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Abstract

Hyperspectral imaging, which records a detailed spectrum of light for each pixel,

provides an invaluable source of information regarding the physical nature of

the different materials, leading to the potential of a more accurate classifica-

tion. However, high dimensionality of hyperspectral data, usually coupled with

limited reference data available, limits the performances of supervised classifica-

tion techniques. The commonly used pixel-wise classification lacks information

about spatial structures of the image. In order to increase classification per-

formances, integration of spatial information into the classification process is

needed. In this paper, we propose to extend the watershed segmentation al-

gorithm for hyperspectral images, in order to define information about spatial

structures. In particular, several approaches to compute a one-band gradient

function from hyperspectral images are proposed and investigated. The accu-

racy of the watershed algorithms is demonstrated by the further incorporation

of the segmentation maps into a classifier. A new spectral-spatial classification

scheme for hyperspectral images is proposed, based on the pixel-wise Support

Vector Machines classification, followed by majority voting within the watershed

regions. Experimental segmentation and classification results are presented on

two hyperspectral images. It is shown in experiments that when the number

of spectral bands increases, the feature extraction and the use of multidimen-
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sional gradients appear to be preferable to the use of vectorial gradients. The

integration of the spatial information from the watershed segmentation in the

hyperspectral image classifier improves the classification accuracies and provides

classification maps with more homogeneous regions, compared to pixel-wise clas-

sification and previously proposed spectral-spatial classification techniques. The

developed method is especially suitable for classifying images with large spatial

structures.

Key words: Hyperspectral images, mathematical morphology, watershed,

segmentation, classification

1. Introduction

The growing availability of hyperspectral images has opened the door to nu-

merous new applications in remote sensing and other areas of image analysis.

Hyperspectral sensors capture more than a hundred spectral bands (data chan-

nels) simultaneously. Thus, each pixel in a hyperspectral image is presented as

the vector of values corresponding to the wide spectrum of reflected light [1]

(Figure 1 depicts the structure of a hyperspectral image). For instance, NASA

Jet Propulsion Laboratory’s Airborne Visible-Infrared Imaging Spectrometer

(AVIRIS) system has 224 spectral channels with a spectral resolution of around

10nm, covering the wavelengths from 0.4 to 2.5μm [2]. The fine spectral res-

olution of the data provides an invaluable source of information regarding the

physical nature of the different materials, increasing the capability to distinguish

structures and objects in the image scene.

However, such a large number of spectral channels implies the high dimen-

sionality of the data and presents challenges to image analysis and classification.

Most of the commonly used methods designed for the analysis of grey level,

color or multispectral images are not appropriate for hyperspectral images. As

a matter of fact, very limited reference data are usually available (the ratio of

the number of referenced samples to the number of spectral channels quickly

drops), which limits the performances of supervised classification techniques.
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Figure 1: Structure of a hyperspectral image

Furthermore, for analysis of hyperspectral images the well known curse of di-

mensionality prevents robust statistical estimations, usual vector norms become

meaningless and so on (e.g., the Hughes phenomenon [3]). Therefore, to take

full advantage of the rich information provided by the spectral dimension, the

development of new algorithms is required.

The first attempts to classify hyperspectral images were designed to assign

each pixel to one of the classes based on its spectrum only [4]. These pixel-level

processing systems use a wide range of features, such as the direct spectral in-

formation, texture features, and linear and nonlinear transformations of these

features. The applied feature extraction procedure often aims at reducing the

dimensionality of the data. The features are used for image classification with

a wide range of techniques, such as maximum-likelihood or Bayesian estimation

techniques [5, 6, 7], neural networks [8, 9, 10], decision trees [11, 12], genetic al-

gorithms [13] and kernel-based methods [14, 15, 16, 17]. In particular, Support

Vector Machines (SVM) and other kernel-based methods have recently shown

good classification results, because they tend to be robust when a limited num-

ber of training samples is available.

Further modification to improve classification results consists in the inte-

gration of spatial and spectral information in the image analysis. It means

that the decision to assign a pixel to a specific class is simultaneously based

on the feature vector of this pixel and on some information derived from the

pixel’s neighborhood. In previous studies, the spatial context was included in
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the classification system by using morphological filters [15], morphological level-

ing [18] and Markov random fields [19]. These methods show promising results

in terms of classification accuracies by incorporating spatial and spectral in-

formation. However, these algorithms use fixed-window-based neighborhoods.

This involves the problem of scale selection, especially if the image contains

some small or complex structures.

Another approach to define spatial structures consists in performing image

segmentation [20, 21, 22]. The regions obtained from the obtained segmentation

map define the spatial context of the pixels within these regions. To make this

approach effective, an accurate segmentation of the image is needed.

In previous studies, several methods for multispectral image segmentation

have been investigated. Numerous works exploit region merging techniques,

where neighboring image segments are merged iteratively based mostly on their

spectral similarity. For instance, the eCognition software performs multiresolu-

tion segmentation, based on bottom-up region merging [23]. Initially, each pixel

is considered as a separate region, and subsequently pairs of regions are merged,

based on a homogeneity criterion, which is a combination of spectral and shape

properties. Tilton developed a hierarchical segmentation algorithm [24], which

performs region growing and spectral clustering alternately. The main drawback

of applying region merging for image segmentation is that the homogeneity crite-

rion, or thresholds must be chosen. For accurate segmentation, these techniques

usually produce a pyramid of segmentation maps, using a range of thresholds.

Then, manual interpretation of the results is needed.

