether the

drum pressure is high. This source of inefficiency can be justified through the

improved robustness of the rule base. In fact, the Rete algorithm, described in

Section 2.7.2, allows rule conditions to be duplicated in this way with minimal

loss of efficiency.

In general, rules can be considerably more complex than the ones we have

considered so far. For instance, rules can contain combinations of conditions

and conclusions, exemplified by combining Rules 2.3, 2.4, and 2.6 to form a

new rule:

/* Rule 2.12 */

IF (pressure high AND release valve stuck) OR steam escaping

THEN steam outlet blocked AND outlet pipe needs replacing

2.5 The closed-world assumption

If we do not know that a given proposition is true, then in many rule-based

systems the proposition is assumed to be false. This assumption, known as the

closed-world assumption, simplifies the logic required as all propositions are

either TRUE or FALSE. If the closed-world assumption is not made, then a

third category, namely UNKNOWN, has to be introduced. To illustrate the

closed-world assumption, let us return to the boiler control example. If steam

outlet blocked is not known, then NOT (steam outlet blocked) is

assumed to be true. Similarly if water level low is not known, then NOT

(water level low) is assumed to be true. The latter example of the closed-

world assumption affects the interaction between Rules 2.7 and 2.8:

/* Rule 2.7 */

IF temperature high AND NOT(water level low) THEN pressure high

/* Rule 2.8 */

IF transducer output low THEN water level low

Consider the case where the temperature reading is high and the

transducer output is low. Whether or not the pressure is assumed to be high

will depend on the order in which the rules are selected for firing. If we fire

Rule 2.7 followed by 2.8, the following deductions will be made:

temperature high — TRUE

NOT(water level low) — TRUE by closed-world assumption

therefore pressure is high (Rule 2.7)

transducer output low — TRUE

therefore water level low (Rule 2.8)

Alternatively, we could examine Rule 2.8 first:

transducer output low — TRUE

therefore water level low (Rule 2.8)

temperature high — TRUE

NOT(water level low) — FALSE

Rule 2.7 fails

It is most likely that the second outcome was intended by the rule-writer. There

are two measures that could be taken to avoid this ambiguity, namely, to

modify the rules or to modify the inference engine. The latter approach would

aim to ensure that Rule 2.8 is examined before 2.7, and a method for achieving

this is described in Section 2.10. The former solution could be achieved by

altering the rules so that they do not contain any negative conditions, as shown

below:

/* Rule 2.7a */

IF temperature high AND water level not_low THEN pressure high

/* Rule 2.8 */

IF transducer output low THEN water level low

/* Rule 2.8a */

IF transducer output not_low THEN water level not_low

2.6 Use of variables within rules

The boiler shown in Figure 2.1 is a simplified view of a real system, and the

accompanying rule set is much smaller than those associated with most real-

world problems. In real-world systems, variables can be used to make rules

more general, thereby reducing the number of rules needed and keeping the

rule set manageable. The sort of rule that is often required is of the form:

For all x, IF <condition about x> THEN <conclusion about x>

To illustrate this idea, let us imagine a more complex boiler. This boiler may,

for instance, have many water supply pipes, each with its own control valve.

For each pipe, the flow rate will be related to whether or not the control valve

is open. So some possible rules might be of the form:

/* Rule 2.13 */

IF control valve 1 is open THEN flow rate in tube 1 is high

/* Rule 2.14 */

IF control valve 2 is open THEN flow rate in tube 2 is high

/* Rule 2.15 */

IF control valve 3 is open THEN flow rate in tube 3 is high

/* Rule 2.16 */

IF control valve 4 is open THEN flow rate in tube 4 is high

/* Rule 2.17 */

IF control valve 5 is open THEN flow rate in tube 5 is high

A much more compact, elegant and flexible representation of these rules would

be:

/* Rule 2.18 */

IF control valve ?x is open THEN flow rate in tube ?x is high

Here we have used a question mark (‘?’) to denote that x is a variable. Now if

the sensors detect that any control valve is open, the identity of the control

valve is substituted for x when the rule is fired. The variable x is said to be

instantiated with a value, in this case an identity number. Thus, if control valve

3 is open, x is instantiated with the value 3 and the deduction flow rate in

tube 3 is high is made.

In this example the possible values of x were limited, and so the use of a

variable was convenient rather than necessary. Where the possible values of a

variable cannot be anticipated in advance, the use of variables becomes

essential. This is the case when values are being looked up, perhaps from a

database or from a sensor. As an example, consider the following rule:

/* Rule 2.19 */

IF (drum pressure is ?p) AND (?p > threshold) THEN

tube pressure is (?p/10)

Without the use of the variable name p, it would not be possible to generate a

derived fact which states explicitly a pressure value. Suppose that the drum

pressure sensor is reading a value of 300MNm 2 and threshold is a variable

currently set to 100MNm 2. Rule 2.19 can therefore be fired, and the derived

fact tube pressure is 30 (MNm 2) is generated. Note that in this example

the value of the variable p has been manipulated, i.e., divided by 10. More

sophisticated rule-based systems allow values represented as variables to be

manipulated in this way or passed as parameters to procedures and functions.

The association of a specific value (say, 300MNm 2) with a variable name

(such as p) is sometimes referred to as unification. The term applies not only to

numerical examples but to any form of data. The word arises because, from the

computer’s perspective, the following are contradictory pieces of information:

pressure is p;

pressure is 300 (units of MNm 2 assumed).

This conflict can be resolved by recognizing that one of the values is a variable

name (because in our syntax it is preceded by a question mark) and by making

the following assignment or unification:

p:=300

The use of variable names within rules is integral to the Prolog language

(see Chapter 10). In Prolog, rather than using a question mark, variables are

distinguished from constants by having an underscore or upper case letter as

their first character. Other languages would require the user to program this

facility or to purchase suitable software.

2.7 Forward-chaining (a data-driven strategy)

As noted in Section 2.3, the inference engine applies a strategy for deciding

which rules to apply and when to apply them. Forward-chaining is the name

given to a data-driven strategy, i.e., rules are selected and applied in response

to the current fact base. The fact base comprises all facts known by the system,

whether derived by rules or supplied directly (see Section 2.1).

A schematic representation of the cyclic selection, examination and firing

of rules is shown in Figure 2.2. The cycle of events shown in Figure 2.2 is just

one version of forward-chaining, and variations in the strategy are possible.

The key points of the scheme shown in Figure 2.2 are as follows:

• rules are examined and fired on the basis of the current fact base,

independently of any predetermined goals;

• the set of rules available for examination may comprise all of the rules or

a subset;

• of the available rules, those whose conditions are satisfied are said to have

been triggered. These rules make up the conflict set, and the method of

selecting a rule from the conflict set is conflict resolution (Section 2.8);

NamacA
:

• although the conflict set may contain many rules, only one rule is fired on

a given cycle. This is because once a rule has fired, the stored deductions

have potentially changed, and so it cannot be guaranteed that the other

rules in the conflict set still have their condition parts satisfied.

Select rules to examine
(often all rules are selected)

Select a rule from the conflict set
(conflict resolution) and fire it

Conflict set
empty?

Evaluate condition part of first rule

Condition met?

Add rule to conflict set

Any more rules
to examine?

Stop

Start

Evaluate condition part
 of next rule

yes

no

yesno

no

yes

Empty the conflict set

Figure 2.2 Forward-chaining

2.7.1 Single and multiple instantiation of variables

As noted above, variations on the basic scheme for forward-chaining are

possible. Where variables are used in rules, the conclusions may be performed

using just the first set of instantiations that are found — this is single

instantiation. Alternatively, the conclusions may be performed repeatedly

using all possible instantiations — this is multiple instantiation. The difference

between the two approaches is shown in Figure 2.3. As an example, consider

the following pair of rules:

/* Rule 2.20 */

IF control valve ?x is open THEN flow rate in tube ?x is high

Find all sets of instantiations
of variables

Fire conclusion for each set of
instantiations

Build conflict set

Select rule to fire

Find one set of instantiations
of variables

Fire conclusion for that set of
instantiations

Build conflict set

Select rule to fire

Conflict set
empty?

Stop

no

yes
Conflict set

empty?
Stop

no

yes

(a) (b)

Figure 2.3 Alternative forms of forward-chaining:

(a) multiple instantiation of variables

(b) single instantiation of variables

/* Rule 2.21 */

IF flow rate in tube ?x is high THEN close control valve ?x

Suppose that we start with two facts:

control valve 1 is open

control valve 2 is open

Under multiple instantiation, each rule would fire once, generating conclusions

in the following order:

flow rate in tube 1 is high

flow rate in tube 2 is high

close control valve 1

close control valve 2

If the conflict resolution strategy gives preference to Rule 2.21 over Rule 2.20,

a different firing order would occur under single instantiation. Each cycle of

the inference engine would result in a rule firing on a single instantiation of the

variable x. After four cycles, conclusions would have been generated in the

following order:

flow rate in tube 1 is high

close control valve 1

close control
valve 2

flow rate in
tube 1 is high

close control
valve 1

flow rate in
tube 2 is high

close control
valve 2

flow rate in
tube 1 is high

close control
valve 1

flow rate in
tube 2 is high

(a) (b)

Figure 2.4 Applying Rules 2.20 and 2.21:

(a) multiple instantiation is a breadth-first process

(b) single instantiation is a depth-first process

flow rate in tube 2 is high

close control valve 2

Multiple instantiation is a breadth-first approach to problem solving and single

instantiation is a depth-first approach, as illustrated in Figure 2.4. The practical

implications of the two approaches are discussed in Chapters 11 and 14.

2.7.2 Rete algorithm

The scheme for forward-chaining shown in Figure 2.2 contains at least one

source of inefficiency. Once a rule has been selected from the conflict set and

fired, the conflict set is thrown away and the process starts all over again. This

is because firing a rule alters the fact base, so that a different set of rules may

qualify for the conflict set. A new conflict set is therefore drawn up by re-

examining the condition parts of all the available rules. In most applications,

the firing of a single rule makes only slight changes to the fact base and hence

to the membership of the conflict set. Therefore, a more efficient approach

would be to examine only those rules whose condition is affected by changes

made to the fact base on the previous cycle. The Rete (pronounced “ree-tee”)

algorithm [1, 2] is one way of achieving this.

The principle of the Rete algorithm can be shown by a simple example,

using the following rule:

/* Rule 2.22*/

IF ?p is a pipe of bore ?b AND ?v is a valve of bore ?b

THEN ?p and ?v are compatible

Prior to running the system, the condition parts of all the rules are assembled

into a Rete network, where each node represents an atomic condition, i.e., one

that contains a simple test. There are two types of nodes — alpha nodes can be

satisfied by a single fact, whereas beta nodes can only be satisfied by a pair of

facts. The condition part of Rule 2.22 would be broken down into two alpha

nodes and one beta node:

1: find a pipe

2: find a valve

1: the bore of each must be equal

The Rete network for this example is shown in Figure 2.5. Suppose that,

initially, the only relevant fact is:

p1 is a pipe of bore 100mm

Node 1 would be satisfied, and so the fact would be passed on to node 1.

However, node 1 would not be satisfied as it has received no information

from node 2. The fact that there is a pipe of bore 100mm would remain stored

at node 1. Imagine now that, as a result of firing other rules, the following

fact is derived:

v1 is a valve of bore 100mm

This fact satisfies node 2 and is passed on to node 1. Node 1 is satisfied by

the combination of the new fact and the one that was already stored there.

Thus, Rule 2.22 can be added to the conflict set without having to find a pipe

again (the task of node 1).

A full Rete network would contain nodes representing the subconditions

of all the rules in the rule base. Every time a rule is fired, the altered facts

would be fed into the network and the changes to the conflict set generated.

Where rules contain identical subconditions, nodes can be shared, thereby

avoiding duplicated testing of the conditions. In an evaluation of some

commercially available artificial intelligence toolkits that use forward-

chaining, those that incorporated the Rete algorithm were found to offer

substantial improvements in performance [3].

α1:
find a pipe

α2:
find a valve

β1:
each item has the same bore

new facts

The rule is added to the conflict set
if a fact passes node β1

Figure 2.5 A Rete network for Rule 2.22

2.8 Conflict resolution

2.8.1 First come, first served

As noted above, conflict resolution is the method of choosing one rule to fire

from those that are able to fire, i.e., from the set of triggered rules, known as

the conflict set. In Figure 2.2, the complete conflict set is found before

choosing a rule to fire. Since only one rule from the conflict set can actually

fire on a given cycle, the time spent evaluating the condition parts of the other

rules is wasted unless the result is saved by using a Rete algorithm or similar

technique. A strategy which overcomes this inefficiency is to fire immediately

the first rule to be found that qualifies for the conflict set (Figure 2.6). In this

scheme, the conflict set is not assembled at all, and the order in which rules are

selected for examination determines the resolution of conflict. The order of

rule examination is often simply the order in which the rules appear in the rule

base. If the rule-writer is aware of this, the rules can be ordered in accordance

with their perceived priority.

2.8.2 Priority values

Rather than relying on rule ordering as a means of determining rule priorities,

rules can be written so that each has an explicitly stated priority value. Where

more than one rule is able to fire, the one chosen is the one having the highest

priority. The two rules below would be available for firing if the water level

had been found to be low (i.e., Rule 2.8 had fired) and if the temperature were

high:

/* Rule 2.1a */

IF water level low THEN open control valve PRIORITY 4.0

/* Rule 2.2a */

IF temperature high and water level low THEN

open control valve AND shut down boiler tubes PRIORITY 9.0

In the scheme shown here, Rule 2.2a would be selected for firing as it has the

higher priority value. This scheme arbitrarily uses a scale of priorities from 1

to 10.

As the examination of rules that are not fired represents wasted effort, an

efficient use of priorities would be to select rules for examination in order of

their priority. Once a rule has been found which is fireable, it could be fired

immediately. This scheme is identical to the “first come, first served” strategy

(Figure 2.6), except that rules are selected for examination according to their

priority value rather than their position in the rule base.

2.8.3 Metarules

Metarules are rules which are not specifically concerned with knowledge about

the application at hand, but rather with knowledge about how that knowledge

should be applied. Metarules are therefore “rules about rules” (or more

generally, “rules about knowledge”). Some examples of metarules might be:

/* Metarule 2.23 */

PREFER rules about shut-down TO rules about control valves

Select rules to examine
(often all rules are selected)

Evaluate condition part of first rule

Condition met?

Fire the rule

Any more rules
to examine?

Stop

Start

Evaluate condition part
 of next rule

yes

no

yes

no

Figure 2.6 Forward-chaining with “first come, first served” conflict resolution

/* Metarule 2.24 */
PREFER high-level rules TO low-level rules

If Rules 2.1 and 2.2 are both in the conflict set, Metarule 2.23 will be fired,
with the result that Rule 2.2 is then fired. If a conflict arises for which no
metarule can be applied, then a default method such as “first come, first
served” can be used.

2.9 Backward-chaining (a goal-driven strategy)

2.9.1 The backward-chaining mechanism

Backward-chaining is an inference strategy that assumes the existence of a
goal that needs to be established or refuted. In the boiler control example, our
goal might be to establish whether it is appropriate to replace the outlet pipe,
and we may not be interested in any other deductions that the system is capable
of making. Backward-chaining provides the means for achieving this. Initially,
only those rules that can lead directly to the fulfillment of the goal are selected
for examination. In our case, the only rule that can achieve the goal is Rule 2.3,
since it is the only rule whose conclusion is replace outlet pipe. The
condition part of Rule 2.3 is examined but, since there is no information about
a steam outlet blockage in the fact base, Rule 2.3 cannot be fired yet. A new
goal is then produced, namely steam outlet blocked, corresponding to the
condition part of Rule 2.3. Two rules, 2.4 and 2.6, are capable of fulfilling this
goal and are therefore antecedents of Rule 2.3. What happens next depends on
whether a depth-first or breadth-first search strategy is used. These two
methods for exploring a search tree were introduced in Chapter 1, but now the
nodes of the search tree are rules.

For the moment we will assume the use of a depth-first search strategy, as
this is normally adopted. The use of a breadth-first search is discussed in
Section 2.9.3. One of the two relevant rules (2.4 or 2.6) is selected for
examination. Let us suppose that Rule 2.6 is chosen. Rule 2.6 can fire only if
steam is escaping from the drum. This information is not in the fact base, so
steam escaping becomes the new goal. The system searches the rule base for
a rule which can satisfy this goal. Rule 2.9 can satisfy the goal, if its condition
is met. The condition part of Rule 2.9 relies only on the status of the release
valve. If the valve were found to be open, then 2.9 would be able to fire, the
goal steam escaping could be satisfied, Rule 2.6 would be fireable and the
original goal thus fulfilled.

Let us suppose, on the other hand, that the release valve is found to be

closed. Rule 2.9 therefore fails, with the result that Rule 2.6 also fails. The

system backtracks to the last place where a choice between possible rules was

made and will try an alternative, as shown in Figure 2.7. In the example shown

here, this means that Rule 2.4 is examined next. It can fire only if the release

valve is stuck but, because this information is not yet known, it becomes the

new goal. This process continues until a goal is satisfied by the information in

the fact base. When this happens, the original goal is fulfilled, and the chosen

path through the rules is the solution. If all possible ways of achieving the

overall goal have been explored and failed, then the overall goal fails.

The backward-chaining mechanism described so far has assumed a depth-

first search for rules. This means that whenever a choice between rules exists,

just one is selected, the others being examined only if backtracking occurs.

The inference mechanism built into the Prolog language (see Chapter 10)

is a depth-first backward-chainer, like that described here. There are two sets

of circumstances under which backtracking takes place:

Rule 2.3

Rule 2.4

Rule 2.5

Rule 2.7

Goal: replace
outlet pipe

search

Failure

Rule 2.6

Rule 2.9

search

Success

backtrack

Figure 2.7 Backward-chaining applied to the boiler control rules:

the search for rules proceeds in a depth-first manner

Start

Goal G1 satisfied?

Goal is G1

Rule X1
exists that satisfies

G1?

Condition part of rule X1 is goal G2

Another solution
wanted?

Stop

B
ac

kt
ra

ck

Backtrack

Choose new rule X1

Stop

Success

Goal failed

yes

no

yes

no

yes

no

B
ac

kt
ra

ck

etc

Goal G2 satisfied?

Goal is G2

Rule X2
exists that satisfies

G2?

Condition part of rule X2 is goal G3

Another solution
wanted?

Stop
Backtrack

Choose new rule X2

Success

yes

no

yes

no

yes

no

Goal G3 satisfied?

Goal is G3

Rule X3
exists that satisfies

G3?

Condition part of rule X3 is goal G4

Another solution
wanted?

Stop
Backtrack

Choose new rule X3

Success

yes

no

yes

no

yes

no

B
ac

kt
ra

ck

etc

Figure 2.8 A flowchart for backward-chaining

(i) when a goal cannot be satisfied by the set of rules currently under

consideration; or

(ii) when a goal has been satisfied and the user wants to investigate other

ways of achieving the goal (i.e., to find other solutions).

2.9.2 Implementation of backward-chaining

Figure 2.8 shows a generalized flowchart for backward-chaining from a goal

G1. In order to simplify the chart, it has been assumed that each rule has only

one condition, so that the satisfaction of a condition can be represented as a

single goal. In general, rules have more than one condition. The flowchart in

Figure 2.8 is an attempt to represent backward-chaining as an iterative process.

This is difficult to achieve, as the length of the chain of rules cannot be

predetermined. The flowchart has, of necessity, been left incomplete. The

flowchart contains repeating sections that are identical except for the variable

names, an indication that while it is difficult to represent the process

iteratively, it can be elegantly represented recursively. A recursive definition of

a function is one that includes the function itself. Recursion is an important

aspect of the artificial intelligence languages Lisp and Prolog, discussed in

Chapter 10, as well as many other computer languages. Box 2.1 shows a

recursive definition of backward-chaining, where it has again been assumed

that rules have only one condition. It is not always necessary to write such a

function for yourself as backward-chaining forms an integral part of the Prolog

language and most expert system shells and artificial intelligence toolkits (see

Chapter 10).

2.9.3 Variations of backward-chaining

There are a number of possible variations to the idea of backward-chaining.

Some of these are:

(i) depth-first or breadth-first search for rules;

(ii) whether or not to pursue other solutions (i.e., other means of achieving the

goal) once a solution has been found;

(iii) different ways of choosing between branches to explore (depth-first search

only);

(iv) deciding upon the order in which to examine rules (breadth-first search

only);

(v) having found a succession of enabling rules whose lowest-level conditions

are satisfied, whether to fire the sequence of rules or simply to conclude

that the goal is proven.

Breadth-first backward-chaining is identical to depth-first, except for the

mechanism for deciding between alternative rules to examine. In the example

described in Section 2.9.1 (and in Figure 2.7), instead of choosing to explore

either 2.4 or 2.6, both rules would be examined. Then the preconditions of each

(i.e., Rules 2.5 and 2.9) would be examined. If either branch fails, then the

system will not need to backtrack, as it will simply carry on down those

branches which still have the potential to fulfill the goal. The process is

illustrated in Figure 2.9. The first solution to be found will be the one with the

shortest (or joint-shortest) chain of rules. A disadvantage with the breadth-first

approach is that large amounts of computer memory may be required, as the

system needs to keep a record of progress along all branches of the search tree,

rather than just one branch.

define function backwardchain(G);

/* returns a boolean (i.e., true/false) value */

/* G is the goal being validated */

variable S, X, C;

result:= false;

/* ‘:=‘ represents assignment of a value to a variable */

S:= set of rules whose conclusion part matches goal G;

if S is empty then

result:= false;

else

while (result=false) and (S is not empty) do

X:= rule selected from S;

S:= S with X removed;

C:= condition part of X;

if C is true then

result:=true

elseif C is false then

result:=false

elseif (backwardchain(C)=true) then

result:=true;

/* note the recursive call of ‘backwardchain’ */

/* C is the new goal */

endif;

endwhile;

endif;

return result;

/* ‘result’ is the value returned by the function */

/* ‘backwardchain’ */

enddefine;

Box 2.1 A recursive definition of backward-chaining

The last item (v) in the above list of variations of backward-chaining is

important but subtle. So far our discussion of backward-chaining has made

limited reference to rule firing. If a goal is capable of being satisfied by a

succession of rules, the first of which is fireable, then the goal is assumed to be

true and no rules are actually fired. If all that is required is validation of a goal,

then this approach is adequate. However, by actually firing the rules, all of the

intermediate deductions such as water level low are recorded in the fact

base and may be used by other rules, thereby eliminating the need to re-

establish them. Therefore, in some implementations of backward-chaining,

once the path to a goal has been established, rules are fired until the original

goal is fulfilled. In more complex rule-based systems, rules may call up and

run a procedurally coded module as part of their conclusion. In such systems,

the firing of the rules is essential for the role of the procedural code to be

realized.

Rule 2.3

Rule 2.4

Rule 2.5

Rule 2.7

Goal: replace
outlet pipe

search

failure

Rule 2.6

Rule 2.9

success

Figure 2.9 A variation of backward-chaining applied to the boiler control rules;

here the search for rules proceeds in a breadth-first manner

Finally, it should be noted that in some backward-chaining systems the

rule syntax is reversed, compared with the examples that we have discussed so

far. A possible syntax would be:

DEDUCE <conclusion> IF <condition>

The placing of the conclusion before the condition reflects the fact that in

backward-chaining systems it is the conclusion part of a rule that is assessed

first, and only if the conclusion is relevant is the condition examined.

2.10 A hybrid strategy

A system called ARBS (Algorithmic and Rule-based Blackboard System),

described in Chapters 11 and 14, makes use of an inference engine that can be

thought of as part forward-chaining and part backward-chaining [4].

Conventional backward-chaining involves initial examination of a rule that

achieves the goal. If that cannot fire, its antecedent rules are recursively

examined, until rules can be fired and progress made toward the goal. In all

problems involving data interpretation (such as the boiler control example), the

high-level rules concerning the goal itself can never fire until lower-level rules

for data manipulation have been fired. The standard mechanisms for forward-

or backward-chaining, therefore, involve a great deal of redundant rule

examination. The hybrid strategy is a means of eliminating this source of

inefficiency.

Under the hybrid strategy, a rule dependence network is built prior to

running the system. For each rule, the network shows which other rules may

enable it, i.e., its antecedents, and which rules it may enable, i.e., its

dependents. The rule dependencies for the boiler control knowledge base are

shown in Figure 2.10. In its data-driven mode, known as directed forward-

chaining, the hybrid strategy achieves improved efficiency by using the

dependence network to select rules for examination. Low-level rules

concerning the sensor data are initially selected for examination. As shown in

Figure 2.10, only Rules 2.8, 2.9, and 2.10 need be examined initially. Then

higher-level rules, leading toward a solution, are selected depending on which

rules have actually fired. So, if Rules 2.8 and 2.9 fire successfully, the new set

of rules to be examined becomes 2.1, 2.2, and 2.6. The technique is an

effective way of carrying out the instruction marked “select rules to examine”

in the flowchart for forward-chaining (Figure 2.2).

The same mechanism can easily be adapted to provide an efficient goal-

driven strategy. Given a particular goal, the control mechanism can select the

branch of the dependence network leading to that goal and then backward-

chain through the selected rules.

For a given rule base, the dependence network needs to be generated only

once, and is then available to the system at run-time. The ordering of rules in

the rule base does not affect the system, because the application of rules is

dictated by their position in the dependence network rather than in the rule set.

Rule 2.7 has a “negative dependence” on Rule 2.8, meaning that Rule 2.7

is fireable if Rule 2.8 fails to fire:

/* Rule 2.7 */

IF temperature high AND NOT(water level low) THEN pressure high

/* Rule 2.8 */

IF transducer output low THEN water level low

As discussed in Section 2.5, the closed-world assumption will lead to

NOT(water level low) being assumed true unless Rule 2.8 is successfully

fired. Therefore, for Rule 2.7 to behave as intended, Rule 2.8 must be

examined (and either fire or fail) before Rule 2.7 is examined. Using the

Transducer
output Temperature

or

Status of
release valve

Rule 2.1 Rule 2.2 Rule 2.3

Rule 2.4 Rule 2.6

Rule 2.5

Rule 2.7

Rule 2.8

and

and

and

Rule 2.9

Rule 2.10

Flow rate

and

not

Figure 2.10 A rule dependence network

dependence network to direct rule examination and firing is one way of

ensuring this order of events.

The use of dependence networks is more complicated when variables are

used within rules because the dependencies between rules are less certain.

Consider, for example, the following set of rules that do not use variables:

/* Rule 2.25 */

IF control valve 1 is open AND pipe 1 is blocked

THEN open release valve

/* Rule 2.26 */

IF flow rate through pipe 1 is high

THEN control valve 1 is open

/* Rule 2.27 */

IF pressure in pipe 1 is high

THEN pipe 1 is blocked

A dependence network would show that Rule 2.25 is dependent only on Rules

2.26 and 2.27. Therefore, if 2.26 and 2.27 have fired, 2.25 can definitely fire.

Now consider the same rules modified to incorporate the use of variables:

/* Rule 2.25a */

IF control valve ?x open AND pipe ?x blocked

THEN open release valve

/* Rule 2.26a */

IF flow rate through pipe ?x is high

THEN control valve ?x open

/* Rule 2.27a */

IF pressure in pipe ?x is high

THEN pipe ?x is blocked

Rule 2.25a is dependent on Rules 2.26a and 2.27a. However, it is possible for

Rules 2.26a and 2.27a to have fired, but for Rule 2.25a to fail. This is because

the condition of Rule 2.25a requires the valve and pipe numbers (represented

by x) to be identical, whereas Rules 2.26a and 2.27a could each use a different

value for x. Thus when rules contain variables, a dependence network shows

which rules have the potential to enable others to fire. Whether or not the

dependent rules will actually fire cannot be determined until run-time. The

dependence network shows us that Rule 2.25a should be examined if Rules

2.26a and 2.27a have fired, but otherwise it can be ignored.

A similar situation arises when there is a negative dependence between

rules containing variables, for example:

/* Rule 2.25b */

IF NOT(control valve ?x open) AND pipe ?x blocked

THEN open release valve

/* Rule 2.26b */

IF flow rate through pipe ?x is high

THEN control valve ?x open

/* Rule 2.27b */

IF pressure in pipe ?x is high

THEN pipe ?x is blocked

Here 2.25b has a negative dependence on 2.26b and a normal (positive)

dependence on 2.27b. Under these circumstances, 2.25b should be examined

after both:

(i) 2.27b has fired; and

(ii) 2.26b has been examined, whether or not it fired.

The first subcondition of Rule 2.25b, NOT(control valve ?x open), will

certainly be true if Rule 2.26b fails, owing to the closed-world assumption.

However, it may also be true even if Rule 2.26b has fired, since x could be

instantiated to a different value in each rule. It is assumed that the scope of the

variable is the length of the rule, so the value of x is the same throughout Rule

2.25b, but may be different in Rule 2.26b.

2.11 Explanation facilities

One of the claims frequently made in support of expert systems is that they are

able to explain their reasoning, and that this gives users of such systems

confidence in the accuracy or wisdom of the system’s decisions. However, as

noted in Chapter 1, the explanations offered by many systems are little more

than a trace of the firing of rules. While this is an important facility, tracing the

flow of a computer program is standard practice and not a particularly special

capability.

Explanation facilities can be divided into two categories:

• how a conclusion has been derived;

• why a particular line of reasoning is being followed.

The first type of explanation would normally be applied when the system has

completed its reasoning, whereas the second type is applicable while the

system is carrying out its reasoning process. The latter type of explanation is

particularly appropriate in an interactive expert system, which involves a

dialogue between a user and the computer. During such a dialogue the user

will often want to establish why particular questions are being asked. If either

type of explanation is incorrect or impenetrable, the user is likely to distrust or

ignore the system’s findings.

Returning once more to our rule set for boiler control (Section 2.2), the

following would be a typical explanation for a recommendation to replace the

outlet pipe:

Replace outlet pipe

BECAUSE (Rule 2.3) steam outlet blocked

steam outlet blocked

BECAUSE (Rule 2.4) release valve stuck

release valve stuck

BECAUSE (Rule 2.5) pressure high AND release valve closed

pressure high

BECAUSE (Rule 2.7) temperature high AND NOT(water level low)

NOT(water level low)

BECAUSE (Rule 2.8) NOT(transducer output low)

release valve closed
temperature high

NOT(transducer output low)
 are supplied facts

Explanation facilities are desirable for increasing user confidence in the

system, as a teaching aid and as an aid to debugging. However, a simple trace

like the one shown is likely to be of little use except for debugging. The quality

of explanation can be improved by placing an obligation on the rule-writer to

provide an explanatory note for each rule. These notes can then be included in

the rule trace, or reproduced at run-time to explain the current line of

reasoning. Explanation facilities can also be made more relevant by supplying

the user with a level of detail tailored to his or her needs.

2.12 Summary

Rules are an effective way of representing knowledge in many application

domains. They are most versatile when variables are used within rules and they

can be particularly useful in cooperation with procedural algorithms or object-

oriented systems (Chapter 4). The role of interpreting, selecting, and applying

rules is fulfilled by the inference engine. Rule-writing should ideally be

independent of the details of the inference engine, apart from fulfilling its

syntax requirements. In practice, the rule-writer needs to be aware of the

strategy for applying rules and any assumptions that are made by the inference

engine. For instance, under the closed-world assumption, any facts that have

not been supplied or derived are assumed to be false. Forward- and backward-

chaining are two distinct strategies for applying rules, but many variations of

these strategies are also possible.

References

1. Forgy, C. L., “Rete: a fast algorithm for the many-pattern/many-object-

pattern match problem,” Artificial Intelligence, vol. 19, pp. 17–37, 1982.

2. Graham, P., “Using the Rete algorithm,” AI Expert, pp. 46–51, December

1990.

3. Mettrey, W., “A comparative evaluation of expert system tools,” IEEE

Computer, vol. 24, issue 2, pp. 19–31, February 1991.

4. Hopgood, A. A., “Rule-based control of a telecommunications network

using the blackboard model,” Artificial Intelligence in Engineering, vol. 9,

pp. 29–38, 1994.

Further reading

• Darlington, K. W., The Essence of Expert Systems, Prentice Hall, 2000.

• Durkin, J., Expert Systems: design and development, MacMillan, 1998.

• Giarratano, J. and Riley, G., Expert Systems: principles and programming,

3rd ed., PWS, 1998.

• Jackson, P., Introduction to Expert Systems, 3rd ed., Addison-Wesley,

1998.

Chapter three

Dealing with uncertainty

3.1 Sources of uncertainty

The discussion of rule-based systems in Chapter 2 assumed that we live in a

clear-cut world, where every hypothesis is either true, false, or unknown.

Furthermore, it was pointed out that many systems make use of the closed-

world assumption, whereby any hypothesis that is unknown is assumed to be

false. We were then left with a binary system, where everything is either true

or false. While this model of reality is useful in many applications, real

reasoning processes are rarely so clear-cut. Referring to the example of the

control of a power station boiler, we made use of the following rule:

IF transducer output is low THEN water level is low

There are three distinct forms of uncertainty that might be associated with this

rule:

Uncertainty in the rule itself

A low level of water in the drum is not the only possible explanation for a low

transducer output. Another possible cause could be that the float attached to

the transducer is stuck. What we really mean by this rule is that if the

transducer output is low then the water level is probably low.

Uncertainty in the evidence

The evidence upon which the rule is based may be uncertain. There are two

possible reasons for this uncertainty. First, the evidence may come from a

source that is not totally reliable. For instance, we may not be absolutely

certain that the transducer output is low, as this information relies upon a meter

to measure the voltage. Second, the evidence itself may have been derived by a

rule whose conclusion was probable rather than certain.

Use of vague language

The above rule is based around the notion of a “low” transducer output.

Assuming that the output is a voltage, we must consider whether “low”

corresponds to 1mV, 1V or 1kV.

It is important to distinguish between these sources of uncertainty, as they

need to be handled differently. There are some situations in nature that are

truly random and whose outcome, while uncertain, can be anticipated on a

statistical basis. For instance, we can anticipate that on average one of six

throws of a die will result in a score of four. Some of the techniques that we

will be discussing are based upon probability theory. These assume that a

statistical approach can be adopted, although this assumption will be only an

approximation to the real circumstances unless the problem is truly random.

This chapter will review some of the commonly used techniques for

reasoning with uncertainty. Bayesian updating has a rigorous derivation based

upon probability theory, but its underlying assumptions, e.g., the statistical

independence of multiple pieces of evidence, may not be true in practical

situations. Certainty theory does not have a rigorous mathematical basis, but

has been devised as a practical way of overcoming some of the limitations of

Bayesian updating. Possibility theory, or fuzzy logic, allows the third form of

uncertainty, i.e., vague language, to be used in a precise manner. The

assumptions and arbitrariness of the various techniques have meant that

reasoning under uncertainty remains a controversial issue.

3.2 Bayesian updating

3.2.1 Representing uncertainty by probability

Bayesian updating assumes that it is possible to ascribe a probability to every

hypothesis or assertion, and that probabilities can be updated in the light of

evidence for or against a hypothesis or assertion. This updating can either use

Bayes’ theorem directly (Section 3.2.2), or it can be slightly simplified by the

calculation of likelihood ratios (Section 3.2.3). One of the earliest successful

applications of Bayesian updating to expert systems was PROSPECTOR, a

system which assisted mineral prospecting by interpreting geological data [1,

2].

Let us start our discussion by returning to our rule set for control of the

power station boiler (see Chapter 2), which included the following two rules:

/* Rule 2.4 */

IF release valve stuck THEN steam outlet blocked

/* Rule 2.6 */

IF steam escaping THEN steam outlet blocked

We’re going to consider the hypothesis that there is a steam outlet blockage.

Previously, under the closed-world assumption, we asserted that in the absence

of any evidence about a hypothesis, the hypothesis could be treated as false.

The Bayesian approach is to ascribe an a priori probability (sometimes simply

called the prior probability) to the hypothesis that the steam outlet is blocked.

This is the probability that the steam outlet is blocked, in the absence of any

evidence that it is or is not blocked. Bayesian updating is a technique for

updating this probability in the light of evidence for or against the hypothesis.

So, whereas we had previously assumed that steam escaping led to the

deduction steam outlet blockage with absolute certainty, now we can only

say that it supports that deduction. Bayesian updating is cumulative, so that if

the probability of a hypothesis has been updated in the light of one piece of

evidence, the new probability can then be updated further by a second piece of

evidence.

3.2.2 Direct application of Bayes’ theorem

Suppose that the prior probability of steam outlet blockage is 0.01, which

implies that blockages occur only rarely. Our modified version of Rule 2.6

might look like this:

IF steam escaping

THEN update P(steam outlet blockage)

With this new rule, the observation of steam escaping requires us to update the

probability of a steam outlet blockage. This contrasts with Rule 2.6, where the

conclusion that there is a steam outlet blockage would be drawn with absolute

certainty. In this example, steam outlet blockage is considered to be a

hypothesis (or assertion), and steam escaping is its supporting evidence.

The technique of Bayesian updating provides a mechanism for updating

the probability of a hypothesis P(H) in the presence of evidence E. Often the

evidence is a symptom and the hypothesis is a diagnosis. The technique is

based upon the application of Bayes’ theorem (sometimes called Bayes’ rule).

Bayes’ theorem provides an expression for the conditional probability P(H|E)

of a hypothesis H given some evidence E, in terms of P(E|H), i.e., the

conditional probability of E given H:

P(E)

H)|P(EP(H)
E)|P(H (3.1)

The theorem is easily proved by looking at the definition of dependent

probabilities. Of an expected population of events in which E is observed,

P(H|E) is the fraction in which H is also observed. Thus:

P(E)

E) & P(H
E)|P(H (3.2)

Similarly,

P(H)

E) & P(H
H)|P(E (3.3)

The combination of Equations 3.2 and 3.3 yields Equation 3.1. Bayes’ theorem

can then be expanded as follows:

H)|~P(E H)P(~ H)|P(E P(H)

H)|P(E)P(H
E)|P(H (3.4)

where ~H means “not H.” The probability of ~H is simply given by:

P(~H) = 1 – P(H) (3.5)

Equation 3.4 provides a mechanism for updating the probability of a

hypothesis H in the light of new evidence E. This is done by updating the

existing value of P(H) to the value for P(H|E) yielded by Equation 3.4. The

application of the equation requires knowledge of the following values:

• P(H), the current probability of the hypothesis. If this is the first update for

this hypothesis, then P(H) is the prior probability.

• P(E|H), the conditional probability that the evidence is present, given that

the hypothesis is true.

• P(E|~H), the conditional probability that the evidence is present, given that

the hypothesis is false.

Thus, to build a system that makes direct use of Bayes’ theorem in this

way, values are needed in advance for P(H), P(E|H), and P(E|~H) for all the

different hypotheses and evidence covered by the rules. Obtaining these values

might appear at first glance more formidable than the expression we are hoping

to derive, namely P(H|E). However, in the case of diagnosis problems, the

conditional probability of evidence, given a hypothesis, is usually more readily

available than the conditional probability of a hypothesis, given the evidence.

Even if P(E|H) and P(E|~H) are not available as formal statistical observations,

they may at least be available as informal estimates. So in our example an

expert may have some idea of how often steam is observed escaping when

there is an outlet blockage, but is less likely to know how often a steam escape

is due to an outlet blockage. Chapter 1 introduced the ideas of deduction,

abduction, and induction. Bayes’ theorem, in effect, performs abduction (i.e.,

determining causes) using deductive information (i.e., the likelihood of

symptoms, effects, or evidence). The premise that deductive information is

more readily available than abductive information is one of the justifications

for using Bayesian updating.

3.2.3 Likelihood ratios

Likelihood ratios, defined below, provide an alternative means of representing

Bayesian updating. They lead to rules of this general form:

IF steam escaping

THEN steam outlet blockage IS X times more likely

With a rule like this, if steam is escaping we can update the probability of a

steam outlet blockage provided we have an expression for X. A value for X can

be expressed most easily if the hypothesis steam outlet blockage is

expressed as odds rather than a probability. The odds O(H) of a given

hypothesis H are related to its probability P(H) by the relations:

P(H)1

P(H)

H)P(~

P(H)
O(H) (3.6)

and

1O(H)

O(H)
)P(H (3.7)

As before, ~H means “not H.” Thus a hypothesis with a probability of 0.2 has

odds of 0.25 (or “4 to 1 against”). Similarly a hypothesis with a probability of

0.8 has odds of 4 (or “4 to 1 on”). An assertion that is absolutely certain, i.e.,

has a probability of 1, has infinite odds. In practice, limits are often set on odds

values so that, for example, if O(H)>106 then H is true, and if O(H)<10 6 then

H is false. Such limits are arbitrary.

In order to derive the updating equations, start by considering the

hypothesis “not H,” or ~H, in Equation 3.1:

P(E)

H)|~P(EH)P(~
)E|HP(~

×
= (3.8)

Division of Equation 3.1 by Equation 3.8 yields:

H)|~P(EH)P(~

H)|P(EP(H)

)E|HP(~

)E|P(H

×
×

= (3.9)

By definition, O(H|E), the conditional odds of H given E, is:

E)|HP(~

E)|P(H
E)|O(H = (3.10)

Substituting Equations 3.6 and 3.10 into Equation 3.9 yields:

O(H|E) = A × O(H) (3.11)

where:

H)|P(E

H)|P(E

~
A = (3.12)

O(H|E) is the updated odds of H, given the presence of evidence E, and A
is the affirms weight of evidence E. It is one of two likelihood ratios. The other
is the denies weight D of evidence E. The denies weight can be obtained by
considering the absence of evidence, i.e., ~E:

O(H|~E) = D × O(H) (3.13)

where:

