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Straightforward inversion of vertical electrical sounding data

Pravin K. Gupta∗, Sri Niwas∗, and Vinod K. Gaur‡

ABSTRACT

A straightforward inversion scheme (SIS) has been
developed to interpret vertical electrical sounding data.
This scheme does not require quasi-linearization of the
inverse resistivity problem and thereby dispenses with
the iterative process and the necessity of guessing the
number of layers and their resistivities and thicknesses.
The entire solution domain is divided into uniform thick-
ness layers, whose scale must be judiciously selected for
the desired resolution. The apparent resistivity formula
can now be posed as an underdetermined matrix equa-
tion whose minimum norm solution is downward contin-
ued to obtain the reflection coefficients which, in turn,
yield the vertical resistivity distribution. A recurrence re-
lation has been developed especially for this purpose. In
general, when data are expected to be noisy, a regressed
minimum norm solution is used. Exhaustive tests of the
algorithm have established its numerical efficiency. Re-
sults of six typical synthetic models, representing diverse
geological conditions, as well as results of two field ex-
amples are included to demonstrate this claim.

INTRODUCTION

The wide ranging applicability of vertical electrical sound-
ing methods to resource exploration and engineering investiga-
tions continues to spur the search for even better techniques for
the interpretation of resistivity data. The starting point for all
such endeavours remains Stefanescu’s (1930) expression which
describes, in terms of the thicknesses and resistivities of various
layers, the potential around a point current electrode grounded
at the surface. Langer (1933) showed that if the ground resis-
tivity continuously varies with depth and the potential distribu-
tion about a current electrode grounded at the surface is com-
pletely known, then the inverse potential problem has a unique
solution. Subsequently, Slichter (1933) showed how apparent
resistivity values, computed from surface potential data, could
be used to estimate the resistivity kernel function from which
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the layer parameters could be inferred. This he called the “di-
rect” method and its several variants (Pekeris, 1940; Vozoff,
1958; Koefoed, 1970, 1979; Ghosh, 1971a) emerged in efforts
to improve its effectiveness. The large number of computa-
tions involved in these techniques and their inherent complex-
ity, however, greatly restricted their applications. Meanwhile,
parallel developments in the use of indirect methods (Flathe,
1955; Onodera, 1960; Roman, 1963; Van Dam, 1964; Mooney
et al., 1966; Ghosh, 1971b) based on the availability of a large
number of master curves derived from forward solutions, be-
came dominant despite their poorer resolving capability. Later,
with the availability of fast computers, resistivity interpretation
was revolutionized by quasi-linearizing the essentially nonlin-
ear inverse resistivity problem and using various linear inver-
sion schemes (Inman et al., 1973; Inman, 1975; Bichara and
Lakshmanan, 1976; Jupp and Vozoff, 1975; Johansen,1977 and
Constable et al., 1987).

The quasi-linear inversion method requires an educated
guess of resistivity variation fairly close to the real situation.
This requirement always proved to be a serious disadvantage.
Furthermore, the iterative nature of the algorithm made it nec-
essary, for each iteration, to first solve the forward problem and
then invert the system matrix for the correction vector . In the
absence of any a priori knowledge, a liberally overparameter-
ized initial guess model just did not succeed (Inman et al., 1973;
Wu, 1968) and a thin layer problem had little chance of being
resolved adequately.

In this paper we present a noniterative straightforward inver-
sion scheme (SIS) for interpreting vertical electrical sounding
(VES) data. The method does not require an initial guess of
layer resistivities and thicknesses, all it asks for is a layer thick-
ness unit parameter that must be judiciously chosen keeping
in mind the resolution desired. The method provides a near-
continuous vertical resistivity distribution. The algorithm has
been tested extensively using interesting synthetic models and
real field data, and eight of these exercises are presented here.
Of these, the three models of Gai-Shan (1985) and the model
of Parker (1984) are of special interest, as these models could
not be inverted satisfactorily by these authors. The SIS algo-
rithm inverted these models successfully, thereby establishing
its effectiveness.
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FORMULATION OF THE ALGORITHM

Stefanescu (1930) derived the electrical potential U(s) on
the surface (z = 0) of a layered earth at a distance s from a
grounded electrode carrying a current I , as