Other studies exploit mathematical morphology based segmentation ap-

proaches [18, 25, 26, 27, 28, 29, 30], which mostly use granulometries or wa-

tershed transformation. The extension of morphological operators to the case

of multispectral images is not straightforward, because there is no natural way

for total ordering of multivariate pixels, which is a requirement in mathemati-

cal morphology. An extensive literature on mathematical morphology for color

and multispectral images is available [31, 32, 33, 34, 35, 36]. In particular, the

watershed segmentation of color images was investigated in [37, 38, 39].

4



However, the above morphological and watershed methods are not suitable

for segmentation of hyperspectral images, due to the following reasons:

• A hyperspectral image is composed of hundreds of spectral channels.

Therefore, the use of total ordering schemes for multivariate data, such as

the bit mixing paradigm [31], is not possible, because it would lead to a

huge number of values stored for each pixel.

• In previous studies, polar-based representations (HLS, HSV) and percep-

tional color spaces (LUV, LAB) were used for morphological analysis of

color images [40, 37]. These methods are not applicable for hyperspectral

images.

In a recent paper, Noyel et al. [29] gave an overview of the literature on the

watershed-based multispectral image segmentation and performed watershed

segmentation of hyperspectral images. Their method is composed of spectral

classification to obtain markers and computation of a multivariate gradient to

get spatial information. Only visual results (the obtained segmentation maps)

are presented in the article. Therefore, the question of defining a watershed

transformation for the case of hyperspectral images has only recently been raised

in the literature and needs further investigations.

Some studies have been conducted on spectral-spatial classification of mul-

tispectral images. Linden et al. [41] used the vector mean as a feature for each

region in a spectral-spatial classifier. First, they performed the segmentation

of a hyperspectral image, based on region growing (using the eCognition soft-

ware [23]). Then, a vector mean was computed for each region, such that the

value in each band represented the average spectral information of the pixels

in this region in the respective band. Afterwards, the regions were classified

by an SVM classifier. However, the obtained results were mostly not an im-

provement over those obtained by the pixel-wise SVM classification. Li and

Xiao [28] used spectral and spatial information for classification of a multispec-

tral (4-band SPOT 5) image. There, a watershed segmentation and a pixel-wise
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maximum likelihood classification of an image were independently performed.

Then, pixels of the whole region were assigned to one class if more than 50%

of pixels in this region were categorized into one class by a pixel-wise classifier.

The classification results were substantially improved with the spectral-spatial

approach compared to the pixel-wise maximum likelihood classification.

Widayati et al. [42] used spatial information in a classifier, in order to per-

form a spectral-spatial classification of a multispectral (4-band IKONOS) image.

First, a segmentation map was obtained using the Merge Using Moments al-

gorithm [43]. Then two options were explored. First, each region from the

segmentation map was classified using its vector mean as a feature. In another

approach, the pixel-wise classification map obtained by maximum likelihood

classifier was combined with the segmentation map using majority voting: for

every region from the segmentation map, all the pixels were assigned to the

majority class within this region. Results of the pixel-wise maximum likeli-

hood classification were also used for comparison. Of all these three methods,

the spectral-spatial classification using majority voting gave the highest overall

accuracy.

The main contributions of this paper are two-fold:

1. The first contribution is the extension of the watershed segmentation al-

gorithm to hyperspectral data. Watershed transformation is usually ap-

plied to the gradient, which must be a scalar function, in order to form a

complete lattice structure [44]. When processing a hyperspectral image,

information about spatial structures must be extracted from all bands in

the optimal way. Different approaches to segment the hyperspectral image

by watershed are proposed and investigated. In particular, different ways

to compute a one-band gradient function of a hyperspectral image are con-

sidered. We emphasize that this study is not a comparison of watershed

segmentation methods in general. Instead, it focuses on the extension

of watershed transformation for hyperspectral images, for the purpose of

accurate segmentation and further classification.
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2. The obtained watershed segmentation map is further incorporated into

a spectral-spatial classifier, aiming at improving classification accuracies,

when compared to pixel-wise classification. Thus, the second contribution

of this paper is the development of the new segmentation and classifica-

tion scheme to analyze hyperspectral data. The proposed classification

method combines results of a pixel-wise SVM classification and the seg-

mentation map using majority vote approach [21]. This contribution can

be summarized as follows: the segmentation defines an adaptive neighbor-

hood for each pixel which is used for the spatial regularization following

a pixel-wise classification.

To test the developed segmentation and classification algorithms, two hyper-

spectral airborne images are used: A 103-band ROSIS (Reflective Optics System

Imaging Spectrometer) image of the University of Pavia, Italy, and a 220-band

AVIRIS image taken over the Northwestern Indiana’s Indian Pine site [45].

The paper is organized as follows. In Section 2, an overview of the water-

shed technique is given, and then the extension of the watershed algorithm to

hyperspectral images is discussed. In Section 3, the developed segmentation

and classification scheme is presented. In Section 4, experimental results and

comparisons are presented and discussed. Finally, conclusions are drawn in

Section 5.

2. Watershed segmentation

Watershed transformation is a powerful mathematical morphology technique

for image segmentation [46, 44]. It was introduced in image analysis by Beucher

and Lantuéjoul [47], and subsequently a lot of algorithms for its implementation

have been proposed.