H)|P(E1

H)|P(E1

H)|EP(

H)|EP(

~~~

~
D

−
−

== (3.14)

The function represented by Equations 3.11 and 3.13 is shown in Figure
3.1. Rather than displaying odds values, which have an infinite range, the
corresponding probabilities have been shown. The weight (A or D) has been
shown on a logarithmic scale over the range 0.01 to 100.

3.2.4 Using the likelihood ratios

Equation 3.11 provides a simple way of updating our confidence in hypothesis
H in the light of new evidence E, assuming that we have a value for A and for



O(H), i.e., the current odds of H. O(H) will be at its a priori value if it has not

previously been updated by other pieces of evidence. In the case of Rule 2.6, H

refers to the hypothesis steam outlet blockage and E refers to the evidence

steam escaping.

In many cases, the absence of a piece of supporting evidence may reduce

the likelihood of a certain hypothesis. In other words, the absence of

supporting evidence is equivalent to the presence of opposing evidence. The

known absence of evidence is distinct from not knowing whether the evidence

is present, and can be used to reduce the probability (or odds) of the hypothesis

by applying Equation 3.13 using the denies weight, D.

If a given piece of evidence E has an affirms weight A that is greater than

1, then its denies weight must be less than 1 and vice versa:

A>1 implies D<1,

A<1 implies D>1.

If A<1 and D>1, then the absence of evidence is supportive of a hypothesis.

Rule 2.7 provides an example of this, where NOT(water level low) supports

the hypothesis pressure high and water level low opposes the hypothesis:

0
0.2

0.4
0.6

0.8
1

-2

-1

0

1
2

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8
1

-2

-1

0

1

0.2

0.4

0.6

0.8

1

P(H|E)

P(H
)

Log   weight

10

0

Figure 3.1   The Bayesian updating function



/* Rule 2.7 */

IF temperature high AND NOT(water level low)

THEN pressure high

A Bayesian version of this rule might be:

/* Rule 3.1 */

IF temperature high (AFFIRMS 18.0; DENIES 0.11)

AND water level low (AFFIRMS 0.10; DENIES 1.90)

THEN pressure high

As with the direct application of Bayes rule, likelihood ratios have the

advantage that the definitions of A and D are couched in terms of the

conditional probability of evidence, given a hypothesis, rather than the reverse.

As pointed out above, it is usually assumed that this information is more

readily available than the conditional probability of a hypothesis, given the

evidence, at least in an informal way. Even if accurate conditional probabilities

are unavailable, Bayesian updating using likelihood ratios is still a useful

technique if heuristic values can be attached to A and D.

3.2.5 Dealing with uncertain evidence

So far we have assumed that evidence is either definitely present (i.e., has a

probability of 1) or definitely absent (i.e., has a probability of 0). If the

probability of the evidence lies between these extremes, then the confidence in

the conclusion must be scaled appropriately. There are two reasons why the

evidence may be uncertain:

• the evidence could be an assertion generated by another uncertain rule,

and which therefore has a probability associated with it;

• the evidence may be in the form of data which are not totally reliable, such

as the output from a sensor.

In terms of probabilities, we wish to calculate P(H|E), where E is

uncertain. We can handle this problem by assuming that E was asserted by

another rule whose evidence was B, where B is certain (has probability 1).

Given the evidence B, the probability of E is P(E|B). Our problem then

becomes one of calculating P(H|B). An expression for this has been derived by

Duda et al. [3]:

P(H|B) = P(H|E)  P(E|B) + P(H|~E)  [1 – P(E|B)] (3.15)



This expression can be useful if Bayes’ theorem is being used directly (Section

3.2.2), but an alternative is needed when using likelihood ratios. One technique

is to modify the affirms and denies weights to reflect the uncertainty in E. One

means of achieving this is to interpolate the weights linearly as the probability

of E varies between 1 and 0. Figure 3.2 illustrates this scaling process, where

the interpolated affirms and denies weights are given the symbols A' and D',

respectively. While P(E) is greater than 0.5, the affirms weight is used, and

when P(E) is less than 0.5, the denies weight is used. Over the range of values

for P(E), A' and D' vary between 1 (neutral weighting) and A and D,

respectively. The interpolation process achieves the right sort of result, but has

no rigorous basis. The expressions used to calculate the interpolated values are:

A' = [2(A – 1)  P(E)] + 2 – A (3.16)

D' = [2(1 – D)  P(E)] + D (3.17)

3.2.6 Combining evidence

Much of the controversy concerning the use of Bayesian updating is centered

on the issue of how to combine several pieces of evidence that support the

In
te

rp
ol

at
ed

 a
ff

ir
m

s 
w

ei
gh

t (
A

')

Probability of
evidence E,  P(E)

0.5 1
1

A

A, calculated from Equation 3.12

In
te

rp
ol

at
ed

 d
en

ie
s 

w
ei

gh
t (

D
')

0 0.5

D, calculated from Equation 3.14

1

D

Probability of
evidence E,  P(E)

Figure 3.2   Linear interpolation of affirms and denies weights

when the evidence is uncertain



same hypothesis. If n pieces of evidence are found that support a hypothesis H,
then the formal restatement of the updating equation is straightforward:

O(H|E1&E2&E3 … En) = A × O(H) (3.18)

where

H)|EE&E&P(E

H)|EE&E&P(E

321

321

~
A

n

n

K

K
= (3.19)

However, the usefulness of this pair of equations is doubtful, since we do
not know in advance which pieces of evidence will be available to support the
hypothesis H. We would have to write expressions for A covering all possible
pieces of evidence Ei, as well as all combinations of the pairs Ei&Ej, of the
triples Ei&Ej&Ek, of quadruples Ei&Ej&Ek&Em, and so on. As this is clearly
an unrealistic requirement, especially where the number of possible pieces of
evidence (or symptoms in a diagnosis problem) is large, a simplification is
normally sought. The problem becomes much more manageable if it is
assumed that all pieces of evidence are statistically independent. It is this
assumption that is one of the most controversial aspects of the use of Bayesian
updating in knowledge-based systems, since the assumption is rarely accurate.
Statistical independence of two pieces of evidence (E1 and E2) means that the
probability of observing E1 given that E2 has been observed is identical to the
probability of observing E1 given no information about E2. Stating this more
formally, the statistical independence of E1 and E2 is defined as:

P(E1|E2) = P(E1)

and (3.20)

P(E2|E1) = P(E2)

If the independence assumption is made, then the rule-writer need only
worry about supplying weightings of the form:

H)|P(E

H)|P(E

~
A

i

i
i = (3.21)

and

H)|EP(

H)|EP(

~~

~
D

i

i
i = (3.22)



for each piece of evidence Ei that has the potential to update H. If, in a given

run of the system, n pieces of evidence are found that support or oppose H,

then the updating equations are simply:

O(H|E1&E2&E3....En) = A1  A2  A3  …  An  O(H) (3.23)

and

O(H|~E1&~E2&~E3....~En) = D1  D2  D3  …  Dn  O(H) (3.24)

Problems arising from the interdependence of pieces of evidence can be

avoided if the rule base is properly structured. Where pieces of evidence are

known to be dependent on each other, they should not be combined in a single

rule. Instead assertions — and the rules that generate them — should be

arranged in a hierarchy from low-level input data to high-level conclusions,

with many levels of hypotheses between. This does not limit the amount of

evidence that is considered in reaching a conclusion, but controls the

interactions between the pieces of evidence. Inference networks are a

convenient means of representing the levels of assertions from input data,

through intermediate deductions to final conclusions. Figures 3.3 and 3.4 show

two possible inference networks. Each node represents either a hypothesis or a

piece of evidence, and has an associated probability (not shown). In Figure 3.3

the rule-writer has attempted to draw all the evidence that is relevant to

particular conclusions together in a single rule for each conclusion. This

produces a shallow network, with no intermediate levels between input data

and conclusions. Such a system would only be reliable if there was little or no

dependence between the input data.

In contrast, the inference network in Figure 3.4 includes several

intermediate steps. The probabilities at each node are modified as the

H1 H2 H3

E1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9

Figure 3.3   A shallow Bayesian inference network (Ei = evidence, Hi = hypothesis)



reasoning process proceeds, until they reach their final values. Note that the

rules in the boiler control example made use of several intermediate nodes,

which helped to make the rules more understandable and avoided duplication

of tests for specific pieces of evidence.

3.2.7 Combining Bayesian rules with production rules

In a practical rule-based system, we may wish to mix uncertain rules with

production rules. For instance, we may wish to make use of the production

rule:

IF release valve is stuck THEN release valve needs cleaning

even though the assertion release valve is stuck may have been

established with a probability less than 1. In this case the hypothesis release

valve needs cleaning can be asserted with the same probability as the

evidence. This avoids the issue of providing a prior probability for the

hypothesis or a weighting for the evidence.

E1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9

H1 H2 H3

I1 I 2 I 3

I 4 I 5 I 6 I 7

Figure 3.4   A deeper Bayesian inference network

(Ei = evidence, Hi = hypothesis, Ii = intermediate hypothesis)



If a production rule contains multiple pieces of evidence that are

independent from each other, their combined probability can be derived from

standard probability theory. Consider, for example, a rule in which two pieces

of independent evidence are conjoined (i.e., they are joined by AND):

IF evidence E1 AND evidence E2 THEN hypothesis H3

The probability of hypothesis H3 is given by:

P(H3) = P(E1)  P(E2) (3.25)

Production rules containing independent evidence that is disjoined (i.e., joined

by OR) can be treated in a similar way. So given the rule:

IF evidence E1 OR evidence E2 THEN hypothesis H3

the probability of hypothesis H3 is given by:

P(H3) = P(E1)  P(E2) – (P(E1)  P(E2)) (3.26)

3.2.8 A worked example of Bayesian updating

We will consider the same example that was introduced in Chapter 2, namely

control of a power station boiler. Let us start with just four rules:

/* Rule 3.1a */

IF release valve is stuck THEN release valve needs cleaning

/* Rule 3.2a */

IF warning light is on THEN release valve is stuck

/* Rule 3.3a */

IF pressure is high THEN release valve is stuck

/* Rule 3.4a */

IF temperature is high AND NOT(water level is low)

THEN pressure is high

The conclusion of each of these rules is expressed as an assertion. The four

rules contain four assertions (or hypotheses) and three pieces of evidence

which are independent of the rules, namely the temperature, the status of the

warning light (on or off), and the water level. The various probability estimates

for these and their associated affirms and denies weights are shown in

Table 3.1.



Having calculated the affirms and denies weights, we can now rewrite our

production rules as probabilistic rules. We will leave Rule 3.1a unaltered in

order to illustrate the interaction between production rules and probabilistic

rules. Our new rule set is therefore as follows:

/* Rule 3.1b */

IF release valve is stuck THEN release valve needs cleaning

/* Rule 3.2b */

IF warning light is on (AFFIRMS 2.20; DENIES 0.20)

THEN release valve is stuck

/* Rule 3.3b */

IF pressure is high (AFFIRMS 85.0; DENIES 0.15)

THEN release valve is stuck

/* Rule 3.4b */

IF temperature is high (AFFIRMS 18.0; DENIES 0.11)

AND water level is low (AFFIRMS 0.10; DENIES 1.90)

THEN pressure is high

Rule 3.4b makes use of two pieces of evidence, and it no longer needs a

negative condition, as this has been accommodated by the affirms and denies

weights. The requirement that NOT(water level is low) be supportive

H E P(H) O(H) P(E|H) P(E|~H) A D

release

valve needs

cleaning

release

valve is

stuck

–––– –––– –––– –––– –––– ––––

release

valve

is stuck

warning

light

is on

0.02 0.02 0.88 0.4 2.20 0.20

release

valve

is stuck

pressure

is high
0.02 0.02 0.85 0.01 85.0 0.15

pressure is

high

temperature

is high
0.1 0.11 0.90 0.05 18.0 0.11

pressure is

high

water level

is low
0.1 0.11 0.05 0.5 0.10 1.90

Table 3.1   Values used in the worked example of Bayesian updating



evidence is expressed by the denies weight of water level is low being

greater than 1 while the affirms weight is less than 1.

To illustrate how the various weights are used, let us consider how a

Bayesian inference engine would use the following set of input data:

• NOT(water level is low)

• warning light is on

• temperature is high

We will assume that the rules fire in the following order:

Rule 3.4b  Rule 3.3b  Rule 3.2b  Rule 3.1b

The resultant rule trace might then appear as follows:

Rule 3.4b

H = pressure is high; O(H) = 0.11

E1 = temperature is high; A1 = 18.0

E2 = water level is low; D2 = 1.90

O(H|(E1&~E2)) = O(H)  A1  D2 
= 3.76

/* Updated odds of pressure is high are 3.76 */

Rule 3.3b

H = release valve is stuck; O(H) = 0.02

E = pressure is high; A = 85.0

Because E is not certain (O(E) = 3.76, P(E) = 0.79), the

inference engine must calculate an interpolated value A' for the

affirms weight of E (see Section 3.2.5).

A'= [2(A-1)  P(E)] + 2 - A = 49.7

O(H|(E)) = O(H)  A' = 0.99

/* Updated odds of release valve is stuck are 0.99, */

/* corresponding to a probability of approximately 0.5 */

Rule 3.2b

H = release valve is stuck; O(H) = 0.99

E = warning light is on; A = 2.20

O(H|(E)) = O(H)  A = 2.18

/* Updated odds of release valve is stuck are 2.18 */

Rule 3.1b

H = release valve needs cleaning

E = release valve is stuck;

O(E)= 2.18 implies O(H)= 2.18

/* This is a production rule, so the conclusion is asserted with

the same probability as the evidence. */

/* Updated odds of release valve needs cleaning are 2.18 */



3.2.9 Discussion of the worked example

The above example serves to illustrate a number of features of Bayesian

updating. Our final conclusion that the release valve needs cleaning is reached

with a certainty represented as:

O(release valve needs cleaning) = 2.18

or
P(release valve needs cleaning) = 0.69

Thus, there is a probability of 0.69 that the valve needs cleaning. In a real-

world situation, this is a more realistic outcome than concluding that the valve

definitely needs cleaning, which would have been the conclusion had we used

the original set of production rules.

The initial three items of evidence were all stated with complete certainty:

NOT(water level is low); warning light is on; and temperature is

high. In other words, P(E) = 1 for each of these. Consider the evidence

warning light is on. A probability of less than 1 might be associated with

this evidence if it were generated as an assertion by another probabilistic rule,

or if it were supplied as an input to the system, but the user’s view of the light

was impaired. If P(warning light is on) is 0.8, an interpolated value of the

affirms weight would be used in Rule 3.2b. Equation 3.16 yields an

interpolated value of 1.72 for the affirms weight.

However, if P(warning light is on) were less than 0.5, then an interpolated

denies weighting would be used. If P(warning light is on) were 0.3, an

interpolated denies weighting of 0.68 is yielded by Equation 3.17.

If P(warning light is on) = 0.5, then the warning light is just as likely to be

on as it is to be off. If we try to interpolate either the affirms or denies weight,

a value of 1 will be found. Thus, if each item of evidence for a particular rule

has a probability of 0.5, then the rule has no effect whatsoever.

Assuming that the prior probability of a hypothesis is less than 1 and

greater than 0, the hypothesis can never be confirmed with complete certainty

by the application of likelihood ratios as this would require its odds to become

infinite.

While Bayesian updating is a mathematically rigorous technique for

updating probabilities, it is important to remember that the results obtained can

only be valid if the data supplied are valid. This is the key issue to consider

when assessing the virtues of the technique. The probabilities shown in Table

3.1 have not been measured from a series of trials, but instead they are an

expert’s best guesses. Given that the values upon which the affirms and denies

weights are based are only guesses, then a reasonable alternative to calculating

them is to simply take an educated guess at the appropriate weightings. Such

an approach is just as valid or invalid as calculating values from unreliable



data. If a rule-writer takes such an ad hoc approach, the provision of both an

affirms and denies weighting becomes optional. If an affirms weight is

provided for a piece of evidence E, but not a denies weight, then that rule can

be ignored when P(E) < 0.5.

As well as relying on the rule-writer’s weightings, Bayesian updating is

also critically dependent on the values of the prior probabilities. Obtaining

accurate estimates for these is also problematic.

Even if we assume that all of the data supplied in the above worked

example are accurate, the validity of the final conclusion relies upon the

statistical independence from each other of the supporting pieces of evidence.

In our example, as with very many real problems, this assumption is dubious.

For example, pressure is high and warning light is on were used as

independent pieces of evidence, when in reality there is a cause-and-effect

relationship between the two.

3.2.10 Advantages and disadvantages of Bayesian updating

Bayesian updating is a means of handling uncertainty by updating the

probability of an assertion when evidence for or against the assertion is

provided.

The principal advantages of Bayesian updating are:

(i) The technique is based upon a proven statistical theorem.

(ii) Likelihood is expressed as a probability (or odds), which has a clearly

defined and familiar meaning.

(iii) The technique requires deductive probabilities, which are generally easier

to estimate than abductive ones. The user supplies values for the prob-

ability of evidence (the symptoms) given a hypothesis (the cause) rather

than the reverse.

(iv) Likelihood ratios and prior probabilities can be replaced by sensible

guesses. This is at the expense of advantage (i), as the probabilities

subsequently calculated cannot be interpreted literally, but rather as an

imprecise measure of likelihood.

(v) Evidence for and against a hypothesis (or the presence and absence of

evidence) can be combined in a single rule by using affirms and denies

weights.

(vi) Linear interpolation of the likelihood ratios can be used to take account of

any uncertainty in the evidence (i.e., uncertainty about whether the

condition part of the rule is satisfied), though this is an ad hoc solution.

(vii) The probability of a hypothesis can be updated in response to more than

one piece of evidence.



The principal disadvantages of Bayesian updating are:

(i) The prior probability of an assertion must be known or guessed at.

(ii) Conditional probabilities must be measured or estimated or, failing those,

guesses must be taken at suitable likelihood ratios. Although the

conditional probabilities are often easier to judge than the prior

probability, they are nevertheless a considerable source of errors.

Estimates of likelihood are often clouded by a subjective view of the

importance or utility of a piece of information [4].

(iii) The single probability value for the truth of an assertion tells us nothing

about its precision.

(iv) Because evidence for and against an assertion are lumped together, no

record is kept of how much there is of each.

(v) The addition of a new rule that asserts a new hypothesis often requires

alterations to the prior probabilities and weightings of several other rules.

This contravenes one of the main advantages of knowledge-based

systems.

(vi) The assumption that pieces of evidence are independent is often

unfounded. The only alternatives are to calculate affirms and denies

weights for all possible combinations of dependent evidence, or to

restructure the rule base so as to minimize these interactions.

(vii) The linear interpolation technique for dealing with uncertain evidence is

not mathematically justified.

(viii) Representations based on odds, as required to make use of likelihood

ratios, cannot handle absolute truth, i.e., odds = .

3.3 Certainty theory

3.3.1 Introduction

Certainty theory [5] is an adaptation of Bayesian updating that is incorporated

into the EMYCIN expert system shell. EMYCIN is based on MYCIN [6], an

expert system that assists in the diagnosis of infectious diseases. The name

EMYCIN is derived from “essential MYCIN,” reflecting the fact that it is not

specific to medical diagnosis and that its handling of uncertainty is simplified.

Certainty theory represents an attempt to overcome some of the shortcomings

of Bayesian updating, although the mathematical rigor of Bayesian updating is

lost. As this rigor is rarely justified by the quality of the data, this is not really a

problem.



3.3.2 Making uncertain hypotheses

Instead of using probabilities, each assertion in EMYCIN has a certainty value

associated with it. Certainty values can range between 1 and –1.

For a given hypothesis H, its certainty value C(H) is given by:

C(H) = 1.0 if H is known to be true;

C(H) = 0.0 if H is unknown;

C(H) = –1.0 if H is known to be false.

There is a similarity between certainty values and probabilities, such that:

C(H) = 1.0 corresponds to P(H)=1.0;

C(H) = 0.0 corresponds to P(H) being at its a priori value;

C(H) = –1.0 corresponds to P(H)=0.0.

Each rule also has a certainty associated with it, known as its certainty factor

CF. Certainty factors serve a similar role to the affirms and denies weightings

in Bayesian systems:

IF <evidence> THEN <hypothesis> WITH certainty factor CF

Part of the simplicity of certainty theory stems from the fact that identical

measures of certainty are attached to rules and hypotheses. The certainty factor

of a rule is modified to reflect the level of certainty of the evidence, such that

the modified certainty factor FC  is given by:

)E(CCFFC (3.27)

If the evidence is known to be present, i.e., C(E) = 1, then Equation 3.27 yields

FC  = CF.

The technique for updating the certainty of hypothesis H, in the light of

evidence E, involves the application of the following composite function:

if C(H)  0 and FC   0:

]C(H))1(F[CC(H))C(H|E (3.28)

if C(H)  0 and FC   0:

]C(H))1(F[CC(H))C(H|E (3.29)

if C(H) and FC  have opposite signs:

)FC,)H(Cmin(1

FC)C(H
)C(H|E (3.30)



where:

C(H|E) is the certainty of H updated in the light of evidence E;

C(H) is the initial certainty of H, i.e., 0 unless it has been updated by the

previous application of a rule;

x  = the magnitude of x, ignoring its sign.

It can be seen from the above equations that the updating procedure

consists of adding a positive or negative value to the current certainty of a

hypothesis. This contrasts with Bayesian updating, where the odds of a

hypothesis are multiplied by the appropriate likelihood ratio. The composite

function represented by Equations 3.28 to 3.30 is plotted in Figure 3.5, and can

be seen to have a broadly similar shape to the Bayesian updating equation

(plotted in Figure 3.1).

In the standard version of certainty theory, a rule can only be applied if the

certainty of the evidence C(E) is greater than 0, i.e., if the evidence is more

likely to be present than not. EMYCIN restricts rule firing further by requiring

that C(E) > 0.2 for a rule to be considered applicable. The justification for this

heuristic is that it saves computational power and makes explanations clearer,

as marginally effective rules are suppressed. In fact it is possible to allow rules

to fire regardless of the value of C(E). The absence of supporting evidence,

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

-0.5

0

0.5

1

C(H|E)

C(H
)CF ,

-1

Figure 3.5   Equations 3.28–3.30 for updating certainties



indicated by C(E) < 0, would then be taken into account since FC  would have

the opposite sign to CF.

Although there is no theoretical justification for the function for updating

certainty values, it does have a number of desirable properties:

(i) the function is continuous and has no singularities or steps;

(ii) the updated certainty C(H|E) always lies within the bounds –1 and +1;

(iii) if either C(H) or FC  is +1 (i.e., definitely true) then C(H|E) is also +1;

(iv) if either C(H) or FC  is –1 (i.e., definitely false) then C(H|E) is also –1;

(v) when contradictory conclusions are combined, they tend to cancel each

other out, i.e., if C(H) = – FC  then C(H|E) = 0;

(vi) several pieces of independent evidence can be combined by repeated

application of the function, and the outcome is independent of the order

in which the pieces of evidence are applied;

(vii) if C(H) = 0, i.e., the certainty of H is at its a priori value, then C(H|E) =

FC ;

(viii) if the evidence is certain (i.e., C(E) = 1) then FC  = CF.

(ix) although not part of the standard implementation, the absence of evidence

can be taken into account by allowing rules to fire when C(E) < 0.

3.3.3 Logical combinations of evidence

In Bayesian updating systems, each piece of evidence that contributes toward a

hypothesis is assumed to be independent and is given its own affirms and

denies weights. In systems based upon certainty theory, the certainty factor is

associated with the rule as a whole, rather than with individual pieces of

evidence. For this reason, certainty theory provides a simple algorithm for

determining the value of the certainty factor that should be applied when more

than one item of evidence is included in a single rule. The relationship between

pieces of evidence is made explicit by the use of AND and OR. If separate pieces

of evidence are intended to contribute toward a single hypothesis

independently of each other, they must be placed in separate rules. The

algorithm for combining items of evidence in a single rule is borrowed from

Zadeh’s possibility theory (Section 3.4). The algorithm covers the cases where

evidence is conjoined (i.e., joined by AND), disjoined (i.e., joined by OR), and

negated (using NOT).

Conjunction

Consider a rule of the form:

IF <evidence E1> AND <evidence E2> THEN <hypothesis>

   WITH certainty factor CF



The certainty of the combined evidence is given by C(E1 AND E2), where:

C(E1 AND E2) = min[C(E1), C(E2)] (3.31)

Disjunction

Consider a rule of the form:

IF <evidence E1> OR <evidence E2> THEN <hypothesis>

   WITH certainty factor CF

The certainty of the combined evidence is given by C(E1 OR E2), where:

C(E1 OR E2) = max[C(E1), C(E2)] (3.32)

Negation

Consider a rule of the form:

IF NOT <evidence E> THEN <hypothesis> WITH certainty factor CF

The certainty of the negated evidence, C(E), is given by C(~E) where:

C(~E) = –C(E) (3.33)

3.3.4 A worked example of certainty theory

In order to illustrate the application of certainty theory, we can rework the

example that was used to illustrate Bayesian updating. Four rules were used,

which together could determine whether the release valve of a power station

boiler needs cleaning (see Section 3.2.8). Each of the four rules can be

rewritten with an associated certainty factor, which is estimated by the rule-

writer:

/* Rule 3.1c */

IF release valve is stuck THEN release valve needs cleaning

WITH CERTAINTY FACTOR 1

/* Rule 3.2c */

IF warning light is on THEN release valve is stuck

WITH CERTAINTY FACTOR 0.2

/* Rule 3.3c */

IF pressure is high THEN release valve is stuck

WITH CERTAINTY FACTOR 0.9



/* Rule 3.4c */

IF temperature is high AND NOT(water level is low)

THEN pressure is high

WITH CERTAINTY FACTOR 0.5

Although the process of providing certainty factors might appear ad hoc

compared with Bayesian updating, it may be no less reliable than estimating

the probabilities upon which Bayesian updating relies. In the Bayesian

example, the production Rule 3.1b had to be treated as a special case. In a

system based upon uncertainty theory, Rule 3.1c can be made to behave as a

production rule simply by giving it a certainty factor of 1.

As before, the following set of input data will be considered:

• NOT(water level is low)

• warning light is on

• temperature is high

We will assume that the rules fire in the order:

Rule 3.4c  Rule 3.3c  Rule 3.2c  Rule 3.1c

The resultant rule trace might then appear as follows:

Rule 3.4c CF = 0.5

H = pressure is high; C(H) = 0

E1 = temperature is high; C(E1) = 1

E2 = water level is low; C(E2) = -1, C(~E2) = 1

C(E1&~E2) = min[C(E1),C(~E2)] = 1

CF' = CF  C(E1&~E2) = CF

C(H|(E1&~E2)) = CF' = 0.5

/* Updated certainty of pressure is high is 0.5 */

Rule 3.3c CF = 0.9

H = release valve is stuck; C(H) = 0

E = pressure is high; C(E) = 0.5

CF' = CF  C(E) = 0.45

C(H|(E)) = CF' = 0.45

/* Updated certainty of release valve is stuck is 0.45 */

Rule 3.2c CF = 0.2

H = release valve is stuck; C(H) = 0.45

E = warning light is on; C(E) = 1

CF' = CF  C(E) = CF

C(H|(E)) = C(H) + [CF'  (1-C(H))] = 0.56

/* Updated certainty of release valve is stuck is 0.56 */



Rule 3.1c CF = 1

H = release valve needs cleaning C(H) = 0

E = release valve is stuck; C(E) = 0.56

CF' = CF  C(E) = 0.56

C(H|(E)) = CF' = 0.56

/* Updated certainty of release valve needs cleaning is 0.56 */

3.3.5 Discussion of the worked example

Given the certainty factors shown, the example yielded the result release

valve needs cleaning with a similar level of confidence to the Bayesian

updating example.

Under Bayesian updating, Rules 3.2b and 3.3b could be combined into a

single rule without changing their effect:

/* Rule 3.5b */

IF warning light is on (AFFIRMS 2.20; DENIES 0.20)

AND pressure is high (AFFIRMS 85.0; DENIES 0.15)

THEN release valve is stuck

With certainty theory, the weightings apply not to the individual pieces of

evidence (as with Bayesian updating) but to the rule itself. If Rules 3.2c and

3.3c were combined in one rule, a single certainty factor would need to be

chosen to replace the two used previously. Thus a combined rule might look

like:

/* Rule 3.5c */

IF warning light is on AND pressure is high

THEN release valve stuck WITH CERTAINTY FACTOR 0.95

In the combined rule, the two items of evidence are no longer treated

independently and the certainty factor is the adjudged weighting if both items

of evidence are present. If our worked example had contained this combined

rule instead of Rules 3.2c and 3.3c, then the rule trace would contain the

following:

Rule 3.5c CF = 0.95

H = release valve is stuck; C(H) = 0

E1 = warning light is on; C(E1) = 1

E2 = pressure is high; C(E2) = 0.5

C(E1 
& E2) = min[C(E1),C(E2)] = 0.5

CF' = CF  C(E1 
& E2) = 0.48

C(H|(E1 
& E2)) = CF' = 0.48

/* Updated certainty of release valve is stuck is 0.48 */



With the certainty factors used in the example, the combined rule yields a

lower confidence in the hypothesis release valve stuck than Rules 3.2c and

3.3c used separately. As a knock-on result, Rule 3.1c would yield the

conclusion release valve needs cleaning with a diminished certainty of

0.48.

3.3.6 Relating certainty factors to probabilities

It has already been noted that there is a similarity between the certainty factors

that are attached to hypotheses and the probabilities of those hypotheses, such

that:

C(H) = 1.0 corresponds to P(H) = 1.0;

C(H) = 0.0 corresponds to P(H) being at its a priori value;

C(H) = –1.0 corresponds to P(H) = 0.0.

Additionally, a formal relationship exists between the certainty factor

associated with a rule and the conditional probability P(H|E) of a hypothesis H

given some evidence E. This is only of passing interest as certainty factors are

not normally calculated in this way, but instead are simply estimated or chosen

so as to give the right sort of results. The formal relationships are as follows.

If evidence E supports hypothesis H, i.e., P(H|E) is greater than P(H), then:

1  P(H) if1  CF

1  P(H) if
P(H)  1

P(H)  E)|P(H
  CF

(3.34)

If evidence E opposes hypothesis H, i.e., P(H|E) is less than P(H), then:

0  P(H) if1  CF

0  P(H) if
P(H)

P(H)  E)|P(H
  CF

(3.35)

The shape of Equations 3.34 and 3.35 is shown in Figure 3.6.

3.4 Possibility theory: fuzzy sets and fuzzy logic

Bayesian updating and certainty theory are techniques for handling the

uncertainty that arises, or is assumed to arise, from statistical variations or

randomness. Possibility theory addresses a different source of uncertainty,

namely vagueness in the use of language. Possibility theory, or fuzzy logic,



was developed by Zadeh [7, 8, 9] and builds upon his theory of fuzzy sets [10].

Zadeh asserts that while probability theory may be appropriate for measuring

the likelihood of a hypothesis, it says nothing about the meaning of the

hypothesis.

3.4.1 Crisp sets and fuzzy sets

The rules shown in this chapter and in Chapter 2 contain a number of examples

of vague language where fuzzy sets might be applied, such as the following

phrases:

• water level is low;

• temperature is high;

• pressure is high.

In conventional set theory, the sets high, medium and low — applied to a

variable such as temperature — would be mutually exclusive. If a given

temperature (say, 400°C) is high, then it is neither medium nor low. Such sets

are said to be crisp or non-fuzzy (Figure 3.7). If the boundary between medium

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

-0.5

0

0.5

1

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

-0.5

0

0.5

1

0
-1

CF

P(H
|E)P(H)

Figure 3.6   The relationship between certainty factors and probability



and high is set at 300°C, then a temperature of 301°C is considered high, while

299°C is considered medium. This distinction is rather artificial, and means

that a tiny difference in temperature can completely change the rule-firing,

while a rise in temperature from 301°C to 1000°C has no effect at all.

Fuzzy sets are a means of smoothing out the boundaries. The theory of

fuzzy sets expresses imprecision quantitatively by introducing characteristic

membership functions that can assume values between 0 and 1 corresponding

to degrees of membership from “not a member” through to “a full member.” If

F is a fuzzy set, then the membership function µF (x) measures the degree to

which an absolute value x belongs to F. This degree of membership is

sometimes called the possibility that x is described by F. The process of

deriving these possibility values for a given value of x is called fuzzification.

Conversely, consider that we are given the imprecise statement

temperature is low. If LT is the fuzzy set of low temperatures, then we

might define the membership function µLT such that:

µLT (250°C) = 0.0

µLT (200°C) = 0.0

µLT (150°C) = 0.25

µLT (100°C) = 0.5

µLT (50°C) = 0.75

µLT (0°C) = 1.0

µLT (–50°C) = 1.0

These values correspond with the linear membership function shown in Figure

3.8(a). Although linear membership functions like those in Figures 3.8(a) and

(b) are convenient in many applications, the most suitable shape of the

highlow medium

3001000 200 400
Temperature / oC

Figure 3.7   Conventional crisp sets applied to temperature.



membership functions and the number of fuzzy sets depends on the particular

application. Figures 3.8(c) and (d) show some nonlinear alternatives.

The key differences between fuzzy and crisp sets are that:

• an element has a degree of membership (0–1) of a fuzzy set;

• membership of one fuzzy set does not preclude membership of another.

Thus the temperature 350°C may have some (non-zero) degree of membership

to both fuzzy sets high and medium. This is represented in Figure 3.8 by the

overlap between the fuzzy sets. The sum of the membership functions for a

given value can be arranged to equal 1, as shown for temperature and pressure

in Figure 3.8, but this is not a necessary requirement.

Some of the terminology of fuzzy sets may require clarification. The

statement temperature is low is an example of a fuzzy statement involving a

fuzzy set (low temperature) and a fuzzy variable (temperature). A fuzzy

variable is one that can take any value from a global set (e.g., the set of all

temperatures), where each value can have a degree of membership of a fuzzy

set (e.g., low temperature) associated with it.

300100

1

0
0

Temperature / oC

M
em

be
rs

hi
p,

 µ
high

(b)

(c) (d)

(a)

200 400

0

low medium
1

0
0

Pressure / MNm−2

M
em

be
rs

hi
p,

 µ

highlow medium

0.2 0.4 0.6 0.8

31

1

0

Water level / m

M
em

be
rs

hi
p,

 µ

high

2 4

low medium

0 1.50.5

1

0

Flow / m3s−1

M
em

be
rs

hi
p,

 µ

high

1.0 2.0

low mediumlowish highish

Figure 3.8   A variety of membership functions.



Although the discussion so far has concentrated on continuous variables

such as temperature and pressure, the same ideas can also be applied to

discrete variables, such as the number of signals detected in a given time span.

3.4.2 Fuzzy rules

If a variable is set to a value by crisp rules, its value will change in steps as

different rules fire. The only way to smooth those steps would be to have a

large number of rules. However, only a small number of fuzzy rules is required

to produce smooth changes in the outputs as the input values alter. The number

of fuzzy rules required is dependent on the number of variables, the number of

fuzzy sets, and the ways in which the variables are combined in the fuzzy rule

conditions. Numerical information is explicit in crisp rules, e.g., IF

temperature > 300°C THEN ... but in fuzzy rules it becomes implicit in the

chosen shape of the fuzzy membership functions.

Consider a rule base that contains the following fuzzy rules:

/* Rule 3.6f */

IF temperature is high THEN pressure is high

/* Rule 3.7f */

IF temperature is medium THEN pressure is medium

/* Rule 3.8f */

IF temperature is low THEN pressure is low

Suppose the measured temperature is 350°C. As this is a member of both fuzzy

sets high and medium, Rules 3.6f and 3.7f will both fire. The pressure, we

conclude, will be somewhat high and somewhat medium. Suppose that the

membership functions for temperature are as shown in Figure 3.8(a). The

possibility that the temperature is high, µHT, is 0.75 and the possibility that the

temperature is medium, µMT, is 0.25. As a result of firing the rules, the

possibilities that the pressure is high and medium, µHP and µMP, are set as

follows:

µHP = max[µHT, µHP]

µMP = max[µMT, µMP]

The initial possibility values for pressure are assumed to be zero if these are

the first rules to fire, and thus µHP and µMP become 0.75 and 0.25, respectively.

These values can be passed on to other rules that might have pressure is

high or pressure is medium in their condition clauses.



The Rules 3.6f, 3.7f and 3.8f contain only simple conditions. Possibility

theory provides a recipe for computing the possibilities of compound

conditions. The formulas for conjunction, disjunction, and negation are similar

to those used in certainty theory (Section 3.3.3):

)(1)(

)](),(max[)(

)](),(min[)(

 NOT

 OR 

 AND 

xx

xxx

xxx

XX

YXYX

YXYX

(3.36)

To illustrate the use of these formulas, suppose that water level has the fuzzy

membership functions shown in Figure 3.8c and that Rule 3.6f is redefined as

follows:

/* Rule 3.9f */

IF temperature is high AND water level is NOT low

THEN pressure is high

For a water level of 1.2m, the possibility of the water level being low,

µLW (1.2m), is 0.6. The possibility of the water level not being low is therefore

0.4. As this is less than 0.75, the combined possibility for the temperature

being high and the water level not being low is 0.4. Thus the possibility that

the pressure is high, µHP, becomes 0.4 if it has not already been set to a higher

value.

If several rules affect the same fuzzy set of the same variable, they are

equivalent to a single rule whose conditions are joined by the disjunction OR.

For example, these two rules:

/* Rule 3.6f */

IF temperature is high THEN pressure is high

/* Rule 3.10f */

IF water level is high THEN pressure is high

are equivalent to this single rule:

/* Rule 3.11f */

IF temperature is high OR water level is high

THEN pressure is high

Aoki and Sasaki [11] have argued for treating OR differently when it

involves two fuzzy sets of the same fuzzy variable, for example, high and

medium temperature. In such cases, the memberships are clearly dependent on



each other. Therefore, we can introduce a new operator DOR for dependent OR.
For example, given the rule:

/* Rule 3.12f */
IF temperature is low DOR temperature is medium
THEN pressure is lowish

the combined possibility for the condition becomes:

)]()(,1min[)( DOR xxx MTLTMTLT µµµ += (3.37)

Given the fuzzy sets for temperature shown in Figure 3.8(a), the combined
possibility would be the same for any temperature below 200°C, as shown in
Figure 3.9(a). This is consistent with the intended meaning of fuzzy Rule
3.12f. If the OR operator had been used, the membership would dip between
0°C and 200°C, with a minimum at 100°C, as shown in Figure 3.9(b).

3.4.3 Defuzzification

In the above example, at a temperature of 350°C the possibilities for the
pressure being high and medium, µHP and µMP, are set to 0.75 and 0.25,
respectively, by the fuzzy rules 3.6f and 3.7f. It is assumed that the possibility
for the pressure being low, µLP, remains at 0. These values can be passed on to
other rules that might have pressure is high or pressure is medium in
their condition clauses without any further manipulation. However, if we want
to interpret these membership values in terms of a numerical value of pressure,
they would need to be defuzzified. Defuzzification is particularly important
when the fuzzy variable is a control action such as “set current,” where a
specific setting is required. The use of fuzzy logic in control systems is

0300100

1

0
0

Temperature / oC

M
em

be
rs

hi
p,

 µ

(b)(a)

200 400

low DOR medium

300100

1

0

Temperature / oC

M
em

be
rs

hi
p,

 µ

200 400

low OR medium

Figure 3.9   (a) Dependent OR; (b) standard OR



discussed further in Chapter 14. Defuzzification takes place in two stages,

described below.

Stage 1: scaling the membership functions

The first step in defuzzification is to adjust the fuzzy sets in accordance with

the calculated possibilities. A commonly used method is Larsen’s product

operation rule [12, 13], in which the membership functions are multiplied by

their respective possibility values. The effect is to compress the fuzzy sets so

that the peaks equal the calculated possibility values, as shown in Figure 3.10.

Some authors [14] adopt an alternative approach in which the fuzzy sets are

truncated, as shown in Figure 3.11. For most shapes of fuzzy set, the difference

between the two approaches is small, but Larsen’s product operation rule has

the advantages of simplifying the calculations and allowing fuzzification

300100

1

0
0

Temperature / oC

M
em

be
rs

hi
p,

 µ

high

(b)(a)

200 400

low medium
1

0
0

Pressure / MNm−2

M
em

be
rs

hi
p,

 µ

highmedium

0.2 0.4 0.6 0.8

Figure 3.10 Larsen’s product operation rule for calculating membership functions

from fuzzy rules. Membership functions for pressure are shown,

derived from Rules 3.6f and 3.7f, for a temperature of 350°C

300100

1

0
0

Temperature / oC

M
em

be
rs

hi
p,

 µ

high

(b)(a)

200 400

low medium
1

0
0

Pressure / MNm−2

highmedium

0.2 0.4 0.6 0.8

M
em

be
rs

hi
p,

 µ

Figure 3.11 Truncation method for calculating membership functions from fuzzy

rules. Membership functions for pressure are shown, derived from

Rules 3.6f and 3.7f, for a temperature of 350°C



followed by defuzzification to return the initial value, except as described in A

defuzzification anomaly below.

Stage 2: finding the centroid

The most commonly used method of defuzzification is the centroid method,

sometimes called the center of gravity, center of mass, or center of area

method. The defuzzified value is taken as the point along the fuzzy variable

axis that is the centroid, or balance point, of all the scaled membership

functions taken together for that variable (Figure 3.12). One way to visualize

this is to imagine the membership functions cut out from stiff card and pasted

together where (and if) they overlap. The defuzzified value is the balance point

along the fuzzy variable axis of this composite shape. When two membership

functions overlap, both overlapping regions contribute to the mass of the

composite shape. Figure 3.12 shows a simple case, involving neither the low

nor high fuzzy sets. The example that we have been following concerning

boiler pressure is more complex and is described in Defuzzifying at the

extremes below.

If there are N membership functions with centroids ci and areas ai then the

combined centroid C, i.e., the defuzzified value, is:

N

i
i

N

i
ii

a

ca

C

1

1 (3.38)

Balance point = 0.625 m3s−1

0 1.50.5

1

0

Flow / m3s−1

M
em

be
rs

hi
p,

 µ
1.0 2.0

lowish Overlapping area makes a
double contribution to the mass

medium

Figure 3.12   Defuzzification by the centroid method



When the fuzzy sets are compressed using Larsen’s product operation rule, the

values of ci are unchanged from the centroids of the uncompressed shapes, Ci,

and ai is simply iAi where Ai is the area of the membership function prior to

compression. (This is not the case with the truncation method shown in Figure

3.11, which causes the centroid of asymmetrical membership functions to shift

along the fuzzy variable axis.) The use of triangular membership functions or

other simple geometries simplifies the calculations further. For triangular

membership functions, Ai is one half of the base length multiplied by the

height. For isosceles triangles Ci is the midpoint along the base, and for right-

angle triangles Ci is approx. 29% of the base length from the upright.

Defuzzifying at the extremes

There is a complication in defuzzifying whenever the two extreme membership

functions are involved, i.e., those labeled high and low here. Given the fuzzy

sets shown in Figure 3.8b, any pressure above 0.7MNm–2 has a membership of

high of 1. Thus the membership function continues indefinitely toward the

right and we cannot find a balance point using the centroid method. Similarly,

any pressure below 0.1MNm–2 has a membership of low of 1, although in this

case the membership function is bounded because the pressure cannot go

below 0.

One solution to these problems might be to specify a range for the fuzzy

variable, MIN–MAX, or 0.1–0.7MNm–2 in this example. During fuzzification, a

value outside this range can be accepted and given a membership of 1 for the

fuzzy sets low or high. However, during defuzzification, the low and high

fuzzy sets can be considered bounded at MIN and MAX and defuzzification by

the centroid method can proceed. This method is shown in Figure 3.13(a) using

the values 0.75 and 0.25 for µHP and µMP, respectively, as calculated in Section

3.4.2, yielding a defuzzified pressure of 0.527MNm–2. A drawback of this

(a)
1

0
0

Pressure / MNm−2

M
em

be
rs

hi
p,

 µ

0.2 0.4 0.8

Overlapping area makes a
double contribution to the 'mass'

(b)
1

0
0

Pressure / MNm−2

M
em

be
rs

hi
p,

 µ

0.2 0.4 0.8 1.0

Balance point = 0.625 MNm−2

Overlapping area makes a
double contribution to the 'mass'

Balance point = 0.527 MNm−2

Figure 3.13   Defuzzification at the extremes: (a) bounded range, (b) mirror rule



solution is that the defuzzified value can never reach the extremes of the range.

For example, if we know that a fuzzy variable has a membership of 1 for the

fuzzy set high and 0 for the other fuzzy sets, then its actual value could be any

value greater than or equal to MAX. However, its defuzzified value using this

scheme would be the centroid of the high fuzzy set, in this case 0.612MNm–2,

which is considerably below MAX.

An alternative solution is the mirror rule. During defuzzification only, the

low and high membership functions are treated as symmetrical shapes

centered on MIN and MAX respectively. This is achieved by reflecting the low

and high fuzzy sets in imaginary mirrors. This method has been used in Figure

3.13(b), yielding a significantly different result, i.e., 0.625MNm–2, for the same

possibility values. The method uses the full range MIN–MAX of the fuzzy

variable during defuzzification, so that a fuzzy variable with a membership of

1 for the fuzzy set high and 0 for the other fuzzy sets would be defuzzified to

MAX. In the example shown in Figure 3.13(b), all values of Ai became

identical as a result of adding the mirrored versions of the low and high fuzzy

sets. Because of this, and given that the fuzzy sets have been compressed using

Larsen’s product operation rule, the equation for defuzzification (3.38) can be

simplified to:

N

i
i

N

i
iiC

C

1

1 (3.39)

A defuzzification anomaly

It is interesting to investigate whether defuzzification can be regarded as the

inverse of fuzzification. In the example considered above, a pressure of

0.625MNm–2 would fuzzify to a membership of 0.25 for medium and 0.75 for

high. When defuzzified by the method shown in Figure 3.13(b), the original

value of 0.625MNm–2 is returned. This observation provides strong support for

defuzzification based upon Larsen’s product operation rule combined with the

mirror rule for dealing with the fuzzy sets at the extremes (Figure 3.13(b)). No

such simple relationship exists if the membership functions are truncated

(Figure 3.11) or if the extremes are handled by imposing a range (Figure

3.13(a)).

However, even the use of Larsen’s product operation rule and the mirror

rule cannot always guarantee that fuzzification and defuzzification will be

straightforward inverses of each other. For example, as a result of firing a set



of fuzzy rules, we might end up with the following memberships for the fuzzy
variable pressure:

Low membership = 0.25
Medium membership = 0.0
High membership = 0.25

Defuzzification of these membership values would yield an absolute value of
0.4MNm–2 for the pressure (Figure 3.14(a)). If we were now to look up the
fuzzy memberships for an absolute value of 0.4MNm–2, i.e., to fuzzify the
value, we would obtain:

Low membership = 0.0
Medium membership = 1.0
High membership = 0.0

The resulting memberships values are clearly different from the ones we
started with, although they still defuzzify to 0.4MNm–2, as shown in Figure
3.14(b). The reason for this anomaly is that, under defuzzification, there are
many different combinations of membership values that can yield an absolute
value such as 0.4MNm–2. The above sets of membership values are just two
examples. However, under fuzzification, there is only one absolute value,
namely 0.4MNm–2, that can yield fuzzy membership values for low, medium,
and high of 0.0, 1.0, and 0.0, respectively. Thus, defuzzification is said to be a
“many-to-one” relationship, whereas fuzzification is a “one-to-one”
relationship.

This observation poses a dilemma for implementers of a fuzzy system. If
pressure appears in the condition part of further fuzzy rules, different

(a)

0

Pressure / MNm−2

0.2 0.6 0.8

(b)
1

0
0

Pressure / MNm−2

M
em

be
rs

hi
p,

 µ

0.2 0.8 1.0

Balance point = 0.4 MNm−2Balance point = 0.4 MNm−2

0.6

1

0M
em

be
rs

hi
p,

 µ

Figure 3.14   Different combinations of memberships can defuzzify to the same value.



membership values could be used depending on whether or not it is defuzzified
and refuzzified before being passed on to those rules.

A secondary aspect of the anomaly is the observation that in the above
example we began with possibility values of 0.25 and, therefore, apparently
rather weak evidence about the pressure. However, as a result of
defuzzification followed by fuzzification, these values are transformed into
evidence that appears much stronger. Johnson and Picton [14] have labeled this
“Hopgood’s defuzzification paradox.” The paradox arises because, unlike
probabilities or certainty factors, possibility values need to be interpreted
relative to each other rather than in absolute terms.

3.5 Other techniques

Possibility theory occupies a distinct position among the many strategies for
handling uncertainty, as it is the only established one that is concerned
specifically with uncertainty arising from imprecise use of language.
Techniques have been developed for dealing with other specific sources of
uncertainty. For example, plausibility theory [15] addresses the problems
arising from unreliable or contradictory sources of information. Other
techniques have been developed in order to overcome some of the perceived
shortcomings of Bayesian updating and certainty theory. Notable among these
are the Dempster–Shafer theory of evidence and Quinlan’s Inferno, both of
which are briefly reviewed here.

None of the more sophisticated techniques for handling uncertainty
overcomes the most difficult problem, namely, obtaining accurate estimates of
the likelihood of events and combinations of events. For this reason, their use
is rarely justified in practical knowledge-based systems.

3.5.1 Dempster–Shafer theory of evidence

The theory of evidence [16] is a generalization of probability theory that was
created by Dempster and developed by Shafer [17]. It addresses two specific
deficiencies of probability theory that have already been highlighted, namely:

• the single probability value for the truth of a hypothesis tells us nothing
about its precision;

• because evidence for and against a hypothesis are lumped together, we
have no record of how much there is of each.

Rather than representing the probability of a hypothesis H by a single
value P(H), Dempster and Shafer’s technique binds the probability to a



subinterval L(H)–U(H) of the range 0–1. Although the exact probability P(H)

may not be known, L(H) and U(H) represent lower and upper bounds on the

probability, such that:

L(H)  P(H)  U(H) (3.40)

The precision of our knowledge about H is characterized by the difference

U(H)–L(H). If this is small, our knowledge about H is fairly precise, but if it is

large, we know relatively little about H. A clear distinction is therefore made

between uncertainty and ignorance, where uncertainty is expressed by the

limits on the value of P(H), and ignorance is represented by the size of the

interval defined by those limits. According to Buchanan and Duda [4],

Dempster and Shafer have pointed out that the Bayesian agony of assigning

prior probabilities to hypotheses is often due to ignorance of the correct values,

and this ignorance can make any particular choice arbitrary and unjustifiable.

The above ordering (3.40) can be interpreted as two assertions:

• the probability of H is at least L(H);

• the probability of ~H is at least 1.0 – U(H).

Thus a separate record is kept of degree of belief and disbelief in H. Like

Bayesian updating, the theory of evidence benefits from the solid basis of

probability theory for the interpretation of L(H) and U(H). When L(H) = U(H),

the theory of evidence reduces to the Bayesian updating method. It is,

therefore, not surprising that the theory of evidence also suffers from many of

the same difficulties.

3.5.2 Inferno

The conclusions that can be reached by the Dempster–Shafer theory of

evidence are of necessity weaker than those that can be arrived at by Bayesian

updating. If the available knowledge does not justify stronger solutions, then

drawing weaker solutions is desirable. This theme is developed further in

Inferno [18], a technique that its creator, Quinlan, has subtitled: “a cautious

approach to uncertain inference.” Although Inferno is based upon probability

theory, it avoids assumptions about the dependence or independence of pieces

of evidence and hypotheses. As a result, the correctness of any inferences can

be guaranteed, given the available knowledge. Thus, Inferno deliberately errs

on the side of caution.



The three key motivations for the development of Inferno were as follows:

(i) Other systems often make unjustified assumptions about the dependence

or independence of pieces of evidence or hypotheses. Inferno allows users

to state any such relationships when they are known, but it makes no

assumptions.

(ii) Other systems take a measure of belief (e.g., probability or certainty) in a

piece of evidence, and calculate from it a measure of belief in a hypothesis

or conclusion. In terms of an inference network (Figures 3.3 and 3.4),

probabilities or certainty values are always propagated in one direction,

namely, from the bottom (evidence) to the top (conclusions). Inferno

allows users to enter values for any node on the network and to observe

the effects on values at all other nodes.

(iii) Inferno informs the user of inconsistencies that might be present in the

information presented to it and can make suggestions of ways to restore

consistency.

Quinlan [18] gives a detailed account of how these aims are achieved and

provides a comprehensive set of expressions for propagating probabilities

throughout the nodes of an inference network.

3.6 Summary

A number of different schemes exists for assigning numerical values to

assertions in order to represent levels of confidence in them, and for updating

the confidence levels in the light of supporting or opposing evidence. The

greatest difficulty lies in obtaining accurate values of likelihood, whether

measured as a probability or by some other means. The certainty factors that

are associated with rules in certainty theory, and the affirms and denies

weightings in Bayesian updating, can be derived from probability estimates.

However, a more pragmatic approach is frequently adopted, namely, to choose

values that produce the right sort of results, even though the values cannot be

theoretically justified. As the more sophisticated techniques (e.g., Dempster–

Shafer theory of evidence and Inferno) also depend upon probability estimates

that are often dubious, their use is rarely justified.

Bayesian updating is soundly based on probability theory, whereas many

of the alternative techniques are ad hoc. In practice, Bayesian updating is also

an ad hoc technique because:



• linear interpolation of the affirms and denies weighting is frequently used

as a convenient means of compensating for uncertainty in the evidence;

• the likelihood ratios (or the probabilities from which they are derived) and

prior probabilities are often based on estimates rather than statistical

analysis;

• separate items of evidence that support a single assertion are assumed to

be statistically independent, although this may not be the case in reality.

Neural networks (see Chapter 8) represent an alternative approach that

avoids the difficulties in obtaining reliable probability estimates. Neural

networks can be used to train a computer system using many examples, so that

it can draw conclusions weighted according to the evidence supplied. Of

course, given a large enough set of examples, it would also be possible to

calculate accurately the prior probabilities and weightings needed in order to

make Bayesian updating or one of its derivatives work effectively.

Fuzzy logic is also closely associated with neural networks, as will be

discussed in Chapter 9. Fuzzy logic provides a precise way of handling vague

terms such as low and high. As a result, a small set of rules can produce output

values that change smoothly as the input values change.

References

1. Hart, P. E., Duda, R. O., and Einaudi, M. T., “PROSPECTOR; a

computer-based consultation system for mineral exploration,” Math

Geology, vol. 10, pp. 589–610, 1978.

2. Duda, R., Gashnig, J., and Hart, P., “Model design in the PROSPECTOR

consultant system for mineral exploration,” in Expert Systems in the

Micro-electronic Age, Michie, D. (Ed.), Edinburgh University Press, 1979.

3. Duda, R. O., Hart, P. E., and Nilsson, N. J., “Subjective Bayesian methods

for rule-based inference systems,” National Computer Conference, vol. 45,

pp. 1075–1082, AFIPS, 1976.

4. Buchanan, B. G. and Duda, R. O., “Principles of rule-based expert

systems,” in Advances in Computers, vol. 22, Yovits, M. C. (Ed.),

Academic Press, 1983.

5. Shortliffe, E. H. and Buchanan, B. G., “A model of inexact reasoning in

medicine,” Mathematical Biosciences, vol. 23, pp. 351–379, 1975.

6. Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN,

Elsevier, 1976.



7. Zadeh, L. A., “Fuzzy logic and approximate reasoning,” Synthese, vol. 30,

pp. 407–428, 1975.

8. Zadeh, L. A., “Commonsense knowledge representation based on fuzzy

logic,” IEEE Computer, vol. 16, issue 10, pp. 61–65, 1983.

9. Zadeh, L. A., “The role of fuzzy logic in the management of uncertainty in

expert systems,” Fuzzy Sets and Systems, vol. 11, pp. 199–227, 1983.

10. Zadeh, L. A., “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353,

1965.

11. Aoki, H. and Sasaki, K., “Group supervisory control system assisted by

artificial intelligence,” Elevator World, pp. 70–91, February 1990.

12. Lee, C. C., “Fuzzy logic in control systems: fuzzy logic controller – part

I,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp. 404–

418, 1990.

13. Lee, C. C., “Fuzzy logic in control systems: fuzzy logic controller – part

II,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp.

419–435, 1990.

14. Johnson, J. H. and Picton, P. D., Concepts in Artificial Intelligence,

Butterworth–Heinemann, 1995.

15. Rescher, N., Plausible Reasoning, Van Gorcum, 1976.

16. Barnett, J. A., “Computational methods for a mathematical theory of

evidence,” 7th International Joint Conference on Artificial Intelligence

(IJCAI’81), Vancouver, pp. 868–875, 1981.

17. Schafer, G., A Mathematical Theory of Evidence, Princeton University

Press, 1976.

18. Quinlan, J. R., “Inferno: a cautious approach to uncertain inference,” The

Computer Journal, vol. 26, pp. 255–269, 1983.

Further reading

• Bacchus, F., Representing and Reasoning with Probabilistic Knowledge,

MIT Press, 1991.

• Buchanan, B. G. and Shortliffe, E. H. (Eds.), Rule-Based Expert Systems:

the MYCIN experiments of the Stanford Heuristic Programming Project,

Addison-Wesley, 1984.

• Hajek, P., Havranek, T., and Jirousek, R., Uncertain Information

Processing in Expert Systems, CRC Press, 1992.

• Kandel, A., Fuzzy Expert Systems, CRC Press, 1991.



• Klir, G. J. and Wierman, M. J., Uncertainty-based Information, Physica–

Verlag, 2000.

• Li, H. X. and Yen, V. C., Fuzzy Sets and Fuzzy Decision-making, CRC

Press, 1995.

• Polson, N. G. and Tiao, G. C. (Eds.), Bayesian Inference, Edward Elgar,

1995.

• Ralescu, A. L. and Shanahan, G. J. (Eds.), Fuzzy Logic in Artificial

Intelligence, Springer–Verlag, 1999.



Chapter four

Object-oriented systems

4.1 Objects and frames

System design usually involves breaking down complex problems into simpler

constituents. Objects and frames are two closely related ways of achieving this

while maintaining the overall integrity of the system. Frame-based program-

ming is usually associated with the construction and organization of

knowledge-based systems. Object-oriented programming (OOP) is used in a

wide variety of software systems including, but by no means limited to,

intelligent systems. OOP has been developed as “a better way to program,”

while frames were conceived as a versatile and expressive way of representing

and organizing information.

Both techniques assist in the design of software and make the resultant

software more maintainable, adaptable, and reusable. They provide a structure

for breaking down a world representation into manageable components such as

house, owner, and dog. In a frame-based system, each of these components

could be represented by a frame, containing information about itself. Frames

are passive in the sense that, like entries in a database, they don’t perform any

tasks themselves. Objects are similar, but as well as storing information about

themselves they also have the ability to perform certain tasks. When they

receive an instruction, they will perform an action as instructed, provided it is

within their capability. They are therefore like obedient servants.

Objects and frames share many similarities. In this chapter, OOP is

described in some detail, then a review of frames focuses on their differences

from objects. Section 4.2 introduces an example of a problem that has been

successfully tackled using OOP. This example will be used extensively during

this chapter in order to illustrate the features and benefits of OOP.



4.2 An illustrative example

We will illustrate the features of object-oriented programming by considering a

small simulation of ultrasonic imaging. The physical arrangement to be

simulated is shown in Figure 4.1. It comprises an ultrasonic probe, containing

a detector and a transmitter, which sits on the surface of a component under

test. The probe emits a single pulse of ultrasound, i.e., sound at a higher

frequency than the human audible range. The pulse is strongly reflected by the

front and back walls of the component and is weakly reflected by defects

within the component. The intensity and time of arrival of reflected pulses

reaching the detector are plotted on an oscilloscope. There are two possible

types of ultrasonic pulses — longitudinal and shear — that travel differently

through a solid. The atoms of the material travel to-and-fro, parallel to the

direction of a longitudinal pulse, but they move perpendicular to the direction

of a shear pulse (Figure 4.2). The two types of pulses travel at different speeds

in a given material and behave differently at obstructions or edges. The emitted

pulse is always longitudinal, but reflections may generate both a longitudinal

and a shear pulse (Figure 4.3).

Power supply Display

Defect

Front wall

Back wall

Transmitter
& detector

Delay2

Delay1

Figure 4.1   Detection of defects using ultrasonics;

delays simulate the depth of the defect and the back wall



This system, like so many others, lends itself to modeling with objects.

Each of the components of the system can be treated as an independent object,

containing data and code that define its own particular behavior. Thus, there

will be objects representing each pulse, the transmitter, the detector, the

component, the front wall, the back wall, the defects, and the oscilloscope.

These objects stand in well-defined relationships with one another, e.g., a

transmitter object can generate a pulse object.

Direction
of motion
of pulse

(a) Longitudinal (or compressive) pulse

Motion of atoms
as pulse passes

(b) Shear (or transverse) pulse

Figure 4.2   Longitudinal and shear pulses

Longitudinal
pulse

Reflected shear and
longitudinal pulses

Shear pulse Reflected shear
pulse only

Transmitted
longitudinal pulse

Transmitted
shear pulse

Defect Defect

Figure 4.3   Reflection of longitudinal and shear pulses at a defect



4.3 Introducing OOP

As well as the practical advantages of maintainability, adaptability, and

reusability, OOP is also a natural way of representing many real-world

problems within the confines of a computer. Programs of interest to engineers

and scientists normally perform calculations or make decisions about physical

entities. Such programs must contain a model of those entities, and OOP is a

convenient way to carry out this modeling. Every entity can be represented by

a self-contained “object,” where an object contains data and the code that can

be performed on those data. Thus, a system for simulating ultrasonic imaging

might include an ultrasonic pulse that is reflected between features in a steel

component. The pulse, the features, and the component itself can all be

represented by objects. Systems theory leads directly to such an approach,

since a system can be defined as “an assembly of components, separated from

their environment by a boundary, but related to each other and organized to

achieve a clear purpose.” Thus, OOP can be thought of as a computer

implementation of systems theory, where each component is itself a subsystem

that can be represented by an object.

Modeling with objects is not restricted to physical things, but extends to

include entities within the programming environment such as windows, icons,

menus, clocks, and just about anything else that you can think of. In fact, the

development of graphical user interfaces has been one of the main driving

forces for OOP. This demonstrates that OOP is a powerful technique in its own

right and is by no means restricted to knowledge-based systems. However,

OOP does have a critical role in many knowledge-based systems, as it offers a

way of representing the things that are being reasoned about, their properties

and behaviors, and the relationships among them.

There are many languages and programming environments that offer

object-orientation, some of which are supplied as extensions to existing

languages. Four widely used OOP languages are C++, Smalltalk, Java, and

CLOS (Common Lisp Object System). Smalltalk is a programming

environment rather than just a language. It includes a number of menus,

windows, browsers (see Section 4.5.4) and built-in classes (see Section 4.4.1).

C++ and CLOS are extended versions of the C and Lisp languages

respectively, but many modern implementations also include similar support

tools to those of Smalltalk.

According to Pascoe [1], an OOP language offers at least the following

facilities:

• data abstraction

• inheritance



• encapsulation (or information hiding)

• dynamic (late) binding

The following sections describe how these facilities relate to the ultrasonics

model and the advantages that they confer.

4.4 Data abstraction

4.4.1 Classes

The ultrasonic example involves several different types of object. Shear pulses

are objects of the same type as each other, but of a different type from the

detector. Data abstraction allows us to define these types and the functions that

go with them. These object types are called classes, and they form templates

for the objects themselves. Objects which represent the same idea or concept

are grouped together as a class. The words type and class are generally

equivalent and are used interchangeably here.

Most computer languages include some simple built-in data types, such as

integer or real. An object-oriented language allows us to define additional data

types (i.e., classes) that are treated identically, or nearly identically, to the

built-in types. The user-defined classes are sometimes called abstract data

types. These may be classes which have a specific role within a particular

domain, such as Shear_pulse, Circle, or Polymer, or they may describe a

specialized version of a standard data type, such as Big_integer.

The definition of a class contains the class name, its attributes (Section

4.4.3), its operations (Section 4.4.4) and its relationships to other classes

(Sections 4.5 and 4.7). C++ and some other OOP languages require that the

attribute types and the visibility from other classes also be specified.

4.4.2 Instances

It was stated in Section 4.4.1 that classes form templates for “the objects

themselves,” meaning object instances. Once a class has been defined,

instances of the class can be created that have the properties defined for the

class. For example, pulse#259 might be an ultrasonic pulse whose location at

a given moment is (x = 112mm, y = 294mm, z = 3.5mm). We would represent

pulse#259 as an instance of the class Longitudinal_pulse. As a more

tangible example, my car is an instance of the class of car. The class specifies

the characteristics and behavior of its instances. A class can, therefore, be

thought of as the blueprint from which instances are built. The terms object



and instance are often used interchangeably, although it is helpful to use the

latter to stress the distinction from a class.

This is just an extension of the concepts of data types and variables that

exist in other programming languages. For instance, most languages include a

built-in definition of the type integer. However, we can only draw upon the

properties of an integer by creating an instance, i.e., an integer variable. In C,

this would look like this:

int x; /* create an instance, x, of type int */

x = 3; /* manipulate x */

Similarly, once we have defined a class in an object-oriented language, its

properties can only be used by creating one or more instances. Consider the

class Longitudinal_pulse. One instance of this class is generated by the

transmitter object (which is itself an instance of the class Transmitter). This

instance represents one specific pulse, which has position, amplitude, phase,

speed, and direction. When this pulse interacts with a defect (another instance),

a new instance of Longitudinal_pulse must be created, since there will be

both a transmitted and a reflected pulse (see Figure 4.3). The new pulse will

have the same attributes as the old one because they are both derived from the

same class, but some of these attributes will have different values associated

with them (e.g., the amplitude and direction will be different).

4.4.3 Attributes (or data members)

A class definition includes its attributes and operations. The attributes are

particular quantities that describe instances of that class. They are sometimes

described as slots into which values are inserted. Thus the class Shear_pulse

might have attributes such as amplitude, position, speed, and direction. Only

the names and, depending on the language, the types of the attributes need to

be declared within the class, although values can optionally be supplied too.

The class acts as a template, so that when a new shear pulse is created, it will

contain the names of these attributes. The attribute values can be supplied or

calculated for each instance, or a value provided within the class can be used as

a default. The attributes can be of any type, including abstract data types, i.e.,

classes. Some languages, such as C++, require that the class definition defines

the attribute types in advance. Amplitude and speed might be of type float,

whereas position and direction would be of type vector.

If a value for an attribute is supplied in the class definition, any new

instances would carry those values by default unless specifically overwritten.

Most OOP languages distinguish between class attributes (or class variables)

and instance attributes (or instance variables). The value of a class attribute



remains the same for all instances of that class. In contrast, instances contain

their own copies of each instance attribute. If a default has been specified, each

instance of given class has the same initial value for an instance attribute.

However, the values of the instance attribute may subsequently vary from one

instance to another. Thus, in the above example, speed might be a class

attribute for Shear_pulse, since the speed will be the same for all shear pulses

in a given material. On the other hand, amplitude and position are properties

of each individual pulse and are represented as instance attributes.

In C++, attributes are called data members. All data members are assumed

to be instance attributes unless they are declared static. Static data members are

stored at the same memory location for every instance of a class, so there is

only one copy, regardless of how many instances there might be. Static data

members are, therefore, equivalent to class attributes.

4.4.4 Operations (or methods or member functions)

Each object has a set of operations or functions that it can perform. For

example, a Shear_pulse object may contain the function move. This function

might take as its parameters the amount and direction of movement, and return

a new value for its position attribute. In some OOP languages, operations

belonging to objects are called methods. In C++, they are called member

functions. Operations are defined for a class, and can then be used by all

instances of that class. It may also be possible for instances of other classes to

access these operations (see Sections 4.5 and 4.6).

4.4.5 Creation and deletion of instances

Creating a new instance requires the computer to set aside some of its memory

for storing the instance. Given a class definition, Myclass, the creation of new

instances is similar in Smalltalk and in C++. In Smalltalk we might write:

Myinstance := Myclass new. "Myinstance is a global variable"

The words in quotes are a comment and are ignored by the compiler. The

equivalent in C++ would be:

Myclass* myinstance;

// declare a pointer to objects of type Myclass

myinstance = new Myclass;

// pointer now points to a new instance

Here the // symbol indicates a comment. The C++ version can be abbreviated

to:



Myclass* myinstance = new Myclass;

// new pointer points to a new instance.

Large numbers of instances may be created while running a typical object-

oriented system. An important consideration, therefore, is the release of

memory that is no longer required. In the example of the ultrasonic simulation,

new pulse instances are generated through reflections, but they must be

removed when they reach the detector. The memory that is occupied by these

unwanted instances must be released again if we are to avoid building a system

with an insatiable appetite for computer memory. In the Smalltalk example

above, Myinstance is a global variable, indicated by the capitalization of the

first letter of the name. Global variables are accessible from any part of the

program and are retained in the programming environment until explicitly

deleted. It is more common to attach instances to temporary variables, shown

here in Smalltalk:

|myinstance| "myinstance is declared as a temporary variable"

myinstance := Myclass new.

Temporary variables exist only within the method in which they are declared,

and their lifetime is that of the method activation. When execution of the

method has finished, these variables (and deleted global variables) leave

behind an area of “unowned” memory. The Smalltalk system automatically

reclaims this memory — a process known as garbage collection. Depending

on the particular implementation, garbage collection may cause the program to

momentarily “freeze” while the system carries out its memory management.

Garbage collection is a feature of Smalltalk, CLOS, and other OOP languages.

Some implementations allow the programmer to influence the timing of

garbage collection, while in other implementations garbage collection is an

unnoticed background process.

In C++, the responsibility for memory management rests with the

programmer. Objects which are created as described above must be explicitly

destroyed when they are no longer needed:

delete myinstance;

This operation releases the corresponding memory. C++ also allows an

alternative method of object creation and deletion which relies on the scope of

objects. A new instance, myinstance, may be created within a block of code in

the following way:

Myclass myinstance;



The instance exists only within that particular block of code, which is its scope.

When the flow of execution enters the block of code, the object is

automatically created. Similarly, it is deleted as soon as the flow of execution

leaves the block.

C++ allows the programmer to define special functions to be performed

when a new instance is created or deleted. These are known respectively as the

constructor and the destructor. The constructor is a member function whose

name is identical to the name of the class, and is typically used to set the initial

values of some attributes. The destructor is defined in a similar way to the

constructor, and its name is that of the class preceded by a tilde (~). It is mostly

used to release memory when an instance is deleted. As an example, consider

the definition for Sonic_pulse in C++:

// class definition:

class Sonic_pulse

{

  protected:

    float amplitude;

  public:

    Sonic_pulse(float initial_amplitude); // constructor

    ~Sonic_pulse(); // destructor

};

// constructor definition:

Sonic_pulse::Sonic_pulse(float initial_amplitude)

{

  amplitude=initial_amplitude; // set up initial value

}

// destructor definition:

Sonic_pulse::~Sonic_pulse()

{

      // perform any tidying up that may be necessary before

      // deleting the object

}

The class has a single attribute, amplitude, and this is set to an initial value by

the constructor. The constructor is automatically called immediately after a

new instance of Sonic_pulse is created. To create a new sonic pulse whose

initial amplitude is 131.4 units, we would write in C++ either:

Sonic_pulse* myinstance = new Sonic_pulse(131.4); //technique 1

or:

Sonic_pulse myinstance(131.4); //technique 2



If a destructor has been defined for a class, it is automatically called

whenever an instance is deleted. If the instance was created by technique 1, it

must be explicitly deleted by the programmer. If it was created by technique 2,

it is automatically deleted when it becomes out of scope from the program’s

thread of control.

Note that data members in C++ are normally given the prefix m_, so that

amplitude, above, would become m_amplitude. However, this convention has

not been adopted here as it would confuse the comparisons between segments

of C++ code and Smalltalk code.

4.5 Inheritance

4.5.1 Single inheritance

Returning again to our example of the ultrasonic simulation, note that there are

two classes of sonic pulses, namely Longitudinal_pulse and Shear_pulse.

While there are some differences between the two classes, there are also many

similarities. It would be most unwieldy if all of this common information had

to be specified twice. This problem can be avoided by the use of inheritance,

sometimes called derivation. A class Sonic_pulse is defined that encompasses

both types of pulses. All of the attributes and methods that are common can be

defined here. The classes Longitudinal_pulse and Shear_pulse are then

designated as subclasses or specializations of Sonic_pulse. Conversely,

Sonic_pulse is said to be the superclass or generalization of the other two

classes. The sub/super class relationship can be thought of as is-a-kind-of, i.e.,

a shear pulse is-a-kind-of sonic pulse. The following expressions, commonly

used to describe the is-a-kind-of relationship, are equivalent:

• a subclass is-a-kind-of superclass;

• an offspring is-a-kind-of parent;

• a derived class is-a-kind-of base class;

• a specialized class is-a-kind-of generalized class;

• a specialized class inherits from a generalized class.

In defining a derived class, it is necessary to specify only the name of the

base class and the differences from the base class. Attributes and their initial

values (where supplied) and methods are inherited by the derived class. (In

C++ there are a few exceptions that are not inherited, notably the constructor,

destructor, and an overloaded = operator, described in Section 4.11.3.) Any

attributes or methods that are redefined in the derived class are said to be



specialized, just as the derived class is said to be a specialization of the base

class. Another form of specialization is the introduction of extra attributes and

methods in the derived class. C++ gives the user some control over which

methods and attributes of the base class are accessible from the derived class

and which are not (Section 4.6). Many other OOP languages assume that all

attributes and methods of the base class are accessible from the derived class,

apart from those that are explicitly specialized.

Figure 4.4 shows the class definitions for Sonic_pulse, its superclasss

Signal, and its subclasses Shear_pulse and Longitudinal_pulse. The

attributes graphic, speed, phase, and amplitude are all declared at the

highest level class and inherited by the other classes. The class variable

graphic, which determines the screen representation of an instance, is

assigned a value at the Sonic_pulse level. This value, as well as the

Longitudinal_pulse

speed(m/s) = 3230

move

Shear_pulse

graphic = "pulse.gif"
speed = 5900
phase = 0
amplitude = -20dB
position: Coordinate
direction: Coordinate

attenuate
move

Sonic_pulse

class name

attributes

graphic : Gif_file
speed : Real
phase : Real
amplitude : Real

attenuate
animate

Signal

class attributes

instance attributes

operations

specialized operation

specialized attribute

specialization relationship

Figure 4.4   An example of inheritance



declaration of the attribute, is inherited by the subclasses. Values for the

instance variables amplitude and phase are inherited in the same way.

Inherited values may be overridden either when an instance is created or

subsequently. The class variable speed for Shear_pulse is assigned a different

value from the one that would otherwise be inherited.

Operations as well as attributes are inherited. Therefore, instances of

Shear_pulse and Longitudinal_pulse have access to the operations animate

and attenuate. The former is inherited across two generations, while the latter

is specialized at the Sonic_pulse class level. The operation move is defined at

the Sonic_pulse class level and inherited by Shear_pulse, but redefined for

Longitudinal_pulse.

Figure 4.5 shows the inheritance between other objects in the ultrasonic

simulation. Note that the is-a-kind-of relationship is transitive, i.e.:

if x is-a-kind-of y and y is-a-kind-of z, then x is-a-kind-of z.

Therefore, the class Defect, for example, inherits information that is defined at

the Feature level and at the General_object level.

4.5.2 Multiple and repeated inheritance

In the example shown in Figure 4.5, each offspring has only one parent. The

specialization relationships therefore form a hierarchy. Some OOP languages

insist upon hierarchical inheritance. However, others allow an offspring to

inherit from more than one parent. This is known as multiple inheritance.

Feature

Defect Delay

Detector

General_object

Front_wall

Device

Transmitter

Signal

Sonic_pulse

Shear_pulseLongitudinal_pulse

Back_wall Radio_wave

Figure 4.5   Single inheritance defines a class hierarchy



Where multiple inheritance occurs, the specialization relationships between

classes define a network rather than a hierarchy.

Figure 4.6 shows how multiple inheritance might be applied to the

ultrasonic simulation. The parts of the component that interact with sonic

pulses all inherit from the class Feature. Three of the classes derived from

Feature are required to simulate partial reflection of pulses. This is done by

generating one or more reflected pulses, while the existing pulse is propagated

in the forward direction with diminished amplitude. Code for generating pulses

is contained within the class definition for Transmitter. Multiple inheritance

allows those classes that need to generate pulses (Front_wall, Back_wall, and

Defect) to inherit this capability from Transmitter, while inheriting other

functions and attributes from Feature.

While multiple inheritance is useful, it can cause ambiguities. This is

illustrated in Figure 4.7, where Defect inherits the graphic feature.gif from

Feature and at the same time inherits the graphic transmitter.gif from

Transmitter. This raises two questions. Do the two attributes with the same

name refer to the same attribute? If so, the class Defect can have only one

value corresponding to the attribute graphic, so which value should be

selected? Similarly, Defect inherits conflicting definitions for the operation

send_pulse.

The most reliable way to resolve such conflicts is to have them detected

by the language compiler, so that the programmer can then state explicitly the

intended meaning. Some OOP environments allow the user to set a default

strategy for resolving conflicts. An example might be to give preference to the

Feature

DefectDelay

Detector

General_object

Front_wall

Device

Transmitter

Signal

Sonic_pulse

Shear_pulseLongitudinal_pulseBack_wall

Radio_wave

Figure 4.6   Multiple inheritance defines a network of classes



parent class that is either closest to, or furthest from, the root of the inheritance

tree. This would not help with the example in Figure 4.7 as the two parents are

equidistant from the root. Alternatively the class names may be deemed

significant in some way, or preference may be given to the most recently

defined specialization.

A further problem is that one class may find itself indirectly inheriting

from another via more than one route, as shown in Figure 4.8. This is known as

repeated inheritance. Although the meaning may be clear to the programmer,

an OOP language must have some strategy for recognizing and dealing with

repeated inheritance, if it allows it at all. C++ offers the programmer a choice

of two strategies. Class D can have two copies of Class A, one for each

inheritance route. Alternatively it can have just a single copy, if both Class B

and Class C are declared to have Class A as a virtual base class.

Multiple inheritance gives rise to the idea of mixins, which are classes

designed solely to help organize the inheritance structure. Instances of mixins

cannot be created. Consider, for example, a class hierarchy for engineering

materials. The materials polyethylene, Bakelite, gold, steel, and silicon nitride

can be classified as polymers, metals, or ceramics. Single inheritance would

allow us to construct these hierarchical relationships. Under multiple

inheritance we can categorize the materials in a variety of ways at the same

Transmitter

send_pulse
propagate
interact

graphic = "feature.gif"

send_pulse
display
generate_pulse

Feature

severity: Integer

display
propagate
interact
reflect

Defect

graphic = "transmitter.gif"

Figure 4.7   Conflicts arising from multiple inheritance: each parent has a

different value for graphic and a different definition for send_pulse



time. Figure 4.9 shows the use of the mixins Cheap and Brittle for this

purpose.

4.5.3 Specialization of methods

We have already seen that specialization can involve the introduction of new

methods or attributes, overriding default assignments to attributes, or

Class_A

Class_B Class_C

Class_D

Figure 4.8   Repeated inheritance

Polymer

Steel

Material

Metal

Gold

Ceramic

Silicon_nitrideBakelitePolyethylene

Cheap Brittle

Figure 4.9   An example of the use of mixins



redefinition of inherited operations. If an operation needs to be redefined, i.e.,

specialized, it is not always necessary to rewrite it from scratch. In our

example, a definition of the method propagate is inherited by the class Defect

from the class Feature. The specialized version of propagate is the same,

except that the sonic pulse must be attenuated. This can be achieved by calling

the inherited definition from within the specialized one, and then adding the

attenuation instruction, shown here in C++:

void Defect::propagate(Sonic_pulse* inst1)

{

  Feature::propagate(inst1);

    // propagate a pulse, inst1, using inherited version of

    // 'propagate'

  inst1->attenuate(0.5); // Attenuate the pulse.

    // The member function 'attenuate' must be defined for the

    // class 'Sonic_pulse'.

}

We might wish to call the specialized method propagate from within the

definition of interact, a function which handles the overall interaction of a

pulse with a defect:

void Defect::interact(Sonic_pulse* inst1)

{

  propagate(inst1);

    // propagate a pulse, inst1, using the locally defined

    // member function

  reflect(inst1);

    // generate a new pulse and send it in the opposite

    // direction

}

4.5.4 Browsers

Many OOP systems provide not only a language, but an environment in which

to program. The environment may include tools that make OOP easier, and one

of the most important of these tools is a class-browser. A class-browser shows

inheritance relationships, often in the form of a tree such as those in Figures

4.5 and 4.6. If the programmer wants to alter a class or to specialize it to form

a new one, he or she simply chooses the class from the browser and then

selects the type of change from a menu. Incidentally, browsers themselves are

invariably built using OOP. Thus, the class-browser may be an instance of a

class called Class_browser, which may be a specialization of Browser, itself a

specialization of Window. The class Class_browser could be further

specialized to provide different display or editing facilities.



4.6 Encapsulation

Encapsulation, or information-hiding, is a term used to express the notion that

the instance attributes and the methods that define an object belong to that

object and to no other. The methods and attributes are therefore private and are

said to be encapsulated within the object. The interface to each object reveals

as little as possible of the inner workings of the object. The object has control

over its own data, and those data cannot be directly altered by other objects.

Class attributes are an exception, as these are not encapsulated within any one

instance but are shared between all instances of the same class.

In general, Smalltalk adheres to the principle of encapsulation, whereas

C++ adopts a more liberal approach. In Smalltalk, object A can only influence

object B by sending B a message telling it to call one of its methods (see

Section 4.9). Apart from this mechanism, secrecy is maintained between

objects. The method on B can access and change its own data, but it cannot

access the data of any other objects.

C++ offers flexibility in its enforcement of encapsulation through access

controls. All data members and member functions (collectively known as

members) are allocated one of four access levels:

• private: access from member functions of this class only (the default);

• protected: access from member functions of this class and of derived classes;

• public: access from any part of the program;

• friend: access from member functions of nominated classes.

Access controls are illustrated in Figure 4.10. C++ allows two types of

derivation (i.e., inheritance), public and private. In private derivation, protected

and public members in the base class become private members of the derived

class. In public derivation, the access level of members in the derived class is

unchanged from the base class. In neither case does the derived class have

access to private members of the base class. The two types of derivation are

shown in Figure 4.11.

4.7 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [2] provides a means of specifying

the relationships between classes and instances, and representing them

diagrammatically. We have already come across two such relationships:



Other objects and
rest of program

Instance of Class_F

public:
  friend Class_F

protected:

private:

has access to

Class_E

Instance of Class_G,
derived from Class_E

Figure 4.10   Access control in C++

Class_A

public:

protected:

private:
 inherited x
 inherited y

public:
  x

protected:
  y

private:
  z

public:
 inherited x

protected:
 inherited y

private:

Class_B Class_C

private derivationpublic derivation

Figure 4.11   Public and private derivation in C++



• specialization/generalization;

• instantiation.

Specialization describes the is-a-kind-of relationship between a subclass and

superclass, and involves the inheritance of common information. Instantiation

describes the relation between a class and an instance of that class. An instance

of a class and a subclass of a class are both said to be clients of that class, since

they both derive information from it, but in different ways.

We will now consider three more types of relationships:

• aggregation;

• composition;

• association.

An aggregation relationship exists when an object can be viewed as

comprising several subobjects. The world of software itself provides a good

example, as a software library can be seen as an aggregation of many

component modules. The degree of ownership of the modules by the software

library is rather weak, in the sense that the same module could also belong to

another software library. The composition relationship is a special case in

which there is a strong degree of ownership of the component parts. For

instance, a car comprises an engine, chassis, doors, seats, wheels, etc. This can

be recognized as a composition relation since duplication or deletion of a car

would require duplication or deletion of these component objects. Returning to

our ultrasonic example, we can regard the imaging equipment as a composition

of a transmitter, detector, display, and image processing software. The image

processing software is an aggregation of various modules. Figure 4.12 shows

that assembly and composition relationships allow problems to be viewed at

different levels of abstraction.

Associations are loose relationships between objects. For instance, they

might be used to represent the spatial layout of objects, possibly by naming the

related instance as an instance attribute. Another form of association arises

when one object makes use of another by sending messages to it (or, in the

case of C++, calling its member functions or accessing its data members) —

see Section 4.9. For example, pulses may send messages to the display object

so that they can be redisplayed. The senders of messages are termed actors,

and the recipients are servers. Objects that both send and receive messages are

sometimes termed agents, although this is a confusing use of the word, given

that agents have a different meaning described in Chapter 5.



The Unified Modeling Language (UML) [2] includes a diagrammatic

representation for the relationships between classes, summarized in Figure

4.13. Wherever appropriate, this notation has been used throughout this

chapter.

4.8 Dynamic (or late) binding

Three necessary features of an OOP language, as defined in Section 4.3, are

data abstraction, inheritance, and encapsulation. The fourth and final necessary

feature is dynamic binding (or late binding). Although the parent classes of

objects may be known at compilation time, the actual (derived) classes may not

be. The actual class is not bound to an object name at compilation time, but

instead the binding is postponed until run-time. This is known as dynamic

binding and its significance is best shown by example.

Suppose that we have a method, propagate, defined in C++ for the class,

Feature:

void Feature::propagate(Sonic_pulse* p)

{

  float x, y;

  x = getx();

Imaging_equipment

Transmitter DisplayDetector

Piezoelectric crystal

Damping Perspex_shoe

High level of abstraction

Lower level of abstraction

Image_processing_
software

FiltersRendering

Autocorrelation Line_drawing

Figure 4.12 The aggregation and composition relationships allow problems to be

viewed on different levels of abstraction. Filled diamonds indicate

composition; unfilled diamonds indicate aggregation



  y = gety(); // calculate new position for pulse, p

  p->move(x,y); // move pulse p to its new position

}

Suppose also that shear1 and long1 are instances of Shear_pulse and

Longitudinal_pulse, respectively. When the program is run, transmission of

shear1 and long1 by a feature is achieved by calls to propagate, with pointers

to each pulse passed as parameters. The parameter types are correct, since

shear1 is an instance of Shear_pulse, which is derived from Sonic_pulse.

Similarly long1 is an instance of Longitudinal_pulse, which is also derived

ClassA

+ op1(p1:Real)
+ op2(): Real

+ att1: Real
# att2: Integer
− att3: ClassD

class

attributes

operators

ClassD

ClassE

*

1..*

ClassF

ClassG

0..1
ClassH

ClassI

1..2

1

obj1: ClassA

(a) (b)

(c) (d) (e)

*

ClassB

+ att4: Integer
− att5: ClassE

ClassC

+ op1(p1:Real)

+ att1: Real
− att7: ClassF

Figure 4.13   Class relationships in Unified Modeling Language (UML).

(a) ClassA is a generalization of ClassB and ClassC; (b) obj1 is an instance of ClassA;

(c) aggregation; (d) composition; (e) association.

Numbers represent permissible number of objects; * = any number

Access controls: + indicates public, # indicates protected, and – indicates private



from Sonic_pulse. The method propagate calls the method move, but this

may be specialized differently for shear1 and for long1. Nevertheless, the

correct definition will be chosen in each case. This is an example of late

binding, since the actual method move that will be used is determined each time

that propagate is called, rather than when the program is compiled.

The combined effect of inheritance and dynamic binding is that the same

function call (move in the above example) can have more than one meaning,

and the actual meaning is not interpreted until run-time. This effect is known

as polymorphism.*

                                                          
* C++ distinguishes between those member functions (i.e., methods) that can be re-

defined polymorphically in a derived class and those that cannot. Functions that can be

redefined polymorphically are called virtual functions. In this example, move must be a

virtual function if it is to be polymorphic. A pure virtual function is one that is declared

in the base class, but no definition is supplied there. (The declaration merely states the

existence of a function; the definition is the chunk of code that makes up the function.)

A definition must therefore appear in the derived classes. Any class containing one or

more pure virtual functions is termed an abstract base class. Instances of an abstract

base class are not allowed, since an instance (if it were allowed) would “know” that it

had access to a virtual function but would not have a definition for it.

To see why polymorphism is so important, we should consider how we

would tackle the above problem in a language where binding is static (or

early). In such languages, the exact meaning of each function call is

determined at compilation time, and is known as monomorphism. In the

method propagate, we would have to test the class of its argument and invoke

a behavior accordingly. Depending on the language, we might need to include

a class variable on Sonic_pulse to tag each instance with the name of its class

(which may be Sonic_pulse or a class derived from it). We might then use a

case statement, shown here in C++:

void Feature::propagate(Sonic_pulse* p)
{

float x, y;
char class_label;
x = getx(); y = gety(); // calculate new position for pulse p
class_label = p->tag; // identify the class of p from its tag
switch (class_label) {
case 's':

....; // code to move a Shear_pulse
break;

case 'l':
....; // code to move a Longitudinal_pulse
break;

default:
....; // print an error message

}
}



Two drawbacks are immediately apparent. First, the code that uses

monomorphism is much longer and is likely to include considerable

duplication, as the code for moving a Shear_pulse will be similar to the code

for moving a Longitudinal_pulse. In contrast, polymorphism avoids

duplication and allows the commonality between classes to be made explicit.

Second, the code is more difficult to maintain than the polymorphic code,