U(s) = I

2π

∫ ∞
0

T1(λ)J0(λs) dλ, (1)

where J0(λs) is the zeroeth order Bessel function of the first
kind, T1(λ) is the electrical impedance at the surface, defined
in Koefoed (1970) as the resistivity transform function of layer
resistivities and thicknesses, and λ is the integration variable.
Koefoed (1979) also disassociated the resistivity transform
function to extract the resistivity kernel function K1(λ) rep-
resenting the deviations in response of the layered earth from
that of a homogeneous half-space. Accordingly, at the air-earth
interface

T1(λ) = ρ1[1+ 2K1(λ)], (2)

while at the top of the i th layer,

Ti (λ) = ρi [1+ 2Ki (λ)]. (3)

From these basic expressions, Sri Niwas and Israil (1986,
1987) obtained the following simple expression for the appar-
ent resistivity, ρa(s), measured by a symmetrical four electrode
array

ρa(s) =
∞∑
j=0

T1 j G
(2)
j (s), (4)

where

G(2)
j (s) = m

m− 1
G(1)

j (s)− 1
m− 1

G(1)
j (ms). (5)

Here,

G(1)
j (s) = s(

ε2
j + s2

)1/2
, (6)

which is the Green’s function of a point source, ε j being a
real constant. The parameter m in equation (5) defines specific
electrode configurations, e.g., Wenner (m = 2), Schlumberger
(1 < m< 1.1), pole-pole (m= ∞).

Expression (4) was obtained by writing, T1(λ), corresponding
to the air-earth interface, in the form of a series

T1(λ) =
∞∑
j=0

T1 j ε
−ε j λ, ε0 = 0, (7)

and then using the Lipschitz integral (Watson, 1966). The set of
ε j in equations (6) and (7) were selectively identified to min-
imize the number of series terms required for an acceptable
representation. For the apparent resistivity values ρa(s̀ ), de-
termined for n different electrode spacings s̀ , equation (4) can
be written in a matrix form as

v =
˜
Gf, (8)

where

v = [ρa(s1), ρa(s2), . . . , ρa(sn)]t ,

f = [T11, T12, . . . , T1p]t ,

and

G1 j = G(2)
j (si ).

Here, superscript t denotes matrix transpose operation.
The minimum norm solution f̂ obtained from equation (8) is

given by

f̂ =
˜
Gt − (

˜
G

˜
Gt )−1v. (9)

Equation (8) offered an efficient algorithm for transform-
ing apparent resistivity data to resistivity transform data and
vice-versa. However, it did not lead to any significant advance
in methodology for the inference of subsurface resistivity dis-
tribution. The basic reason for this results from the fact that
ε j was assigned fixed values independent of model structure.
This, in turn, led to the coefficients T1 j being implicit functions
of both layer thicknesses and resistivities.

Equation (7) reveals that for a model of uniform layer thick-
ness (d), the choice of ε j = 2 jd would make T1 j a function
of layer resistivities alone. Furthermore, in equation (4), the
apparent resistivity values can be interpreted as superposed
contributions from a number of sources (images), each of
strength T1 j with G j , with the corresponding Green’s functions
as weights. Thus, the deviatoric potentials measured at the sur-
face are seen as the sum of individual influences arising from
different layers.

The possibility of decomposing the apparent resistivity into
components that can be identified with specific layers provides
the basic motivation for designing an algorithm that would
invert apparent resistivity data directly in terms of the layer
resistivities of a stratified earth.

To accomplish this, we first define a layered earth model rest-
ing on a semi-infinite substratum (Figure 1). Each layer in this

FIG. 1. Geometry of uniformly thick N-layered earth.
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model has the same thickness, judiciously selected to ensure
that the thinnest resolvable layer is characterized distinctly.
The geoelectric section of this model can then be described
completely by layer resistivities (ρi ) alone.

The reflection coefficient r i of the i th layer with respect to
the (i + 1)th layer, is given by

ri = ρi+1 − ρi

ρi+1 + ρi
. (10)

The reflection function Ri is related to the resistivity trans-
form function Ti (λ) by the following relations (Aassal and
Mahmoud, 1987).

Ti (u)
∣∣
Top
= ρi

1+ Ri (u)
1− Ri (u)

(11)

and

Ti (u)
∣∣
Bottom

= ρi−1
1+ Ri−1(u)/u
1− Ri−1(u)/u

, (12)

where

u = e−2λd.