The watershed transform considers a two-dimensional one-band image as a

topographic relief. The value of a pixel h stands for its elevation. The watershed

lines divide the image into catchment basins, so that each basin is associated

with one minimum in the image (see Fig. 2). The watershed transformation
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Figure 2: Topographic representation of a one-band image

is usually applied to the gradient function of the image. The gradient defines

transitions between regions, so that it has high values on the borders between

objects and minima in the homogeneous regions. And in this case, if the crest

lines in the gradient image correspond to the edges of image objects, watershed

transformation partitions this image into meaningful regions.

A wealth of literature describes techniques for computing the watershed

transformation (see for instance [48, 49, 50, 51]). A review of watershed al-

gorithms can be found in [48, 50]. Vincent and Soille [48] have proposed an

efficient watershed algorithm using flooding simulations, which has become one

of the classical algorithms to compute watersheds.

The output of the watershed transform is a partition of the image composed

of regions (sets of pixels connected to the same local minimum) and of watershed

pixels (WHEDs, the borders between the regions). Figure 3 shows an example

of watershed transformation in one dimension, where three regions, associated

with the three minima, are defined. The two maxima correspond to the borders

between regions and are not assigned to any region (watershed pixels).

Typically, the result of watershed segmentation on the gradient image with-

out any additional processing is a severe oversegmentation (every single local

minimum of the gradient leads to one region). Common ways to reduce the

number of local minima are to filter the original image or the gradient func-

tion (e.g., area filtering) or to use markers [46]. The oversegmentation effect
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Figure 3: Example of watershed transformation in one dimension.

can be also corrected using some post-processing, such as merging of similar

neighboring regions.

In the next subsection, different approaches for segmentation of hyperspec-

tral images by watershed are discussed and extended.

2.1. Watershed segmentation of hyperspectral images

As previously mentioned, the watershed transformation requires as input a

one-band image and gives as a result a one-band segmentation map (where each

pixel contains the label of the catchment basin or the watershed pixel label).

In this paper, we aim to apply this transformation to a B-band hyperspectral

image. Let us consider this image as a set of n pixel vectors X = {xj ∈ R
B , j =

1, 2, ..., n} (each pixel is characterized by its spatial location and a vector of

spectral values; see Fig. 1). We denote also the image of every spectral band

as Xλ, λ = 1, 2, ..., B. Different strategies are possible to compute watersheds.

They are summarized in Figure 4.

Before computing a gradient, feature extraction on the original image can be

performed, applying one of the transformations such as the Principal Compo-

nent Analysis (PCA) [52, 53], Maximum Noise Fraction (MNF) [54] and Inde-

pendent Component Analysis (ICA) [55, 56]. The aim of this step is to obtain

either a one-band image or a multi-band image which would contain enough

information to distinguish between spatial structures in the image.

If a one-band image with a good distinguishing capability between struc-

tures can be obtained, the algorithm for computing a gradient and watershed
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Figure 4: Flow-chart which shows strategies of applying watershed to a hyperspectral image

is straightforward. For instance, for a one-band image Y , a basic morpholog-

ical gradient (also called the Beucher gradient) can be applied. It is defined

as the arithmetic difference between the dilation and the erosion of Y by the

structuring element E [44]:

ρE(Y ) = δE(Y ) − εE(Y ). (1)

If, however, at the input of the gradient step we still have a multi-band

image, we can proceed in different ways, that can be grouped into the following

three categories:

• to compute a vectorial gradient;

• to compute a multidimensional gradient;

• to combine watershed segmentation maps a posteriori.

These three options are discussed in the next three subsections.

2.1.1. Computation of a vectorial gradient

Vectorial gradients are based on the distance between pixel vectors, and

produce from the B-band image one-band gradient [57, 29]. Several types of

vectorial gradients have been proposed. Noyel et al. [29] proposed to use a

metric-based gradient for hyperspectral images, which is described as follows:
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For each pixel vector xp, let ψ = [x1
p,x

2
p, ...,x

e
p] be a set of e vectors in the

neighborhood of xp (set ψ does not contain xp). For instance, a four- or an

eight-neighborhood (e = 4 or e = 8, respectively) can be used. The metric-based

gradient is defined as a difference between the supremum and the infimum of

the defined distances between xp and vectors from the set ψ:

∇MB
ψ,d (xp) = sup

i∈ψ
{d(xp,xip)} − inf

j∈ψ
{d(xp,xjp)}. (2)

Various distances can be used to compute gradient from (2) such as Eu-

clidean, Mahalabobis, chi-squared distances [29].

Another type of vectorial gradient is the Robust Color Morphological Gra-

dient (RCMG). This gradient was developed for color images by Evans and

Liu [57]. Here we investigate the use of the RCMG for hyperspectral images.

For each pixel vector xp, let χ = [x1
p,x

2
p, ...,x

e
p] be a set of e vectors within

a structuring element E, which defines the neighborhood of the vector xp, and

the set χ contains xp. The Color Morphological Gradient (CMG) is computed

as

∇CM
χ,d (xp) = max

i,j∈χ
{d(xip,xjp)}, (3)

i.e., the maximum of the distances between all pairs of vectors in the set χ.