because subsequent addition of a new class of pulse would require changes to

the method propagate in the class feature. This runs against the philosophy

of encapsulation, because the addition of a class should not require changes to

existing classes.

The effect of polymorphism is that the language will always select the

sensible meaning for a function call. Thus, once its importance has been

understood, polymorphism need not vex the programmer.

4.9 Message passing and function calls

In C++, member functions (equivalent to methods) are accessed in a similar

way to any other function, except that we need to distinguish the object to

which the member function belongs. In the following C++ example, defects d1

and d2 are created using the two techniques introduced in Section 4.4.5, and

the member function propagate is then accessed. A call to a conventional

function is also included for comparison:

result = somefunc(parameter);

// call a conventional function, defined elsewhere.

Defect* d1 = new Defect(); // make a new instance d1 of Defect.

Sonic_pulse* p1 = new Sonic_pulse();

Shear_pulse* p2 = new Shear_pulse();

// make two new instances of pulses, p1 and p2.

d1->propagate(p1);

// call member function, 'propagate', with parameter p1.

Defect d2; // make a new instance d2 of Defect.

d2.propagate(p2);

// call member function, 'propagate', with parameter p2.

In Smalltalk and other OOP languages, methods are invoked by passing

messages. This terminology emphasizes the concept of encapsulation. Each

object is independent and is in charge of its own methods. Nonetheless, objects

can interact. One object can stimulate another to fire up a method by sending a

message to it. An example of message passing in Smalltalk is:



d1 propagate: p1.

This is interpreted as:

send to the instance d1 the message propagate:, with parameter p1.

The Smalltalk syntax becomes a little more confusing when there are many

parameters:

p1 move: x and: y.

The arguments are interspersed with the method name, making the message

read rather like English. This example means:

send to the instance p1 the message move:and: with parameters x and y.

Upon receiving a message, an object calls up the corresponding method using

the supplied parameters.

4.9.1 Pseudovariables

Smalltalk and some other OOP languages include reserved words which

provide a shorthand form for “this object” and “the parent class of this object,”

thereby avoiding the need to name classes explicitly. In Smalltalk, the reserved

words are self and super, respectively. They are known as pseudovariables;

they differ from normal variables because they cannot be assigned a value

directly by the programmer. C++ includes the pseudovariable this, which is

equivalent to Smalltalk’s self. In order to illustrate the use of super, consider

the example of specializing the method propagate, which was shown in

Section 4.5.3 using C++. Here is a Smalltalk equivalent, defined for the class

Defect:

propagate: inst1

super propagate: inst1.

"Propagate a pulse, inst1, using inherited version of propagate"

inst1 attenuate: 0.5. "Attenuate the pulse"

"The method 'attenuate' must be defined for the class of inst1"

The version of propagate defined for the parent class Feature is first called.

Then the inst1 is sent the message attenuate:, which instructs it to apply the

method attenuate:, thereby reducing its amplitude. It is assumed that inst1

is a sonic pulse.



Similarly, the method interact that is described for the class Defect

describes the overall interaction between a pulse and the defect. This method

includes calls to the locally defined versions of propagate and reflect,

specified in Smalltalk by the use of self:

interact: inst1

self propagate: inst1.

"Propagate a pulse, inst1, using the locally defined method"

self reflect: inst1.

"Generate a new pulse and send it in the opposite direction"

4.9.2 Metaclasses

It was emphasized in Section 4.4 that a class defines the characteristics

(methods and attributes) that are available to instances. Methods can therefore

be used only by instances and not by the class itself. This is a sensible

constraint, as it is clearly appropriate that methods such as move, propagate,

and reflect should be performed by instances in the ultrasonics example.

However, a problem arises with the creation of new instances. In Smalltalk,

new instances are created by sending the message new. This message cannot be

sent to an instance, as we have not yet created one. Instead it is sent to the

class. This apparent paradox is overcome by imagining that each class is an

instance of a metaclass, which is a class of classes (Figure 4.14). Thus, the

method new is defined within one or more metaclasses and made available to

each class. The notion of metaclasses helps to address a philosophical problem,

but for most practical purposes it is sufficient to remember that messages are

always sent to instances, except for the message new, which is sent to a class.

Metaclasses also provide a means by which class variables can be

implemented. In some OOP languages, although not in Smalltalk, class

variables are simply instance variables that are declared at the metaclass level.

However, these implementation details are rarely of concern to the

programmer. Although C++ does not explicitly include metaclasses, it supports

class variables in the form of static data members. C++ also provides static

member functions. Unlike ordinary member functions, which are encapsulated

within each instance, there is only one copy of a static member function for a

class. The single copy is shared by all instances of the class and is not

associated with any particular instance. A static member function is, therefore,

equivalent to a method (such as new) that is defined within a metaclass.



4.10 Type checking

Smalltalk and C++ both offer the key features of OOP, namely, data

abstraction, inheritance, encapsulation, and dynamic binding. There are,

however, some significant differences between the languages, as well as their

obvious differences in syntax. An important difference is that C++ uses static

type checking whereas Smalltalk uses dynamic type checking. Thus a C++

programmer must explicitly state the type (or class) of all variables, and the

compiler checks for consistency. The Smalltalk programmer does not need to

specify the classes of variables, and no checks are made during compilation.

Static type checking is sometimes called strong type checking, and the

variables are said to be manifestly typed. Conversely, dynamic type checking is

sometimes called weak type checking, and the variables are said to be latently

typed. The words strong and weak are perhaps misleading, since they might

alternatively indicate the strictness or level of detail of static type checking.

Static type checking describes the ability of the compiler to check that

objects of the right class are supplied to all functions and operators. In C++,

the programmer must explicitly state the class of all objects (including built-in

types such as int or float). Whenever assignments are made, the compiler

checks that types are compatible. Assignments can be made directly by a

statement such as:

Device

Metaclass
level

class type 3class type 2

class type 1

Class
level

DetectorTransmitter

Figure 4.14   Each class can be treated as an instance of a metaclass



x = "a string";

or indirectly by passing an object as a parameter to a function. Consider again

our definition of the method propagate in C++:

void Feature::propagate(Sonic_pulse* p)

{

  float x, y;

  x = getx();

  y = gety(); // calculate new position for Sonic_pulse p

  p->move(x,y); // move Sonic_pulse p to its new position

}

Let us now create some object instances:

Sonic_pulse* p1 = new Sonic_pulse();

Shear_pulse* p2 = new Shear_pulse();

Defect* d1 = new Defect();

Defect* d2 = new Defect();

If we pass as a parameter to propagate any object whose type is neither a

pointer to Sonic_pulse nor a pointer to a class publicly derived from

Sonic_pulse, we will get an error at compilation time:

d1->propagate(p1); // OK because p1 is of type Sonic_pulse.

d1->propagate(p2); // OK because p2's type is publicly

// derived from Sonic_pulse.

d1->propagate(d2); // ERROR: d2 is not a Sonic_pulse.

Contrast this with the Smalltalk equivalent, where the method propagate

may be defined as follows for the class Feature:

propagate: aSonicpulse

| x y |

x:= self getx.

y:= self gety.

aSonicpulse move: x and: y.

Now we create some instances as before and try passing them as parameters to

propagate. The following would be typed into a temporary workspace,

selected, and Smalltalk’s “Do It” command invoked:

|p1 p2 d1 d2|

p1 := Sonicpulse new.

p2 := Shearpulse new.

d1 := Defect new.

d2 := Defect new.



d1 propagate: p1. "OK because method move is defined for p1"

d1 propagate: p2. "OK because method move is defined for p2"

d1 propagate: d2. "Compiles OK but causes a run-time error"

All of this code will compile, but the last line will cause an error at run-time,

producing a message similar to:

"Message not understood - move:and:"

The type of the argument to propagate is neither specified nor checked, and

therefore the compiler allows us to supply anything. In our definition of

propagate, the argument was given the name aSonicpulse. This helps us to

recognize the appropriate argument type, but the name has no significance to

the compiler. When we passed d2 (an instance of Defect) as the parameter, a

run-time error came about because Smalltalk tried to find the method

move:and: for d2, when this method was only defined for the class

Sonicpulse and its derivatives.

The difference between static and dynamic typing represents a difference

in programming philosophy. C++ insists that all types be stated, and checks

them all at compilation time to ensure that there are no incompatibilities. This

means extra work for the programmer, especially if he or she is only

performing a quick experiment. On the other hand, it leads to clearly defined

interactions between objects, thereby helping to document the program and

making error detection easier. Static typing tends to be preferred for building

large software systems that involve more than one programmer. Dynamically

typed languages such as Smalltalk (and also Lisp and Prolog, introduced in

Chapter 10) are ideal for trying out ideas and building prototypes, but they are

more likely to contain latent bugs that may show up unpredictably at run-time.

CLOS offers a compromise between static and dynamic typing by allowing the

programmer to make type declarations and giving the option to enforce or

ignore them.

4.11 Further aspects of OOP

This section examines some further issues that may arise in object-oriented

programming. The features described here may be available in some OOP

languages, but they are not essential according to our definition of an OOP

language (Section 4.3).



4.11.1 Persistence

We have already discussed the creation and deletion of objects. The lifetime of

an object is the time between its creation and deletion. So far our discussion

has implicitly assumed that instances are created and destroyed in a time frame

corresponding to one of the following:

• the evaluation of a single expression;

• running a method or other block of code;

• specific creation and deletion events during the running of a program;

• the duration of the program.

However, object instances can outlive the run of the program in which they

were created. A program can create an object and then store it. That object is

said to be persistent across time (because it is stored) and space (because it can

be moved elsewhere). Persistent objects are particularly important in database

applications. For example, a payroll system might store instances of the class

Employee. Such applications require careful design, since the stored instances

are required not only between different executions of the program, but also

between different versions of the program.

4.11.2 Concurrency

Each object acts independently, on the basis of messages that it receives.

Objects can, therefore, perform their own individual tasks concurrently. This

makes them strong candidates for implementation on parallel processing

computers. Returning once more to our object-oriented ultrasonic simulation, a

pulse could arrive at one feature (say the front wall) at the same time as

another arrives at a different feature (say a defect), and both would require

processing by the respective features. Although this could be achieved on a

parallel machine, the actual implementation was on a serial computer, where

concurrency was simulated. A clock (implemented as an object) marked

simulated time. Thus if two pulses arrived at different features at the same time

t, it would not matter which was processed first, as according to the simulation

clock, they would both be processed at time t.

4.11.3 Overloading

Most high-level languages provide “in-line” operators such as +, -, *, / that are

placed between the arguments to which they refer, e.g., in C++:

a=b+c;



This is roughly equivalent to calling a function named plus with the arguments

b and c and assigning the result to a:

a=plus(b,c);

It is only roughly equivalent since the use of an operator may be more efficient

than a function call. From the perspective of the compiler, the operator + has to

fulfill a different task depending on whether its arguments are integers or

floats. However, it is convenient from the programmer’s perspective for the

operator to be called + irrespective of whether integer or float addition is

required. The compiler “knows” which meaning of + is intended by examining

the type of the arguments. This is termed operator overloading — the same

operator has a different meaning depending on the type and number of its

arguments. This is similar to polymorphism (Section 4.8), except that the

meaning of an overloaded operator is determined at compile-time rather than at

run-time. Some languages, such as C++, allow operator overloading to be

extended to classes as well as to built in data types. A common example of this

is to define the class Complex, describing complex numbers. The class

definition might include a definition for + such that it would carry out complex

number addition.

Consider now the expression:

pulse1 + pulse2

where pulse1 and pulse2 are instances of Shear_pulse. This could have a

sensible meaning if we defined + within the definition of class Shear_pulse

so that it performed constructive interference where the two pulses were in

phase and destructive interference where they were out of phase. This is

another example of operator overloading.

Overloading is not just restricted to operators, but can apply to function

names as well (depending on the language). In C++, functions can be

overloaded independent of whether they are member functions (functions

defined as part of a class definition) or other functions. For instance, we might

have separate functions called print for printing an integer, a character, or a

string. In C++ this would look like this:

void print(int x)

{

  /* code for printing an integer */

}

void print(char x)

{



  /* code for printing a character */

}

void print(char* x)

{

  /* code for printing a string */

}

print(74); // uses 1st definition of print

print('A');// uses 2nd definition of print

print("have a nice day"); // uses 3rd definition of print

Overloading is a convenient feature of some object-oriented and

conventional languages. It is not, however, essential that an OOP language

should have this facility.

4.11.4 Active values and daemons

So far we have considered programs in which methods are explicitly called and

where these methods may involve reading or altering data attached to object

attributes. Control is achieved through function (method) calls and data are

accessed as a side effect. Active values and daemons allow us to achieve the

opposite effect, namely, function calls are made as a side effect of accessing

data. Attributes that can trigger function calls in this way are said to be active,

and their data are active values. The functions that are attached to the data are

called daemons. A daemon (sometimes spelled “demon”) can be thought of as

a piece of code that lies dormant, watching an active value, and which springs

to life as soon as the active value is accessed.

Daemons can pose some problems for the flow of control in a program.

Suppose that a method M accesses an active value that is monitored by daemon

D. If D were to fire immediately, before M has finished, then D might disrupt

some control variables upon which M relies. The safer solution is to treat the

methods and daemons as indivisible “atomic” actions, so that M has to run to

completion before D fires.

Active values need not be confined to attributes (data members) but may

also include methods (member functions). Thus, a daemon may be set to fire

when one or more of the following occur:

• an attribute is read;

• an attribute is set; or

• a method is called.

An example of the use of daemons is in the construction of gauges in

graphical user interfaces (Figure 4.15). A gauge object may be created to



monitor some attribute of an object in a physical model, such as the voltage

across a transducer. As soon as the voltage value is altered, the gauge should

update its display, regardless of what caused the change in voltage. The

voltage attribute on the object transducer is active, and the display method

on the object gauge is a daemon.

4.12 Frame-based systems

Frame-based systems are closely allied to object-oriented systems. Frame-

based systems evolved from artificial intelligence research, whereas OOP has

its origins in more general software engineering. Frames provide a means of

representing and organizing knowledge. They use some of the key features of

object-orientation for organizing information, but they do not have the

behaviors or methods of objects. As relations can be created between frames,

they can be used to model physical or abstract connections. Just as object

instances are derived from object classes, so frame instances can be derived

from frame classes, taking advantage of inheritance.

Section 4.3 quoted Pascoe’s [1] definition of OOP. Frame-based systems

are less rigidly defined, so a corresponding definition might be:

Frame-based systems offer data abstraction and inheritance. In general,

they do not offer either encapsulation or dynamic (late) binding.

The absence of encapsulation is the key feature that distinguishes frames from

objects. Since frames do not have ownership of their own functions, they are

passive structures. Without encapsulation, the concept of dynamic binding

becomes meaningless. This does not, however, detract from their usefulness. In

fact they provide an extremely useful way of organizing data and knowledge in

a knowledge-based system.

Gauge

Daemon: display

Transducer

Active value: voltage

watching

Figure 4.15   Using a daemon to monitor an active value



The frame-based view is that an item such as my truck can be represented

by a data structure, i.e., a frame instance, which we can call my_truck. This

instance can inherit from a class of frame such as Truck, which can itself

inherit from a parent class such as Vehicle. Thus, frame-based systems

support data abstraction by allowing the definition of new classes. They also

support inheritance between classes and from a class to its instances.

We can hang extra information onto a frame, such as the number of

wheels on my truck. Thus number_of_wheels could be a slot (see

Section 4.4.3) associated with the frame instance my_truck. This slot could

use the default value of 4 inherited from Vehicle or it may be a locally

defined value that overrides the default. The value associated with a slot can be

a number, a description, a number range, a procedure, another frame, or

anything allowed by the particular implementation. Some frame-based systems

allow us to place multiple values in a slot. In such systems, the different pieces

of information that we might want to associate with a slot are known as its

facets . Each facet can have a value associated with it, as shown in Figure 4.16.

For instance, we may wish to specify limits on the number of wheels, provide a

default, or calculate a value using a function known as an access function. In

this example, an access function count_wheels could calculate the number of

wheels when a value is not previously known.

It was pointed out above that frame-based systems do not, in general,

provide encapsulation. Consider the following example, written using the

syntax of Flex, a knowledge-based and frame-based toolkit [3]:

Truck

number_of_wheels range = 4..12
value: Integer

slots facets

access function = count_wheels

length value: Real
units = metres

location value: Place

Figure 4.16   An example of a frame-based representation



/* define a frame */

frame vehicle;

  default location is garage and

  default number_of_wheels is 4

  and default mass_in_tonnes is 1 .

/* define another frame */

frame truck is a kind of vehicle;

  default mass_in_tonnes is 10 .

/* create an instance of frame truck */

instance my_truck is a truck .

/* create another instance of frame truck */

instance your_truck is a truck;

  number_of_wheels is my_truck`s number_of_wheels + 2 .

In this example, the default number of wheels is inherited by my_truck. The

number of wheels on your_truck is derived by an access function defined

within the frame and which does not need to be explicitly named. The access

function in your_truck makes use of a value in my_truck, though this

would be forbidden under the principle of encapsulation. As the access

function is not calculated until run-time, the example also demonstrates that

Flex offers dynamic binding.

Frames can be applied to physical things such as trucks or abstract things

such as plans or designs. A special kind of frame, known as a script, can be

used to describe actions or sequences of actions. For instance, in a system for

fixing plumbing faults we might construct scripts called changing_a_washer

or unblocking_a_pipe.

The term frame has been used so far here to imply a framework onto

which information can be hung. However, frames are also analogous to the

frames of a movie film or video tape. In associating values with the slots of a

frame we are taking a snapshot of the world at a given instant. At one moment

the slot location on my_truck might contain the value smallville, while

sometime later it might contain the value largetown.

4.13 Summary

We began with the premise that object-oriented programming requires the

following language capabilities:

• Data Abstraction: New types (classes) can be defined and a full set of

operations provided for each, so that the new classes behave like built-in



ones. Operator overloading enhances this perception, since it allows the

new data types to be used as though they were built-in types such as int

and float.

• Inheritance: Class definitions can be treated as specializations of other

(parent) classes. This ability maximizes code reuse and minimizes

duplication. OOP therefore helps us to build a world model that maps

directly onto the real world. This model is expressed in terms of the

classes of objects that the world manipulates, and OOP helps us to

successively refine our understanding of these classes.

• Encapsulation: Data and code are bundled together into objects and are

hidden from other objects. This simplifies program maintenance, helps to

ensure that interactions between objects are clearly defined and

predictable, and provides a realistic world model.

• Dynamic (late) binding: The object (and, hence, its class) that is associated

with a given variable is not determined until run-time. Although the parent

class may be specified and checked at compile-time (depending on the

language), the instance used at run-time could legitimately belong to a

subclass of that parent. Therefore, it cannot be known at compile-time

whether the object will use methods defined within the parent class or

specialized versions of them. Different objects can, therefore, respond to a

single command in a way that is appropriate for those objects, and which

may be different from the response of other objects. This property is

known as polymorphism.

Stroustrup [4] has pointed out that although it is possible to build these

capabilities in many computer languages, a language can only be described as

object-oriented if it supports these features, i.e., it makes these features

convenient for the programmer.

Class definitions act as templates from which multiple instances (i.e.,

objects) can be created. Classes and instances are easily inspected, modified,

and reused. All of these capabilities assist in the construction of large, complex

software systems by breaking the system down into smaller, independent,

manageable chunks. The problem representation is also more natural, allowing

more time to be spent designing a system and less on coding, testing, and

integration.

We saw that frame-based systems support data abstraction and inheritance,

but that they do not necessarily offer encapsulation or dynamic binding. As a

result, frames are passive in the sense that, like entries in a database, they do



not perform any tasks themselves. Their ability to calculate values for slots

through access functions might be regarded as an exception to this generality.

Although frames are more limited than a fully fledged object-oriented system,

they nonetheless provide a useful way of organizing and managing knowledge

in a knowledge-based system.

References

1. Pascoe, G. A., “Elements of object-oriented programming,” Byte, pp. 139–

144, August 1986.

2. Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling

Language User Guide, Addison-Wesley, 1999.

3. Vasey, P., Westwood, D., and Johns, N., Flex Reference Manual, Logic

Programming Associates Ltd., 1996.

4. Stroustrup, B., “What is object-oriented programming?” IEEE Software,

pp. 10–20, May 1988.

Further reading

• Booch, G., Object-Oriented Analysis and Design with Applications, 2nd

ed., Addison-Wesley, 1994.

• Budd, T., An Introduction to Object-Oriented Programming, 2nd ed.,

Addison-Wesley, 1996.

• Cox, B. and Novobilski, A., Object-Oriented Programming: an

evolutionary approach, 2nd ed., Addison-Wesley, 1991.

• Goldberg, A. and Robson, D., Smalltalk-80: the language, Addison-

Wesley, 1989.

• Lalonde, W. R., Discovering Smalltalk, Addison-Wesley, 1994.

• Meyer, B., Object-Oriented Software Construction, 2nd ed., Prentice-Hall,

1997.

• Mullin, M., Object-Oriented Program Design, with Examples in C++,

Addison-Wesley, 1989.

• Stevens, P. and Pooley, R., Using UML: software engineering with objects

and components, Addison-Wesley, 2000.

• Stroustrop, B., The C++ Programming Language, 3rd ed., Addison-

Wesley, 1997.



• Touretzky, D. S., The Mathematics of Inheritance Systems,

Pitman/Morgan Kaufmann, 1986.



Chapter five

Intelligent agents

5.1 Characteristics of an intelligent agent

As the information world expands, people are becoming less and less able to

act upon the escalating quantities of information presented to them. A way

around this problem is to build intelligent agents — software assistants that

take care of specific tasks for us. For instance, if you want to search the World

Wide Web for a specific piece of information, you might use an intelligent

agent to consult a selection of search engines and filter the web pages for you.

In this way you are presented with only two or three pages that precisely match

your needs. An intelligent agent of this type, that personalizes itself to your

individual requirements by learning your habits and preferences, is called a

user agent.

Similarly, much of the trading on the world’s stock exchanges is

performed by intelligent agents. Reaping the benefits of some types of share

dealing relies on reacting rapidly to minor price fluctuations. By the time a

human trader has assimilated the data and made a decision, the opportunity

would be lost.

Just as intelligent agents provide a way of alleviating complexity in the

real world, they also fulfill a similar role within computer systems. As software

systems become larger and more complex, it becomes progressively less

feasible to maintain them as centralized systems that are designed and tested

against every eventuality. An alternative approach is to take the idea of

modular software toward its apotheosis, namely, to turn the modules into

autonomous agents that can make their own intelligent decisions in a wide

range of circumstances. Such agents allow the system to be largely self-

managing, as they can be provided with knowledge of how to cope in

particular situations, rather than being explicitly programmed to handle every

foreseeable eventuality.

While noting that not all agents are intelligent, Wooldridge [1] gives the

following definition for an agent:



An agent is an encapsulated computer system that is situated in some

environment, and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives.

From this definition we can see that the three key characteristics of an

agent are autonomy, persistence, and the ability to interact with its

environment. Autonomy refers to an agent’s ability to make its own decisions

based on its own experience and circumstances, and to control its own internal

state and behavior. The definition implies that an agent functions continuously

within its environment, i.e., it is persistent over time. Agents are also said to be

situated, i.e., they are responsive to the demands of their environment and are

capable of acting upon it. Interaction with a physical environment requires

perception through sensors, and action through actuators or effectors.

Interaction with a purely software environment is more straightforward,

requiring only access to and manipulation of data and programs.

Intelligence can be added to a greater or lesser degree, but we might

reasonably expect an intelligent agent to be all of the following:

• reactive,

• goal-directed,

• adaptable,

• socially capable.

Social capability refers to the ability to cooperate and negotiate with other

agents (or humans), which forms the basis of Section 5.4 below. It is quite easy

to envisage an agent that is purely reactive, e.g., one whose only role is to

place a warning on your computer screen when the printer has run out of

paper. This behavior is akin to a daemon (see Chapter 4). Likewise, modules of

conventional computer code can be thought of as goal-directed in the limited

sense that they have been programmed to perform a specific task regardless of

their environment. Since it is autonomous, an intelligent agent can decide its

own goals and choose its own actions in pursuit of those goals. At the same

time, it must also be able to respond to unexpected changes in its environment.

It, therefore, has to balance reactive and goal-directed behavior, typically

through a mixture of problem solving, planning, searching, decision making,

and learning through experience.

There is no reason why an agent should remain permanently on a single

computer. If a computer is connected to a network, a mobile agent can travel to

remote computers to carry out its designated task before returning back home

with the task completed. A typical task for a mobile agent might be to

determine a person’s travel plan. This will require information about train and



airline timetables, together with hotel availability. Instead of transferring large

quantities of data across the network from the train companies, airlines, and

hotels, it is more efficient for the agent to transfer itself to these remote sites,

find the information it needs, and return. Clearly, there is potential for

malicious use of mobile agents, so security is a prime consideration for sites

that accept them.

5.2 Agents and objects

We saw in Chapter 4 that objects and frames allow complex problems to be

broken down into simpler constituents while maintaining the integrity of the

overall system. Although the history of agent-based programming can be

traced back to the 1970s, it is now seen by many as the next logical

development from object-oriented programming (OOP). If objects are viewed

as obedient servants, then intelligent agents can be seen as independent beings.

Indeed they are often referred to as autonomous agents. When an agent

receives a request to perform an action, it will make its own decision, based on

its beliefs and in pursuit of its goals. Thus, it behaves more like an individual

with his or her own personality. In consequence, agent-based systems are

analogous to human societies or organizations.

As an encapsulated software entity, an intelligent agent bears some

resemblance to an object. However, it is different in three key ways:

• Autonomy: Once an object has declared a method as public, as it must for

the method to be useful, it loses its autonomy. Other objects can then

invoke that method by sending a message. In contrast, agents cannot

invoke the actions of another agent, they can only make requests. The

decision over what action to take rests with the receiver of the message,

not the sender. Autonomy is not required in an object-oriented system

because each object is designed to perform a task in pursuit of the

developer’s overall goal. However, it cannot necessarily be assumed that

agents will share a common goal.

• Intelligence: Although intelligent behavior can be built into an object, it is

not a requirement of the OOP model.

• Persistence: It was stated in Chapter 4 that objects could be made to

persist from one run of a program to another by storing them. In contrast,

agents persist in the sense that they are constantly “switched on” and thus

they operate concurrently. They are said to have their own thread of



control, which can be thought of as another facet of autonomy since an

agent decides for itself when it will do something. In contrast, a standard

object-oriented system has a single thread of control, with objects

performing actions sequentially. One exception to this is the idea of an

active object [2] that has its own thread of control and is, therefore, more

akin to an agent in this respect.

While OOP languages such as C++ and Smalltalk are quite closely

defined, there are no standard approaches to the implementation of agent-based

systems. Indeed, an object-oriented approach might typically be used in the

implementation of an agent-based system, while the reverse is unlikely.

5.3 Agent architectures

Any of the techniques met so far in this book could be used to provide the

internal representation and reasoning capabilities of an agent. Nevertheless,

several different types of approaches can be identified. There are at least four

different schools of thought about how to achieve an appropriate balance

between reactive and goal-directed behavior. These are reviewed below.

5.3.1 Logic-based architectures

At one extreme, the purists favor logical deduction based on a symbolic

representation of the environment [3, 4]. This approach is elegant and rigorous,

but it relies on the environment’s remaining unchanged during the reasoning

process. It also presents particular difficulties in symbolically representing the

environment and reasoning about it.

5.3.2 Emergent behavior architectures

In contrast, other researchers propose that logical deduction about the

environment is inappropriately detailed and time-consuming. For instance, if a

heavy object is falling toward you, the priority should be to move out of the

way rather than to analyze and prove the observation. These researchers

suggest that agents need only a set of reactive responses to circumstances, and

that intelligent behavior will emerge from the combination of such responses.

This kind of architecture is based on reactive agents, i.e., agents that include

neither a symbolic world model nor the ability to perform complex symbolic

reasoning [5]. A well-known example of this approach is Brooks’ subsumption

architecture [6], containing behavior modules that link actions to observed

situations without any reasoning at all. The behaviors are arranged into a



subsumption hierarchy, where low-level behavior such as “avoid object” has

precedence over higher-level goal-oriented behaviors such as “move across

room” (Figure 5.1). This simple and practical approach can be highly effective.

Its chief drawback is that the emphasis placed on the local environment can

lead to a lack of awareness of the bigger picture.

5.3.3 Knowledge-level architectures

A third type of architecture, based on knowledge-level agents, treats each

intelligent agent as a knowledge-based system in microcosm. Just as we saw in

Chapter 1 that a knowledge-based system contains a knowledge base that is

distinct and separate from its inference engine, so this type of agent is modeled

with a knowledge level, distinct from its underlying mechanisms. Such agents

are said to be deliberative. They are the antithesis of reactive agents, since they

explicitly represent a symbolic model of the world and make decisions via

logical reasoning based on pattern matching and symbolic manipulation [5]. A

deliberative agent’s knowledge determines its behavior in accordance with

Newell’s Principle of Rationality [7], which states that:

if an agent has knowledge that one of its actions will lead to one of its

goals, then the agent will select that action.

One of the most important manifestations of this approach is known as the

beliefs–desires–intentions (BDI) architecture [8]. Here, knowledge of the

environment is held as “beliefs” and the overall goals are “desires.” Together,

these shape the “intentions,” i.e., selected options that the system commits

itself toward achieving (Figure 5.2). The intentions stay in place only so long

as they remain both consistent with the desires and achievable according to the

ActuatorsSensors

Fetch object
(high-level behavior;

low precedence)

Move across room

Avoid collisions
(low-level behavior;

high precedence)

Figure 5.1   Brookes’ subsumption architecture



beliefs. The process of determining what to do, i.e., the desires or goals, is

deliberation [9]. The process of determining how to do it, i.e., the plan or

intentions, is means–ends analysis. In this architecture, the balance between

reactivity and goal-directedness can be restated as one between reconsidering

intentions frequently (as a cautious agent might) and infrequently (as a bold or

cavalier agent might). Unsurprisingly, Kinny and Georgeff [10] found that the

cautious approach works best in a rapidly changing environment and the bold

approach works best in a slowly changing environment.

5.3.4 Layered architectures

The final approach to the balancing of reactive and goal-directed behavior is to

mix modules which adopt the two different stances. This is the basis of the

layered architecture of Touring Machines [11], so-called because their original

application was as autonomous drivers for vehicles negotiating crowded

streets. In fact, these agents contain three specific layers: a reactive layer, a

planning layer for goal-directed behavior, and a modeling layer for modeling

the environment (Figure 5.3). The problem of balancing the layers remains; in

this case an intelligent control subsystem ensures that each layer has an

appropriate share of power.

5.4 Multiagent systems

We have seen how individual intelligent agents can perform useful functions,

but the possibilities start to get even more exciting when we consider teams of

Intentions

DesiresBeliefs

Environment

Belief revision Deliberation

Means-ends reasoning

Actuators

Sensors

Figure 5.2   BDI architecture



intelligent agents working together. In Chapter 1, it was stated that the study of

artificial intelligence has been inspired by attempts to mimic the logical

reasoning of a human. In the same way, a branch of AI known as distributed

artificial intelligence (DAI) has been inspired by attempts to mimic a society

of humans working together. Multiagent systems (MASs), sometimes called

agent-oriented or agent-based systems, are one of the most important

approaches to DAI; blackboard systems (see Chapter 9) are another.

A multiagent system can be defined as a system in which several

interacting, intelligent agents pursue a set of individually held goals or perform

a set of individual tasks. Though this definition is a useful starting point, it

raises a number of key questions that will be addressed in the remainder of this

chapter, notably:

• What are the benefits?

• How do intelligent agents interact?

• How do they pursue goals and perform tasks?

5.4.1 Benefits of a multiagent system

There are some problems for which multiagent systems offer the only

practicable approach:

• Inherently complex problems: Such problems are simply too large to be

solved by a single hardware or software system. As the agents are

provided with the intelligence to handle a variety of circumstances, there

is some uncertainty as to exactly how an agent system will perform in a

specific situation. Nevertheless, well-designed agents will ensure that

ActuatorsSensors

Modeling layer

Planning layer

Reactive layer

Control module

Perception module Action module

Figure 5.3   Touring Machine architecture



every circumstance is handled in an appropriate manner even though it

may not have been explicitly anticipated.

• Inherently distributed problems: Here the data and information may exist

in different physical locations, or at different times, or may be clustered

into groups requiring different processing methods or semantics. These

types of problems require a distributed solution, which can be provided by

agents running concurrently, each with its own thread of control (see

Section 5.2 above).

Furthermore, a multiagent system (MAS) offers the following general benefits:

• A more natural view of intelligence.

• Speed and efficiency gains, brought about because agents can function

concurrently and communicate asynchronously.

• Robustness and reliability: No agent is vital provided there are others that

can take over its role in the event of its failure. Thus, the performance of

an MAS will degrade gracefully if individual agents fail.

• Scalability: DAI systems can generally be scaled-up simply by adding

additional components. In the case of an MAS, additional agents can be

added without adversely affecting those already present.

• Granularity: Agents can be designed to operate at an appropriate level of

detail. Many “fine-grained” agents may be required to work on the

minutiae of a problem, where each agent deals with a separate detail. At

the same time, a few “coarse-grained,” more sophisticated agents can

concentrate on higher-level strategy.

• Ease of development: As with OOP, encapsulation enables individual

agents to be developed separately and to be re-used wherever applicable.

• Cost: A system comprising many small processing agents is likely to be

cheaper than a large centralized system.

Thus Jennings has argued that MASs, on the one hand, are suited to the

design and construction of complex, distributed software systems and, on the

other, are appropriate as a mainstream software engineering paradigm [12].



5.4.2 Building a multiagent system

A multiagent system is dependent on interactions between intelligent agents.

There are, therefore, some key design decisions to be made, e.g., when, how,

and with whom should agents interact? In cooperative models, several agents

try to combine their efforts to accomplish as a group what the individuals

cannot. In competitive models, each agent tries to get what only some of them

can have. In either type of model, agents are generally assumed to be honest.

In order to achieve coherency, multiagent systems can be designed

bottom-up or top-down. In a bottom-up approach, agents are endowed with

sufficient capabilities, including communication protocols, to enable them to

interact effectively. The overall system performance then emerges from these

interactions. In a top-down approach, conventions — sometimes called societal

norms — are applied at the group level in order to define how agents should

interact. An example might be the principle of democracy, achieved by giving

agents the right to vote. If we view an agent as having a knowledge level

abstracted above its inner mechanisms, then these conventions can be seen as

residing at a still higher level of abstraction, namely the social level

(Figure 5.4).

Multiagent systems are often designed as computer models of human

functional roles. For example, we may have a hierarchical control structure in

which one agent is the superior of other subordinate agents. Peer group

relations, such as may exist in a team-based organization, are also possible.

This section will address three models for managing agent interaction, known

as contract nets [13], cooperative problem solving (CPS) [14, 15] and shifting

matrix management (SMM) [16]. After considering each of these models in

turn, the semantics of communication between agents will be addressed.

B
ot

to
m

 u
p

T
op

 d
ow

n

Social level

Knowledge level

Mechanism level

Figure 5.4   Agent levels of abstraction



Contract nets

Imagine that you have decided to build your own house. You are unlikely to

undertake all the work yourself. You will probably employ specialists to draw

up the architectural plans, obtain statutory planning permission, lay the

foundations, build the walls, install the floors, build the roof, and connect the

various utilities. Each of these specialists may in turn use a subcontractor for

some aspect of the work. This arrangement is akin to the contract net

framework [13] for agent cooperation (Figure 5.5). Here, a manager agent

generates tasks and is responsible for monitoring their execution. The manager

enters into explicit agreements with contractor agents willing to execute the

tasks. Individual agents are not designated a priori as manager or contractor.

These are only roles, and any agent can take on either role dynamically during

problem solving.

To establish a contract, the manager agent advertises the existence of the

tasks to other agents. Agents that are potential contractors evaluate the task

announcements and submit bids for those to which they are suited. The

manager evaluates the bids and awards contracts for execution of the task to

the agents it determines to be the most appropriate. The manager and

contractor are thus linked by a contract and communicate privately while the

Manager

Bidder

Bidder

Manager
Contractor

(a) (b)

(c) (d)

Manager

Figure 5.5   Contract nets [13]:

(a) Manager advertises a task; (b) potential contractors bid for the task;

(c) manager awards the contract; (d) manager and contractor communicate privately



contract is being executed. The managers supply mostly task information and

the contractor reports progress and the eventual result of the task. The

negotiation process may recur if a contractor subdivides its task and awards

contracts to other agents, for which it is the manager.

CPS framework

The cooperative problem-solving (CPS) framework is a top-down model for

agent cooperation. As in the BDI model, an agent’s intentions play a key role.

They determine the agent’s personal behavior at any instant, while joint

intentions control its social behavior [17]. An agent’s intentions are shaped by

its commitment, and its joint intentions by its social convention. The

framework comprises the following four stages, also shown in Figure 5.6:

Stage 1: recognition. Some agents recognize the potential for cooperation with

an agent that is seeking assistance, possibly because it has a goal it cannot

achieve in isolation.

Stage 2: team formation. An agent that recognized the potential for cooperative

action at Stage 1 solicits further assistance. If successful, this stage ends with a

group having a joint commitment to collective action.

Stage 3: plan formation. The agents attempt to negotiate a joint plan that they

believe will achieve the desired goal.

Stage 4: team action. The newly agreed plan of joint action is executed. By

adhering to an agreed social convention, the agents maintain a close-knit

relationship throughout.

Stage 1: recognition

Stage 2: team formation

Stage 3: plan formation

Stage 4: team action

team disbands

Figure 5.6   CPS framework



Shifting Matrix Management (SMM)

SMM [16] is a model of agent coordination that has been inspired by

Mintzberg’s Shifting Matrix Management model of organizational structures

[18], as illustrated in Figure 5.7. Unlike the traditional management hierarchy,

matrix management allows multiple lines of authority, reflecting the multiple

functions expected of a flexible workforce. Shifting matrix management takes

this idea a stage further by regarding the lines of authority as temporary,

typically changing as different projects start and finish. For example, in

Figure 5.7, individual #1 is the coordinator for project A and the designer for

project B. In order to apply these ideas to agent cooperation, a six-stage

framework has been devised (Figure 5.8) and outlined below. The agents are

distinguished by their different motives, functionality, and knowledge. These

differences define the agents’ variety of mental states with respect to goals,

beliefs, and intentions.

Stage 1: goal selection. Agents select the tasks they want to perform, based on

their initial mental states.

pr
oje

ct 
A

pr
oje

ct 
B

pr
oje

ct 
C

pr
oje

ct 
D

coordinator

designer

tester

programmer

author

#1 #2 #3 #1

#2 #1

#2

#2 #3

#4 #5

#5

#5 #3

#1 #2

#4

Figure 5.7   Shifting Matrix Management (SMM): the nodes represent people [18]



Stage 2: individual planning. Agents select a way to achieve their goals. In

particular, an agent that recognizes its intended goal is common to other agents

would have to decide whether to pursue the goal in isolation or in collaboration

with other agents.

Stage 3: team formation. Agents that are seeking cooperation attempt to

organize themselves into a team. The establishment of a team requires an

agreed code of conduct, a basis for sharing resources, and a common measure

of performance.

Stage 4: team planning. The workload is distributed among team members.

Stage 5: team action. The team plan is executed by the members under the

team’s code of conduct.

Stage 6: shifting. The last stage of the cooperation process, which marks the

disbanding of the team, involves shifting agents’ goals, positions, and roles.

Each agent updates its probability of team-working with other agents,

depending on whether or not the completed team-working experience with that

agent was successful. This updated knowledge is important, as iteration

through the six stages takes place until all the tasks are accomplished.

Stage 1: goal selection

Stage 2: individual planning

Stage 3: team formation

Stage 4: team planning

Stage 5: team action

Stage 6: shifting

Figure 5.8   SMM multiagent framework



5.4.3 Communication between agents

So far we have seen how intelligent agents can be designed and implemented,

and the ways in which they can cooperate and negotiate in a society. In this

final section on multiagent systems, we will examine how agents communicate

with each other, both synchronously and asynchronously. Synchronous

communication is rather like a conversation — after sending a message, the

sending agent awaits a reply from the recipient. Asynchronous communication

is more akin to sending an email or a letter — although you might expect a

reply at some future time, you do not expect the recipient to read or act upon

the message immediately.

Agents may be implemented by different people at different times on

different computers, yet still be expected to communicate with each other.

Consequently, there has been a drive to standardize the structure of messages

between agents, regardless of the domain in which they are operating.

A generally accepted premise is that the form of the message should be

understandable by all agents regardless of their domain, even if they do not

understand its content. Thus, the structure needs to be standardized in such a

way that the domain-specific content is self-contained within it. Only specialist

agents need to understand the content, but all agents need to be able to

understand the form of the message. Structures for achieving this are called

agent communication languages (ACLs), which include Knowledge Query and

Manipulation Language (KQML) [19].

In KQML, the structure contains at least the following components:

• A performative. This is a single word that describes the purpose of the

message, e.g., tell, cancel, evaluate, advertise, ask-one, register, reply.

• The identity of the agent that is the sender.

• The identity of the agent that is the receiver.

• The language used in the content of the message. Although KQML

defines the overall form of the message, any programming language can

be used for the domain-specific content.

• The ontology, or vocabulary, of the message. This provides the context

within which the message content is to be interpreted. For example, the

problem of selecting a polymer to meet an engineering design requirement

is used in Chapter 10 to demonstrate the Lisp and Prolog languages. At the

programming language level, a program to tackle this problem is merely a

collection of words and symbols organized as statements. It would, for



instance, remain syntactically correct if each polymer name were replaced

by the name of a separate type of fruit. The statements only become

meaningful once they are interpreted in the vocabulary of engineering

polymers.

• The message content.

In the polymer selection world mentioned above, agent1 might wish to

tell agent2 about the properties of polystyrene, encoded in Prolog. Using

KQML, it could do so with the following message.

(tell

  :sender    agent1

  :receiver  agent2

  :language  prolog

  :ontology  polymer-world

  :content

    "materials_database(polystyrene, thermoplastic,

      [[impact_resistance, 0.02],

       [flexural_modulus, 3.0],

       [maximum_temperature, 50]]).")

5.5 Summary

Intelligent agents extend the ideas of objects by giving them autonomy,

intelligence, and persistence. Intelligent agents act in pursuit of their personal

goals, which may or may not be the same as those of other agents. Intelligent

agents can be made mobile, so they can travel across a network — possibly the

Internet — to perform a set of tasks. This usually involves the transfer of much

less data than if the whole task had to be performed on the originating

computer.

Multiagent systems contain several interacting intelligent agents, often

designed as computer models of human functional roles. The overall effect is

to mimic human teams or societies. There are a variety of ways for organizing

a multiagent system, and the agents within it may work cooperatively or

competitively. There are also a variety of ways of achieving inter-agent

communication, including the Knowledge Query and Manipulation Language

(KQML).



References

1. Wooldridge, M. J., “Agent-based software engineering,” IEE Proc.

Software Engineering, vol. 144, pp. 26–37, 1997.

2. Booch, G., Object-oriented Analysis and Design with Applications, 2nd

ed., Addison-Wesley, 1994.

3. Ulrich, I., Mondada, F., and Nicoud, J. D., “Autonomous vacuum

cleaner,” Robotics and Autonomous Systems, vol. 19, pp. 233–245, 1997.

4. Russell, S. and Norvig, P., Artificial Intelligence: a modern approach,

Prentice-Hall, 1995.

5. Wooldridge, M. J. and Jennings, N. R., “Intelligent agents: theory and

practice,” Knowledge Engineering Review, vol. 10, pp. 115–152, 1995.

6. Brooks, R. A., “Intelligence without reason,” 12th International Joint

Conference on Artificial Intelligence (IJCAI’91), Sydney, pp. 569–595,

1991.

7. Newell, A., “The knowledge level,” Artificial Intelligence, vol. 18, pp. 87–

127, 1982.

8. Bratman, M. E., Israel, D. J., and Pollack, M. E., “Plans and resource-

bounded practical reasoning,” Computational Intelligence, vol. 4, pp. 349–

355, 1988.

9. Wooldridge, M. J., “Intelligent agents,” in Multiagent Systems: a modern

approach to distributed artificial intelligence, Weiss, G. (Ed.), pp. 27–77,

MIT Press, 1999.

10. Kinny, D. and Georgeff, M., “Commitment and effectiveness in situated

agents,” 12th International Joint Conference on Artificial Intelligence

(IJCAI’91), Sydney, pp. 82–88, 1991.

11. Ferguson, I. A., “Integrated control and coordinated behaviour: a case for

agent models,” in Intelligent Agents: Theories, Architectures and

Languages, vol. 890, Lecture Notes in AI, Wooldridge, M. and Jennings,

N. R. (Eds.), pp. 203–218, Springer-Verlag, 1995.

12. Jennings, N. R., “On agent-based software engineering,” Artificial

Intelligence, vol. 117, pp. 277–296, 2000.

13. Smith, R. G. and Davis, R., “Frameworks for cooperation in distributed

problem solving,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 11, pp. 61–70, 1981.

14. Wooldridge, M. J. and Jennings, N. R., “Formalising the cooperative

problem solving process,” 13th International Workshop on Distributed



Artificial Intelligence (IWDAI’94), Lake Quinalt, WA, pp. 403–417,

1994.

15. Wooldridge, M. J. and Jennings, N. R., “Towards a theory of cooperative

problem solving,” 6th European Conference on Modelling Autonomous

Agents in a Multi-Agent World (MAAMAW’94), Odense, Denmark, pp.

15–26, 1994.

16. Li, G., Weller, M. J., and Hopgood, A. A., “Shifting Matrix Management

— a framework for multi-agent cooperation,” 2nd International

Conference on Practical Applications of Intelligent Agents and Multi-

Agents (PAAM’97), London, 1997.

17. Bratman, M. E., Intentions, Plans, and Practical Reason, Harvard

University Press, 1987.

18. Mintzberg, H., The Structuring of Organizations, Prentice-Hall, 1979.

19. Finin, T., Labrou, Y., and Mayfield, J., “KQML as an agent

communication language,” in Software Agents, Bradshaw, J. M. (Ed.), pp.

291–316, MIT Press, 1997.

Further reading

• Ferber, J., Multi-Agent Systems: an introduction to distributed artificial

intelligence, Addison Wesley, 1999.

• Jennings, N. and Lesperance, Y. (Eds.), Intelligent Agents VI: agent

theories, architectures, and languages, Springer-Verlag, 2000.

• Weiss, G. (Ed.), Multiagent Systems: a modern approach to distributed

artificial intelligence, MIT Press, 1999.



Chapter six

Symbolic learning

6.1 Introduction

The preceding chapters have discussed ways of representing knowledge and

drawing inferences. It was assumed that the knowledge itself was readily

available and could be expressed explicitly. However, there are many

circumstances where this is not the case, such as those listed below.

• The software engineer may need to obtain the knowledge from a domain

expert. This task of knowledge acquisition is extensively discussed in the

literature, mainly as an exercise in psychology.

• The rules that describe a particular domain may not be known.

• The problem may not be expressible explicitly in terms of rules, facts or

relationships. This category includes skills, such as welding or painting.

One way around these difficulties is to have the system learn for itself

from a set of example solutions. Two approaches can be broadly recognized —

symbolic learning and numerical learning. Symbolic learning describes

systems that formulate and modify rules, facts, and relationships, explicitly

expressed in words and symbols. In other words, they create and modify their

own knowledge base. Numerical learning refers to systems that use numerical

models; learning in this context refers to techniques for optimizing the

numerical parameters. Numerical learning includes artificial neural networks

(Chapter 8) and a variety of optimization algorithms such as genetic algorithms

and simulated annealing (Chapter 7).

A learning system is normally given some feedback on its performance.

The source of this feedback is called the teacher or the oracle. Often the

teacher role is fulfilled by the environment within which the knowledge-based

system is working, i.e., the reaction of the environment to a decision is

sufficient to indicate whether the decision was right or wrong. Learning with a



teacher is sometimes called supervised learning. Learning can be classified as

follows, where each category involves a different level of supervision:

(i) Rote learning

The system receives confirmation of correct decisions. When it produces

an incorrect decision it is “spoon-fed” with the correct rule or relationship

that it should have used.

(ii) Learning from advice

Rather than being given a specific rule that should apply in a given

circumstance, the system is given a piece of general advice, such as “gas

is more likely to escape from a valve than from a pipe.” The system must

sort out for itself how to move from this high-level abstract advice to an

immediately usable rule.

(iii) Learning by induction

The system is presented with sets of example data and is told the correct

conclusions that it should draw from each. The system continually refines

its rules and relations so as to correctly handle each new example.

(iv) Learning by analogy

The system is told the correct response to a similar, but not identical,

task. The system must adapt the previous response to generate a new rule

applicable to the new circumstances.

(v) Explanation-based learning (EBL)

The system analyzes a set of example solutions and their outcomes to

determine why each one was successful or otherwise. Explanations are

generated, which are used to guide future problem solving. EBL is

incorporated into PRODIGY, a general-purpose problem-solver [1].

(vi) Case-based reasoning (CBR)

Any case about which the system has reasoned is filed away, together

with the outcome, whether it be successful or otherwise. Whenever a new

case is encountered, the system adapts its stored behavior to fit the new

circumstances. Case-based reasoning is discussed in further detail in

Section 6.3 below.

(vii) Explorative or unsupervised learning

Rather than having an explicit goal, an explorative system continuously

searches for patterns and relationships in the input data, perhaps marking



some patterns as interesting and warranting further investigation.

Examples of the use of unsupervised learning include:

• data mining, where patterns are sought among large or complex data

sets;

• identifying clusters, possibly for compressing the data;

• learning to recognize fundamental features, such as edges, from pixel

images;

• designing products, where innovation is a desirable characteristic.

In rote learning and learning from advice, the sophistication lies in the

ability of the teacher rather than the learning system. If the teacher is a human

expert, these two techniques can provide an interactive means of eliciting the

expert’s knowledge in a suitable form for addition to the knowledge base.

However, most of the interest in symbolic learning has focussed on learning by

induction and case-based reasoning, discussed in Sections 6.2 and 6.3 below.

Reasoning by analogy is similar to case-based reasoning, while many of the

problems and solutions associated with learning by induction also apply to the

other categories of symbolic learning.

6.2 Learning by induction

6.2.1 Overview

Rule induction involves generating from specific examples a general rule of

the type:

IF <general circumstance> THEN <general conclusion>

Since it is based on trial-and-error, induction can be said to be an empirical

approach. We can never be certain of the accuracy of an induced rule, since it

may be shown to be invalid by an example that we have not yet encountered.

The aim of induction is to build rules that are successful as often as possible,

and to modify them quickly when they are found to be wrong. Whatever is

being learned — typically rules and relationships — should match the positive

examples but not the negative ones.

The first step is to generate an initial prototype rule that can subsequently

be refined. The initial prototype may be a copy of a general-purpose template,

or it can be generated by hypothesizing a causal link between a pair of

observations. For instance, if a specific valve valve_1 in a particular plant is



open and the flow rate through it is 0.5m3s 1, we can propose two initial

prototype rules:

IF valve_1 is open
THEN flow rate through valve_1 is 0.5

IF flow rate through valve_1 is 0.5
THEN valve_1 is open

The prototype rules can then be modified in the light of additional

example data or rejected. Rule modifications can be classified as either

strengthening or weakening. The condition is made stronger (or specialized) by

restricting the circumstances to which it applies, and conversely it is made

weaker (or generalized) by increasing its applicability. The pair of examples

above could be made more general by considering other valves or a less

precise measure of flow. On the other hand, they could be made more specific

by specifying the necessary state of other parts of the boiler. A rule needs to be

generalized if it fails to fire for a given set of data, where we are told by the

teacher that it should have fired. Conversely, a rule needs to be specialized if it

fires when it should not.

Assume for the moment that we are dealing with a rule that needs to be

generalized. The first task is to spot where the condition is deficient. This is

easy when using pattern matching, provided that we have a suitable

representation. Consider the following prototype rule:

IF ?x is open AND ?x is a Gas_valve
THEN flow rate through ?x is high

This rule would fire given the scenario:

valve_1 is open
valve_1 is a Gas_valve

The rule is able to fire because valve_1 is open matches ?x is open and

valve_1 is a Gas_valve matches ?x is a Gas_valve. The conclusion flow

rate through valve_1 is high would be drawn. Now consider the

following scenario:

valve_2 is open
valve_2 is a Water_valve

The rule would not fire. However, the teacher may tell us that the conclusion

flow rate through valve_2 is high should have been drawn. We now

look for matches as before and find that valve_1 is open matches ?x is



open. However, there is no match to ?x is a Gas_valve, so this part of the

condition needs to be generalized to embrace the circumstance ?x is a

Water_valve.

We can therefore recognize where a rule is deficient by pattern-matching

between the condition part of the rule and the scenario description. This is

analogous to means–ends analysis, which is used to determine a plan for

changing the world from its current state to a goal state (see Sections 5.3 and

13.3). Means–ends analysis typically uses pattern-matching to determine

which rules can lead to such a change.

6.2.2 Learning viewed as a search problem

The task of generalizing or specializing a rule is not straightforward, as there

are many alternative ways in which a rule can be changed. Finding the

correctly modified rule is a search problem, where the search field can be

enormous. Figure 6.1 shows a possible form of the search tree, where each

branch represents a generalization or specialization that would correctly handle

the most recently encountered input. Subsequent inputs may reveal an incorrect

choice (indicated by a dot at the end of a branch). The system must keep track

solution

Initial
form

= no solution: backtracking required

Figure 6.1   A search tree for rules



of its current position in the search tree, as it must backtrack whenever an

unsuitable choice is found to have been made.

Recording all of the valid options (or branches) that make up a search tree

is likely to be unwieldy. The Lex system [2] offers a neat solution to this

problem. Rather than keeping track of all the possible solutions, it simply

records the most general and the most specific representations that fit the

examples. These boundaries define the range of acceptable solutions. The

boundaries move as further examples are encountered, converging on a smaller

and smaller choice of rules, and ideally settling on a single rule.

There are other difficulties associated with the search problem. Suppose

that a rule-based system is controlling a boiler. It makes a series of

adjustments, but ultimately the boiler overheats, i.e., the control objective has

not been achieved. In this case, the feedback of the temperature reading to the

learning system serves as the teacher. The system is faced with the difficulty of

knowing where it went wrong, i.e., which of its decisions were good and which

ones were at fault. This is the credit-assignment problem. Credit assignment

applies not only to negative examples such as this (which could be termed

“blame assignment”), but also to cases where the overall series of decisions

was successful. For example, a boiler controller which succeeds in keeping the

temperature within the specified range might do so because several good

decisions compensate for poorer ones.

The frame problem (or situation-identification problem), introduced in

Chapter 1, affects many areas of artificial intelligence, particularly planning

(Chapter 13). It is also pertinent here, where the problem is to determine which

aspects of a given example situation are relevant to the new rule. A system for

control of a boiler will have access to a wide range of information. Suppose

that it comes across a set of circumstances where it is told by the teacher that it

should shut off valve_2. The current world state perceived by the system is

determined by stored data and sensor values, for example:

valve_1: shut

valve_2: open

gas_flow_rate: high

gas_temperature: 300°C

water_temperature (pressurized): 150°C

fuel oil stored: 100 gallons

preferred supplier of fuel oil: ACME inc.

In order to derive a rule condition such as:

IF gas_flow_rate is high AND valve_2 is open THEN shut valve_2



the system must be capable of deducing which parts of its world model to

ignore — such as the information about fuel oil — and which to include. The

ability to distinguish the relevant information from the rest places a

requirement that the system must already have some knowledge about the

domain.

6.2.3 Techniques for generalization and specialization

We can identify at least five methods of generalizing (or specializing through

the inverse operation):

(i) universalization;

(ii) replacing constants with variables;

(iii) using disjunctions (generalization) and conjunctions (specialization);

(iv) moving up a hierarchy (generalization) or down it (specialization);

(v) chunking.

Universalization

Universalization involves inferring a new general rule from a set of specific

cases. Consider the following series of separate scenarios:

valve_1 is open AND flow rate for valve_1 is high
valve_2 is open AND flow rate for valve_2 is high
valve_3 is open AND flow rate for valve_3 is high

From these we might induce the following general rule:

/* Rule 6.1 */
IF ?x is open THEN flow rate for ?x is high

Thus we have generalized from a few specific cases to a general rule. This rule

turns out to be too general as it does not specify that x must be a valve.

However, this could be fixed through subsequent specialization based on some

negative examples.

Replacing constants with variables

Universalization shows how we might induce a rule from a set of example

scenarios. Similarly, general rules can be generated from more specific ones by

replacing constants with variables (see Section 2.6). Consider, for example, the

following specific rules:

IF gas_valve_1 is open THEN flow rate for gas_valve_1 is high
IF gas_valve_2 is open THEN flow rate for gas_valve_2 is high



IF gas_valve_3 is open THEN flow rate for gas_valve_3 is high
IF gas_valve_4 is open THEN flow rate for gas_valve_4 is high
IF gas_valve_5 is open THEN flow rate for gas_valve_5 is high

From these specific rules we might induce a more general rule:

/* Rule 6.1 */
IF ?x is open THEN flow rate for ?x is high

However, even this apparently simple change requires a certain amount of

metaknowledge (knowledge about knowledge). The system must “know” to

favor Rule 6.1 rather than, say:

/* Rule 6.2 */
IF ?x is open THEN flow rate for ?y is high

or:

/* Rule 6.3 */
IF ?x is open THEN ?y for ?x is high

Rule 6.2 implies that if any valve is open (we’ll assume for now that we are

only dealing with valves) then the flow rate through all valves is high. Rule 6.3

implies that if a valve is open then everything associated with that valve (e.g.,

cost and temperature) is high.

Using conjunctions and disjunctions

Rules can be made more specific by adding conjunctions to the condition and

more general by adding disjunctions. Suppose that Rule 6.1 is applied when

the world state includes the information office_door is open. We will draw

the nonsensical conclusion that flow rate through office_door is high.

The rule clearly needs to be modified by strengthening the condition. One way

to achieve this is by use of a conjunction (AND):

/* Rule 6.4 */
IF ?x is open AND ?x is a Gas_valve THEN flow rate for ?x is
high

We are relying on the teacher to tell us that flow rate through office_door

is high is not an accurate conclusion. We have already noted that there may

be several alternative ways in which variables might be introduced. The

number of alternatives greatly increases when compound conditions are used.

Here are some examples:



IF valve_1 is open and valve_1 is a Gas_valve THEN ...
IF valve_1 is open and ?x is a Gas_valve THEN ...
IF ?x is open and valve_1 is a Gas_valve THEN ...
IF ?x is open AND ?x is a Gas_valve THEN ...
IF ?x is open AND ?y is a Gas_valve THEN ..

The existence of these alternatives is another illustration that learning by rule

induction is a search process in which the system searches for the correct rule.

Suppose now that we wish to extend Rule 6.4 so that it includes water

valves as well as gas valves. One way of doing this is to add a disjunction (OR)

to the condition part of the rule:

/* Rule 6.5 */
IF ?x is open AND (?x is a Gas_valve OR ?x is a Water_valve)
THEN flow rate for ?x is high

This is an example of generalization by use of disjunctions. The use of

disjunctions in this way is a “cautious generalization,” as it caters for the latest

example, but does not embrace any novel situations. The other techniques risk

overgeneralization, but the risky approach is necessary if we want the system

to learn to handle data that it may not have seen previously. Overgeneralization

can be fixed by specialization at a later stage when negative examples have

come to light. However, the use of disjunctions should not be avoided

altogether, as there are cases where a disjunctive condition is correct. This

dilemma between the cautious and risky approaches to generalization is called

the disjunctive-concept problem. A reasonable approach is to look for an

alternative form of generalization, only resorting to the use of disjunctions if

no other form can be found that fits the examples.

Moving up or down a hierarchy

Rule 6.5 showed a cautious way of adapting Rule 6.4 to include both water

valves and gas valves. Another approach would be to modify Rule 6.4 so that it

dealt with valves of any description:

/* Rule 6.6 */
IF ?x is open AND ?x is a Valve THEN flow rate for ?x is high

Here we have made use of an is-a-kind-of relationship in order to generalize

(see Section 4.5). In the class hierarchy for valves, Water_valve and

Gas_valve are both specializations of the class Valve, as shown in Figure 6.2.



Chunking

Chunking is a mechanism for automated learning that is used in SOAR [3, 4].

SOAR is a production system (i.e., one that uses production rules — see

Chapter 2) that has been modeled on a theory of human cognition. It works on

the premise that, given an overall goal, every problem encountered along the

way can be regarded as a subgoal. Problems are, therefore, tackled

hierarchically — if a goal cannot be met at one level, it is broken down into

subgoals. These automatically generated subgoals may be satisfied through the

application of production rules stored in a long-term memory from previous

runs of the system. However, the application of such rules may be slow, as

several of them may need to be fired successively to satisfy the subgoal. Once

SOAR has recognized the series of rules required to satisfy a subgoal, it can

collapse them down into a single production rule. This is the process of

chunking. The new rule, or chunk, is then stored so that it can rapidly solve the

same subgoal if it should arise again in the future.

SOAR also offers a novel method of conflict resolution (see Chapter 2).

The usual role of a production rule is to change some aspect of the system’s

state, which models the problem being tackled. In SOAR, any rule that can fire

does so, but the changes to the current state proposed by the rule are not

applied immediately. Instead they are added to a list of suggested changes. A

separate set of production rules is then applied to arrange conflicting

suggestions in order of preference — a process known as search control. Once

conflict has been resolved through search control, changes are made to the

actual state elements.

Gas_valve

Valve

Water_valve

Regulator

Figure 6.2   Class hierarchy for valves



6.3 Case-based reasoning (CBR)

The design of intelligent systems is often inspired by attempts to emulate the

characteristics of human intelligence. One such characteristic is the ability to

recall previous experience whenever a similar problem arises. This is the

essence of case-based reasoning (CBR). Consider the example of diagnosing a

fault in a refrigerator, an example that will be revisited in Chapter 11. If an

expert system has made a successful diagnosis of the fault, given a set of

symptoms, it can file away this information for future use. If the expert system

is subsequently presented with details of another faulty refrigerator of exactly

the same type, displaying exactly the same symptoms in exactly the same

circumstances, then the diagnosis can be completed simply by recalling the

previous solution. However, a full description of the symptoms and the

environment would need to be very detailed, and the chances of it ever being

exactly reproduced are remote. What we need is the ability to identify a

previous case, the solution to which can be modified to reflect the slightly

altered circumstances. Thus case-based reasoning involves two difficult

problems:

• determining which cases constitute a similar problem to the current one;

• adapting a case to the current circumstances.

6.3.1 Storing cases

The stored cases form a case base. An effective way of representing the

relevance of cases in the case base is by storing them as objects. Riesbeck and

Schank [5] have defined a number of types of link between classes and

instances in order to assist in locating relevant cases. These links are described

below and examples of their use are shown in Figure 6.3.

Abstraction links and index links

The classes may form a structured hierarchy, in which the different levels

correspond to the level of detail of the case descriptions. Riesbeck and Schank

[5] distinguish two types of link between classes and their specializations:

abstraction links and index links. A subclass connected by an abstraction link

provides additional detail to its superclass, without overriding any information.

An index link is a specialization in which the subclass has an attribute value

that is different from the default defined in its superclass. For example, the

class Refrigerator_fault might have an index link to the class

Electrical_fault, whose defaults relate to faults in vacuum cleaners

(Figure 6.3(a)).



Suppose that we wish to save an instance of fixing a refrigerator, where

the refrigerator exhibited the following symptoms:

• failed to chill food;

• made no noise;

• the light would not come on.

This case might be stored as an instance of the class Refrigerator fault,

which, as already noted, has an index link to the class Electrical fault.

Domestic_equipment_fault

Repairable_fault Catastrophic_fault

Refrigerator_
fault

Washing_
machine_fault

Toaster_
fault

Electrical_fault Mechanical_fault Plumbing_fault

Abstraction links

Index links

(a)

fitting new
bearings

removing
compressor housing

fixing a noisy
refrigerator

fixing a noisy
washing machine

case where replacement
motor caused electrical

interference
Motor_fault

instance-of link

scene link

exemplar link

failure link

scene link

Case class

Case instance

(b)

Figure 6.3   Classifying case histories:

(a) abstraction links and index links between classes;

(b) links between instances



Instance-of links

Each case is an instance of a specific class of cases (see Chapter 4 for a

discussion of object classes and instances). Thus, each case has an instance-of

relation with its parent class, as shown in Figure 6.3(b).

Scene links

These are used to link a historical event to its subevents. For example,

removing the outer casing of a refrigerator’s compressor is a subevent of the

“changing compressor bearings” event. Both the event and subevent are stored

as case instances, with a scene link between them (Figure 6.3(b)).

Exemplar links

These are used to link instances to other similar instances. Suppose that a

refrigerator motor fault was diagnosed by referring to a previous case

involving a failed washing machine motor. This new case could have an

exemplar link to the case from which it was adapted (Figure 6.3(b)).

Failure links

A failure link is a special type of class–instance relation, where the instance

represents a specific case where things did not turn out as expected. This is a

convenient way of storing cases that form exceptions to their general category.

For example, the class Motor fault might have a failure link to a case in

which a replacement motor created a new problem, such as radio interference

(Figure 6.3(b)).

6.3.2 Retrieving cases

The problem of retrieving cases that match a new case, termed the probe case,

is eased if the case base is carefully indexed using links as described above.

Such links are often used as a basis for the first stage of a two-stage

interrogation of the case base. The second stage involves ranking the matched

cases according to a measure of similarity to the probe case [6].

For a given probe case, a suitable similarity measure Si for case i in the

case bases could be:

P

j
ijji mwS

1

where P is the number of parameters considered, wj is an importance weighting

applied to parameter j, and mij is a degree of match between case i and the

probe case for the parameter j. For some parameters, such as the presence or



absence of a given observation, mij is binary i.e., it is either 0 or 1. Other

parameters may concern continuous variables such as temperature, or nearly

continuous variables such as cost. These can still yield binary values for mij if

the measure is whether the parameter is within an acceptable range or

tolerance. Alternatively, a sliding scale between 0 and 1 can be applied to mij.

This is akin to using a fuzzy membership value rather than a crisp one (see

Chapter 3).

6.3.3 Adapting case histories

There are two distinct categories of techniques for adapting a case history to

suit a new situation, namely, structural and derivational adaptation. Structural

adaptation describes techniques that use a previous solution as a guide and

adapt it to the new circumstances. Derivational adaptation involves looking at

the way in which the previous solution was derived, rather than the solution

itself. The same reasoning processes are then applied to the set of data

describing the new circumstances, i.e., the probe case. Four structural

techniques and one derivational technique are outlined below.

Null adaptation

This is the simplest approach and, as the name implies, involves no adaptation

at all of the previous solution. Instead, the previous solution is given as the

solution to the new case. Suppose that the case history selector decides that a

failed refrigerator is similar to the case of a failed washing machine. If the

washing machine failure was found to be due to a severed power lead, then this

is offered as the solution to the refrigerator problem.

Parameterization

This is a structural adaptation technique that is applicable when both the

symptoms and the solution have an associated magnitude or extent. The

previous solution can then be scaled up or down in accordance with the

severity of the symptoms. Suppose, for example, that a case history was as

follows:

symptom: fridge cabinet temperature is 15°C, which is too warm;

solution: reduce thermostat setting by 11°C.

If our new scenario involves a fridge whose cabinet temperature is 10°C,

which is still warmer than it should be, the new solution would be to turn down

the thermostat, but by a modified amount (say 6°C).



Reasoning by analogy

This is another structural adaptation technique. If a case history cannot be

found in the most appropriate class, then analogous case histories are

considered. Given a hierarchically organized database of case histories, the

search for analogous cases is relatively straightforward. The search begins by

looking at siblings, and then cousins, in a class hierarchy like the one shown in

Figure 6.3(a). Some parts of the historical solution may not applicable, as the

solution belongs to a different class. Under such circumstances, the

inapplicable parts are replaced by referring back to the class of the current

problem.

As an example, consider a refrigerator that is found to be excessively

noisy. There may not be a case in the database that refers to noisy refrigerators,

but there may be a case that describes a noisy washing machine. The solution

in that case may have been that the bearings on the washer’s drum were worn

and needed replacing. This solution is not directly applicable to the

refrigerator, as a refrigerator does not have a drum. However, the refrigerator

has bearings on the compressor, and so it is concluded that the compressor

bearings are worn and are in need of replacement.

Critics

The use of critics has stemmed from work on a planning system called

HACKER [7], which can rearrange its planned actions if they are found to be

incorrectly ordered (see Chapter 13). The ideas are also applicable to other

problems, such as diagnosis (see Chapter 11). Critics are modules that can look

at a nearly correct solution and determine what flaws it has, if any, and suggest

modifications. In the planning domain, critics would look for unnecessary

actions, or actions that make subsequent actions more difficult. Adapting these

ideas to diagnosis, critics can be used to “fine-tune” a previous solution so that

it fits the current circumstances. For instance, a case-based reasoner might

diagnose that the compressor bearings in a refrigerator need replacing. Critics

might notice that most compressors have two sets of bearings and that, in this

particular refrigerator, one set is fairly new. The modified solution would then

be to replace only the older set of bearings.

Reinstantiation

The above adaptation techniques are all structural, i.e., they modify a previous

solution. Reinstantiation is a derivational technique, because it involves

replaying the derivation of the previous solution using the new data.

Previously used names, numbers, structures, and components are reinstantiated

to the corresponding new ones. Suppose that a case history concerning a



central heating system contained the following abduction to explain from a set

of a rules why a room felt cold:

IF thermostat is set too low
THEN boiler will not switch on

IF boiler is not switched on
THEN radiators stay at ambient temperature

IF radiators are at ambient temperature
THEN room will not warm up

Abductive conclusion: thermostat is set too low

By suitable reinstantiation, this case history can be adapted to diagnose why

food in a refrigerator is not chilled:

IF thermostat is set too high
THEN compressor will not switch on

IF compressor is not switched on
THEN cabinet stays at ambient temperature

IF cabinet is at ambient temperature
THEN food will not be chilled

Abductive conclusion: thermostat is set too high

6.3.4 Dealing with mistaken conclusions

Suppose that a system has diagnosed that a particular component is faulty, and

that this has caused the failure of an electronic circuit. If it is then discovered

that there was in fact nothing wrong with the component, or that replacing it

made no difference, then the conclusion needs repair. Repair is conceptually

very similar to adaptation, and similar techniques can be applied so as to

modify the incorrect conclusion to reach a correct one. If this fails, then a

completely new solution must be sought. In either case, it is important that the

failed conclusion be recorded in the database of case histories with a link to the

correct conclusion. If the case is subsequently retrieved in a new scenario, the

system will be aware of a possible failure and of a possible way around that

failure.



6.4 Summary

Systems that can learn offer a way around the so-called “knowledge

acquisition bottleneck.” In cases where it is difficult or impossible to extract

accurate knowledge about a specific domain, it is clearly an attractive

proposition for a computer system to derive its own representation of the

knowledge from examples. We have distinguished between two categories of

learning systems — symbolic and numerical — with this chapter focusing on

the former. Inductive and cased-based methods are two particularly important

types of symbolic learning.

Rule induction involves the generation and refinement of prototype rules

from a set of examples. An initial prototype rule can be generated from a

template or by hypothesizing a causal link between a pair of observations. The

prototype rule can then be refined in the light of new evidence by generalizing,

specializing, or rejecting it. Rule induction from numerical systems such as

neural networks is also possible; discussion of this is deferred until Chapter 9

on hybrid systems.

Case-based reasoning involves storing the details of every case

encountered, successful or not. A stored case can subsequently be retrieved and

adapted for new, but related, sets of circumstances. This is arguably a good

model of human reasoning. The principal difficulties are in recognizing

relevant cases, which necessitates a suitable storage and retrieval system, and

in adapting stored cases to the new circumstances. The concepts of CBR have

been illustrated here with reference to fault diagnosis, but CBR has also found

a wide range of other applications including engineering sales [8], help-desk

support [9], and planning [10].

References

1. Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O.,

and Gil, Y., “Explanation-based learning: a problem-solving perspective,”

Artificial Intelligence, vol. 40, pp. 63–118, 1989.

2. Mitchell, T. M., Utgoff, P. E., and Banerji, R., “Learning by

experimentation: acquiring and refining problem-solving heuristics,” in

Machine Learning: an artificial intelligence approach, vol. 1, Michalski,

R., Carbonell, J. G., and Mitchell, T. M. (Eds.), pp. 163–190, 1983.

3. Laird, J. E., Rosenbloom, P. S., and Newell, A., “Chunking in SOAR: the

anatomy of a general learning mechanism,” Machine Learning, vol. 1, pp.

11–46, 1986.



4. Laird, J. E., Newell, A., and Rosenbloom, P. S., “SOAR: an architecture

for general intelligence,” Artificial Intelligence, vol. 33, pp. 1–64, 1987.

5. Riesbeck, C. K. and Schank, R. C., Inside Case-Based Reasoning,

Lawrence Erlbaum Associates, 1989.

6. Ferguso, A. and Bridge, D., “Options for query revision when interacting

with case retrieval systems,” Expert Update, vol. 3, issue 1, pp. 16–27,

Spring 2000.

7. Sussman, G. J., A Computer Model of Skill Acquisition, Elsevier, 1975.

8. Watson, I. and Gardingen, D., “A distributed case-based reasoning

application for engineering sales support,” 16th International Joint

Conference on Artificial Intelligence (IJCAI’99), Stockholm, Sweden, vol.

1, pp. 600–605, Morgan Kaufmann, 1999.

9. Kunze, M. and Hübner, A., “Textual CBR case studies of projects

performed,” Lenz, M. and Ashley, K. (Eds.), AAAI’98 Workshop on

Textual Case-Based Reasoning, Menlo Park, CA, pp. 58–61, 1998.

10. Marefat, M. and Britanik, J., “Case-based process planning using an

object-oriented model representation,” Robotics and Computer Integrated

Manufacturing, vol. 13, pp. 229–251, 1997.

Further reading

• Kolodner, J., Case-Based Reasoning, Morgan Kaufmann, 1993.

• Langley, P., Elements of Machine Learning, Morgan Kaufmann, 1995.

• Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.

• Watson, I. D., Applying Case-Based Reasoning: techniques for enterprise

systems, Morgan Kaufmann, 1997.



Chapter seven

Optimization algorithms

7.1 Optimization

We have already seen that symbolic learning by induction is a search process,

where the search for the correct rule, relationship, or statement is steered by

the examples that are encountered. Numerical learning systems can be viewed

in the same light. An initial model is set up, and its parameters are

progressively refined in the light of experience. The goal is invariably to

determine the maximum or minimum value of some function of one or more

variables. This is the process of optimization. Often the optimization problem

is considered to be one of determining a minimum, and the function that is

being minimized is referred to as a cost function. The cost function might

typically be the difference, or error, between a desired output and the actual

output. Alternatively, optimization is sometimes viewed as maximizing the

value of a function, known then as a fitness function. In fact the two

approaches are equivalent, because the fitness can simply be taken to be the

negation of the cost and vice versa, with the optional addition of a constant

value to keep both cost and fitness positive. Similarly, fitness and cost are

sometimes taken as the reciprocals of each other. The term objective function

embraces both fitness and cost. Optimization of the objective function might

mean either minimizing the cost or maximizing the fitness.

7.2 The search space

The potential solutions to a search problem constitute the search space or

parameter space. If a value is sought for a single variable, or parameter, the

search space is one-dimensional. If simultaneous values of n variables are

sought, the search space is n-dimensional. Invalid combinations of parameter

values can be either explicitly excluded from the search space, or included on

the assumption that they will be rejected by the optimization algorithm. In

combinatorial problems, the search space comprises combinations of values,



the order of which has no particular significance provided that the meaning of

each value is known. For example, in a steel rolling mill the combination of

parameters that describe the profiles of the rolls can be optimized to maximize

the flatness of the manufactured steel [1]. Here, each possible combination of

parameter values represents a point in the search space. The extent of the

search space is constrained by any limits that apply to the variables.

In contrast, permutation problems involve the ordering of certain

attributes. One of the best known examples is the traveling salesperson

problem, where he or she must find the shortest route between cities of known

location, visiting each city only once. This sort of problem has many real

applications, such as in the routing of electrical connections on a

semiconductor chip. For each permutation of cities, known as a tour, we can

evaluate the cost function as the sum of distances traveled. Each possible tour

represents a point in the search space. Permutation problems are often cyclic,

so the tour ABCDE is considered the same as BCDEA.

The metaphor of space relies on the notion that certain points in the search

space can be considered closer together than others. In the traveling

salesperson example, the tour ABCDE is close to ABDCE, but DACEB is

distant from both of them. This separation of patterns can be measured

intuitively in terms of the number of pair-wise swaps required to turn one tour

into another. In the case of binary patterns, the separation of the patterns is

usually measured as the Hamming distance between them, i.e., the number of

bit positions that contain different values. For instance, the binary patterns

01101 and 11110 have a Hamming separation of 3.

We can associate a fitness value with each point in the search space. By

plotting the fitness for a two-dimensional search space, we obtain a fitness

landscape (Figure 7.1). Here the two search parameters are x and y,

constrained within a range of allowed values. For higher dimensions of search

space a fitness landscape still exists, but is difficult to visualize. A suitable

optimization algorithm would involve finding peaks in the fitness landscape or

valleys in the cost landscape. Regardless of the number of dimensions, there is

a risk of finding a local optimum rather than the global optimum for the

function. A global optimum is the point in the search space with the highest

fitness. A local optimum is a point whose fitness is higher than all its near

neighbors but lower than that of the global optimum.

If neighboring points in the search space have a similar fitness, the

landscape is said to be smooth or correlated. The fitness of any individual

point in the search space is, therefore, representative of the quality of the

surrounding region. Where neighboring points have very different fitnesses,

the landscape is said to be rugged. Rugged landscapes typically have large



numbers of local optima and the fitness of an individual point in the search

space will not necessarily reflect that of its neighbors.

The idea of a fitness landscape assumes that the function to be optimized

remains constant during the optimization process. If this assumption cannot be

made, as might be the case in a real-time system, we can think of the problem

as finding an optimum in a “fitness seascape” [2].

7.3 Searching the search space

Determining the optimum for an objective function of multiple variables is not

straightforward, even when the landscape is static. Although exhaustively

evaluating the fitness of each point in the search space will always reveal the

optimum, this is usually impracticable because of the enormity of the search

space. Thus, the essence of all the numerical optimization techniques is to

determine the optimum point in the search space by examining only a fraction

of all possible candidates.

The techniques described here are all based upon the idea of choosing a

starting point and then altering one or more variables in an attempt to increase

the fitness or reduce the cost. The various approaches have the following two

key characteristics.

(i) Whether they are based on a single candidate or a population of

candidates

Some of the methods to be described, such as hill-climbing, maintain a

single “best solution so far” which is refined until no further increase in

x
y

0

0.1

0.2

0.3

0.4

F
it

n
es

s

Global optimum

Local optima

Figure 7.1   A fitness landscape



fitness can be achieved. Genetic algorithms, on the other hand, maintain a

population of candidate solutions. The overall fitness of the population

generally improves with each generation, although some decidedly unfit

individual candidates may be added along the way.

(ii) Whether new candidates can be distant in the search space from the

existing ones

Methods such as hill-climbing take small steps from the start point until

they reach either a local or global optimum. To guard against missing the

global optimum, it is advisable to repeat the process several times, starting

from different points in the search space. An alternative approach, adopted

in genetic algorithms and simulated annealing, is to begin with the

freedom to roam around the whole of the search space in order to find the

regions of highest fitness. This initial exploration phase is followed by

exploitation, i.e., a detailed search of the best regions of the search space

identified during exploration. Methods, such as genetic algorithms, that

use a population of candidates rather than just one allow several regions to

be explored at the same time.

7.4 Hill-climbing and gradient descent algorithms

7.4.1 Hill-climbing

The name hill-climbing implies that optimization is viewed as the search for a

maximum in a fitness landscape. However, the method can equally be applied

to a cost landscape, in which case a better name might be valley descent. It is

the simplest of the optimization procedures described here. The algorithm is

easy to implement, but is inefficient and offers no protection against finding a

local minimum rather than the global one. From a randomly selected start point

in the search space, i.e., a trial solution, a step is taken in a random direction. If

the fitness of the new point is greater than the previous position, it is accepted

as the new trial solution. Otherwise the trial solution is unchanged. The process

is repeated until the algorithm no longer accepts any steps from the trial

solution. At this point the trial solution is assumed to be the optimum. As noted

above, one way of guarding against the trap of detecting a local optimum is to

repeat the process many times with different starting points.



7.4.2 Steepest gradient descent or ascent

Steepest gradient descent (or ascent) is a refinement of hill-climbing that can

speed the convergence toward a minimum cost (or maximum fitness). It is only

slightly more sophisticated than hill-climbing, and it offers no protection

against finding a local minimum rather than the global one. From a given

starting point, i.e., a trial solution, the direction of steepest descent is

determined. A point lying a small distance along this direction is then taken as

the new trial solution. The process is repeated until it is no longer possible to

descend, at which point it is assumed that the optimum has been reached.

If the search space is not continuous but discrete, i.e., it is made up of

separate individual points, at each step the new trial solution is the neighbor

with the highest fitness or lowest cost. The most extreme form of discrete data

is where the search parameters are binary, i.e., they have only two possible

values. The parameters can then be placed together so that any point in the

search space is represented as a binary string and neighboring points are those

at a Hamming distance (see Section 7.2) of 1 from the current trial solution.

7.4.3 Gradient-proportional descent

Gradient-proportional descent, often simply called gradient descent, is a

variant of steepest gradient descent that can be applied in a cost landscape that

is continuous and differentiable, i.e., where the variables can take any value

within the allowed range and the cost varies smoothly. Rather than choosing a

fixed step size, the size of the steps is allowed to vary in proportion to the local

gradient of descent.

7.4.4 Conjugate gradient descent or ascent   