The equality of equations (11) and (12) for Ti (u) ensures conti-
nuity of the electrical impedance through the layer and yields
the following recurrence relation for Ri ,

Ri−1(u) = Ri (u)+ ri−1

1+ Ri (u)ri−1
u (13)

with

RN+1(u) = 0.

It may be noted that |r i | < 1 for all finite nonzero values of
layer resistivities, Ri (u) < 1 for all i and u < 1 for all positive
values of d. Therefore, the denominator in equation (13) can
be expanded in a binomial series and Ri (u) can be expressed,
for all i , as the polynomial in u given below as

Ri (u) =
∞∑
j=1

Ri j u
j . (14)

Using this expansion in equation (13) and equating the coef-
ficients of equal powers of u, we obtain the following forward
recurrence relation,

Ri−1, j = r ∗i−1 Ri, j−1 + R∗i 1 Ri−1, j−1

+ R∗i 2 Ri−1, j−2 + · · · + R∗i, j−2 Ri−1,2, (15)

where,

r ∗i−1 =
(
1− r 2

i−1

)
, R∗i j = −r`−1 Ri j .

Similarly, the expression for Ti (u) at the top of the i th layer can
be written as a polynomial

Ti (u) =
∞∑
j=0

Ti j u
j . (16)

Here Ti 0 = ρi and for j > 0, the coefficients are related to Ri j ,
as

Ti j = Ti 0 Ri j + Ri, j−1Ti,1 + Ri, j−2Ti,2 + · · ·
+ Ri,2Ti, j−2 + Ri 1Ti, j−1. (17)

Rewriting equation (9) as

f̂ =
˜
Gt w

with

w = (
˜
G

˜
Gt )−1v,

T1 j , the j th component of vector f̂, can be expressed as

T1 j =
∑
`

G j `w`, j ≥ 0. (18)

Therefore, as G01 = 1 for all `,

ρ1 = T10 =
n∑
`=1

w`.

Using equation (17), the coefficient R1 j can be related to T1 j as

2ρ1 R1 j = T1 j − T1, j−1 R11 − T1, j−2 R12 − · · ·
− T12 R1, j−2 − T11 R1, j−1. (19)

In turn, using equation (15), the following inverse recurrence
relation can be written as

Ri j = 1
r ∗i−1

[
Ri−1, j+1 − Ri−1, j R

∗
i 1 − Ri−1, j−1 R∗i 2 − · · ·

− Ri−1,3 R∗i, j−2 − Ri−1,2 R∗i, j−3

]
, (20)

Finally, we obtain the various reflection coefficients and layer
resistivities as

ri = Ri 1

and

ρi+1 = 1+ Ri 1

1− Ri 1
ρi . (21)

Equations (18) through (21) provide a complete solution of
the inverse resistivity problem.

Numerical consideration

An algorithm was developed accordingly to apply this
straightforward inversion scheme (SIS) to extract subsurface
resistivities from observed values of apparent resistivities. This
algorithm comprises two stages. In the first stage, the minimum
norm solution vector f̂ is obtained, while in the second stage,
this solution is used to retrieve the resistivity distribution by
downward continuation. The quality of inversion is monitored
after both these stages by recomputing the response vector.
It may be added here that the algorithm has the capacity to
handle a very large number of terms in the exponential series
representation. It would, in practice, be restricted to a reason-
able number “p”, depending upon the desired accuracy “e0,”
given by p = 0.5smax/(d

√
e0) with smax being the maximum

electrode spacing.
The estimated solution vector f̂ in equation (9) is used to

assess the quality of the inverse solution by first computing the
response vector v̂ as

v̂ =
˜
Gf̂ (22)
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and then computing the error parameter er as the relative root-
mean-square (rms) error between v and v̂ as

e2
r =

n∑
i=1

[(vi − v̂i )/vi ]2

n
, (23)

where n is the number of data points. Note that equation (9) will
yield results only when equation (8) is consistent and full rank.
However, in the case of field data, as well as in case of random
noise-added synthetic data, the consistency is nonexistent. In
such cases the solution is achieved through a regularized min-
imum norm estimator and is given by

f̂ =
˜
Gt (

˜
G

˜
Gt +

˜
E)−1v, (24)

where
˜
E is the data error covariance matrix. If this matrix is

not available, it can be approximated as e2

˜
I with e being the

average noise to signal ratio.
To estimate the quality of inverted conductivity model, the

misfit εt between its computed response v and the observation
v can be computed in a manner similar to that used for εr as

ε2
t =

n∑
i=1

[(vi − vi )/vi ]2

n
.