Here, various distances can be chosen. If the Euclidean distance is used, (3) can

be rewritten as

∇CM
χ,d (xp) = max

i,j∈χ
{‖xip − xjp‖2}. (4)

One of the drawbacks of the CMG is that it is very sensitive to noise. To

overcome the problem of outliers, the authors of [57] have proposed to use the

RCMG. The scheme to make the CMG robust consists in removing the two

pixels that are the furthest apart and then finding the CMG of the remaining

pixels. This process can be repeated several times until a good estimate of the

gradient is obtained. Thus, the RCMG, using the Euclidean distance, can be

defined as

∇RCM
χ,d (xp) = max

i,j∈[χ−REMr ]
{‖xip − xjp‖2}, (5)
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where REMr is the set of the r vector pairs removed. The appropriate value

of the parameter r in (5) depends on the chosen structuring element E and

the amount of noise present in the image, as discussed in [57]. When a one-

band vectorial gradient is computed, it is used as the input of the watershed

algorithm.

2.1.2. Multidimensional gradient methods

Another approach to compute a one-band gradient from the multi-band im-

age consists in considering the B-band image as a set of B one-band images. In

this case, the gradients of every spectral band can be computed, using for in-

stance a morphological gradient (see (1)). Then the obtained B gradient images

ρE(Xλ), λ = 1, 2, ..., B are combined into one image using linear or non-linear

operators.

As an example of the linear operators, the weighted sum of gradients can be

computed by

∇+
E(X) =

B∑
λ=1

ωλρE(Xλ), (6)

where ωλ denotes the weight of the gradient of the band λ. If ωλ = 1, λ =

1, 2, ..., B, all the bands are supposed to have an equal importance in defining

the gradient. Modifying the weight coefficients, the gradient estimation can

be improved. For instance, coefficients that are inversely proportional to the

estimated noise of each spectral band can be used as the weights in (6).

Examples of non-linear operators are the supremum and the median oper-

ators. The gradient supremum over morphological gradients of every band is

defined as follows: for every pixel the supremum over all gradient images is

taken as the output value of this pixel.

2.1.3. Combination of watershed segmentation maps

First, B standard gradients are computed, one for each spectral band. Then

each gradient image is used to compute a watershed transformation. This gives

B segmentation maps that can be further combined to provide a single output

segmentation map.
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One of the ways to combine the B segmentation maps, in order to define

relevant edges, consists in summing the watershed lines. Here, for each seg-

mentation map obtained from the gradient of band λ, a binary image Wλ of

watershed lines is produced. Thus, Wλ is an image in which watershed pixels

are equal to 1 and all other pixels are equal to 0. The sum of watershed lines is

computed by

W =
B∑
λ=1

Wλ. (7)

The obtained image W can be further thresholded, in order to define the

border pixels that were presented in most of the segmentation maps, hence

ensuring a reliable edge detection.

However, when summing the watershed lines, we do not have information

about regions anymore, but only about edges. Furthermore, some edges can

become open after thresholding. Therefore, closing of edges and image region

labeling must be performed after the procedure described above.

3. Segmentation and classification scheme

As previously mentioned, the information about spatial structures defined

by the watershed segmentation algorithm can be used to improve the results

of classification of a hyperspectral image. In this section, a new combined

spectral-spatial classification scheme is presented for hyperspectral images based

on watershed segmentation.

The general flow-chart of the proposed segmentation and classification scheme

is given in Figure 5. At the input we have a B-band hyperspectral image

X = {xj ∈ R
B , j = 1, 2, ..., n}. First, the watershed segmentation is performed

on this image, using one of the approaches discussed in Section 2 and summa-

rized in Figure 4. In the resulting segmentation map, each pixel contains the

label of the region it belongs to, or the watershed pixel label (see Figures 3, 6).

It is often desirable to produce a segmented image where each pixel belongs

to some region, without border pixels between regions. In this case, each water-

shed pixel can be assigned to one of the regions in its neighborhood. For this pur-
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Figure 5: Flow-chart of the proposed segmentation and classification scheme.

pose, we propose to compute for every region S (S = {sj ∈ R
B , j = 1, 2, ..., l},

S ⊆ X, with l equal to the number of pixels in the region) the standard vector

median [58]. A standard vector median sVM for a set of pixel vectors is a vector,

which fulfills the condition that the sum of the distances between this vector

and all the other vectors in the set is minimal (for instance, L1 norm is used to

compute distances):

sVM = arg min
s∈S

⎧⎨
⎩

l∑
j=1

‖s − sj‖1

⎫⎬
⎭ . (8)

Every watershed pixel is assigned to the neighboring region with the “closest”

median, i.e., the distance between the vector median of this region and the

watershed pixel vector is minimal (see the example in Fig. 6).

After the image is segmented into regions, this spatial information should be

used to improve the classification results. Two approaches to integrate spectral

and spatial information into the classification system can be distinguished:

1. To define a feature or a set of features for each region from the segmenta-

tion map, and classify regions using these features.

2. To perform a pixel-wise classification first, and then combine a pixel-based

classified image with the segmentation results.

Here we propose to use the second approach for the spectral-spatial classi-

fication of hyperspectral images, in order to improve the results of the pixel-
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Figure 6: Example of spectral-spatial classification.

wise classifier using the spatial information from the segmentation map (see

Figures 5, 6). The proposed approach is outlined in [21]. First, a pixel-wise

classification by SVM on the original hyperspectral image is performed. Then,

for every watershed region S, all the pixels are assigned to the most frequent

class within this region (majority vote approach). Please note that majority

vote within fixed neighborhoods is a standard spatial regularization procedure

following a pixel-wise classification. Here, we propose to use the results of a

segmentation to define an adaptive neighborhood for each pixel.