Conjugate gradient descent (or ascent) is a simple attempt at avoiding the

problem of finding a local, rather than global, optimum in the cost (or fitness)

landscape. From a given starting point in the cost landscape, the direction of

steepest descent is initially chosen. New trial solutions are then taken by

stepping along this direction, with the same direction being retained until the

slope begins to curve uphill. When this happens, an alternative direction

having a downhill gradient is chosen. When the direction that has been

followed curves uphill, and all of the alternative directions are also uphill, it is

assumed that the optimum has been reached. As the method does not

continually hunt for the sharpest descent, it may be more successful than the

steepest gradient descent method in finding the global minimum. However, the

technique will never cause a gradient to be climbed, even though this would be

necessary in order to escape a local minimum and thereby reach the global

minimum.



7.5 Simulated annealing

Simulated annealing [3] owes its name to its similarity to the problem of atoms

rearranging themselves in a cooling metal. In the cooling metal, atoms move to

form a near-perfect crystal lattice, even though they may have to overcome a

localized energy barrier called the activation energy, Ea, in order to do so. The

atomic rearrangements within the crystal are probabilistic. The probability P of

an atom jumping into a neighboring site is given by:

)/exp( kTEP a (7.1)

where k is Boltzmann’s constant and T is temperature. At high temperatures,

the probability approaches 1, while at T = 0 the probability is 0.

In simulated annealing, a trial solution is chosen and the effects of taking a

small random step from this position are tested. If the step results in a

reduction in the cost function, it replaces the previous solution as the current

trial solution. If it does not result in a cost saving, the solution still has a

probability P of being accepted as the new trial solution given by:

)/exp( TEP (7.2)

This function is shown in Figure 7.2(a). Here, E is the increase in the cost

function that would result from the step and is, therefore, analogous to the

activation energy in the atomic system. There is no need to include

Boltzmann’s constant, as E and T no longer represent real energies or

temperatures.

The temperature T is simply a numerical value that determines the stability

of a trial solution. If T is high, new trial solutions will be generated

continually. If T is low, the trial solution will move to a local or global cost

minimum — if it is not there already — and will remain there. The value of T

is initially set high and is periodically reduced according to a cooling schedule.

A commonly used simple cooling schedule is:

Tt+1 =  Tt (7.3)

where Tt is the temperature at step number t and  is a constant close to, but

below, 1. While T is high, the optimization routine is free to accept many

varied solutions, but as it drops, this freedom diminishes. At T = 0, the method

is equivalent to the hill-climbing algorithm, as shown in Figure 7.2(b).

If the optimization is successful, the final solution will be the global

minimum. The success of the technique is dependent upon values chosen for



starting temperature, the size and frequency of the temperature decrement, and
the size of perturbations applied to the trial solutions. A flowchart for the
simulated annealing algorithm is given in Figure 7.3.

Johnson and Picton [4] have described a variant of simulated annealing in
which the probability of accepting a trial solution is always probabilistic, even

∆E / T
-4 -3 -2 -1 0 1 2 3 4

P
 =

 1
 if

 ∆
E

 <
 0

,
el

se
 P

 =
 e

xp
(−

∆E
 / 

T)

0.2

0.4

0.6

0.8

1.0

(a)

∆E
0

P
 =

 1
 if

 ∆
E

 <
 0

, e
ls

e 
P

 =
 0

0.2

0.4

0.6

0.8

1.0

(b)

-4 -3 -2 -1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

∆E / T

P
 =

 1
 / 

(1
 +

 e
xp

(∆
E

 / 
T)

)(c)

Figure 7.2   Three probability functions



if it results in a decrease in the cost function (Figure 7.2(c)). Under their

scheme, the probability of accepting a trial solution is:

)/exp(1

1

TE
P (7.4)

Select random start point x := (x1, x2, x3, , xn)

Select initial temperature T > 0

Select random step ∆x

∆E := cost(x + ∆x) − cost(x)

Start

∆E < 0 ?

x := x + ∆x

select random number
p in range 0−1

p < exp(−∆E/T) ?

Reduce T according to a pre-
determined cooling schedule, e.g.,

T := α T

Terminate yet?

Stop

yes

yes

yes

no

no

no

Figure 7.3   Simulated annealing



where E is positive if the new trial solution increases the cost function, or

negative if it decreases it. In the former case P is in the range 0–0.5 and in the

latter case it is in the range 0.5–1. At high temperatures, P is close to 0.5

regardless of the fitness of the new trial solution. As with standard simulated

annealing, at T = 0 the method becomes equivalent to the hill-climbing

algorithm, as shown in Figure 7.2(b).

Simulated annealing has been successfully applied to partitioning circuits

into electronic chips, positioning chips on printed circuit boards, and circuit

layout within chips [3]. It has also been applied to setting the parameters for a

finisher mill in the rolling of sheet steel [1].

7.6 Genetic algorithms

Genetic algorithms (GAs) have been inspired by natural evolution, the process

by which successive generations of animals and plants are modified so as to

approach an optimum form. Each offspring has different features from its

parents, i.e., it is not a perfect copy. If the new characteristics are favorable, the

offspring is more likely to flourish and pass its characteristics to the next

generation. However, an offspring with unfavorable characteristics is likely to

die without reproducing. These ideas have been applied to mathematical

optimization, where a population of candidate solutions “evolves” toward an

optimum [5].

Each cell of a living organism contains a set of chromosomes that define

the organism’s characteristics. The chromosomes are made up of genes, where

each gene determines a particular trait such as eye color. The complete set of

genetic material is referred to as the genome, and a particular set of gene values

constitutes a genotype. The resulting set of traits is described as the phenotype.

Each individual in the population of candidate solutions is graded

according to its fitness. The higher the fitness of a candidate solution, the

greater are its chances of reproducing and passing its characteristics to the next

generation. In order to implement a GA, the following design decisions need to

be made:

• how to use sequences of numbers, known as chromosomes, to represent

the candidate solutions;

• the size of the population;

• how to evaluate the fitness of each member of the population;

• how to select individuals for reproduction using fitness information

(conversely, how to determine which less-fit individuals will not

reproduce);



• how to reproduce candidates, i.e., how to create a new generation of
candidate solutions from the existing population;

• when to stop the evolutionary process.

These decisions will be addressed in detail in subsequent subsections but, for
now, let us look at the most basic form of GA.

7.6.1 The basic GA

All of the other numerical optimization techniques described in the previous
sections involved storing just one “best so far” candidate solution. In each
case, a new trial solution was generated by taking a small step in a chosen
direction. Genetic algorithms are different in both respects. First, a population
of several candidate solutions, i.e., chromosomes, is maintained. Second, the
members of one generation can be a considerable distance in the search space
from the previous generation.

Chromosomes
Each point in the search space can be represented as a unique chromosome,
made up of genes. Suppose, for example, we are trying to find the maximum
value of a fitness function, f(x, y). In this example, the search space variables, x
and y, are constrained to the 16 integer values in the range 0–15. A
chromosome corresponding to any point in the search space can be represented
by two genes:

x y

Thus the point (2, 6) in search space would be represented by the following
chromosome:

2 6

The possible values for the genes are called alleles, so there are 16 alleles for
each gene in this example. Each position along the chromosome is known as a
locus; there are two loci in the above example. The loci are usually constrained
to hold only binary values. (The term evolutionary algorithm describes the
more general case where this constraint is relaxed.) The chromosome could
therefore be represented by eight loci comprising the binary numbers 0010 and
0110, which represent the two genes:

0 0 1 0 0 1 1 0



Although there are still 16 alleles for the genes, there are now only two

possible values (0 and 1) for the loci. The chromosome can be made as long as

necessary for problems involving many variables, or where many loci are

required for a single gene. In general, there are 2N alleles for a binary-encoded

gene that is N bits wide.

Algorithm outline

A flow chart for the basic GA is shown in Figure 7.4. In the basic algorithm,

the following assumptions have been made:

• The initial population is randomly generated.

• Individuals are evaluated according to the fitness function.

• Individuals are selected for reproduction on the basis of fitness; the fitter

an individual, the more likely it is to be selected. Further details are given

in Section 7.6.2 below.

Randomly generate
initial population

Evaluate fitness of each individual

Select individuals to mate

Generate offspring by crossover
with probability, Pc

Terminate yet?

Replace old population
with new one

Generate offspring by mutation
with probability, Pm

Stop

yes

Start

no

Figure 7.4   The basic GA



• Reproduction of chromosomes to produce the next generation is achieved

by “breeding” between pairs of chromosomes using the crossover operator

and then applying a mutation operator to each of the offspring. The

crossover and mutation operators are described below; the balance

between them is yet another decision that the GA designer faces.

Crossover

Here, child chromosomes are produced by aligning two parents, picking a

random position along their length, and swapping the tails with a probability

Pc, known as the crossover probability. An example for an eight-loci

chromosome, where the mother and father genes are represented by mi and fi

respectively, would be:

m1 m2 m3 m4 m5 m6 m7 m8 m1 m2 m3 m4 m5 f6 f7 f8

f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 m6 m7 m8

This is known as single-point crossover, as only one position is specified for

separating the swapped and unswapped loci. In fact this is a misnomer, as a

second cross-over position is always required. In single-point crossover the

second crossover position is assumed to be the end of the chromosome. This

can be made clearer by considering two-point crossover, where the

chromosomes are treated as though they were circular, i.e., m1 and m8 are

neighboring loci:

m1 m2 m3 m4 m5 m6 m7 m8 m1 f2 f3 f4 f5 m6 m7 m8

f1 f2 f3 f4 f5 f6 f7 f8 f1 m2 m3 m4 m5 f6 f7 f8

In general, multipoint crossover is also possible, provided there are an even

number of crossover points:

m1 m2 m3 m4 m5 m6 m7 m8 m1 f2 f3 m4 m5 f6 f7 m8

f1 f2 f3 f4 f5 f6 f7 f8 f1 m2 m3 f4 f5 m6 m7 f8

In the extreme case, each locus is considered for crossover, independently of

the rest, with crossover probability Pc. This is known as uniform crossover [6].



Mutation

Unlike crossover, mutation involves altering the values of one or more loci.

This creates new possibilities for gene combinations that can be generated by

crossover. Mutation can be carried out in either of two ways:

• The value of a randomly selected gene can be replaced by a randomly

generated allele. This works for both binary and nonbinary chromosomes.

• In a binary chromosome, randomly selected loci can be toggled, i.e., 1

becomes 0 and 0 becomes 1.

Individuals are selected randomly for mutation with a probability Pm. The main

advantage of mutation is that it puts variety into the gene pool, enabling the

GA to explore potentially beneficial regions of the search space that might

otherwise be missed. This helps to counter premature convergence, described

below.

Validity check

Depending on the optimization problem, an additional check may be required

to ensure that the chromosomes in the new generation represent valid points in

the search space. Consider, for example, a chromosome comprising four genes,

each of which can take three possible values: A, B, or C. The binary

representation for each gene would require two bits, where each gene has

redundant capacity of one extra value. In general, binary encoding of a gene

with n alleles requires X bits, where X is log2n rounded up to the nearest

integer. Thus there is redundant capacity of 2X – n values per gene. Using the

binary coding A = 01, B = 10, C = 11, a binary chromosome to represent the

gene combination BACA would look like this:

1 0 0 1 1 1 0 1

A mutation that toggled the last locus would generate an invalid chromosome,

since a gene value of 00 is undefined:

1 0 0 1 1 1 0 0

Similarly defective chromosomes can also be generated by crossover. In each

case the problem can be avoided by using structured operators, i.e., requiring

crossover and mutation to operate at the level of genes rather than loci. Thus,

crossover points could be forced to coincide with gene boundaries and

mutation could randomly select new values for whole genes. These restrictions



would ensure the generation of valid chromosomes, but they also risk

producing insufficient variety in the chromosome population.

An alternative approach is to detect and repair invalid chromosomes.

Once a defective chromosome has been detected, a variety of ways exist to

repair it. One approach is to generate “spare” chromosomes in each generation,

which can then be randomly selected as replacements for any defective ones.

7.6.2 Selection

It has already been stated that individuals are selected for reproduction on the

basis of their fitness, i.e., the fittest chromosomes have the highest likelihood

of reproducing. Selection determines not only which individuals will

reproduce, but how many offspring they will have. The selection method can

have an important impact on the effectiveness of a GA.

Selection is said to be strong if the fittest individuals have a much greater

probability of reproducing than less fit ones. Selection is said to be weak if the

fittest individuals have only a slightly greater probability of reproducing than

the less fit ones. If the selection method is too strong, the genes of the fittest

individuals may dominate the next generation population even though they

may be suboptimal. This is known as premature convergence, i.e., the

exploitation of a small region of the search space before a thorough exploration

of the whole space has been achieved. On the other hand, if the selection

method is too weak, less fit individuals are given too much opportunity to

reproduce and evolution may become too slow. This can be a particular

problem during the latter stages of evolution, when the whole population may

have congregated within a smooth and fairly flat region of the search space.

All individuals in such a region would have similar, relatively high, fitnesses

and, thus, it may be difficult to select among them. This can result in stalled

evolution, i.e., there is insufficient variance in fitness across the population to

drive further evolution.

Some alternative methods of selection, given a fitness for each member of

the population, are now reviewed. The first approach, fitness-proportionate

selection, is prone to both premature convergence and stalled evolution. The

other methods are designed to counter these effects.

Fitness-proportionate selection

In this method of selection, an individual’s expected number of offspring is

proportional to its fitness. The number of times an individual would expect to

reproduce is, therefore, equal to its fitness divided by the mean fitness of the

population. A method of achieving this, as originally proposed by Holland [5],

is roulette wheel selection with replacement. The fitness of each individual is

first normalized by dividing it by the sum of fitness values for all individuals in



the population to yield its selection probability, Pi. Individuals are then

imagined on a roulette wheel, with each one allocated a proportion of the

circumference equal to their selection probability.

Individuals are selected for reproduction by spinning the notional roulette

wheel. This is achieved in software by generating a random number in the

range 0–1. From a fixed starting point, a notional pointer moves around the

wheel by the fraction of a revolution determined by the random number. In the

example in Figure 7.5, the random number 0.29 was spun and individual A

selected. The pointer is reset at the origin and spun again to select the next

individual. To say that selection proceeds “with replacement” means that

previously selected individuals remain available for selection with each spin of

the wheel. In all, the wheel is spun N times per generation, where N is the

number of individuals in the population.

A perceived drawback of roulette wheel selection is its high degree of

variance. An unfit individual could, by chance, reproduce more times than a

fitter one. Stochastic universal selection is a variant of proportional selection

that overcomes this problem. As with proportional selection, individuals are

allocated a proportion of the circumference of a wheel according to their

fitness value. Rather than a single pointer, there are N equally spaced pointers

for a population size N (Figure 7.6). All pointers are moved together around

the wheel by the fraction of a revolution determined by the random number.

Thus only one spin of the wheel is required in order to select all reproducing

individuals and so the method is less computationally demanding than roulette

wheel selection.

Both variants of fitness-proportionate selection suffer from the risk of

premature convergence and, later on, stalled evolution. Four scaling techniques

C

A

B

spin 0.29 of
a revolution

Figure 7.5   Roulette wheel selection. In this example, the normalized fitnesses of

A, B, and C are 0.5, 0.375, and 0.125 respectively and the random number is 0.29



are described below: linear fitness scaling, Boltzmann fitness scaling, rank
selection, and truncation selection. A fifth technique, tournament selection, is
also described. These techniques are intended to counter premature
convergence by slowing evolution and maintaining diversity in the early
generations, and to counter stalled evolution by spreading out the selection
rates for the population in the later stages.

Linear fitness scaling
The simplest form of scaling is linear scaling, where the scaled fitness si of
individual i is scaled linearly with its fitness fi :

cmfs ii += (7.5)

where m and c are chosen for each generation to either stretch or contract the
range of fitnesses. The raw fitness is sometimes referred to as the evaluation or
objective value. The scaled value, which forms the basis of the selection, is
referred to as the selective value. Selection can proceed by either roulette
wheel selection or stochastic universal selection, where the individuals are now
allocated a proportion of the circumference of the wheel according to their
selective values instead of their objective values.

The selection probability Pi and the expected number of offspring Ei can
be calculated by normalizing the scaled fitness:

spin 0.29 of
a revolution

A
B

C

D
E

F

G
H

Figure 7.6   Stochastic universal selection, shown here for a population size of eight
and a randomly generated spin of 0.29. Gray arrows represent the original pointer

positions; black arrows represent the pointer positions after spinning



i
i

i
i

s

s
P (7.6)

NPE ii (7.7)

As defined here, Ei is measured in terms of the amount of genetic material that

is passed to the next generation. For instance, an individual of average fitness

would have Ei = 1, even though this genetic material might be shared among

two offspring as a result of crossover.

The key to linear scaling is the selection of suitable values for m and c for

each generation. A commonly used method is known as sigma scaling, or

sigma truncation [7]. Here an individual’s fitness is scaled according to its

deviation from the mean fitness f  of the population, measured in standard

deviations (i.e., ‘sigma’, ). The scaled fitness si for an individual i is given by:

2 and 0 if0

0 if1

2 and 0 if
2

1

i

i
i

ii

ff

ff
ff

Es (7.8)

The main part of Equation 7.8 is the first, which is linear. This can be made

explicit by rewriting it in the form of Equation 7.5:

2

2

2

1 f
fs ii (7.9)

The last two parts of Equation 7.8 are simply designed to catch anomalous

cases. The second part deals with the case of zero variance, and the third part

prevents the scaled fitness from becoming negative. In Tanese’s

implementation as reported in [7], the equation was modified to ensure that

even the least fit individuals had a small chance of reproducing:



8.1 and 0 if1.0

0 if1

8.1 and 0 if
2

1

i

i
i

ii

ff

ff
ff

Es (7.10)

Sigma scaling tends to maintain a fairly consistent contribution to the gene

pool from highly fit individuals. During the early stages of evolution,

premature convergence is avoided because even the fittest individuals are only

two or three standard deviations above the mean fitness. Later on, when the

population has converged, stalled evolution is avoided because the diminished

value of  has the effect of spreading out the scaled fitnesses.

Boltzmann fitness scaling

Boltzmann fitness scaling is a nonlinear method. This technique borrows from

simulated annealing the idea of a “temperature” T that drops slowly from

generation to generation. The simple Boltzmann scaling function is:

)/exp( Tfs ii (7.11)

When the temperature is high, all chromosomes have a good chance of

reproducing as the fittest are only slightly favored over less fit individuals.

This avoids premature convergence and allows extensive exploration of the

search space. As the temperature cools according to a preset schedule, less fit

individuals are progressively suppressed, allowing exploitation of what should

then be the right part of the search space. Stalled evolution is therefore avoided

as well.

Rank selection

Rank selection [8] can be thought of as an alternative way of scaling the fitness

of the chromosomes in the population. Instead of being derived from the raw

fitness values, the scaled fitness is derived from a rank ordering of individuals

based on their fitness. The simplest approach is to have the scaled fitness vary

linearly with the rank position:

1

1
)(

N

rank
MinMaxMins i

i (7.12)



where Min is the fitness for the lowest ranking individual (rank1) and Max is

the fitness for the highest ranking individual (rankN). If this expression is

normalized so that si = Ei, and we require that Max  0, then the values of Max

and Min are bounded such that 1  Max  2 and Min = 2–Max.

The likelihood of being selected for reproduction is dependent only on

rank within the current population and not directly on the fitness value, except

insofar as this determines rank. Premature convergence and stalled evolution

are both avoided because the spread of scaled fitnesses or selective values is

maintained, regardless of the distribution of the underlying objective values.

Nolle [9] has proposed the following nonlinear algorithm to produce a

stronger form of rank-based selection:

ci

ci

ii

e
rankN

e
rankN

c
Es

1
1

1
1)1(

ln
1

(7.13)

where c is a constant chosen to control the nonlinearity of the function. In

Figure 7.7, this nonlinear algorithm is compared with the standard linear rank-

based approach. The nonlinear algorithm stretches the distribution of selection

probabilities for the fittest individuals, thereby countering the effects of stalled

evolution. Nolle has also experimented with an adaptive algorithm, where c is

recalculated at each generation so that it increases as evolution progresses.

Truncation selection

Truncation selection is a variant of rank selection. Here a cut-off rank position

rank0 is chosen in advance and the scaled fitness becomes:

0

0
0

 if0

 if
1

1

rankrank

rankrank
rankN

s

i

i

i (7.14)

The individuals at or above the cutoff have an equal number of expected

offspring, while those below the cutoff do not reproduce at all. Premature

convergence is avoided as the fittest individuals have the same reproductive

chances as any others that meet the threshold requirement, and stalled

evolution is avoided as the method always dispenses with the least fit

individuals.



Tournament selection

In each of the above techniques for selection, an individual’s expected number

of offspring is proportional to either its fitness or a scaled version of its fitness.

Tournament selection is a different approach in which individuals are selected

on the basis of direct competition between them. The most commonly used

form is a binary tournament, in which two individuals are selected at random

and their fitnesses evaluated. The fitter of the two is then selected for breeding.

Further pairs of individuals are then selected at random from the population of

size N, which includes previously selected individuals, until N individuals have

been selected for reproduction. The fittest individuals would be expected to be

selected several times, thereby increasing their probability of reproduction.

Although binary tournaments are the norm, tournaments with more than two

competitors are possible.

Elitism

The selection methods described so far have all assumed that the whole of the

population is replaced with every generation. Such GAs are said to be

generational. Even in a generational GA, some individuals may, by chance, be

identical to members of the previous generation.

Some researchers have found it useful to modify the basic GA so that it is

only partially generational through the use of elitism. Elitism refers to passing

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15 20 25 30 35 40 45 50

S
el

ec
ti

o
n
 P

ro
b
ab

il
it

y

Individual number

nonlinear
linear

Figure 7.7   Comparison of linear (Max = 2.0) and

nonlinear (c = 3.0) rank-based selection



one or more of the fittest individuals unchanged through to the next generation.

The fittest solutions found so far are, therefore, preserved within the

population. Elitism can be thought of as the allowance of cloning alongside

reproduction.

The proportion of new individuals in successive generations is termed the

generation gap. Steady-state selection refers to the extension of elitism so that

the generation gap is rather small, with only a few of the least fit individuals

being replaced on successive generations. They would typically be replaced by

crossover and mutation of the fittest individuals.

Multiobjective optimization

The treatment so far has assumed that there was a single fitness function to

optimize, whereas in fact there may be more than one. For instance, Chapter 12

considers the design of a lightweight beam, where both stiffness and strength

criteria are considered. A simple approach to the application of a GA to this

sort of problem is to combine the fitnesses into a single function. A multi-

objective function could be defined as a weighted sum of the individual fitness

functions. So, if the strength of a composite beam were considered twice as

importance as its stiffness, a suitable function might be (2  strength +

stiffness) / 3.

The difficulty with this approach is that, although the relative weightings

are vital, they are likely to be arbitrary. A more sophisticated view is to

recognize that there is often no single best solution. Typically there is a trade-

off between one fitness measure and the others. Rather than a single optimal

solution, a set of solutions exists, from which any improvement in one fitness

measure would cause a deterioration in the others. This set is said to be Pareto

optimal. Ideally, an optimization process will identify all members of the

Pareto optimal set, leaving selection of the ultimate solution to a further

decision process, possibly knowledge-based.

7.6.3 Gray code

The structure of the chromosome needs to be designed according to the sort of

candidate solution we wish to discover. Choosing a good representation is

essential if a GA is to work effectively. Section 7.6.1 showed a simple case

where the objective was to maximize the value of f(x,y) within a specified

range of x and y. The chromosome was defined as two genes, one for each of x

and y. Each gene represented a real number and was encoded in a specified

number of bits using standard binary encoding. Some researchers have pointed

out that this may not be the most suitable encoding, as consecutive values such

as 7 (binary 0111) and 8 (binary 1000) often have large Hamming separations

[10, 11]. An alternative form of encoding is known as Gray code, shown in



Table 7.1. Consecutive Gray-coded representations always have a Hamming

separation of 1.

7.6.4 Variable length chromosomes

Some researchers have experimented with variable length chromosomes in the

hope of achieving more open-ended solutions. The so-called messy GAs are

one such approach, using messy chromosomes containing messy genes [12]. In

a conventional fixed-length chromosome, the position of a gene on a

chromosome determines how it is decoded. This is the fixed locus assumption.

In a simple GA with 3 binary genes, the string 110 would be decoded as:

gene #1 = 1

gene #2 = 1

gene #3 = 0

In a messy chromosome, the position of the genes does not matter as each gene

carries an identifier to indicate what it represents. Instead of containing just a

value, each gene comprises two components, shown here bracketed together:

(identifier, value). The fixed-length chromosome 110 could be equally

Denary Binary code Gray code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Table 7.1   Binary and Gray codes for integers 0–15



represented by any of the following messy chromosomes, all of which are

equivalent:

[(1, 1) (2, 1) (3, 0)]

[(1, 1) (3, 0) (2, 1)]

[(2, 1) (1, 1) (3, 0)]

[(2, 1) (3, 0) (1, 1)]

[(3, 0) (1, 1) (2, 1)]

[(3, 0) (2, 1) (1, 1)]

This structure means that messy chromosomes may be over-specified or under-

specified. An over-specified chromosome has some duplication of messy

genes. For example:

[(1, 1) (3, 0) (1, 1) (2, 1)]

defines gene #1 twice. Over-specification can result in contradictions, shown

here for gene #1:

[(1, 1) (3, 0) (1, 0) (2, 1)]

Such contradictions are normally handled by accepting the first, or leftmost,

instance of the gene. So in this specific case, the position of the gene does

matter.

In an under-specified chromosome, such as [(3, 1) (1, 0)], no value is

provided for at least one of the genes, namely gene #2. Chromosome [(1, 1)

(3, 0) (1, 0)] is both under-specified and over-specified since it lacks gene #2

but contains multiple occurrences of gene #1. Whether under-specification is

problematic depends on the nature of the optimization task. In cases where

values must be found for each parameter, under-specified chromosomes must

be repaired in some way. The unspecified genes may be set to random values,

or to the values used in previously discovered fit chromosomes.

The messy GA itself is broadly similar to the standard GA. Tournament

selection (see Section 7.6.2) is usually used to select messy chromosomes for

reproduction. Competing individuals are chosen on the basis of their similarity,

measured as the number of genes for which both have a value. If the similarity

of two individuals is above a specified threshold, a tournament between them

is allowed. Mutation is rarely used, and the cut-and-splice operator replaces

crossover. Each chromosome is cut at a randomly selected point and then

chromosome segments from different individuals are spliced together, e.g.:



 (2, 0) (1, 1) (2, 0) (4, 1) (3, 0) (5, 1)

(3, 1) (1, 0) (4, 1) (3, 0) (5, 1) (3, 1) (1, 0) (1, 1)

7.6.5 Building block hypothesis

Schema theorem

Holland [5] has proposed the building block hypothesis, i.e., that successful

chromosomes are made up of good quality blocks of genes. He formalized this

idea as schemata (plural of schema), which are sets of gene values that can be

represented by a template. For example, the template 1**0 defines a four-bit

gene sequence whose first and fourth positions have defined values, and whose

other two positions can take any value.

Holland developed the following equation as the basis of his schema

theorem:

)(
1

1

)(
1

)(

),(
),()1,(

Ho
m

c P
l

HdP

tf

tHf
tHntHn (7.15)

where H is a schema with at least one instance in the last generation; d(H) is

the defining length of H, i.e., the distance between crossover points; l is the

chromosome length, n(H, t) is the number of instances of H at time t, f (H, t)

is the mean fitness of H at time t, f (t) is the mean fitness of the population at

time t; Pc is the crossover probability; Pm is the mutation probability; and o(H)

is the order of H, i.e., the number of defined bits in H. The schema theorem

provides a theoretical foundation for genetic algorithms, since it can be used to

demonstrate that the number of schemata that are fitter than average increases

with each generation, while the number of schemata that are less fit than

average diminishes [10].

Inversion

The crossover operator risks breaking up good quality schemata. Holland,

therefore, devised a further operator — inversion — that may be able to protect

good combinations of genes. The process of inversion consists of reversing the

order of a short section of loci within a chromosome. It is intended to operate

on chromosomes whose interpretation is independent of the ordering of the

genes. Although not envisaged by Holland, the messy chromosomes described

above provide a good example. The template 1**0 could be represented as the

following messy chromosome:



[(1, 1) (2, *) (3, *) (4, 0)]

Rearranging the ordering of the messy genes has no effect on their fitness. The

inversion operator could be applied to this messy gene to reverse the order of

the last three loci:

(1, 1) (2, *) (3, *) (4, 0) (1, 1) (4, 0) (3, *) (2, *)

The effect has been to bring together the two genes with good quality values,

namely the genes with identifier 1 and 4. Although the fitness of the

chromosome has been unchanged, these two good quality values are now more

likely to be retained as a good quality schema when crossover is applied.

For chromosomes where the order of the genes does affect their

interpretation, inversion can be used as a nonsexual means of generating new

individuals, additional to mutation. Used in this way, it is particularly

applicable to permutation problems such as the traveling salesperson.

7.6.6 Selecting GA parameters

One of the main difficulties in building a practical GA is in choosing suitable

values for parameters such as population size, mutation rate, and crossover

rate. De Jong’s guidelines, as cited in [7], are still widely followed, namely, to

start with:

• a relatively high crossover probability (0.6–0.7);

• a relatively low mutation probability (typically set to 1/l for chromosomes

of length l);

• a moderately sized (50–500) population.

Some of the parameters can be allowed to vary. For example, the crossover

rate may be started at an initially high level and then progressively reduced

with each generation or in response to particular performance measures.

Given the difficulties in setting the GA parameters, it is unsurprising that

many researchers have tried encoding them so that they too might evolve

toward optimum values. These self-adaptive parameters can be encoded in

individual chromosomes, providing values that adapt specifically to the

characteristics of the chromosome. Typically, a minimal background mutation

rate applies to the population as a whole, and each chromosome includes a

gene that encodes a mutation rate to apply to the remaining genes on that

chromosome. Self-adaptive parameters do not completely remove the

difficulties in choosing parameters, but by deferring the choice to the level of

metaparameters, i.e., parameters’ parameters, it may become less critical.



7.6.7 Monitoring evolution

There is a variety of measures that can be made at run-time in order to monitor

the evolutionary progress of a GA, including:

• highest fitness in the current population;

• lowest fitness in the current population;

• mean fitness in the current population;

• standard deviation of fitness in the current population;

• mean Hamming separation between randomly selected sample pairs in the

current population;

• bitwise convergence — for each locus the proportion of the population

that has the most popular value is calculated and then averaged over the

whole chromosome.

The first four all relate to fitness, while the last two provide measures of

similarity between chromosomes.

7.6.8 Lamarckian inheritance

Genetic algorithms can be hybridized with local search procedures to help

optimize individuals within the population, while maintaining the GA’s ability

to explore the search space. For instance, a simple search may be carried out in

the immediate vicinity of each chromosome to see whether any of its neighbors

offers a better solution. Suppose that the task is to find the maximum denary

integer represented by a 7-bit binary-encoded chromosome. A chromosome’s

fitness could be taken as the highest integer represented by itself or by any of

its nearest neighbors, i.e., those that have a Hamming separation of 1 from it.

For instance, the chromosome 0101100 (denary value 44) would have a fitness

of 108, since it has a nearest neighbor 1101100 (denary value 108). The

chromosome could either be left unchanged while retaining the fitness value of

its fittest neighbor, or it could be replaced by the higher scoring neighbor, in

this case 1101100. The latter scheme is known as Lamarckian inheritance and

is equivalent to including a steepest gradient descent step prior to evaluation.

Lamarckian inheritance is an example of how one optimization algorithm

can be enhanced by another. There are many ways in which different artificial

intelligence techniques can be mixed within hybrid systems, some of which are

reviewed in Chapter 9.

7.6.9 Finding multiple optima

In certain classes of problem, we may want a population to identify several

different optima, referred to as niches. In such cases, we must provide a



mechanism for decomposing the population into several distinct sub-

populations, or species. These mechanisms fall into one of four broad

categories:

• incest prevention, in which similar individuals are prevented from mating;

• speciation, in which only similar individuals may breed together;

• crowding, in which each offspring replaces the member in the current

population most similar to it;

• fitness sharing, in which an individual’s selective value is scaled as a

decreasing function of its similarity to other members of the population.

7.6.10 Genetic programming

Since genetic algorithms can evolve numerical populations, Koza et al.

reasoned that it ought to be possible to evolve computer programs in a similar

way [13]. This concept has led to the thriving research field of genetic

programming (GP). The idea is that hierarchically arranged computer

programs can be automatically generated to solve a specified problem.

The building blocks of GP are functions and terminals. Functions are

simple pieces of program code that take one or more arguments, perform an

operation on them, and return a value. Terminals are constants or variables that

can be used as arguments to the functions. An initial population of

hierarchically arranged programs is generated by randomly combining

functions and terminals. The fitness of these primitive programs for the

specified task can be evaluated, and the fittest individuals selected for

reproduction. Crossover is achieved by swapping branches of the hierarchical

programs between parents. Mutation may occur by changing the terminals, or

by replacing a function with another that takes the same number of arguments.

If a particularly useful combination of functions and terminals is discovered, it

can be nominated as a function in its own right, thereby preserving it within the

population.

7.7 Summary

This chapter has reviewed a number of numerical optimization techniques,

with particular attention paid to genetic algorithms. All these techniques are

based upon minimizing a cost or maximizing a fitness. Often the cost is taken

as the error between the output and the desired output.

It is interesting to compare numerical and knowledge-based search

techniques. A knowledge-based system is typically used to find a path from a

known, current state, such as a set of observations, to a desired state, such as an



interpretation or action. In numerical optimization, we know the properties we

require of a solution in terms of some fitness measure, but have no knowledge

of where it lies in the search space. The problem is of searching for locations

within the search space that satisfy a fitness requirement.

All the numerical optimization techniques carry some risk of finding a

local optimum rather than the global one. An attempt to overcome this is made

with GAs by the inclusion of an exploration phase, in which the algorithm is

free to roam the search space seeking good quality regions. Nevertheless, the

problem may still remain. A further claimed advantage of GAs is that they

result in robust optimization, i.e., the fitness of the solutions tends to be

insensitive to slight deviations from the precise optimum. Thus, if the precise

optimum is on a knife-edge or narrow peak in the fitness landscape, the GA

may not find it. Robust optima are preferable in many applications. For

instance, design engineers know that their products can be manufactured only

to certain tolerances, so a property specified on a fitness knife-edge would be

impractical.

It is rarely necessary to code the optimization algorithms from scratch, as

a variety of software packages are available, many free of charge. These

provide nondomain-specific tools in the same way that an expert system shell

does, often as libraries for linking to other software. A GA package typically

provides data structures and operators that act on them so that the user has only

to define the chromosome structure, fitness function and a set of parameters

covering:

• population size,

• mutation rate,

• crossover rate,

• number of generations or other termination condition,

• selection method.

The main problem in applying genetic algorithms to real optimization

problems lies in finding a chromosome representation that remains valid after

each generation. Nevertheless, the technique has been successfully employed

in the automatic scheduling of machining operations [14, 15] and designing

communications networks [16].

References

1. Nolle, L., Walters, M., Armstrong, D. A., and Ware, J. A., “Optimum

finishing mill set-up in the hot rolling of wide steel strip using simulated



annealing,” 5th International Mendel Conference on Soft Computing,

Brno, Czech Republic, pp. 100–105, 1999.

2. Hirst, A. J., “Adaptive evolution in static and dynamic environments,”

PhD thesis, Open University, 1997.

3. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by

simulated annealing: quantitative studies,” Science, vol. 220, pp. 671–680,

1983.

4. Johnson, J. H. and Picton, P. D., Concepts in Artificial Intelligence,

Butterworth-Heinemann, 1995.

5. Holland, J. H., Adaptation in Natural and Artificial Systems, University of

Michigan Press, 1975.

6. Syswerda, G., “Uniform crossover in genetic algorithms,” Schaffer, J. D.

(Ed.), 4th International Conference on Genetic Algorithms, Morgan

Kaufmann, 1989.

7. Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, 1996.

8. Baker, J. E., “Adaptive selection methods for genetic algorithms,”

International Conference on Genetic Algorithms and Their Application,

pp. 101–111, 1985.

9. Nolle, L., “Application of computational intelligence in the hot rolling of

wide steel strip,” PhD thesis, Open University, 1999.

10. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison Wesley, 1989.

11. Davis, L. (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold,

1991.

12. Goldberg, D. E., Korb, B., and Deb, K., “Messy genetic algorithms:

motivation, analysis, and first results.,” Complex Systems, vol. 3, pp. 493–

530, 1989.

13. Koza, J. R., Bennett, I. I. I., H., F., Andre, D., and Keane, M. A. (Eds.),

Genetic Programming III: Darwinian invention and problem solving,

Morgan Kaufmann, 1999.

14. Husbands, P., Mill, F., and Warrington, S., “Generating optimal process

plans from first principles,” in Expert Systems for Management and

Engineering, Balagurasamy, E. and Howe, J. (Eds.), pp. 130–152, Ellis

Horwood, 1990.

15. Husbands, P. and Mill, F., “Simulated co-evolution as the mechanism for

emergent planning and scheduling,” Belew, R. and Booker, L. (Eds.), 4th

International Conference on Genetic Algorithms, pp. 264–271, Morgan

Kaufmann, 1991.



16. Davis, L. and Coombs, S., “Optimizing network link sizes with genetic

algorithms,” in Modelling and Simulation Methodology: knowledge

systems paradigms, Elzas, M. S., Oren, T. I., and Zeigler, B. P. (Eds.),

North Holland Publishing Co., 1987.

Further reading

• Bäck, T., Evolutionary Algorithms in Theory and Practice, Oxford

University Press, 1996.

• Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing,

Pitman/Morgan Kaufmann, 1987.

• Davis, L. (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold,

1991.

• Goldberg, D. E., Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, 1989.

• Johnson, J. H. and Picton, P. D., Concepts in Artificial Intelligence,

Butterworth-Heinemann, 1995.

• Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, 1996.



Chapter eight

Neural networks

8.1 Introduction

Artificial neural networks are a family of techniques for numerical learning,

like the optimization algorithms reviewed in Chapter 7, but in contrast to the

symbolic learning techniques reviewed in Chapter 6. They consist of many

nonlinear computational elements which form the network nodes or neurons,

linked by weighted interconnections. They are analogous in structure to the

neurological system in animals, which is made up of real rather than artificial

neural networks. Practical artificial neural networks are much simpler than

biological ones, so it is unrealistic to expect them to produce the sophisticated

behavior of humans or animals. Nevertheless, they can perform certain tasks,

particularly classification, most effectively. Throughout the rest of this book

we will use the expression neural network to mean an artificial neural network.

The technique of using neural networks is described as connectionism.

Each node in a neural network may have several inputs, each of which has

an associated weighting. The node performs a simple computation on its input

values, which are single integers or real numbers, to produce a single

numerical value as its output. The output from a node can either form an input

to other nodes or be part of the output from the network as a whole. The

overall effect is that a neural network generates a pattern of numbers at its

outputs in response to a pattern of numbers at its inputs. These patterns of

numbers are one-dimensional arrays known as vectors, e.g., (0.1, 1.0, 0.2).

Each neuron performs its computation independently of the other neurons,

except that the outputs from some neurons may form the inputs to others.

Thus, neural networks have a highly parallel structure, allowing them to

explore many competing hypotheses simultaneously. This parallelism allows

neural networks to take advantage of parallel processing computers. They can

also run on conventional serial computers — they just take longer to run that

way. Neural networks are tolerant of the failure of individual neurons or



interconnections. The performance of the network is said to degrade gracefully

if these localized failures within the network should occur.

The weights on the node interconnections, together with the overall

topology, define the output vector that is derived by the network from a given

input vector. The weights do not need to be known in advance, but can be

learned by adjusting them automatically using a training algorithm. In the case

of supervised learning, the weights are derived by repeatedly presenting to the

network a set of example input vectors along with the corresponding desired

output vector for each of them. The weights are adjusted with each iteration

until the actual output for each input is close to the desired vector. In the case

of unsupervised learning, the examples are presented without any

corresponding desired output vectors. With a suitable training algorithm, the

network adjusts its weights in accordance with naturally occurring patterns in

the data. The output vector then represents the position of the input vector

within the discovered patterns of the data.

Part of the appeal of neural networks is that when presented with noisy or

incomplete data, they will produce an approximate answer rather than one that

is incorrect. This is another aspect of the graceful degradation of neural

networks mentioned above. Similarly, when presented with unfamiliar data

that lie within the range of its previously seen examples, the network will

generally produce an output that is a reasonable interpolation between the

example outputs. Neural networks are, however, unable to extrapolate reliably

beyond the range of the previously seen examples. Interpolation can also be

achieved by fuzzy logic (see Chapter 3). Thus, neural networks and fuzzy logic

often represent alternative solutions to a particular engineering problem and

may be combined in a hybrid system (see Chapter 9).

8.2 Neural network applications

Neural networks can be applied to a diversity of tasks. In general, the network

associates a given input vector (x1, x2, … xn) with a particular output vector (y1,

y2, … ym), although the function linking the two may be unknown and may be

highly nonlinear. (A linear function is one that can be represented as f(x) = mx

+ c, where m and c are constants; a nonlinear one may include higher order

terms for x, or trigonometric or logarithmic functions of x.)

8.2.1 Nonlinear estimation

Neural networks provide a useful technique for determining the values of

variables that cannot be measured easily, but which are known to depend in

some complex way on other more accessible variables. The measurable



variables form the network input vector and the unknown variables constitute

the output vector. We can call this use nonlinear estimation. The network is

initially trained using a set of examples known as the training data. Supervised

learning is used, so each example in the training comprises two vectors: an

input vector and its corresponding desired output vector. (This assumes that

some values for the less accessible variable have been obtained to form the

desired outputs.) During training, the network learns to associate the example

input vectors with their desired output vectors. When it is subsequently

presented with a previously unseen input vector, the network is able to

interpolate between similar examples in the training data to generate an output

vector.

8.2.2 Classification

Often the output vector from a neural network is used to represent one of a set

of known possible outcomes, i.e., the network acts as a classifier. For example,

a speech recognition system could be devised to recognize three different

words: yes, no, and maybe. The digitized sound of the words would be

preprocessed in some way to form the input vector. The desired output vector

would then be either (0, 0, 1), (0, 1, 0), or (1, 0, 0), representing the three

classes of word.

Such a network would be trained using a set of examples known as the

training data. Each example would comprise a digitized utterance of one of the

words as the input vector, using a range of different voices, together with the

corresponding desired output vector. During training, the network learns to

associate similar input vectors with a particular output vector. When it is

subsequently presented with a previously unseen input vector, the network

selects the output vector that offers the closest match. This type of

classification would not be straightforward using non-connectionist techniques,

as the input data rarely correspond exactly to any one example in the training

data.

8.2.3 Clustering

Clustering is a form of unsupervised learning, i.e., the training data comprises

a set of example input vectors without any corresponding desired output

vectors. As successive input vectors are presented, they are clustered into N

groups, where the integer N may be prespecified or may be allowed to grow

according to the diversity of the data. For instance, digitized preprocessed

spoken words could be presented to the network. The network would learn to

cluster together the examples that it considered to be in some sense similar to



each other. In this example, the clusters might correspond to different words or

different voices.

Once the clusters have formed, a second neural network can be trained to

associate each cluster with a particular desired output. The overall system then

becomes a classifier, where the first network is unsupervised and the second

one is supervised. Clustering is useful for data compression and is an important

aspect of data mining, i.e., finding patterns in complex data.

8.2.4 Content-addressable memory

The use of a neural network as a content-addressable memory is another form

of unsupervised learning, so again there are no desired output vectors

associated with the training data. During training, each example input vector

becomes stored in a dispersed form through the network.

When a previously unseen vector is subsequently presented to the

network, it is treated as though it were an incomplete or error-ridden version of

one of the stored examples. So the network regenerates the stored example that

most closely resembles the presented vector. This can be thought of as a type

of classification, where each of the examples in the training data belongs to a

separate class, and each represents the ideal vector for that class. It is useful

when classes can be characterized by an ideal or perfect example. For example,

printed text that is subsequently scanned to form a digitized image will contain

noisy and imperfect examples of printed characters. For a given font, an ideal

version of each character can be stored in a content-addressable memory and

produced as its output whenever an imperfect version is presented as its input.

8.3 Nodes and interconnections

Each node, or neuron, in a neural network is a simple computing element

having an input side and an output side. Each node may have directional

connections to many other nodes at both its input and output sides. Each input

xi is multiplied by its associated weight wi. Typically, the node’s role is to sum

each of its weighted inputs and add a bias term w0 to form an intermediate

quantity called the activation, a. It then passes the activation through a

nonlinear function ft known as the transfer function or activation function.

Figure 8.1 shows the function of a single neuron.

The behavior of a neural network depends on its topology, the weights, the

bias terms, and the transfer function. The weights and biases can be learned,

and the learning behavior of a network depends on the chosen training

algorithm. Typically a sigmoid function is used as the transfer function, as

shown in Figure 8.2(a). The sigmoid function is given by:

NamacA




at
e

af
−+

=
1

1
)( (8.1)

For a neuron, the activation a is given by:

0
1

wxwa
n

i
ii +







= ∑

=
(8.2)

where n is the number of inputs and the bias term w0 is defined separately for
each node. Figures 8.2(b) and (c) show the ramp and step functions, which are
alternative nonlinear functions sometimes used as transfer functions.

Many network topologies are possible, but we will concentrate on a
selection which illustrates some of the different applications for neural
networks. We will start by looking at single and multilayer perceptrons, which
can be used for categorization or, more generally, for nonlinear mapping. The
others are the Hopfield network for use as a content-addressable memory; the
MAXNET for selecting the maximum among its inputs; the Hamming network
for classification; and finally the ART1 network, the Kohonen self-organizing
network, and the radial basis function network, all used for clustering.

w1

Output = ft(a)

w0

w2 wn−1

wn

x1 x2 xn−1 xn

0
1

wxwa
n

i
ii +=

=

Figure 8.1   A single neuron



8.4 Single and multilayer perceptrons

8.4.1 Network topology

The topology of a multilayer perceptron (MLP) is shown in Figure 8.3. The

neurons are organized in layers, such that each neuron is totally connected to

the neurons in the layers above and below, but not to the neurons in the same

layer. These networks are also called feedforward networks, although this term

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

a

1/
(1

+
ex

p(
-a

))

(a)

0

a a

(b) (c)f t(
a)

f t(
a)

Figure 8.2   Nonlinear transfer functions:

(a) a sigmoid function; (b) a ramp function; (c) a step function



could be applied more generally to any network where the direction of data

flow is always “forwards,” i.e., toward the output. MLPs can be used either for

classification or as nonlinear estimators. The number of nodes in each layer

and the number of layers are determined by the network builder, often on a

trial-and-error basis. There is always an input layer and an output layer; the

number of nodes in each is determined by the number of inputs and outputs

being considered. There may be any number of layers between these two

layers. Unlike the input and output layers, the layers between often have no

obvious meaning associated with them, and they are known as hidden layers. If

there are no hidden layers, the network is a single layer perceptron (SLP). The

network shown in Figure 8.3 has three input nodes, two hidden layers with

four nodes each and an output layer of two nodes. It can, therefore, be

described as a 3–4–4–2 MLP.

An MLP operates by feeding data forwards along the interconnections

from the input layer, through the hidden layers, to the output layer. With the

exception of the nodes in the input layer, the inputs to a node are the outputs

from each node in the previous layer. At each node apart from those in the

input layer, the data are weighted, summed, added to the bias, and then passed

through the transfer function.

output layer

hidden layer

input layer

hidden layer

D
at

a 
ar

e 
fe

d 
fo

rw
ar

d

Input

Output

x3x2x1

y2y1

Figure 8.3   A 3–4–4–2 MLP



There is some inconsistency in the literature over the counting of layers,

arising from the fact that the input nodes do not perform any processing, but

simply feed the input data into the nodes above. Thus although the network in

Figure 8.3 is clearly a four-layer network, it only has three processing layers.

An SLP has two layers (the input and output layers) but only one processing

layer, namely the output layer.

8.4.2 Perceptrons as classifiers

In general, neural networks are designed so that there is one input node for

each element of the input vector and one output node for each element of the

output vector. Thus in a classification application, each output node would

usually represent a particular class. A typical representation for a class would

be for a value close to 1 to appear at the corresponding output node, with the

remaining output nodes generating a value close to 0. A simple decision rule is

needed in conjunction with the network, e.g., the winner takes all rule selects

the class corresponding to the node with the highest output. If the input vector

does not fall into any of the classes, none of the output values may be very

high. For this reason, a more sophisticated decision rule might be used, e.g.,

one that specifies that the output from the winning node must also exceed a

predetermined threshold such as 0.5.

More compact representations are also possible for classification

problems. Hallam et al. [1] have used just two output nodes to represent four

classes. This was achieved by treating both outputs together, so that the four

possibilities corresponding to four classes are (0,0), (0,1), (1,0), and (1,1). One

drawback of this approach is that it is more difficult to interpret an output

which does not closely match one of these possibilities (e.g., what would an

output of (0.5, 0.5) represent?).

Let us now return to the more usual case where each output node

represents a distinct class. If the input vector has two elements, it can be

represented as a point in two-dimensional state space, sometimes called the

pattern space. The process of classification is then one of drawing dividing

lines between regions. A single layer perceptron, with two neurons in the input

layer and the same number of neurons in the output layer as there are classes,

can associate with each class a single straight dividing line, as shown in Figure

8.4(a). Classes that can be separated in this way are said to be linearly

separable. More generally, n-dimensional input vectors are points in n-

dimensional hyperspace. If the classes can be separated by (n–1)-dimensional

hyperplanes, they are linearly separable.



To see how an SLP divides up the pattern space with hyperplanes,

consider a single processing neuron of an SLP. Its output, prior to application

of the transfer function, is a real number given by Equation 8.2. Regions of the

pattern space that clearly belong to the class represented by the neuron will

produce a strong positive value, and regions that clearly do not belong to the

class will produce a strong negative value. The classification becomes

increasingly uncertain as the activation a becomes close to zero, and the

dividing criterion is usually assumed to be a = 0. This would correspond to an

output of 0.5 after the application of the sigmoid transfer function

(Figure 8.2(a)). Thus the hyperplane that separates the two regions is given by:

00
1

wxw
n

i
ii (8.3)

In the case of two inputs, Equation 8.3 becomes simply the equation of a

straight line, since it can be rearranged as:

2

0
1

2

1
2

w

w
x

w

w
x (8.4)

where w1/w2 is the gradient and w0/w2 is the intercept on the x2 axis.

class 1class 1

cla
ss 

2

class 3

x1

x2

cla
ss 

2

class 3

x1

x2

(a) (b)

cl
as

s 
3

Figure 8.4   Dividing up the pattern space: (a) linearly separable classes;

(b) nonlinearly separable classes. Data points belonging to

classes 1, 2, and 3 are respectively represented by , •, and +



For problems that are not linearly separable, as in Figure 8.4(b), regions of

arbitrary complexity can be drawn in the state space by a multilayer perceptron

with one hidden layer and a differentiable, i.e., smooth, transfer function such

as the sigmoid function (Figure 8.2(a)). The first processing layer of the MLP

can be thought of as dividing up the state space with straight lines (or

hyperplanes), and the second processing layer forms multifaceted regions by

Boolean combinations (AND, OR, and NOT) of the linearly separated regions.

It is therefore generally accepted that only one hidden layer is necessary to

perform any nonlinear mapping or classification with an MLP that uses a

sigmoid transfer function (Figure 8.5). This is Kolmogorov’s Existence

Theorem [2]. Similarly, no more than two hidden layers are required if a step

transfer function is used. However, the ability to learn from a set of examples

cannot be guaranteed and, therefore, the detailed topology of a network

inevitably involves a certain amount of trial and error. A pragmatic approach

to network design is to start with a small network and expand the number of

nodes or layers as necessary.

(a) No hidden layers

Region is a half plane bounded by a hyperplane

(b) 1 hidden layer, step transfer function

Convex open region

x2

x1

x2

x1

(c) 1 hidden layer, step transfer function

Convex closed region

(d) 2 hidden layers, step transfer function; or

1 hidden layer, smooth transfer function

Regions of arbitrary complexity can be defined

x2

x1

x2

x1

Figure 8.5   Regions in state space distinguished by a perceptron (adapted from [3]).

A convex region has the property that a line joining points

on the boundary passes only through that region.



8.4.3 Training a perceptron

During training, a multilayer perceptron learns to separate the regions in state
space by adjusting its weights and bias terms. Appropriate values are learned
from a set of examples comprising input vectors and their corresponding
desired output vectors. An input vector is applied to the input layer, and the
output vector produced at the output layer is compared with the desired output.
For each neuron in the output layer, the difference between the generated value
and the desired value is the error. The overall error for the neural network is
expressed as the square root of the mean of the squares of the errors. This is
the root-mean-squared (RMS) value, designed to take equal account of both
negative and positive errors. The RMS error is minimized by altering the
weights and bias terms, which may take many passes through the training data.
The search for the combination of weights and biases that produces the
minimum RMS error is an optimization problem like those considered in
Chapter 7, where the cost function is the RMS error. When the RMS error has
become acceptably low for each example vector, the network is said to have
converged and the weights and bias terms are retained for application of the
network to new input data.

One of the most commonly used training algorithms is the back-error
propagation algorithm, sometimes called the generalized delta rule [3, 4]. This
is a gradient-proportional descent technique (see Chapter 7), and it relies upon
the transfer function being continuous and differentiable. The sigmoid function
(Figure 8.2(a)) is a particularly suitable choice since its derivative is simply
given by:

))(1()()( afafaf ttt −=′ (8.5)

The use of the back-error propagation algorithm for optimizing weights and
bias terms can be made clearer by treating the biases as weights on the
interconnections from dummy nodes, whose output is always 1, as shown in
Figure 8.6. A flowchart describing the back-error propagation algorithm is
presented in Figure 8.7, using the nomenclature shown in Figure 8.6.

At the core of the algorithm is the delta rule that determines the
modifications to the weights, ∆wBij:

)( BijAjBiBij wyw αηδ +=∆ (8.6)

for all nodes j in layer A and all nodes i in layer B, where A = B − 1. Neurons
in the output layer and in the hidden layers have an associated error term, δ
(pronounced delta). When the sigmoid transfer function is used, δAj is given
by:

















−=′=

−−=−′=

∑∑ Bij
i

BiAjAjBij
i

BiAjtAj

AiiAiAiAiiAitAi

wyywyf

ydyyydyf

δδδ

δ

)1()(

:layershidden 

)()1()()(

:layeroutput 

(8.7)

The learning rate, η, is applied to the calculated values for δAj. Knight [5]
suggests a value for η of about 0.35. As written in Equation 8.6, the delta rule
includes a momentum coefficient, α, although this is sometimes omitted.
Gradient-proportional descent techniques can be inefficient, especially close to
a minimum in the cost function, which in this case is the RMS error of the
output. To address this, a momentum term forces changes in weight to be
dependent on previous weight changes. The value of the momentum
coefficient must be in the range 0–1. Knight [5] suggests that α be set to 0.0
for the first few training passes and then increased to 0.9.

Other training algorithms have also been successfully applied to
perceptrons. For instance, Willis et al. [6] favor the chemotaxis algorithm,
which incorporates a random statistical element in a similar fashion to
simulated annealing (Chapter 7).

layer 2

layer 1

1 2

0 1 2 3 4

0 1 2 3

0 1 2 3 4

x1 x2 x3

y1 y2

W
ei

gh
ts

 fr
om

 d
um

m
y 

no
de

s
(o

ut
pu

t =
1)

 s
im

ul
at

e 
bi

as
es

layer NL-1

layer NL

Figure 8.6   Nomenclature for the back-error propagation algorithm in Figure 8.7:
NL = number of layers (4 in this example)
wAij = weight between node i on level A and node j on level A–1 (NL≥A≥2)
yAi = output from node i on level A
δAi = an error term associated with node i on level A



Start

yes

no
A = 2 ?

 B := A;
A := A − 1

End of training data
(i.e., epoch)?

Next input
vector

Monitor the RMS error and repeat
as many times as required

Set all weights (wAij) to random values between −0.1 and 0.1

∆wAij := 0 for all A, i, j

Present input vector (x1 xn) for which

the desired output  (d1 dm) is known and

determine output  (y1 ym)

A := NL

δAi := yi(1 − yi)(di − yi) for all nodes i in the output layer

B := A;  A := A − 1

δAj := yAj(1 − yAj)  δBi wBij
for all nodes j layer A and all nodes i in layer B

i

B := NL;  A := NL − 1

∆wBij := ηδBiyAj + α(∆wBij)

for all links between nodes j in layer A and nodes i in layer B

wBij := wBij + ∆wBij

B = 2 ?

yes

no

yes

no

Gather
error terms

Update
weights

Figure 8.7   The back-error propagation algorithm (derived from [7] and [5])



8.4.4 Hierarchical perceptrons

In complex problems involving many inputs, some researchers recommend

dividing an MLP into several smaller MLPs arranged in a hierarchy, as shown

in Figure 8.8. In this example, the hierarchy comprises two levels. The inputs

are shared among the MLPs at level 1, and the outputs from these networks

form the inputs to an MLP at level 2. This approach is often useful if

meaningful intermediate variables can be identified as the outputs from the

level 1 MLPs. For example, if the inputs are measurements from sensors for

monitoring equipment, the level 1 outputs could represent diagnosis of any

faults, and the level 2 outputs could represent the recommended control actions

[8]. In this example, a single large MLP could, in principle, be used to map

directly from the sensor measurements to the recommended control actions.

However, convergence of the smaller networks in the hierarchical MLP is

likely to be achieved more easily. Furthermore, as the constituent networks in

the hierarchical MLP are independent from each other, they can be trained

either separately or in parallel.

8.4.5 Some practical considerations

Sometimes it is appropriate to stop the training process before the point where

no further reductions in the RMS error are possible. This is because it is

x3x2x1 x6x5x4 x9x8x7

y3y2y1

Level 2

Level 1

Figure 8.8   A hierarchical MLP



possible to over-train the network, so that it becomes expert at giving the

correct output for the training data, but less expert at dealing with new data.

This is likely to be a problem if the network has been trained for too many

cycles or if the network is over-complex for the task in hand. For instance, the

inclusion of additional hidden layers or large numbers of neurons within the

hidden layers will tend to promote over-training. The effect of over-training is

shown in Figure 8.9(a) for a nonlinear mapping of a single input parameter

onto a single output parameter, and Figure 8.9(b) shows the effect of over-

training using the nonlinearly separable classification data from Figure 8.4(b).

One way of avoiding over-training is to divide the data into three sets,

known as the training, testing, and validation data. Training takes place using

the training data, and the RMS error with these data is monitored. However, at

predetermined intervals the training is paused and the current weights saved.

At these points, before training resumes, the network is presented with the test

data and an RMS error calculated. The RMS error for the training data

decreases steadily until it stabilizes. However, the RMS error for the test data

may pass through a minimum and then start to increase again because of the

effect of over-training, as shown in Figure 8.10. As soon as the RMS error for

the test data starts to increase, the network is over-trained, but the previously

stored set of weights would be close to the optimum. Finally, the performance

of the network can be evaluated by testing it using the previously unseen

validation data.

A problem that is frequently encountered in real applications is a shortage

of suitable data for training and testing a neural network. Hopgood et al. [9]

describe a classification problem where there were only 20 suitable examples,

class 1

x1

x2

class 2
class 3

class 1
Suitably trained network

Over-trained
network

Input, x

O
ut

pu
t, 

y (a) (b)

Figure 8.9   The effect of over-training: (a) nonlinear estimation; (b) classification

(•, , and + are data points used for training)



which needed to be shared between the training and testing data. They used a

technique called leave-one-out as a way of reducing the effect of this problem.

The technique involves repeatedly training on all but one of the examples and

testing on the missing one. So, in this case, the network would initially be

trained on 19 of the examples and tested on the remaining one. This procedure

is repeated a further 19 times: omitting a different example each time from the

training data, resetting the weights to random values, retraining, and then

testing on the omitted example. The leave-one-out technique is clearly time-

consuming as it involves resetting the weights, training, testing, and scoring

the network many times — 20 times in this example. Its advantage is that the

performance of the network can be evaluated using every available example as

though it were previously unseen test data.

Neural networks that accept real numbers are only effective if the input

values are constrained to suitable ranges, typically between 0 and 1 or between

1 and 1. The range of the outputs depends on the chosen transfer function,

e.g., the output range is between 0 and 1 if the sigmoid function is used. In real

applications, the actual input and output values may fall outside these ranges or

may be constrained to a narrow band within them. In either case the data will

need to be scaled, usually linearly, before being presented to the neural

network. Some neural network packages perform the scaling automatically.

Number of training cycles

R
M

S 
er

ro
r

test data

training data

0

0.5
under-trained over-trained

Figure 8.10   RMS error during training



8.5 The Hopfield network

The Hopfield network has only one layer, and the nodes are used for both input

and output. The network topology is shown in Figure 8.11(a). The network is

normally used as a content-addressable memory where each training example

is treated as a model vector or exemplar, to be stored by the network. The

Hopfield network uses binary input values, typically 1 and 1. By using the

step nonlinearity shown in Figure 8.2(c) as the transfer function ft the output is

forced to remain binary, too. If the activation a is 0, i.e., on the step, the output

is indeterminate, so a convention is needed to yield an output of either 1 or 1.

If the network has Nn nodes, then the input and output would both

comprise a vector of Nn binary digits. If there are Ne exemplars to be stored,

the network weights and biases are set according to the following equations:

ji

jixx

w
jk

N

k
ik

ij

e

if0

if
1 (8.8)

eN

k
iki xw

1
0 (8.9)

y1

Input

Output

y2 yn-1 yn

x1 x2 xn-1 xn

(a)

y1

Input

Output

y2 yn-1 yn

x1 x2 xn-1 xn

(b)

Figure 8.11   The topology of: (a) the Hopfield network, (b) the MAXNET.

Circular connections from a node to itself are allowed in the

MAXNET, but are disallowed in the Hopfield network



where wij is the weighting on the connection from node i to node j, wi0 is the

bias on node i, and xik is the ith digit of example k. There are no circular

connections from a node to itself, hence wij = 0 where i = j.

Setting weights in this way constitutes the learning phase, and results in

the exemplars being stored in a distributed fashion in the network. If a new

vector is subsequently presented as the input, then this vector is initially the

output, too, as nodes are used for both input and output. The node function

(Figure 8.1) is then performed on each node in parallel. If this is repeated many

times, the output will be progressively modified and will converge on the

exemplar that most closely resembles the initial input vector. In order to store

reliably at least half the exemplars, Hopfield estimated that the number of

exemplars (Ne) should not exceed approximately 0.15Nn [10].

If the network is to be used as for classification, a further stage is needed

in which the result is compared with the exemplars to pick out the one that

matches.

8.6 MAXNET

The MAXNET (Figure 8.11(b)) has an identical topology to the Hopfield

network, except that the weights on the circular interconnections, wii, are not

always zero as they are in the Hopfield network. The MAXNET is used to

recognize which of its inputs has the highest value. In this role it is sometimes

used in conjunction with other networks, such as a multilayer perceptron, to

select the output node that generates the highest value. Suppose that the

multilayer perceptron has four output nodes, corresponding to four different

categories. A MAXNET to determine the maximum output value (and, hence,

the solution to the classification task) would have four nodes and four

alternative output patterns after convergence, i.e., four exemplars:

X 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

where X > 0. The MAXNET would adjust its highest input value to X, and

reduce the others to 0. Note that the MAXNET is constructed to have the same

number of nodes (Nn) as the number of exemplars (Ne). Contrast this with the

Hopfield network, which needs approximately seven times as many nodes as

exemplars.



Using the same notation as Equations 8.8 and 8.9, interconnection weights
are set as follows:










=

≠<−
=

ji

ji
N

w n
ij

if1

if
1

whereεε
(8.10)

8.7 The Hamming network

The Hamming network has two parts — a twin layered feedforward network
and a MAXNET, as shown in Figure 8.12. The feedforward network is used to
compare the input vector with each of the examples, awarding a matching
score to each example. The MAXNET is then used to pick out the example that
has attained the highest score. The overall effect is that the network can
categorize its input vector.

MAXNET
(connections not shown)

Feedforward

Input

Output

y1 y2 yn-1 yn

x1 x2 xn-1 xn

Figure 8.12   The Hamming network



8.8 Adaptive Resonance Theory (ART) networks

The Adaptive Resonance Theory networks (ART1 and ART2) of Carpenter

and Grossberg [11] are worthy of mention because they are examples of

networks that learn without supervision. The ART1 network topology

comprises bidirectional interconnections between a set of input nodes and a

MAXNET, as shown in Figure 8.13.

The network classifies the incoming data into clusters. When the first

example is presented to the network, it becomes stored as an exemplar or

model pattern. The second example is then compared with the exemplar and is

either considered sufficiently similar to belong to the same cluster or stored as

a new exemplar. If an example is considered to belong to a previously defined

cluster, the exemplar for that cluster is modified to take account of the new

member. The performance of the network is dependent on the way in which

the differences are measured, i.e., the closeness measure, and the threshold or

Output

MAXNET
(connections not shown)

bij

t ij

Bidirectional links,
with a separate

weighting for each
direction

Input

y1 y2 yn-1 yn

x1 x2 xn-1 xn

Figure 8.13   The ART1 network



vigilance, ρ, beyond which a new exemplar is stored. As each new vector is
presented, it is compared with all of the current exemplars in parallel. The
number of exemplars grows as the network is used, i.e., the network learns new
patterns. The operation of the ART1 network, which takes binary inputs, is
summarized in Figure 8.14. ART2 is similar but takes continuously varying
inputs.

Start

yes

no
closeness > ρ ?

Reactivate all nodes

Present input vector {xi} where xi = 1

Inputs to upper-level nodes
given by yi :=   bij xj

Use MAXNET procedure to determine k
where yk is the largest yi value

tkj:=tkj xj

More data?
no

yes

Set all weights tij := 1;

set all weights bij := 1/(1+n)

where n is the number of input nodes

j

Deactivate node k

+
=

i
iik

jkj
kj xt

xt
b

5.0
:

Stop

=

j
j

j
jkj

x

xt

closeness :

Figure 8.14   Unsupervised learning in ART1



8.9 Kohonen self-organizing networks

Kohonen self-organizing networks, sometimes called self-organizing maps

(SOMs), provide another example of networks that can learn without

supervision. The processing nodes can be imagined to be arranged in a two-

dimensional array, known as the Kohonen layer (Figure 8.15). There is also a

separate one-dimensional layer of input nodes, where each input node is

connected to each node in the Kohonen layer. As in the MLP, the input

neurons perform no processing but simply pass their input values to the

processing neurons, where a weighting is applied.

As in the ART networks, the Kohonen network learns to cluster together

similar patterns. The learning mechanism, described in [7, 12, 13, 14], involves

competition between the neurons to respond to a particular input vector. The

“winner” has its weightings set so as to generate a high output, approaching 1.

The weightings on nearby neurons are also adjusted so as to produce a high

value, but the weights on the “losers” are left alone. The neurons that are

nearby the winner constitute a neighborhood.

When the trained network is presented with an input pattern, one neuron in

the Kohonen layer will produce an output larger than the others, and is said to

have fired. When a second similar pattern is presented, the same neuron or one

in its neighborhood will fire. As similar patterns cause topologically close

neurons to fire, clustering of similar patterns is achieved. The effect can be

Output layer

Input layer

Figure 8.15   A Kohonen self-organizing network



demonstrated by training the network using pairs of Cartesian coordinates. The

trained network has the property that the distribution of the firing neurons

corresponds with the Cartesian coordinates represented by the input vector.

Thus, if the input elements fall in the range between –1 and 1, then an input

vector of (–0.9, 0.9) will cause a neuron close to one corner of the Kohonen

layer to fire, while an input vector of (0.9, –0.9) would cause a neuron close to

the opposite corner to fire.

Although these networks are unsupervised, they can form part of a hybrid

network for supervised learning. This is achieved by passing the coordinates of

the firing neuron to an MLP. In this arrangement, learning takes place in two

distinct phases. First, the Kohonen self-organizing network learns, without

supervision, to associate regions in the pattern space with clusters of neurons in

the Kohonen layer. Second, an MLP learns to associate the coordinates of the

firing neuron in the Kohonen layer with the desired class.

8.10 Radial basis function networks

Radial basis function (RBF) networks offer another alternative method of

unsupervised learning. They are feedforward networks, the overall architecture

of which is similar to that of a three-layered perceptron, i.e., an MLP with one

output layer
(linear summation)

input layer

hidden layer
(radial basis function)

Input

Output

x3x2x1

y2y1

Figure 8.16   A radial basis function network



hidden layer. The RBF network architecture is shown in Figure 8.16. The input

and output neurons are similar to those of a perceptron, but the neurons in the

hidden layer are completely different. The input neurons do not perform any

processing, but simply feed the input data into the nodes above. The neurons in

the output layer produce the weighted sum of their inputs, which is usually

passed through a linear transfer function, in contrast to the nonlinear transfer

functions used with perceptrons.

The processing neurons considered so far in this chapter produce an output

that is the weighted sum of their inputs, passed through a transfer function.

However, in an RBF network the neurons in the hidden layer, sometimes

called the prototype layer, behave differently. For an input vector (x1, x2, …

xn), a neuron i in the hidden layer produces an output, yi, given by:

iri rfy (8.11)

n

j

ijji wxr

1

2
(8.12)

ri

−3σi −2σi −σi 0 σi 2σi 3σi

ex
p(

−r
i2  

/ 2
σ i

2 )

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.17   Gaussian RBF with standard deviation i



where wij are the weights on the inputs to neuron i, and fr is a symmetrical

function known as the radial basis function (RBF). The most commonly used

RBF is a Gaussian function:

2

2

2
exp

i

i
ir

r
rf (8.13)

where i is the standard deviation of a distribution described by the function

(Figure 8.17). Each neuron, i, in the hidden layer has its own separate value for

i.

The Euclidean distance between two points is the length of a line drawn

between them. If the set of weights (wi1, wi2, … win) on a given neuron i is

treated as the coordinates of a point in pattern space, then ri is the Euclidean

distance from there to the point represented by the input vector (x1, x2, … xn).

During unsupervised learning, the network adjusts the weights — more

correctly called centers in an RBF network — so that each point (wi1, wi2, …

win) represents the center of a cluster of data points in pattern space. Similarly

it defines the sizes of the clusters by adjusting the variables i (or equivalent

variables if an RBF other than the Gaussian is used). Data points within a

certain range, e.g., 2 i, from a cluster center might be deemed members of the

cluster. Therefore, just as a single-layered perceptron can be thought of as

dividing up two-dimensional pattern space by lines, or n-dimensional pattern

space by hyperplanes, so the RBF network can be thought of as drawing circles

around clusters in two-dimensional pattern space, or hypersheres in n-

dimensional pattern space. One such cluster can be identified for each neuron

−3σi

0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

−2σi −σi σi 2σi 3σi
−3σi

3σi

σi

−σi

0

−2σi

2σi

(x1 − wi1)

(x2 − wi2)

fr(ri)

Figure 8.18   Gaussian RBF with standard deviation i applied to two input variables



in the hidden layer. Figure 8.18 shows a Gaussian function in two-dimensional

pattern space, from which it can be seen that a fixed output value (e.g., 0.5)

defines a circle in the pattern space.

The unsupervised learning in the hidden layer is followed by a separate

supervised learning phase in which the output neurons learn to associate each

cluster with a particular class. By associating several circular clusters of

varying center and size with a single class, arbitrary shapes for class regions

can be defined (Figure 8.19).

8.11 Summary

Numerical learning is based upon adapting numerical parameters in order to

achieve a close match between a desired output and the actual output. Neural

networks are an important type of numerical learning technique. They can be

used to model any nonlinear mapping between variables, and are frequently

used in classification tasks. When presented with data that lie between

previously encountered data, neural networks will generally interpolate to

produce an output between those generated previously. Neural networks may

therefore be a substitute for fuzzy logic in some applications. The parallelism

of neural networks makes them ideally suited to parallel processing computers.

A neural network may be used to solve a problem in its own right, or as a

component of a larger system. Designing a suitable network for a given

application can involve a large amount of trial and error. Whether a network

will converge, i.e., learn suitable weightings, will depend on the topology, the

x1

x2

Figure 8.19   RBF networks can define arbitrary shapes for regions in the pattern space



transfer function of the nodes, the values of the parameters in the training

algorithm, and the training data. It may even depend on the order in which the

training data are presented. Although neural networks can alleviate the

“knowledge acquisition bottleneck” described in Chapter 6, they can also

introduce a “network parameter bottleneck” as the user struggles to configure a

network for a particular problem [15].

Another drawback of neural networks is that their reasoning is opaque.

The learned weights can rarely be understood in a meaningful way, although

rules can, in principle, be extracted from them. Thus, the neural network is

often regarded as a “black box” which simply generates an output from a given

input. However, by confining the use of the neural network to subtasks within

a problem, the overall problem-solving strategy can remain clear.

References

1. Hallam, N. J., Hopgood, A. A., and Woodcock, N., “Defect classification

in welds using a feedforward network within a blackboard system,”

International Neural Network Conference (INNC’90), Paris, vol. 1, pp.

353–356, 1990.

2. Hornick, K., Stinchcombe, M., and White, H., “Multilayer feedforward

networks are universal approximators,” Neural Networks, vol. 2, pp. 359–

366, 1989.

3. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning

representations by back-propagating errors,” Nature, vol. 323, pp. 533–

536, 1986.

4. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning internal

representations by  error propagation,” in Parallel Distributed Processing:

explorations in the microstructures of cognition, vol. 1, Rumelhart, D. E.

and McClelland, J. L. (Eds.), MIT Press, 1986.

5. Knight, K., “Connectionist ideas and algorithms,” Communications of the

ACM, vol. 33, issue 11, pp. 59–74, November 1990.

6. Willis, M. J., Di Massimo, C., Montague, G. A., Tham, M. T., and Morris,

A. J., “Artificial neural networks in process engineering,” IEE

Proceedings-D, vol. 138, pp. 256–266, 1991.

7. Lippmann, R. P., “An introduction to computing with neural nets,” IEEE

ASSP Magazine, pp. 4–22, April 1987.

8. Kim, K. H. and Park, J. K., “Application of herarchical neural networks to

fault diagnosis of power systems,” International Journal of Electrical

Power and Energy Systems, vol. 15, pp. 65–70, 1993.



9. Hopgood, A. A., Woodcock, N., Hallam, N. J., and Picton, P. D.,

“Interpreting ultrasonic images using rules, algorithms and neural

networks,” European Journal of Nondestructive Testing, vol. 2, pp. 135–

149, 1993.

10. Hopfield, J. J., “Neural networks and physical systems with emergent

collective computational abilities,” Proceedings of the National Academy

of Science, vol. 79, pp. 2554–2558, 1982.

11. Carpenter, G. A. and Grossberg, S., “ART2: Self-organization of stable

category recognition codes for analog input patterns,” Applied Optics, vol.

26, pp. 4919–4930, 1987.

12. Kohonen, T., “Adaptive, associative, and self-organising functions in

neural computing,” Applied Optics, vol. 26, pp. 4910–4918, 1987.

13. Kohonen, T., Self-organization and Associative Memory, 2nd ed.,

Springer-Verlag, 1988.

14. Hecht-Nielson, R., Neurocomputing, Addison-Wesley, 1990.

15. Woodcock, N., Hallam, N. J., Picton, P., and Hopgood, A. A.,

“Interpretation of ultrasonic images of weld defects using a hybrid

system,” International Conference on Neural Networks and their

Applications, Nimes, France, 1991.

Further reading

• Beale, R. and Jackson, T., Neural Computing: an introduction, IOP

Publishing, 1990.

• Bishop, C. M., Neural Networks for Pattern Recognition, Clarendon Press,

1995.

• Gurney, K., An Introduction to Neural Networks, UCL Press, 1997.

• Hecht-Nielson, R., Neurocomputing, Addison-Wesley, 1990.

• Pao, Y.-H., Adaptive Pattern Recognition and Neural Networks, Addison-

Wesley, 1989.

• Patterson, D. W., Artificial Neural Networks, Prentice Hall, 1998.

• Picton, P. D., Neural Networks, 2nd ed., Macmillan, 2000.



Chapter nine

Hybrid systems

9.1 Convergence of techniques

One of the aims of this book is to demonstrate that there is a wide variety of

computing techniques that can be applied to particular problems. These include

symbolic representations such as knowledge-based systems, computational

intelligence methods, and conventional programs. In many cases the

techniques need not be exclusive alternatives to each other but can be seen as

complementary tools that can be brought together within a hybrid system. All

of the techniques reviewed in this book can, in principle, be mixed with other

techniques. There are several ways in which different computational

techniques can be complementary:

Dealing with multifaceted problems

Most real-life problems are complex and have many facets, where each facet

may be best suited to a different technique. Therefore, many practical systems

are designed as hybrids, incorporating several specialized modules, each of

which uses the most suitable tools for its specific task. One way of allowing

the modules to communicate is by designing the hybrid as a blackboard

system, described in Section 9.2 below.

Capability enhancement

One technique may be used within another to enhance the latter’s capabilities.

We met an example in Chapter 7, where Lamarckian inheritance involves the

inclusion of a steepest gradient descent step within a genetic algorithm. In this

example, the aim is to raise the fitness of individual chromosomes and speed

convergence of the genetic algorithm toward an optimum.

Parameter setting

Several of the techniques described below, such as neuro-fuzzy, genetic-fuzzy,

and genetic-neural systems, are based on the idea of using one technique to set

the parameters of another.



Clarification and verification

Neural networks have the ability to learn associations between input vectors

and associated outputs. However, the underlying reasons for the associations

are opaque, as they are effectively encoded in the weightings on the

interconnections between the neurons. Efforts have been made to extract

automatically from the network equivalent rules that can be readily

understood, and to write verification rules to check the validity of the

network’s output.

9.2 Blackboard systems

The blackboard model or blackboard architecture, shown in Figure 9.1,

provides a software structure that is well suited to multifaceted tasks. Systems

that have this kind of structure are called blackboard systems. In such a system,

knowledge of the application domain is divided into modules, referred to as

knowledge sources (or KSs), each of which is designed to tackle a particular

subtask. KSs are independent and can communicate only by reading from or

writing to the blackboard, a globally accessible working memory where the

current state of understanding is represented. Knowledge sources can also

delete unwanted information from the blackboard.

A blackboard system is analogous to a team of experts who communicate

their ideas via a physical blackboard, by adding or deleting items in response

to the information that they find there. Each knowledge source represents such

Rule-based KSs
Inference engine #1

Procedural KSs Genetic algorithm KSs Neural network KSs

Rule-based KSs
Inference engine #2

Rule-based KSs
Inference engine #3

The Blackboard

Figure 9.1   The blackboard model. The modules are called knowledge sources (KSs)



an expert having a specialized area of knowledge. As each KS can be encoded

in the most suitable form for its particular task, blackboard systems offer a

mechanism for the collaborative use of different computational techniques

such as rules, neural networks, and fuzzy logic. The inherent modularity of a

blackboard system is also helpful for maintenance. Each rule-based knowledge

source can use a suitable reasoning strategy for its particular task, e.g.,

backward- or forward-chaining, and can be thought of as a rule-based system

in microcosm.

Knowledge sources are applied in response to information on the

blackboard, when they have some contribution to make. This leads to increased

efficiency since the detailed knowledge within a knowledge source is only

applied when that knowledge source becomes relevant. In the idealized

blackboard system, the KSs are said to be opportunistic, activating themselves

whenever they can contribute to the global solution. However, this is difficult

to achieve in practice as it may involve interrupting another knowledge source

that is currently active. One approach to KS scheduling is to use a control

module that determines the order of KS activation on the basis of applicability

and past use of the KSs. As an extension of this idea, a separate blackboard

system could select knowledge sources based upon explicit rule-based

knowledge of the alternatives. This level of sophistication may, however, result

in a slow response.

In the interests of efficiency and clarity, some degree of structure is

usually imposed on the blackboard by dividing it into panels. A knowledge

source then only needs to look at a small number of panels rather than the

whole blackboard. Typically the blackboard panels correspond to different

levels of analysis of the problem, progressing from detailed information to

more abstract concepts. In the Hearsay-II blackboard system for computerized

understanding of natural speech, the levels of analysis include those of

syllable, word, and phrase [1]. In ultrasonic image interpretation using ARBS,

described in more detail in Chapter 11, the levels progress from raw signal

data, via a description of the significant image features, to a description of the

defects in the component [2].

The key advantages of the blackboard architecture, adapted from

Feigenbaum [3] can be summarized as follows:

(i) Many and varied sources of knowledge can participate in the development

of a solution to a problem.

(ii) Since each knowledge source has access to the blackboard, each can be

applied as soon as it becomes appropriate. This is opportunism, i.e.,

application of the right knowledge at the right time.



(iii) For many types of problem, especially those involving large amounts of

numerical processing, the characteristic style of incremental solution

development is particularly efficient.

(iv) Different types of reasoning strategy (e.g., data- and goal-driven) can be

mixed as appropriate in order to reach a solution.

(v) Hypotheses can be posted onto the blackboard for testing by other

knowledge sources. A complete test solution does not have to be built

before deciding to modify or abandon the underlying hypothesis.

(vi) In the event that the system is unable to arrive at a complete solution to a

problem, the partial solutions appearing on the blackboard are available

and may be of some value.

9.3 Genetic-fuzzy systems

The performance of a fuzzy system depends on the definitions of the fuzzy sets

and on the fuzzy rules. As these parameters can all be expressed numerically, it

is possible to devise a system whereby they are learned automatically using

genetic algorithms. A chromosome can be devised that represents the complete

set of parameters for a given fuzzy system. The cost function could then be

defined as the total error when the fuzzy system is presented with a number of

different inputs with known desired outputs.

Often, a set of fuzzy rules for a given problem can be drawn up fairly

easily, but defining the most suitable membership functions remains a difficult

task. Karr [4, 5] has performed a series of experiments to demonstrate the

viability of using genetic algorithms to specify the membership functions. In

Karr’s scheme, all membership functions are triangular. The variables are

constrained to lie within a fixed range, so the fuzzy sets low and high are both

right-angle triangles (Figure 9.2). The slope of these triangles can be altered by

moving their intercepts on the abscissa, marked max1 and min4 in Figure 9.2.

All intermediate fuzzy sets are assumed to have membership functions that are

isosceles triangles. Each is defined by two points, maxi and mini, where i labels

the fuzzy set. The chromosome is then a list of all the points maxi and mini that

determine the complete set of membership functions. In several demonstrator

systems, Karr’s GA-modified fuzzy controller outperformed a fuzzy controller

whose membership functions had been set manually. This is perhaps not

surprising, since tuning the fuzzy sets is an optimization problem.



9.4 Neuro-fuzzy systems

Section 9.3 above shows how a genetic algorithm can be used to optimize the

parameters of a fuzzy system. In such a scheme, the genetic algorithm for

parameter setting and the fuzzy system that uses those parameters are distinct

and separate. The parameters for a fuzzy system can also be learned using

neural networks, but here much closer integration is possible between the

neural network and the fuzzy system that it represents. A neuro-fuzzy system is

a fuzzy system, the parameters of which are derived by a neural network

learning technique. It can equally be viewed as a neural network that represents

a fuzzy system. The two views are equivalent and it is possible to express a

neuro-fuzzy system in either form.

Consider the following fuzzy rules, based on the example used in

Chapter 3:

/* Rule 9.1f */

IF temperature is high OR water level is high

THEN pressure is high

/* Rule 9.2f */

IF temperature is medium OR water level is medium

THEN pressure is medium

/* Rule 9.3f */

IF temperature is low OR water level is low

THEN pressure is low

1

0

Fuzzy variable

M
em

be
rs

hi
p,

 µ

m
in

2

set 1
(low)

set 4
(high)

set 3set 2

m
in

3
m

ax
1

m
ax

2

m
in

4

m
ax

3

Figure 9.2   Defining triangular membership functions by their intercepts

on the abscissa



These fuzzy rules and the corresponding membership functions can be

represented by the neural network shown in Figure 9.3. The first stage is

fuzzification, in which any given input value for temperature is given a

membership value for low, medium, and high. A single layer perceptron,

designated level 1 in Figure 9.3, can achieve this because it is a linear

classification task. The only difference from other classifications met

previously is that the desired output values are not just 0 and 1, but any value

in the range between 0 and 1. A similar network is required at level 1 for the

other input variable, water level. The neurons whose outputs correspond to

the low, medium, and high memberships are marked L, M, and H, respectively,

in Figure 9.3.

Level 2 of the neuro-fuzzy network performs the role of the fuzzy rules,

taking the six membership values as its inputs and generating as its outputs the

memberships for low, medium, and high of the fuzzy variable pressure. The

final stage, at level 3, involves combining these membership values to produce