The vector f̂, given by either equation (9) or (24), can be
viewed as the initial condition of an initial value problem, which
means that as the solution is continued downward, the error in f̂
will propagate and may become enhanced. This error propaga-
tion may sometimes lead to nonphysical reflection coefficients
lying outside the (−1, 1) interval. This should always be taken
as a warning sign, that no further downward continuation of
conductivity profile is possible. Such eventuality will occur only
if the regression parameter is not able to account for the er-
ror in data and/or the 1-D model is incompatible with the real
conductivity distribution. A possible way out is to use a higher
regression parameter value. The higher regression parameter
value will lead to the increased misfit and blurred conductivity
profile. Further, for the smooth functioning of SIS algorithm,
the inverted reflection coefficients should be approximated as
zero whenever it lies within a prescribed infinitesimal interval.
In the present study this interval is −.01 to .01. It may be al-
luded here that εt will, in general, be greater than εr because the
former depends on the final outcome of the initial value prob-
lem, while the latter is derived only from the initial conditions
represented by vector f̂.

TESTS OF THE SIS ALGORITHM

This algorithm was subjected to rigorous tests by using it to
invert a large variety of layered earth models. In particular,
the effects of overparameterization, or very fine layering, and
of measurement errors were studied to appraise the quality of
resulting inverse solutions. It may be alluded here that all the
models were run on an IBM compatible PC-486 with 32 MB
RAM. The computer time required for the various models var-
ied from 1.8 s to 10.4 s.

The test results of eight models presented below represent
a broad range of subsurface conditions encountered in nature.
Six of these use forward synthesized solutions as data inputs
for inverting the model. Models I, II, and III are the theoretical
geoelectric sections used in Gai-Shan (1985). Model IV is taken
from Parker (1984). Model V is the geological model of Inman

et al. (1973) and model VI is constructed from borehole and
well log data. Of the two field data sets inverted, one is from
a shallow section for which drill data was available for com-
parison and the other is from a deeper section. Note that
the Wenner response was generated for model IV while the
Schlumberger response was computed for all the remaining
synthetic models. In all cases, the layer thickness unit (d) was
taken to be 2 m, while the electrode spacing ranged from 1 m to
a maximum value depending upon the depth of the investiga-
tion (Roy and Apparao, 1971). There were ten spacing values
in a decade.

Theoretical models—Synthesized data

The first three models were taken from Gai-Shan (1985),
who interpreted these in terms of composite parameters: total
longitudinal conductance, total transverse resistance, and the
substratum resistivity. This strategy was dictated by the diffi-
culty in obtaining a quasi-linearized iterative solution in terms
of layer parameters. Using the SIS, however, we were able to
obtain the vertical resistivity variations by overparameterizing
the Gai-Shan models, which are:

Model I : ρ1 = 20 ohm-m, d1 = 20 m; ρ2 = 10 ohm-m,

d2 = 20 m; ρ3 = 1 ohm-m

Model II : ρ1 = 10 ohm-m, d1 = 20 m; ρ2 = 2 ohm-m,

d2 = 20 m; ρ3 = 5 ohm-m, d3 = 50 m;
ρ4 = 2 ohm-m, d4 = 20 m; ρ5 = 100 ohm-m

Model III : ρ1 = 1 ohm-m, d1 = 2 m; ρ2 = 2 ohm-m,

d2 = 4 m; ρ3 = 3 ohm-m, d3 = 6 m;
ρ4 = 4 ohm-m, d4 = 8 m; ρ5 = 5 ohm-m,

d5 = 10 m; ρ6 = 6 ohm-m, d6 = 12 m;
ρ7 = 30 ohm-m.

Model II was studied twice using different half-space resistiv-
ity values 100 ohm-m [model II(a)] and 1 ohm-m [model II(b)].
Schlumberger apparent resistivity values were computed for
the three models, using maximum spacing values of 500, 1200,
and 500 m, respectively.