The watershed pixels can be either left not processed during the majority

voting (what we call the No WHEDs approach), or assigned to the regions with

the “closest median” before the majority voting is performed considering all the

pixels (what we call the With WHEDs approach). Figure 6 shows an example of

the combination of the pixel-wise classification map and the segmentation map

by majority vote, using both No WHEDs and With WHEDs approaches.
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4. Experimental results and discussion

4.1. Segmentation and classification of the University of Pavia image
4.1.1. Dataset

The University of Pavia image is of an urban area that was recorded by the

ROSIS-03 optical sensor. The image scene is the urban area surrounding the

University of Pavia, Italy. The image has spatial dimensions of 610 by 340 pixels,

with a spatial resolution of 1.3m per pixel. The number of bands of the ROSIS-

03 sensor is 115 with a spectral coverage ranging from 0.43 to 0.86μm. The 12

most noisy channels have been removed, and the experiments are conducted on

the 103-band image. Nine classes of interest are considered, with the number

of test and training samples detailed for each class in Table 2. Training-test

set was provided by Prof. Paolo Gamba together with the hyperspectral image.

False color image of the University of Pavia and the reference data are presented

in Figure 7.

(a) (b)

Figure 7: University of Pavia image: (a) Three-band color composite; (b) Reference data:
Asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, shadows and non-
labeled pixels.

4.1.2. Experimental results

Different approaches of the watershed transformation of hyperspectral im-

ages described in Section 2 were tested. Watershed segmentation was performed
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on the gradient function obtained in four different ways:

1. Band50 : A morphological Beucher gradient (see (1)) was computed on

one band. Band No. 50 was chosen arbitrarily, but similar results were

obtained with other non noisy bands. Here and in all the following mor-

phological operations, a 3 × 3 square structuring element E was used

(center of E was in the center of the square).

2. SumBands : First, a morphological gradient for every band was computed.

Then, the sum of gradients was obtained by (6), assuming that ωλ = 1,

λ = 1, 2, ..., B.

3. Sum4PCA: First, the PCA transformation was performed on the original

image (using the ENVI software [59]). The first four principal components

contained 99.16% of the total variance in the data. Morphological gradi-

ents of the first four PCA components were computed, and then summed

together (using (6), with equal unitary weights).

4. RCMG: The RCMG on the original image was computed by (5), with

r = 1.

The obtained four gradient images are shown in Figure 8. The principal bor-

ders of objects are defined by all gradients. Thus, most of the spatial structures

can be recognized only from the single band No. 50. However, some structures,

for instance shadows were not defined by the gradient Band50 (see Fig. 8.(a),

left-bottom corner of the image). The borders of shadows are present in the

other three gradient images, as in this case the information from all bands was

used for computation. If we compare the images of gradients SumBands and

Sum4PCA (Figures 8.(b) and 8.(c), respectively), the latter one seems to be less

noisy (for instance, see the meadows part in the bottom of the image). Also,

the Sum4PCA gradient defines roads well. But as the four PCA components do

not contain all the information in the original image, some details are missed in

the Sum4PCA gradient image (for instance, trees). The RCMG gradient (see

Fig. 8.(d)) defines borders that are thinner and clearer than those defined by

the other three gradients.
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(a) (b)

(c) (d)

Figure 8: Gradients of the University of Pavia image: (a) Gradient of band No. 50; (b) Sum of
gradients over all bands; (c) Sum of gradients for the first four PCA components; (d) RCMG
using the Euclidean distance, r = 1.
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(a) (b) (c)

Figure 9: University of Pavia image: (a) Watershed on the RCMG, using the Euclidean
distance, r = 1; (b) Classification map for the SVM classification; (c) Classification map
for the spectral-spatial classification (using watershed map on the RCMG, With WHEDs
approach).

Furthermore, the watershed transformation was applied to each of the four

obtained gradients, using the algorithm of Vincent and Soille [48] (based on 8-

neighborhood connectivity). The resulting segmentation maps for watershed on

Band50, SumBands, Sum4PCA and RCMG gradients contained 11641, 10558,

10345 and 11802 regions, respectively. Figure 9.(a) shows the segmentation map

based on the RCMG, where the main spatial structures can be seen. (The colors

of each region correspond to the label of this region, scaled in order to obtain a

grey-scale 8-bit image.)

As expected, the obtained watershed results were severely oversegmented.

Objects were represented mostly by several regions. The first aim was to ob-

tain the segmentation map where each region contained pixels belonging to one

object, i.e., where there were no undersegmentation errors. As mentioned in

Section 2, oversegmentation can be corrected by merging regions. On the other

hand, it may be more difficult to cope with the undersegmentation problem.
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To assess qualitatively the accuracy of the watershed segmentation, the ob-

tained segmentation maps were incorporated into the combined spectral-spatial

classifier. First, for every segmentation map, the vector median of every region

was computed, and the watershed pixels were assigned to one of the neighbor-

ing regions based on the minimal distance between the watershed pixel and the

vector median of the different regions.

The multi-class pairwise (one versus one) SVM classification, with the Gaus-

sian Radial Basis Function (RBF) kernel, of the original hyperspectral image

was performed, using the LIBSVM library [60]. The optimal parameters C and

γ were determined by 5-fold cross validation: C = 128, γ = 0.125. Figure 9.(b)

shows the obtained classification map.