a defuzzified value for the output variable.

The definitions of the fuzzy sets and the fuzzy rules are implicit in the

connections and weights of the neuro-fuzzy network. Using a suitable learning

mechanism, the weights can be learned from a series of examples. The network

can then be used on previously unseen inputs to generate defuzzified output

values. In principle, the fuzzy sets and rules can be inferred from the network

Level 1: fuzzification

Level 2: fuzzy rules

Level 3: defuzzification

temperature water_level

pressure

L M H L M H

L M H

Figure 9.3   A neuro-fuzzy network



and run as a fuzzy rule-based system, of the type described in Chapter 4, to

produce identical results [6, 7].

9.5 Genetic-neural systems

Part of the practical challenge in building a practical neural network is to

choose the right architecture and the right learning parameters. We saw in

Chapter 8 that, according to Kolmogorov’s Existence Theorem, an MLP with

one hidden layer, using the sigmoid transfer function, could perform any

mapping from a set of inputs to the desired outputs. Unfortunately, this

theorem tells us nothing about the learning parameters, the necessary number

of neurons, or whether additional layers would be beneficial. It is, however,

possible to use a genetic algorithm to optimize the network design. A suitable

cost function might combine the RMS error with duration of training.

Supervised training of a neural network involves adjusting its weights

until the output patterns obtained for a range of input patterns are as close as

possible to the desired patterns. The different network topologies use different

training algorithms for achieving this weight adjustment, typically through

back-propagation or errors. However, it is also possible to use a genetic

algorithm to train the network. This can be achieved by letting each gene

represent a network weight, so that a complete set of network weights is

mapped onto an individual chromosome. Each chromosome can be evaluated

by testing a neural network with the corresponding weights against a series of

test patterns. A fitness value can be assigned according to the error, so that the

weights represented by the fittest generated individual correspond to a trained

neural network.

9.6 Clarifying and verifying neural networks

Neural networks are often referred to as a type of “black box,” with an internal

state that conveys no readily useful information to an observer. This metaphor

implies the inputs and outputs have significance for an observer, but the

weights on the interconnections between the neurons do not. This contrasts

with a transparent system, such as a KBS, where the internal state, for

example, the value of a variable, does have meaning for an observer. There has

been an intensive research effort into rule extraction to produce rules which

are equivalent to the trained neural network from which they have been

extracted [8]. A variety of methods have been reported for extracting different

types of rules, including production rules and fuzzy rules.



In safety-critical systems, reliance on the output from a neural network

without any means of verification is not acceptable. It has, therefore, been

proposed that rules be used to verify that the neural network output is

consistent with its input [9]. The use of rules for verification implies that at

least some of the domain knowledge can be expressed in rule form. Johnson et

al. [10] suggest that an adjudicator module be used to decide whether a set of

rules or a neural network is likely to provide the more reliable output for a

given input. The adjudicator would have access to information relating to the

extent of the neural network’s training data and could determine whether a

neural network would have to interpolate between, or extrapolate from,

examples in the training set. Neural networks are good at interpolation but poor

at extrapolation. The adjudicator may, therefore, call upon rules to handle the

exceptional cases which would otherwise require a neural network to

extrapolate from its training data. If heuristic rules are also available for the

less exceptional cases, then they could be used to provide an explanation for

the neural network’s findings. A supervisory rule-based module could dictate

the training of a neural network, deciding how many nodes are required,

adjusting the learning rate as training proceeds, and deciding when training

should terminate.

9.7 Learning classifier systems

Holland’s learning classifier systems (LCSs) combine genetic algorithms with

rule-based systems to provide a mechanism for rule discovery [11, 12]. The

rules are simple production rules (see Section 2.1), coded as a fixed-length

mixture of binary numbers and wild-card, i.e., “don’t care,” characters. Their

simple structure makes it possible to generate new rules by means of a genetic

algorithm.

The overall LCS is illustrated in Figure 9.4. At the heart of the system is

the message list, which fulfils a similar role to the blackboard in a blackboard

system. Information from the environment is placed here, along with rule

deductions and instructions for the actuators, which act on the environment.

A credit-apportionment system, known as the bucket-brigade algorithm, is

used to maintain a credit balance for each rule. The genetic algorithm uses a

rule’s credit balance as the measure of its fitness. Conflict resolution (see

Section 2.8) between rules in the conflict set is achieved via an auction, in

which the rule with the most credits is chosen to fire. In doing so, it must pay

some of its credits to the rules that led to its conditions being satisfied. If the

fired rule leads to some benefit in the environment, it receives additional

credits.



9.8 Summary

This section has looked at just some of the ways in which different

computation techniques — including intelligent systems and conventional

programs — can work together within hybrid systems. Chapters 11 through 14

deal with applications of intelligent systems in engineering and science, most

of which involve hybrids of some sort.

References

1. Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R., “The

Hearsay-II speech understanding system: integrating knowledge to resolve

uncertainty,” ACM Computing Surveys, vol. 12, pp. 213–253, 1980.

2. Hopgood, A. A., Woodcock, N., Hallam, N. J., and Picton, P. D.,

“Interpreting ultrasonic images using rules, algorithms and neural

networks,” European Journal of Nondestructive Testing, vol. 2, pp. 135–

149, 1993.

3. Feigenbaum, E. A., Foreword to Blackboard systems, Englemore, R. S.

and Morgan, A. J. (Eds.), Addison-Wesley, 1988.

4. Karr, C. L., “Genetic algorithms for fuzzy controllers,” AI Expert, pp. 26–

33, February 1991.

Environment

Rule set
Genetic

algorithm

Credit
apportionment

Sensors

Message list

Actuators

Figure 9.4   Learning classifier system



5. Karr, C. L., “Applying genetics to fuzzy logic,” AI Expert, pp. 38–43,

March 1991.

6. Altug, S., Chow, M. Y., and Trussell, H. J., “Heuristic constraints

enforcement for training of and rule extraction from a fuzzy/neural

architecture — Part II: Implementation and application,” IEEE

Transactions on Fuzzy Systems, vol. 7, pp. 151–159, 1999.

7. Chow, M. Y., Altug, S., and Trussell, H. J., “Heuristic constraints

enforcement for training of and knowledge extraction from a fuzzy/neural

architecture — Part I: Foundation,” IEEE Transactions on Fuzzy Systems,

vol. 7, pp. 143–150, 1999.

8. Tsukimoto, H., “Extracting rules from trained neural networks,” IEEE

Transactions on Neural Networks, vol. 11, pp. 377–389, 2000.

9. Picton, P. D., Johnson, J. H., and Hallam, N. J., “Neural networks in

safety-critical systems,” 3rd International Congress on Condition

Monitoring and Diagnostic Engineering Management, Southampton, UK,

1991.

10. Johnson, J. H., Hallam, N. J., and Picton, P. D., “Safety critical

neurocomputing: explanation and verification in knowledge augmented

neural networks,” Colloquium on Human–Computer Interaction, London,

IEE, 1990.

11. Holland, J. H. and Reitman, J. S., “Cognitive systems based on adaptive

algorithms,” in Pattern-directed inference systems, Waterman, D. A. and

Hayes-Roth, F. (Eds.), pp. 313–329, Academic Press, 1978.

12. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, 1989.

Further reading

• Craig, I., Blackboard Systems, Intellect, 1995.

• Englemore, R. S. and Morgan, A. J. (Eds.), Blackboard Systems, Addison-

Wesley, 1988.

• Jain, L. C. and Martin, N. M. (Eds.), Fusion of Neural Networks, Fuzzy

Sets, and Genetic Algorithms: industrial applications, CRC Press, 1999.

• Medsker, L. R., Hybrid Intelligent Systems, Kluwer, 1995.

• Ruan, D. (Ed.), Intelligent Hybrid Systems: fuzzy logic, neural networks

and genetic algorithms, Kluwer, 1997.



Chapter ten

Tools and languages

10.1 A range of intelligent systems tools

The previous chapters have introduced a range of intelligent systems

techniques, covering both knowledge-based systems (KBSs) and

computational intelligence. The tools available to assist in constructing

intelligent systems can be roughly divided into the following categories:

• stand-alone packages, e.g., expert system shells and neural network

packages;

• KBS toolkits, e.g., Goldworks, Kappa, and Flex;

• libraries, e.g., neural network libraries for MatLab and C++;

• AI programming languages for processing words, symbols, and relations,

e.g., Lisp and Prolog;

• object-oriented programming languages, e.g., Smalltalk, C++, CLOS, and

Java;

• conventional programming languages, e.g., C, Pascal, and Fortran.

Expert system shells are designed to allow the rapid design and

implementation of rule-based expert systems, but tend to lack flexibility. The

programming languages offer much greater flexibility and can be used to build

customized tools. Most programming languages are procedural rather than

declarative, although the Prolog language incorporates both programming

styles. The KBS toolkits aim to provide the best of all worlds. They typically

offer a mixture of facilities so the programmer has free access to the

underlying language and to tools such as rule-based and object-oriented

programming. The provision of these tools can save considerable programming

effort, while the ability to access the underlying language gives the freedom to

build extra facilities.



10.2 Expert system shells

An expert system shell is an expert system that is complete except for the

knowledge base. It includes an inference engine, a user interface for

programming, and a user interface for running the system. Typically, the

programming interface comprises a specialized editor for creating rules in a

predetermined format, and some debugging tools. The shell user enters rules in

a declarative fashion and ideally should not need to be concerned with the

workings of the inference engine. In practice this ideal is rarely met, and a

typical difficulty in using a shell is ensuring that rules are applied when

expected. As the user has no direct control over the inference engine, it is

usually necessary to gain some insight into its workings and to tailor the rules

to achieve the desired effect. This is not necessarily easy and detracts from the

advantages of having a separate knowledge base. Nevertheless, shells are easy

to use in other respects and allow a simple knowledge-based system to be

constructed quickly. They are, therefore, useful for building prototype expert

systems. However, their inflexible facilities for knowledge representation and

inference tend to limit their general applicability.

10.3 Toolkits and libraries

KBS toolkits usually offer a range of knowledge representation facilities, such

as rules, objects or frames, and uncertainty handling. Their flexibility stems

from granting the user access to the underlying programming language, so that

the standard facilities can be altered or enhanced where necessary. They tend

to be hungry for processing power and memory, although hardware

improvements have made this less of a problem. Many toolkits are based on

the AI languages, e.g., Goldworks and Flex are based on Lisp and Prolog,

respectively. Toolkits built on the C or C++ languages, e.g., Kappa, have also

gained popularity.

Libraries offer similar advantages to toolkits. Instead of supplying the

complete programming environment, libraries provide specific functionality on

the assumption that the underlying programming environment already exists.

There is a range of KBS and computational intelligence libraries available,

e.g., for C++, MatLab and Java.

10.4 Artificial intelligence languages

The two main AI programming languages, namely, Lisp and Prolog, will be

introduced in subsequent sections of this chapter. A key feature of both



languages is the ability to manipulate symbolic data, i.e., characters and words,

as well as numerical data. One of the most important structures for this

manipulation is lists, introduced below.

10.4.1 Lists

A knowledge base may contain a mixture of numbers, letters, words,

punctuation, and complete sentences. Most computer languages can handle

such a mixture of characters, provided the general format can be anticipated in

advance. Suppose we wanted to represent a simple fact such as:

pressure in valve #2 is 12.8 MPa

where 1MPa = 1MNm–2. One possible C++ implementation (see Chapter 4) of

this fact is to define a Valve class and the instance valve2, as follows:

class Valve

{

  public:

    Valve(int id, float pres, const char *u); //constructor

    ~Valve(); // destructor

  private:

    int identity_number;

    float pressure;

    char *units;

}

Valve::Valve(int id, float pres, const char *u)

{ //constructor definition

    identity_number = id;

    pressure = pres;

    units = (char*) u;

}

Valve::~Valve()

{ //destructor definition

    cout << "instance of Valve destroyed" << endl;

}

main()

{

    Valve valve2(2, 12.8, "MPa"); // create an instance of Valve

}

The class definition could be specialized to handle different types of valves,

but a completely new construction would be needed for a fact or rule with a

different format, such as:



if pressure is above 10 MPa then close valve

Lists are data structures that allow words, numbers, and symbols to be

combined in a wide variety of ways. They are useful for symbol manipulation

and are a feature of Lisp and Prolog. The above example could be represented

as a list in Lisp or Prolog, respectively, as follows:

(close_valve (exceeds pressure 10 mpa))

[if, pressure, exceeds, 10, MPa, then, close, valve]

Lisp uses round brackets with elements separated by spaces, whereas Prolog

uses square brackets with elements separated by commas. The Lisp example

includes a list within a list, i.e., a nested list. Although the Prolog example

looks like a rule, it is really just a list of words and numbers. Separate code

would be required to interpret it as a rule.

It should be noted that C++ is a versatile language and that lists can be

implemented within it by creating pairs of values and pointers, forming a so-

called linked list. However, one strength of the AI languages is the integration

of lists into the language, together with the necessary facilities for

manipulating those lists.

10.4.2 Other data types

As well as lists, there is a number of other data types available in the AI

languages. Unlike most other languages, variables in the AI languages can be

used to store any type of data. A list could be assigned to a given variable

immediately after assigning a real number to the same variable. The

declaration of variables is not always necessary. However, declarations are

normally made in Lisp to specify explicitly the scope of a variable, because

undeclared variables are assumed to be global (i.e., memory is allocated for the

whole duration of a program or interactive session).

Although the assignment of different types of data to variables is

transparent to the programmer, the computer needs to know the type of data in

order to handle it correctly. There are various techniques for achieving this.

Typically, the value associated with a variable includes a tag, hidden from the

programmer, that labels its type. Some commonly used data types in the AI

languages are shown in Table 10.1.

Lisp also allows the creation of arrays and structures, similar to those used

in C. Strings can be made up of any printable characters, including numbers

and spaces, enclosed in quotation marks. Words can generally be regarded as a

sequence of one or more characters without any spaces, as spaces and certain

other characters may act as separators for words, depending on the language.



Examples of words include variable names and the elements of the lists shown

in Table 10.1. List elements are not always words, as lists can contain nested

lists or numbers. The term atom is used in both languages to denote a

fundamental data type that cannot be made up from other data types. For

example, numbers and words are atoms, but lists are not.

During the execution of a program, various data structures may be created.

There is, therefore, a need for management of the computer memory, i.e.,

memory must be allocated when needed and subsequently reclaimed. In

languages such as C, the responsibility for memory management rests with the

programmer, who must allocate and reclaim memory at appropriate places in

the program using the malloc and free commands (or their equivalent). In the

AI languages (and some object-oriented languages, such as Smalltalk — see

Chapter 4) the memory is managed automatically. The programming

environment must be capable of both dynamically allocating memory and

freeing memory that is no longer required. The latter process is called garbage

collection. This is a useful facility, although it can result in a momentary pause

in the computer’s response while the garbage collection takes place.

10.4.3 Programming environments

In general, both of the AI languages considered here form part of their own

interactive programming environment. Typically, there is a console window

into which code can be typed on-line. Such instructions are interpreted and

obeyed immediately and the output printed on the screen.

Typing commands in this way is a useful way of inspecting the values of

variables and testing ideas, but it is not a practical way of writing a program.

Instead, a text editor is used to enter code so that it can subsequently be

modified, saved, compiled, and run. In an integrated programming

environment, the code can be evaluated or compiled from within the editor.

Type Examples

integer 0, 23, -15

real (floating point) number 3.1415927, -1.24

string "a string in Lisp or Prolog"

word myword, x, z34

list
(a list of words in Lisp)
[a, list, in, Prolog]

Table 10.1   Some data types



Debugging tools can stop the program at a selected point or when an error

occurs, so the assignments up to that point can be examined.

Code that has been written in an AI language will, in general, run more

slowly than a compiled C program. However, the appeal of AI languages is

their power in terms of flexibility for the programmer, rather than their

computational or memory efficiency.

10.5 Lisp

10.5.1 Background

It has already been noted that a feature of the AI languages is the integration of

lists and list manipulation into the language. This is particularly so in the case

of Lisp, as a Lisp program is itself a list made up of many lists. Indeed the

name Lisp is derived from the phrase list processing.

Historically, Lisp has developed in an unregulated fashion. Different

syntax and features were introduced into different implementations, partly as a

consequence of the existing hardware and software environment. As a result,

many different Lisp dialects such as Interlisp, Franzlisp, Maclisp, Zetalisp, and

Scheme were developed. A standard was subsequently produced — Common

Lisp — that aims to combine the most useful and portable features of the

dialects into one machine-independent language [1]. This standard form of the

language is also the basis of CLOS (Common Lisp Object Standard), an

object-oriented extension of Common Lisp. All the examples introduced here

are based upon the definition of Common Lisp and should work on any

Common Lisp system.

A list is a collection of words, numbers, strings, functions, and further

lists, enclosed in parentheses. The following are all examples of lists:

(a b c d)

(My car is 10 years old)

(a list (a b c) followed by an empty list ())

Lisp uses the key word nil to denote an empty list, so that () and nil are

equivalent. Lisp extends the idea of a language based upon list manipulation to

the point where everything is either a list or an element of a list. There are only

a few basic rules to remember in order to understand how Lisp works.

However, because its structure is so different from other languages, Lisp may

seem rather strange to the novice.



10.5.2 Lisp functions

While it is valid to describe Lisp as a procedural language (i.e., the computer is

told exactly what to do), a more precise description would be that it is a

functional language. This is because a Lisp program is made up of lists that are

interpreted as functions that, by definition, return a single value.

The three key rules to understanding Lisp are:

• each item of a list is evaluated;

• the first item is interpreted as a function name;

• the remaining items are the parameters (or arguments) of the function.

Some of the functions with which we will be dealing are strictly speaking

macros, which are predefined combinations of functions. However, the

distinction need not concern us here. With a few exceptions, the parameters to

a function are always evaluated before the function itself. The parameters

themselves may also be functions and can even be the same function (thereby

permitting recursion). The following example would be a valid Lisp call to the

function print. The computer’s prompt, that precedes user input, varies

between implementations but is shown here as <cl>, for “Common Lisp”:

<cl> (print "hello world")

hello world

hello world

The first element in the list was interpreted as a function name, and the

second item as its argument. The argument evaluates to the string “hello

world.” It might seem surprising that hello world is printed twice. It is first

printed because we instructed Lisp to do so. It is then printed again because

Lisp always prints out the value of the function that it is given. In this example

the function print returned as its value the item that it had printed. Consider

what will happen if we type the following:

<cl> (print hello)

Error: Unbound variable: HELLO.

This error message has come about because Lisp evaluates every item in the

list. In this example, the interpreter tried to evaluate hello, but found it to be

undefined. A defined variable is one that has a value (perhaps another

function) assigned to it. However, in this case we didn’t really want hello to

be evaluated. There are many instances in writing Lisp code when we would

like to suppress Lisp’s habit of evaluating every argument. A special function,

quote, is provided for this specific purpose.



The quote function takes only one argument, which it does not evaluate

but simply returns in the same form that it is typed:

<cl> (quote hello)

hello

<cl> (print (quote hello))

hello

hello

The quote function is used so often that a shorthand form has been made

available. The following are equivalent:

(quote hello)

and

'hello

We would also wish to suppress the habit of functions evaluating their

arguments when making assignments. Here is an assignment in C++:

my_variable=2.5; /* assign value 2.5 to my_variable in C++ */

A value of 2.5 is assigned to my_variable, which would need to have been

declared as type float. Lisp provides various functions for achieving this, one

of which is setf:

<cl> (setf my_variable 2.5)

2.5

Since the first argument is a variable name, only the second argument to setf

is evaluated. This is because we want to make an assignment to the variable

name and not to whatever was previously assigned to it. The second parameter

of setf, namely 2.5, evaluates to itself, and this value is then assigned to

my_variable. Like all Lisp functions, setf returns a value, in this case 2.5,

and this value is printed on the screen by the Lisp interpreter.

As we noted earlier, Lisp usually tries to evaluate the parameters of a

function before attempting to evaluate the function itself. The parameters may

be further functions with their own parameters. There is no practical limit to

the embedding of functions within functions in this manner, so complex

composite functions can easily be built up and perhaps given names so that

they can be reused. The important rules for reading or writing Lisp code are:



• list elements are interpreted as a function name and its parameters (unless

the list is the argument to quote, setf, or a similar function);

• a function always returns a value.

Lisp code is constructed entirely from lists, and lists also represent an

important form of data. Therefore, it is hardly surprising that built-in functions

for manipulating lists form an important part of the Lisp language. Two basic

functions for list manipulation are first and rest. For historical reasons, the

functions car and cdr are also available to perform the same tasks. The first

function returns the first item of that list, while rest returns the list but with

the first item removed. Here are some examples:

<cl>(first '(a b c d))

a

<cl>(rest '(a b c d))

(b c d)

<cl>(first (rest '(a b c d)))

b

<cl>(first '((a b)(c d)))

(a b)

Used together, first and rest can find any element in a list. However, two

convenient functions for finding parts of a list are nth and nthcdr:

(nth 0 x) finds the 1st element of list x
(nth 1 x) finds the 2nd element of list x
(nth 2 x) finds the 3rd element of list x
(nthcdr 2 x) is the same as (rest (rest x))
(nthcdr 3 x) is the same as (rest (rest (rest x)))

Note that rest and nthcdr both return a list, while first and nth may

return a list or an atom. When rest is applied to a list that contains only one

element, an empty list is returned, which is written as () or nil. When either

first or rest is applied to an empty list, nil is returned.

There are many other functions provided in Lisp for list manipulation and

program control. It is not intended that this overview of Lisp should introduce

them all. The purpose of this section is not to replace the many texts on Lisp,

but to give the reader a feel for the unusual syntax and structure of Lisp

programs. We will see, by means of a worked example, how these programs

can be constructed and, in so doing, will meet some of the important functions

in Lisp.



In Chapter 12, the problem of selecting materials will be discussed. One

approach involves (among other things) finding those materials that meet

a specification or list of specifications. This task is used here as an

illustration of the features of the two main AI languages. The problem is

to define a Lisp function or Prolog relation called accept. When a

materials specification or set of specifications are passed as parameters

to accept, it should return a list of materials in the database that meet the

specification(s). The list returned should contain pairs of material names

and types. Thus, in Lisp syntax, the following would be a valid result

from accept:

((POLYPROPYLENE . THERMOPLASTIC)

 (POLYURETHANE_FOAM . THERMOSET))

In this case, the list returned contains two elements, corresponding to the

two materials that meet the specification. Each of the two elements is

itself a list of two elements: a material name and its type. Here, each

sublist is a special kind of list in Lisp called a dotted pair (see Section

10.5.3).

The specification that is passed to accept as a parameter will have a

predefined format. If just one specification is to be applied, this will be

expressed as a list of the form:

(property_name  minimum_value  tolerance)

An example specification in Lisp would be:

(flexural_modulus 1.0 0.1)

The units of flexural modulus are assumed to be GNm–2. For a material

to meet this specification, its flexural modulus must be at least 1.0  0.1,

i.e., 0.9GNm–2. If more than one specification is to be applied, the

specifications will be grouped together into a list of the form:

((property1  minimum_value1  tolerance1)

 (property2  minimum_value2  tolerance2)

 (property3  minimum_value3  tolerance3))

When presented with a list of this type, accept should find those

materials in the database that meet all of the specifications.

Box 10.1   Problem definition: finding materials that meet some specifications



10.5.3 A worked example

We will discuss in Chapter 12 the application of intelligent systems to

problems of selection. One of the selection tasks that will be discussed in some

detail is the selection of an appropriate material from which to manufacture a

product or component. For the purposes of this worked example, let us assume

that we wish to build a shortlist of polymers that meet some numerical

specifications. We will endeavor to solve this problem using Lisp, and later in

this chapter will encode the same example in Prolog. The problem is specified

in detail in Box 10.1.

The first part of our program will be the setting up of some appropriate

materials data. There are a number of ways of doing this, including the creation

of a list called materials_database:

(defvar materials_database nil)

(setf materials_database '(

    (abs thermoplastic

        (impact_resistance 0.2)

        (flexural_modulus 2.7)

        (maximum_temperature 70))

    (polypropylene thermoplastic

        (impact_resistance 0.07)

        (flexural_modulus 1.5)

        (maximum_temperature 100))

    (polystyrene thermoplastic

        (impact_resistance 0.02)

        (flexural_modulus 3.0)

        (maximum_temperature 50))

    (polyurethane_foam thermoset

        (impact_resistance 1.06)

        (flexural_modulus 0.9)

        (maximum_temperature 80))

    (pvc thermoplastic

        (impact_resistance 1.06)

        (flexural_modulus 0.007)

        (maximum_temperature 50))

    (silicone thermoset

        (impact_resistance 0.02)

        (flexural_modulus 3.5)

        (maximum_temperature 240))))

The function defvar is used to declare the variable materials_database and

to assign to it an initial value, in this case nil. The function setf is used to

assign the list of materials properties to materials_database. In a real

application we would be more likely to read this information from a file than to

have it “hard-coded” into our program, but this representation will suffice for



the moment. The variable materials_database is used to store a list, each

element of which is also a list. Each of these nested lists contains information

about one polymer. The information is in the form of a name and category,

followed by further lists in which property names and values are stored. Since

materials_database does not have a predeclared size, materials and materials

properties can be added or removed with ease.

Our task is to define a Lisp function, to be called accept, which takes a

set of specifications as its parameters and returns a list of polymers (both their

names and types) that meet the specifications. To define accept, we will use

the function defun, whose purpose is to define a function. Like quote, defun

does not evaluate its arguments. We will define accept as taking a single

parameter, spec_list, that is a list of specifications to be met. Comments are

indicated by a semi-colon:

(defun accept (spec_list)

  (let ((shortlist (setup)))

    (if (atom (first spec_list))

;if the first element of spec_list is an atom then

;consider the specification

      (setf shortlist (meets_one spec_list shortlist))

;else consider each specification in turn

      (dolist (each_spec spec_list)

        (setf shortlist (meets_one each_spec shortlist))))

      shortlist)) ;return shortlist

In defining accept, we have assumed the form that the specification

spec_list will take. It will be either a list of the form:

(property minimum_value tolerance)

or a list made up of several such specifications:

((property1 minimum_value1 tolerance1) (property2 minimum_value2

tolerance2) (property3 minimum_value3 tolerance3)).

Where more than one specification is given within spec_list, they must all be

met.

The first function of accept is let, a function that allows us to declare

and initialize local variables. In our example the variable shortlist is

declared and assigned the value returned by the function setup, which we have

still to define. The variable shortlist is local in the sense that it exists only

between (let and the matching closing bracket.

There then follows a Lisp conditional statement. The if function is used

to test whether spec_list comprises one or many specifications. It does this



by ascertaining whether the first element of spec_list is an atom. If it is,

then spec_list contains only one specification, and the first element of

spec_list is expected to be the name of the property to be considered. If, on

the other hand, spec_list contains more than one specification, then its first

element will be a list representing the first specification, so the test for whether

the first element of spec_list is an atom will return nil (meaning “false”).

The general form of the if function is:

(if condition function1 function2)

which is interpreted as:

IF condition is true THEN do function1 ELSE do function2

In our example, function1 involves setting the value of shortlist to the

value returned by the function meets_one (yet to be defined), which is passed

the single specification and the current shortlist of materials as its parameters.

The “else” part of the conditional function (function2) is more complicated,

and comprises the dolist control function. In our example, dolist initially

assigns the first element of spec_list to the local variable each_spec. It then

evaluates all functions between (dolist and its associated closing bracket. In

our example this is only one function, which sets shortlist to the value

returned from the function meets_one. Since dolist is an iterative control

function, it will repeat the process with the second element of spec_list, and

so on until there are no elements left.

It is our intention that the function accept should return a list of polymers

that meet the specification or specifications. When a function is made up of

many functions, the value returned is the last value to be evaluated. To ensure

that the value returned by accept is the final shortlist of polymers, shortlist

is evaluated as the last line of the definition of accept. Note that the bracketing

is such that this evaluation takes place within the scope of the let function,

within which shortlist is a local variable.

We have seen that the first task performed within the function accept was

to establish the initial shortlist of polymers by evaluating the function setup.

This function produces a list of all polymers (and their types) that are known to

the system through the definition of materials_database. The setup function

is defined as follows:

(defun setup ()

  (let ((shortlist nil))

    (dolist (material materials_database)

      (setf shortlist (cons (cons (first material) (nth 1

                       material)) shortlist)))

    shortlist))



The empty brackets at the end of the first line of the function definition signify

that setup takes no parameters. As in the definition of accept, let is used to

declare a local variable and to give it an initial value of nil, i.e., the empty list.

Then dolist is used to consider each element of materials_database in turn

and to assign it to the local variable material. Each successive value of

material is a list comprising the polymer name, its type, and lists of properties

and values. The intention is to extract from this a list comprising a name and

type only, and to collect all such two-element lists together into the list

shortlist. The Lisp function cons adds an element to a list, and can therefore

be used to build up shortlist.

Assuming that its second parameter is a list, cons will return the result of

adding its first parameter to the front of that list. This can be illustrated by the

following example:

<cl>(cons 'a '(b c d))

(a b c d)

However, the use of cons is still valid even if the second parameter is not a list.

In such circumstances, a special type of two-element list, called a dotted pair,

is produced:

<cl>(cons 'a 'b)

(a.b)

In our definition of setup we have used two embedded calls to cons, one

of which produces a dotted pair while the other produces an ordinary list. The

most deeply embedded (or nested) call to cons is called first, as Lisp always

evaluates parameters to a function before evaluating the function itself. So the

first cons to be evaluated returns a dotted pair comprising the first element

of material (which is a polymer name) and the second element of material

(which is the polymer type). The second cons to be evaluated returns the result

of adding the dotted pair to the front of shortlist. Then shortlist is

updated to this value by the call of setf. As in the definition of accept,

shortlist is evaluated after the dolist loop has terminated, to ensure that

setup returns the last value of shortlist.

As we have already seen, accept passes a single specification, together

with the current shortlist, as parameters to the function meets_one. It is this

function which performs the most important task in our program, namely,

deciding which materials in the shortlist meet the specification:

(defun meets_one (spec shortlist)

  (dolist (material shortlist)



    (let ((actual (get_database_value (first spec) (first

                   material))))

      (if (< actual (- (nth 1 spec) (nth 2 spec)))

        (setf shortlist (remove material shortlist)))))

;;pseudo-C equivalent:

;;if actual < (value - tolerance)

;;shortlist=shortlist without material

shortlist)

We have already met most of the Lisp functions that make up meets_one.

In order to consider each material–type pair in the shortlist, dolist is used.

The actual value of a property (such as maximum operating temperature) for a

given material is found by passing the property name and the material name as

arguments to the function get_database_value, which has yet to be defined.

The value returned from get_database_value is stored in the local variable

actual. The value of actual is then compared with the result of subtracting

the specified tolerance from the specified target value. In our example, the

tolerance is used simply to make the specification less severe. It may be

surprising at first to see that subtraction and arithmetic comparison are both

handled as functions within Lisp. Nevertheless, this treatment is consistent

with other Lisp operations. The code includes a comment showing the

conventional positioning of the operators in other languages such as C. Note

that nth is used in order to extract the second and third elements of spec,

which represent the specification value and tolerance, respectively.

If the database value, actual, of the property in question is less than the

specification value minus the tolerance, then the material is removed from the

shortlist. The Lisp function remove is provided for this purpose. Because the

arguments to the function are evaluated before the function itself, it follows

that remove is not able to alter shortlist itself. Rather it returns the list that

would be produced if material were removed from a copy of shortlist.

Therefore, setf has to be used to set shortlist to this new value.

As in our other functions, shortlist is evaluated, so its value will be

returned as the value of the function meets_one. At a glance, it may appear

that this is unnecessary, as setf would return the value of shortlist.

However, it is important to remember that this function is embedded within

other functions. The last function to be evaluated is in fact dolist. When

dolist terminates by reaching the end of shortlist, it returns the empty list,

(), which is clearly not the desired result.

There now remains only one more function to define in order to make our

Lisp program work, namely, get_database_value. As mentioned previously,

get_database_value should return the actual value of a property for a

material, when the property and material names are passed as arguments.

Common Lisp provides us with the function find, which is ideally suited to



this task. The syntax of find is best illustrated by example. The following

function call will search the list materials_database until it finds a list whose

first element is identically equal (eq) to the value of material:

(find material materials_database :test #'eq :key #'first)

Other tests and keys can be used in conjunction with find, as defined in [1].

Having found the data corresponding to the material of interest, the name and

type can be removed using nthcdr, and find can be called again in order to

find the list corresponding to the property of interest. The function

get_database_value can therefore be written as follows:

(defun get_database_value (prop_name material)

  (nth 1 (find prop_name

    (nthcdr 2

      (find material materials_database :test #'eq :key

       #'first))

     :test #'eq :key #'first)))

We are now in a position to put our program together, as shown in Box

10.2, and to ask Lisp some questions about polymers:

<cl> (accept'(maximum_temperature 100 5))

((SILICONE . THERMOSET) (POLYPROPYLENE . THERMOPLASTIC))

<cl> (accept '((maximum_temperature 100 5)(impact_resistance

      0.05 0)))

((POLYPROPYLENE . THERMOPLASTIC))

Once the function definitions have been evaluated, each function (such as

accept) becomes known to Lisp in the same way as all of the predefined

functions such as setf and dolist. Therefore, we have extended the Lisp

language so that it has become specialized for our own specific purposes. It is

this ability that makes Lisp such a powerful and flexible language. If a

programmer does not like the facilities that Lisp offers, he or she can alter the

syntax by defining his or her own functions, thereby producing an alternative

language. This is the basis upon which the Lisp-based KBS toolkits described

in Sections 10.1 and 10.3 are built. These environments offer the programmer

not only a Lisp interpreter, but also a vast number of Lisp functions which

together provide a language for object-oriented programming (Chapter 4) and

rule-based programming (Chapter 2). In addition, an attractive user interface is

normally provided, and this too is implemented as an extension of the Lisp

language.



(defvar materials_database nil)
(setf materials_database '(
                           (abs thermoplastic
                                   (impact_resistance 0.2)
                                   (flexural_modulus 2.7)
                                   (maximum_temperature 70))
                           (polypropylene thermoplastic
                                   (impact_resistance 0.07)
                                   (flexural_modulus 1.5)
                                   (maximum_temperature 100))
                           (polystyrene thermoplastic
                                   (impact_resistance 0.02)
                                   (flexural_modulus 3.0)
                                   (maximum_temperature 50))
                           (polyurethane_foam thermoset
                                   (impact_resistance 1.06)
                                   (flexural_modulus 0.9)
                                   (maximum_temperature 80))
                           (pvc thermoplastic
                                   (impact_resistance 1.06)
                                   (flexural_modulus 0.007)
                                   (maximum_temperature 50))
                           (silicone thermoset
                                   (impact_resistance 0.02)
                                   (flexural_modulus 3.5)
                                   (maximum_temperature 240))))

(defun accept (spec_list)
  (let ((shortlist (setup)))
    (if (atom (first spec_list))
;;if the first element of spec_list is an atom then consider the
;;specification
      (setf shortlist (meets_one spec_list shortlist))
;;else consider each specification in turn
      (dolist (each_spec spec_list)
        (setf shortlist (meets_one each_spec shortlist))))
      shortlist)) ;return shortlist

(defun setup ()
  (let ((shortlist nil))
    (dolist (material materials_database)
      (setf shortlist (cons (cons (first material) (nth 1 material))
shortlist)))
    shortlist))

(defun meets_one (spec shortlist)
  (dolist (material shortlist)
    (let ((actual (get_database_value (first spec) (first material))))
      (if (< actual (- (nth 1 spec) (nth 2 spec)))
        (setf shortlist (remove material shortlist)))))

;;pseudo-C equivalent:
;;if actual< (value - tolerance)
;;shortlist=shortlist without material

shortlist)

(defun get_database_value (prop_name material)
  (nth 1 (find prop_name
           (nthcdr 2
             (find material materials_database :test #'eq :key
               #'first))
           :test #'eq :key #'first)))

Box 10.2   A worked example in Lisp



10.6 Prolog

10.6.1 Background

Prolog is an AI language that can be programmed declaratively. It is, therefore,

very different from Lisp, which is a procedural (or, more precisely, functional)

language that can be used to build declarative applications such as expert

system shells. As we will see, although Prolog can be used declaratively, an

appreciation of the procedural behavior of the language is needed. In other

words, programmers need to understand how Prolog uses the declarative

information that they supply.

Prolog is suited to symbolic (rather than numerical) problems, particularly

logical problems involving relationships between items. It is also suitable for

tasks that involve data lookup and retrieval, as pattern-matching is fundamental

to the functionality of the language. Because Prolog is so different from other

languages in its underlying concepts, many newcomers find it a difficult

language. Whereas most languages can be learned rapidly by someone with

computing experience, Prolog is perhaps more easily learned by someone who

has never programmed.

10.6.2 A worked example

The main building blocks of Prolog are lists (as in Lisp) and relations, which

can be used to construct clauses. We will demonstrate the declarative nature of

Prolog programs by constructing a small program for selecting polymers from

a database of polymer properties. The task will be identical to that used to

illustrate Lisp, namely selecting from a database those polymers which meet a

numerical specification or set of specifications. The problem is described in

more detail in Box 10.1. We have already said that Prolog is good for data

lookup, so let us begin by creating a small database containing some properties

of materials. Our database will comprise a number of clauses such as this one

involving the relation materials_database:

materials_database(polypropylene, thermoplastic,

[maximum_temperature, 100]).

The above clause means that the three items in parentheses are related

through the relation called materials_database. The third argument of the

clause is a list (denoted by square brackets), while the first two arguments are

atoms. The clause is our first piece of Prolog code, and it is purely declarative.

We have given the computer some information about polypropylene, and this

is sufficient to produce a working (though rather trivial) program. Even though

we have not given Prolog any procedural information (i.e., we haven’t told it



how to use the information about polypropylene), we can still ask it some

questions. Having typed the above line of Prolog code, not forgetting the

period, we can ask Prolog the question:

“What type of material is polypropylene?”

Depending on the Prolog implementation, the screen prompt is usually ?-,

indicating that what follows is treated as a query. Our query to Prolog could be

expressed as:

?- materials_database(polypropylene, Family, _).

Prolog would respond:

Family = thermoplastic

This simple example illustrates several features of Prolog. Our program is

a single line of code, which states that polypropylene is a material of type

thermoplastic and has a maximum operating temperature of 100 (°C assumed).

Thus, the program is purely declarative. We have told Prolog what we know

about polypropylene, but have given Prolog no procedural instructions about

what to do with that information. Nevertheless, we were able to ask a sensible

question and receive a sensible reply. Our query includes some distinct data

types. As polypropylene began with a lower-case letter, it was recognized as

a constant, whereas Family was recognized as a variable by virtue of

beginning with an upper-case letter. These distinctions stem from the following

rules, which are always observed:

• variables in Prolog can begin either with an uppercase letter or with an

underscore character (e.g.,  X, My_variable, _another are all valid

variable names); and

• constants begin with a lower case letter (e.g.,  adrian, polypropylene,

pi are all valid names for constants).

When presented with our query, Prolog has attempted to match the query

to the relations (only one relation in our example) that it has stored. In order

for any two terms to match, either:

• the two terms must be identical; or



• it must be possible to set (or instantiate) any variables in such a way that

the two terms become identical.

If Prolog is trying to match two or more clauses and comes across multiple

occurrences of the same variable name, it will always instantiate them

identically. The only exception to this rule is the underscore character, which

has a special meaning when used on its own. Each occurrence of the

underscore character’s appearing alone means:

I don’t care what ‘_’ matches so long as it matches something.

Multiple occurrences of the character can be matched to different values. The

‘_’ character is used when the value of a variable is not needed in the

evaluation of a clause. Thus:

materials_database(polypropylene, thermoplastic,

[maximum_temperature, 100]).

matches:

materials_database(polypropylene, Family, _).

The relation name, materials_database, and its number of arguments (or its

arity) are the same in each case. The first argument to materials_database is

identical in each case, and the remaining two can be made identical by

instantiating the variable Family to thermoplastic and the underscore

variable to the list [maximum_temperature, 100]. We don’t care what the

underscore variable matches, so long as it matches something.

Now let us see if we can extend our example into a useful program. First

we will make our database more useful by adding some more data:

materials_database(abs, thermoplastic,

  [[impact_resistance, 0.2],

   [flexural_modulus, 2.7],

   [maximum_temperature, 70]]).

materials_database(polypropylene, thermoplastic,

  [[impact_resistance, 0.07],

   [flexural_modulus, 1.5],

   [maximum_temperature, 100]]).

materials_database(polystyrene, thermoplastic,

  [[impact_resistance, 0.02],

   [flexural_modulus, 3.0],

   [maximum_temperature, 50]]).

materials_database(polyurethane_foam, thermoset,

  [[impact_resistance, 1.06],



   [flexural_modulus, 0.9],

   [maximum_temperature, 80]]).

materials_database(pvc, thermoplastic,

  [[impact_resistance, 1.06],

   [flexural_modulus, 0.007],

   [maximum_temperature, 50]]).

materials_database(silicone, thermoset,

  [[impact_resistance, 0.02],

   [flexural_modulus, 3.5],

   [maximum_temperature, 240]]).

Our aim is to build a program that can select from the database those

materials that meet a set of specifications. This requirement can be translated

directly into a Prolog rule:

accept(Material,Type,Spec_list):-

  materials_database(Material,Type,Stored_data),

  meets_all_specs(Spec_list,Stored_data).

The :- symbol stands for the word “if” in the rule. Thus, the above rule means:

accept a material, given a list of specifications, if that material is in the

database and if the stored data about the material meet the specifications.

We now have to let Prolog know what we mean by a material meeting all

of the specifications in the user’s specification list. The simplest case is when

there are no specifications at all, in other words, the specification list is empty.

In this case the (nonexistent) specifications will be met regardless of the stored

data. This fact can be simply coded in Prolog as:

meets_all_specs([],_).

The next most straightforward case to deal with is when there is only one

specification, which we can code as follows:

meets_all_specs(Spec_list, Data):-

  Spec_list= [Spec1|Rest],

  atom(Spec1),

  meets_one_spec([Spec1|Rest],Data).

This rule introduces the list separator |, which is used to separate the first

element of a list from the rest of the list. As an example, consider the following

Prolog query:



?- [Spec1|Rest] = [flexural_modulus, 1.0, 0.1].

Spec1 = flexural_modulus, Rest = [1,0.1]

The assignments to the variables immediately before and after the list separator

are analogous to taking the first and rest of a list in Lisp. Consistent with

this analogy, the item immediately following a | symbol will always be

instantiated to a list. Returning now to our rule, the first condition requires

Prolog to try to match Spec_list to the template [Spec1|Rest]. If the match

is successful, Spec1 will become instantiated to the first element of Spec_list

and Rest instantiated to Spec_list with its first element removed.

We could make our rule more compact by combining the first condition of

the rule with the arguments to the goal:

meets_all_specs([Spec1|Rest], Data):-

  atom(Spec1),

  meets_one_spec([Spec1|Rest],Data).

If the match is successful, we need to establish whether Spec_list contains

one or many specifications. This can be achieved by testing the type of its first

element. If the first element is an atom, the user has supplied a single

specification, whereas a list indicates that more than one specification has been

supplied. All this assumes that the intended format was used for the query. The

built-in Prolog relation atom succeeds if its argument is an atom, and otherwise

it fails.

We have not yet told Prolog what is meant by the relation called

meets_one_spec, but we will do so shortly. Next we will consider the general

case of the user’s supplying several specifications:

meets_all_specs([Spec1|Rest],Data):-

  not atom(Spec1),

  meets_one_spec(Spec1,Data),

  meets_all_specs(Rest,Data).

An important feature demonstrated by this rule is the use of recursion, that is,

the reuse of meets_all_specs within its own definition. Our rule says that the

stored data meets the user’s specification if each of the following is satisfied:

• we can separate the first specification from the remainder;

• the first specification is not an atom;

• the stored data meet the first specification;

• the stored data meet all of the remaining specifications.



When presented with a list of specifications, individual specifications will be

stripped off the list one at a time, and the rule will be deemed to have been

satisfied if the stored data satisfy each of them.

Having dealt with multiple specifications by breaking down the list into a

set of single specifications, it now remains for us to define what we mean by a

specification’s being met. This is coded as follows:

meets_one_spec([Property, Spec_value, Tolerance], List):-

  member([Property, Actual_value], List),

  Actual_value>Spec_value-Tolerance.

As in the Lisp example, we explicitly state that a user’s specification must be

in a fixed format, i.e., the material property name, its target value, and the

tolerance of that value must appear in sequence in a list. A new relation called

member is introduced in order to check that the stored data for a given material

include the property being specified, and to assign the stored value for that

property to Actual_value. If the relation member is not built into our particular

Prolog implementation, we will have to define it ourselves. Finally, the stored

value is deemed to meet the specification if it is greater than the specification

minus the tolerance.

The definition of member (taken from [2]) is similar in concept to our

definition of meets_all_specs. The definition is that an item is a member of a

list if that item is the first member of the list or if the list may be split so that

the item is the first member of the second part of the list. This can be expressed

more concisely and elegantly in Prolog than it can in English:

member(A,[A|L]).

member(A,[_|L]):-member(A,L).

Our program is now complete and ready to be interrogated. The program

is shown in full in Box 10.3. In order to run a Prolog program, Prolog must be

set a goal that it can try to prove. If successful, it will return all of the sets of

instantiations necessary to satisfy that goal. In our case the goal is to find the

materials that meet some specifications.

Now let us test our program with some example queries (or goals). First

we will determine which materials have a maximum operating temperature of

at least 100°C, with a 5°C tolerance:

?- accept(M, T, [maximum_temperature, 100, 5]).

M = polypropylene, T = thermoplastic;

M = silicone, T = thermoset;

no



The word no at the end indicates that Prolog’s final attempt to find a match to

the specification, after it had already found two such matches, was

unsuccessful. We can now extend our query to find all materials which, as well

as meeting the temperature requirement, have an impact resistance of at least

0.05 kJ/m:

?- accept(M,T,[[maximum_temperature, 100, 5],

   [impact_resistance, 0.05, 0]]).

M = polypropylene, T = thermoplastic;

no

materials_database(abs, thermoplastic,
  [[impact_resistance, 0.2],
   [flexural_modulus, 2.7],
   [maximum_temperature, 70]]).
materials_database(polypropylene, thermoplastic,
  [[impact_resistance, 0.07],
   [flexural_modulus, 1.5],
   [maximum_temperature, 100]]).
materials_database(polystyrene, thermoplastic,
  [[impact_resistance, 0.02],
   [flexural_modulus, 3.0],
   [maximum_temperature, 50]]).
materials_database(polyurethane_foam, thermoset,
  [[impact_resistance, 1.06],
   [flexural_modulus, 0.9],
   [maximum_temperature, 80]]).
materials_database(pvc, thermoplastic,
  [[impact_resistance, 1.06],
   [flexural_modulus, 0.007],
   [maximum_temperature, 50]]).
materials_database(silicone, thermoset,
  [[impact_resistance, 0.02],
   [flexural_modulus, 3.5],
   [maximum_temperature, 240]]).

accept(Material,Type,Spec_list):-
  materials_database(Material,Type,Stored_data),
  meets_all_specs(Spec_list,Stored_data).

meets_all_specs([],_).
meets_all_specs([Spec1|Rest],Data):-
  atom(Spec1),
  meets_one_spec([Spec1|Rest],Data).
meets_all_specs([Spec1|Rest],Data):-
  not atom(Spec1),
  meets_one_spec(Spec1,Data),
  meets_all_specs(Rest,Data).

meets_one_spec([Property, Spec_value, Tolerance], List):-
  member([Property, Actual_value], List),
  Actual_value>Spec_value-Tolerance.

member(A,[A|L]).
member(A,[_|L]):-member(A,L).

Box 10.3  A worked example in Prolog



10.6.3 Backtracking in Prolog

So far we have seen how to program declaratively in Prolog, without giving

any thought to how Prolog uses the declarative program to decide upon a

sequential series of actions. In the example shown in the above section, it was

not necessary to know how Prolog used the information supplied to arrive at

the correct answer. This represents the ideal of declarative programming in

Prolog. However, the Prolog programmer invariably needs to have an idea of

the procedural behavior of Prolog in order to ensure that a program performs

correctly and efficiently. In many circumstances it is possible to type a valid

declarative program, but for the program to fail to work as anticipated because

the programmer has failed to take into account how Prolog works.

Let us start by considering our last example query to Prolog:

?- accept(M,T,[[maximum_temperature, 100, 5],

   [impact_resistance, 0.05, 0]]).

Prolog treats this query as a goal, whose truth it attempts to establish. As the

goal contains some variables (M and T), these will need to be instantiated in

order to achieve the goal. Prolog’s first attempt at achieving the goal is to see

whether the program contains any clauses that directly match the query. In our

example it does not, but it does find a rule with the accept relation as its

conclusion:

accept(Material,Type,Spec_list):-

  materials_database(Material,Type,Stored_data),

  meets_all_specs(Spec_list,Stored_data).

Prolog now knows that if it can establish the two conditions with M

matched to Material, T matched to Type, and Spec_list instantiated to

[[maximum_temperature, 100, 5], [impact_resistance, 0.05, 0]], the

goal is achieved. The two conditions then become goals in their own right. The

first one, involving the relation materials_database, is easily achieved, and

the second condition:

meets_all_specs(Spec_list,Stored_data).

becomes the new goal. Prolog’s first attempt at satisfying this goal is to look at

the relation:

meets_all_specs([],_).



accept(Material, Type, Spec_list)

materials_database(Material,
Type, Stored_data)

Material=abs
Type=thermoplastic
Stored_data=[[impact_resistance, 0.2],
                       [flexural_modulus, 2.7],
                       [maximum_temperature, 70]]

meets_all_specs(Spec_list, Stored_data)

meets_all_specs([Spec1|Rest], Data)

not atom(Spec1)

meets_one_spec(Spec1, Data)

 Spec_list=[[maximum_temperature, 100, 5],
                   [impact_resistance, 0.05, 0]])

Success

Success

Success

meets_all_specs([],_)

Success

Success

Property=maximum_temperature
Spec_value=100
Tolerance=5
List=[[impact_resistance, 0.2],
          [flexural_modulus, 2.7],
          [maximum_temperature, 70]]

Success

member([Property, Actual_value], List)

Actual_value=70

Actual_value>Spec_value-Tolerance Failure

meets_one_spec([Property, Spec_value, Tolerance], List)

Failure

Spec1=[maximum_temperature, 100, 5]
Rest=[[impact_resistance, 0.05, 0]]
Data=[[impact_resistance, 0.2],  [flexural_modulus, 2.7],
           [maximum_temperature, 70]]

Success

atom(Spec1) Failure

meets_all_specs([Spec1|Rest], Data)

Spec1=[maximum_temperature, 100, 5]
Rest=[[impact_resistance, 0.05, 0]]
Data=[[impact_resistance, 0.2], [flexural_modulus, 2.7],
           [maximum_temperature, 70]]

Backtrack

Backtrack

Backtrack

Backtrack

Backtrack

Backtrack

Backtrack

Backtrack

Backtrack

3 cycles

Figure 10.1   Backtracking in Prolog



However, this doesn’t help as Spec_list is not instantiated to an empty list.

Prolog must at this point backtrack to try another way of achieving the current

sub-goal. In other words, Prolog remembers the stage where it was before the

failed attempt and resumes its reasoning along another path from there. Figure

10.1 shows the reasoning followed by Prolog when presented with the goal:

?- accept(M,T,[[maximum_temperature, 100, 5],

   [impact_resistance, 0.05, 0]]).

The illustration shows Prolog’s first attempt at a solution, namely, M=abs

and T=thermoplastic, and the steps that are followed before rejecting these

particular instantiations as a solution. The use of backtracking is sensible up

until the point where it is discovered that the maximum operating temperature

of ABS (acrylonitrile-butadiene-styrene) is too low. When this has been

determined, we would ideally like the program to reject ABS as a candidate

material and move on to the next contender. However, Prolog does not give up

so easily. Instead, it backtracks through every step that it has taken, checking

to see whether there may be an alternative solution (or set of instantiations)

that could be used. Ultimately it arrives back at the materials_database

relation, and Material and Type become reinstantiated.

Prolog provides two facilities for controlling backtracking. They can be

used to increase efficiency and to alter the meaning of a program. These

facilities are:

• the order of Prolog code;

• the use of the cut operator.

Prolog tries out possible solutions to a problem in the order in which they are

presented. Thus, in our example, Prolog always starts by assuming that the user

has supplied a single materials specification. Only when it discovers that this is

not the case does Prolog consider that the user may have submitted a list of

several specifications. This is an appropriate ordering, as it is sensible to try the

simplest solution first. In general, the ordering of code will affect the

procedural meaning of a Prolog program (i.e., how the problem will be solved),

but not its declarative meaning. However, as soon as the Prolog programmer

starts to use the second facility, namely, the cut operator, the order of Prolog

clauses can affect both the procedural and the declarative meaning of

programs.

In order to prevent Prolog from carrying out unwanted backtracking, the

cut symbol (!) can be used. Cuts can be inserted as though they were goals in

their own right. When Prolog comes across a cut, backtracking is prevented.

Cuts can be used to make our example program more efficient by forcing



Prolog to immediately try a new material once it has established whether or not

a given material meets the specification. The revised program, with cuts

included, is shown in Box 10.4 (the setting up of the materials_database

relations is unchanged and has been omitted).

Although the discussion so far has regarded the cut as a means of

improving efficiency by eliminating unwanted backtracking, cuts can also alter

the declarative meaning of programs. This can be illustrated by referring once

again to our materials selection program. The program contains three

alternative means of achieving the meets_all_specs goal. The first deals with

the case where the first argument is the empty list. The two others take

identical arguments, and a distinction is made based upon whether the first

element of the first argument (a list) is an atom. If the element is an atom, then

the alternative case need not be considered, and this can be achieved using a

cut (note that % indicates a comment):

meets_all_specs([Spec1|Rest],Data):-

  atom(Spec1),!, % cut placed here

  meets_one_spec([Spec1|Rest],Data).

meets_all_specs([Spec1|Rest],Data):-

  not atom(Spec1), % this test is now redundant

  meets_one_spec(Spec1,Data),

  meets_all_specs(Rest,Data).

Because of the positioning of the cut, if:

atom(Spec1)

accept(Material,Type,Spec_list):-
  materials_database(Material,Type,Stored_data),
  meets_all_specs(Spec_list,Stored_data).

meets_all_specs([],_):-!.

meets_all_specs([Spec1|Rest],Data):-
  atom(Spec1),!,
  meets_one_spec([Spec1|Rest],Data).

meets_all_specs([Spec1|Rest],Data):-
  meets_one_spec(Spec1,Data),
  meets_all_specs(Rest,Data).

meets_one_spec([Property, Spec_value, Tolerance], List):-
  member([Property, Actual_value], List),!,
  Actual_value>Spec_value-Tolerance.

member(A,[A|L]).
member(A,[_|L]):-member(A,L).

Box 10.4  A Prolog program with cuts



is successful, then the alternative rule will not be considered. Therefore, the

test:

not atom(Spec1)

is now redundant and can be removed. However, this test can only be removed

provided that the cut is included in the previous rule. This example shows that

a cut can be used to create rules of the form:

IF ... THEN ... ELSE

While much of the above discussion has concentrated on overcoming the

inefficiencies that backtracking can introduce, it is important to remember that

backtracking is essential for searching out a solution, and the elegance of

Prolog in many applications lies in its ability to backtrack without the

programmer’s needing to program this behavior explicitly.

10.7 Comparison of AI languages

For each AI language, the worked example gives some feel for the language

structure and syntax. However, it does not form the basis for a fair comparison

of their merit. The Prolog code is the most compact and elegant solution to the

problem of choosing materials which meet a specification, because Prolog is

particularly good at tasks that involve pattern matching and retrieval of data.

However, the language places a number of constraints on the programmer,

particularly in committing him or her to one particular search strategy. As we

have seen, the programmer can control this strategy to some extent by

judicious ordering of clauses and use of the cut mechanism. Prolog doesn’t

need a structure for iteration, e.g., FOR x FROM 1 TO 10, as recursion can be

used to achieve the same effect.

Our Lisp program has a completely different structure from the Prolog

example, as it has been programmed procedurally (or, more precisely,

functionally). The language provides excellent facilities for manipulating

symbols and lists of symbols. It is a powerful language that allows practically

any reasoning strategy to be implemented. In fact, it is so flexible that it can be

reconfigured by the programmer, although the worked example does not do

justice to this flexibility. In particular, the materials database took the form of a

long, flat list, whereas there are more structured ways of representing the data.

As we have seen in Chapter 4, and will see in Chapter 12, object-oriented

programming allows a hierarchical representation of materials properties.



10.8 Summary

Ease of use

The following tools and languages are arranged in order of increasing ease of

use for building a simple knowledge-based system:

• conventional languages;

• AI languages;

• AI toolkits and libraries;

• expert system shells.

Sophistication

While expert system shells are suitable for some simple problems, most are

inflexible and have only limited facilities for knowledge representation. They

are difficult to adapt to complex real-world problems, where AI languages or

AI toolkits are usually more appropriate.

Characteristics of AI languages

The two AI languages discussed here, Lisp and Prolog, are both well-suited to

problems involving the manipulation of symbols. However, they are less suited

than conventional languages to numerical problems. In contrast with

conventional languages, the same variable can be used to hold a variety of data

types. The AI languages allow various types of data to be combined into lists,

and they provide facilities for list manipulation.

Prolog can be used declaratively and includes a backtracking mechanism

that allows it to explore all possible ways in which a goal might be achieved.

The programmer can exercise control over Prolog’s backtracking by careful

ordering of clauses and through the use of cuts.

In Lisp, lists are not only used for data, but also constitute the programs

themselves. Lisp functions are represented as lists containing a function name

and its arguments. As every Lisp function returns a value, the arguments

themselves can be functions. Both languages are flexible, elegant, and concise.

References

1. Steele, G. L., Common Lisp: the language, 2nd ed., Digital Press, 1990.

2. Bratko, I., Prolog Programming for Artificial Intelligence, 3rd ed.,

Longman, 2000.



 Further reading

• Bratko, I., Prolog Programming for Artificial Intelligence, 3rd ed.,

Longman, 2000.

• Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 4th ed.,

Springer-Verlag, 1994.

• Covington, M. A., Nute, D., and Vellino, A., Prolog Programming in

Depth, Prentice Hall, 1996.

• Graham, P., The ANSI Common Lisp Book, Prentice Hall, 1995.

• Hasemer, T. and Domingue, J., Common Lisp Programming for Artificial

Intelligence, Addison-Wesley, 1989.

• Kreiker, P., Visual Lisp: guide to artful programming, Delmar, 2000.

• Steele, G. L., Common Lisp: the language, 2nd ed., Digital Press, 1990.

• Sterling, L. and Shapiro, E., The Art of Prolog: advanced programming

techniques, 2nd ed., MIT Press, 1994.



Chapter eleven

Systems for interpretation
and diagnosis

11.1 Introduction

Diagnosis is the process of determining the nature of a fault or malfunction,

based on a set of symptoms. Input data (i.e., the symptoms) are interpreted and

the underlying cause of these symptoms is the output. Diagnosis is, therefore, a

special case of the more general problem of interpretation. There are many

circumstances in which we may wish to interpret data, other than diagnosing

problems. Examples include the interpretation of images (e.g., optical, x-ray,

ultrasonic, electron microscopic), meters, gauges, and statistical data (e.g.,

from surveys of people or from counts registered by a radiation counter). This

chapter will examine some of the intelligent systems techniques that are used

for diagnosis and for more general interpretation problems. The diagnosis of

faults in a refrigerator will be used as an illustrative example, and the

interpretation of ultrasonic images from welds in steel plates will be used as a

detailed case study.

Since the inception of expert systems in the late 1960s and early 1970s,

diagnosis and interpretation have been favorite application areas. Some of

these early expert systems were quite successful and became “classics.” Three

examples of these early successes are outlined below.

MYCIN

This was a medical system for diagnosing infectious diseases and for selecting

an antibiotic drug treatment. It is frequently referenced because of its novel (at

the time) use of certainty theory (see Chapter 3).

PROSPECTOR

This system interpreted geological data and made recommendations of suitable

sites for mineral prospecting. The system made use of Bayesian updating as a

means of handling uncertainty (see Chapter 3).



DENDRAL

This system interpreted mass-spectrometry data, and was notable for its use of

a three-phase approach to the problem:

Phase 1: plan

Suggest molecular substructures that may be present to guide Phase 2.

Phase 2: generate hypotheses

Generate all plausible molecular structures.

Phase 3: test

For each generated structure, compare the predicted and actual data.

Reject poorly matching structures and place the remainder in rank order.

A large number of intelligent systems has been produced more recently,

using many different techniques, to tackle a range of diagnosis and

interpretation problems in science, technology, and engineering. Rule-based

diagnostic systems have been applied to power plants [1], electronic circuits

[2], furnaces [3], an oxygen generator for use on Mars [4], and batteries in the

Hubble space telescope [5]. Bayesian updating and fuzzy logic have been used

in nuclear power generation [6] and automobile assembly [7], respectively.

Neural networks have been used for pump diagnosis [8], and a neural network–

rule-based system hybrid has been applied to the diagnosis of electrical

discharge machines [9]. One of the most important techniques for diagnosis is

case-based reasoning (CBR), described in Chapter 6. CBR has been used to

diagnose faults in electronic circuits [10], emergency battery backup systems

[11], and software [12]. We will also see in this chapter the importance of

models of physical systems such as power plants [13]. Applications of

intelligent systems for the more general problem of interpretation include the

interpretation of drawings [14], seismic data [15], optical spectra [16], and

ultrasonic images [17]. The last is a hybrid system, described in a detailed case

study in Section 11.5.

11.2 Deduction and abduction for diagnosis

Given some information about the state of the world, we can often infer

additional information. If this inference is logically correct (i.e., guaranteed to

be true given that the starting information is true), then this process is termed

deduction. Deduction is used to predict an effect from a given cause (see

Chapter 1). Consider, for instance, a domestic refrigerator (Figure 11.1). If a



refrigerator is unplugged from the electricity supply, we can confidently

predict that, after a few hours, the ice in the freezer will melt and the food in

the main compartment will no longer be chilled. The new assertion (that the ice

melts) follows logically from the given facts and assertions (that the power is

disconnected). Imagine that we have an object representation of a refrigerator,

with an attribute state that is a list describing the current state of the

refrigerator. If my refrigerator is represented by the object instance my_fridge,

then a simple deductive rule might be as follows, where a question mark

denotes a matched variable, as in Section 2.6:

/* Rule 11.1 */

IF my_fridge.state contains "unplugged at time ?t"

AND (time_now - ?t) > 5 hours

THEN my_fridge.ice := melted

AND  my_fridge.food_temperature := room_temperature

While deductive rules have an important role to play, they are inadequate

on their own for problems of diagnosis and interpretation. Instead of

determining an effect given a cause, diagnosis and interpretation involve

finding a cause given an effect. This is termed abduction (see also Chapters 1

and 3) and involves drawing a plausible inference rather than a certain one.

Thus, if we observe that the ice in our freezer has melted and the food has

warmed to room temperature, we could infer from Rule 11.1 that our

Ice cream

Refrigerant
evaporates

Refrigerant
condenses

Cooling
fins

Compressor

Valve
Freezer

Figure 11.1   A domestic refrigerator



refrigerator is unplugged. However this is clearly an unsound inference as

there may be several other reasons for the observed effects. For instance, by

reference to Rules 11.2 and 11.3 below, we might, respectively, infer that the

fuse has blown or that there is a power blackout:

/* Rule 11.2 */

IF my_fridge.state contains "fuse blown at time ?t"

AND (time_now - ?t) > 5 hours

THEN my_fridge.ice := melted

AND  my_fridge.food_temperature := room_temperature

/* Rule 11.3 */

IF my_fridge.state contains "power blackout at time ?t"

AND (time_now - ?t) > 5 hours

THEN my_fridge.ice := melted

AND  my_fridge.food_temperature := room_temperature

So, given the observed symptoms about the temperature within the

refrigerator, the cause might be that the refrigerator is unplugged, or it might

be that the fuse has blown, or there might be a power blackout. Three different

approaches to tackling the uncertainty of abduction are outlined below.

Exhaustive testing

We could use rules where the condition parts exhaustively test for every

eventuality. Rules are, therefore, required of the form:

IF my_fridge.state contains "unplugged at time ?t"

AND (time_now - ?t) > 5 hours

AND NOT(a power blackout)

AND NOT(fuse blown)

AND ...

AND ...

THEN my_fridge.ice := melted

AND  my_fridge.food_temperature := room_temperature

This is not a practical solution except for trivially simple domains, and the

resulting rule base would be difficult to modify or maintain. In the RESCU

system [18], those rules which can be used with confidence for both deduction

and abduction are labeled as reversible. Such rules describe a one-to-one

mapping between cause and effect, such that no other causes can lead to the

same effect.

Explicit modeling of uncertainty

The uncertainty can be explicitly represented using techniques such as those

described in Chapter 3. This is the approach that was adopted in MYCIN and



PROSPECTOR. As noted in Chapter 3, many of the techniques for

representing uncertainty are founded on assumptions that are not necessarily

valid.

Hypothesize-and-test

A tentative hypothesis can be put forward for further investigation. The

hypothesis may be subsequently confirmed or abandoned. This hypothesize-

and-test approach, which was used in DENDRAL, avoids the pitfalls of finding

a valid means of representing and propagating uncertainty.

There may be additional sources of uncertainty, as well as the intrinsic

uncertainty associated with abduction. For example, the evidence itself may be

uncertain (e.g., we may not be sure that the food isn’t cool) or vague (e.g., just

what does “cool” or “chilled” mean precisely?).

The production of a hypothesis that may be subsequently accepted,

refined, or rejected is similar, but not identical, to nonmonotonic logic. Under

nonmonotonic logic, an earlier conclusion may be withdrawn in the light of

new evidence. Conclusions that can be withdrawn in this way are termed

defeasible, and a defeasible conclusion is assumed to be valid until such time

as it is withdrawn.

In contrast, the hypothesize-and-test approach involves an active search

for supporting evidence once a hypothesis has been drawn. If sufficient

evidence is found, the hypothesis becomes held as a conclusion. If contrary

evidence is found then the hypothesis is rejected. If insufficient evidence is

found, the hypothesis remains unconfirmed.

This distinction between nonmonotonic logic and the hypothesize-and-test

approach can be illustrated by considering the case of our nonworking

refrigerator. Suppose that the refrigerator is plugged in, the compressor is

silent, and the light does not come on when the door is opened. Using the

hypothesize-and-test approach, we might produce the hypothesis that there is a

power blackout. We would then look for supporting evidence by testing

whether another appliance is also inoperable. If this supporting evidence were

found, the hypothesis would be confirmed. If other appliances were found to

be working, the hypothesis would be withdrawn. Under nonmonotonic logic,

reasoning would continue based on the assumption of a power blackout until

the conclusion is defeated (if it is defeated at all). Confirmation is neither

required nor sought in the case of nonmonotonic reasoning. Implicitly, the

following default assumption is made:

IF an electrical appliance is dead,

AND there is no proof that there is not a power failure

THEN by default, we can infer that there is a power failure



The term default reasoning describes this kind of implicit rule in

nonmonotonic logic.

11.3 Depth of knowledge

11.3.1 Shallow knowledge

The early successes of diagnostic expert systems are largely attributable to the

use of shallow knowledge, expressed as rules. This is the knowledge that a

human expert might acquire by experience, without regard to the underlying

reasons. For instance, a mechanic looking at a broken refrigerator might

hypothesize that, if the refrigerator makes a humming noise but does not get

cold, then it has lost coolant. While he or she may also know the detailed

workings of a refrigerator, this detailed knowledge need not be used. Shallow

knowledge can be easily represented:

/* Rule 11.4 */

IF refrigerator makes humming sound

AND refrigerator does not get cold

THEN hypothesize loss of coolant

Note that we are using the hypothesize-and-test approach to dealing with

uncertainty in this example. With the coolant as its focus of attention, an expert

system may then progress by seeking further evidence in support of its

hypothesis (e.g., the presence of a leak in the pipes). Shallow knowledge is

given a variety of names in the literature, including heuristic, experiential,

empirical, compiled, surface, and low-road.

Expert systems built upon shallow knowledge may look impressive since

they can rapidly move from a set of input data (the symptoms) to some

plausible conclusions with a minimal number of intermediate steps, just as a

human expert might. However, the limitations of such an expert system are

easily exposed by presenting it with a situation that is outside its narrow area

of expertise. When it is confronted with a set of data about which it has no

explicit rules, the system cannot respond or, worse still, may give wrong

answers.

There is a second important deficiency of shallow-reasoning expert

systems. Because the knowledge bypasses the causal links between an

observation and a deduction, the system has no understanding of its

knowledge. Therefore it is unable to give helpful explanations of its reasoning.

The best it can do is to regurgitate the chain of heuristic rules that lead from

the observations to the conclusions.



11.3.2 Deep knowledge

Deep knowledge is the fundamental building block of understanding. A

number of deep rules might make up the causal links underlying a shallow

rule. For instance, the effect of the shallow Rule 11.4 (above) may be achieved

by the following deep rules:

/* Rule 11.5 */

IF current flows in the windings of the compressor

THEN there is an induced rotational force on the windings

/* Rule 11.6 */

IF motor windings are rotating

AND axle is attached to windings and compressor vanes

THEN compressor axle and vanes are rotating

/* Rule 11.7 */

IF a part is moving

THEN it may vibrate or rub against its mounting

/* Rule 11.8 */

IF two surfaces are vibrating or rubbing against each other

THEN mechanical energy is converted to heat and sound

/* Rule 11.9 */

IF compressor vanes rotate

AND coolant is present as a gas at the compressor inlet

THEN coolant is drawn through the compressor and pressurized

/* Rule 11.10 */

IF pressure on a gas exceeds its vapor pressure

THEN the gas will condense to form a liquid

/* Rule 11.11 */

IF a gas is condensing

THEN it will release its latent heat of vaporization

Figure 11.2 shows how these deep rules might be used to draw the same

hypothesis as the shallow Rule 11.4.

There is no clear distinction between deep and shallow knowledge, but

some rules are deeper than others. Thus, while Rule 11.5 is deep in relation to

the shallow Rule 11.4, it could be considered shallow compared with

knowledge of the flow of electrons in a magnetic field and the origins of the

electromotive force that gives rise to the movement of the windings. In

recognition of this, Fink and Lusth [19] distinguish fundamental knowledge,

which is the deepest knowledge that has relevance to the domain. Thus,

“unsupported items fall to the ground” may be considered a fundamental rule



in a domain where details of Newton’s laws of gravitation are unnecessary.

Similarly Kirchoff’s first law (which states that the sum of the input current is

equal to the sum of the output current at any point in a circuit) would be

considered a deep rule for most electrical or electronic diagnosis problems but

is, nevertheless, rather shallow compared with detailed knowledge of the

behavior of electrons under the influence of an electric field. Thus, Kirchoff’s

first law is not fundamental in the broad domain of physics, since it can be

derived from deeper knowledge. However, it may be treated as fundamental

for most practical problems.

11.3.3 Combining shallow and deep knowledge

There are merits and disadvantages to both deep and shallow knowledge. A

system based on shallow knowledge can be very efficient, but it possesses no

Does not cool Humming sound

Compressor is
working normally

Suspect loss of coolant

Rule 11.8

Rule 11.7

Rule 11.6

Rule 11.5

Rule 11.9

Rule 11.10

Rule 11.11

Rule 11.4

Figure 11.2   Comparing deep and shallow knowledge about a refrigerator



understanding and, therefore, has no ability to explain its reasoning. It will also

fail dismally when confronted with a problem that lies beyond its expertise.

The use of deep knowledge can alleviate these limitations, but the knowledge

base will be much larger and less efficient. There is a trade-off between the

two approaches.

The Integrated Diagnostic Model (IDM) [19] is a system that attempts to

integrate deep and shallow knowledge. Knowledge is partitioned into deep and

shallow knowledge bases, either one of which is in control at any one time.

The controlling knowledge base decides which data to gather, either directly or

through dialogue with the user. However, the other knowledge base remains

active and is still able to make deductions. For instance, if the shallow

knowledge base is in control and has determined that the light comes on when

the refrigerator door is opened (as it should), the deep knowledge base can be

used to deduce that the power supply is working, that the fuses are OK, that

wires from power supply to bulb are OK, and that the bulb is OK. All of this

knowledge then becomes available to both knowledge bases.

In IDM, the shallow knowledge base is given control first, and it passes

control to the deep knowledge base if it fails to find a solution. The rationale

for this is that a quick solution is worth trying first. The shallow knowledge

base can be much more efficient at obtaining a solution, but it is more limited

in the range of problems that it can handle. If it fails, the information that has

been gathered is still of use to the deep knowledge base.

A shallow knowledge base in IDM can be expanded through experience in

two ways:

(i) Each solved case can be stored and used to assist in solving similar cases.

This is the basis of case-based reasoning (see Chapter 6).

(ii) If a common pattern between symptom and conclusions has emerged over

a large number of cases, then a new shallow rule can be created. This is an

example of rule induction (see Chapter 6).

11.4 Model-based reasoning

11.4.1 The limitations of rules

The amount of knowledge about a device that can be represented in rules alone

is somewhat limited. A deep understanding of how a device works — and what

can go wrong with it — is facilitated by a physical model of the device being

examined. Fulton and Pepe [20] have highlighted three major inadequacies of a

purely rule-based diagnostic system:



(i) Building a complete rule set is a massive task. For every possible failure,

the rule-writer must predict a complete set of symptoms. In many cases

this information may not even be available, because the failure may never

have happened before. It may be possible to overcome the latter hurdle by

deliberately causing a fault and observing the sensors. However, this is

inappropriate in some circumstances, such as an overheated core in a

nuclear power station.

(ii) Symptoms are often in the form of sensor readings, and a large number of

rules is needed solely to verify the sensor data [21]. Before an alarm signal

can be believed at face value, related sensors must be checked to see

whether they are consistent with the alarm. Without this measure, there is

no reason to assume that a physical failure has occurred rather than a

sensor failure.

(iii) Even supposing that a complete rule set could be built, it would rapidly

become obsolete. As there is frequently an interdependence between rules,

updating the rule base may require more thought than simply adding new

rules.

These difficulties can be circumvented by means of a model of the physical

system. Rather than storing a huge collection of symptom–cause pairs in the

form of rules, these pairs can be generated by applying physical principles to

the model.

11.4.2 Modeling function, structure, and state

Practically all physical devices are made up of fundamental components such

as tubes, wires, batteries, and valves. As each of these performs a fairly simple

role, it also has a simple failure mode. For example, a wire may break and fail

to conduct electricity, a tube can spring a leak, a battery can lose its charge,

and a valve may be blocked. Given a model of how these components operate

and interact to form a device, faults can be diagnosed by determining the

effects of local malfunctions on the global view (i.e., on the overall device).

Reasoning through consideration of the behavior of the components is

sometimes termed reasoning from second principles. First principles are the

basic laws of physics which determine component behavior.

Numerous different techniques and representations have been devised for

modeling physical devices. Examples include the Integrated Diagnostic Model

(IDM) [19], Knowledge Engineer’s Assistant (KEATS) [22], DEDALE [23],

FLAME [24], NODAL [25], and GDE [26]. These representations are

generally object-oriented (see Chapter 4). The device is made up of a number



of components, each of which is represented as an instance of a class of

component. The function of each component is defined within its class

definition. The structure of a device is defined by links between the instances

of components that make up the device. The device may be in one of several

states, for example a refrigerator door may be open or closed, and the

thermostat may have switched the compressor on or off. These states are

defined by setting the values of instance variables.

Object-oriented programming is particularly suited to device modeling

because of this clear separation of function, structure, and state. These three

aspects of a device are fundamental to understanding its operation and possible

malfunctions. A contrast can be drawn with mathematical modeling, where a

device can often be modeled more easily by considering its overall activity

than by analyzing the component processes.

Function

The function of a component is defined by the methods and attributes of its

class. Fink and Lusth [19] define four functional primitives, which are classes

of components. All components are considered to be specializations of one of

these four classes, although Fink and Lusth hint at the possible need to add

further functional primitives in some applications. The four functional

primitives are:

• transformer — transforms one substance into another;

• regulator — alters the output of substance B, based upon changes in the

input of substance A;

• reservoir — stores a substance for later output;

• conduit — transports substances between other functional primitives.

A fifth class, sensor, may be added to this list. A sensor object simply displays

the value of its input.

The word “substance” is intended to be interpreted loosely. Thus, water

and electricity would both be treated as substances. The scheme was not

intended to be completely general purpose, and Fink and Lusth acknowledge

that it would need modifications in different domains. However, such

modifications may be impractical in many domains, where specialized

modeling may be more appropriate. As an illustration of the kind of

modification required, Fink and Lusth point out that the behavior of an

electrical conduit (a wire) is very different from a water conduit (a pipe), since

a break in a wire will stop the flow of electricity, while a broken pipe will

cause an out-gush of water.



Functional Primitive

Transformer Regulator Reservoir Conduit

State-of-matter
transformer

Evaporator Condensor

Electrical
regulator

Fluid
regulator

Thermostat Valve

Electrical
reservoir

Food
reservoir

Fluid
reservoir

Cabinet

Electrical
conduit

Fluid
conduit

TubeWire

Figure 11.3   Functional hierarchy for some components of a refrigerator



These differences can be recognized by making pipes and wires

specializations of the class conduit in an object-oriented representation. The

pipe class requires that a substance be pushed through the conduit, whereas

the wire class requires that a substance (i.e., electricity) be both pushed and

pulled through the conduit. Gas pipes and water pipes would then be two of

many possible specializations of the class pipe. Figure 11.3 shows a functional

hierarchy of classes for some of the components of a refrigerator.

Structure

Links between component instances can be used to represent their physical

associations, thereby defining the structure of a device. For example, two

resistors connected in series might be represented as two instances of the class

resistor and one instance of the class wire. Each instance of resistor

would have a link to the instance of wire, to represent the electrical contact

between them.

Figure 11.4 shows the instances and links that define some of the structure

of a refrigerator. This figure illustrates that a compressor can be regarded either

as a device made up from several components or as a component of a

refrigerator. It is, therefore, an example of a functional group. The compressor

forms a distinct module in the physical system. However, functional groups in

general need not be modular in the physical sense. Thus, the evaporation

section of the refrigerator may be regarded as a functional group even though it

is not physically separate from the condensation section, and the light system

forms a functional group even though the switch is physically removed from

the bulb.

Many device-modeling systems can produce a graphical display of the

structural layout of a device (similar to Figure 11.4), given a definition of the

instances and the links between them. Some systems (e.g., KEATS and IDM)

allow the reverse process as well. With these systems, the user draws a

structural diagram such as Figure 11.4 on the computer screen, and the

instances and links are generated automatically.

In devices where functional groups exist, the device structure is

hierarchical. The hierarchical relationship can be represented by means of the

composition relationship between objects (see Chapter 4). It is often adequate

to consider just three levels of the structural hierarchy:

device

functional group

component



The application of a three-level hierarchy to the structure of a refrigerator is

shown in Figure 11.5.

State

As already noted, a device may be in one of many alternative states. For

example, a refrigerator door may be open or closed, and the compressor may

be running or stopped. A state can be represented by setting appropriate

instance variables on the components or functional groups, and transitions

between states can be represented on a state map [27] as shown in Figures 11.6

and 11.7.

The state of some components and functional groups will be dependent on

other functional groups or on external factors. Let us consider a refrigerator

that is working correctly. The compressor will be in the state running only if

the thermostat is in the state closed circuit. The state of the thermostat will

alter according to the cabinet temperature. The cabinet temperature is partially

dependent on an external factor, namely, the room temperature, particularly if

the refrigerator door is open.

Evaporator Condensor

Valve

Inlet tube Outlet tubeRotor

Bearings WindingsMotor shaft

Power supplyThermostat

Compressor

Figure 11.4   Visual display of the instances and links

that define the structure of a refrigerator



Refrigerator

Compressor Evaporator Condensor Light

Winding Tube Cooling fins DoorShelf HingeSwitch BulbWire

Cabinet

Tube ValveMagnet Bearing

Figure 11.5   Structural hierarchy for some components of a refrigerator

Device level

Functional group level

Component level



The thermostat behavior can be modeled by making the attribute

temperature of the cabinet object an active value (see Section 4.11.4). The

thermostat object is updated every time the registered temperature alters by

more than a particular amount (say, 0.5°C). A method attached to the

thermostat would toggle its state between open circuit and closed circuit

depending on a comparison between the registered temperature and the set

Temperature <
set temperature

Door opened

Door closed

Door opened

Door closed

State
Thermostat: closed circuit
Compressor: running
Door: closed
Light: off

State
Thermostat: closed circuit
Compressor: running
Door: open
Light: on

State
Thermostat: open circuit
Compressor: stopped
Door: open
Light: on

State
Thermostat: open circuit
Compressor: stopped
Door: closed
Light: off

Temperature >
set temperature

Temperature <
set temperature

Temperature >
set temperature

Figure 11.6   State map for a refrigerator working normally



temperature. If the thermostat changes its state, it would send a message to the

compressor, which in turn would change its state.

A map of possible states can be drawn up, with links indicating the ways

in which one state can be changed into another. A simple state map for a

correctly functioning refrigerator is shown in Figure 11.6. A faulty refrigerator

will have a different state map. Figure 11.7 shows the case of a thermostat that

is stuck in the “open circuit” position.

Temperature <
set temperature

Door opened

Door closed

State
Thermostat: open circuit
Compressor: stopped
Door: closed
Light: off

State
Thermostat: open circuit
Compressor: stopped
Door: open
Light: on

Door opened

Door closed

State
Thermostat: open circuit
Compressor: stopped
Door: open
Light: on

State
Thermostat: open circuit
Compressor: stopped
Door: closed
Light: off

Temperature >
set temperature

Temperature <
set temperature

Temperature >
set temperature

Figure 11.7   State map for a refrigerator with a faulty thermostat



Price and Hunt [28] have modeled various mechanical devices using

object-oriented programming techniques. They created an instance of the class

device_state for every state of a given device. In their system, each

device_state instance is made up of instance variables (e.g., recording

external factors such as temperature) and links to components and functional

groups that make up the device. This is sufficient information to completely

restore a state. Price and Hunt found advantages in the ability to treat a device

state as an object in its own right. In particular, the process of manipulating a

state was simplified and kept separate from the other objects in the system.

They were, thus, able to construct state maps similar to those shown in Figures

11.6 and 11.7, where each state was an instance of device_state. Instance

links were used to represent transitions (such as opening the door) that could

take one state to another.

11.4.3 Using the model

The details of how a model can assist the diagnostic task vary according to the

specific device and the method of modeling it. In general, three potential uses

can be identified:

• monitoring the device to check for malfunctions;

• finding a suspect component, thereby forming a tentative diagnosis; and

• confirming or refuting the tentative diagnosis by simulation.

The diagnostic task is to determine which nonstandard component

behavior in the model could make the output values of the model match those

of the physical system. An overall strategy is shown in Figure 11.8. A

modification of this strategy is to place a weighting on the forward links

between evidence and hypotheses. As more evidence is gathered, the

weightings can be updated using the techniques described in Chapter 3 for

handling uncertainty. The hypothesis with the highest weighting is tried first,

and if it fails the next highest is considered, and so on. The weighting may be

based solely on perceived likelihood, or it may include factors such as the cost

or difficulty of fixing the fault. It is often worth trying a quick and cheap repair

before resorting to a more expensive solution.

When a malfunction has been detected, the single point of failure

assumption is often made. This is the assumption that the malfunction has only

one root cause. Such an approach is justified by Fulton and Pepe [20] on the

basis that no two failures are truly simultaneous. They argue that one failure

will always follow the other either independently or as a direct result.

A model can assist a diagnostic system that is confronted with a problem

that lies outside its expertise. Since the function of a component is contained



within the class definition, its behavior in novel circumstances may be