The apparent resistivity curves along with the corresponding
true and inverted models are presented in Figure 2. It is evident
that none of the apparent resistivity curves yields information
about the correct number of layers in the true model. As a
result, any quasi-linear inversion algorithm, needing an initial
guess model, would not succeed as confirmed by the experience
of Gai-Shan (1985). SIS, however, in all the four cases yielded
inverted models close to the true models. The number of 2 m
thick layers, in the four cases were 25, 70, 70, and 30. The quality
of inverted models versus true models is quite good as shown
in Figure 2 and evidenced by the values of relative rms error er

which were 2.86×10−8, 4.55×10−8, 7.85×10−8, and 9.31×10−10,
respectively. Note that in the case of Model II(a), the SIS is able
to decipher the highly conducting (2 ohm-m), 20 m thick layer
at a depth of 90 m.
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Model III is difficult to invert as the interlayer resistivity
variations are quite small (1 ohm-m). Yet the 30-layer model
(d = 2 m) retrieves the original model parameters rather well.

The inverted models in Figure 2 reveal that even though
the true half-space resistivity values are not attained, the half-
space conductive/resistive nature is retrieved. In these cases
the half-space resistivity values can always be estimated from
asymptotic values of apparent resistivity for the larger elec-
trode spacings.

Model IV, having following continuous resistivity variation
was introduced in Parker (1984) and was also studied by Simms
and Morgan (1992),

ρ(z) = 500(1+ 0.2z)−2.

FIG. 2. Inversion of resistivity responses of models I, IIa, IIb, and III.

This variation is shown in Figure 3 as the curve mod0. The two
inverted models of Parker (1984), with layer thicknesses 2 m
(imod02) and 14 m (imod14), are reproduced in Figure 3a. The
four inverted models obtained by Simms and Morgan (1992),
using variable parameters (imodv) and uniform (imodu),
geometric progression (imodg) and logarithmic progression
(imodl) layer thicknesses, are given in Figure 3b. Clearly, the
inverted models of both these studies are unsatisfactory. A
detailed study of this resistivity variation was therefore car-
ried out using the SIS algorithm, and the results are plotted in
Figure 3c.

For this purpose, the ten data values, given in Parker (1984)
and listed in Table 1, were used to invert for the 50-layer model
with a layer thickness unit of d = 2 m. The corresponding
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inverted model is shown as curve imod1. This solution is un-
stable suggesting that the data may be erroneous. This fact was
confirmed when the SIS algorithm was rerun with regression
parameter e= 0.001. The resulting smooth model is shown as
curve imod2. To evaluate the quality of inverted model imod2,
the SIS algorithm was used to generate Wenner synthetic data
for the same ten electrode spacing values. These response val-
ues are also listed in Table 1. The inversion of this data set with-
out regression yielded the curve imod3 that is not only smooth
but slightly better than imod2. This suggests once again that the
oscillations in imod1 were mainly a result of erroneous data.
Last, a larger data set for 25 spacing values was generated and
used to obtain the inverted model imod4, which is significantly
closer to true model mod0 in comparison to imod2 and imod3.
A comprehensive study of Figure 3 illustrates the higher qual-
ity of the SIS solutions in comparison to the solutions in Parker
(1984) and Simms and Morgan (1992).

Note that the er values for imod1, imod2, imod3, and imod4
were 2.34× 10−11 , 1.58× 10−3, 5.58× 10−13, and 1.87× 10−9,
respectively. The error in case of imod2 is of the order of re-
gression parameter chosen.

a)

b)

c)

FIG. 3. Various results of inversion of the continuous model IV.
(a) the 2 m (imod02) and the 14 m (imod14) layer thickness
inverted models of Parker (1984); (b) The inverted models of
Simms and Morgan (1992) for variable parameter (imodv),
uniform (imodu), geometric (imodg), and logarithmic (imodl)
layer thickness; (c) SIS inversion of (1) ten-point Parker’s data
set without regression (imod1) and with regression (imod2)
(2) ten-point SIS data set (imod3) and (3) 25-point SIS data set
(imod4).

Geological model—Synthesized data

We studied two models constructed from a geological section
for which both drill and well log data were available. Model V
(Figure 4) is a geologically inspired model taken from Inman
et al. (1973), while model VI (Figure 5) represents subsurface

Table 1. Wenner apparent resistivity values at the ten points
used for obtaining SIS solutions imod1, imod2, and imod3.