After the pixel-wise SVM classification, the majority vote within the wa-

tershed regions was performed. Both the No WHEDs and With WHEDs ap-

proaches introduced in Section 3 were applied for each of the four segmentation

maps. The global classification accuracies for the pixel-wise SVM and combined

spectral-spatial classification are presented in Table 1. Here and in the follow-

ing the accuracies are based on results for test data. The following measures of

accuracy were used:

• Overall Accuracy (OA) is the percentage of correctly classified pixels;

• Average Accuracy (AA) is the mean of class-specific accuracies, i.e., the

mean of the percentage of correctly classified pixels for each class;

• kappa coefficient (κ) is the percentage of agreement (correctly classified

pixels) corrected by the number of agreements that would be expected

purely by chance [52].

The number of training and test samples along with the class-specific accuracies

for test data are given in Table 2. Figure 9.(c) shows the classification map for

the spectral-spatial classification, using the watershed map on the RCMG and

the With WHEDs approach. In order to compare the obtained results with pre-

vious works that used an SVM and spatial information for hyperspectral image
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classification, we have included in Tables 1 and 2 accuracies of mathematical

morphology-based classification of the University of Pavia image using an SVM,

principal components and extended morphological profiles (EMP); results are

taken from Plaza et al. [61], where the same training and test samples were

used for classification. This method was recently proposed by Benediktsson

et al. [62] and is considered as one of the most advanced methods for spectral-

spatial classification of a multi-band data. Other results of joint spectral-spatial

classification of the considered image can be found in [63, 15, 64].

Table 1: Global classification accuracies in percentage for the University of Pavia image:
Overall Accuracy (OA), Average Accuracy (AA) and kappa coefficient (κ).

Method OA AA κ
Pixel-wise SVM 81.01 88.25 75.86

No WHEDs

Band50 83.00 89.59 78.31
SumBands 83.10 89.80 78.44
Sum4PCA 83.36 89.85 78.76

SVM + RCMG 83.48 90.03 78.89
Majority Vote

With WHEDs

Band50 84.83 90.68 80.57
SumBands 85.04 90.73 80.83
Sum4PCA 85.35 91.09 81.23

RCMG 85.42 91.31 81.30
EMP 85.22 90.76 80.86

As can be seen from Table 1, all the SVM-based classifiers give high classifi-

cation accuracies. Furthermore, the combining of spatial information obtained

by watershed segmentation with the spectral classification results improves sub-

stantially the classification accuracies. The With WHEDs approach gave the

best accuracies for all four segmentation results. The best global accuracies are

achieved when performing the spectral-spatial classification based on the seg-

mentation map on the RCMG and applying the With WHEDs approach. In

that case, the overall accuracy is improved by 4.41 and the average accuracy is

improved by 3.06 percentage points compared to the pixel-wise SVM classifica-

tion. The integration of the different segmentation results in the classification

improves the accuracies differently: SumBands performs better than Band50,

Sum4PCA better than SumBands, and RCMG performs best.
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Classification accuracies were improved by the spectral-spatial classification

for almost all the classes (see Table 2). For some classes, like alphalt, bitumen

and bricks, accuracies were much improved by including spatial information,

i.e., the accuracies improved by 5.81 to 9.72 percentage points, mostly because

of the noise reduction. Here, different segmentation approaches led to the best

classification accuracies for different classes. The RCMG segmentation map im-

proved the classification accuracies for the classes meadows, trees, metal sheets

and bitumen. For the classes alphalt and bare soil, the best accuracies were

achieved when applying the Sum4PCA segmentation. That confirms the as-

sumption that the Sum4PCA gradient defined well the information about road

structures. For the classes gravel and bricks, the best accuracies were achieved

using the Band50 and SumBands approaches, respectively.

4.1.3. Concluding discussion

Based on the above, the following conclusions can be drawn about the ac-

curacy of the watershed segmentation:

1. The RCMG leads to the best segmentation and classification results. Ap-

plying the vectorial gradient based on the Euclidean distance between pixel

vectors to the hyperspectral image gave the best classification accuracies,

despite the high-dimensionality of data.

2. The watershed segmentation based on the gradient of one band is the least

accurate approach as was expected, since it may be difficult to distinguish

some different neighboring structures when using only one particular band.

Still, as the inclusion of the information from the Band50 segmentation

map improved the classification accuracies, most of the spatial structures

could be retrieved from this single band.

3. The summing of the gradients of the first four PCA components gave

slightly better results than the summing of the gradients of all bands,

which indicates that the first PCA components contain the most impor-

tant spatial information. Thus, applying the feature extraction before
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computing the gradient and watershed leads to better segmentation re-

sults.

Thus, the incorporation of spatial information into the classifier using the

majority vote approach led to more homogeneous objects in the resulting clas-

sification map, when compared to the pixel-wise classification. However, when

performing watershed segmentation, it is usually difficult to identify small but

significant structures as separate regions. They may be identified as the border

pixels and then be assimilated with one of the neighboring regions. Therefore,

the classification accuracies of small classes, in our case trees and shadows, are

not improved significantly, or reduced.

These conclusions are confirmed by visual inspection, when comparing the

classification maps of the pixel-wise versus spectral-spatial classification (see

Figures 9.(b) and 9.(c)). The spectral-spatial classification reduces significantly

the noise in the classification map, resulting in more homogeneous regions in the

output map. It can be also seen on the left-bottom part of the image that some

small shadows regions were assimilated with the regions in their neighborhood.

When we compare the obtained results with the recent results of spectral-

spatial classification using SVM and EMPs (see Tables 1 and 2), the proposed

segmentation and classification approach leads to higher global accuracies. Fur-

thermore, accuracies for 4 from 9 classes are improved by our technique.