predicted. If details of a specific type of component are lacking, comparisons

can be drawn with sibling components in the class hierarchy.

11.4.4 Monitoring

A model can be used to simulate the behavior of a device. The output (e.g.,

data, a substance, or a signal) from one component forms the input to another

component. If we alter one input to a component, the corresponding output

may change, which may alter another input, and so on, resulting in a new set of

sensor readings’ being recorded. Comparison with real world sensors provides

a monitoring facility.

The RESCU system [18] uses model-based reasoning for monitoring

inaccessible plant parameters. In a chemical plant, for instance, a critical

parameter to monitor might be the temperature within the reaction chamber.

However, it may not be possible to measure the temperature directly, as no

Gather observations

Hypothesize cause

Test hypothesis on simulation

Remedy suspected fault

Hypothesis confirmed?

Fault fixed?

Stop

yes

yes

no

no

More observations
needed?

yes

no

Start

Figure 11.8   A strategy for model-based diagnosis



type of thermometer would be able to survive the highly corrosive

environment. Therefore, the temperature has to be inferred from temperature

measurements at the chamber walls, and from gas pressure and flow

measurements.

Rules or algorithms that can translate the available measurements (Mi)

into the inaccessible parameters (Pi) are described by Leitch et al. [18] as an

implicit model (Figure 11.9(a)). Obtaining a reliable implicit model is often

difficult, and model-based reasoning normally refers to the use of explicit

models such as those described in Section 11.4.2 above. The real system and

the explicit model are operated in parallel, the model generating values for the

available measurements (Mi) and the inaccessible parameters (Pi). The model

parameters (possibly including the parameters Pi) are adjusted to minimize the

difference between the values of Mi generated by the model and the real

system. This difference is called the error. By modifying the model in

response to the error we have provided a feedback mechanism (Figure

11.9(b)), discussed further in Chapter 14. This mechanism ensures that the

model accurately mimics the behavior of the physical system. If a critical

parameter Pi in the model deviates from its expected value, it is assumed that

the same has occurred in the physical system and an alarm is triggered.

Analogue devices (electrical or mechanical) can fail by varying degrees.

When comparing a parameter in the physical system with the modeled value,

we must decide how far apart the values have to be before we conclude that a

discrepancy exists. Two ways of dealing with this problem are:

Explicit model

Input
data

Physical system

Parameter adjustment

Error

Input
data

Physical system Implicit model
Measurements,

Mi

Measurements,
Mi

Measurements,
Mi

Inaccessible
parameters, Pi

Inaccessible
parameters, Pi

(a)

(b)

Figure 11.9   Monitoring inaccessible parameters by process modeling:

(a) using an implicit model, (b) using an explicit model; (adapted from [18])



• to apply a tolerance to the expected value, so that an actual value lying

beyond the tolerance limit is treated as a discrepancy;

• to give the value a degree of membership of fuzzy sets (e.g., much too

high, too high, just right, and too low). The degree of membership

of these fuzzy sets determines the extent of the response needed. This is

the essence of fuzzy control (see Chapter 14).

It is sometimes possible to anticipate a malfunction before it actually

happens. This is the approach adopted in EXPRES [29], a system for

anticipating faults in the customer distribution part of a telephone network. The

network is routinely subjected to electrical tests that measure characteristics

such as resistance, capacitance, and inductance between particular points. A

broken circuit, for example, would show up as a very high resistance. Failures

can be anticipated and avoided by monitoring changes in the electrical

characteristics with reference to the fault histories of the specific components

under test and of similar components.

11.4.5 Tentative diagnosis

The strategy for diagnosis shown in Figure 11.8 requires the generation of a

hypothesis, i.e., a tentative diagnosis. The method of forming a tentative

diagnosis depends on the nature of the available data. In some circumstances, a

complete set of symptoms and sensor measurements is immediately available,

and the problem is one of interpreting them. More commonly in diagnosis, a

few symptoms are immediately known and additional measurements must be

taken as part of the diagnostic process. The tentative diagnosis is a best guess,

or hypothesis, of the actual cause of the observed symptoms. We will now

consider three ways of generating a tentative diagnosis.

The shotgun approach

Fulton and Pepe [20] advocate collecting a list of all objects that are upstream

of the unexpected sensor reading. All of these objects are initially under

suspicion. If several sensors have recorded unexpected measurements, only

one sensor need be considered as it is assumed that there is only one cause of

the problem. The process initially involves diagnosis at the functional grouping

level. Having identified the faulty functional group, it may be sufficient to stop

the diagnosis and simply replace the functional group in the real system.

Alternatively the process may be repeated by examining individual

components within the failed functional group to locate the failed component.



Structural isolation

KEATS [22] has been used for diagnosing faults in analogue electronic

circuits, and makes use of the binary chop or structural isolation strategy of

Milne [30]. Initially the electrical signal is sampled in the middle of the signal

chain and compared with the value predicted by the model. If the two values

correspond, then the fault must be downstream of the sampling point, and a

measurement is then taken halfway downstream. Conversely, if there is a

discrepancy between the expected and actual values, the measurement is taken

halfway upstream. This process is repeated until the defective functional

grouping has been isolated. If the circuit layout permits, the process can be

repeated within the functional grouping in order to isolate a specific

component. Motta et al. [22] found in their experiments that the structural

isolation strategy closely resembles the approach adopted by human experts.

They have also pointed out that the technique can be made more sophisticated

by modifying the binary chop strategy to reflect heuristics concerning the most

likely location of the fault.

The heuristic approach

Either of the above two strategies can be refined by the application of shallow

(heuristic) knowledge. As noted above, IDM [19] has two knowledge bases,

containing deep and shallow knowledge. If the shallow knowledge base has

failed to find a quick solution, the deep knowledge base seeks a tentative

solution using a set of five guiding heuristics:

(i) if an output from a functional unit is unknown, find out its value by testing

or by interaction with a human operator;

(ii) if an output from a functional unit appears incorrect, check its input;

(iii) if an input to a functional unit appears incorrect, check the source of the

input;

(iv) if the input to a functional unit appears correct but the output is not,

assume that the functional unit is faulty;

(v) examine components that are nodes before those that are conduits, as the

former are more likely to fail in service.

11.4.6 Fault simulation

Both the correct and the malfunctioning behavior of a device can be simulated

using a model. The correct behavior is simulated during the monitoring of a

device (Section 11.4.4). Simulation of a malfunction is used to confirm or

refute a tentative diagnosis. A model allows the effects of changes in a device

or in its input data to be tested. A diagnosis can be tested by changing the



behavior of the suspected component within the model and checking that the

model produces the symptoms that are observed in the real system. Such tests

cannot be conclusive, as other faults might also be capable of producing the

same symptoms, as noted in Section 11.2 above. Suppose that a real

refrigerator is not working and makes no noise. If the thermostat on the

refrigerator is suspected of being permanently open-circuit, this malfunction

can be incorporated into the model and the effects noted. The model would

show the same symptoms that are observed in the real system. The hypothesis

is then confirmed as the most likely diagnosis.

Most device simulations proceed in a step-by-step manner, where the

output of one component (component A) becomes the input of another

(component B). Component A can be thought of as being “upstream” of

component B. An input is initially supplied to the components that are furthest

upstream. For instance, the thermostat is given a cabinet temperature, and the

power cord is given a simulated supply of electricity. These components

produce outputs, which become the inputs to other components, and so on.

This sort of simulation can run into difficulties if the model includes a

feedback loop. In these circumstances, a defective component not only

produces an unexpected output, but also has an unexpected input. The output

can be predicted only if the input is known, and the input can be predicted only

if the output is known. One approach to this problem is to supply initially all of

the components with their correct input values. If the defective behavior of the

feedback component is modeled, its output and input values would be expected

to converge on a failure value after a number of iterations. Fink and Lusth [19]

found that convergence was achieved in all of their tests, but they acknowledge

that there might be cases where this does not happen.

11.4.7 Fault repair

Once a fault has been diagnosed, the next step is normally to fix the fault. Most

fault diagnosis systems offer some advice on how a fault should be fixed. In

many cases this recommendation is trivial, given the diagnosis. For example,

the diagnosis worn bearings might be accompanied by the recommendation

replace worn bearings, while the diagnosis leaking pipe might lead to the

recommendation fix leak. A successful repair provides definite confirmation

of a diagnosis. If a repair fails to cure a problem, then the diagnostic process

must recommence. A failed repair may not mean that a diagnosis was

incorrect. It is possible that the fault which has now been fixed has caused a

second fault that also needs to be diagnosed and repaired.



11.4.8 Using problem trees

Some researchers [3, 31] favor the explicit modeling of faults, rather than

inferring faults from a model of the physical system. Dash [3] builds a

hierarchical tree of possible faults (a problem tree, see Figure 11.10), similar to

those used for classifying case histories (Figure 6.3(a)). Unlike case-based

reasoning, problem trees cover all anticipated faults, whether or not they have

occurred previously. By applying deep or shallow rules to the observed

symptoms, progress can be made from the root (a general problem description)

to the leaves of the tree (a specific diagnosis). The tree is, therefore, used as a

means of steering the search for a diagnosis. An advantage of this approach is

that a partial solution is formed at each stage in the reasoning process. A partial

solution is generated even if there is insufficient knowledge or data to produce

a complete diagnosis.

11.4.9 Summary of model-based reasoning

Some of the advantages of model-based reasoning are listed below.

• A model is less cumbersome to maintain than a rule base. Real-world

changes are easily reflected in changes in the model.

• The model need not waste effort looking for sensor verification. Sensors

are treated identically to other components, and therefore a faulty sensor is

as likely to be detected as any other fault.

Refrigerator fault

Compressor
fault

Faulty
contacts

Electrical
fault

Mechanical
fault

Regulatory
fault

Burnt out
windings

Short
circuit

Evaporation
fault

Condensation
fault

Figure 11.10   A problem tree for a refrigerator



• Unusual failures are just as easy to diagnose as common ones. This is not

the case in a rule-based system, which is likely to be most comprehensive

in the case of common faults.

• The separation of function, structure, and state may help a diagnostic

system to reason about a problem that is outside its area of expertise.

• The model can simulate a physical system, for the purpose of monitoring

or for verifying a hypothesis.

Model-based reasoning only works well in situations where there is a

complete and accurate model. It is inappropriate for physical systems that are

too complex to model properly, such as medical diagnosis or weather

forecasting.

An ideal would be to build a model for monitoring and diagnosis directly

from CAD data generated during the design stage. The model would then be

available as soon as a device entered service.

11.5 Case study: a blackboard system for interpreting
ultrasonic images

One of the aims of this book is to demonstrate the application of a variety of

techniques, including knowledge-based systems, computational intelligence,

and procedural computation. The more complicated problems have many

facets, where each facet may be best suited to a different technique. This is true

of the interpretation of ultrasonic images, which will be discussed as a case

study in the remainder of this chapter. A blackboard system has been used to

tackle this complex interpretation problem [17]. As we saw in Chapter 9,

blackboard systems allow a problem to be divided into subtasks, each of which

can be tackled using the most suitable technique.

An image interpretation system attempts to understand the processed

image and describe the world represented by it. This requires symbolic

reasoning (using rules, objects, relationships, list-processing, or other

techniques) as well as numerical processing of signals [32]. ARBS

(Algorithmic and Rule-based Blackboard System) has been designed to

incorporate both processes. Numerically intensive signal processing, which

may involve a large amount of raw data, is performed by conventional

routines. Facts, causal relationships, and strategic knowledge are symbolically

encoded in one or more knowledge bases. This explicit representation allows

encoded domain knowledge to be modified or extended easily. Signal

processing routines are used to transform the raw data into a description of its



key features (i.e., into a symbolic image) and knowledge-based techniques are

used to interpret this image.

The architecture allows signal interpretation to proceed under the control

of knowledge in such a way that, at any one time, only the subset of the data

that might contribute to a solution is considered. When a particular set of rules

needs access to a chunk of raw data, it can have it. No attempt has been made

to write rules that look at the whole of the raw data, as the preprocessing stage

avoids the need for this. Although a user interface is provided to allow

monitoring and intervention, ARBS is designed to run independently,

producing a log of its actions and decisions.

11.5.1 Ultrasonic imaging

Ultrasonic imaging is widely used for the detection and characterization of

features, particularly defects, in manufactured components. The technique

belongs to a family of nondestructive testing methods, which are distinguished

by the ability to examine components without causing any damage. Various

arrangements can be used for producing ultrasonic images. Typically, a

transmitter and receiver of ultrasound (i.e., high frequency sound at

approximately 1–10MHz) are situated within a single probe that makes contact

Transducers scanned
in a rasterWeld

Ferritic steel plate

Austenitic steel cladding

250mm

Ten transducers mounted together,
with different orientations

z

x

y

z

y

Figure 11.11   Gathering ultrasonic b-scan images



with the surface of the component. The probe emits a short pulse of ultrasound

and then detects waves returning as a result of interactions with the features

within the specimen. If the detected waves are assumed to have been produced

by single reflections, then the time of arrival can be readily converted to the

depth (z) of these features. By moving the probe in one dimension (y), an

image can be plotted of y versus z, with intensity often represented by color or

grayscale. This image is called a b-scan, and it approximates to a cross section

through a component. It is common to perform such scans with several probes

pointing at different angles into the specimen, and to collect several b-scans by

moving the probes in a raster (Figure 11.11).

A typical b-scan image is shown in Figure 11.12. A threshold has been

applied, so that only received signals of intensity greater than –30db are

displayed, and these appear as black dots on the image. Ten probes were used,

pointing into the specimen at five different angles. Because ultrasonic beams

Figure 11.12   A typical b-scan image



are not collimated, a point defect is detected over a range of y values, giving

rise to a characteristic arc of dots on the b-scan image. Arcs produced by a

single probe generally lie parallel to each other and normal to the probe

direction. The point of intersection of arcs produced by different probes is a

good estimate of the location of the defect that caused them.

The problems of interpreting a b-scan are different from those of other

forms of image interpretation. The key reason for this is that a b-scan is not a

direct representation of the inside of a component, but rather it represents a set

of wave interactions (reflection, refraction, diffraction, interference, and mode

conversion) that can be used to infer some of the internal structure of the

component.

11.5.2 Knowledge sources in ARBS

Each knowledge source (KS) in ARBS is contained in a record. Records are

data structures consisting of different data types, and are provided in most

modern computer languages. Unlike lists, the format of a record has to be

defined before values can be assigned to any of its various parts (or fields). The

record structure that is used to define an ARBS knowledge source is shown in

Figure 11.13. There is a set of preconditions, in the preconditions field,

which must be satisfied before the KS can be activated. The preconditions are

expressed using the same syntax as the rules described below. ARBS has a

control module which examines each KS in turn, testing the preconditions and

activating the KS if the preconditions are satisfied. This is the simplest

strategy, akin to forward-chaining within a rule-based system. More

sophisticated strategies can be applied to the selection of knowledge sources,

just as more complex inference engines can be applied to rules.

When a KS is activated, it applies its knowledge to the current state of the

blackboard, adding to it or modifying it. The entry in the KS type field states

whether the KS is procedural, rule-based, neural network-based, or genetic

algorithm-based. If a KS is rule-based then it is essentially a rule-based system

in its own right. The rules field contains the names of the rules to be used and

the inference mode field contains the name of the inference engine. When the

rules are exhausted, the KS is deactivated and any actions in the actions field

of the KS are performed. These actions usually involve reports to the user or

the addition of control information to the blackboard. If the KS is procedural or

contains a neural network or genetic algorithm then the required code is simply

included in the actions field and the fields relating to rules are ignored.

ARBS includes provisions for six different types of knowledge sources.

One is procedural, one is for neural networks, one is for genetic algorithms,

and the other three are all rule-based, but with different types of inference

mechanisms. We have already met two of the inference mechanisms, namely,



multiple and single instantiation of variables with a hybrid inference engine

based on a rule dependence network (see Chapter 2). The third type of rule-

based knowledge source is used for generating hypotheses. Such hypotheses

can then be tested and thereby supported, confirmed, weakened, or refuted.

ARBS uses this hypothesize-and-test approach (see Section 11.2 above) to

handle the uncertainty that is inherent in problems of abduction, and the

uncertainty that arises from sparse or noisy data.

The blackboard architecture is able to bring together the most appropriate

tools for handling specific tasks. Procedural tasks are not entirely confined to

procedural knowledge sources, since rules within a rule-based knowledge

source can access procedural code from either their condition or conclusion

parts. In the case of ultrasonic image interpretation, procedural KSs written in

C++ are used for fast, numerically intensive data-processing, and rule-based

KSs are used to represent specialist knowledge. In addition, neural network

KSs may be used for judgmental tasks, involving the weighing of evidence

from various sources. Judgmental ability is often difficult to express in rules,

and neural networks were incorporated into ARBS as a response to this

difficulty. The different types of knowledge sources used in this application of

ARBS are summarized below.

e.g., rule-based, procedural,
neural network, or
genetic algorithm

Conditions to make the KS active
(same syntax as standard rule conditions)

Executable code −
same syntax as standard

rule conclusions

For switching the KS on or off

Rule-based KSs only

KS type preconditions

rules

activation
flag

rule
dependence

network

inference
mode

actions

Figure 11.13   A knowledge source in ARBS is stored as a record



Procedural KS

When activated, a procedural KS simply runs its associated procedure and is

then deactivated. An example is the procedure that preprocesses the image,

using the Hough Transform to detect lines of indications (or dots).

Rule-based KS with a hybrid inference engine

When activated, this type of KS behaves as a conventional-rule based system.

A rule’s conditions are examined and, if they are satisfied by a statement on

the blackboard, the rule fires and the actions dictated by its conclusion are

carried out. Single or multiple instantiation of variables can be selected.

Rule-based hypothesis-generating KS

This KS initiates a “hypothesize-and-test” cycle. The inference engine selects a

rule and asserts its conclusion as a hypothesis. Its conditions are now referred

to as expectations and placed in a list on the blackboard. Other KSs may then

be selected to test whether the expectations are confirmed by the image data.

The hypothesis-generating rules use a different syntax from other rules as they

are used in a different way. The hypothesize-and-test method reduces the

solution search space by focusing attention on those KSs relevant to the current

hypothesis.

Neural network KS

This type of KS is used, for example, in small-scale classification tasks, where

domain knowledge is difficult to express in rule form. The use of neural

networks in this application is described in more detail in Section 11.5.6

below.

11.5.3 Rules in ARBS

Rules are used in ARBS in two contexts:

• to express domain knowledge within a rule-based knowledge source;

• to express the applicability of a knowledge source.

Just as knowledge sources are activated in response to information on the

blackboard, so too are individual rules within a rule-based knowledge source.

The main functions of ARBS rules are to look up information on the

blackboard, to draw inferences from that information, and to post new

information on the blackboard. Rules can access procedural code for

performing such tasks as numerical calculations or database lookup.



In this section we will be concerned only with deductive rules, rather than

the hypothesis-generating rules mentioned in Section 11.5.2 above. The rules

are implemented as lists (see Chapter 10), delineated by square brackets. Each

rule is a list comprising four elements: a number to identify the rule, a

condition part, the word implies, and a conclusion part. A rule is defined as

follows:

rule :: [number condition implies conclusion].

The double colon (::) means “takes the form of.” The word implies is shown

in bold type as it is recognized as a key word in the ARBS syntax. The words

in italics have their own formal syntax description. The condition may

comprise subconditions joined with Boolean operators AND and OR, while the

conclusion can contain several action statements. There is no explicit limit on

the number of subconditions or subconclusions that can be combined in this

way.

In the syntax description shown in Box 11.1, many items have several

alternative forms. Where square brackets are shown, these delimit lists. Notice

that both condition and conclusion are defined recursively, thereby allowing

any number of subconditions or subconclusions. It can also be seen that where

multiple subconditions are used, they are always combined in pairs. This

avoids any ambiguity over the order of precedence of the Boolean

combinations.

Statements on the blackboard are recognized by pattern-matching, where

the ? symbol is used to make assignments to variables in rules, as shown in

Section 2.6. Additionally, the ~ symbol has been introduced to indicate that the

name of the associated variable is replaced by its assigned value when the rule

is evaluated. Blackboard information that has been assigned to variables by

pattern-matching can thereby be used elsewhere within the rule.

Rules are interpreted by sending them to a parser, i.e., a piece of software

that breaks down a rule into its constituent parts and interprets them. This is

achieved by pattern-matching between rules and templates that describe the

rule syntax. The ARBS rule parser first extracts the condition statement and

evaluates it, using recursion if there are embedded subconditions. If a rule is

selected for firing and its overall condition is found to be true, all of the

conclusion statements are interpreted and carried out.

Atomic conditions (i.e., conditions that contain no subconditions) can be

evaluated in any of the following ways:

• test for the presence of information on blackboard, and look up the

information if it is present;



rule::=       [rule_no condition implies conclusion]

rule_no::=    <constant>

condition::=  [condition and condition],

              [condition or condition],

              [present statement partition],

              [absent statement partition],

              [run [<procedure_name> [input_parameters]] output_parameter],

              [compare [operand operator operand] nil]

conclusion::= [conclusion conclusion conclusion ...]

              [add statement partition],

              [remove statement partition],

              [report statement nil],

              [run [<procedure_name> [input_parameters]] output_parameter]

partition::=   <list_name>        /* a partition of the blackboard */

statement::=  ~<variable_name>,   /* uses the value of the variable */

              ?<variable_name>,   /* matches a value to the variable */

              ~~<list_name>,      /* as ~ but separates the list elements */

              ??<list_name>,      /* as ? but separates the list elements */

              <string>,

              <constant>

              ~[run [<procedure_name> [input_parameters]] output_parameter],

              <a list containing any of the above>

operand::=    ~[run [<procedure_name> [input_parameters]] output_parameter],

              ~<variable_name>,

              ?<variable_name>,

              <constant>

operator::=   eq,   /* equal */

              lt,   /* less than */

              gt,   /* greater than */

              le,   /* less than or equal */

              ge,   /* greater than or equal */

              ne    /* not equal */

Box 11.1   ARBS rule syntax

ARBS key words are shown in bold type. For clarity, some details of the syntax have

been omitted or altered. A different syntax is used for hypothesis generation



• call algorithms or external procedures that return Boolean or numerical

results;

• numerically compare variables, constants, or algorithm results.

The conclusions, or subconclusions, can comprise any of the following:

• add or remove information to or from the blackboard;

• call an algorithm or external procedure, and optionally add the results to

the blackboard;

• report actions to the operator.

In ARBS, the blackboard, like the rules, is made up from lists. The

retrieval of information from the blackboard by pattern-matching is best

demonstrated by considering a rule, as shown in Figure 11.14. This rule

examines the partition of the blackboard called line_info. Like all the

blackboard partitions, line_info is a list. Supposing that line_info contains

the sublist:

[the size of rectangle_B is 243]

then the first subcondition of the rule is true, and the local variables rect and

size would become bound to rectangle_B and 243 respectively. This simple

subcondition has thus checked for the presence of information on the

blackboard and retrieved information. The second subcondition checks to see

whether the value of size is 200. Notice the use of the ~ symbol, which

instructs the ARBS parser to replace the word size with its current value. As

both subconditions are true, the actions described in the conclusions part of the

rule are carried out. The first subconclusion involves adding information to the

blackboard. The other two conclusions are for the purposes of logging the

[11.12
  [
    [present [the size of ?rect is ?size] line_info]
    and
    [compare [~size ge 200] nil]
  ]
  implies
  [
    [add [the rectangle ~rect covers a large area] line_info]
    [report [the rectangle ~rect covers a large area] nil]
    [run [show_area [~rect]] returned_value]
  ]
]

Rule number

Look for the presence of blackboard information

Every subcondition or subconclusion has
three parts; here the third part is not used

greater than or equal to
Blackboard partition
on which to writeAdd information

to the blackboard

Message to the user
Run a procedure
or function

Blackboard partition to search

Numerical
comparison

Pass looked up value
as a parameter

Figure 11.14   A rule in ARBS



system’s actions. A message reporting the deduction that rectangle_B covers

a large area is sent to the user, and the rectangle is displayed on the processed

image.

Procedures can be directly accessed from within the condition or

conclusion parts of any rules. This is achieved by use of the ARBS key word

run. The rule parser knows that the word immediately following run is the

procedure name, and that its parameters, if any, are in the accompanying list.

The following subconclusion is taken form a KS in the ultrasonic interpretation

system:

[add [~[run [group_intersections [~coord_list]] result]

       are the groups of points of intersection] line_info]

When the rule is fired, the function group_intersections is called with the

value of coord_list as its parameter. The value returned is added to the

blackboard as part of the list:

... are the groups of points of intersection]

Although alterations to the syntax are possible, the syntax shown in Box 11.1

has shown the flexibility necessary to cope with a variety of applications [33,

34].

11.5.4 Inference engines in ARBS

The strategy for applying rules is a key decision in the design of a system. In

many types of rule-based system, this decision is irrevocable, committing the

rule-writer to either a forward- or backward-chaining system. However, the

blackboard architecture allows much greater flexibility, as each rule-based

knowledge source can use whichever inference mechanism is most

appropriate. ARBS makes use of the hybrid inference mechanism described in

Chapter 2, which it can use with either single or multiple instantiation of

variables (see Section 2.7.1).

The hybrid mechanism requires the construction of a network representing

the dependencies between the rules. A separate dependence network is built for

each rule-based knowledge source by a specialized ARBS module, prior to

running the system. The networks are saved and only need to be regenerated if

the rules are altered. The code to generate the networks is simplified by the fact

that the only interaction between rules is via the blackboard. For rule A to

enable rule B to fire, rule A must either add something to the blackboard that

rule B needs to find or remove something that rule B requires to be absent.

When a rule-based knowledge source is activated, the rules within the



knowledge source are selected for examination in the order dictated by the

dependence network.

Several rules in the ultrasonic interpretation rule base need to be fired for

each occurrence of a particular feature in the image. As an example, Rule

11.12 in Figure 11.14 is used to look at rectangular areas that have been

identified as areas of interest on an image, and to pick out those that cover a

large area. The condition clause is:

  [

    [present [the size of ?rect is ?size] line_info]

    and

    [compare [~size ge 200] nil]

  ]

A list matching [the size of ?rect is ?size] is sought in the portion

of the blackboard called line_info, and appropriate assignments are made to

the variables rect and size. However, rather than finding only one match to

the list template, we actually require all matches. In other words, we wish to

find all rectangles and check the size of them all. This can be achieved by

either single or multiple instantiation. The resultant order in which the image

areas are processed in shown in Figure 11.15. In this example, there is no

Find all large rectangles
(size > 200 units)

Add statements about each
large rectangle to the blackboard

Start

Stop

Add further information about each
large rectangle to the blackboard

Add statements about the
rectangle to the blackboard

Add further information about
the rectangle to the blackboard

Find a large rectangle
(size > 200 units)

Next rectangle

Start

More rectangles?Stop

yes

no

(a) (b)

other rules
in the KS

rule
condition

rule
conclusion

Figure 11.15   Firing Rule 11.12 using:

(a) multiple instantiation of variables, and (b) single instantiation of variables



strong reason to prefer one strategy over the other, although multiple

instantiation in ARBS is more efficient. In spite of the reduced efficiency, it

will be shown in Chapter 14 that single instantiation may be preferable in

problems where a solution must be found within a limited time frame.

(a) (b)

(c) (d)

Figure 11.16 The stages of interpretation of a b-scan image:

(a) before interpretation

(b) with lines found by a Hough transform

(c) significant lines

(d) conclusion: a crack runs between the two marked areas



11.5.5 The stages of image interpretation

The problem of ultrasonic image interpretation can be divided into three

distinct stages: arc detection, gathering information about the regions of

intersecting arcs, and classifying defects on the basis of the gathered

information. These stages are now described in more detail.

Arc detection using the Hough transform

The first step toward defect characterization is to place on the blackboard the

important features of the image. This is achieved by a procedural knowledge

source that fits arcs to the data points (Figure 11.16(b)). In order to produce

these arcs, a Hough transform [35] was used to determine the groupings of

points. The transform was modified so that isolated points some distance from

the others would not be included. The actual positions of the arcs were

determined by least squares fitting.

This preprocessing phase is desirable in order to reduce the volume of data

and to convert it into a form suitable for knowledge-based interpretation. Thus,

knowledge-based processing begins on data concerning approximately 30

linear arcs rather than on data concerning 400–500 data points. No information

is lost permanently. If, in the course of its operations, ARBS judges that more

data concerning a particular line would help the interpretation, it retrieves from

file the information about the individual points that compose that line and

represents these point data on the blackboard. It is natural, moreover, to work

with lines rather than points in the initial stages of interpretation. Arcs of

indications are produced by all defect types, and much of the knowledge used

to identify flaws is readily couched in terms of the properties of lines and the

relations between them.

Gathering the evidence

Once a description of the lines has been recorded on the blackboard, a rule-

based KS picks out those lines that are considered significant according to

criteria such as intensity, number of points, and length. Rules are also used to

recognize the back wall echo and lines that are due to probe reverberation.

Both are considered “insignificant” for the time being. Key areas in the image

are generated by finding points of intersection between significant lines and

then grouping them together. Figure 11.16(d) shows the key areas found by

applying this method to the lines shown in Figure 11.16(c). For large smooth

cracks, each of the crack tips is associated with a distinct area. Other defects

are entirely contained in their respective areas.

Rule-based KSs are used to gather evidence about each of the key areas.

The evidence includes:



• the size of the area;

• the number of arcs passing through it;

• the shape of the echodynamic (defined below);

• the intensity of indications;

• the sensitivity of the intensity to the angle of the probe.

The echodynamic associated with a defect is the profile of the signal

intensity along one of the “significant” lines. This is of considerable

importance in defect classification as different profiles are associated with

different types of defect. In particular, the echodynamics for a smooth crack

face, a spheroidal defect (e.g., a single pore or an inclusion) or crack tip, and a

series of gas pores are expected to be similar to those in Figure 11.17 [36]. In

ARBS, pattern classification of the echodynamic is performed using a fast

Fourier transform and a set of rules to analyze the features of the transformed

signal. A neural network has also been used for the same task (see Section

11.5.6 below).

The sensitivity of the defect to the angle of the probe is another critical

indicator of the nature of the defect in question. Roughly spherical flaws, such

as individual gas pores, have much the same appearance when viewed from

different angles. Smooth cracks on the other hand have a much more markedly

directional character — a small difference in the direction of the probe may

result in a considerable reduction (or increase) in the intensity of indications.

The directional sensitivity of an area of intersection is a measure of this

directionality and is represented in ARBS as a number between 1 and 1.

+ +
+

+

+

+
+

+

+

+

+

+

+
+

+
+ +

++
+

+

+ ++ + +
+

+

Position on section
through defect area

S
ig

na
l i

nt
en

si
ty

S
ig

na
l i

nt
en

si
ty

S
ig

na
l i

nt
en

si
ty

Position on section
through defect area

Position on section
through defect area

(a) (c)(b)

+

Figure 11.17   Echodynamics across (a) a crack face,

(b) a crack tip, pore, or inclusion, (c) an area of porosity



Defect classification

Quantitative evidence about key areas in an image is derived by rule-based

knowledge sources, as described above. Each piece of evidence provides clues

as to the nature of the defect associated with the key area. For instance, the

indications from smooth cracks tend to be sensitive to the angle of the probe,

and the echodynamic tends to be plateau-shaped. In contrast, indications from

a small round defect (e.g., an inclusion) tend to be insensitive to probe

direction and have a cusp-shaped echodynamic. There are several factors like

these that need to be taken into account when producing a classification, and

each must be weighted appropriately.

Two techniques for classifying defects based upon the evidence have been

tried using ARBS: a rule-based hypothesize-and-test approach and a neural

network. In the former approach, hypotheses concerning defects are added to

the blackboard. These hypotheses relate to smooth or rough cracks, porosity, or

inclusions. They are tested by deriving from them expectations (or predictions)

relating to other features of the image. On the basis of the correspondence

between the expectations and the image, ARBS arrives at a conclusion about

the nature of a defect, or, where this is not possible with any degree of

certainty, it alerts the user to a particular problem case.

Writing rules to verify the hypothesized defect classifications is a difficult

task, and in practice the rules needed continual refinement and adjustment in

the light of experience. The use of neural networks to combine the evidence

and produce a classification provides a means of circumventing this difficulty

since they need only a representative training set of examples, instead of the

formulation of explicit rules.

11.5.6 The use of neural networks

Neural networks have been used in ARBS for two quite distinct tasks,

described below.

Defect classification using a neural network

Neural networks can perform defect classification, provided there are sufficient

training examples and the evidence can be presented in numerical form. In this

study [17], there were insufficient data to train a neural network to perform a

four-way classification of defect types, as done under the hypothesize-and-test

method. Instead, a backpropagation network was trained to classify defects as

either critical or noncritical on the basis of four local factors: the size of the

area, the number of arcs passing through it, the shape of the echodynamic, and

the sensitivity of the intensity to the angle of the probe. Each of these local

factors was expressed as a number between 1 and 1.



1.00.50.0-0.5-1.0
-1.0

-0.5

0.0

0.5

1.0

Shape of echodynamic

D
ir

ec
tio

na
l s

en
si

tiv
ity

1.00.50.0-0.5-1.0
-1.0

-0.5

0.0

0.5

1.0

Shape of echodynamic

A
re

a 
si

ze

1.00.50.0-0.5-1.0
-1.0

-0.5

0.0

0.5

1.0

Shape of echodynamic

L
in

e 
de

ns
ity

(a)

(b)

(c)

smooth crack
other

Figure 11.18   Evidence for the classification of 20 defects



Figure 11.18 shows plots of evidence for the 20 defects that were used to

train and test a neural network. The data are, in fact, points in four-dimensional

space, where each dimension represents one of the four factors considered.

Notice that the clusters of critical and noncritical samples might not be linearly

separable. This means that traditional numerical techniques for finding linear

discriminators [37] are not powerful enough to produce good classification.

However, a multilayer perceptron (MLP, see Chapter 8) is able to discriminate

between the two cases, since it is able to find the three-dimensional surface

required to separate them. Using the leave-one-out technique (Section 8.4.5),

an MLP with two hidden layers correctly classified 16 out of 20 images from

defective components [17].

Echodynamic classification using a neural network

One of the inputs to the classification network requires a value between –1 and

1 to represent the shape of the echodynamic. This value can be obtained by

using a rule-based knowledge source that examines the Fourier components of

the echodynamic and uses heuristics to provide a numerical value for the

shape. An alternative approach is to use another neural network to generate this

number.

An echodynamic is a signal intensity profile across a defect area and can

be classified as a cusp, plateau, or wiggle. Ideally a neural network would

make a three-way classification, given an input vector derived from the

amplitude components of the first n Fourier coefficients, where 2n is the

echodynamic sample rate. However, cusps and plateaux are difficult to

distinguish since they have similar Fourier components, so a two-way

classification is more practical, with cusps and plateaux grouped together. A

multilayer perceptron has been used for this purpose.

Combining the two applications of neural networks

The use of two separate neural networks in distinct KSs for the classification of

echodynamics and of the potential defect areas might seem unnecessary.

Because the output of the former feeds, via the blackboard, into the input layer

of the latter, this arrangement is equivalent to a hierarchical MLP (Section

8.4.4). In principle, the two networks could have been combined into one large

neural network, thereby removing the need for a preclassified set of

echodynamics for training. However, such an approach would lead to a loss of

modularity and explanation facilities. Furthermore, it may be easier to train

several small neural networks separately on subtasks of the whole

classification problem than to attempt the whole problem at once with a single

large network. These are important considerations when there are many

subtasks amenable to connectionist treatment.



11.5.7 Rules for verifying neural networks

Defect classification, whether performed by the hypothesize-and-test method

or by neural networks, has so far been discussed purely in terms of evidence

gathered from the region of the image that is under scrutiny. However, there

are other features in the image that can be brought to bear on the problem.

Knowledge of these features can be expressed easily in rule form and can be

used to verify the classification. The concept of the use of rules to verify the

outputs from neural networks was introduced in Chapter 9. In this case, an

easily identifiable feature of a b-scan image is the line of indications due to the

back wall echo. A defect in the sample, particularly a smooth crack, will tend

Movement of transducer
over specimen

Ultrasonic signal
from transducer

Defect area in
image (crack tip)

In
te

ns
ity

Shadow on
back wall

Distance along back wall echo

Defect area in
image (crack tip)

Figure 11.19  A shadow on the back wall can confirm the presence of a crack



to cast a “shadow” on the back wall directly beneath it (Figure 11.19). The

presence of a shadow in the expected position can be used to verify the

location and classification of a defect. In this application, the absence of this

additional evidence is not considered a strong enough reason to reject a defect

classification. Instead, the classification in such cases is marked for the

attention of a human operator, as there are grounds for doubt over its accuracy.

11.6 Summary

This chapter has introduced some of the techniques that can be used to tackle

the problems of automated interpretation and diagnosis. Diagnosis is

considered to be a specialized case of the more general problem of

interpretation. It has been shown that a key part of diagnosis and interpretation

is abduction, the process of determining a cause, given a set of observations.

There is uncertainty associated with abduction, since causes other than the

selected one might give rise to the same set of observations. Two possible

approaches to dealing with this uncertainty are to explicitly represent the

uncertainty using the techniques described in Chapter 3, or to hypothesize-and-

test. As the name implies, the latter technique involves generating a hypothesis

(or best guess), and either confirming or refuting the hypothesis depending on

whether it is found to be consistent with the observations.

Several different forms of knowledge can contribute to a solution. We

have paid specific attention to rules, case histories, and physical models. We

have also shown that neural networks and conventional “number-crunching”

can play important roles when included as part of a blackboard system. Rules

can be used to represent both shallow (heuristic) and deep knowledge. They

can also be used for the generation and verification of hypotheses. Case-based

reasoning, introduced in Chapter 6, involves comparison of a given scenario

with previous examples and their solutions. Model-based reasoning relies on

the existence of a model of the physical system which can be used for

monitoring, generation of hypotheses, and verification of hypotheses by

simulation.

Blackboard systems have been introduced as part of a case study into the

interpretation of ultrasonic images. These systems allow various forms of

knowledge representation to come together in one system. They are, therefore,

well suited to problems that can be broken down into subtasks, where the most

suitable form of knowledge representation for different subtasks is not

necessarily the same. Each module of knowledge within a blackboard system

is called a knowledge source (KS).



A neural network KS was shown to be effective for combining evidence

generated by other KSs and for categorizing the shape of an echodynamic. This

approach can be contrasted with the use of a neural network alone for

interpreting images. The blackboard architecture avoids the need to abandon

rules in favor of neural networks or vice versa, since the advantages of each

can be incorporated into a single system. Rules can represent knowledge

explicitly, whereas neural networks can be used where explicit knowledge is

hard to obtain. Although neural networks can be rather impenetrable to the user

and are unable to explain their reasoning, these deficiencies can be reduced by

using them for small-scale localized tasks with reports generated in between.

References

1. Arroyo-Figueroa, G., Alvarez, Y., and Sucar, L. E., “SEDRET — an

intelligent system for the diagnosis and prediction of events in power

plants,” Expert Systems with Applications, vol. 18, pp. 75–86, 2000.

2. Dague, P., Jehl, O., Deves, P., Luciani, P., and Taillibert, P., “When

oscillators stop oscillating,” International Joint Conference on Artificial

Intelligence (IJCAI’91), Sydney, vol. 2, pp. 1109–1115, 1991.

3. Dash, E., “Diagnosing furnace problems with an expert system,” SPIE-

Applications of Artificial Intelligence VIII, vol. 1293, pp. 966–971, 1990.

4. Huang, J. K., Ho, M. T., and Ash, R. L., “Expert systems for automated

maintenance of a Mars oxygen production system,” Journal of Spacecraft

and Rockets, vol. 29, pp. 425–431, 1992.

5. Bykat, A., “Nicbes-2, a nickel-cadmium battery expert system,” Applied

Artificial Intelligence, vol. 4, pp. 133–141, 1990.

6. Kang, C. W. and Golay, M. W., “A Bayesian belief network-based

advisory system for operational availability focused diagnosis of complex

nuclear power systems,” Expert Systems with Applications, vol. 17, pp.

21–32, 1999.

7. Lu, Y., Chen, T. Q., and Hamilton, B., “A fuzzy diagnostic model and its

application in automotive engineering diagnosis,” Applied Intelligence,

vol. 9, pp. 231–243, 1998.

8. Yamashita, Y., Komori, H., Aoki, E., and Hashimoto, K., “Computer

aided monitoring of pump efficiency by using ART2 neural networks,”

Kagaku Kogaku Ronbunshu, vol. 26, pp. 457–461, 2000.

9. Huang, J. T. and Liao, Y. S., “A wire-EDM maintenance and fault-

diagnosis expert system integrated with an artificial neural network,”



International Journal of Production Research, vol. 38, pp. 1071–1082,

2000.

10. Balakrishnan, A. and Semmelbauer, T., “Circuit diagnosis support system

for electronics assembly operations,” Decision Support Systems, vol. 25,

pp. 251–269, 1999.

11. Netten, B. D., “Representation of failure context for diagnosis of technical

applications,”  Advances in Case-Based Reasoning, vol. 1488, pp. 239–

250, 1998.

12. Hunt, J., “Case-based diagnosis and repair of software faults,” Expert

Systems, vol. 14, pp. 15–23, 1997.

13. Prang, J., Huemmer, H. D., and Geisselhardt, W., “A system for

simulation, monitoring and diagnosis of controlled continuous processes

with slow dynamics,” Knowledge-Based Systems, vol. 9, pp. 525–530,

1996.

14. Maderlechner, G., Egeli, E., and Klein, F., “Model guided interpretation

based on structurally related image primitives,” in Knowledge-based

expert systems in industry, Kriz, J. (Ed.), pp. 91–97, Ellis Horwood, 1987.

15. Zhang, Z. and Simaan, M., “A rule-based interpretation system for

segmentation of seismic images,” Pattern Recognition, vol. 20, pp. 45–53,

1987.

16. Ampratwum, C. S., Picton, P. D., and Hopgood, A. A., “A rule-based

system for optical emission spectral analysis,” Symposium on Industrial

Applications of Prolog (INAP’97), Kobe, Japan, pp. 99–102, 1997.

17. Hopgood, A. A., Woodcock, N., Hallam, N. J., and Picton, P. D.,

“Interpreting ultrasonic images using rules, algorithms and neural

networks,” European Journal of Nondestructive Testing, pp. 135–149,

1993.

18. Leitch, R., Kraft, R., and Luntz, R., “RESCU: a real-time knowledge

based system for process control,” IEE Proceedings-D, vol. 138, pp. 217–

227, 1991.

19. Fink, P. K. and Lusth, J. C., “Expert systems and diagnostic expertise in

the mechanical and electrical domains,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 17, pp. 340–349, 1987.

20. Fulton, S. L. and Pepe, C. O., “An introduction to model-based

reasoning,” AI Expert, pp. 48–55, January 1990.

21. Scarl, E. A., Jamieson, J. R., and Delaune, C. I., “Diagnosis and sensor

validation through knowledge of structure and function,” IEEE



Transactions on Systems, Man, and Cybernetics, vol. 17, pp. 360–68,

1987.

22. Motta, E., Eisenstadt, M., Pitman, K., and West, M., “Support for

knowledge acquisition in the Knowledge Engineer’s Assistant (KEATS),”

Expert Systems, vol. 5, pp. 6–28, 1988.

23. Dague, P., Deves, P., Zein, Z., and Adam, J. P., “DEDALE: an expert

system in VM/Prolog,” in Knowledge-based expert systems in industry,

Kriz, J. (Ed.), pp. 57–68, Ellis Horwood, 1987.

24. Price, C. J., “Function-directed electrical design analysis,” Artificial

Intelligence in Engineering, vol. 12, pp. 445–456, 1998.

25. Cunningham, P., “A case study on the use of model-based systems for

electronic fault diagnosis,” Artificial Intelligence in Engineering, vol. 12,

pp. 283–295, 1998.

26. Dekleer, J. and Williams, B. C., “Diagnosing multiple faults,” Artificial

Intelligence, vol. 32, pp. 97–130, 1987.

27. Harel, D., “On visual formalisms,” Communications of the ACM, vol. 31,

pp. 514–530, 1988.

28. Price, C. J. and Hunt, J., “Simulating mechanical devices,” in Pop-11

Comes of Age: the advancement of an AI programming language,

Anderson, J. A. D. W. (Ed.), pp. 217–237, Ellis Horwood, 1989.

29. Jennings, A. J., “Artificial intelligence: a tool for productivity,” Institution

of Engineers (Australia) National Conference, Perth, Australia, 1989.

30. Milne, R., “Strategies for diagnosis,” IEEE Transactions on Systems, Man,

and Cybernetics, vol. 17, pp. 333–339, 1987.

31. Steels, L., “Diagnosis with a function-fault model,” Applied Artificial

Intelligence, vol. 3, pp. 129–153, 1989.

32. Walker, N. and Fox, J., “Knowledge-based interpretation of images: a

biomedical perspective,” Knowledge Engineering Review, vol. 2, pp. 249–

264, 1987.

33. Hopgood, A. A., “Rule-based control of a telecommunications network

using the blackboard model,” Artificial Intelligence in Engineering, vol. 9,

pp. 29–38, 1994.

34. Hopgood, A. A., Phillips, H. J., Picton, P. D., and Braithwaite, N. S. J.,

“Fuzzy logic in a blackboard system for controlling plasma deposition

processes,” Artificial Intelligence in Engineering, vol. 12, pp. 253–260,

1998.



35. Duda, R. O. and Hart, P. E., “Use of the Hough transform to detect lines

and curves in pictures,” Communications of the ACM, vol. 15, pp. 11–15,

1972.

36. Halmshaw, R., Non-Destructive Testing, Edward Arnold, 1987.

37. Duda, R. O. and Hart, P. E., Pattern Classification and Scene Analysis,

Wiley, 1973.

Further reading

• Hamscher, W., Luca Console, L., and De Kleer, J. (Eds.), Readings in

Model-Based Diagnosis, Morgan Kaufmann, 1992.

• Price, C. J., Computer-Based Diagnostic Systems, Springer Verlag, 2000.



Chapter twelve

Systems for design and
selection

12.1 The design process

Before discussing how knowledge-based systems can be applied to design, it is

important to understand what we mean by the word design. Traditionally,

design has been broken down into engineering design and industrial design:

Engineering design is the use of scientific principles, technical

information, and imagination in the definition of a mechanical structure,

machine, or system to perform specified functions with the maximum

economy and efficiency. [1]

Industrial design seeks to rectify the omissions of engineering, a conscious

attempt to bring form and visual order to engineering hardware where

technology does not of itself provide these features. [1]

We will take a more catholic view of design, in which no distinction is

drawn between the technical needs of engineering design and the aesthetic

approach of industrial design. Our working definition of design will be the one

used by Sriram et al.:

[Design is] the process of specifying a description of an artifact that

satisfies constraints arising from a number of sources by using diverse

sources of knowledge. [2]

Some of the constraints must be predetermined, and these constitute the

product design specification (PDS). Other constraints may evolve as a result of

decisions made during the design process. The PDS is an expression of the

requirements of a product, rather than a specification of the product itself. The

latter, which emerges during the design process, is the design. The design can



be interpreted for manufacture or construction, and it allows predictions about

the performance of the product to be drawn.

Different authors have chosen to analyze the design process in different

ways. An approximate consensus is that the broadest view of the design

process comprises the following phases (Figure 12.1):

market — specification — design (narrow view) — manufacture — selling

The narrow view of design leads from a product design specification to the

manufacturing stage. It can be subdivided as follows:

conceptual design — optimization/evaluation — detailed design

The purpose of each phase in the broad design process is as follows:

(i) Market: This phase is concerned with determining the need for a product.

A problem is identified, resources allocated, and end-users targeted.

(ii) Specification: A product design specification (PDS) is drawn up that

describes the requirements and performance specifications of the product.

The PDS for a motorcar might specify a product that can transport up to

four people in comfort, traveling on roads at speeds up to the legal limit.

(iii) Conceptual design: Preliminary design decisions are made at this stage,

with the aim of satisfying a few key constraints. Several alternatives

would normally be considered. Decisions taken at the conceptual design

sellingmarket specification manufacturedesign

broad view of design

narrow view of design

conceptual design detailed designoptimization/
evaluation

specification

conceptual design detailed designoptimization/
evaluation

design of detailed parts

Figure 12.1   The principal phases of design



stage determine the general form of the product, and so have enormous

implications for the remainder of the design process. The conceptual

design for a motorcar has altered little since the Model T Ford was

unveiled in 1908. It describes a steel body with doors and windows, a

wheel at each corner, two seats at the front (one of which has access to

the controls), two seats at the back, and so on.

(iv) Optimization/evaluation: The conceptual design is refined, for instance

by placing values on numerical attributes such as length and thickness.

The performance of the conceptual design is tested for its response to

external effects and its consistency with the product design specification.

The optimization and evaluation stage for a motorcar might include an

assessment of the relationship between the shape of the body and its drag

coefficient. If the conceptual design cannot be made to meet the

requirements, a new one is needed.

(v) Detailed design: The design of the product and its components are

refined so that all constraints are satisfied. Decisions taken at this stage

might include the layout of a car’s transmission system, the position of

the ashtray, the covering for the seats, and the total design of a door latch.

The latter example illustrates that the complete design process for a

component may be embedded in the detailed design phase of the whole

assembly (Figure 12.1).

(vi) Manufacture: A product should not be designed without consideration of

how it is to be manufactured, as it is all too easy to design a product that

is uneconomical or impossible to produce. For a product that is to be

mass-produced, the manufacturing plant needs to be designed just as

rigorously as the product itself. Different constraints apply to a one-off

product, as this can be individually crafted but mass-production

techniques such as injection molding are not feasible.

(vii) Selling: The chief constraint for most products is that they should be sold

at a profit. The broad view of design, therefore, takes into account not

only how a product can be made, but also how it is to be sold.

Although the design process has been portrayed as a chronological series

of events, in fact, there is considerable interaction between the phases — both

forwards and backwards — as constraints become modified by the design

decisions that are made. For instance, a decision to manufacture one

component from polyethylene rather than steel has ramifications for the design

of other components and implications for the manufacturing process. It may

also alter the PDS, as the polymer component may offer a product that is

cheaper but less structurally rigid. Similarly, sales of a product can affect the

market, thus linking the last design phase with the first.



In our description of conceptual and detailed design, we have made

reference to the choice of materials from which to manufacture the product.

Materials selection is one of the key aspects of the design process, and one

where considerable effort has been placed in the application of intelligent

systems. The process of materials selection is discussed in detail in

Section 12.8. Selection is also the key to other aspects of the design process, as

attempts are made to select the most appropriate solution to the problem.

The description of the design process that has been proposed is largely

independent of the nature of the product. The product may be a single

component (such as a turbine blade) or a complex assembly (such as a jet

engine); it may be a one-off product or one that will be produced in large

numbers. Many designs do not involve manufacture at all in the conventional

sense. An example that is introduced in Section 12.4 is the design of a

communications network. This is a high-level design, which is not concerned

with the layout of wires or optical fibers, but rather with the overall

configuration of the network. The product is a service rather than a physical

thing. Although selection is again one of the key tasks, materials selection is

not applicable in this case.

In summary, we can categorize products according to whether they are:

• service-based or physical products;

• single component products or assemblies of many components;

• one-off products or mass-produced products.

Products in each category will have different requirements, leading to a

different PDS. However, these differences do not necessarily alter the design

process.

Three case studies are introduced in this chapter. The specification of a

communications network is used to illustrate the importance and potential

complexity of the product design specification. The processes of conceptual

design, optimization and evaluation, and detailed design are illustrated with

reference to the floor of a passenger aircraft. This case study will introduce

some aspects of the materials selection problem, and these are further

illustrated by the third case study, which concerns the design of a kettle.

12.2 Design as a search problem

Design can be viewed as a search problem, as it involves searching for an

optimum or adequate design solution. Alternative solutions may be known in

advance (these are derivation problems), or they may be generated



automatically (these are formulation problems). Designs may be tested as they

are found in order to check whether they are feasible and meet the design

requirements. This is the generate and test method. In application areas such as

diagnosis (see Chapter 11) it may be sufficient to terminate the search as soon

as a solution is found. In design there are likely to be many solutions, and we

would like to find “the best.” The search may, therefore, continue in order to

find many feasible designs from which a selection can be made.

Search becomes impractical when large numbers of unreasonable designs

are included. Consider, for example, the design of a house. In order to generate

solutions automatically, we might write a computer program that generates

every conceivable combination of shapes and sizes of rooms, walls, roofs, and

foundations. Of this massive number of alternatives, only a small proportion

would be feasible designs. In order to make the search problem manageable,

some means of eliminating the unfeasible designs is needed. Better still would

be a means of eliminating whole families of ill-conceived designs before the

individual variants have been produced. The design-generator could be

modified by heuristics so that it produced only designs with the roof above the

walls and with the walls above the foundations. This would have the effect of

pruning the search space (Figure 12.2). The search space can also be reduced

by decomposing the design problem into subproblems of designing the rooms,

roof, and foundations separately, each with its own smaller search tree.

The search problem is similar to the proposition that a monkey playing

random notes on a grand piano will eventually play a Beethoven symphony.

The fault in this proposition is that the search space of compositions is so

immense that the monkey would not stumble across the symphony within a

practical time-frame. Only a composer with knowledge of suitable musical

Figure 12.2   Pruning the search tree by eliminating classes of design

that are unfeasible



arrangements could hope to generate the symphony, as he or she is able to

prune the search space of compositions.

Even if we succeed in pruning the search space so that only feasible

designs are considered, we will still be left with the problem of selecting

between alternatives. The selection problem is discussed in Section 12.8 below

with particular reference to materials selection for design. The same techniques

can be applied to selection between design alternatives.

Although heuristic rules can limit the search space, they do not offer

unique solutions. This is because abductive rather than deductive rules are

required (Chapter 1), as with diagnosis (Chapter 11). Consider this simple

deductive rule:

/* Rule 12.1 */

IF ?x is a room with a bath and a toilet THEN ?x is a bathroom

If a room fits the description provided by the condition part of the rule, we

could use the rule to classify that room as a bathroom. The abductive

interpretation of this rule is:

/* Rule 12.2 */

IF a room is to be a bathroom

THEN it must have a bath and a toilet

The abductive rule poses two problems. First, we have made the closed-world

assumption (see Chapters 1 and 2), and so the rule will never produce

bathroom designs that have a shower and toilet but no bath. Second, the rule

leads only to a partial design. It tells us that the bathroom will have a toilet and

bath, but fails to tell us where these items should be placed or whether we need

to add other items such as a basin.

12.3 Computer aided design

The expression computer aided design, or CAD, is used to describe computing

tools that can assist in the design process. Most early CAD systems were

intended primarily to assist in drawing a design, rather than directly supporting

the decision-making process. CAD systems of this type carry out computer

aided drafting rather than computer aided design. Typically, these drafting

systems allow the designer to draw on a computer screen using a mouse,

graphics tablet, or similar device. All dimensions are automatically calculated,

and the design can be easily reshaped, resized, or otherwise modified. Such

systems have had an enormous impact on the design process since they remove

much of the tedium and facilitate alterations. Furthermore, CAD has altered the



designers’ working environment, as the traditional large flat drafting boards

have been replaced by computer workstations.

Early CAD systems of this type do not make decisions and have little

built-in intelligence. They do, however, frequently make use of object-oriented

programming techniques. Each line, box, circle, etc., that is created can be

represented as an object instance. Rather than describing such systems in more

detail, this chapter will concentrate on the use of intelligent systems that can

help designers make design decisions.

12.4 The product design specification (PDS):
a telecommunications case study

12.4.1 Background

The product design specification (PDS) is a statement of the requirements of

the product. In this section we will consider a case study concerning the

problems of creating a PDS that can be accessed by a knowledge-based design

system. In this case study, the “product” is not a material product but a service,

namely, the provision of a communications network. The model used to

represent the PDS is called the common traffic model (CTM) [3], because it is

common to a variety of forms of communication traffic (e.g., analog voice,

packetized data, or synchronous data).

The common traffic model allows different views of a communications

network to be represented simultaneously. The simplest view is a set of

requirements defined in terms of links between sites and the applications (e.g.,

fax or database access) to be used on these links. The more specialized views

contain implementation details, including the associated costs. The model

allows nontechnical users to specify a set of communications requirements,

from which a knowledge-based system can design and cost a network, thereby

creating a specialized view from a nonspecialized one. The model consists of

object class definitions, and a PDS is represented as a set of instances of these

classes.

12.4.2 Alternative views of a network

Suppose that a small retailer has a central headquarters, a warehouse, and a

retail store. The retailer may require various communications applications,

including customer order by fax, customer order by phone, and stock reorder



(where replacement stock is ordered from suppliers). The retailer views the

network in terms of the sites and the telecommunications applications that are

carried between them. This is the simplest viewpoint, which defines the PDS.

From a more technical viewpoint, the network can be broken down into voice

and data components. For the voice section, each site has a fixed number of

lines connecting it to the network via a private switching system, while the

data section connects the head office to the other sites. The most detailed view

of the network (the service-provider’s viewpoint) includes a definition of the

equipment and services used to implement the network. The detailed

description is based on one of several possible implementations, while the less

specialized views are valid regardless of the implementation.

There are several possible views of the network, all of which are valid and

can be represented by the common traffic model. It is the translation from the

customer’s view (defined in terms of the applications being used) to the

service-provider’s view (defined in terms of the equipment and services

supplied) that determines the cost and efficiency of the communications

network. This translation is the design task.

12.4.3 Implementation

The requirements of the network are represented as a set of object instances.

For example, if the customer of the telecommunications company has an office

in New York, that office is represented as an object with a name and position,

and is an instance of the object class Customer_site.

The common traffic model was originally designed using Coad and

Yourdon’s object-oriented analysis (OOA) [4], but is redrawn in Figure 12.3

using the Unified Modeling Language (UML) introduced in Chapter 4. The

model is implemented as a set of object classes that act as templates for the

object instances that are created when the system is used to represent a PDS.

Various interclass relationships are employed. For example, a

Dispersion_link is represented as a specialization of a Link. Similarly, an

aggregation relationship is used to show that a Network comprises several

instances of Link. Associations are used to represent physical connections,

such as the connection between a Link and the instances of Site at its two

ends.

The fact that instance connections are defined at the class level can be

confusing. The common traffic model is defined entirely in terms of object

classes, these being the templates for the instances that represent the user’s

communication needs. Although the common traffic model is only defined in

terms of classes, it specifies the relationships that exist between instances when

they are created.



Network

name
description
contact_name
contact_number
address

Link

name
description
pointSource[i]

General_link

Information_stream

name
description

single site

Equipment_list

name
description
count[x]

Equipment_item

name
class
services
description

Private_item

cost

Telecommunications_
company_item

productCode

Service

name
description

Site

name
description
address

Customer_site

telephone
number
location

Telecommunications_
company_site

location
timeZone
catalogCode

Application_stream

name
description
peak_call_rate
service_grade_in
service_grade_out

Data_stream Voice_stream

Yearly_call_
distribution

Daily_call_
distribution

multiple
site

*

1..*

*

1..*

Dispersion_link

range[i]

1

1

1

1..*

* 1 1

*

1

*

1

*

*

* 1..*

1..*

1..*

1..*

1..*

1..*

* 1

Figure 12.3   The main object classes and attributes in the common traffic model

(adapted from [3])



12.4.4 The classes

The classes that make up the common traffic model and the relationships

between them are shown in Figure 12.3. A detailed understanding of Figure

12.3 is not necessary for this case study. Instead it is hoped that the figure

conveys the general idea of using object-oriented analysis for generating both

the PDS and a detailed network description. The main classes of the common

traffic model are briefly described below.

Network

The Network object contains the general information relating to the network,

but is independent of the network requirements. It includes information such as

contact people and their addresses. The specification of the network is

constructed from a set of Link objects (described below).

Link

A Link identifies the path between customer sites along which an information

stream (described below) occurs. Instance connections are used to associate

links with appropriate customer sites, information streams, and equipment.

Conceptually three types of link are defined:

• Multipoint links, where information is exchanged between a single

nominated site and a number of other sites. The links are instances of the

class General_link, where an attribute (pointsource) indicates whether

calls are initiated by the single site or by the multiple sites.

• Point-to-point links, which are treated as multipoint links, but where only

one of the multiple sites is specified.

• Dispersion links, which carry application traffic that does not have a fixed

destination site. This type of link applies to customers who want access to

a public switched network.

Site

Two classifications of sites are defined, namely, the customer’s sites and the

telecommunications company’s sites. The latter specify sites that are part of

the supplier’s network, such as telephone exchanges. For most

telecommunications services, the design and costing of a network is dependent

on its spatial layout. For this reason, the common traffic model has access to a

geographical database.

Information stream

The information streams specify the traffic on a link in terms of a set of

application streams. Two subclasses of Application_stream are defined,

Data_stream and Voice_stream. The first specifies digital applications, while



the second specifies analog applications. Each application stream has a peak

call rate and associated yearly and daily traffic profiles. Application streams

can be broken down further into individual calls.

Equipment

An equipment list specifies a set of items that are present at a site or on a link.

Two subclasses of equipment item are defined: those that are owned by the

telecommunications company and those that are privately owned.

12.4.5 Summary of PDS case study

The common traffic model illustrates a formalized approach to creating a

product design specification, showing that the PDS and its implementation

need to be carefully thought out before a knowledge-based design system can

be employed. The common traffic model has proved an effective tool for

representing a set of communication requirements in a way that satisfies more

than one viewpoint. Nontechnical users can specify the PDS in terms of the

types of use that they have in mind for the network. The common traffic model

can also be used to represent the detailed network design, which may be one of

many that are technically possible.

12.5 Conceptual design

It has already been noted in Section 12.1 that conceptual design is the stage

where broad decisions about the overall form of a product are made. A

distinction can be drawn between cases where the designer is free to innovate

and more routine cases where the designer is working within tightly bound

constraints. An example of the former case would be the design of a can

opener. Many designs have appeared in the past and the designer may call

upon his or her experience of these. However, he or she is not bound by those

earlier design decisions. In contrast, a designer might be tasked with arranging

the layout of an electronic circuit on a VLSI (very large scale integration) chip.

While this is undoubtedly a complex task, the conceptual design has already

been carried out, and the designer’s task is one that can be treated as a problem

of mathematical optimization. We will call this routine design.

Brown and Chandrasekaran [5] subdivide the innovative design category

between inventions (such as the first helicopter) and more modest innovations

(such as the first twin-rotor helicopter). Both are characterized by the lack of

any prescribed strategy for design, and rely on a spark of inspiration. The

invention category makes use of new knowledge, whereas the innovation



category involves the reworking of existing knowledge or existing designs.

The three categories of design can be summarized as follows:

• invention;

• innovative use of existing knowledge or designs;

• routine design.

Researchers have different opinions of how designers work, and it is not

surprising that markedly different software architectures have been produced.

For instance, Sriram et al. [2] claim to have based their CYCLOPS system on

the following set of observations about innovative design:

(i) designers use multiple objectives and constraints to guide their decisions,

but are not necessarily bound by them;

(ii) as new design criteria emerge they are fed back into the PDS;

(iii) designers try to find an optimum solution rather than settling on a

satisfactory one;

(iv) extensive use is made of past examples.

Demaid and Zucker [6] have no quarrel with observations (i), (ii), and (iv).

However, in contrast to observation (iii), they emphasize the importance of

choosing adequate materials for a product rather than trying to find an

optimum choice.

The CYCLOPS [2] and FORLOG [7] systems assume that innovative

design can be obtained by generating a variety of alternatives and choosing

between them. CYCLOPS makes use of previous design histories and attempts

to adapt them to new domains. The success of this approach depends upon the

ability to find diverse novel alternatives. In order to increase the number of

past designs that might be considered, the design constraints are relaxed.

Relaxation of constraints is discussed in Section 12.8.5 as part of an overall

discussion of techniques for selecting between alternatives. CYCLOPS also

has provision for modification of the constraints in the light of past experience.

As well as selecting a preexisting design for use in a novel way,

CYCLOPS allows adaptation of the design to the new circumstances. This is

achieved through having a stored explanation of the precedent designs. The

example cited by Sriram et al. [2] relates to houses in Thailand. Thai villagers

put their houses on stilts to avoid flooding, and this forms a precedent design.

The underlying explanation for the design, which is stored with it, is that stilts

raise the structure. The association with flooding may not be stored at all, as

this is not fundamental to the role of the stilts. CYCLOPS might then use this



precedent to raise one end of a house that is being designed for construction on

a slope.

Most work in knowledge-based systems for design relies on the

application of a predetermined strategy. Dyer et al. [8] see this as a limitation

on innovation and have incorporated the idea of brainstorming into EDISON, a

system for designing simple mechanical devices. Some of the key features of

EDISON are:

• brainstorming by 
analogy

tiongeneraliza
mutation

• problem-solving heuristics;

• class hierarchies of mechanical parts;

• heuristics describing relationships between mechanical parts.

EDISON makes use of metarules (see Chapter 2) to steer the design

process between the various strategies that are provided. Brainstorming and

problem solving often work in tandem, as brainstorming tends to generate new

problems. Brainstorming involves retrieving a previous design from memory

and applying mutation, generalization, and analogical reasoning until a new

functioning device is “invented.” Mutation is achieved through a set of

heuristics describing general modifications that can be applied to a variety of

products. For example, slicing a door creates two slabs, each covering half a

door frame. This operation results in a problem: the second slab is not

connected to the frame. Two typical problem-solving heuristics might be:

Hinged joints allow rotation about pin

Hinged joints prohibit motion in any other planes

These rules provide information about the properties of hinges.

Application of similar problem-solving rules might result in the free slab’s

being connected either to the hinged slab or to the opposite side of the frame.

In one case we have invented the swinging saloon door; in the other case the

accordion door (Figure 12.4).

Generalization is the process of forming a generic description from a

specific item. For instance, a door might be considered a subclass of the

general class of entrances (Figure 12.5). Analogies can then be drawn

(analogical reasoning) with another class of entrance, namely, a cat flap,

leading to the invention of a door that hangs from hinges mounted at the top.

Generalization achieves the same goal as the deep explanations used in the

adaptation mode of CYCLOPS, described above.



Murthy and Addanki [9] have built a system called PROMPT in which

innovative structural designs are generated by reasoning from first principles,

i.e., using the fundamental laws of physics. Fundamental laws can lead to

unconventional designs that heuristics based on conventional wisdom might

have failed to generate. Other authors [10, 11] have proposed a systematic

approach to innovation which generates only feasible solutions, rather than

large numbers of solutions from which the feasible ones must be extracted. In

this approach, the goals are first determined and then the steps needed to

satisfy these goals are found. These steps have their own subgoals, and so the

processes proceeds recursively.

Mutation Problem
solving

Door

Hinge

Saloon
door

Accordion
door

Figure 12.4   Inventing new types of doors by mutation and problem solving

(after Dyer et al. [8])

Entrance

Door Cat-flapGate

Conventional door

Saloon door

Accordion door

Figure 12.5   Hierarchical classification of types of entrances



12.6 Constraint propagation and truth maintenance

The terms constraint propagation and truth maintenance are commonly used

in the field of artificial intelligence to convey two separate but related ideas.

They have particular relevance to design, as will be illustrated by means of

some simple examples. Constraints are limitations or requirements that must be

met when producing a solution to a problem (such as finding a viable design).

Imagine that we are designing a product, and that we have already made some

conceptual design decisions. Propagation of constraints refers to the problem

of ensuring that new constraints arising from the decisions made so far are

taken into account in any subsequent decisions. For instance, a decision to

manufacture a car from steel rather than (say) fiberglass introduces a constraint

on the design of the suspension, namely, that it must be capable of supporting

the mass of the steel body.

Suppose that we wish to investigate two candidate solutions to a problem,

such as a steel-bodied car and a fiberglass car. Truth maintenance refers to the

problem of ensuring that more detailed investigations, carried out

subsequently, are associated with the correct premise. For example, steps must

be taken to ensure that a lightweight suspension design is associated only with

the lightweight (fiberglass) design of car to which it is suited.

In order to illustrate these ideas in more detail, we have adapted the

example provided by Dietterich and Ullman [7]. The problem is to place two

batteries into a battery holder. There are four possible ways in which the

batteries can be inserted, as shown in Figure 12.6. This situation is described

by the following Prolog clauses (Chapter 10 includes an overview of the

syntax and workings of Prolog):

terminal(X):- X=positive;X=negative.

% battery terminal may be positive or negative

layout(T,B):- terminal(T),terminal(B).

% layout defined by identifying top and bottom terminals

We can now query our Prolog system so that it will return all valid

arrangements of the batteries:

?- layout(Top,Bottom).

Top = Bottom = positive;

Top = positive,  Bottom = negative;

Top = negative,  Bottom = positive;

Top = Bottom = negative



Now let us introduce the constraint that the batteries must be arranged in

series. This is achieved by adding a clause to specify that terminals at the top

and bottom of the battery holder must be of opposite sign:

terminal(X):- X=positive;X=negative.

layout(T,B):- terminal(T),terminal(B),

not(T=B). % top terminal not equal to bottom terminal

We can now query our Prolog system again:

?- layout(Top,Bottom).

Top = positive,  Bottom = negative;

Top = negative,  Bottom = positive;

no

We will now introduce another constraint, namely, that a positive terminal

must appear at the top of the battery holder:

terminal(X):- X=positive;X=negative.

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Figure 12.6   Four possible ways of inserting batteries into a holder



layout(T,B):- terminal(T),terminal(B),

not(T=B),

T=positive.% positive terminal at top of holder

There is now only one arrangement of the batteries that meets the constraints:

?- layout(Top,Bottom).

Top = positive,  Bottom = negative;

no

This is an example of constraint propagation, because it shows how a

constraint affecting one part of the design (i.e., the orientation of the battery at

the top of the holder) is propagated to determine some other part of the design

(i.e., the orientation of the other battery). In this particular example, constraint

propagation has been handled by the standard facilities of the Prolog language.

Many researchers, including Dietterich and Ullman [7], have found the need to

devise their own means of constraint propagation in large design systems.

Truth maintenance becomes an important problem if we wish to consider

more than one solution to a problem at a time, or to make use of nonmonotonic

reasoning (see Chapter 11). For instance, we might wish to develop several

alternative designs, or to assume that a particular design is feasible until it is

shown to be otherwise. In order to illustrate the concept of truth maintenance,

we will stay with our example of arranging batteries in a holder. However, we

will veer away from a Prolog representation of the problem, as standard Prolog

can consider only one solution to a problem at a time.

Let us return to the case where we had specified that the two batteries

must be in series, but we had not specified an orientation for either. There

were, therefore, two possible arrangements:

[Top = positive,  Bottom = neg]

or:
[Top = negative,  Bottom = positive]

It is not sufficient to simply store these four assertions together in memory:

Top = positive

Bottom = negative

Top = negative

Bottom = positive

For these statements to exist concurrently, it would be concluded that the two

terminals of a battery are identical (i.e., negative = positive). This is clearly not

the intended meaning. A frequently used solution to this difficulty is to label

each fact, rule, or assertion, such that those bearing the same label are



recognized as interdependent and, therefore, “belonging together.” This is the

basis of deKleer’s assumption-based truth maintenance system (ATMS) [12,

13, 14]. If we choose to label our two solutions as design1 and design2, then

our four assertions might be stored as:

Top = positive {design1}

Bottom = negative {design1}

Top = negative {design2}

Bottom = positive {design2}

Let us now make explicit the rule that the two terminals of a battery are

different:

not (positive = negative) {global}

The English translation for these labels would be “if you believe the global

assumptions, then you must believe not(positive = negative).” Similarly

for design1, “if you believe design1, then you must also believe Top =

negative and Bottom = positive.” Any deductions made by the inference

engine should be appropriately labeled. For instance the deduction:

negative = positive {design1, design2}

is compatible with the sets of beliefs defined by design1 and design2.

However, this deduction is incompatible with our global rule, and so a warning

of the form:

INCOMPATIBLE {design1, design2, global}

should be produced. This tells us that we cannot believe design1, design2,

and global simultaneously. It is, however, all right to believe (design1 and

global) or (design2 and global). This is the behavior we want, as there are

two separate designs, and the inference engine has simply discovered that the

two designs cannot be combined together.

12.7 Case study: the design of a lightweight beam

12.7.1 Conceptual design

To illustrate some of the ideas behind the application of knowledge-based

systems to conceptual design, we will consider the design of a lightweight

beam. The beam is intended to support a passenger seat in a commercial

aircraft. The whole aircraft will have been designed, and we are concerned



with the design of one component of the whole assembly. The total design

process for the beam is part of the detailed design process for the aircraft. The

intended loading of the beam tends to cause it to bend, as shown in Figure

12.7. The objectives are for the beam to be:

• stiff enough that the deflection (D) is kept small;

• strong enough to support the load without fracture;

• as light as possible, so as to maximize the ratio of cargo weight to fuel

consumption.

Together, these three objectives form the basis of the product design

specification (PDS). The PDS can be made more specific by placing limits on

the acceptable deflection (D) under the maximum design load (F). A limit

could also be placed on the mass of the beam. However, a suitable mass limit

is difficult to judge, as it presupposes the form of the beam (i.e., its conceptual

design) and the materials used. For this reason, we will simply state that the

beam is required to be as light as possible within the constraints of fulfilling

the other two requirements. In practice, a number of additional constraints will

apply, such as materials costs, manufacturing costs, and flammability.

F F

D

L

2d

b

a a

FF

Figure 12.7   Four-point loading of a beam supporting a chair



(a) I-beam

(b) Box girder bridge

upper surface

lightweight core

lower surface
(c) Sandwich beam

Figure 12.8   Some alternative conceptual designs for load-bearing beams



Kim and Suh [15] propose that the design process in general can be based

upon two axioms, which can be implemented as metarules (see Chapter 2):

axiom 1: maintain independence of functional requirements

axiom 2: minimize information content

Our statement of the PDS fulfills these two axioms, because we have identified

three concise and independent requirements.

Many knowledge-based systems for conceptual design attempt to make

use of past designs (e.g., CYCLOPS, mentioned above), as indeed do human

designers. Some past designs that are relevant to designing the beam are shown

in Figure 12.8. These are:

• I-beams used in the construction of buildings;

• box girder bridges;

• sandwich structures used in aircraft wings.

All three structures have been designed to resist bending when loaded. For this

knowledge to be useful, it must be accompanied by an explanation of the

underlying principles of these designs, as well as their function. The principle

underlying all three designs is that strength and stiffness are mainly provided

by the top and bottom surfaces, while the remaining material keeps the two

surfaces apart. The heaviest parts of the beam are, therefore, concentrated at

the surfaces, where they are most effective. This explanation could be

expressed as a rule, or perhaps by hierarchical classification of the structural

objects that share this property (Figure 12.9). A set of conceptual design rules

might seize upon the beams class as being appropriate for the current

application because they maximize both (stiffness/mass) and (strength/mass) in

bending.

At this stage in the design procedure, three markedly different conceptual

designs have been found that fulfill the requirements as determined so far. A

key difference between the alternatives is shape. So a knowledge-based system

for conceptual design might seek information about the shape requirements of

the beam. If the beam needs both to support the seats and to act as a floor that

passengers can walk on, it should be flat and able to fulfill the design

requirements over a large area. Adding this criterion leaves only one suitable

conceptual design, namely the sandwich beam. If the human who is interacting

with the system is happy with this decision, the new application can be added

to the applications attribute of the Sandwich_beam class so that this

experience will be available in future designs (Figure 12.9).



12.7.2 Optimization and evaluation

The optimization and evaluation stage of the design process involves

performing calculations to optimize performance and to check whether

specifications are being met. As this phase is primarily concerned with

numerical problems, the tasks are mainly handled using procedural

programming techniques. However, the numerical processes can be made more

effective and efficient by the application of rules to steer the analysis. For

instance, a design system may have access to a library of optimization

procedures, the most appropriate for a specific task being chosen by a rule-

based selection module.

Three important forms of numerical analysis are:

• mathematical optimization;

• finite-element analysis;

• specialized modeling.

Beam

primary_material
secondary_material
mass
length
thickness
width
bonding
applications

calculate_load_capacity

I_beam

primary_material = steel

Box_girder

primary_material = steel
bonding = bolted

Sandwich_beam

primary_material = aluminum
secondary_material = pvc_foam
bonding = adhesive

calculate_load_capacity calculate_load_capacity calculate_load_capacity

Figure 12.9   Hierarchical classification of beams



Several techniques for mathematical optimization were described in Chapter 7,

including hill-climbing, simulated annealing, and genetic algorithms.

Finite-element analysis is a general technique for modeling complex shapes. In

order to analyze the performance of a three-dimensional physical product, a

technique has to be devised for representing the product numerically within the

computer. For regular geometric shapes, such as a cube or sphere, this poses no

great problem. But the shape of real products, such as a saucepan handle or a

gas turbine blade, can be considerably more complex. Since the shape of an

object is defined by its surfaces, or boundaries, the analysis of performance

(e.g., the flow of air over a turbine blade) falls into the class of boundary-value

problems. Finite-element analysis provides a powerful technique for obtaining

approximate solutions to such problems. The technique is based on the concept

of breaking up an arbitrarily complex surface or volume into a network of

simple interlocking shapes. The performance of the whole product is then

taken to be the sum of each constituent part’s performance. There are many

published texts that give a full treatment of finite-element analysis (e.g., [16,

17]).

Mathematical optimization or finite-element analysis might be used in

their own right or as subtasks within a customized model. If equations can be

derived that describe the performance of some aspects of the product under

design, then it is obviously sensible to make use of them. The rest of this

section will, therefore, concentrate on the modeling of a physical system, with

particular reference to the design of a sandwich beam.

In the case of the sandwich beam, expressions can be derived that relate

the minimum mass of a beam that meets the stiffness and strength

requirements to dimensions and material properties. Mass, stiffness, and

strength are examples of performance variables, as they quantify the

performance of the final product. The thicknesses of the layers of the sandwich

beam are decision variables, as the designer must choose values for them in

order to achieve the required performance. Considering first the stiffness

requirement, it can be shown [18, 19] that the mass of a beam that just meets

the stiffness requirement is given by:

cc

cs

s t
btDE

fFad
bLM

2

22
(12.1)

where:

M = mass of beam

b, L, a, d = dimensions defined in Figure 12.7

F = applied load

f = safety factor (f = 1.0 for no margin of safety)



ts, s, Es = thickness, density and Young’s modulus of surface material

tc, c, Ec = thickness, density and Young’s modulus of core material

Equation 12.1 is written in terms of the core thickness tc. For each value

of core thickness, there is a corresponding surface thickness ts that is required

in order fulfill the stiffness requirement:

2

2

cs

s
btDE

fFad
t (12.2)

Thus, given a choice of materials, the plan view dimensions (b, L, a, and d),

and the maximum deflection D under load F, there is a unique pair of values of

tc and ts that correspond to the minimum mass beam that meets the

requirement. If this were the only requirement, the analysis would be complete.

However, as well as being sufficiently stiff, the beam must be sufficiently

strong, i.e., it must not break under the design load. A new pair of equations

can be derived that describe the strength requirement:

Stiffness requirement

Strength requirement

Core thickness, tc

M
in

im
um

 m
as

s,
 M

, t
o 

m
ee

t t
he

 r
eq

ui
re

m
en

t

Figure 12.10   Mass of a sandwich beam that just meets

stiffness and strength requirements













+≈ cc

cf

s t
bt

fFa
bLM ρ

σ
ρ2

(12.3)

cf
s bt

fFa
t

σ
≈ (12.4)

where σf is the failure stress of the surface material.

Assuming a choice of core and surface materials and given the plan
dimensions and loading conditions, Equations 12.1 and 12.3 can be plotted to
show mass as a function of core thickness, as shown in Figure 12.10. The
position of the two curves in relation to each other depends upon the materials
chosen. It should be noted that the minimum mass to fulfill the stiffness
requirement may be insufficient to fulfill the strength requirement, or vice
versa.

There are still two other complications to consider before the analysis of
the beam is complete. First, the core material must not fail in shear. In order to
achieve this, the following condition must be satisfied:

c
c b

fF
t

τ2

3
≥ (12.5)

where τc is the critical shear stress for failure of the core material.

Finally, the upper surface, which is in compression, must not buckle. This
condition is described by the following equation:

3/1)(

2

ccsc
s

GEEbt

fFa
t ≥ (12.6)

where Gc is the shear modulus of the core material.

Armed with these numerical models, reasonable choices of layer
thicknesses can be made. Without such models, a sensible choice would be
fortuitous.



12.7.3 Detailed design

The detailed design phase allows the general view provided by the conceptual

design phase to be refined. The optimization and evaluation phase provides the

information needed to make these detailed design decisions. The decisions

taken at this stage are unlikely to be innovative, as the design is constrained by

decisions made during the conceptual design phase. In the case of the sandwich

beam, the following decisions need to be made:

• choice of core material;

• choice of upper surface material;

• choice of lower surface material;

• choice of core thickness;

• choice of upper surface thickness;

• choice of lower surface thickness;

• method of joining the surfaces to the core.

There is clearly a strong interaction among these decisions. There is also an

interaction with the optimization and evaluation process, as Equations 12.1–

12.6 need to be reevaluated for each combination of materials considered. The

decisions also need to take account of any assumptions or approximations that

might be implicit in the analysis. For instance, Equations 12.1–12.4 were

derived under the assumption that the top and bottom surfaces were made from

identical materials and each had the same thickness.

12.8 Design as a selection exercise

12.8.1 Overview

It should be noted that the crux of both conceptual and detailed design is the

problem of selection. Some of the techniques available for making selection

decisions are described in the following sections. In the case of a sandwich

beam, the selection of the materials and glue involves making a choice from a