Apparent resistivity (Ohm-m)
Electrode
separation (m) Parker (1984) SIS

1.0 486.5 479.3
2.0 473.7 472.0
5.0 438.7 439.1

10.0 389.5 389.8
20.0 314.4 314.8
50.0 186.0 188.2

100.0 96.22 106.7
150.0 57.90 78.7
200.0 38.26 67.7
250.0 26.97 63.0
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FIG. 4. The apparent resistivity response, the true model and the inverted models for model V (from Inman et al.
1973) with layer thickness unit d = 2 m (Inv1), 10 m (Inv2), and 20 m (Inv3).

FIG. 5. The apparent resistivity inversion model for model VI constructed from borehole and well log data at a
site near Delhi.
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conditions comprising alternate layers of clay and clay enriched
sands. The parameters of these two models are:

Model V : ρ1 = 10 ohm-m, d1 = 20 m (wet soil);
ρ2 = 50 ohm-m,

d2 = 100 m (clay and gravel);
ρ3 = 150 ohm-m (bed rock)

Model VI : ρ1 = 35 ohm-m, d1 = 2 m; ρ2 = 40 ohm-m,

d2 = 43.5 m; ρ3 = 60 ohm-m, d3 = 7.5 m;
ρ4 = 25 ohm-m, d4 = 75 m; ρ5 = 50 ohm-m,

d5 = 9 m; ρ6 = 30 ohm-m, d6 = 50 m;
ρ7 = 50 ohm-m, d7 = 9 m; ρ8 = 25 ohm-m,

d8 = 7.5 m; ρ9 = 50 ohm-m, d9 = 7 m;
ρ10 = 25 ohm-m, d10 = 23 m;
ρ11 = 50 ohm-m, d11 = 22 m;
ρ12 = 30 ohm-m.

Model V was studied by Inman et al. (1973) using the gen-
eralized linear inverse. The authors were, however, unable to
obtain a reasonable solution unless the initial guess for the
starting model was very close to the true one.

Synthesized Schlumberger apparent resistivity data for
model V was inverted using the SIS algorithm for three dif-
ferent scales of parameterization: 75 layers (d = 2 m), 15 lay-
ers (d = 10 m) and 10 layers (d = 20 m). The corresponding
inverted models are shown in Figure 4 as curves inv1, inv2,
and inv3. The relative rms errors er in these three cases were
2.81 × 10−9, 6.05 × 10−9, and 1.18 × 10−9, respectively. The
corresponding εt values were 0.075, 0.030, and 0.032, respec-
tively. With the finest layering, the SIS solution retrieves the
first two layers accurately as being, respectively, 10-unit and 50-
unit thick, with their resistivity values mildly oscillating about
a mean value close to the true one. The third layer resistivity
value is approached asymptotically.

The 15-layer SIS solution is of excellent quality, recovering
the first layer and half of the second layer exactly and the re-
maining ones reasonably close. Encouraged by this improve-
ment, a third SIS solution was sought in which the unit thickness
was set equal to that of the top layer. As shown in Figure 4, this
ten layer (d = 20 m) inversion faithfully reproduces the true
model. This exercise highlights two important characteristics of
SIS. First is the effect of overparameterization in the form of
spurious oscillations in the inverted resistivity values, centered
around the true layer resistivity values. Second, an appropri-
ate choice of the unit thickness enables accurate retrieval of
layer resistivities and thicknesses even in case of models with
high-resistivity contrasts.

For model VI, the apparent resistivity profile, the true model
and the inverted model are given in Figure 5. It is evident that
the apparent resistivity profile is blind to the pattern of sub-
surface layering, the 150-layer (d = 2 m) SIS inversion is able
to retrieve model resistivity values rather closely to a depth

of 187 m. Below this depth the various layers merge indicating
that the vertical resistivity sounding method cannot resolve the
thin layers at depths greater than 200 m. The rms error values
εr and εt were 2.01× 10−8 and 0.03, respectively.

Inversion of noisy data

The robustness of the SIS algorithm was evaluated by study-
ing the effect of random noise on the quality of inverted so-
lutions. We obtained the inverted solutions of model V with
d = 20 m when the synthesized data is corrupted with random
Gaussian noise in the proportions 0.5, 1, 2, 5, 10, and 20%.
The respective relative rms error εr values in these cases were
0.00001, 0.00874, 0.0116, 0.0463, 0.0966, and 0.22. The corre-
sponding εt values were 0.034, 0.015, 0.024, 0.050, 0.120, and
0.226, respectively. The resulting SIS solutions for 0, 5, 10, and
20% cases are shown in Figure 6. It was observed that up to a
2% noise level the inverted models were very close to the no er-
ror case. Figure 6 reveals that while the presence of noise does
cause a blurring of the solution sharpness, a reasonably fair
solution is obtained even at a 20% level, thereby establishing
the robustness of the SIS algorithm.

Straightforward inversion of field data

The remarkable power of SIS illustrated by the quality of
inverted solutions, led us to apply it extensively to the inter-
pretation of actual field data. Two cases discussed here refer
to shallow and deep exploration. Apparent resistivity data for
field model I were obtained from electrical sounding at a site
in the village Aurangabad of Haridwar District in the Shiwalik
range of outer Himalaya in Uttar-Pradesh. The drill record was
available to a depth of 131 m. Two 40 layer SIS solutions for
d = 5 m are plotted as curves inv2 and inv5 in Figure 7 along
with the drill data and ρa values. The regression parameter val-
ues for the two inversions were equal to 0.02 and 0.05. The rms
error εr in two cases were 0.121 and 0.134, while the εt values
were 0.277 and 0.180, respectively. Both the SIS solutions are
in good agreement with the lithology recorded during drilling,
especially the sand pebbles (aquifer) at a drill depth of 35 m.

Field data II, taken from Singh et al. (1988), was recorded at a
site in the Saurashtra region, Western India, where the general
stratigraphy from top to bottom is: thin soil cover, moderately
conducting basaltic (trap) layer, thick resistive layer of com-
pact basalt, conducting porous sediments, and highly resistive
basement layer.

Since the electrical sounding curve for this area is rather long,
we first obtained a 50-layer (d = 100 m) SIS solution, and then
used the left-hand ascending part of the curve to obtain a 100-
layer (d = 2 m) SIS solution for the shallower section, with
the regression parameter used being 0.05 in both cases. The
rms error εr in these two cases were 0.072 and 0.033, while the
εt values were 0.308 and 0.194, respectively. The two solutions
were appended to obtain the composite SIS solution plotted
in Figure 7 along with the apparent resistivity curve and the
inferred geological section.

The SIS solution appears to be the best possible that can
be retrieved from field data. Its robust character is further en-
hanced by the possibility of constructing composite SIS solu-
tions from resistivity sounding data obtained by intelligently
segmenting the sounding curve in a way that would substan-
tially isolate the responses arising from different depth ranges.
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FIG. 6. Effect of random Gaussian noise in apparent resistivity data for model V with d = 20 m case. The true
model (imod0) and the inverted models for the error-free (err0), 5% (err5), 10% (err10), and 20% (err20) noise
levels.

FIG. 7. The field resistivity sounding response recorded near Haridwar, India, the borehole data and the two
inverted models obtained with regression parameter values 0.02 (Inv2) and 0.05 (Inv5).
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CONCLUSIONS

The straightforward inversion scheme (SIS) is a powerful
and efficient method for interpreting vertical electrical sound-
ing data. As a linear scheme, SIS does not require the layer
resistivities and thicknesses of the starting model. However,
a layer thickness unit parameter has to be chosen judiciously,
keeping in mind the resolution desired. Further, the SIS algo-
rithm is truly noniterative, thus reducing the human interac-
tion to a minimum. It uses the measured data directly to deter-
mine the minimum norm estimates of the coefficients T1 j which,
in turn, are used to algebraically construct the various reflec-
tion coefficients and estimates of layer resistivities. Further-
more, unlike most other methods currently in use that require
interpolation of data at appropriate values of electrode spac-
ings, SIS has the freedom to use data as that actually measured
at arbitrary electrode spacings, thereby completely eliminating
this particular source of computational error.

The SIS algorithm leads to good quality solutions for a
wide range of possible geological situations. Analysis of re-
sults obtained during extensive experimentation of this algo-
rithm does, of course, bring out a number of points for caution,
notably, the degeneracy of solutions that may arise from over-
parameterization of a geoelectric section that contains high-
resistivity contrasts. But, with the benefit of such lessons, the
straightforward inversion scheme, shows considerable promise
of being a highly robust method for interpreting VES data.

FIG. 8. The field resistivity response of a deep electrical sounding recorded in Saurashtra, India, the composite
inverted model and the inferred geological section.
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