4.2. Segmentation and classification of the Indiana image
4.2.1. Dataset

In the second case study, the developed segmentation and classification algo-

rithms are tested on a hyperspectral image of a rural area (the Indiana image)

with more bands and a lower spatial resolution as compared to the University

of Pavia image. The Indiana image was captured by the AVIRIS sensor over

the Indian Pine test site in Northwestern Indiana [45]. The image is 145 by 145

pixels, and the spatial resolution is 20m per pixel. It is composed of 220 spec-

tral channels, and the full spectral range was used for experiments. The data

contains 16 classes, which are detailed in Table 4, with a number of samples for
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each class in the available reference data. Figure 10 depicts the 3-band false

color composite and the reference data. In our experiments, we have chosen

randomly 10% of the samples for each class from the reference data as training

samples (in order to test classification performances when limited reference data

are available).

(a) (b)

Figure 10: Indiana image: (a) Three-band color composite (bands 50, 27, 17); (b) Reference
data: Corn-no till, Corn-min till, Corn, Soybeans-no till, Soybeans-min till, Soybeans-clean
till, Alfalfa, Grass/pasture, Grass/trees, Grass/pasture-mowed, Hay-windrowed, Oats, Wheat,
Woods, Bldg-Grass-Tree-Drives, Stone-steel towers and non-labeled pixels.

4.2.2. Experimental results

In this experiment, we do not choose one single band to perform a gradient,

because there are more classes, with similar spectral responses, and some classes

can be confused using only one specific band. Thus, three gradient functions

were computed: SumBands, Sum4PCA, RCMG. They were computed in the

same way as for the University of Pavia image, as described in the previous

subsection. For the Indiana image, the first four PCA components contain

99.23% of the total variance for the data.

As for the previous data set, the watershed transformation was applied to

each of the gradient functions. The segmentation maps contain 1215, 1097 and

1277 regions for the SumBands, Sum4PCA and RCMG gradients, respectively.

Figure 11.(a) shows the segmentation map obtained from the SumBands gra-

dient. It is difficult to evaluate the accuracy of segmentation from the image,

since it is strongly oversegmented. In order to perform such an evaluation,
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(a) (b) (c)

Figure 11: Indiana image: (a) Watershed on the sum of gradients over all bands; (b) Classifica-
tion map for the SVM classification; (c) Classification map for the spectral-spatial classification
(using SumBands method, With WHEDs approach).

the information from the segmentation maps was used for the spectral-spatial

classification, as described below.

First, the segmentation maps for the With WHEDs approach were computed,

by assigning the watershed pixels to the neighboring regions that had the closest

vector median. Then, the multi-class one versus one SVM classification, with

the Gaussian RBF kernel, of the original Indiana image was performed. The

parameters C and γ were computed by 5-fold cross validation giving: C =

1024, γ = 2−7. The resulting classification map is given in Figure 11.(b). The

classification accuracies for test samples are shown in Tables 3 and 4.

The low spatial resolution of the Indiana image leads to the presence of

highly mixed pixels which complicates the classification problem. Furthermore,

some classes represent small crop fields, and the number of samples in the refer-

ence data for different classes varies from 20 to 2468 samples per class. To train

the SVM classifier, 10% of the samples for each class were chosen randomly

from the reference data. Therefore, some classes were represented by only a few

samples in the training set (2 samples for the class oats), which may not provide

sufficient representatives for the small classes.

Despite these problems, 78.76% of the pixels in the test set were correctly

classified by the SVM classifier. As expected, the classification accuracies for

the classes that were represented by only a few training samples are low (for
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instance, only 22.22% accuracy was observed for the class oats). The low classi-

fication accuracies for the classes alfalfa, grass/pasture-mowed and oats reduced

the average classification accuracy to 69.66%.

Now we turn to the spectral-spatial classification. As in the first experiment,

the watershed segmentation maps were used in the spectral-spatial classification

based on the majority vote method, with the No WHEDs and With WHEDs

approaches.

Tables 3 and 4 give global and class-specific classification accuracies for the

spectral-spatial classification of the Indiana image, respectively. Figure 11.(c)

shows the classification map for the spectral-spatial classification, using the

watershed map on the SumBands gradient and the With WHEDs approach.

Previous classification results for the Indiana image can be found in [65, 61] for

comparison. However, the accuracies in the referenced works are not directly

compared with those given in this paper, because different training-test sets are

used. Furthermore, in order to evaluate the efficiency of the proposed segmen-

tation and classification scheme using watershed, we have included in Tables 3

and 4 the spectral-spatial classification results, obtained by applying another

segmentation technique followed by the procedure proposed in this paper (SVM

classification and majority vote within the regions from a segmentation map).

This time, the Hierarchical Image Segmentation (HSEG) algorithm [24] was

used to segment a hyperspectral image. The NASA Goddard’s RHSEG soft-

ware provides an efficient implementation of this algorithm [66], which we used

for our investigation. At the initialization step each pixel is considered as one

region. The algorithm merges iteratively the most similar adjacent and non-

adjacent regions. We used a Spectral Angle Mapper between the region mean

vectors as the dissimilarity criterion between regions. The relative importance

of merging of non-adjacent regions versus region growing (when only adjacent

regions are merged) can be tuned. From experimental results, simple region

growing leads to the highest classification accuracies. Segmentation maps for

several levels of hierarchy were chosen interactively, and the results leading to

the best classification are shown.
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Table 3: Global classification accuracies in percentage for the Indiana image: Overall Accu-
racy (OA), Average Accuracy (AA) and kappa coefficient (κ).