very large but finite number of alternatives. Thickness, on the other hand, is a

continuous variable, and it is tempting to think that the “right” choice is

yielded directly by the analysis phase. However, this is rarely the case. The

requirements on, say, core thickness will be different depending on whether we

are considering stiffness, surface strength, or core shear strength. The actual

chosen thickness has to be a compromise. Furthermore, although thickness is a

continuous variable, the designer may be constrained by the particular set of

thicknesses that a supplier is willing to provide.



This section will focus on the use of scoring techniques for materials

selection, although neural network approaches can offer a viable alternative

[20]. The scoring techniques are based on awarding candidate materials a score

for their performances with respect to the requirements, and then selecting the

highest-scoring materials. We will start by showing a naive attempt at

combining materials properties to reach an overall decision, before considering

a more successful algorithm called AIM [21]. AIM will be illustrated by

considering the selection of a polymer for the manufacture of a kettle.

For the purposes of this discussion, selection will be restricted to polymer

materials. The full range of materials available to designers covers metals,

composites, ceramics, and polymers. Each of these categories is vast, and

restricting the selection to polymers still leaves us with a very complex design

decision.

12.8.2 Merit indices

The analysis of the sandwich beam yielded expressions for the mass of a beam

that just meets the requirements. These expressions contained geometrical

measurements and physical properties of the materials. Examination of

Equation 12.1 shows that the lightest beam that meets the stiffness requirement

will have a low density core ( c) and surfaces( s), and the surface material will

have a high Young’s modulus (Es). However, this observation would not be

sufficient to enable a choice between two materials where the first had a high

value of Es and s, and the second had a low value for each. Merit indices can

help such decisions by enabling materials to be ranked according to

combinations of properties. For instance, a merit index for the surface material

of a sandwich beam would be Es/ s. This is because Equation 12.1 reveals that

the important combination of properties for the surface material is the ratio

Minimum weight for

given:

Merit index for surface

material

Merit index for core

material

stiffness
s

sE

c

1

strength
s

f

c

c

buckling resistance
s

sE 3/1

c

ccGE
3/1

Table 12.1   Merit indices for a sandwich beam



s/Es. As the latter ratio is to be minimized, while merit indices are normally

taken to be a quantity that is to be maximized, the merit index is the reciprocal

of this ratio. By considering Equations 12.1–12.6, we can derive the merit

indices shown in Table 12.1.

Merit indices can be calculated for each candidate material. Given these,

tables can be drawn up for each merit index, showing the ranking order of the

materials. Thus, merit indices go some way toward the problem of materials

F

F

2r
l

T

2r
l

2r l

T

t

l
t

2r

Tie
F, l specified

r free

Torsion bar
T, l specified

r free

Torsion tube
T, l, r specified

t free

Bending of
rods and tubes

F, l specified
r or t free

Minimize mass for given:

stiffness ductile
strength

Mode of loading

E
ρ

G
ρ

E 1/2

ρ

σy

ρ

σy

ρ

2/3

G
ρ

σy

ρ

σy

ρ

F

F

F

Figure 12.11   Merit indices for minimum mass design (after Ashby [22]).

E = Young’s modulus; G = shear modulus; = density; y = yield stress.

Reprinted from Acta Metall., 37, M. F. Ashby, “On the engineering properties of

materials,” Copyright (1989), pp. 1273–1293, with permission from Elsevier Science



selection based on a combination of properties. However, if more than one

merit index needs to be considered (as with the sandwich beam), the problem

is not completely solved. Materials that perform well with respect to one merit

index may not perform so well with another. The designer then faces the

problem of finding the materials that offer the best compromise. The scoring

techniques described in Sections 12.8.6 and 12.8.7 address this problem. Merit

indices for minimum mass design of a range of mechanical structures are

shown in Figure 12.11.

12.8.3 The polymer selection example

With the huge number of polymers available, a human designer is unlikely to

have sufficient knowledge to make the most appropriate choice of polymer for

a specific application. Published data are often unreliable and are generally

produced by polymer manufacturers, who have a vested interest in promoting

their own products. Even when adequate data are available, the problem of

applying them to the product design is likely to remain intractable unless the

designer is an expert in polymer technology or has on-line assistance. The

selection system described here is intended to help the designer by making the

best use of available polymer data. The quality of the recommendations made

will be limited by the accuracy and completeness of these data. Use of a

computerized materials selection system has the spin-off advantage of

encouraging designers to consider and analyze their requirements of a material.

12.8.4 Two-stage selection

The selection system in this example is based on the idea of ranking a shortlist

of polymers by comparing their relative performance against a set of materials

properties. The length of the shortlist can be reduced by the prior application of

numerical specifications, such as a minimum acceptable impact strength. The

selection process then comprises two stages, as shown in Figure 12.12. First,

any polymers that fail to meet the user’s numerical specifications are

eliminated. These specifications are constraints on the materials, and can be

used to limit the number of candidate polymers. Constraints of this sort are

sometimes described as primary constraints, indicating that they are

nonnegotiable. A facility to alter the specifications helps the user of a selection

system to assess the sensitivity of the system to changes in the constraints.

Second, the selection process requires the system to weigh the user’s

objectives to arrive at some balanced compromise solutions. The objectives are

properties that are to be maximized or minimized as far as possible while

satisfying constraints and other objectives. For instance, it may be desirable to

maximize impact strength while minimizing cost. Cost is treated as a polymer



property in the same way as the other physical properties. Each objective has

an importance rating — supplied by the user — associated with it. In the

unlikely event of a polymer’s offering outstanding performance for each

material objective, this polymer will appear at the top of the list of

recommendations made by the selection system. More typically, the properties

being optimized represent conflicting requirements for each polymer. For

example, a polymer offering excellent impact resistance may not be easily

injection molded. For such problems there is no single correct answer, but

several answers offering different levels of suitability. Objectives may also be

known as preferences or secondary constraints.

12.8.5 Constraint relaxation

Several authors (e.g., Demaid and Zucker [6], Navichandra and Marks [23],

and Sriram et al. [2]) have stressed the dangers of applying numerical

constraints too rigidly and so risking the elimination of candidates that would

have been quite suitable. Hopgood [21] and Navichandra and Marks [23]

overcome this problem by relaxing the constraints by some amount. In

Hopgood’s system, the amount of constraint relaxation is described as a

tolerance, which is specified by the user. Relaxation overcomes the artificial

precision that is built into a specification. It could be that it is difficult to

provide an accurately specified constraint, the property itself may be ill-

defined, or the property definition may only approximate what we are really

after. Application and relaxation of constraints can be illustrated by

representing each candidate as a point on a graph where one property is plotted

against another. A boundary is drawn between those materials that meet the

constraints and those that do not, and relaxation of the constraints corresponds

to sliding this boundary (Figure 12.13).

Generate shortlist by applying constraints
to quantifiable properties

Sort shortlist on the basis of each candidate s
scores for the objective properties

Figure 12.12   Two-stage selection



Pr
op

er
ty

 2

Property 1

Pr
op

er
ty

 2

Property 1

Pr
op

er
ty

 2

Property 1

Pr
op

er
ty

 2

Property 1

Pr
op

er
ty

 2

Property 1

Pr
op

er
ty

 2

Property 1

(d)

(b)

(c)

(a)

(e) (f)

acceptable
solutions

Figure 12.13   Relaxation of constraints:

(a) both constraints are minimum specifications

(b) property 1 has a maximum specification; property 2 has a minimum specification

(c) property 2 has a maximum specification; property 1 has a minimum specification

(d) both constraints are maximum specifications

(e) constraints are target values with associated tolerances

(f) constraint is a trade-off between interdependent properties



If our specification represents a minimum value that must be attained for a

single property (e.g., impact resistance must be at least 1kJ/m), the boundary is

moved toward the origin (Figure 12.13(a)). If one or both specifications are for

a maximum value, then the boundary is moved in the opposite direction

(Figures 12.13(b), (c), and (d)). Figure 12.13(e) illustrates the case where

target specifications are provided, and constraint relaxation corresponds to

increasing the tolerance on those specifications. Often the specifications cannot

be considered independently, but instead some combination of properties

defines the constraint boundary (Figure 12.13(f)). In this case there is a trade-

off between the properties.

An alternative approach is to treat the category of satisfactory materials

(i.e., those that meet the constraints) as a fuzzy set (see Chapter 3). Under such

a scheme, those materials that possessed properties comfortably within the

specification would be given a membership value of 1, while those that failed

completely to reach the specification would be given a membership value of 0.

Materials close to the constraint boundary would be assigned a degree of

membership between 0 and 1 (Figure 12.14). The membership values for each

material might then be taken into account in the next stage of the selection

process, based on scoring each material.

Ashby [22] has plotted maps similar to those in Figure 12.13 using

logarithmic scales. These “Ashby maps” are a particularly effective means of

Property 1
D

eg
re

e 
of

 m
em

be
rs

hi
p 

of
 th

e
se

t o
f 

sa
tis

fa
ct

or
y 

m
at

er
ia

ls

Property 2

1

0

Figure 12.14   A fuzzy constraint



representing a constraint on a merit index. Figure 12.15 shows the loci of

points for which:

constant 
E

constant 
2/1E

constant 
3/1E

E/  is a suitable merit index for the surface material of a stiff lightweight

sandwich beam, E1/2/  is a suitable merit index for the material of a stiff

lightweight tube, and E1/3/  is a suitable merit index for the material of a stiff

lightweight plate. In Figure 12.15, the materials that meet the merit index

specification most comfortably are those that are toward the top left side of the

map.

Density, ρ (kg/m  )3

Y
ou

ng
’s

 M
od

ul
us

, E
 (

G
Pa

)
 engineering

composites

cement

engineering
polymers

elastomerspolymeric foams

1000  

100

10

1

0.1
10 10 10

Dense and
flexible

Light and
stiff

2 3 4

constant E /ρ

co
ns

tan
t E

/ρ1/2
co

ns
ta

nt
E

/ρ
1/

3

engineering
ceramics

engineering 
alloys

woods

Figure 12.15   Ashby map for Young’s modulus versus density [22].

Reprinted from Acta Metall., 37, M. F. Ashby, “On the engineering properties of

materials,” Copyright (1989), pp. 1273–1293, with permission from Elsevier Science



When two desirable properties (such as strength and cheapness) are

plotted against each other, the boundary of the population of acceptable

materials may follow an arc, as shown in Figure 12.16, representing the trade-

off between the properties. This boundary is known as the Pareto boundary. If

more than two properties are considered, the boundary defines a surface in

multidimensional space known as the Pareto surface. Materials that lie on the

Pareto surface are said to be Pareto optimal, as an improvement in one

property is always accompanied by deterioration in another if the acceptability

criterion is maintained. Selection could be restricted to Pareto optimal

candidates, but constraint relaxation allows materials close to the boundary to

be considered as well (Figure 12.16). These same arguments apply to selection

between design alternatives [2] as well as to selection between materials.

12.8.6 A naive approach to scoring

We shall now move on to the problem of sorting the shortlist into an order of

preference. Let us assume the existence of a data file containing, for each

polymer, an array of performance values (ranging from 0 to 9) for each of a

number of different properties. The user can supply an importance weighting

for each property of interest. A naive approach to determining a polymer’s

score is to multiply the two figures together for each property, and then to take

the sum of the values obtained to be the overall score for that polymer. The

polymers with the highest scores are recommended to the user. This scoring

system is summarized below:

Pr
op

er
ty

 2

Property 1

Acceptable
solutions

Figure 12.16   Constraint relaxation by sliding the Pareto boundary



Total score for polymer i = 

j

jweightjieperformanc )(),( (12.7)

where:

performance(i, j) = performance value of polymer i for property j;

weight(j) = user-supplied weighting for property j.

An implication of the use of a summation of scores is that — even though

a particular polymer may represent a totally inappropriate choice because of,

for example, its poor impact resistance — it may still be highly placed in the

ordered list of recommendations. An alternative to finding the arithmetic sum

of all of the scores is to find their product:

Product of scores for polymer i = 

j

jweightjieperformanc )(),( (12.8)

When combining by multiplication, a poor score for a given property is less

readily compensated by the polymer performance for other properties. A

polymer that scores particularly badly on a given criterion tends to be filtered

out from the final list of recommendations. Thus, using the multiplication

approach, good “all-round performers” are preferred to polymers offering

performance that varies between extremes. This distinction between the two

approaches is illustrated by the following simple example:

score 1 score 2 score 3
combination

by addition

combination by

multiplication

polymer A 1 2 3 6 6

polymer B 2 2 2 6 8

In this example polymer B offers a uniform mediocre rating across the three

properties, while the rating of polymer A varies from poor (score 1) to good

(score 3). Under an additive scheme the polymers are ranked equal, while

under the multiplication scheme polymer B is favored.

A little reflection will show that both of these approaches offer an

inadequate means of combining performance values with weightings. Where a

property is considered important (i.e., has a high weighting) and a polymer

performs well with respect to that property (i.e., has a high performance value),

the contribution to the polymer score is large. However, where a property is

considered less important (low weighting) and a polymer performs poorly with

respect to that property (low performance value), this combination produces



the smallest contribution to the polymer score. In fact, since the property in

question has a low importance rating, the selection of the polymer should be

still favored. The AIM algorithm (Section 12.8.7) was developed specifically

to deal with this anomaly. The least appropriate polymer is actually one that

has low performance values for properties with high importance weightings.

Figure 12.17 compares the naive algorithms with AIM.

12.8.7 A better approach to scoring

The shortcomings of a naive approach to scoring have been noted above and

used as a justification for the development of an improved algorithm, AIM

[21]. Using AIM, the score for each polymer is given by:

Total score for polymer i =

j

termshiftscalejweightoffsetjieperformanc __)()),(( (12.9)

Performance Weighting

AIM

High

High

High

High

High High

High

High

Low

Low

Low Low

Low

Low

Low Low

 Combined Score

 Naive

Low High

Low High

Low High

Low High

Low High

Low High

Low High

Low High

Figure 12.17   Comparison of naive and AIM scoring schemes



where scale_shift_term is the smallest number that will ensure that the

combined weight and performance rating is positive. In an implemented

system [21], the following parameters were selected:

polymer performance rating range 0.0–9.0

weighting range 0.0–10.0

offset 4.5

scale_shift_term 46.0

The AIM equation for a single property, with these parameters inserted, is

shown in Figure 12.18. Performance values lower than the offset value can be

thought of as degrees of undesirability. On the weightings scale, zero means “I

don’t care.”

0

2

4

6
8

0
2

4
6

8
10

0

20

40

60

80

0

2

4

6
8

0
2

4
6

8
10

0

20

40

60

80

Performance Weig
htin

g

A
IM

 score

Figure 12.18   Combination of performance values with weightings

for a single property, using AIM



12.8.8 Case study: the design of a kettle

Figure 12.19 shows a possible set of inputs and outputs from a polymer

selection system that uses AIM. After receiving a list of recommended

polymers, the user may alter one or more previous inputs in order to test the

effect on the system’s recommendations. These “what if?” experiments are

also useful for designers whose materials specifications were only vaguely

formed when starting a consultation. In these circumstances, the system serves

not only to make recommendations for the choice of polymer, but also to assist

the designer in deciding upon the materials requirements. The interface

contains gaps in places where an entry would be inappropriate. For instance,

the user can indicate that “glossiness” is to be maximized, and supply a

weighting. However, the user cannot supply a specification of the minimum

acceptable glossiness, as only comparative data are available.

Property Constraint Tolerance Weighting

impact resistance

resistance to aqueous environments

maximum operating temperature

glossiness

cheapness

ease of injection molding

Recommended polymers

Polypropylene copolymer

Normalized score

ABS (acrylonitrile-butadiene-styrene copolymer)

Polypropylene homopolymer

Fire-retardant polypropylene

30% glass-fibre coupled polypropylene

TPX (poly-4-methyl pent-1-ene)

(114 others meet the contraints)

100 C 30 C

5

8

9

6

3

4.05

3.59

3.29

2.53

2.40

2.06

Input:

Output:

Figure 12.19   Use of the AIM polymer selection system during the design of a kettle



In the example shown in Figure 12.19, the designer is trying to determine

a suitable polymer for the manufacture of a kettle. The designer has decided

that the kettle must be capable of withstanding boiling water for intermittent

periods. In addition, a high level of importance has been placed upon the need

for the polymer to be injection moldable. The designer has also chosen

material cheapness as a desired property, independent of manufacturing costs.

Additionally the glossiness and impact resistance of the polymer are to be

maximized, within the constraints of attempting to optimize as many of the

chosen properties as possible.

As we have already noted, care must be taken when entering any

numerical specifications. In this example it has been specified that a maximum

operating temperature of at least 100°C is required. A tolerance of 30°C has

been placed on this value to compensate for the fact that the polymer will only

be intermittently subjected to this temperature. A polymer whose maximum

operating temperature is 69°C would be eliminated from consideration, but one

with a maximum operating temperature of 70°C would remain a candidate. In

the current example, the temperature requirement is clearly defined, although

the tolerance is more subjective. The tolerance is equivalent to constraint

relaxation.

The recommendations shown in the example are reasonable. The preferred

polymer (polypropylene) is sometimes used in kettle manufacture. The second

choice (ABS, or acrylonitrile-butadiene-styrene copolymer) is used for the

handles of some brands of kettles. The most commonly used polymer in kettle

manufacture is an acetal copolymer, which was missing from the selection

system’s database. This illustrates the importance of having access to adequate

data.

12.8.9 Reducing the search space by classification

The selection system described above relies on the ability to calculate a score

for every polymer in the system database. In this example, only 150 polymers

are considered, for which the data are complete (for a limited set of properties).

However, even with the search constrained to polymer materials, there are in

reality thousands of candidate polymers and grades of polymer. Countless

more grades could be specified by slight variations in composition or

processing. Clearly, a system that relies on a complete and consistent set of

data for each material cannot cope with the full range of available materials.

Even if the data were available, calculating scores for every single one is

unnecessary, and bears no relationship with the approach adopted by a human

expert, who would use knowledge about families of materials.

In general, chemically similar materials tend to have similar properties, as

shown by the Ashby map in Figure 12.15. It would therefore be desirable to



restructure the database so that polymers are hierarchically classified, with

polymers of a given type grouped together. Thus, given only a vague

specification, many categories could be eliminated from consideration early

on. Within the category of materials called polymer, several subcategories

exist, such as acetal. The selection task is simplified enormously by using

knowledge of the range of values for a given property that apply to a particular

subcategory. The initial searches would then scan only polymer groups, based

upon ranges of properties for polymers within that group.

Only when the search has settled on one or two such families is it

necessary to consider individual grades of polymer within those groups. As

Material

Ceramic

Silicon Carbide

Metal

Polymer

Thermoset

Thermoplastic

Ferrous alloy

Nonferrous alloy

Stainless steel

Mild steel

Composite

Brass

Titanium alloy

Domestic

Engineering

Porcelain

Natural

Fibre

Wood

Carbon fibre

Acetal

Polyamide

Epoxy

Silicone

Figure 12.20   One of many possible ways to classify materials



such a classification of materials is hierarchical, it can be represented using

object classes joined by specialization relationships (Chapter 4). One of many

possible classification schemes is shown in Figure 12.20.

Demaid and Zucker [24] make use of their own specialized object-oriented

system to allow a full and detailed description of real materials and also of the

hypothetical “ideal” material for the job. They specifically aim to overcome

the restrictions inherent in systems that rely on a single number to describe a

complex property. The knowledge-based system incorporating AIM makes

some attempt at this by using rules to modify data in certain circumstances

[21]. However, the real problem is that a single value describing a material

property, such as stiffness, can only be valid at one temperature, after a fixed

duration, under a fixed load, and in a particular environment. So in order to

choose a polymer that is sufficiently stiff to be suitable for a kettle body, we

need more information than just its stiffness at room temperature. We also

need to know its stiffness at 100°C and after (say) two years of daily use. To

illustrate how acute the problems can be when dealing with polymers, Figure

12.21 shows how a property such as stiffness might vary with temperature or

duration of exposure. The designer (or the intelligent selection system) needs

to be aware that some polymers may have an adequate stiffness for many

purposes at room temperature, but not necessarily after prolonged exposure to

elevated temperatures.

M
at

er
ia

l p
ro

pe
rt

y

Circumstances
(e.g., time in service, temperature)

adequate performance

inadequate performance

Figure 12.21   The “cliff edge” effect



12.9 Failure mode and effects analysis (FMEA)

An important aspect of design is the consideration of what happens when

things go wrong. If any component of a product should fail, the designer will

want to consider the impact of that failure on the following:

• Safety

For example, would an explosion occur?  Would a machine go out of

control?

• Indication of failure

Will the user of the product notice that something is amiss?  For example,

will a warning light illuminate or an alarm sound?

• Graceful or graceless degradation

Will the product continue to function after a component has failed, albeit

less efficiently?  This capability is known as graceful degradation and has

some advantages over designs in which the failure of a component is

catastrophic. On the other hand, graceful degradation may require that the

product contain more than the bare minimum of components, thereby

increasing costs.

• Secondary damage

Will the failure of one component lead to damage of other components?

Are these other components more or less vital to the function of the

product?  Is the secondary damage more expensive to fix than the original

damage?

The assessment of all possible effects from all possible failures is termed

failure mode and effects analysis (FMEA). FMEA is not concerned with the

cause of failures (this is a diagnosis problem — see Chapter 11) but the effects

of failures. FMEA comprises the following key stages:

• identifying the possible failure modes;

• generating the changes to the product caused by the failure;

• identifying the consequences of those changes;

• evaluating the significance of the consequences.

The scoring technique discussed in Section 12.8.7 could feasibly be adapted

for the fourth stage, i.e., evaluating the significance of failure mode effects.

Price and Hunt’s FLAME system [25, 26] uses product models in order to



automate the first three stages of FMEA. Two modeling approaches have been

used — functional and structural modeling. Functional modeling involves the

breakdown of a system into subsystems, where each subsystem fulfills a

specific function. The subsystems may be further decomposed, leading to a

hierarchical breakdown based on functionality. The encapsulated nature of

each subsystem favors the use of object-oriented programming (see Chapter 4).

In the case of the windshield washer system of a car (Figure 12.22), each

subsystem is modeled by its response to one of three standard electrical inputs

— positive voltage relative to earth, open circuit, or short-circuited to earth.

The output from a subsystem then forms the input to another.

Price and Hunt argue that functional modeling is only adequate when the

subsystems respond correctly to each of the modeled inputs. Under such

circumstances, each subsystem can be relied upon to generate one of a few

standard responses, which becomes the input to another subsystem. However,

if the behavior of a subsystem is altered by a failure mode, a response may be

generated that is not described in the functional model. If this response forms

the input to another subsystem, the functional model can no longer cope. To

model the functional response to all such inputs is impractical, as it would

require a complete FMEA in advance. FLAME [25, 26] overcomes this

windshield washer

pump unit

relay

warning light relay

pump power circuit

pump control unit

negative earth

pump

diode

coil

resistor

fuse

central processing unit (cpu)

switch

Figure 12.22   Functional decomposition of a windshield washer system

(adapted from Price and Hunt [25])



problem by augmenting the functional model with a structural model, i.e., a

simulation of the overall system, in order to analyze the inputs that are

generated at each subsystem.

12.10 Summary

This chapter has addressed some of the issues in developing intelligent systems

to support design decision making. Design can be viewed as a search problem

in which alternatives must be found or generated and a selection made from

among these. It is a particularly difficult task because it requires both creativity

and a vast range of knowledge. Electrical and electronic engineering have been

most amenable to the application of decision-support tools, as designs in these

domains are often routine rather than innovative and can often be treated as

optimization problems.

Selection between alternatives forms an integral part of the design

problem. One important selection decision is the choice of materials, a problem

that has been explored in some detail in this chapter. Similar techniques might

be applied to other aspects of selection within design. Even within the

apparently limited domain of materials selection, the range of relevant

knowledge is so wide and the interactions so complex that current systems are

rather inadequate.

We have seen by reference to the design of a telecommunication network

that the design process can be applied to services as well as to manufactured

products. This particular case study has also illustrated that producing a design

specification can in itself be a complex task, and one that has to be formalized

before computerized support tools can be considered. The concepts of

constraint propagation and truth maintenance have been illustrated by

considering the problem of arranging batteries in a battery holder. Conceptual

design, optimization and evaluation, and detailed design have been illustrated

by considering the design of an aircraft floor. This design exercise included

both geometric design and materials selection. The final case study, concerning

the design of a kettle, was used to illustrate some additional ideas for materials

selection.

Computer aided design packages have been mentioned briefly. These are

useful tools, but are often limited to drafting rather than decision making. The

human designer remains at the center of the design process and a range of

decision-support tools is being developed that will assist rather than replace the

human designer. To this end, it is likely that the coming years will bring a

greater degree of integration of CAD tools with intelligent systems for decision

support.



References

1. Open University, PT610: Manufacture, Materials, Design — Unit 7, Open

University Press, 1986.

2. Sriram, D., Stephanopoulos, G., Logcher, R., Gossard, D., Groleau, N.,

Serrano, D., and Navinchandra, D., “Knowledge-based system

applications in engineering design: research at MIT,” AI Magazine, pp.

79–96, Fall 1989.

3. Hopgood, A. A. and Hopson, A. J., “The common traffic model: a

universal model for communications networks,” Institution of Radio and

Electronic Engineers Conference (IREECON’91), Sydney, pp. 61–64,

1991.

4. Coad, P. and Yourdon, E., OOA: object-oriented analysis, Prentice-Hall,

1990.

5. Brown, D. and Chandrasekaran, B., “Expert systems for a class of

mechanical design activity,” in Knowledge Engineering in Computer-

aided Design, Gero, J. S. (Ed.), pp. 259–282, Elsevier, 1985.

6. Demaid, A. and Zucker, J., “A conceptual model for materials selection,”

Metals and Materials, pp. 291–297, May 1988.

7. Dietterich, T. G. and Ullman, D. G., “FORLOG: a logic-based architecture

for design,” in Expert Systems in Computer-Aided Design, Gero, J. S.

(Ed.), pp. 1–17, Elsevier, 1987.

8. Dyer, M. G., Flowers, M., and Hodges, J., “Edison: an engineering design

invention system operating naively,” Artificial Intelligence in

Engineering, vol. 1, pp. 36–44, 1986.

9. Murthy, S. S. and Addanki, S., “PROMPT: an innovative design tool,” in

Expert Systems in Computer-Aided Design, Gero, J. S. (Ed.), pp. 323–341,

North-Holland, 1987.

10. Lirov, Y., “Systematic invention for knowledge engineering,” AI Expert,

pp. 28–33, July 1990.

11. Howe, A. E., Cohen, P. R., Dixon, J. R., and Simmons, M. K.,

“DOMINIC: a domain-independent program for mechanical engineering

design,” Artificial Intelligence in Engineering, vol. 1, pp. 23–28, 1986.

12. deKleer, J., “An assumption-based TMS,” Artificial Intelligence, vol. 28,

pp. 127–162, 1986.

13. deKleer, J., “Problem-solving with the ATMS,” Artificial Intelligence, vol.

28, pp. 197–224, 1986.



14. deKleer, J., “Extending the ATMS,” Artificial Intelligence, vol. 28, pp.

163–196, 1986.

15. Kim, S. H. and Suh, N. P., “Formalizing decision rules for engineering

design,” in Knowledge-Based Systems in Manufacturing, Kusiak, A. (Ed.),

pp. 33–44, Taylor and Francis, 1989.

16. Cook, R., Finite Element Modeling for Stress Analysis, Wiley, 1995.

17. Hughes, T. J. R., The Finite Element Method: linear static and dynamic

finite element analysis, Dover, 2000.

18. Reid, C. N. and Greenberg, J., “An exercise in materials selection,” Metals

and Materials, pp. 385–387, July 1980.

19. Greenberg, J. and Reid, C. N., “A simple design task (with the aid of a

microcomputer),” 2nd International Conference on Engineering Software,

Southampton, UK, pp. 926–942, 1981.

20. Cherian, R. P., Smith, L. N., and Midha, P. S., “A neural network

approach for selection of powder metallurgy materials and process

parameters,” Artificial Intelligence in Engineering, vol. 14, pp. 39–44,

2000.

21. Hopgood, A. A., “An inference mechanism for selection, and its

application to polymers,” Artificial Intelligence in Engineering, vol. 4, pp.

197–203, 1989.

22. Ashby, M. F., “On the engineering properties of materials,” Acta

Metallurgica et Materialia, vol. 37, pp. 1273–1293, 1989.

23. Navichandra, D. and Marks, D. H., “Design exploration through constraint

relaxation,” in Expert Systems in Computer-Aided Design, Gero, J. S.

(Ed.), pp. 481–509, Elsevier, 1987.

24. Demaid, A. and Zucker, J., “Prototype-oriented representation of

engineering design knowledge,” Artificial Intelligence in Engineering, vol.

7, pp. 47–61, 1992.

25. Price, C. J. and Hunt, J. E., “Automating FMEA through multiple

models,” in Research and development in expert systems VIII, Graham, I.

and Milne, R. (Eds.), pp. 25–39, Cambridge University Press, 1991.

26. Price, C. J., “Function-directed electrical design analysis,” Artificial

Intelligence in Engineering, vol. 12, pp. 445–456, 1998.



Further reading

• Gero, J. S. (Ed.), Proceedings of the International Conference Series on

Artificial Intelligence in Design, biannual.

• Gero, J. S. (Ed.), Proceedings of the International Conference Series on

Computational Models of Creative Design, triennial.



Chapter thirteen

Systems for planning

13.1 Introduction

The concept of planning is one that is familiar to all of us, as we constantly

make and adjust plans that affect our lives. We may make long-range plans,

such as selecting a particular career path, or short-range plans, such as what to

eat for lunch. A reasonable definition of planning is the process of producing a

plan, where:

a plan is a description of a set of actions or operations, in a prescribed

order, that are intended to reach a desired goal.

Planning therefore concerns the analysis of actions that are to be performed in

the future. It is a similar problem to designing (Chapter 12), except that it

includes the notion of time. Design is concerned with the detailed description

of an artifact or service, without consideration of when any specific part should

be implemented. In contrast, the timing of a series of actions, or at least the

order in which they are to be carried out, is an essential aspect of planning.

Planning is sometimes described as “reasoning about actions,” which suggests

that a key aspect to planning is the consideration of questions of the form

“what would happen if ...?”

Charniak and McDermott [1] have drawn an analogy between planning

and programming, as the process of drawing up a plan can be thought of as

programming oneself. However, they have also highlighted the differences, in

particular:

• programs are intended to be repeated many times, whereas plans are

frequently intended to be used once only;

• the environment for programs is predictable, whereas plans may need to

be adjusted in the light of unanticipated changes in circumstances.



The need for computer systems that can plan, or assist in planning, is

widespread. Potential applications include management decisions, factory

configuration, organization of manufacturing processes, business planning and

forecasting, and strategic military decision making. Some complex software

systems may feature internal planning, i.e., planning of their own actions. For

example, robots may need to plan their movements, while other systems may

use internal planning to ensure that an adequate solution to a problem is

obtained within an acceptable time scale.

According to our definition, planning involves choosing a set of

operations and specifying either the timing of each or just their order. In many

problems, such as planning a manufacturing process, the operations are known

in advance. However, the tasks of allocating resources to operations and

specifying the timing of operations can still be complicated and difficult. This

specific aspect of planning is termed scheduling and is described in Sections

13.7 and 13.8.

Some of the principles and problems of planning systems are discussed in

Section 13.2 and an early planning system (STRIPS) is described in Section

13.3. This forms the basis for the remainder of this chapter, where more

sophisticated features are described.

13.2 Classical planning systems

In order to make automated planning a tractable problem, certain assumptions

have to be made. All the systems discussed in this chapter (except for the

reactive planners in Section 13.9) assume that the world can be represented by

taking a “snapshot” at a particular time to create a world state. Reasoning on

the basis of this assumption is termed state-based reasoning. Planning systems

that make this assumption are termed classical planning systems, as the

assumption has formed the basis of much of the past research. The aim of a

classical planner is to move from an initial world state to a different world

state, i.e., the goal state. Determining the means of achieving this is means–

ends analysis (see Section 13.3.1).

The inputs to a classical system are well defined:

• a description of the initial world state;

• a set of actions or operators that might be performed on the world state;

• a description of the goal state.

The output from a classical planner consists of a description of the sequence of

operators that, when applied to the current world state, will lead to the desired



world state as described in the goal. Each operator in the sequence creates a

new projected world state, upon which the next operator in the sequence can

act, until the goal has been achieved.

The assumption that a plan can be based upon a snapshot of the world is

only valid if the world does not change during the planning process. Classical

planners may be inadequate for reasoning about a continuous process or

dealing with unexpected catastrophes. If a system can react quickly enough to

changes in the world to replan and to instigate the new plan, all in real time,

the system is described as reactive (Section 13.9). As reactive planners must be

continuously alert to changes in the world state, they are not classical systems.

Bel et al. [2] have categorized types of planning decision on the basis of

the time scale to which they apply (Figure 13.1). Long-range planning

decisions concern general strategy and investments; medium-range planning

applies to decisions such as production planning, with a horizon of weeks or

months; short-range planning or scheduling refers to the day to day

management of jobs and resources. Control decisions have the shortest time

horizon and are made in real time (see Chapter 14).

A significant problem in the construction of a planning system is deciding

which aspects of the world state are altered by an operation (and by how much

they are altered) and which are not affected at all. Furthermore, some

operations may have a different effect depending on context, i.e., depending on

some other aspect of the world state. Collectively, this is known as the frame

problem, introduced in Chapter 1. As an example, consider the operation of

walking from home to the shops. Two obvious changes in the world state are

first that I am no longer at home, and second that I have arrived at the shops.

However, there are a number of other changes, such as the amount of rubber

medium-range planning

reactive planning and control

long-range planning

short-range planning

years

months

hours

milliseconds
seconds

minutes

days

weeks

Figure 13.1   Classification by time scale of planning tasks (adapted from [2])



left on the soles of my shoes. There are also many things that will not have

changed as a result of my walk, such as the price of oil. Some changes in the

world state will depend on context. For example, if the initial world state

includes rainy weather then I will arrive at the shops wet, but otherwise I will

arrive dry.

Describing every feasible variant of an action with every aspect of the

world state is impractical, as the number of such interactions increases

dramatically with the complexity of the model. One approach to dealing with

the frame problem is the so-called STRIPS assumption, which is used in

STRIPS (see below) and many other classical planners. This is the assumption

that all aspects of the world will remain unchanged by an operation, apart from

those that are changed explicitly by the modeled operation. The STRIPS

assumption is, therefore, similar to the closed-world assumption (see Chapters

1 and 2).

The planning problem becomes even more complex if we introduce

multiple agents (see Chapter 5). Imagine that we have programmed a robot as

an autonomous agent, capable of planning and executing a set of operations in

order to achieve some goal. Suppose now that our robot is joined by several

other robots that also plan and execute various operations. It is quite probable

that the plans of the robots will interfere, e.g., they may bump into each other

or require the same tool at the same time. Stuart [3] has considered multiple

robots, where each reasons independently about the beliefs and goals of others,

so as to benefit from them. Other researchers such as Durfee et al. [4] have

considered collaborative planning by multiple agents (or robots), where plan

generation is shared so that each agent is allocated a specific task.

13.3 STRIPS

13.3.1 General description

STRIPS [5, 6] is one of the oldest AI planning systems, but it is nevertheless

an informative one to consider. In its original form, STRIPS was developed in

order to allow a robot to plan a route between rooms, moving boxes along the

way. However, the principles are applicable to a number of planning domains,

and we will consider the operational planning of a company that supplies

components for aircraft engines.

Like all classical planning systems, STRIPS is based upon the creation of

a world model. The world model comprises a number of objects as well as

operators that can be applied to those objects so as to change the world model.

So, for instance, given an object alloy block, the operator turn (i.e., on a lathe)



can be applied so as to create a new object called turbine disk. The problem to

be tackled is to determine a sequence of operators that will take the world

model from an initial state to a goal state.

Operators cannot be applied under all circumstances, but instead each has

a set of preconditions that must hold before it can be applied. Given knowledge

of the preconditions and effects of each operator, STRIPS is able to apply a

technique called means–ends analysis to solve planning problems. This

technique involves looking for differences between the current state of the

world and the goal state, and finding an operator that will reduce the

difference. Many classical planning systems use means–ends analysis because

it reduces the number of operators that need to be considered and, hence, the

amount of search required. The selected operator has its own preconditions, the

satisfaction of which becomes a new goal. STRIPS repeats the process

recursively until the desired state of the world has been achieved.

13.3.2 An example problem

Consider the problem of responding to a customer’s order for turbine disks. If

we already have some suitable disks, then we can simply deliver these to the

customer. If we do not have any disks manufactured, we can choose either to

manufacture disks from alloy blocks (assumed to be the only raw material) or

to subcontract the work. Assuming that we decide to manufacture the disks

ourselves, we must ensure that we have an adequate supply of raw materials,

that staff is available to carry out the work, and that our machinery is in good

working order. In the STRIPS model we can identify a number of objects and

operators, together with the preconditions and effects of the operators (Table

13.1).

Table 13.1 shows specific instantiations of objects associated with

operators (e.g., purchase raw materials), but other instantiations are often

possible (e.g. purchase anything). The table shows that each operator has

preconditions that must be satisfied before the operator can be executed.

Satisfying a precondition is a subproblem of the overall task, and so a

developing plan usually has a hierarchical structure.

We will now consider how STRIPS might solve the problem of dealing

with an order for a turbine disk. The desired (goal) state of the world is simply

customer has turbine disk, with the other parameters about the goal state of the

world left unspecified.

Let us assume for the moment that the initial world state is as follows:

• the customer has placed an order for a turbine disk;

• the customer does not have the turbine disk;

• staff is available;



• we have no raw materials;

• materials are available from a supplier;

• we can afford the raw materials;

• the machinery is working.

Means–ends analysis can be applied. The starting state is compared with the

goal state and one difference is discovered, namely customer has turbine disk.

STRIPS would now treat customer has turbine disk as its goal and would look

for an operator that has this state in its list of effects. The operator that

achieves the desired result is deliver, which is dependent on the conditions

turbine disk ready and order placed. The second condition is satisfied already.

The first condition becomes a subgoal, which can be solved in either of two

ways: by subcontracting the work or by manufacturing the disk. We will

assume for the moment that the disk is to be manufactured in-house. Three

preconditions exist for the manufacture operator. Two of these are already

satisfied (staff is available and the machinery is working), but the precondition

that we have raw materials is not satisfied and becomes a new subproblem.

Operator and object Precondition Effect

deliver product product is ready and order

has been placed by

customer

customer has product

subcontract

(manufacture of) product

subcontractor available

and subcontractor cost is

less than product price

product is ready

manufacture product staff is available, we have

the raw materials and the

machinery is working

product is ready, our raw

materials are reduced and

the machinery is closer to

its next maintenance period

purchase raw materials we can afford the raw

materials and the raw

materials are available

we have the raw materials

and money is subtracted

from our account

borrow money good relationship with our

bank

money is added to our

account

sell assets assets exist and there is

sufficient time to sell them

money is added to our

account

repair machinery parts are available machinery is working and

next maintenance period

scheduled

Table 13.1   Operators for supplying a product to customer. Objects are underlined



This can be satisfied by the operator purchase, whose two preconditions (that

we can afford the materials and that materials are available from a supplier) are

already satisfied. Thus, STRIPS has succeeded in finding a plan, namely:

purchase raw materials — manufacture product — deliver product.

The full search tree showing all operators and their preconditions is shown

in Figure 13.2, while Figure 13.3 shows the subset of the tree that was used in

producing the plan derived above. Note that performing an operation changes

the state of the world model. For instance, the operator purchase, applied to

raw materials, raises our stock of materials to a sufficient quantity to fulfill the

sufficient
raw materials

can afford
materials

borrow

good relationship
with bank

deliver

subcontractmanufacture

purchase

parts
available

fix

OR
AND

materials
available

order placed

subcontractor
exists

AND

subcontractor
cost is OK

AND

AND

sell assets

sufficient time
to sell assets

assets
exist

OR
AND

staff
available

machinery
working

product ready

customer has product

Figure 13.2   A search tree of effects and operators



order. In so doing, it fulfills the preconditions of another operator, namely,

manufacture. This operator is then also able to change the world state, as it

results in the product’s being ready for delivery.

True

True True

True

sufficient
raw materials

can afford
materials

borrow

good relationship
with bank

deliver

subcontractmanufacture

purchase

parts
available

fix

OR
AND

materials
available

order placed

subcontractor
exists

AND

subcontractor
cost is OK

AND

AND

sell assets

sufficient time
to sell assets

assets
exist

OR
AND

staff
available

machinery
working

product ready

customer has product

Figure 13.3 STRIPS searching for a plan to fulfill the goal customer has product,

given the following initial world state:

• the customer has placed an order for a turbine disk

• the customer does not have the turbine disk

• staff are available

• we have no raw materials

• materials are available from a supplier

• we can afford the raw materials

• the machinery is working



13.3.3 A simple planning system in Prolog

STRIPS involves search, in a depth first fashion, through a tree of states linked

by operators. STRIPS initially tries to establish a goal. If the goal has

preconditions, these become new goals and so on until either the original goal

is established or all possibilities have been exhausted. In other words, STRIPS

performs backward-chaining in order to establish a goal. If it should find that a

necessary condition cannot be satisfied for the branch that it is investigating,

STRIPS will backtrack to the last decision point in the tree (i.e., the most

recently traversed OR node). STRIPS is heavily reliant on backward-chaining

and backtracking, features that are built into the Prolog language (Chapter 10).

For this reason it should be fairly straightforward to program a STRIPS-like

system in Prolog.*

There are a number of different ways in which we might build a system

for our example of supply of a product to a customer. For the purposes of

illustration, we will adopt the following scheme:

• The sequence of operators used to achieve a goal is stored as a list,

representing a plan. For example, assuming that we have no money in our

account and no raw materials, a plan for obtaining a turbine blade that is

ready for delivery would be the list:

[borrow_money, purchase_materials, manufacture]

• Each effect is represented as a clause whose last argument is the plan for

achieving the effect. For instance, the effect our customer has turbine disk

is represented by the following clause:

has(our_customer, turbine_disk, Plan).

• If a particular effect does not require any actions, then the argument

corresponding to its plan is an empty list. We may wish to set up certain

effects as part of our initial world state, which do not require a plan of

action. An initial world state in which a subcontractor exists would be

represented as:

exists(subcontractor, []).

                                                          
* The actual STRIPS program described by Fikes et al. [5, 6] was implemented in Lisp.

It was considerably more sophisticated than the Prolog program presented here and it

used a different representation of objects and operators.



has(Customer, Product, Newplan):- % deliver product

  ready(Product, Plan1),

  order_placed(Product, Customer, Plan2),

  merge([Plan1, Plan2, deliver], Newplan).

ready(Product, Newplan):- % subcontract the manufacturing

  exists(subcontractor, Plan1),

  subcontractor_price_OK(Plan2),

  merge([Plan1, Plan2, subcontract], Newplan).

subcontractor_price_OK([]):-

  % no action is required if the subcontractor's

  % price is OK, i.e. less than the disk price

  price(subcontractor,Price1,_),

  price(product,Price2,_),

  Price1 < Price2.

ready(Product, Newplan):-

% manufacture the product ourselves

  exists(staff,Plan1),

  sufficient_materials(Plan2),

  machine_working(Plan3),

  merge([Plan1, Plan2, Plan3, manufacture], Newplan).

sufficient_materials([]):-

  % no action required if we have sufficient stocks already

  current_balance(materials,Amount,_),

  Amount >= 1.

sufficient_materials(Newplan):- % purchase materials

  can_afford_materials(Plan),

  merge([Plan, purchase_materials], Newplan).

can_afford_materials([]):-

  % no action is required if our bank balance is adequate

  current_balance(account,Amount,_),

  price(materials,Price,_),

  Amount >= Price.

can_afford_materials(Newplan):- % borrow money

  bank_relationship(good, Plan),

  merge([Plan, borrow_money], Newplan).

Box 13.1 (a)   A simple planner in Prolog (part I)



can_afford_materials(Newplan):- % sell assets

  exists(assets,Plan1),

  exists(time_to_sell,Plan2),

  merge([Plan1, Plan2, sell_assets], Newplan).

machine_working(Newplan):- % fix machinery

  exists(spare_parts,Plan2),

  merge([Plan1, Plan2, fix_machine], Newplan).

merge([],[]):-!.

merge([ [] | Hierarchical], Flat):-

  !,

merge(Hierarchical, Flat).

merge([X | Hierarchical], [X | Flat]):-

  atom(X), !,

  merge(Hierarchical, Flat).

merge([X | Hierarchical], [A | Flat]):-

  X = [A | Rest], !,

  merge([Rest | Hierarchical], Flat).

%set up the initial world state

price(product,1000,[]).

price(materials,200,[]).

price(subcontractor,500,[]).

current_balance(account,0,[]).

current_balance(materials,0,[]).

bank_relationship(good,[]).

order_placed(turbine,acme,[]).

exists(subcontractor,[]).

exists(spare_parts,[]).

exists(staff,[]).

%  The following are assumed false (closed world

%  assumption):

%     machine_working([]),

%     exists(assets,[]),

%     exists(time_to_sell,[]).

Box 13.1 (b)   A simple planner in Prolog (part II)



• The preconditions for achieving an effect are represented as Prolog rules.

For instance, one way in which a product can become ready is by

subcontracting its manufacture. Assuming this decision, there are two

preconditions, namely, that a subcontractor exists and that the cost of

subcontracting is acceptable. The Prolog rule is as follows:

ready(Product, Newplan):-

  exists(subcontractor, Plan1),

  subcontractor_price_OK(Plan2),

  merge([Plan1, Plan2, subcontract], Newplan).

The final condition of the rule shown above is the merge relation which is

used for merging subplans into a single sequence of actions. This is not a

standard Prolog facility, so we will have to create it for ourselves. The first

argument to merge is a list that may contain sublists, while the second

argument is a list containing no sublists. The purpose of merge is to “flatten” a

hierarchical list (the first argument) and to assign the result to the second

argument. We can define merge by four separate rules, corresponding to

different structures that the first argument might have. We can ensure that the

four rules are considered mutually exclusive by using the cut facility (see

Chapter 10).

The complete Prolog program is shown in Box 13.1. The program

includes one particular initial world state, but of course this can be altered. The

world state shown in Box 13.1 is as follows:

price(product,1000,[]). % Turbine disk price is $1000

price(materials,200,[]). % Raw material price is $200 per disk

price(subcontractor,500,[]). % Subcontractor price is $500 per disk

current_balance(account,0,[]). % No money in our account

current_balance(materials,0,[]). % No raw materials

bank_relationship(good,[]). % Good relationship with the bank

order_placed(turbine,acme,[]). % Order has been placed by ACME, Inc.

exists(subcontractor,[]). % A subcontractor is available

exists(spare_parts,[]). % Spare parts are available

exists(staff,[]). % Staff is available

Because it is not specified that we have assets or time to sell them, or that the

machinery is working, these are all considered false under the closed-world

assumption.

We can now ask our Prolog system for suitable plans to provide a

customer (ACME, Inc.) with a product (a turbine disk), as follows:

?- has(acme, turbine, Plan).

Prolog offers the following plans in response to our query:



Plan = [subcontract,deliver];

Plan = [borrow_money,purchase_materials,fix_machine,manufacture,

        deliver];

no

We can also ask for plans to achieve any other effect that is represented in the

model. For instance, we could ask for a plan to give us sufficient raw materials,

as follows:

?- sufficient_materials(Plan).

Plan = [borrow_money,purchase_materials];

no

Having discussed a simple planning system, the remainder of this chapter

will concentrate on more sophisticated features that can be incorporated.

13.4 Considering the side effects of actions

13.4.1 Maintaining a world model

Means–ends analysis (see Section 13.3.1 above) relies upon the maintenance

of a world model, as it involves choosing operators that reduce the difference

between a given state and a goal state. Our simple Prolog implementation of a

planning system does not explicitly update its world model, and this leads to a

deficiency in comparison with the real STRIPS implementation. When

STRIPS has selected an operator, it applies that operator to the current world

model, so that the model changes to a projected state. This is important

because an operator may have many effects, only one of which may be the goal

that is being pursued. The new world model therefore reflects both the

intended effects and the side effects of applying an operator, provided that they

are both explicit in the representation of the operator. All other attributes of the

world state are assumed to be unchanged by the application of an operator —

this is the STRIPS assumption (see Section 13.2).

In the example considered in Section 13.3.3, the Prolog system produced a

sequence of operators for achieving a goal, namely, to supply a product to a

customer. What the system fails to tell us is whether there are any implications

of the plan, other than achievement of the goal. For instance, we might like to

be given details of our projected cash flow, of our new stocks of materials, or

of the updated maintenance schedule for our machinery. Because these data are

not necessary for achieving the goal — although they are affected by the

planned operators — they are ignored by a purely backward-chaining

mechanism. (See Chapter 2 for a discussion of forward- and backward-



chaining). Table 13.1 indicates that purchasing raw materials has the effect of

reducing our bank balance, and manufacturing reduces the time that can elapse

before the machinery is due for servicing. Neither effect was considered in our

Prolog system because these effects were not necessary for achieving the goal.

13.4.2 Deductive rules

SIPE [7, 8, 9] is a planning system that can deduce effects additional to those

explicitly included in the operator representation. This is a powerful capability,

as the same operator may have different effects in different situations, i.e., it

may be context-sensitive. Without this capability, context-sensitivity can only

be modeled by having different operators to represent the same action taking

place in different contexts.

SIPE makes use of two types of deductive rules, causal rules and state

rules. Causal rules detail the auxiliary changes in the world state that are

associated with the application of an operator. For example, the operator

purchase is intended to change the world state from we have no raw materials

to we have raw materials. This change has at least one side-effect, i.e., that our

bank account balance is diminished. This side-effect can be modeled as a

causal rule.

State rules are concerned with maintaining the consistency of a world

model, rather than explicitly bringing about changes in the model. Thus if the

assertion machinery is working is true in the current world state, then a state

rule could be used to ensure that the assertion machinery is broken is made

false.

Causal rules react to changes between states, whereas state rules enforce

constraints within a state. Example causal and state rules are shown in

Box 13.2, using syntax similar to that in SIPE. Note that parameters are passed

to the rules in place of the named arguments. The rules are, therefore, more

general than they would be without the arguments. A rule is considered for

firing if its trigger matches the world state after an operator has been applied.

In the case of the causal rule update_bank_balance, the trigger is the world

state we have sufficient supplies, which is brought about by the operator

purchase. Because causal rules apply to a change in world state, they also

contain a precondition, describing the world state before the operator was

applied (e.g., NOT(sufficient raw materials)). A causal rule will only fire

if its trigger is matched after an operator has been applied and its precondition

had been matched immediately before the operator was applied. State rules are

not directly concerned with the application of an operator, and so do not have a

precondition. There is, however, provision for naming further conditions

(additional to the trigger) that must be satisfied.



In SIPE, when an operator is added to the current plan, causal rules are

examined first in order to introduce any changes to the world model, and then

state rules are applied to maintain consistency with constraints on the model.

Other than the order of applicability, there is no enforced difference between

causal and state rules. According to the syntax, both can have preconditions

and a trigger, although there appears to be no justification for applying a

precondition to a state rule.

13.5 Hierarchical planning

13.5.1 Description

Virtually all plans are hierarchical by nature, as exemplified by Figure 13.2,

although they are not represented as such by all planning systems. STRIPS (a

nonhierarchical planner) may produce the following plan for satisfying a

customer’s order:

borrow money — purchase materials — fix machinery — manufacture —

deliver.

Some of the actions in this plan are major steps (e.g., manufacture), whereas

others are comparatively minor details (e.g., purchase materials). A hierar-

chical planner would first plan the major steps, for example:

be ready to deliver — deliver.

The details of a step such as be ready to deliver might then be elaborated:

causal-rule: update_bank_balance

arguments: cost,old_balance,new_balance

trigger: sufficient supplies of something

precondition: NOT(sufficient supplies of something)

effects: new_bank_balance = old_bank_balance - cost

state-rule: Deduce_fixed

arguments: machine1

trigger: machine1 is working

other conditions: <none>

effects: Not(machine1 is broken)

Box 13.2   Causal and state rules in SIPE



be ready to manufacture — manufacture — deliver.

The step be ready to manufacture might be broken down into the following

actions:

fix machinery — obtain raw materials.

The action obtain raw materials can then be elaborated further:

borrow money — purchase materials.

This hierarchical plan is depicted in Figure 13.4. An action that needs no

further refinement is a primitive action. In some applications purchase

materials may be considered a primitive action, but in other applications it may

be necessary to elaborate this further (e.g., pick up phone — dial number —

speak to supplier — and so on).

The distinction between a nonhierarchical planner (such as STRIPS) and a

hierarchical planner (such as ABSTRIPS [10]), is that hierarchical planners

explicitly represent the hierarchical nature of the plan. At the top of the

hierarchy is a simplification or abstraction of the plan, while the lower levels

contain the detailed requirements (Figure 13.4). A subplan is built for

deliver

obtain raw
materials

purchase
materials

be ready to deliver

be ready to
manufacture

manufacture

fix machinery

borrow
money

Figure 13.4   A hierarchical plan



achieving each action in the main plan. While STRIPS does recognize that the

achievement of some goals is dependent on subgoals, no distinction is drawn

between goals that are major steps and those that are merely details.

Furthermore, as the STRIPS hierarchy is not explicitly represented, it cannot

be modified either by the user or by the system itself.

The method of hierarchical planning can be summarized as follows:

• sketch a plan that is complete but too vague to be useful;

• refine the plan into more detailed subplans until a complete sequence of

problem-solving operators has been specified.

Since the plan is complete (though perhaps not useful in its own right) at each

level of abstraction, the term length-first search is sometimes used to describe

this technique for selecting appropriate operators that constitute a plan.

13.5.2 Benefits of hierarchical planning

Although means–ends analysis is an effective way of restricting the number of

operators that apply to a problem, there may still be several operators to choose

from, with no particular reason for preferring one over another. In other words,

there may be several alternative branches of the search tree. Furthermore, there

is no way of knowing whether the selected branch might lead to a dead end,

i.e., one of its preconditions might fail.

Consider the example of satisfying a customer’s order for a product.

Suppose that STRIPS has chosen to apply the manufacture operator (i.e., the

left-hand branch of the tree shown in Figure 13.2 has been selected). STRIPS

would now verify that staff is available, plan to purchase raw materials (which

in turn requires money to be borrowed), and then consider the state of the

manufacturing equipment. Suppose that at this point it found that the

machinery was broken, and spare parts were not available. The plan would

have failed, and the planner would have to backtrack to the point where it

chose to manufacture rather than subcontract. All the intermediate processing

would have been in vain, since STRIPS cannot plan to manufacture the product

if the machinery is inoperable. The search path followed is shown in Figure

13.5.

Part of the expense of backtracking in this example arises from planning

several operations that are minor details compared with the more important

issue of whether equipment for manufacturing is available. This is a relatively

important question that one would expect to have been established earlier in

the plan, before considering the details of how to obtain the money to buy the

raw materials. The more natural approach to planning is to plan out the

important steps first, and then fill in the details (i.e., to plan hierarchically).



Hierarchical planning is one way of postponing commitment to a particular

action until more information about the appropriateness of the action is

available. This philosophy (sometimes called the principle of least

commitment) occurs in different guises and is discussed further in Section 13.6.

Hierarchical planning requires the use of levels of abstraction in the

planning process and in the description of the domain, where an abstraction

level is distinguished by the granularity (or level of detail) of its description. It

is unfortunate that the term “hierarchical planning” is sometimes used with

different meanings. For instance, the term is sometimes used to describe levels

of metaplanning, i.e., planning the process of creating a plan.

True

True True False

True True

B
ac

kt
ra

ck

sufficient
raw materials

can afford
materials

borrow

good relationship
with bank

deliver

subcontractmanufacture

purchase

parts
available

fix

OR
AND

materials
available

order placed

subcontractor
exists

AND

subcontractor
cost is OK

AND

AND

sell assets

sufficient time
to sell assets

assets
exist

OR
AND

staff
available

machinery
working

product ready

customer has product

Figure 13.5   Inefficient search using STRIPS: the system backtracks on finding that

there are no parts available for fixing the broken machinery



13.5.3 Hierarchical planning with ABSTRIPS

ABSTRIPS, i.e., abstraction-based STRIPS [10], is an extension of STRIPS

that incorporates hierarchical planning. In ABSTRIPS, preconditions and

operators are unchanged from STRIPS, except that some preconditions are

considered more important than others. Before attempting to generate a plan,

ABSTRIPS assigns an importance rating (or criticality) to each precondition.

The highest criticality is ascribed to those preconditions that cannot be altered

by the planner, and lower criticalities are given to preconditions that can be

satisfied by generating a subplan. Planning proceeds initially by considering

only the operators that have the highest criticality, thereby generating a

skeleton plan. This is said to be a plan in the highest abstraction space. Details

of the skeleton plan are filled by progressively considering lower criticality

levels. In this way, subplans are generated to satisfy the preconditions in the

higher level plans until all the preconditions in a plan have been achieved. The

plan at any given level (save for the highest and lowest) is a refinement of the

skeleton plan provided by the layer above, and is itself a skeleton plan for the

level below.

ABSTRIPS adopts a semiautomated approach to the assigning of

criticalities to preconditions. The user supplies a set of values, which are

subsequently modified by ABSTRIPS using some simple heuristics. We will

illustrate the process with reference to our example of supplying a product to a

customer. The preconditions in our model include having something,

something’s being affordable, or something existing. The existence or

otherwise of something is beyond our powers to alter and, thus, intuitively

warrants the highest criticality value. On the other hand, there is a variety of

different ways in which having something can be achieved, and so these

preconditions might be given the lowest criticality. A sensible set of user-

supplied criticality values might be as follows:

precondition: user-supplied criticality:

we have an item 1

something is affordable 2

something exists or is available 3

other considerations 2

ABSTRIPS then applies heuristics for modifying the criticality values,

given a particular world state. The preconditions are examined in order of

decreasing user-supplied criticality, and modified as follows:



(a) Any preconditions that remain true or false, irrespective of the application

of an operator, are given the maximum criticality. Let us call these

fundamental preconditions.

(b) If a precondition can be readily established, assuming that all previously

considered preconditions are satisfied (apart from unsatisfied fundamental

preconditions), then the criticality is left unaltered.

(c) If a precondition cannot be readily established as described in (b), it is

given a criticality value between that for category (a) and the highest in

category (b).

The criticality values supplied by the user are dependent only on the

nature of the preconditions themselves, whereas the modified values depend

upon the starting world state and vary according to circumstances. Consider for

instance the following world state:

• customer does not have turbine disk;

• customer has placed an order for a turbine disk;

• staff is available;

• we have no raw materials;

• we have no money in the bank;

• we have a good relationship with our bank;

• we do not have any assets, nor time to sell assets;

• the machinery is broken;

• spare parts are not available;

• a subcontractor exists;

• the subcontractor cost is reasonable.

The following preconditions are given a maximum criticality (say 5) because

they are fundamental, and cannot be altered by any operators:

• order placed by customer;

• subcontractor exists;

• subcontractor cost is OK;

• staff available;

• raw materials available from supplier;

• machinery parts available;

• good relationship with bank;

• assets exist;

• sufficient time to sell assets.



The precondition machinery working falls into category (c) as it depends

directly on spare parts available, a fundamental precondition that is false in

the current world model. The remaining preconditions belong in category (b),

and, therefore, their criticalities are unchanged. Although can afford materials

is not immediately satisfied, it is readily achieved by the operator borrow,

assuming that good relationship with bank is true. Therefore, can afford

materials falls into category (b) rather than (c). Similar arguments apply to

product ready and sufficient raw materials. Given the world model described,

the following criticalities might be assigned:

precondition: initial criticality: modified criticality:

staff available 3 5

subcontractor exists 3 5

raw materials available 3 5

machinery parts available 3 5

assets exist 3 5

order placed by customer 2 5

machinery working 2 4

subcontractor cost OK 2 5

good relationship with bank 2 5

sufficient time to sell assets 2 5

can afford materials 2 2

product ready 1 1

sufficient raw materials 1 1

Once the criticalities have been assigned, the process of generating a plan

can proceed as depicted by the flowchart in Figure 13.6. Planning at each

abstraction level is treated as elaborating a skeleton plan generated at the level

immediately higher. The main procedure is called recursively whenever a

subplan is needed to satisfy the preconditions of an operator in the skeleton

plan. Figure 13.6 is based on the ABSTRIPS procedure described by Sacerdoti

[10], except that we have introduced a variable lower limit on the criticality in

order to prevent a subplan from being considered at a lower criticality level

than the precondition it aims to satisfy.

When we begin planning, a dummy operator is used to represent the

skeleton plan. The precondition of dummy is the goal that we are trying to

achieve. Consider planning to achieve the goal customer has product,

beginning at abstraction level 5 (Figure 13.7). The precondition to dummy is

customer has product. This precondition is satisfied by the operator deliver,

which has two preconditions. One of them (order placed) is satisfied, and the

other (product ready) has a criticality less than 5. Therefore deliver becomes

the skeleton plan for a lower abstraction level.



level := maximum criticality
criticality of overall goal := maximum criticality
limit := minimum criticality
skeleton plan := dummy operator
precondition of dummy := overall goal

is skeleton plan empty?

operator O := first step in skeleton plan
remove O from skeleton plan

Recursively call main procedure in
order to generate a plan Qi that
achieves the preconditions of Pi

Use the following settings:
    level := maximum criticality
    limit := current criticality
    skeleton plan := operator Pi

backtrack

criticality > limit?

no

yes

yes

add Pi to this level s plan

plan Qi found?add Qi to this level s plan backtrack

Repeat if several operators
Pi must all succeed

no

no

yes

no

no

yes

satisfy the preconditions
of O?

of lower criticality
 than current level?

yes

collect together the selected
operators to form this level s plan

return this level s
plan and exit

new skeleton plan := this level s plan
criticality level  := criticality level − 1

yes

Initial set-up:

Main procedure:

no

preconditions
to Pi satisfied or

preconditions
to O satisfied or

of lower criticality
 than current level?

are there
operators {Pi} that

Figure 13.6   Planning with a hierarchical system based on ABSTRIPS



The skeleton plan cannot be elaborated in levels 4, 3, or 2, as the criticality

of product ready is only 1. At level 1, operators that achieve product ready are

sought and two are found, namely, manufacture and subcontract. Both of

these operators have preconditions of the highest criticality, so there is no

reason to give one priority over the other. Supposing that manufacture is

selected, the main procedure is then called recursively, with the preconditions

to manufacture as the new goal. The precondition of the highest criticality is

staff available, and this is found to be satisfied. At the next level machinery

working is examined, and the main procedure is called recursively to find a

plan to satisfy this precondition. However, no such plan can be found as parts

True

False

True True

B
ac

kt
ra

ck
5

5 1

2 5

5 5 5

5

4 5 5

1

sufficient
raw materials

can afford
materials

borrow

good relationship
with bank

deliver

subcontractmanufacture

purchase

parts
available

fix

OR
AND

materials
available

order placed

subcontractor
exists

AND

subcontractor
cost is OK

AND

AND

sell assets

sufficient time
to sell assets

assets
exist

OR
AND

staff
available

machinery
working

product ready

customer has product

Figure 13.7 More efficient search using a hierarchical planner based on ABSTRIPS.

The figures shown alongside the preconditions are the criticality levels



available is false. The plan to manufacture is abandoned at this stage and the

planner backtracks to its alternative plan, subcontract. The preconditions to

subcontract are satisfied and this becomes the plan.

A hierarchical planner can solve problems with less searching and

backtracking than its nonhierarchical equivalent. The above example (shown in

Figure 13.7) is more efficient than the STRIPS version (Figure 13.5), as the

hierarchical planner did not consider the details of borrowing money and

buying raw materials before abandoning the plan to manufacture. Because a

complete plan is formulated at each level of abstraction before the next level is

considered, the hierarchical planner can recognize dead ends early, as it did

with the problem of fixing the machinery. If more complex plans are

considered, involving many more operators, the saving becomes much greater

still.

The planner described here, based on ABSTRIPS, is just one of many

approaches to hierarchical planning. Others adopt different means of

determining the hierarchical layers, since the assignment of criticalities in

ABSTRIPS is rather ad hoc. Some of the other systems are less rigid in their

use of a skeleton plan. For example, the Nonlin system [11] treats the

abstraction levels as a guide to a skeleton solution, but is able to replan or

consider alternatives at any level if a solution cannot be found or if a higher-

level choice is faulty.

13.6 Postponement of commitment

13.6.1 Partial ordering of plans

We have already seen that an incentive for hierarchical planning is the notion

that we are better off deferring detailed decisions until after more general

decisions have been made. This is a part of the principle of postponement of

commitment, or the principle of least commitment. In the same context, if the

order of steps in a plan makes no difference to the plan, the planner should

leave open the option of doing them in any order. A plan is said to be partially

ordered if it contains actions that are unordered with respect to each other, i.e.,

actions for which the planner has not yet determined an order and which may

possibly be in parallel.

If we refer back to the Prolog planner described in Section 13.3.3, we see

that, given a particular world state and the goal of supplying a product to a

customer, the following plan was generated:

[borrow_money, purchase_materials, fix_machine, manufacture,

deliver]



This plan contains a definite order of events. As can be inferred from the

search tree in Figure 13.2, some events must occur before others. For example,

the product cannot be delivered until after it has been manufactured. However,

the operators fix_machine and purchase_materials have been placed in an

arbitrary order. These operators are intended to satisfy two subgoals

(machinery working and sufficient raw materials, respectively). As both

subgoals need to be achieved, they are conjunctive goals. A planning system is

said to be linear if it assumes that it does not matter in which order conjunctive

goals are satisfied. This is the so-called linear assumption, which is not

necessarily valid, and which can be expressed as follows:

according to the linear assumption, subgoals are independent and thus

can be sequentially achieved in an arbitrary order.

Nonlinear planners are those that do not rely upon this assumption. The

generation of partially ordered plans is the most common form of nonlinear

planning, but Hendler et al. [12] have pointed out that it is not the only form.

The generation of a partially ordered plan avoids commitment to a particular

order of actions until information for selecting one order in preference to

another has been gathered. Thus a nonlinear planner might generate the

following partially ordered plan:

deliver e,manufactur ,
efix_machin

aterialspurchase_m ey,borrow_mon

If it is subsequently discovered that fixing the machine requires us to borrow

money, this can be accommodated readily because we have not committed

ourselves to fixing the machine before seeking a loan. Thus, a single loan can

be organized for the purchase of raw materials and for fixing the machine.

The option to generate a partially ordered plan occurs every time a planner

encounters a conjunctive node (i.e., AND) on the search tree. Linear planners

are adequate when the branches are decoupled, so that it doesn’t matter which

action is performed first. Where the ordering is important, a nonlinear planner

can avoid an exponential search of all possible plan orderings. To emphasize

how enormous this saving can be, just ten actions have more than three million

(i.e., 10!) possible orderings.

Some nonlinear planners (e.g., HACKER [13] and INTERPLAN [14])

adopt a different approach to limiting the number of orderings that need be

considered. These systems start out by making the linearity assumption. When

confronted with a conjunctive node in the search tree, they select an arbitrary

order for the actions corresponding to the separate branches. If the selected



order is subsequently found to create problems, the plan is fixed by reordering.

Depending on the problem being addressed, this approach may be inefficient

as it can involve a large amount of backtracking.

We have already seen that the actions of one branch of the search tree can

interact with the actions of another. As a further example, a system might plan

to purchase sufficient raw materials for manufacturing a single batch, but some

of these materials might be used up in the alignment of machinery following its

repair. Detecting and correcting these interactions is a problem that has been

addressed by most of the more sophisticated planners. The problem is

particularly difficult in the case of planners such as SIPE that allow actions to

take place concurrently. SIPE tackles the problem by allocating a share of

limited resources to each action and placing restrictions on concurrent actions

that use the same resources. Modeling the process in this way has the

advantage that resource conflicts are easier to detect than interactions between

the effects of two actions.

13.6.2 The use of planning variables

The use of planning variables is another technique for postponing decisions

until they have to be made. Planners with this capability could, for instance,

plan to purchase something, where something is a variable that does not yet

have a value assigned. Thus the planner can accumulate information before

making a decision about what to purchase. The instantiation of something may

be determined later, thus avoiding the need to produce and check a plan for

every possible instantiation.

The use of planning variables becomes more powerful still if we can

progressively limit the possible instantiations by applying constraints to the

values that a variable can take. Rather than assuming that something is either

unknown or has a specific value (e.g., gearbox part #7934), we could start

by applying the constraint that it is a gearbox component. We might then

progressively tighten the constraints and, thereby, reduce the number of

possible instantiations.

13.7 Job-shop scheduling

13.7.1 The problem

As noted in Section 13.1, scheduling is a planning problem where time and

resources must be allocated to operators that are known in advance. The term

scheduling is sometimes applied to the internal scheduling of operations within



a knowledge-based system. However, in this section we will be concerned with

scheduling only in an engineering context.

Job-shop scheduling is a problem of great commercial importance. A job

shop is either a factory or a manufacturing unit within a factory. Typically, the

job shop consists of a number of machine tools connected by an automated

palletized transportation system, as shown in Figure 13.8. The completion of a

job may require the production of many different parts, grouped in lots.

Flexible manufacturing is possible, because different machines can work on

different part types simultaneously, allowing the job shop to adapt rapidly to

changes in production mix and volume.

The planning task is to determine a schedule for the manufacturing of the

parts that make up a job. As noted in Section 13.1, the operations are already

known in this type of problem, but they still need to be organized in the most

efficient way. The output that is required from a scheduling system is

(typically) a Gantt chart like that shown in Figure 13.9. The decisions required

are, therefore:

• the allocation of machines (or other resources) to each operation;

• the start and finish times of each operation; although it may be sufficient

to specify only the order of operations, rather than their projected timings.

The output of the job shop should display graceful degradation, i.e., a

reduced output should be maintained in the event of accidental or pre-

programmed machine stops, rather than the whole job shop grinding to a halt.

MB B

M BB

BB

Load/unload
bay

Semifinished
part storage

Raw
materials

Finished
parts

Pallet entry

Pallet exit

B

M = machine
B = buffer

MB B MB B

M BB

Figure 13.8   A possible job shop layout (adapted from [15])



The schedule must ensure that all jobs are completed before their due dates,

while taking account of related considerations such as minimizing machine

idle times, queues at machines, work in progress, and allowing a safety margin

in case of unexpected machine breakdown. Some of these considerations are

constraints that must be satisfied, and others are preferences that we would like

to satisfy to some degree. Several researchers (e.g., Bruno et al. [15] and

Dattero et al. [16]) have pointed out that a satisfactory schedule is required,

and that this may not necessarily be an optimum. A similar viewpoint is

frequently adopted in the area of engineering design (Chapter 12).

13.7.2 Some approaches to scheduling

The approaches to automated scheduling that have been applied in the past can

be categorized as either analytical, iterative, or heuristic [17]. None of these

approaches has been particularly successful in its own right, but some of the

more successful scheduling systems borrow techniques from all three

approaches. The analytical approach requires the problem to be structured into

a formal mathematical model. Achieving this normally requires several

assumptions to be made, which can compromise the validity of the model in

real-life situations. The iterative approach requires all possible schedules to be

tested and the best one to be selected. The computational load of such an

approach renders it impractical where there are large numbers of machines and

lots. The heuristic approach relies on the use of rules to guide the scheduling.

While this can save considerable computation, the rules are often specific to

just one situation, and their expressive power may be inadequate.

Operation 1

Operation 3

Operation 2

Operation 1

Operation 2

Operation 3

Lot 1

Lot 2

Lot 2

Lot 2

Lot 1

Lot 1

M
ac

hi
ne

 1

Time
(hours)

0 1 2 3

M
ac

hi
ne

 2

Figure 13.9   A Gantt chart:

giving a visual representation of a schedule



Bruno et al. [15] have adopted a semiempirical approach to the scheduling

problem. A discrete event simulation (similar in principle to the ultrasonic

simulation described in Chapter 4) serves as a test bed for the effects of action

sequences. If a particular sequence causes a constraint to be violated, the

simulation can backtrack by one or more events and then test a new sequence.

Objects are used to represent the key players in the simulation, such as lots,

events, and goals. Rules are used to guide the selection of event sequences

using priorities that are allocated to each lot by the simple expression:

timereleasedatedue

timemachiningremaining
priority

Liu [17] has extended the ideas of hierarchical planning (Section 13.5) to

include job-shop scheduling. He has pointed out that one of the greatest

problems in scheduling is the interaction between events, so that fixing one

problem (e.g., bringing forward a particular machining operation) can generate

new problems (e.g., another lot might require the same operation, but its

schedule cannot be moved forward). Liu therefore sees the problem as one of

maintaining the integrity of a global plan, and dealing with the effects of local

decisions on that global plan. He solves the problem by introducing planning

levels. He starts by generating a rough utilization plan — typically based upon

the one resource thought to be the most critical — that acts as a guideline for a

more detailed schedule. The rough plan is not expanded into a more detailed

plan, but rather a detailed plan is formed from scratch, with the rough plan

acting as a guide.

Rather than attempt to describe all approaches to the scheduling problem,

one particular approach will now be described in some detail. This approach

involves constraint-based analysis (CBA) coupled with the application of

preferences.

13.8 Constraint-based analysis

13.8.1 Constraints and preferences

There may be many factors to take into account when generating a schedule.

As noted in Section 13.7.1, some of these are constraints that must be satisfied,

and others are preferences that we would like to satisfy. Whether or not a

constraint is satisfied is generally clear cut, e.g., a product is either ready on

time or it is not. The satisfaction of preferences is sometimes clear cut, but

often it is not. For instance, we might prefer to use a particular machine. This



preference is clear-cut because it will either be met or it will not. On the other

hand, a preference such as “minimize machine idle times” can be met to

varying degrees.

13.8.2 Formalizing the constraints

Four types of scheduling constraints that apply to a flexible manufacturing

system can be identified:

• Production constraints

The specified quantity of goods must be ready before the due date, and

quality standards must be maintained throughout. Each lot has an earliest

start time and a latest finish time.

• Technological coherence constraints

Work on a given lot cannot commence until it has entered the

transportation system. Some operations must precede others within a given

job, and sometimes a predetermined sequence of operations exists. Some

stages of manufacturing may require specific machines.

• Resource constraints

Each operation must have access to sufficient resources. The only resource

that we will consider in this study is time at a machine, where the number

of available machines is limited. Each machine can work on only one lot

at a given time, and programmed maintenance periods for machines must

be taken into account.

• Capacity constraints

In order to avoid unacceptable congestion in the transportation system,

machine use and queue lengths must not exceed predefined limits.

Our discussion of constraint-based analysis will be based upon the work of

Bel et al. [2]. Their knowledge-based system, OPAL, solves the static (i.e.,

“snapshot”) job-shop scheduling problem. It is, therefore, a classical planner

(see Section 13.2). OPAL contains five modules (Figure 13.10):

• an object-oriented database for representing entities in the system such as

lots, operations, and resources (including machines);

• a constraint-based analysis (CBA) module that calculates the effects of

time constraints on the sequence of operations (the module generates a set

of precedence relations between operations, thereby partially or fully

defining those sequences that are viable);



• a decision support module that contains rules for choosing a schedule,

based upon practical or heuristic experience, from among those that the

CBA module has found to be viable;

• a supervisor that controls communication between the CBA and decision

support modules, and builds up the schedule for presentation to the user;

• a user interface module.

Job-shop scheduling can be viewed in terms of juggling operations and

resources. Operations are the tasks that need to be performed in order to

complete a job, and several jobs may need to be scheduled together.

Operations are characterized by their start time and duration. Each operation

normally uses resources, such as a length of time at a given machine. There are

two types of decision, the timing or (sequencing) of operations and the

allocation of resources. For the moment we will concentrate on the CBA

module, which is based upon the following set of assumptions:

• there is a set of jobs J comprised of a set of operations O;

• there is a limited set of resources R;

• each operation has the following properties:

it cannot be interrupted;

it uses a subset r of the available resources;

it uses a quantity qi of each resource ri in the set r;

it has a fixed duration di.

A schedule is characterized by a set of operations, their start times, and

their durations. We will assume that the operations that make up a job and their

durations are predefined. Therefore, a schedule can be specified by just a set of

supervisor

database

constraint-based
analysis module

decision support module
(for applying preferences)

user interface

Figure 13.10   Principal modules in the OPAL scheduling system [2]



start times for the operations. For a given job, there is an earliest start time

(esti) and latest finish time (lfti) for each operation Oi. Each operation has a

time window which it could occupy and a duration within that window that it

will occupy. The problem is then one of positioning the operation within the

window as shown in Figure 13.11.

13.8.3 Identifying the critical sets of operations

The first step in the application of CBA is to determine if and where conflicts

for resources arise. These conflicts are identified through the use of critical

sets, a concept that is best described by example. Suppose that a small factory

employs five workers who are suitably skilled for carrying out a set of four

operations Oi. Each operation requires some number qi of the workers, as

follows:

O1 O2 O3 O4

Number of workers required, qi 2 3 5 2

A critical set of operations Ic is one that requires more resources than are

available, but where this conflict would be resolved if any of the operations

were removed from the set. In our example, the workers are the resource and

the critical sets are {O1,O3}, {O2,O3}, {O4,O3}, {O1,O2,O4}. Note that

{O1,O2,O3} is not a critical set since it would still require more resources than

are available if we removed O1 or O2. The critical sets define the conflicts for

resources, because the operations that make up the critical sets cannot be

carried out simultaneously. Therefore, the first sequencing rule is as follows:

one operation of each critical set must precede at least one other

operation in the same critical set.

earliest start
time, est

latest finish
time, lft

planned start planned finish

time

duration, d

Figure 13.11   Scheduling an operation within its available time window



Applying this rule to the above example produces the following conditions:

(i) either (O1 precedes O3) or (O3 precedes O1);

(ii) either (O2 precedes O3) or (O3 precedes O2);

(iii) either (O4 precedes O3) or (O3 precedes O4);

(iv) either (O1 precedes O2) or (O2 precedes O1) or

(O1 precedes O4) or (O4 precedes O1) or

(O2 precedes O4) or (O4 precedes O2).

These conditions have been deduced purely on the basis of the available

resources, without consideration of time constraints. If we now introduce the

known time constraints (i.e., the earliest start times and latest finish times for

each operation) the schedule of operations can be refined further and, in some

cases, defined completely. The schedule of operations is especially constrained

in the case where each conflict set is a pair of operations. This is the

disjunctive case, which we will consider first before moving on to consider the

more general case.

13.8.4 Sequencing in the disjunctive case

As each conflict set is a pair of operations in the disjunctive case, no operations

can be carried out simultaneously. Each operation has a defined duration (di),

an earliest start time (esti), and a latest finish time (lfti). The scheduling task is

one of determining the actual start time for each operation.

Consider the task of scheduling the three operations A, B, and C shown in

Figure 13.12(a). If we try to schedule operation A first, we find that there is

insufficient time for the remaining operations to be carried out before the last

lft, irrespective of how the other operations are ordered (Figure 13.12(b)).

However, there is a feasible schedule if operation C precedes A. This is an

example of the general rule:

/* Rule 13.1 */

IF (latest lft - estA) < ? di
THEN at least one operation must precede A.

Similarly, there is no feasible schedule that has A as the last operation since

there is insufficient time to perform all operations between the earliest est and

the lft for A (Figure 13.12(c)). The general rule that describes this situation is:

/* Rule 13.2 */

IF (lftA - earliest est) < ? di
THEN at least one operation must follow A.



13.8.5 Sequencing in the nondisjunctive case

In the nondisjunctive case, at least one critical set contains more than two

operations. The precedence rules described above can be applied to those

critical sets that contain only two operations. Let us consider the precedence

constraints that apply to the operations Oi of a critical set having more than

two elements. From our original definition of a critical set, it is not possible for

all of the operations in the set to be carried out simultaneously. At any one

time, at least one operation in the set must either have finished or be waiting to

start. This provides the basis for some precedence relations. Let us denote the

critical set by the symbol S, where S includes the operation A. Another set of

operations that contains all elements of S apart from operation A will be

denoted by the letter W. The two precedence rules that apply are as follows:

A

B

C

A

B

C

(a) Acceptable schedule:

(b) Unacceptable schedule (Rule 13.1):

after lft

A

B

C

(c) Unacceptable schedule (Rule 13.2):

before est

Figure 13.12 Sequencing in the disjunctive case:

(a) An acceptable schedule

(b) A cannot be the first operation (Rule 13.1)

(c) A cannot be the last operation (Rule 13.2)



/* Rule 13.3 */

IF   for every pair {Oi, Oj} of operations in set W:

     lfti-estj < di + dj
     /* Oi cannot be performed after Oj has finished */

AND  for every operation (Oi) in set W:

     lfti-estA < dA + di
     /* Oi cannot be performed after OA has finished) */

THEN at least one operation in set W must have finished before

     A starts

/* Rule 13.4 */

IF   for every pair {Oi, Oj} of operations in set W:

     lfti-estj < di + dj
     /* Oi cannot be performed after Oj has finished */

AND  for every operation (Oi) in set W:

     lftA-esti < dA + di
    /* OA cannot be performed after Oi has finished */

THEN A must finish before at least one operation in set W

     starts

The application of Rule 13.3 is shown in Figure 13.13(a). Operations B

and C have to overlap (the first condition) and it is not possible for A to finish

before one of either B or C has started (the second condition). Therefore,

operation A must be preceded by at least one of the other operations. Note that,

if this is not possible either, there is no feasible schedule. (Overlap of all the

operations is unavoidable in such a case, but since we are dealing with a

critical set there is insufficient resource to support this.)

Rule 13.4 is similar and covers the situation depicted in Figure 13.13(b).

Here operations B and C again have to overlap, and it is not possible to delay

the start of A until after one of the other operations has finished. Under these

circumstances operation A must precede at least one of the other operations.

13.8.6 Updating earliest start times and latest finish times

If Rule 13.1 or 13.3 has been fired, so we know that at least one operation must

precede A, it may be possible to update the earliest start time of A to reflect this

restriction, as shown in Figures 13.14a and 13.14b. The rule that describes this

is:

/* Rule 13.5 */

IF some operations must precede A (by Rule 13.1 or 13.3)

AND [the earliest (est+d) of those operations] > estA
THEN the new estA is the earliest (est+d) of those operations



Similarly, if Rule 13.2 or 13.4 has been fired, so we know that at least one

operation must follow operation A, it may be possible to modify the lft for A, as

shown in Figures 13.14(a) and 13.14(c). The rule that describes this is:

/* Rule 13.6 */

IF some operations must follow A (by Rule 13.2 or 13.4)

AND [the latest (lft-d) of those operations] < lftA
THEN the new lftA is the latest (lft-d) of those operations

B

C

A

all three operations overlap here

B

C

A

Unacceptable schedule:

Acceptable schedule (at least one other operation finishes before A starts):

(a) Rule 13.3