Method OA AA κ
Pixel-wise SVM 78.76 69.66 75.73

No WHEDs

SumBands 87.03 75.24 85.18
Sum4PCA 86.92 77.79 85.05

SVM + RCMG 86.79 79.36 84.88
Majority Vote

With WHEDs

SumBands 93.78 80.53 92.88
Sum4PCA 91.67 80.61 90.47

RCMG 92.48 77.26 91.39
HSEG 92.20 80.49 91.06

As in the previous experiment, the combined spectral-spatial classification

improved the classification accuracies, and the With WHEDs approach gave

the best performances. The use of the watershed map based on the SumBands

gradient led to the highest overall accuracy (an improvement by 15.02 percentage

points compared to the pixel-wise classification) and kappa coefficient, while

the highest average accuracy was achieved by using the Sum4PCA gradient (it

is 10.95 percentage points higher than for the pixel-wise classification). The

watershed based on the RCMG gradient led to lower classification accuracies

than the one based on the SumBands gradient. And the RCMG approach gave

a higher overall accuracy but a lower average accuracy than the Sum4PCA

approach.

The class-specific accuracies were improved by using the spatial information

in the classification for almost all the classes (see Table 4). After the combined

spectral-spatial classification, the classification accuracy was reduced for only

one class (oats). The classification using the With WHEDs approach led to 0%

accuracy for this class. The oats class has only 20 pixels in the reference map,

and represents a small and very narrow (of 2 pixels width) rectangular field.

Thus, after majority voting within the watershed regions, pixels of the oats

class were assigned to the classes in its neighborhood (mostly to the grass/trees

class). This drawback of spectral-spatial classification, i.e., the risk of loosing

small spatial structures, was discussed in the previous subsection.
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4.2.3. Concluding discussion

In assessing the watershed segmentation approaches we note that the results

for the Indiana image are different from those for the University of Pavia image.

For the Indiana image, the linear combination (sum) of gradients of all bands

or several principal components leads to better segmentation results than the

use of the vectorial gradient. This can be explained by the fact that the Indiana

image contains more spectral channels (220 channels versus 103 channels for

the University of Pavia image). Furthermore, the vectorial gradient, based on

the Euclidean distance between pixel vectors does not give accurate results due

to the curse of dimensionality. In this case, it appears to be more appropriate

to compute marginal gradients of every band and to sum them together or to

reduce the spectral dimension by performing feature extraction first, and then

compute a gradient.

The spectral-spatial classification improved classification accuracies when

compared to pixel-wise classification. The improvement of the global accuracies

was more significant than for the University of Pavia image. From a visual

observation (see Figures 11.(b) and 11.(c)), the classification map obtained by

the spectral-spatial classification is seen to be much less noisy than the one

obtained by the pixel-wise classification. From the obtained results, we can draw

the conclusion that the Indiana image contains a lot of relatively large regularly

structured spatial objects (crop fields) which is the reason why the inclusion

of the spatial information was very efficient and improved the classification

accuracies significantly.

If we analyze classification results obtained by majority vote within the

HSEG regions, we can conclude that:

1. The global and most of class-specific accuracies are improved when com-

pared to pixel-wise classification. This proves the efficiency of the proposed

spectral-spatial classification scheme.

2. The accuracies are lower than those obtained when using watershed for

segmentation (except for 2 classes). This confirms why it is desirable to
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use watershed segmentation for hyperspectral images.

5. Conclusions

Hyperspectral imaging provides rich spectral information per pixel, increas-

ing the capability to distinguish physical structures in a scene. However, a large

number of spectral channels presents challenges to image classification. While

pixel-wise classification techniques process each pixel independently without

considering information about spatial structures, further improvement of classi-

fication performances can be achieved by the incorporation of spatial informa-

tion into classifier, especially in areas where structural information is important

to distinguish between classes.

In this paper, there are two main contributions:

1. The extension of the watershed segmentation algorithm for hyperspectral

images was proposed. In particular, different ways were investigated to

obtain a one-band gradient function from a hyperspectral image and the

combination of watershed segmentation maps was proposed.

2. A new methodology, a spectral-spatial classification scheme for hyperspec-

tral images was proposed. The new method is based on the pixel-wise SVM

classification, followed by majority voting within the watershed regions.

Thus, segmentation defines an adaptive neighborhood for each pixel.

In two experiments it was shown that the combined spectral-spatial classifi-

cation, based on majority voting within the regions obtained by the watershed

segmentation algorithms, led to higher classification accuracies when compared

to pixel-wise classification or previously proposed techniques. Furthermore, clas-

sification maps with more homogeneous regions were obtained with the proposed

approach.

In conclusion, the proposed classification methodology succeeded in taking

advantage of spatial the spectral information simultaneously. Furthermore, ex-

perimental results have revealed that it is desirable to use the watershed segmen-

tation map in a spectral-spatial classifier. The watershed transformation is a
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completely unsupervised method since it does not require any input parameters

(thresholds). Therefore, it can be incorporated into an automatic classification

system.

The proposed spectral-spatial classification scheme is especially suitable in

classifying images with large spatial structures. The drawback of the proposed

method is that when applying watershed segmentation, small spatial structures

are often not identified as separate regions. This leads to the assimilation of

these structures with larger neighboring structures when majority voting is per-

formed within the watershed regions.

In our future work, we will attempt to improve the segmentation results. In

particular, we envision to explore the use of additional filtering and merging of

regions for that purpose.
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