B

C

A

all three operations overlap here

B

C

A

Acceptable schedule (A finishes before the start of at least one other operation):

Unacceptable schedule:

(b) Rule 13.4

Figure 13.13   Sequencing in the nondisjunctive case



A

B

C

(a) Disjunctive
An operation must precede A (Rule 13.1); therefore est can be updated by Rule 13.5
An operation must follow A (Rule 13.2); therefore lft can be updated by Rule 13.6

B

C

A

(b) Non-disjunctive
An operation must precede A (Rule 13.3); therefore est can be updated by Rule 13.5

B

C

A

(c) Non-disjunctive
An operation must follow A (Rule 13.4); therefore lft can be updated by Rule 13.6

up
da

ted
 es

t (
Rule

 13
.5)

pr
ev

iou
s e

st

up
da

ted
 lf

t (
Rule

 13
.6)

pr
ev

iou
s l

ft

pr
ev

iou
s e

st

up
da

ted
 es

t (
Rule

 13
.5)

pr
ev

iou
s l

ft

up
da

ted
 lf

t (
Rule

 13
.6)

Figure 13.14   Updating earliest start times and latest finish times



The new earliest start times and latest finish times can have an effect on

subsequent operations. Consider the case of a factory that is assembling cars.

Axle assembly must precede wheel fitting, regardless of any resource

considerations. This sort of precedence relation, which is imposed by the

nature of the task itself, is referred to as a technological coherence constraint.

Suppose that, as a result of the arguments described above, the est for axle

assembly is delayed to a new time esta. If the axle assembly takes time da per

car, then the new est for wheel-fitting (estw) will be esta+da (ignoring the time

taken to move the vehicle between assembly stations).

However, a car plant is unlikely to be moving just one car through the

assembly process, rather a whole batch of cars will need to be scheduled.

These circumstances offer greater flexibility as the two assembly operations

can overlap, provided that the order of assembly is maintained for individual

cars. Two rules can be derived, depending on whether axle assembly or wheel

fitting is the quicker operation. If wheel fitting is quicker, then a sufficient

condition is for wheels to be fitted to the last car in the batch immediately after

its axles have been assembled. This situation is shown in Figure 13.15(a), and

is described by the following rule:

Axle assembly

Wheel fitting

Da

dw

da

Dw

Axle assembly

Wheel fitting

(a) Second operation is faster than the first (Rule 13.7)

(b) First operation is faster than the second (Rule 13.8)

Da

dw

da

Dw

Figure 13.15   Overlapping operations in batch processing:

(a) Rule 13.7 applies if wheel fitting is faster than axle assembly

(b) Rule 13.8 applies if axle assembly is faster than wheel fitting



/* Rule 13.7 */

IF da > dw
THEN estw = esta + Da - (n-1)dw
AND lfta = lftw - dw

where n is the number of cars in the batch, Da is nda, and Dw is ndw. If axle

assembly is the quicker operation, then wheel fitting can commence

immediately after the first car has had its axle assembled (Figure 13.15(b)).

The following rule applies:

/* Rule 13.8 */

IF da < dw
THEN estw = esta + da
AND lfta = lftw - Dw + (n-1)da

13.8.7 Applying preferences

Constraint-based analysis can produce one of three possible outcomes:

• the constraints cannot be satisfied, given the allocated resources;

• a unique schedule is produced that satisfies the constraints;

• more than one schedule is found that satisfies the constraints.

In the case of the first outcome, the problem can be solved only if more

resources are made available or the time constraints are slackened. In the

second case, the scheduling problem is solved. In the third case, pairs of

operations exist that can be sequenced in either order without violating the

constraints. The problem then becomes one of applying preferences so as to

find the most suitable order. Preferences are features of the solution that are

considered desirable, but unlike constraints they are not compulsory. Bel et al.

[2] have attempted to apply preferences by using fuzzy rules (see Chapter 3 for

a discussion of fuzzy logic). Their rule-based system constitutes the decision-

support module in Figure 13.10.

The pairs of operations that need to be ordered are potentially large in

number and broad in scope. It is, therefore, impractical to produce a rule base

that covers specific pairs of operations. Instead, rules for applying preferences

usually make use of variables (see Section 2.6), so that they can be applied to

different pairs of operations. The rules may take the form:

IF

(attribute x of operation ?a) > (attribute x of operation ?b)

THEN

?a precedes ?b



where any pair of operations can be substituted for a and b, but the attribute x

is specified in a given rule. A typical expression for x might be the duration of

its available time window (i.e., lft – est). The rules are chosen so as to cover

some general guiding principles or goals, such as:

• maximize overall slack time;

• perform operations with the least slack time first;

• give preference to schedules that minimize resource utilization;

• avoid tool changes.

In OPAL, each rule is assigned a degree of relevance R with respect to

each goal. Given a goal or set of goals, some rules will tend to favor one

ordering of a pair of operations, while others will favor the reverse. A

consensus is arrived at by a rather complicated scoring (or “voting”)

procedure. The complete set of rules is applied to each pair of operations that

need to be ordered, and the scoring procedure is as follows:

• The degree to which the condition part of each rule is satisfied is

represented using fuzzy sets. Three fuzzy sets are defined (true, maybe,

and false), and the degree of membership of each is designated µt, µm,

and µf. Each membership is a number between 0 and 1, such that for every

rule:

µt + µm + µf = 1

• Every rule awards a score to each of the three possible outcomes (a

precedes b, b precedes a, or no preference). These scores (Vab, Vba, and

Vno_preference) are determined as follows:

Vab = min(µt , R)

Vba = min(µf , R)

Vno_preference = min(µm, R)

• The scores for each of the three possible outcomes are totaled across the

whole rule set. The totals can also be normalized by dividing the sum of

the scores by the sum of the R values for all rules. Thus:

Total score for ab = (Vab) / (R)

Total score for ba = (Vba) / (R)

Total score for no preference = (Vno_preference) / (R)



The scoring procedure can have one of three possible outcomes:

• One ordering is favored over the other. This outcome is manifested by

(Vab) » (Vba) or vice versa.

• Both orderings are roughly equally favored, but the scores for each are

low compared with the score for the impartial outcome. This indicates that

there is no strong reason for preferring one order over the other.

• Both orderings are roughly equally favored, but the scores for each are

high compared with the score for the impartial outcome. Under these

circumstances, there are strong reasons for preferring one order, but there

are also strong reasons for preferring the reverse order. In other words

there are strong conflicts between the rules.

13.8.8 Using constraints and preferences

OPAL makes use of a supervisor module (Figure 13.10), which controls the

constraint-based analysis (CBA) and decision support (DS) modules. In OPAL

and other scheduling systems, constraint-based analysis is initially applied in

order to eliminate all those schedules that cannot meet the time and resource

constraints. A preferred ordering of operations is then selected from the

schedules that are left. As we have seen, the DS module achieves this by

weighting the rules of optimization, applying these rules, and selecting the

order of operations that obtains the highest overall score.

If the preferences applied by the DS module are not sufficient to produce a

unique schedule, the supervising module calls upon the CBA and DS modules

repeatedly until a unique solution is found. The supervising module stops the

process when an acceptable schedule has been found, or if it cannot find a

workable schedule.

There is a clear analogy between the two stages of scheduling (constraint-

based analysis and the application of preferences) and the stages of materials

selection (see Section 12.8). In the case of materials selection, constraints can

be applied by ruling out all materials that fail to meet a numerical

specification. The remaining materials can then be put into an order of

preference, based upon some means of comparing their performance scores

against various criteria, where the scores are weighted according to a measure

of the perceived importance of the properties.



13.9 Replanning and reactive planning

The discussion so far has concentrated on predictive planning, that is, building

a plan that is to be executed at some time in the future. Suppose now that while

a plan is being executed something unexpected happens, such as a machine

breakdown. In other words, the actual world state deviates from the expected

world state. A powerful capability under these circumstances is to be able to

replan, i.e., to modify the current plan to reflect the current circumstances.

Systems that are capable of planning or replanning in real time, in a rapidly

changing environment, are described as reactive planners. Such systems

monitor the state of the world during execution of a plan and are capable of

revising the plan in response to their observations. Since a reactive planner can

alter the actions of machinery in response to real-time observations and

measurements, the distinction between reactive planners and control systems

(Chapter 14) is vague.

To illustrate the distinction between predictive planning, replanning, and

reactive planning, let us consider an intelligent robot that is carrying out some

gardening. It may have planned in advance to mow the lawn and then to prune

the roses (predictive planning). If it finds that someone has borrowed the

mower, it might decide to mow after pruning, by which time the mower may

have become available (replanning). If a missile is thrown at the robot while it

is pruning, it may choose to dive for cover (reactive planning).

Collinot et al. have devised a system called SONIA [18], that is capable of

both predictive and reactive planning of factory activity. This system offers

more than just a scheduling capability, as it has some facilities for selecting

which operations will be scheduled. However, it assumes that a core of

essential operations is preselected. SONIA brings together many of the

techniques that we have seen previously. The operations are ordered by the

application of constraints and preferences (Section 13.8) in order to form a

predictive plan. During execution of the plan, the observed world state may

deviate from the planned world state. Some possible causes of the deviation

might be:

• machine failure;

• personnel absence;

• arrival of urgent new orders;

• the original plan may have been ill-conceived.

Under these circumstances, SONIA can modify its plan or, in an extreme case,

generate a new plan from scratch. The particular type of modification chosen is



largely dependent on the time available for SONIA to reason about the

problem. Some possible plan modifications might be:

• cancel, postpone, or curtail some operations in order to bring some other

operations back on schedule;

• reschedule to use any slack time in the original plan;

• reallocate resources between operations;

• reschedule a job — comprising a series of operations — to finish later

than previously planned;

• delay the whole schedule.

A final point to note about SONIA is that it has been implemented as a

blackboard system (see Chapter 9). The versatility of the blackboard

architecture is demonstrated by the variety of applications in which it is used.

An application in data interpretation was described in Chapter 11, whereas

here it is used for predictive planning. SONIA uses the blackboard to represent

both the planned and observed world states. Separate knowledge sources

perform the various stages of predictive planning, monitoring, and reactive

planning. In fact, SONIA uses two blackboards: one for representing

information about the shop floor and a separate one for its own internal control

information.

13.10 Summary

This chapter began by defining a classical planner as one that can derive a set

of operations to take the world from an initial state to a goal state. The initial

world state is a “snapshot,” which is assumed not to alter except as a result of

the execution of the plan. While being useful in a wide range of situations,

classical planners are of limited use when dealing with continuous processes or

a rapidly changing environment. In contrast, reactive planners can respond

rapidly to unexpected events.

Scheduling is a special case of planning, where the operators are known in

advance and the task is to allocate resources to each and to determine when

they should be applied. Scheduling is particularly important in the planning of

manufacturing processes.

A simple classical planner similar to STRIPS has been described. More

sophisticated features that can be added to extend the capabilities of a planning

system were then described and are summarized below.



(i) World modeling

Unlike STRIPS, the Prolog program shown in Section 13.3.3 does not

explicitly update its world model as operators are selected. Proper maintenance

of a world model ensures that any side effects of a plan are recorded along with

intended effects.

(ii) Deductive rules

Deductive rules permit the deduction of effects that are additional to those

explicitly included in the operator representation. Because they do not form

part of the operator representation, they can allow different effects to be

registered depending on the current context.

(iii) Hierarchical planning

STRIPS may commit itself to a particular problem-solving path too early, with

the result that it must backtrack if it cannot complete the plan that it is

pursuing. Hierarchical planners can plan at different levels of abstraction. An

abstract (or “skeleton”) plan is formed first, such as to build a house by digging

foundations, then building walls, and finally putting on a roof. The detailed

planning might include the precise shape, size, and placement of the timber.

The abstract plan restricts the range of possibilities of the detailed planning.

(iv) Nonlinearity

Linear planners such as STRIPS make the assumption that it does not matter in

which order the subgoals for a particular goal are satisfied. Partial ordering of

operations is a form of nonlinear planning in which the ordering of operations

is postponed until either more information becomes available or a decision is

forced. In some cases is may be possible for operations to be scheduled to run

in parallel.

(v) Planning variables

The use of variables also allows postponement of decisions. Plans can be

generated using variables that have not yet been assigned a value. For instance,

we might plan to go somewhere without specifying where. The instantiation of

somewhere may become determined later, and we have saved the effort of

considering all of the possibilities in the meantime.

(vi) Constraints

The use of planning variables is more powerful still if we can limit the possible

instantiations by applying constraints on the values that a variable can take.

Constraint-based analysis can be used to reduce the number of possible plans,

or even to find a unique plan that meets the constraints.



(vii) Preferences

If constraint-based analysis yields more than one viable plan or schedule,

preferences can be applied in order to select between the alternatives.

(viii) Replanning

The ability to modify a plan in the light of unexpected occurrences was

discussed.

Hierarchical plans, partially ordered plans, and the use of planning

variables are all means of postponing commitment to a particular plan. This is

known as the principle of least commitment.

Systems that have only some of the above features are adequate in many

situations. A few specific applications have been considered in this chapter, but

much of the research effort in planning has been concerned with building

general purpose planning systems that are domain-independent. The purpose of

such systems is to allow knowledge relevant to any particular domain to be

represented, rather like an expert system shell (see Chapters 1 and 10).

References

1. Charniak, E. and McDermott, D., Introduction to Artificial Intelligence,

Addison-Wesley, 1985.

2. Bel, G., Bensana, E., Dubois, D., Erschler, J., and Esquirol, P., “A

knowledge-based approach to industrial job-shop scheduling,” in

Knowledge-Based Systems in Manufacturing, Kusiak, A. (Ed.), pp. 207–

246, Taylor and Francis, 1989.

3. Stuart, C. J., “An implementation of a multi-agent plan synchronizer,” 9th

International Joint Conference on Artificial Intelligence (IJCAI’85), Los

Angeles, pp. 1031–1033, 1985.

4. Durfee, E. H., Lesser, V. R., and Corkhill, D. D., “Increasing coherence in

a distributed problem solving network,” 9th International Joint Conference

on Artificial Intelligence (IJCAI’85), Los Angeles, pp. 1025–1030, 1985.

5. Fikes, R. E. and Nilsson, N. J., “STRIPS: a new approach to the

application of theorem proving to problem solving,” Artificial Intelligence,

vol. 2, pp. 189–208, 1971.

6. Fikes, R. E., Hart, P. E., and Nilsson, N. J., “Learning and executing

generalized robot plans,” Artificial Intelligence, vol. 3, pp. 251–288, 1972.



7. Wilkins, D. E., “Representation in a domain-independent planner,” 8th

International Joint Conference on Artificial Intelligence (IJCAI’83),

Karlsruhe, Germany, pp. 733–740, 1983.

8. Wilkins, D. E., “Domain-independent planning: representation and plan

generation,” Artificial Intelligence, vol. 22, pp. 269–301, 1984.

9. Wilkins, D. E., Practical Planning: extending the classical AI planning

paradigm, Morgan Kaufmann, 1988.

10. Sacerdoti, E. D., “Planning in a hierarchy of abstraction spaces,” Artificial

Intelligence, vol. 5, pp. 115–135, 1974.

11. Tate, A., “Generating project networks,” 5th International Joint

Conference on Artificial Intelligence (IJCAI), Cambridge, MA, pp. 888–

893, 1977.

12. Hendler, J., Tate, A., and Drummond, M., “AI planning: systems and

techniques,” AI Magazine, pp. 61–77, Summer 1990.

13. Sussman, G. J., A Computer Model of Skill Acquisition, Elsevier, 1975.

14. Tate, A., “Interacting goals and their use,” 4th International Joint

Conference on Artificial Intelligence (IJCAI’75), Tbilisi, Georgia, pp.

215–218, 1975.

15. Bruno, G., Elia, A., and Laface, P., “A rule-based system to schedule

production,” IEEE Computer, vol. 19, issue 7, pp. 32–40, July 1986.

16. Dattero, R., Kanet, J. J., and White, E. M., “Enhancing manufacturing

planning and control systems with artificial intelligence techniques,” in

Knowledge-based Systems in Manufacturing, Kusiak, A. (Ed.), pp. 137–

150, Taylor and Francis, 1989.

17. Liu, B., “Scheduling via reinforcement,” Artificial Intelligence in

Engineering, vol. 3, pp. 76–85, 1988.

18. Collinot, A., Le Pape, C., and Pinoteau, G., “SONIA: a knowledge-based

scheduling system,” Artificial Intelligence in Engineering, vol. 3, pp. 86–

94, 1988.

Further reading

• Allen, J., Hendler, J., and Tate, A. (Eds.), Readings in Planning, Morgan

Kaufmann, 1990.

• Campbell, S. and Fainstein, S. S. (Eds.), Readings in Planning Theory,

Blackwell, 1996.



• Wilkins, D. E., Practical Planning: extending the classical AI planning

paradigm, Morgan Kaufmann, 1989.

• Yang, Q., Intelligent Planning: a decomposition and abstraction-based

approach, Springer Verlag, 1998.



Chapter fourteen

Systems for control

14.1 Introduction

The application of intelligent systems to control has far-reaching implications

for manufacturing, robotics, and other areas of engineering. The control

problem is closely allied with some of the other applications that have been

discussed so far. For instance, a controller of manufacturing equipment will

have as its aim the implementation of a manufacturing plan (see Chapter 13). It

will need to interpret sensor data, recognize faults (see Chapter 11), and

respond to them. Similarly, it will need to replan the manufacturing process in

the event of breakdown or some other unexpected event, i.e., to plan reactively

(Section 13.9). Indeed, Bennett [1] treats automated control as a loop of plan

generation, monitoring, diagnosis, and replanning.

The systems described in Chapters 11 to 13 gather data describing their

environment and make decisions and judgments about those data. Controllers

are distinct in that they can go a step further by altering their environment.

They may do this actively by sending commands to the hardware or passively

by recommending to a human operator that certain actions be taken. The

passive implementation assumes that the process decisions can be implemented

relatively slowly.

Control problems appear in various guises, and different techniques may

be appropriate in different cases. For example, a temperature controller for a

furnace may modify the current flowing in the heating coils in response to the

measured temperature, where the temperature may be registered as a potential

difference across a thermocouple. This is low-level control, in which a rapid

response is required but little intelligence is involved. In contrast, high-level or

supervisory control takes a wider view of the process being controlled. For

example, in the control of the manufacturing process for a steel component, a

furnace temperature may be just one of many parameters that need to be

adjusted. High-level control requires more intelligence, but there is often more

time available in which to make the decisions.



The examples of control discussed above implicitly assumed the existence

of a model of the system being controlled. In building a temperature controller,

it is known that an increased current will raise the temperature, that this is

registered by the thermocouple, and that there will be a time lag between the

two. The controller is designed to exploit this model. There may be some

circumstances where no such model exists or is too complex to represent. The

process under control can then be thought of as a black box, whose input is

determined by the controller, and whose output we wish to regulate. As it has

no other information available to it, the controller must learn how to control

the black box through trial and error. In other words it must construct a model

of the system through experience. We will discuss two approaches, the

BOXES algorithm (Section 14.7) and neural networks (Section 14.8).

As well as drawing a distinction between low-level and high-level control,

we can distinguish between adaptive and servo control. The aim of an adaptive

controller is to maintain a steady state. In a completely stable environment, an

adaptive controller would need to do nothing. In the real world, an adaptive

controller must adapt to changes in the environment that may be brought about

by the controlled process itself or by external disturbances. A temperature

controller for a furnace is an adaptive controller the task of which is to

maintain a constant temperature. It must do this in spite of disturbances such as

the furnace door opening, large thermal masses being inserted or removed,

fluctuations in the power supply, and changes in the temperature of the

surroundings. Typically, it will achieve this by using negative feedback (see

Section 14.2, below).

A servo controller is designed to drive the output of the plant from a

starting value to a desired value. Choosing a control action to achieve the

desired output requires that a prediction be made about the future behavior of

the controlled plant. This, again, requires a model of the controlled plant. Often

a high-level controller is required to decide upon a series of servo control

actions. This is known as sequence control. For instance, alloyed components

are normally taken through a heat-treatment cycle. They are initially held at a

temperature close to the melting temperature, then they are rapidly quenched to

room temperature, and finally they are “aged” at an intermediate temperature.

14.2 Low-level control

14.2.1 Open-loop control

The open-loop control strategy is straightforward: given a control requirement,

the controller simply sends a control action to the plant (Figure 14.1(a)). The

controller must have a model of the relationship between the control action and



the behavior of the plant. The accuracy of control is solely dependent on the

accuracy of the model, and no checks are made to ensure that the plant is

behaving as intended. An open-loop temperature controller, for example,

would send a set current to the heating coils in order to achieve an intended

temperature. In order to choose an appropriate current, it would have an

implicit model of the thermal capacity of the furnace and of the rate of heat

loss. This strategy cannot correct for any disturbance to the plant (i.e., the

furnace, in this example).

14.2.2 Feedforward control

The feedforward strategy takes account of disturbances to the plant by

measuring the disturbances and altering the control action accordingly (Figure

14.1(b)). In the example of the temperature controller, fluctuations in the

electrical power supply might be monitored. The nominal current sent to the

coils may then be altered to compensate for fluctuations in the actual current.

Note that the disturbance, and not the controlled variable itself (i.e., not the

Controller Plant
desired output control action output

disturbances

Controller Plant
desired output control action output

disturbances

Controller Plant

desired output

control action output

disturbances

error

(c)

(a)

(b)

Figure 14.1 Three alternative strategies for control:

(a) open loop

(b) feedforward

(c) feedback (closed loop)



furnace temperature), is monitored. Any disturbances that are not measured are

not taken into account. As with open-loop control, a model of the plant is

needed in order to calculate the impacts of the control action and the measured

disturbance.

14.2.3 Feedback control

This is the most common control strategy in both high-level and low-level

control applications. The measured output from the plant is compared with the

required value, and the difference or error is used by the controller to regulate

its control action. As shown in Figure 14.1(c), the control action affects the

plant and the plant output affects the controller, thereby forming a closed loop.

Hence the strategy is also known as closed-loop control. This strategy takes

account of all disturbances, regardless of how they are caused and without

having to measure them directly. There is often a lag in the response of the

controller, as corrections can only be made after a deviation in the plant output

(e.g., the furnace temperature in the previous example) has been detected.

14.2.4 First- and second-order models

It has already been emphasized that a controller can be built only if we have a

model, albeit a simple one, of the plant being controlled. For low-level control,

it is often assumed that the plant can be adequately modeled on first- or

second-order linear differential equations. Let us denote the input to the plant

(which may also be the output of the controller) by the letter x, and the output

of the plant by the letter y. In a furnace, x would represent the current flowing

and y would represent the furnace temperature. The first-order differential

equation would be:

xky
dt

dy
1 (14.1)

and the second-order differential equation:

xky
dt

dy

dt

yd
nn 2
2

2

2

2 (14.2)

where , k1, k2,  and n are constants for a given plant, and t represents time.

These equations can be used to tell us how the output y will respond to a

change in input x.



Figures 14.2(a) and 14.2(b) show the response to a step change in x for a

first- and second-order model, respectively. In the first-order model, the time

for the controlled system to reach a new steady state is determined by , which

is the time constant for the controlled system.

In the second-order model, the behavior of the controlled system is

dependent on two characteristic constants. The damping ratio  determines the

rate at which y will approach its intended value, and the undamped natural

angular frequency n determines the frequency of oscillation about the final

value in the underdamped case (Figure 14.2(b)).

14.2.5 Algorithmic control: the PID controller

Control systems may be either analog or digital. In analog systems, the output

from the controller varies continuously in response to continuous changes in

the controlled variable. This book will concentrate on digital control, in which

the data are sampled and discrete changes in the controller output are

calculated accordingly. There are strong arguments to support the view that

low-level digital control is best handled by algorithms, which can be

implemented either in electronic hardware or by procedural coding. Such

arguments are based on the observation that low-level control usually requires

a rapid response, but little or no intelligence. This view would tend to preclude

the use of intelligent systems. In this section we will look at a commonly used

control algorithm, and in Section 14.6 we will examine the possibilities for

improvement by using fuzzy logic.

It was noted in Section 14.2.3 that feedback controllers determine their

control action on the basis of the error e, which is the difference between the

measured output y from the plant at a given moment and the desired value, i.e.,

the reference r. The control action is often simply the assignment of a value to

a variable, such as the furnace current. This is the action variable, and it is

usually given the symbol u. The action variable is sometimes known as the

control variable, although this can lead to confusion with the controlled

variable y.

In a simple controller, u may be set in proportion to e. A more

sophisticated approach is adopted in the PID (proportional + integral +

derivative) controller. The value for u that is generated by a PID controller is

the sum of three terms:

• P — a term proportional to the error e;

• I — a term proportional to the integral of e with respect to time;

• D — a term proportional to the derivative of e with respect to time.



(a)

final value = ka

τ

ou
tp

ut
, y

(t
)

sl
op

e 
= 

ka
/τ

step change in input, x(t),
from x = 0 to x = a at time t = 0

time, t

(b)

overdamped: ζ > 1

ou
tp

ut
, y

(t
)

step change in input, x(t),
from x = 0 to x = a at time t = 0

time, t

underdamped: ζ < 1

critically damped: ζ = 1

Figure 14.2 (a) first-order response to a step change

(b) second-order response to a step change



Thus, the value assigned to the action variable u by a PID controller would

ideally be given by:

dt

de
te deKu d

i
p

1
(14.3)

where Kp, i, and d are adjustable parameters of the controller that can be set

to suit the characteristics of the plant being controlled. Kp is the proportional

gain, i is the integral time, and d is the derivative time. Because values for e

are samples at time intervals t, the integral and derivative terms must be

approximated:

t

ee
e(k)

t
e(k)Ku kk

d
ki

p
1

(14.4)

where k is the sample number, such that time t = k t. The role of the P term is

intuitively obvious — the greater the error, the greater the control action that is

needed. Through the I term, the controller output depends on the accumulated

historical values of the error. This is used to counteract the effects of long-term

disturbances on the controlled plant. The magnitude of the D term depends on

the rate of change of the error. This term allows the controller to react quickly

to sharp fluctuations in the error. The D term is low for slowly varying errors,

and zero when the error is constant. In practice, tuning the parameters of a PID

controller can be difficult. One commonly used technique is the Ziegler–

Nichols method (see, for example, [2]).

14.2.6 Bang-bang control

Bang-bang controllers rely on switching the action variable between its upper

and lower limits, with intermediate values disallowed. As previously noted,

servo control involves forcing a system from one state to a new state. The

fastest way of doing this, i.e., time optimal control, is by switching the action

variable from one extreme to another at precalculated times, a method known

as bang-bang control. Two extreme values are used, although Sripada et al. [3]

also allow a final steady-state value for the action variable (Figure 14.3).

Consider the control of an electric furnace. As soon as the new (increased)

temperature requirement is known, the electric current is increased to the

maximum value sustainable until the error in the temperature is less than a

critical value e*. The current is then dropped to its minimum value (i.e., zero)

for time t, before being switched to its final steady-state value. There are,



therefore, two parameters that determine the performance of the controller, e*

and t. Figure 14.3 shows the effects of errors in these two parameters.

Sripada et al. coded the three switchings of their bang-bang servo

controller as a set of three rules. They acknowledged, however, that since the

rules fired in sequence there was no reason why these could not have been

procedurally coded. They had a separate set of rules for adjusting the

parameters e*, t, and Kp in the light of experience. The controller was

time, t

co
nt

ro
lle

d 
va

ri
ab

le
, y

ac
tio

n
va

ri
ab

le
, u

e*  too large

e*  too small

∆t  too largee*

∆t

max

0

time, t

r

Figure 14.3   Bang-bang servo control (adapted from [3])



self-tuning, and the parameter adjustment can be thought of as controlling the

controller. The extent to which the parameters are adjusted is in proportion to

the degree of membership of the fuzzy sets too large and too small. Thus, a

typical fuzzy rule might be:

IF y overshoots r

THEN e* is too large

AND e* becomes e* - e.

The proposition y overshoots r is fuzzy, with a degree of membership

between 0 and 1, reflecting the amount of overshoot. This becomes the degree

of membership for the fuzzy proposition e* is too large, and is also used to

calculate the adjustment e. Techniques for scaling the adjustment (in this case

e) to reflect the membership functions are discussed in detail in Section 14.6.

Sripada et al. found that their self-tuning bang-bang controller outperformed a

well-tuned PI controller, i.e., a PID controller with the D term set to zero.

14.3 Requirements of high-level (supervisory) control

Our discussion so far has concentrated on fairly straightforward control tasks,

such as maintaining the temperature of a furnace or driving the temperature to

a new set point. Both are examples of low-level control, where a rapid

response is needed but scarcely any intelligence. In contrast, high-level control

may be a complex problem concerning decisions about the actions to take at

any given time. This may involve aspects of both adaptive and servo control.

An important example of high-level control is the control of a manufacturing

process. Control decisions at this level concern diverse factors such as choice

of reactants and raw materials; conveyor belt speeds; rates of flow of solids,

liquids, and gases; temperature and pressure cycling; and batch transport.

Leitch et al. [4] have identified six key requirements for a real-time

supervisory controller:

• ability to make decisions and act upon them within a time constraint;

• handling asynchronous events — the system must be able to break out of

its current set of operations to deal with unexpected occurrences;

• temporal reasoning, i.e., the ability to reason about time and sequences;

• reasoning with uncertainty;

• continuous operation;

• multiple sources of knowledge.



We have come across the third requirement in the context of planning

(Chapter 13), and the last three requirements as part of monitoring and

diagnosis (Chapter 11). Only the first two requirements are new.

14.4 Blackboard maintenance

One of the requirements listed above was for multiple sources of knowledge.

These are required since high-level control may have many sources of input

information and many subtasks to perform. It is no surprise, therefore, that the

blackboard model is chosen for many control applications (see Chapter 9).

Leitch et al. [4] point out that, because continuous operation is required, a

mechanism is needed for ensuring that the blackboard does not contain

obsolete information. They achieve this by tagging blackboard information

with the time of its posting. As time elapses, some information may remain

relevant, some may gradually lose accuracy, and some may suddenly become

obsolete. There are several ways of representing the lifetime of blackboard

information:

(i) A default lifetime for all blackboard information may be assumed. Any

information that is older than this may be removed. A drawback of this

approach is that deductions made from information that is now obsolete

may remain on the blackboard.

(ii) At the time of posting to the blackboard, individual items of information

may be tagged with an expected lifetime. Suppose that item A is posted at

time tA with expected lifetime lA. If item B is deduced from A at time tB,

where tB < tA + lA, then the lifetime of B, lB, would be tA + lA – tB.

(iii) Links between blackboard items are recorded, showing the

interdependencies between items. Figure 14.4 illustrates the application of

this approach to control of a boiler, using rules borrowed from Chapter 2.

There is no need to record the expected lifetimes of any items, as all

pieces of blackboard information are ultimately dependent on sensor data,

which are liable to change. When changes in sensor values occur, updates

are rippled through the dependent items on the blackboard. In the example

shown in Figure 14.4, as soon as the flow rate fell, flow rate high

would be removed from the blackboard along with the inferences steam

escaping and steam outlet blockage and the resulting control action.

All other information on the blackboard would remain valid.



The third technique is a powerful way of maintaining the blackboard

integrity, since it avoids unnecessary reevaluation of information. This is

counterbalanced by the additional complexity of the blackboard and the

computational load of maintaining the blackboard. These problems can be

minimized by careful partitioning of the blackboard into levels of abstraction

(from low-level statements about sensor values to high-level analysis of trends

and policy) and subject groupings (low-level data about a conveyor belt are

kept separate from low-level information about a boiler).

The control actions on the blackboard in Figure 14.4 are shown with a tag

indicating whether or not the action has been carried out. The tag is necessary

because there is a time lag between an action being taken and a resultant

change in the sensor data. When the action is first added to the blackboard, the

tag is set to “not yet done.” This is changed as soon as the action is carried out.

The action is not removed at this stage, as the knowledge source that generated

it would simply generate it again. Instead, the control action remains on the

blackboard until the supporting evidence is removed, when the sensor reading

changes.

transducer
output low

release valve
open

open control valve replace outlet pipe

flow rate
high

steam outlet blockage

steam escapingwater level low

done? yes no
se

ns
or

s
in

fe
re

nc
es

ac
ti

on
s

done? yes no

Figure 14.4   Storing dependencies between items of information on the blackboard



14.5 Time-constrained reasoning

An automatic control system must be capable of operating in real time. This

does not necessarily mean fast, but merely fast enough. Laffey et al. [5] offer

the following informal definition of real-time performance:

[real-time performance requires that] the system responds to incoming

data at a rate as fast or faster than it is arriving.

This conveys the idea that real-time performance is the ability to “keep up”

with the physical world to which the system is interfaced. The RESCU process

control system, applied to a chemical plant, receives data in blocks at five-

minute intervals [4]. It, therefore, has five minutes in which to respond to the

data in order to achieve real-time performance. This is an example of a system

that is fast enough, but not particularly fast. The rate of arrival of data is one

factor in real-time control, but there may be other reasons why decisions have

to be made within a specified time frame. For instance, the minimum time of

response to an overheated reactor is not dependent on the rate of updating the

temperature data, but on the time over which overheating can be tolerated.

In order to ensure that a satisfactory (though not necessarily optimum)

solution is achieved within the available time scale, an intelligent system needs

to be able to schedule its activities appropriately. This is not straightforward, as

the time taken to solve a problem cannot be judged accurately in advance. A

conservative approach would be to select only those reasoning activities that

are judged able to be completed comfortably within the available time.

However, this may lead to an unsatisfactory solution while failing to use all the

time available for reasoning.

Scheduling of knowledge sources is an internal control issue and would

normally be kept apart from domain knowledge. On the other hand, the time

constraints are domain-specific and should not be built into the inference

engines or control software. A suitable compromise is to have a special

knowledge source dedicated to the real-time scheduling of domain knowledge

sources. This is the approach adopted in RESCU [4].

Some of the techniques that have been applied to ensure a satisfactory

response within the time constraints are described below.

14.5.1 Prioritization of processes and knowledge sources

In the RESCU system, processes are partitioned on two levels. First, the

processes of the overall system are divided into operator, communications, log,

monitor, and knowledge-based system. The last is a blackboard system



(Chapter 9) and so it can be divided up into knowledge sources.* This is the

second level of partitioning.

The separate processes at the overall system level are considered to be

independent. Thus, they could run in parallel or, on a serial computer, a

process can be temporarily suspended while a more important process is

performed. Each of the five processes is assigned a priority number between 1

and 6. The communications and monitoring processes are given the highest

priorities, so these can cause the temporary suspension of the other (lower

priority) activities. The application of priorities to processes is similar to the

application of priorities to rules in other systems (see Section 2.8.2).

The separate knowledge sources (KSs) at the knowledge-based system

(KBS) level are not independent, as they all rely upon reading from, and

writing to, the blackboard. In RESCU, once a KS has started, it will always run

to completion before another KS starts. The whole KBS process, however, can

be paused. A suitable size for a KS must be small enough to ensure that the

reasoning does not continue when the data are out of date, and large enough to

avoid overworking the scheduling software.

In order to provide adaptable and fairly intelligent scheduling of

knowledge sources, RESCU’s scheduling software is itself coded as a

knowledge source. The scheduler checks the preconditions of KSs and any

KSs that are applicable are assigned a priority rating. The one with the highest

priority is chosen, and in the event of more than one having the highest

priority, one is chosen at random. The applicable KSs that are not selected

have their priority increased in the next round of KS selection, thereby

ensuring that all applicable KSs are fired eventually.

14.5.2 Approximation

The use of priorities, described above, ensures that the most important tasks

are completed within the time constraints, and less important tasks are

completed only if time permits. An alternative approach, proposed by Lesser et

al. [6], is to ensure that an approximate solution is obtained within the time

constraints, and the solution is embellished only if time permits. Three aspects

of a solution that might be sacrificed to some degree are:

• completeness,

• precision,

• certainty.

                                                          
* RESCU actually schedules on the basis of groups of knowledge sources, referred to as

activities.



Loss of completeness means that some aspects of the solution are not

explored. Loss of precision means that some parameters are determined less

precisely than they might have been. (The maximum precision is determined

by the precision of the input data.) Loss of certainty means that some evidence

in support of the conclusion has not been evaluated, or alternatives have been

ignored. Thus, there is a trade-off between the quality of a solution and the

time taken to derive it.

One approach to approximation would be to make a rough attempt at

solving the problem initially and to use any time remaining to refine the

solution incrementally. Provided that sufficient time was available to at least

achieve the rough solution, a solution of some sort would always be

guaranteed. In contrast, the approach adopted by Lesser et al. [6] is to plan the

steps of solution generation so that there is just the right degree of

approximation to meet the deadline.

Lesser et al. distinguish between well-defined and ill-defined approxi-

mations, although these names are possibly misleading. According to their

definition, well-defined approximations have the following properties:

• a predictable effect on the quality of the solution and the time taken to

obtain it;

• graceful degradation, i.e., the quality of the solution decreases smoothly as

the amount of approximation is increased;

• loss of precision is not accompanied by loss of accuracy. If, for example, a

reactor temperature is determined to lie within a certain temperature range,

then this range should straddle the value that would be determined by

more precise means.

Lesser et al. recommend that ill-defined approximations be used only as a last

resort, when it is known that a well-defined approximation is not capable of

achieving a solution within the available time. They consider six strategies for

approximation, all of which they consider to be well defined. These strategies

are classified into three groups: approximate search, data approximations, and

knowledge approximations. These classifications are described below.

Approximate search

Two approaches to pruning the search tree, i.e., reducing the number of

alternatives to be considered, are elimination of corroborating evidence and

elimination of competing interpretations.

(i) Eliminating corroborating evidence

Once a hypothesis has been generated, and perhaps partially verified, time

can be saved by dispensing with further corroborating evidence. This will



have the effect of reducing the certainty of the solution. For corroborating

data to be recognized as such, it must be analyzed to a limited extent

before being discarded.

(ii) Eliminating competing interpretations

Elimination of corroborating evidence is a means of limiting the input

data, whereas elimination of competing interpretations limits the output

data. Solutions that have substantially lower certainties than their

alternatives can be eliminated. If it is recognized that some solutions will

have a low certainty regardless of the amount of processing that is carried

out on them, then these solutions can be eliminated before they are fully

evaluated. The net result is a reduced level of certainty of the final

solution.

Data approximations

Time can be saved by cutting down the amount of data considered. Incomplete

event processing and cluster processing are considered here, although

elimination of corroborating evidence (see above) might also be considered in

this category.

(i) Incomplete event processing

This approximation technique is really a combination of prioritization (see

Section 14.5.1) and elimination of corroborating evidence. Suppose that a

chemical reactor is being controlled, and data are needed regarding

temperature and pressure. If temperature has the higher priority, then any

data that support the estimation of the pressure can be ignored in order to

save time. The result is a less complete solution.

(ii) Cluster processing

Time can be saved by grouping together data items that are related, and

examining the overall properties of the group rather than the individual

data items. For instance, the temperature sensors mounted on the walls of

a reactor chamber might be clustered. Then, rather than using all of the

readings, only the mean and standard deviation might be considered. This

may lead to a loss of precision, but the certainty may be increased owing

to the dilution of erroneous readings.

Knowledge approximations

Changes can be made to the knowledge base in order to speed up processing.

Two possible approaches are:



(i) Knowledge adaptation to suit data approximations

This is not really a technique in its own right, but simply a recognition that

data approximations (see above) require a modified knowledge base.

(ii) Eliminating intermediate steps

As noted in Section 14.3, shallow knowledge represents a means of by-

passing the steps of the underlying deep knowledge. Therefore, it has

potential for time saving. However, it may lead to a loss of certainty, as

extra corroborating evidence for the intermediate steps might have been

available. Shallow knowledge is also less adaptable to new situations.

14.5.3 Single and multiple instantiation

Single and multiple instantiation of variables in a rule-based system are

described in Chapter 2. Under multiple instantiation, a single rule, fired only

once, finds all sets of instantiations that satisfy the condition and then performs

the conclusion on each. Under single instantiation, a separate rule firing is

required for each set of instantiations. Depending on the strategy for conflict

resolution, this may cause the conclusions to be drawn in a different order.

In time-constrained control applications, the choice between multiple

instantiation and repeated single instantiation can be critical. Consider the case

of an automatic controller for a telephone network [7]. Typically, the controller

will receive statistics describing the network traffic at regular intervals t.

Upon receiving the statistics, the controller must interpret the data, choose

appropriate control actions, and carry out those actions before the next set of

statistics arrives. Typically, there is a cycle of finding overloaded routes,

planning alternative routes through the network, and executing the plan. The

most efficient way of doing this is by multiple instantiation, as the total

duration of the find-plan-execute cycle for all routes is smaller (Figure 14.5).

However, the controller must finish within time t. The more overloaded links

exist, the less likely it is that the controller will finish. In fact, it is feasible that

the controller might have found all of the overloaded links and determined an

alternative routing for each, but failed to perform any control actions (Figure

14.5(b)).

This problem is avoided by repeated use of single instantiation, shown in

Figure 14.5(a), which is guaranteed to have performed some control actions

within the available time. There is a crucial difference between the two

approaches in a control application. Multiple instantiation involves the drawing

up of a large plan, followed by execution of the plan. Repeated single

instantiation, on the other hand, involves interleaving of planning and

execution.



Repeated single instantiation does not always represent the better choice.

This depends on the specific application. Multiple instantiation is generally

faster as it requires the rules to be selected and interpreted once only. Multiple

instantiation can have other advantages as well. Consider the telecom-

munications example again, but now imagine that, in order to choose a suitable

time, t0 ∆t

route
#1

routes #1-7 routes #1-7 routes #1-7

finding planning execution

(a)

(b)

route
#7

route
#6

route
#5

route
#4

route
#3

route
#2

Figure 14.5 Controlling a telecommunications network within a time constraint ( t):

(a) repeated single instantiation of variables

(b) multiple instantiation of variables

(a)

(b)

finding planning executiondelay

route
#1

route
#4

route
#3

route
#2

routes #1-7 routes #1-7 routes #1-7 routes #1-7

0 time, t

Figure 14.6 Controlling a telecommunications network where there is a delay in

receiving information:

(a) repeated single instantiation of variables

(b) multiple instantiation of variables



rerouting, the controller must request some detailed information from the local

telephone exchanges. There will be a delay in receiving this information,

thereby delaying the planning stage. If all the requests for information are sent

at the same time (i.e., multiple instantiation, Figure 14.6(b)) then the delays

overlap. Under single instantiation the total delay is much greater, since a

separate delay is encountered for every route under consideration

(Figure 14.6(a)).

14.6 Fuzzy control

14.6.1 Crisp and fuzzy control

Control decisions can be thought of as a transformation from state variables to

action variables (Figure 14.7). State variables describe the current state of the

physical plant and the desired state. Action variables are those that can be

directly altered by the controller, such as the electrical current sent to a

furnace, or the flow rate through a gas valve. In some circumstances, it may be

possible to obtain values for the action variables by direct algebraic

manipulation of the state variables. (This is the case for a PID controller; see

Section 14.2.5.) Given suitably chosen functions, this approach causes values

of action variables to change smoothly as values of state variables change. In

high-level control, such functions are rarely available, and this is one reason

for using rules instead to link state variables to action variables.

Crisp sets are conventional Boolean sets, where an item is either a member

(degree of membership = 1) or it is not (degree of membership = 0). It follows

that an item cannot belong to two contradictory sets, such as large and small

as it can under fuzzy logic (see Chapter 3). Applying crisp sets to state and

action variables corresponds to dividing up the range of allowable values into

subranges, each of which forms a set. Suppose that a state variable such as

temperature is divided into five crisp sets. A temperature reading can belong to

only one of these sets, so only one rule will apply, resulting in a single control

controller plant
desired (reference) state action new state

Figure 14.7   Control viewed as a transformation from

state variables to action variables



action. Thus, the number of different control actions is limited to the number of

rules, which in turn is limited by the number of crisp sets. The action variables

are changed in abrupt steps as the state variables change.

Fuzzy logic provides a means of allowing a small number of rules to

produce smooth changes in the action variables as the state variables change.

The number of rules required is dependent on the number of state variables, the

number of fuzzy sets, and the ways in which the state variables are combined

in rule conditions. Numerical information is explicit in crisp rules, but in fuzzy

rules it becomes implicit in the chosen shape of the fuzzy membership

functions.

14.6.2 Firing fuzzy control rules

Some simple examples of fuzzy control rules are as follows:

/* Rule 14.1f */

IF temperature is high OR current is high

THEN reduce current

/* Rule 14.2f */

IF temperature is medium

THEN no change to current

/* Rule 14.3f */

IF temperature is low and current is high

THEN no change to current

/* Rule 14.4f */

IF temperature is low and current is low

THEN increase current

The rules and the fuzzy sets to which they refer are, in general, dependent on

each other. Some possible fuzzy membership functions, µ, for the state

variables temperature and current, and for the action variable change in

current, are shown in Figure 14.8. Since the fuzzy sets overlap, a temperature

and current may have some degree of membership of more than one fuzzy set.

Suppose that the recorded temperature is 300°C and the measured current is

15 amperes. The temperature and current are each members of two fuzzy sets:

medium and high. Rules 14.1f and 14.2f will fire, with the apparently

contradictory conclusion that we should both reduce the electric current and

leave it alone. Of course, what is actually required is some reduction in current.

Rule 14.1f contains a disjunction. Using Equation 3.36 (from Chapter 3),

the possibility value for the composite condition is:



max{ (temperature is high), (current is high)}.

At 300°C and 15 amps, (temperature is high) is 0.3 and (current is

high) is 0.5. The composite possibility value is therefore 0.5, and µ(reduce

current) becomes 0.5. Rule 14.2f is simpler, containing only a single

condition. The possibility value µ(temperature is medium) is 0.3 and so

µ(no change in current) becomes 0.3.

14.6.3 Defuzzification

After firing rules 14.1f and 14.2f, we have a degree of membership, or

possibility, for reduce current and another for no change in current.

These fuzzy actions must be converted into a single precise action to be of any

practical use, i.e., they need to be defuzzified.

Assuming that we are using Larsen’s Product Operation Rule (see Section

3.4.3), the membership functions for the control actions are compressed

according to their degree of membership. Thus, the membership functions for

reduce current and for no change in current are compressed so that their

peak values become 0.5 and 0.3, respectively (Figure 14.9). Defuzzification

300150

1

0
0

+50%0%

1

0
−50%

2010

1

0
0

Temperature/ CCurrent/amperes

M
em

be
rs

hi
p,

 µ

M
em

be
rs

hi
p,

 µ

M
em

be
rs

hi
p,

 µ

Change in current

highlow medium

increasereduce no change

highlow medium
(a)

(c)

(b)

15

0.5

0.3

Figure 14.8 Fuzzy sets:

(a) electric current (state variable)

(b) temperature (state variable)

(c) change in electric current (action variable)



can then take place by finding the centroid of the combined membership

functions. One of the membership functions, i.e., reduce current, covers an

extremity of the fuzzy variable and, therefore, continues indefinitely toward

. As discussed in Section 3.4.3, a method of handling this is required in

order to find the centroid. Figure 14.10 shows the effect of applying the mirror

rule, so that the membership function for reduce current is treated, for

defuzzification purposes only, as though it were symmetrical around 50%.

The centroid is then given by:

N

i
i

N

i
ii

a

ca

C

1

1 (14.5)

Since we have used Larsen’s Product Operation Rule, the values of ci are

unchanged from the centroids of the uncompressed shapes, Ci, and ai is simply

iAi where Ai is the area of the membership function prior to compression. In

this particular case, all values of Ai are identical after the mirror rule is applied

and thus the centroid is given by:

300150

1

0
0 +50%0%

1

0
−50%

2010

1

0
0

Temperature/ C

Current/amperes

M
em

be
rs

hi
p,

 µ
M

em
be

rs
hi

p,
 µ

Change in current

medium

no change

high

(a) Rule 14.1f

(b) Rule 14.2f

+50%0%

1

0
−50%

Change in current

reduce

15

0.5

0.3

M
em

be
rs

hi
p,

 µ
M

em
be

rs
hi

p,
 µ

Figure 14.9   Firing fuzzy control rules using Larsen’s Product Operator Rule



%.
..

%.%.
C 2531

5030

)030()5050(
(14.6)

Thus the defuzzified control action is a 31.25% reduction in the current.

14.6.4 Some practical examples of fuzzy controllers

LINKman [8] is a fuzzy control system that has been applied to cement kiln

control and other manufacturing processes. The amount of overlap of

membership functions is deliberately restricted, thereby reducing the number

of rule firings. This is claimed to simplify defuzzification and tuning of the

membership functions, and to make control actions more transparent. All

variables are normalized to lie within the range +1 to –1, representing the

maximum and minimum extremes, where 0 represents the normal steady-state

value or set point. It is claimed that, by working with normalized variables, the

knowledge base can be more easily adapted to different plants.

ARBS — a blackboard system introduced in Section 11.5 and discussed

further in Section 14.5 — has been applied to controlling plasma deposition, an

important process in silicon chip manufacture [9]. This work has demonstrated

the use of fuzzy rules that adjust more than one action variable simultaneously

(i.e., multivariable control), in order to control a separate state variable that is

measurable but not directly adjustable.

As well as looking at servo control (Section 14.2.6), Sripada et al. [3] have

applied knowledge-based techniques to low-level adaptive control. They assert

that, while a PID controller is adequate for reducing the drift in a typical plant

output, it cannot cope with slight refinements to this basic requirement. In

particular, they consider the application of constraints on the plant output, such

that the output (y) must not be allowed to drift beyond y0 ± yc, where y0 is the

set-point for y and yc defines the constraints. Bang-bang control is required to

Change in current

Balance point = −31.25%

+50%0%

1

−50%

M
em

be
r-

sh
ip

, µ Shaded area makes a double
contribution to the mass

−100%

Figure 14.10   Defuzzifying a control action using the centroid method and mirror rule



move y rapidly toward y0 if it is observed approaching y0 ± yc. A further

requirement is that control of the plant output be as smooth as possible close to

the set point, precluding bang-bang control under these conditions. The

controller was, therefore, required to behave differently in different circum-

stances. This is possible with a system based on heuristic rules, but not for a

PID controller, which has a fixed predetermined behavior.

To determine the type and extent of control action required, the error e and

the rate of change of the plant output dy/dt were classified with the following

fuzzy sets:

e = zero;

e = small positive;

e = small negative;

e = large positive;

e = large negative;

e = close to constraint;

dy/dt = small (positive or negative);

dy/dt = large positive;

dy/dt = large negative.

According to the degree of membership of each of the nine fuzzy sets above, a

rule base was used to determine the degree of membership for each of six

fuzzy sets applied to control actions:

zero change;

small positive change;

small negative change;

large positive change;

large negative change;

drastic change (bang-bang).

Incorporating the last action as a fuzzy set enabled a smooth transition to bang-

bang control as the plant output approached the constraints.

14.7 The BOXES controller

14.7.1 The conventional BOXES algorithm

It has already been emphasized (Section 14.1) that a controller can only

function if it has a model for the system being controlled. Neural networks (see



Chapter 8 and Section 14.8, below) and the BOXES algorithm are techniques

for generating such a model without any prior knowledge of the mechanisms

occurring within the controlled system. Such an approach may be useful if:

• the system is too complicated to model accurately;

• insufficient information is known about the system to enable a model to be

built;

• satisfactory control rules have not been found.

The BOXES algorithm may be applied to adaptive or servo control. Only

the following information about the controlled system is required:

• its inputs (i.e., the possible control actions);

• its outputs (that define its state at any given time);

• the desired state (adaptive control) or the final state (servo control);

• constraints on the input and output variables.

Note that no information is needed about the relationships between the inputs

and outputs.

As an example, consider a bioreactor [10, 11], which is a tank of water

containing cells and nutrients (Figure 14.11). When the cells multiply, they

consume nutrients. The rate at which the cells multiply is dependent only on

the nutrient concentration Cn. The aim of the controller is to maintain the

concentration of cells Cc at some desired value by altering the rate of flow u of

nutrient-rich water through the tank. The state of the bioreactor at any time can

be defined by the two variables Cn and Cc, and can be represented as a point in

state space (Figure 14.12). For any position in state space there will be an

inflow rate, u

outflow rate, u

concentration of nutrients, Cn
concentration of cells, Cc

Figure 14.11   A bioreactor



appropriate control action u. By defining intervals in Cn and Cc we can create

a finite number of boxes in state-space, where each box represents a collection

of states that are similar to each other. A control action can then be associated

with each box. A BOXES controller is completely defined by such a set of

boxes and control actions, which together implicitly model the controlled

system.

Control actions are performed at time n t, where n is an integer and t is

the interval between control actions. At any such time, the system state will be

in a particular box. That box is considered to be “visited,” and its control

action is performed. The system may be in the same box or a different one

when the next control action is due.

The BOXES controller must be trained to associate appropriate control

actions with each box. This is easiest using bang-bang control, where the

control variables can take only their maximum or minimum value, denoted +1

and –1 respectively. In the case of the bioreactor, a valve controlling the flow

would be fully open or fully shut. For each box, there is a recorded score for

both the +1 and 1 action. When a box is visited, the selected control action is

the one with the highest score. Learning is achieved by updating the scores.

In order to learn, the system must receive some measure of its

performance, so that it can recognize beneficial or deleterious changes in its

control strategy. This is achieved through use of a critic, which evaluates the

controller’s performance. In the case of the bioreactor, the controller’s time to

each box (i, j) is assigned
a control action, uij = +1 or −1

Cn

state, S = (Cn, Cc)

(a) (b)

i = 1 i = 4i = 3i = 2

j = 4

j = 3

j = 2

j = 1

Cn

Cc Cc

Figure 14.12 (a) state-space for a bioreactor

(b) state-space partitioned into boxes



failure might be monitored, where “failure” occurs if the cell concentration Cc

drifts beyond prescribed limits. The longer the time to failure, the better the

performance of the controller. Woodcock et al. [11] consider this approach to

be midway between supervised and unsupervised learning (Chapters 6 and 8),

as the controller receives an indication of its performance but not a direct

comparison between its output and the desired output.

determine state, S, of system

find box (i, j) that contains S

select and execute action −1

 note time

pause such that cycle time = ∆t

system failed?

start

for every box (i, j) visited, update
scores

clear all counters

restart

score(−1) > score(+1) ?

select and execute action +1

yes

no

yes

no

Figure 14.13   The BOXES learning algorithm, derived from [12].
In the example shown here, performance is gauged by time to failure



For each box, a score is stored for both the +1 action and the 1 action.

These scores are a measure of “degree of appropriateness” and are based on the

average time between selecting the control action in that particular box and the

next failure.

The learning strategy of Michie and Chambers [12] for bang-bang control

is shown in Figure 14.13. During a run, a single box may be visited N times.

For each box, the times (t1, … ti, … tN) at which it is visited are recorded. At

the end of a run, i.e., after a failure, the time tf is noted and the +1 and 1

scores for each visited box are updated. Each score is based on the average

time to failure after that particular control action had been carried out, i.e., the

lifetime l. The lifetimes are modified by a usage factor n, a decay factor , a

global lifetime lg, a global usage factor ng, and a constant , thereby yielding a

score. These modifications ensure that, for each box, both alternative actions

have the chance to demonstrate their suitability during the learning process and

that recent experience is weighted more heavily than old experience. The full

updating procedure is as follows:

fgg tll (14.7)

1gg nn (14.8)

For each box where score(+1) > score(–1):

)tt(ll if

N

i
)()(

1
11 (14.9)

Nnn )()( 11 (14.10)

)(

g

g

)(

)(
u

n

l
l

score
1

1

1 (14.11)

For each box where score(–1) > score(+1):

)tt(ll if

N

i
)()(

1
11 (14.12)

Nnn )()( 11 (14.13)

)(

g

g

)(

)(
u

n

l
l

score
1

1

1 (14.14)



After a controller has been run to failure and the scores associated with the

boxes have been updated, the controller becomes competent at balancing in

only a limited part of the state-space. In order to become expert in all regions

of state-space, the controller must be run to failure several times, starting from

different regions in state-space.

The BOXES algorithm has been used for control of a bioreactor as

described, and also for balancing a pole on a mobile cart (Figure 14.14). The

latter is a similar problem to the bioreactor, but the state is described by four

rather than two variables. The boxes are four-dimensional and difficult to

represent graphically. In principle, the BOXES algorithm can be applied to

state-space with any number of dimensions. The cart-and-pole problem, shown

in Figure 14.14, has been used extensively as a benchmark for intelligent

controllers. A pole is attached by means of a hinge to a cart that can move

along a finite length of track. The cart and the pole are restricted to movement

within a single plane. The controller attempts to balance the pole while keeping

the cart on the length of track by applying a force to the left or right. If the

force has a fixed magnitude in either direction, this is another example of

bang-bang control. The four state variables are the cart’s position y1 and

velocity 1y  and the pole’s angle y2 and angular velocity 2y . Failure occurs

when y1 or y2 breach constraints placed upon them. The constraint on y1

represents the limited length of the track.

Rather than use a BOXES system as an intelligent controller per se,

Sammut and Michie [13] have used it as a means of eliciting rules for a

force

y2
.

y2

y1
.

y1

Figure 14.14   The cart-and-pole control problem



rule-based controller. After running the BOXES algorithm on a cart-and-pole

system, they found clear relationships between the learned control actions and

the state variables. They expressed these relationships as rules and then

proceeded to use analogous rules to control a different black box simulation,

namely, a simulated spacecraft. The spacecraft was subjected to a number of

unknown external forces, but the rule-based controller was tolerant of these.

Similarly, Woodcock et al.’s BOXES controller [11] was virtually unaffected

by random variations superimposed on the control variables.

One of the attractions of the BOXES controller is that it is a fairly simple

technique, and so an effective controller can be built quite quickly. Woodcock

et al. [11] rapidly built their controller and a variety of black box simulations

using the Smalltalk object-oriented language (see Chapter 4). Although both

the controller and simulation were developed in the same programming

environment, the workings of the simulators were hidden from the controller.

Sammut and Michie also report that they were able to build quickly their

BOXES controller and the rule-based controller that it inspired [13].

14.7.2 Fuzzy BOXES

Woodcock et al. [11] have investigated the suggestion that the performance of

a BOXES controller might be improved by using fuzzy logic to smooth the

bang-bang control [14]. Where different control actions are associated with

neighboring boxes, it was proposed that states lying between the centers of the

boxes should be associated with intermediate actions. The controller was

trained as described above in order to determine appropriate bang-bang

actions. After training, the box boundaries were fuzzified using triangular

fuzzy sets. The maximum and minimum control actions (bang-bang) were

normalized to +1 and –1 respectively, and intermediate actions were assigned a

number between these extremes.

Consider again the bioreactor, which is characterized by two-dimensional

state-space. If a particular state S falls within the box (i, j), then the corre-

sponding control action is uij. This can be stated as an explicit rule:

IF state S belongs in box (i,j)

THEN the control action is uij.

If we consider Cn and Cc separately, this rule can be rewritten:

IF Cn belongs in interval i AND Cc belongs in interval j

THEN the control action is uij.

The same rule can be applied in the case of fuzzy BOXES, except that now it is

interpreted as a fuzzy rule. We know from Equation 3.36 (in Chapter 3) that:



µ(Cn belongs in interval i AND Cc belongs in interval j) =

min[µ(Cn belongs in interval i), µ(Cc belongs in interval j)]

Thus, if the membership functions for Cn belongs in interval i and Cc

belongs in interval j are both triangular, then the membership function

for state S belongs in box (i,j), denoted by µij(S), is a surface in state

space in the shape of a pyramid (Figure 14.15). As the membership functions

for neighboring pyramids overlap, a point in state space may be a member of

more than one box. The control action uij for each box to which S belongs is

scaled according to the degree of membership µij(S). The normalized sum of

these actions is then interpreted as the defuzzified action u0:

i j
ij

i j
ijij u

u
)(

)(

0
S

S

This is equivalent to defuzzification using the centroid method (Chapter 3), if

the membership functions for the control actions are assumed to be

symmetrical about a vertical line through their balance points.

Woodcock et al. have tested their fuzzy BOXES controller against the

cart-and-pole and bioreactor simulations (described above), both of which are

adaptive control problems. They have also tested it in a servo control

Cc

interval i

interval j

µ(Cc belongs in interval j)

µ(state S belongs in box (i, j))

M
em

be
rs

hi
p,

 µ
1

0

µ(Cn belongs in interval i)

Cn

Figure 14.15   Fuzzy membership functions for boxes in the

bioreactor state space (adapted from [11])



application, namely, reversing a tractor and trailer up to a loading bay. In none

of these examples was there a clear winner between the nonfuzzy and the fuzzy

boxes controllers. The comparison between them was dependent on the starting

position in state-space. This was most clearly illustrated in the case of the

tractor and trailer. If the starting position was such that the tractor could

reverse the trailer in a smooth sweep, the fuzzy controller was able to perform

best because it was able to steer smoothly. The nonfuzzy controller, on the

other hand, was limited to using only full steering lock in either direction. If

the starting condition was such that full steering lock was required, then the

nonfuzzy controller outperformed the fuzzy one.

14.8 Neural network controllers

Neural network controllers tackle a similar problem to BOXES controllers, i.e.,

controlling a system using a model that is automatically generated during a

learning phase. Two distinct approaches have been adopted by Valmiki et al.

[15] and by Willis et al. [16]. Valmiki et al. have trained a neural network to

associate directly particular sets of state variables with particular action

variables, in an analogous fashion to the association of a box in state-space

with a control action in a BOXES controller. Willis et al. adopted a less direct

approach, using a neural network to estimate the values of those state variables

that are critical to control but cannot be measured on-line. The estimated

values are then fed to a PID controller as though they were real measurements.

These two approaches are discussed separately below.

14.8.1 Direct association of state variables with action variables

Valmiki et al. have applied a neural network to a control problem that had

previously been tackled using rules and objects, namely, the control of a glue

dispenser [17]. As part of the manufacture of mixed technology circuit boards,

surface-mounted components are held in place by a droplet of glue. The glue is

dispensed from a syringe by means of compressed air. The size of the droplet

is the state variable that must be controlled, and the change in the air pressure

is the action variable.

Valmiki et al. have built a 6–6–5 multilayer perceptron (Figure 14.16),

where specific meanings are attached to values of 0 and 1 on the input and

output nodes. Five of the six input nodes represent ranges for the error in the

size of the droplet. The node corresponding to the measured error is sent a 1,

while the other four nodes are sent a 0. The sixth input node is set to 0 or 1

depending on whether the error is positive or negative. Three of the five output

nodes are used to flag particular actions, while the other two are a coded



representation of the amount by which the air pressure should be changed, if a

change is required. The three action flags on the output are:

• decrease (0) or increase (1) pressure;

• do something (0) or do nothing (1) (overrides the increase/decrease flag);

• no warning (0) or warning (1) if the error in the droplet size is large.

The training data were generated by hand. Since the required mapping of

input states to outputs was known in advance — allowing training data to be

drawn up — the problem could have been tackled using rules. One advantage

of a neural network approach is that an interpolated meaning can be attached to

output values that lie between 0 and 1. However, the same effect could also be

achieved using fuzzy rules. This would have avoided the need to classify the

state variables according to crisp sets. Nevertheless, Valmiki et al.’s

experiment is important in demonstrating the feasibility of using a neural

network to learn to associate state variables with control actions. This is useful

where rules or functions that link the two are unavailable, although this was

not the case in their experiment.

output layer
(action variables)

hidden layer

input layer
(state variables)

too big (0) /
too small (1)

range 2

1 attached to node if error
falls within range, otherwise 0

range 5

range 4

range 3range 1

increase (1) /
decrease (0)

act (0) /
do nothing (1)

magnitude of
change (coded)

warning (1) /
continue (0)

Figure 14.16   Using a neural network to map directly state variables to action variables

(based on the glue-dispensing application of Valmiki et al. [15])



14.8.2 Estimation of critical state variables

Willis et al. [16] have demonstrated the application of neural network

controllers to industrial continuous and batch-fed fermenters, and to a

commercial-scale high purity distillation column. Each application is

characterized by a delay in obtaining the critical state variable (i.e., the

controlled variable), as it requires chemical or pathological analysis. The

neural network allows comparatively rapid estimation of the critical state

variable from secondary state variables. The use of a model for such a purpose

is discussed in Section 11.4.4. The only difference here is that the controlled

plant is modeled using a neural network. The estimated value for the critical

state variable can be sent to a PID controller (see Section 14.2.5) to determine

the action variable (Figure 14.17). As the critical variable can be measured off-

line in each case, there is no difficulty in generating training sets of data. Each

of the three applications demonstrates a different aspect to this problem. The

chemotaxis learning algorithm was used in each case (see Section 8.4.3).

The continuous fermentation process is dynamic, i.e., the variables are

constantly changing, and a change in the value of a variable may be just as

significant as the absolute value. The role of a static neural network, on the

other hand, is to perform a mapping of static input variables onto static output

variables. One way around this weakness is to use the recent history of state

variables as input nodes. In the continuous fermentation process, two

secondary state variables were considered. Nevertheless, six input nodes were

required, since the two previously measured values of the variables were used

as well as the current values (Figure 14.18).

In contrast, the batch fermentation process should move smoothly and

slowly through a series of phases, never reaching equilibrium. In this case, the

time since the process began, rather than the time history of the secondary

variable, was important. Thus, for this process there were only two input

nodes, the current time and a secondary state variable.

neural network
estimator

PID plant

secondary state variables

action variableserrordesired values of
critical state variables

estimated
critical state variables

Figure 14.17   Using a neural network to estimate values for critical state variables



output layer
(critical state variable)

hidden layer

input layer
(secondary state variables)

current values of
secondary variables

(time=t )
values of

secondary variables
at time=t−∆t

values of
secondary variables

at time=t−2∆t

Figure 14.18   Using time histories of state variables in a neural network

(based on the continuous fermentation application of Willis et al. [16])

output layer
(critical state variable)

input layer
(secondary state variables)

LPF LPFLPFLPFLPFLPFLPFLPFLPF

LPF LPFLPFLPFLPFLPFLPFLPFLPF

LPFLPF

LPF

hidden layers

Figure 14.19   Dealing with changing variables by using low pass filters (LPF)

(based on the industrial distillation application of Willis et al. [16])



In the methanol distillation process, an alternative approach was adopted

to the problem of handling dynamic behavior. As it is known that the state

variables must vary continuously, sudden sharp changes in any of the

propagated values can be disallowed. This is achieved through a simple low-

pass digital filter. There are several alternative forms of digital filter (see, for

example, [18]), but Willis et al. used the following:

y(t) =  y(t – 1) + (1 – ) x(t) 0    1 (14.15)

where x(t) and y(t) are the input and output of the filter, respectively, at time t.

The filter ensures that no value of y(t) can be greatly different from its previous

value, and so high-frequency fluctuations are eliminated. Such a filter was

attached to the output side of each neuron (Figure 14.19), so that the unfiltered

output from the neuron was represented by x(t), and the filtered output was

y(t). Suitable values for the parameters  were learned along with the network

weightings.

Willis et al. were able to show improved accuracy of estimation and

tighter control by incorporating the digital filter into their neural network.

Further improvements were possible by comparing the estimated critical state

variable with the actual values, as these became known. The error was then

used to adjust the output of the estimator. There were two feedback loops, one

for the PID controller and one for the estimator (Figure 14.20).

estimator adjustments

pr
ev

io
us

 e
st

im
at

es

critical state variables measured off-line

PID plant

secondary state variables

action variableserrordesired values of
critical state variables

estimated
critical state variables

error

neural network
estimator

Figure 14.20   Feedback control of both the plant and the neural network estimator



14.9 Statistical process control (SPC)

14.9.1 Applications

Statistical process control (SPC) is a technique for monitoring the quality of

products as they are manufactured. Critical parameters are monitored and

adjustments are made to the manufacturing process before any products are

manufactured that lie outside of their specifications. The appeal of SPC is that

it minimizes the number of products that are rejected at the quality control

stage, thereby improving productivity and efficiency. Since the emphasis of

SPC lies in monitoring products, this section could equally belong in

Chapter 11.

SPC involves inspecting a sample of the manufactured products,

measuring the critical parameters, and inferring from these measurements any

trends in the parameters for the whole population of products. The gathering

and manipulation of the statistics is a procedural task, and some simple

heuristics are used for spotting trends. The monitoring activities, therefore,

lend themselves to automation through procedural and rule-based

programming. Depending on the process, the control decisions might also be

automated.

14.9.2 Collecting the data

Various statistics can be gathered, but we will concentrate on the mean and

standard deviation* of the monitored parameters. Periodically, a sample of

consecutively manufactured products is taken, and the critical parameter x is

measured for each item in the sample. The sample size n is typically in the

range 5–10. In the case of the manufacture of silicon wafers, thickness may be

the critical parameter. The mean x  and standard deviation  for the sample are

calculated. After several such samples have been taken, it is possible to arrive

at a mean of means x  and a mean of standard deviations . The values x

and  represent the normal, or set-point, values for x and , respectively.

Special set-up procedures exist for the manufacturing plant to ensure that x

corresponds to the set-point for the parameter x. Bounds called control limits

are placed above and below these values (Figure 14.21). Inner and outer

control limits, referred to as warning limits and action limits, respectively, may

be set such that:

n
xx 2for limit  warning

                                                          
* The range of sample values is often used instead of the standard deviation.



n
xx 3for limit action 

Action limits are also set on the values of  such that:

UCfor limit action upper 

x−

time

tolerance

action limit

warning limit

set point

tolerance

action limit

warning limit

x=

σ

time

action limit

set point

action limit

σ−

(a)

(b)

Figure 14.21 Control limits (action and warning) applied to:

(a) sample means ( x );

(b) sample standard deviations ( )



LC
for limit action lower 

where suitable values for CU and CL can be obtained from standard tables for a

given sample size n. Note that both CU and CL are greater than 1. The heuristics

for interpreting the sample data with respect to the control limits are described

in Section 14.9.3, below. Any values of x  that lie beyond the action limits

indicate that a control action is needed. The tolerance that is placed on a

parameter is the limit beyond which the product must be rejected. It follows

that if the tolerance is tighter than the action limits, then the manufacturing

plant is unsuited to the product and attempts to use it will result in a large

number of rejected products irrespective of SPC.

14.9.3 Using the data

As the data are gathered, a variety of heuristics can be applied. Some typical

ones are reproduced below:

IF a single x  value lies beyond an action limit

THEN a special disturbance has occurred that must be

investigated and eliminated

IF there are x  values beyond both action limits

THEN the process may be deteriorating

IF two consecutive values of x  lie beyond a worrying limit

THEN the process mean may have moved

IF eight consecutive values of x  lie on an upward or downward

trend THEN the process mean may be moving

IF seven consecutive values of x  lie all above or all below x

THEN the process mean may have moved

IF there are  values beyond the upper action limit

THEN the process may be deteriorating

IF eight consecutive values of  lie on an upward trend

THEN the process may be deteriorating

IF there are  values beyond the lower action limit

THEN the process may have improved and attempts should be made

to incorporate the improvement permanently

The conclusions of these rules indicate a high probability that a control action

is needed. They cannot be definite conclusions, as the evidence is statistical.



Furthermore, it may be that the process itself has not changed at all, but instead

some aspect of the measuring procedure has altered. Each of the above rules

calls for investigation of the process to determine the cause of any changes,

perhaps using case-based or model-based reasoning (Chapters 6 and 11).

14.10 Summary

Intelligent systems for control applications draw upon the techniques used for

interpreting data (Chapter 11) and planning (Chapter 13). Frequently, the

stages of planning are interleaved with execution of the plans, so that the

controller can react to changes in the controlled plant as they occur. This

contrasts with the classical planning systems described in Chapter 13, where

the world is treated as a static “snapshot.” As control systems must interact

with a dynamic environment, time constraints are placed upon them. There is

often a trade-off between the quality of a control decision and the time taken to

derive it. In most circumstances it is preferable to perform a suboptimal control

action than to fail to take any action within the time limits.

The control problem can be thought of as one of mapping a set of state

variables onto a set of action variables. State variables describe the state of the

controlled plant, and action variables, set by the controller, are used to modify

the state of the plant. Adaptive controllers attempt to maintain one or more

critical state parameters at a constant value, minimizing the effects of any

disturbance. In contrast, servo controllers attempt to drive the plant to a new

state, which may be substantially different from its previous state. The

problems of adaptive and servo control are similar, as both involve minimizing

the difference, or error, between the current values of the state variables and

the desired values.

An approximate distinction can be drawn between low-level “reflex”

control and high-level supervisory control. Low-level control often requires

little intelligence and can be most effectively coded procedurally, for instance,

as the sum of proportional, integral, and derivative (PID) terms. Improvements

over PID control can be made by using fuzzy rules, which also allow some

subtleties to be included in the control requirements, such as bounds on the

values of some variables. Fuzzy rules offer a mixture of some of the benefits of

procedures and crisp rules. Like crisp rules, fuzzy rules allow a linguistic

description of the interaction between state and action variables. On the other

hand, like an algebraic procedure, fuzzy rules allow smooth changes in the

state variables to bring about smooth changes in the action variables. The

nature of these smooth changes is determined by the membership functions

that are used for the fuzzy sets.



Any controller requires a model of the controlled plant. Even a PID

controller holds an implicit model in the form of its parameters, which can be

tuned to specific applications. When a model of the controlled plant is not

available, it is possible to build one automatically using the BOXES algorithm

or a neural network. Both can be used to provide a mapping between state

variables and action variables. They can also be used in a monitoring capacity,

where critical state variables (which may be difficult to measure directly) are

inferred from secondary measurements. The inferred values can then be used

as feedback to a conventional controller. If a plant is modeled with sufficient

accuracy, then predictive control becomes a possibility. A predictive controller

has two goals, to tackle the immediate control needs and to minimize future

deviations, based on the predicted behavior.

References

1. Bennett, M. E., “Real-time continuous AI,” IEE Proceedings–D, vol. 134,

pp. 272–277, 1987.

2. Franklin, G. F., Powell, J. D., and Emami-Naeini, A., Feedback Control of

Dynamic Systems, 3rd ed., Addison-Wesley, 1994.

3. Sripada, N. R., Fisher, D. G., and Morris, A. J., “AI application for

process regulation and process control,” IEE Proceedings–D, vol. 134, pp.

251–259, 1987.

4. Leitch, R., Kraft, R., and Luntz, R., “RESCU: a real-time knowledge

based system for process control,” IEE Proceedings–D, vol. 138, pp. 217–

227, 1991.

5. Laffey, T. J., Cox, P. A., Schmidt, J. L., Kao, S. M., and Read, J. Y.,

“Real-time knowledge-based systems,” AI Magazine, pp. 27–45, Spring

1988.

6. Lesser, V. R., Pavlin, J., and Durfee, E., “Approximate processing in real-

time problem solving,” AI Magazine, pp. 49–61, Spring 1988.

7. Hopgood, A. A., “Rule-based control of a telecommunications network

using the blackboard model,” Artificial Intelligence in Engineering, vol. 9,

pp. 29–38, 1994.

8. Taunton, J. C. and Haspel, D. W., “The application of expert system

techniques in on-line process control,” in Expert Systems in Engineering,

Pham, D. T. (Ed.), IFS Publications / Springer-Verlag, 1988.

9. Hopgood, A. A., Phillips, H. J., Picton, P. D., and Braithwaite, N. S. J.,

“Fuzzy logic in a blackboard system for controlling plasma deposition



processes,” Artificial Intelligence in Engineering, vol. 12, pp. 253–260,

1998.

10. Ungar, L. H., “A bioreactor benchmark for adaptive network-based

process control,” in Neural Networks for Control, Miller, W. T., Sutton, R.

S., and Werbos, P. J. (Eds.), MIT Press, 1990.

11. Woodcock, N., Hallam, N. J., and Picton, P. D., “Fuzzy BOXES as an

alternative to neural networks for difficult control problems,” in

Applications of Artificial Intelligence in Engineering VI, Rzevski, G. and

Adey, R. A. (Eds.), pp. 903–919, Computational Mechanics / Elsevier,

1991.

12. Michie, D. and Chambers, R. A., “BOXES: an experiment in adaptive

control,” in Machine Intelligence 2, Dale, E. and Michie, D. (Eds.), pp.

137–152, Oliver and Boyd, 1968.

13. Sammut, C. and Michie, D., “Controlling a black-box simulation of a

spacecraft,” AI Magazine, pp. 56–63, Spring 1991.

14. Bernard, J. A., “Use of a rule-based system for process control,” IEEE

Control Systems Magazine, pp. 3–13, October 1988.

15. Valmiki, A. H., West, A. A., and Williams, D. J., “The evolution of a

neural network controller for adhesive dispensing,” IFAC Workshop on

Computer Software Structures Integrating AI/KBS Systems in Process

Control, Bergen, Norway, pp. 93–101, 1991.

16. Willis, M. J., Di Massimo, C., Montague, G. A., Tham, M. T., and Morris,

A. J., “Artificial neural networks in process engineering,” IEE

Proceedings–D, vol. 138, pp. 256–266, 1991.

17. Chandraker, R., West, A. A., and Williams, D. J., “Intelligent control of

adhesive dispensing,” Int. J. Computer Integrated Manufacturing, vol. 3,

pp. 24–34, 1990.

18. Lynn, P. A., Fuerst, W., and Thomas, B., Introductory Digital Signal

Processing with Computer Applications, 2nd ed., Wiley, 1998.

Further reading

• Franklin, G. F., Powell, J. D., and Emami-Naeini, A., Feedback Control of

Dynamic Systems, 3rd ed., Addison-Wesley, 1994.

• Franklin, G. F., Powell, J. D., and Workman, M. L., Digital Control of

Dynamic Systems, 3rd ed., Addison-Wesley, 1998.

• Harris, C. J., Advances in Intelligent Control, Taylor and Francis, 1994.



• Lee, T. H., Harris, C. J., and Ge, S. S., Adaptive Neural Network Control

of Robotic Manipulators, vol. 19, World Scientific, 1999.

• Miller, W. T., Sutton, R. S., and Werbos, P. J. (Eds.), Neural Networks for

Control, MIT Press, 1991.

• Wang, H., Liu, G. P., Harris, C. J., and Brown, M., Advanced Adaptive

Control, Pergamon, 1995.



Chapter fifteen

Concluding remarks

15.1 Benefits

This book has discussed a wide range of intelligent systems techniques and

their applications. Whether any implemented intelligent system displays true

intelligence — whatever that is assumed to mean — is likely to remain the

subject of debate. Nevertheless, the following practical benefits have stemmed

from the development of intelligent systems techniques.

Reliability and consistency

An intelligent system makes decisions that are consistent with its input data

and its knowledge base (for a knowledge-based system) or numerical

parameters (for a computational intelligence technique). It may, therefore, be

more reliable than a person, particularly where repetitive mundane judgments

have to be made.

Automation

In many applications, such as visual inspection on a production line,

judgmental decision making has to be performed repeatedly. A well-designed

intelligent system ought to be able to deal with the majority of such cases,

while highlighting any that lie beyond the scope of its capabilities. Therefore,

only the most difficult cases, which are normally the most interesting, are

deferred to a person.

Speed

Intelligent systems are designed to automatically make decisions that would

otherwise require human reasoning, judgment, expertise, or common sense.

Any lack of true intelligence is compensated by the system’s processing speed.

An intelligent system can make decisions informed by a wealth of data and

information that a person would have insufficient time to assimilate.



Improved domain understanding

The process of constructing a knowledge-based system requires the decision-

making criteria to be clearly identified and assessed. This process frequently

leads to a better understanding of the problem being tackled. Similar benefits

can be obtained by investigating the decision-making criteria used by the

computational intelligence techniques.

Knowledge archiving

The knowledge base is a repository for the knowledge of one or more people.

When these people move on to new jobs, some of their expert knowledge is

saved in the knowledge base, which continues to evolve after their departure.

15.2 Implementation

Since intelligent systems are supposed to be flexible and adaptable,

development is usually based upon continuous refinements of an initial

prototype. This is the prototype–test–refine cycle, which applies to both

knowledge-based systems and computational intelligence techniques. The key

stages in the development of a system are:

• decide the requirements;

• design and implement a prototype;

• continuously test and refine the prototype.

It is sometimes suggested that the first prototype and the first few

revisions of a KBS be implemented using an expert system shell that allows

rapid representation of the most important knowledge. When the prototype has

demonstrated its viability, the system can be moved to a more sophisticated

programming environment. This approach makes some sense if a mock-up is

required in order to obtain financial backing for a project, but it also brings

several disadvantages. Working in a shell that lacks flexibility and

representational capabilities is frustrating and can lead to convoluted

programming in order to force the desired behavior. Subsequent rewriting of

the same knowledge in a different style is wasteful of resources. An arguably

better approach is to work from the outset in a flexible programming

environment that provides all the tools that are likely to be needed, or which

allows extra modules to be added as required.

Software engineers, particularly those working on large projects, have

traditionally been skeptical of the prototype–test–refine cycle. Instead, they

have preferred meticulous specification, analysis, and design phases prior to



implementation and testing. These attitudes have now changed, and rapid

prototyping and iterative development have gained respectability across most

areas of software engineering.

15.3 Trends

Intelligent systems are becoming increasingly distributed in terms of both their

applications and their implementation. While large systems will remain

important, e.g., for commerce and industry, smaller embedded intelligent

systems have also started to appear in the home and workplace. Examples

include washing machines that incorporate knowledge-based control systems,

elevators that use fuzzy logic to decide at which floor to wait for the next

passenger, and personal organizers that use neural networks to learn the

characteristics of their owner’s handwriting. Communication between

embedded applications is likely to extend further their influence on our daily

lives.

In addition to being distributed in their applications, intelligent systems

are also becoming distributed in their implementation. Chapter 9 discussed the

blackboard architecture for dividing problems into subtasks that can be shared

among specialized modules. In this way, the right software tool can be used for

each job. Similarly, Chapter 5 looked at the increasingly important technique

of intelligent agents. The growth in the use of the Internet is likely to see

increased communication between agents that reside on separate computers,

and mobile agents that can travel over the net in search of information.

Furthermore, Jennings argues that agent-based techniques are appropriate both

for developing large complex systems and for mainstream software

engineering [1].

Paradoxically, there is also a sense in which intelligent systems are

becoming more integrated. Watson and Gardingen describe a sales support

application that has become integrated by use of the World Wide Web, as a

single definitive copy of the software accessible via the web has replaced

distributed copies [2].

As a further aspect of integration, computers are required to assist in

commercial decision making, based upon a wide view of the organization. For

example, production decisions need to take into account and influence design,

marketing, personnel, sales, materials stocks, and product stocks. These

separate, distributed functions are becoming integrated by the need for

communication between them. (Use of computers to support an integrated

approach to manufacturing is termed computer-integrated manufacturing, or

CIM.) However, smaller-scale systems are likely to remain at least as



important. These include intelligent agents that serve as personal consultants to

advise and inform us, and others that function silently and anonymously while

performing tasks such as data interpretation, monitoring, and control.

References

1. Jennings, N. R., “On agent-based software engineering,” Artificial

Intelligence, vol. 117, pp. 277–296, 2000.

2. Watson, I. and Gardingen, D., “A distributed case-based reasoning

application for engineering sales support,” 16th International Joint

Conference on Artificial Intelligence (IJCAI’99), Stockholm, Sweden, vol.

1, pp. 600–605, 1999.


	Intelligent Systems for Engineers and Scientists
	Preface
	The author
	Contents


	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC


