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Neutrinos come in three flavours made up of a mix of three neutrino masses. While the 

differences between the masses are known, little information was available about the mass of 

the lightest species until now. [19] 

Nuclear physicists successfully measured the weak charge of the proton by shooting 

electrons at a cold liquid hydrogen target in an experiment carried out at the 

Department of Energy's Thomas Jefferson National Accelerator Facility. [18] 

The IceCube Neutrino Observatory in Antarctica is about to get a significant upgrade. 

[17] 

While these experiments seem miniature in comparison to others, they could reveal 

answers about neutrinos that have been hiding from physicists for decades. [16] 

In a paper published today in the European Physical Journal C, the ATLAS Collaboration 

reports the first high-precision measurement at the Large Hadron Collider (LHC) of the 

mass of the W boson. [15]  

A team of researchers at the University of Michigan has conducted a thought experiment 

regarding the nature of a universe that could support life without the weak force. [14] 

The international T2K Collaboration announces a first indication that the dominance of 

matter over antimatter may originate from the fact that neutrinos and antineutrinos 

behave differently during those oscillations. [13]  

Neutrinos are a challenge to study because their interactions with matter are so rare. 

Particularly elusive has been what's known as coherent elastic neutrino-nucleus 

scattering, which occurs when a neutrino bumps off the nucleus of an atom. [12]  

Lately, neutrinos – the tiny, nearly massless particles that many scientists study to better 

understand the fundamental workings of the universe – have been posing a problem for 

physicists. [11]  

Physicists have hypothesized the existence of fundamental particles called sterile 

neutrinos for decades and a couple of experiments have even caught possible hints of 

them. However, according to new results from two major international consortia, the 

chances that these indications were right and that these particles actually exist are now 

much slimmer. [10]  
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The MIT team studied the distribution of neutrino flavors generated in Illinois, versus 

those detected in Minnesota, and found that these distributions can be explained most 

readily by quantum phenomena: As neutrinos sped between the reactor and detector, 

they were statistically most likely to be in a state of superposition, with no definite flavor 

or identity. [9]  

A new study reveals that neutrinos produced in the core of a supernova are highly 

localised compared to neutrinos from all other known sources. This result stems from a 

fresh estimate for an entity characterising these neutrinos, known as wave packets, 

which provide information on both their position and their momentum. [8]  

It could all have been so different. When matter first formed in the universe, our current 

theories suggest that it should have been accompanied by an equal amount of antimatter 

– a conclusion we know must be wrong, because we wouldn’t be here if it were true. Now 

the latest results from a pair of experiments designed to study the behaviour of neutrinos 

– particles that barely interact with the rest of the universe – could mean we’re starting 

to understand why. [7]  

In 2012, a tiny flash of light was detected deep beneath the Antarctic ice. A burst of 

neutrinos was responsible, and the flash of light was their calling card. It might not 

sound momentous, but the flash could give us tantalising insights into one of the most 

energetic objects in the distant universe.  

The light was triggered by the universe's most elusive particles when they made contact 

with a remarkable detector, appropriately called IceCube, which was built for the very 

purpose of capturing rare events such as this. [6]  

Neutrinos and their weird subatomic ways could help us understand highenergy 

particles, exploding stars and the origins of matter itself. [5]  

PHYSICS may be shifting to the right. Tantalizing signals at CERN’s Large Hadron 

Collider near Geneva, Switzerland, hint at a new particle that could end 50 years of 

thinking that nature discriminates between left and righthanded particles. [4]  

The Weak Interaction transforms an electric charge in the diffraction pattern from one 

side to the other side, causing an electric dipole momentum change, which violates the CP 

and Time reversal symmetry.  

The Neutrino Oscillation of the Weak Interaction shows that it is a General electric dipole 

change and it is possible to any other temperature dependent entropy and information 

changing diffraction pattern of atoms, molecules and even complicated biological living 

structures.   
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Maximum mass of lightest neutrino revealed using astronomical big data  
Neutrinos come in three flavours made up of a mix of three neutrino masses. While the differences 

between the masses are known, little information was available about the mass of the lightest species until 

now. 

It's important to better understand neutrinosand the processes through which they obtain 

their mass as they could reveal secrets about astrophysics, including how the universe is held together, 

why it is expanding and what dark matter is made of. 

First author, Dr. Arthur Loureiro (UCL Physics & Astronomy), said: "A hundred billion neutrinos fly through 

your thumb from the Sun every second, even at night. These are very weakly interactive ghosts that we 

know little about. What we do know is that as they move, they can change between their three flavours, 

and this can only happen if at least two of their masses are non-zero." 

"The three flavours can be compared to ice cream where you have one scoop containing strawberry, 

chocolate and vanilla. Three flavours are always present but in different ratios, and the changing ratio-and 

the weird behaviour of the particle-can only be explained by neutrinos having a mass." 

The concept that neutrinos have mass is a relatively new one with the discovery in 1998 earning Professor 

Takaaki Kajita and Professor Arthur B. McDonald the 2015 Nobel Prize in Physics. Even so, the Standard 

Model used by modern physics has yet to be updated to assign neutrinos a mass. 

The study, published today in Physical Review Letters by researchers from UCL, Universidade Federal do Rio 

de Janeiro, Institut d'Astrophysique de Paris and Universidade de Sao Paulo, sets an upper limit for the 

mass of the lightest neutrino for the first time. The particle could technically have no mass as a lower limit is 

yet to be determined. 

The team used an innovative approach to calculate the mass of neutrinos by using data collected by both 

cosmologists and particle physicists. This included using data from 1.1 million galaxies from the Baryon 

Oscillation Spectroscopic Survey (BOSS) to measure the rate of expansion of the universe, and constraints 

from particle accelerator experiments. 

https://phys.org/tags/neutrinos/
https://phys.org/tags/mass/
https://phys.org/tags/upper+limit/


"We used information from a variety of sources including space- and ground-based telescopes observing 

the first light of the Universe (the cosmic microwave background radiation), 

exploding stars, the largest 3-D map of galaxies in the Universe, particle accelerators, nuclear reactors, and 

more," said Dr. Loureiro. 

"As neutrinos are abundant but tiny and elusive, we needed every piece of knowledge available to calculate 

their mass and our method could be applied to other big questions puzzling cosmologists and particle 

physicists alike." 

The researchers used the information to prepare a framework in which to mathematically model the mass 

of neutrinos and used UCL's supercomputer, Grace, to calculate the maximum possible mass of the lightest 

neutrino to be 0.086 eV (95% CI), which is equivalent to 1.5 x 10-37 Kg. They calculated that three neutrino 

flavours together have an upper bound of 0.26 eV (95% CI). 

Second author, Ph.D. student Andrei Cuceu (UCL Physics & Astronomy), said: "We used more than half a 

million computing hours to process the data; this is equivalent to almost 60 years on a single processor. This 

project pushed the limits for big data analysis in cosmology." 

The team say that understanding how neutrino mass can be estimated is important for future cosmological 

studies such as DESI and Euclid, which both involve teams from across UCL. 

The Dark Energy Spectroscopic Instrument (DESI) will study the large scale structure of the universe and its 

dark energy and dark matter contents to a high precision. Euclid is a new space telescope being 

developed with the European Space Agency to map the geometry of the dark Universe and evolution of 

cosmic structures. 

Professor Ofer Lahav (UCL Physics & Astronomy), co-author of the study and chair of the UK Consortiums of 

the Dark Energy Survey and DESI said: "It is impressive that the clustering of galaxies on huge scales can tell 

us about the mass of the lightest neutrino, a result of fundamental importance to physics. This new study 

demonstrates that we are on the path to actually measuring the neutrino masses with the next generation 

of large spectroscopic galaxy surveys, such as DESI, Euclid and others." 

Arthur Loureiro et al., 'On The Upper Bound of Neutrino Masses from Combined Cosmological Observations 

and Particle Physics Experiments' will be published in Physical Review Letters on Thursday 22 August 2019. 

[19] 

 

 

Considering the container to strengthen the weak force's signal  
Nuclear physicists successfully measured the weak charge of the proton by shooting electrons at a cold 

liquid hydrogen target in an experiment carried out at the Department of Energy's Thomas Jefferson 

National Accelerator Facility. Dubbed Q-weak, the precision experiment featured many technical challenges 

for the physicists to solve for its successful conclusion. 
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One potentially confounding variable was the cold liquid hydrogen target itself. The target system was 

custom designed for Q-weak, with care being taken to build a system that could keep the hydrogen cold 

even while it was being bombarded by a merciless yet precise beam of spinning electrons. 

The physicists even had to consider what impact the aluminum container that held the hydrogen would 

have on their result. For his part in solving this technical challenge and for the thesis he wrote about these 

efforts, Kurtis Bartlett was awarded the 2018 Jefferson Science Associates Thesis Prize. 

The weak charge of the proton describes how much the weak force, one of the four fundamental forces 

of the universe, acts upon the proton. 

"Probing the proton with an electron via the weak force, it allows you to actually measure the weak 

charge," Bartlett said. 

But, as its name implies, the weak force is, well, weak. Electrons are far more likely to interact with protons 

via the electromagnetic force, another fundamental force. 

Fortunately, the weak force has a unique marker: it violates a universal symmetry called parity. A process 

that conserves parity symmetry occurs with the same probability as its mirror image. The weak force 

exhibits asymmetry for parity transformations. 

"Measuring this asymmetry gives access to the weak force," Bartlett said. "However, it's very difficult to 

actually do in the laboratory—it's a mathematical type of operation." 

Instead, Q-weak used a stand-in for parity transformation. Before the electrons were accelerated, they 

were polarized so that they were all spinning either the same direction as the beam, or the opposite 

direction as the beam. 

Because the electromagnetic force conserves parity symmetry, it interacts the same way with electrons 

spinning in either direction. But because the weak force violates parity symmetry, it interacts more with 

electrons spinning in one direction. Physicists are able to exploit this difference to get a measurement of 

the proton's weak charge. 

Reaching that measurement, however, was not so simple. In the experiment, a small fraction of electrons 

that the physicists measure never actually hit the hydrogen target. Instead, some electrons scattered off 

the aluminum container that held the hydrogen, which contaminated the weak force signal the physicists 

were trying to measure. 

That's where Bartlett came in. His task was to minimize this signal contamination by determining how much 

of the measured signal came from the aluminum target container. 

"I went through the process of understanding how to correct our measured values," said Bartlett. 

To do so, Q-weak removed the hydrogen target for some runs, replacing it with a piece of aluminum 

identical to the container. Then Q-weak again shot polarized electrons at the target, except instead of 

measuring parity asymmetry using a proton of hydrogen, Bartlett measured parity asymmetry using an 

aluminum nucleus. 

"It's the first time that type of asymmetry has ever been measured, which is a pretty exciting thing," he said. 
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Bartlett worked on his thesis, "First Measurements of the Parity-Violating and Beam-Normal Single-Spin 

Asymmetries in Elastic Electron-Aluminum Scattering," at Jefferson Lab while pursuing his Ph.D. in 

experimental nuclear physics at William & Mary. His thesis advisor was Wouter Deconinck, an assistant 

professor of physics at William & Mary who also worked on the Q-weak experiment. 

Bartlett presented his thesis work to the Jefferson Lab Users Organization Board of Directors, who oversee 

the JSA Thesis Prize award process. Users are scientists from across the U.S. and worldwide who conduct 

fundamental nuclear physics experiments with Jefferson Lab's research facilities and capabilities. 

"I was excited to hear the news that I'd won, and I am very honored to receive it," Bartlett said. "Though I 

received this award for my dissertation, it is very much a group effort, and I want to highlight that Q-weak 

as a whole involved many scientists, engineers, technicians and administrative staff to get it all done." 

The JSA Thesis Prize is awarded annually for the best Ph.D. student thesis on research related to Jefferson 

Lab science, and it includes a $2,500 cash award and a commemorative plaque. Nominations are judged on 

four criteria: the quality of the written work, the student's contribution to the research, the work's impact 

on the field of physics, and service (how the work benefits Jefferson Lab or other experiments). 

The Southeastern Universities Research Association established the JSA Thesis Prize in 1999. It's now one of 

many projects supported by the JSA Initiatives Fund Program, which was established by Jefferson Science 

Associates to support programs, initiatives and activities that further the scientific outreach, and promote 

the science, education and technology missions of Jefferson Lab in ways that complement its basic and 

applied research focus. 

"Graduate students are the driving force of any research enterprise, so the Jefferson Lab User 

Organization is proud to give out the thesis price this year again. We thank JSA for providing support for this 

prize," said Julie Roche, the 2018-2019 JLUO chair and professor at Ohio University. "As usual, the theses 

submitted were of very high quality and made deciding on a winner quite a challenge. I want to thank the 

selection committee lead by University of Virginia Professor Kent Paschke for its careful examination of the 

submissions. In the end, we are delighted to recognize Kurtis's work." 

Bartlett is currently a postdoctoral research associate for the Space Science and Application Group at DOE's 

Los Alamos National Laboratory, where he develops space craft detectors that measure radiation to help 

determine the composition of planetary bodies. 

"Although I'm developing hardware now, I'm still using the skill set developed in my dissertation research," 

Bartlett said. [18] 

 

 

Upgrade of a research IceCube  
The IceCube Neutrino Observatory in Antarctica is about to get a significant upgrade. This huge detector 

consists of 5,160 sensors embedded in a 1x1x1 km volume of glacial ice deep beneath the geographic South 

Pole. The purpose of this huge installation is to detect neutrinos, the "ghost particles" of the Universe. The 

IceCube Upgrade will add more than 700 new and enhanced optical sensors in the deepest, purest ice, 

greatly improving the observatory's ability to measure low-energy neutrinos produced in the Earth's 
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atmosphere. The research in neutrinos at the Niels Bohr Institute, University of Copenhagen, is led by 

Associate Professor Jason Koskinen 

The upgrade is necessary for the development of a new field of research 

"The current IceCube detector is providing leading results in astrophysics and particle physics, 

specifically measurements of neutrino oscillations by researchers in Copenhagen, but can only take us so 

far. When neutrinos oscillate, they change 'flavour'—and actually change properties. Through a 

truly international effort, this new detector is going to be a huge leap forward in our ability to 

understand the fundamental properties of the neutrino in ways that no other project in the world can do 

now," says D. Jason Koskinen, Associate Professor and leader of the local IceCube research group at the 

Niels Bohr Institute. 

Neutrino oscillations—creating a new neutrino vision 

The principal goal of this first IceCube extension is to perform precision studies of the strange phenomenon 

known as 'neutrino oscillation,' where neutrinos produced as one type may 'oscillate' to another as 

they travel. The sensitivity of the upgraded detector will allow scientists at NBI and worldwide to test if 

neutrinos only oscillate between the three known types, or if there are also new and as yet undiscovered 

neutrino types participating. These new neutrino types are predicted by the leading theories seeking to 

explain the unimaginably tiny masses neutrinos possess. 

Additionally, the upgrade will include an advanced suite of the calibration devices, designed to better 

characterise the properties of the glacier ice. This will allow scientists to more accurately pin-point the 

distant and violent sources of the high energy astrophysical neutrinos IceCube has discovered. 

This upgrade will not only offer huge advances in fundamental neutrino physics and astrophysics, but will 

pave the way for a future expansion of the entire observatory to 10 times the size, opening a new era in 

neutrino astronomy. [17] 

 

 

Neutrino experiments look to reveal big answers about how these 

fundamental particles interact with matter  
Except in horror movies, most scientific experiments don't start with scientists snooping around narrow, 

deserted hallways. But a tucked-away location in the recesses of the Department of Energy's (DOE) Oak 

Ridge National Laboratory (ORNL) provided exactly what Yuri Efremenko was looking for. 

Efremenko, an ORNL researcher and University of Tennessee at Knoxville professor, is the spokesperson for 

the COHERENT experiment, which is studying neutrinos. The team uses five particle detectors to identify a 

specific interaction between neutrinos and atomic nuclei. The most abundant particles in the universe, 

neutrinos are extremely light and have no electric charge. They interact very little with other particles. In 

fact, trillions pass through the Earth every second, leaving no impression. Needless to say, they're 

notoriously difficult to detect. 

At first, the team surveyed a bustling area near the Spallation Neutron Source (SNS), a DOE Office of Science 

user facility at ORNL in Tennessee. The neutrons the SNS produces drive 18 different instruments that 
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surround the SNS like spokes on a wheel. The SNS also produces neutrinos, which fly off in all directions 

from the particle accelerator's target. But putting the neutrino detectors on the same floor as the SNS 

would expose the devices to background particles that would increase uncertainties. 

"We were really fortunate to go into the basement one day," said David Dean, ORNL's Physics Division 

Director. After moving some water barrels to the side and conducting background tests, they were in 

business. The basement location would protect the machines from exposure to background particles. 

Once scientists installed the experiment's detectors, they nicknamed the hallway "Neutrino Alley." 

The experiment, called COHERENT, poses a stark contrast to most other neutrino experiments. To catch a 

glimpse of these miniscule particles, most experiments use incredibly large machines, often in remote 

locations. One is located at the South Pole, while another shoots neutrino beams hundreds of miles to a far 

detector. Besides its mundane location, COHERENT's main detector is barely bigger than a milk jug. In fact, 

it's the smallest working neutrino detector in the world. 

But COHERENT and a sister experiment at ORNL, PROSPECT, are showing that neutrino experiments don't 

have to be enormous to make big discoveries. These two modest experiments supported by DOE's Office of 

Science are poised to fill some major gaps in our understanding of this strange particle. 

The Mysteries of the Neutrino 

While neutrinos are some of the smallest particles in the universe, investigating them may reveal massive 

insights. 

"Neutrinos tell us a tremendous amount about how the universe is created and held together," said 

Nathaniel Bowden, a scientist at DOE's Lawrence Livermore National Laboratory and co-spokesperson for 

PROSPECT. "There's no other way to answer a lot of the questions that we find ourselves having." 

Understanding how neutrinos interact may even help us understand why matter—and everything made out 

of it—exists at all. 

But neutrinos haven't made answering these questions easy. There are three different types of neutrinos, 

each of which behaves differently. In addition, they change type as they travel. Some scientists have 

proposed a not-yet-seen particle called the sterile neutrino. Physicists theorize that if sterile neutrinos 

exist, they would interact with other particles even less than regular ones do. That would make them nearly 

impossible to detect. 

But that's a big "if." A sterile neutrino would be the first particle not predicted by the Standard Model, 

physicists' summary of how the universe functions. 

"Neutrinos may hold the clue to discovering particle physics beyond the Standard Model," said Karsten 

Heeger, a Yale University professor and co-spokesperson for PROSPECT. 

Searching for a Coherent Answer with COHERENT 

A team of scientists from ORNL, other DOE national laboratories, and universities designed the COHERENT 

experiment to identify a specific interaction between neutrinos and nuclei. While physicists had predicted 

this interaction more than 40 years ago, they had never detected it. 

Most neutrinos only interact with individual protons and neutrons. But if a neutrino's energy is low enough, 

it should interact with an entire nucleus rather than its individual parts. Theorists proposed that when a 
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low-energy neutrino approaches a nucleus, the two particles exchange an elementary particle called a Z 

boson. As the neutrino releases the Z boson, the neutrino bounces away. As the nucleus receives the Z 

boson, the nucleus recoils slightly. That interaction is called coherent elastic neutrino-nucleus scattering. 

Because most nuclei are much bigger than individual protons or neutrons, scientists should see this type of 

interaction more frequently than interactions driven by higher energy neutrinos. By "seeing" the tiny recoil 

energy, COHERENT's gallon-sized detectors make it possible for scientists to study neutrino properties. 

 

Bjorn Scholz (left) from the University of Chicago and Grayson Rich of the University of North Carolina at 

Chapel Hill and the Triangle Universities Nuclear Laboratory show off the world's smallest neutrino 

detector, which is part of the …more 

"It's kind of cool that you could actually see an interaction of neutrinos with something you can hold in your 

hand," said Kate Scholberg, a Duke University professor and collaborator on COHERENT. 

But none of this would be possible without ORNL's SNS. The neutrinos the SNS produces pass through 

concrete and gravel to reach ORNL's basement. They have just the right energy to induce this particular 

interaction. The SNS's pulsed beam also allows scientists to filter out background "noise" from other 

particles. 
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"There's quite a flux of neutrinos that was being wasted, at the SNS, so to speak. It is the perfect source for 

coherent scattering—the cat's pajamas," said Juan Collar, a University of Chicago professor and collaborator 

on COHERENT. 

After running for 15 months, COHERENT caught neutrinos in the act of handing off Z bosons 134 times. 

Looking over his graduate student's shoulder as he crunched the data, Collar was thrilled to see that the 

results came out exactly as expected. "When we finally looked at the processed, full dataset, we went 

'wheeeeeee!'" he said. 

Measuring this phenomenon – neutrino-nucleus elastic scattering – gives physicists a new and versatile tool 

to understand neutrinos. 

"It's opened our window to look for the physics beyond the Standard Model," said Efremenko. 

Using this interaction, scientists may be better able to understand how supernovae explode and produce 

neutrinos. 

While these detectors are mainly used for fundamental research, their tiny size could also be useful for 

other applications. Nuclear reactors produce different types and amounts of neutrinos, depending on 

whether they produce energy or weapons-grade material. A detector as small as COHERENT's could make 

the effort to monitor nuclear facilities much easier. 

Finding Precision with PROSPECT 

While COHERENT looked for a specific phenomenon, the PROSPECT experiment will focus on making 

incredibly precise measurements of neutrinos from a nuclear reactor as they change type. Past nuclear 

reactor experiments have resulted in measurements that depart from theory. The PROSPECT team has 

designed an experiment that can explore any discrepancies, eliminate possible sources of error, or even 

discover the sterile neutrino. 

Compared to previous neutrino reactor experiments, PROSPECT will be able to more accurately measure 

the number and type of neutrinos, the distance they travel from the reactor, and their energy. PROSPECT 

differs from other experiments in that its detector has multiple sections instead of one single chamber. This 

allows scientists to measure and compare various neutrino oscillation lengths – that is, how far from the 

reactor neutrinos are changing type. 

If sterile neutrinos exist, this detector design may also enable scientists to observe regular neutrinos 

transitioning into sterile neutrinos. In theory, this new form of neutrinos should appear at a specific 

distance from the detector core. 

The High Flux Isotope Reactor (HFIR), a DOE Office of Science user facility at ORNL, will provide PROSPECT 

with its neutrinos. Commercial nuclear reactors use a variety of uranium and plutonium fuels with different 

combinations of isotopes. This results in a broad spectrum of neutrino energies. That makes it difficult to 

pinpoint which isotopes are producing which neutrinos. As a research reactor, HFIR only uses one isotope of 

uranium: uranium-235. By measuring the antineutrinos from that single isotope, the PROSPECT team can 

better understand how all nuclear reactors produce neutrinos. 

Scientists in the PROSPECT collaboration recently finished building a detector at Yale University's Wright 

Laboratory. While the active detector region is much bigger than COHERENT's milk-jug sized detector, it's 
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still only four feet wide and weighs about five tons. Compared to detectors that weigh thousands of tons, 

this experiment too runs on the small side. Once PROSPECT is completed and in place, it will take data for 

three years. 

While these experiments seem miniature in comparison to others, they could reveal answers 

about neutrinos that have been hiding from physicists for decades. It may just be a matter of scientists 

knowing where and how to look, even if that's down a seemingly ordinary storage hallway. [16] 

 

 

 

First high-precision measurement of the mass of the W boson at the LHC 
In a paper published today in the European Physical Journal C, the ATLAS Collaboration reports the first 

high-precision measurement at the Large Hadron Collider (LHC) of the mass of the W boson. This is one of 

two elementary particles that mediate the weak interaction – one of the forces that govern the behaviour 

of matter in our universe. The reported result gives a value of 80370±19 MeV for the W mass, which is 

consistent with the expectation from the Standard Model of Particle Physics, the theory that describes 

known particles and their interactions. 

The measurement is based on around 14 million W bosons recorded in a single year (2011), when the LHC 

was running at the energy of 7 TeV. It matches previous measurements obtained at LEP, the ancestor of the 

LHC at CERN, and at the Tevatron, a former accelerator at Fermilab in the United States, whose data made 

it possible to continuously refine this measurement over the last 20 years. 

The W boson is one of the heaviest known particles in the universe. Its discovery in 1983 crowned the 

success of CERN's Super proton-antiproton Synchrotron, leading to the Nobel Prize in physics in 1984. 

Although the properties of the W boson have been studied for more than 30 years, measuring its mass to 

high precision remains a major challenge. 

"Achieving such a precise measurement despite the demanding conditions present in a hadron collider such 

as the LHC is a great challenge," said the physics coordinator of the ATLAS Collaboration, Tancredi Carli. 

"Reaching similar precision, as previously obtained at other colliders, with only one year of Run 1 data is 

remarkable. It is an extremely promising indication of our ability to improve our knowledge of the Standard 

Model and look for signs of new physics through highly accurate measurements." 

The Standard Model is very powerful in predicting the behaviour and certain characteristics of 

the elementary particles and makes it possible to deduce certain parameters from other well-known 

quantities. The masses of the W boson, the top quark and the Higgs boson for example, are linked by 

quantum physics relations. It is therefore very important to improve the precision of the W boson mass 

measurements to better understand the Higgs boson, refine the Standard Model and test its overall 

consistency. 

Remarkably, the mass of the W boson can be predicted today with a precision exceeding that of direct 

measurements. This is why it is a key ingredient in the search for new physics, as any deviation of the 

measured mass from the prediction could reveal new phenomena conflicting with the Standard Model. 

https://phys.org/tags/neutrinos/
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The measurement relies on a thorough calibration of the detector and of the theoretical modelling of the W 

boson production. These were achieved through the study of Z boson events and several other ancillary 

measurements. The complexity of the analysis meant it took almost five years for the ATLAS team to 

achieve this new result. Further analysis with the huge sample of now-available LHC data, will allow even 

greater accuracy in the near future. [15] 

 

 

 

Imagining the possibility of life in a universe without the weak force 
A team of researchers at the University of Michigan has conducted a thought experiment regarding the 

nature of a universe that could support life without the weak force. In their paper uploaded to 

the ArXiv preprint server, the researchers suggest life could be possible in such an alternative universe, but 

it would definitely be different from what we observe in ours. 

Physicists have debated the possibility of the existence of alternate universes for some time, though there is 

no evidence they exist. In this new thought experiment, the team at UM wondered if one or more of the 

laws of physics that we have discovered in this universe might not exist in others—if they do exist. Because 

it would be hard to imagine a universe that could exist without gravity and the strong and electromagnetic 

forces, the team instead focused on the weak force—the one behind such things as neutrons decaying into 

protons. 

The team wondered what a universe without the weak force would look like. To visualize it, they created a 

simulation of such a universe starting from the Big Bang. In the simulation, matter was still created and 

condensed into stars, but from there on, things would be different, because in our universe, the weak force 

is responsible for the creation of the heavier elements. In a universe without the weak force, the 

existence of anything other than stars would require more free protons and fewer neutrons (because they 

could not decay). In such a universe, neutrons and protons could link up to make deuterium. 

Stars fueled by deuterium instead of hydrogen, the researchers note, would still shine, they would just look 

different—likely redder and larger. But such stars could also serve as the source of all of the elements in the 

periodic table prior to iron, and the stellar winds could carry them out into space. If planets happened to 

form, they further note, they could hold water made from deuterium rather than hydrogen—and it is not 

impossible to imagine, they suggest, life forms made with deuterium water. [14] 

 

 

 

Possible explanation for the dominance of matter over antimatter in the 

Universe  
An electron-neutrino interaction observed by the T2K experiment. The neutrino interacts with a 

water molecule in the detector volume producing an electron which in turn emits Cherenkov light 

while travelling across the detector. This light is collected by special photo-sensors and converted 

into a measurable electric signal.  
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Neutrinos and antineutrinos, sometimes called ghost particles because difficult to detect, can 

transform from one type to another. The international T2K Collaboration announces a first 

indication that the dominance of matter over antimatter may originate from the fact that 

neutrinos and antineutrinos behave differently during those oscillations. This is an important 

milestone towards the understanding of our Universe. A team of particle physicists from the 

University of Bern provided important contributions to the experiment.  

The Universe is primarily made of matter and the apparent lack of antimatter is one of the most 

intriguing questions of today's science. The T2K collaboration, with participation of the group of 

the University of Bern, announced today in a colloquium held at the High Energy Accelerator 

Research Organization (KEK) in Tsukuba, Japan, that it found indication that the symmetry between 

matter and antimatter (so called "CP-Symmetry") is violated for neutrinos with 95% probability.  

Different Transformation of Neutrinos and Antineutrinos  

Neutrinos are elementary particles which travel through matter almost without interaction. They 

appear in three different types: electron- muon- and tau-neutrinos and their respective antiparticle 

(antineutrinos). In 2013 T2K discovered a new type of transformation among neutrinos, showing 

that muon-neutrinos transform (oscillate) into electron-neutrinos while travelling in space and 

time. The outcome of the latest T2K study rejects with 95% probability the hypothesis that the 

analogous transformation from muon-antineutrinos to electron-antineutrinos takes place with 

identical chance. This is a first indication that the symmetry between matter and antimatter is 

violated in neutrino oscillations and therefore neutrinos also play a role in the creation of the 

matterantimatter asymmetry in the universe.  

"This result is among the most important findings in neutrino physics over the last years," said Prof. 

Antonio Ereditato, director of the Laboratory of High Energy Physics of the University of Bern and 

leader of the Bern T2K group, "and it is opening the way to even more exciting achievements, 

pointing to the existence of a tiny but measurable effect." Ereditato added: "Nature seems to 

indicate that neutrinos can be responsible for the observed supremacy of matter over antimatter 

in the Universe. What we measured justifies our current efforts in preparing the next scientific 

enterprise, DUNE, the ultimate neutrino detector in USA, which should allow reaching a definitive 

discovery."  

In the T2K experiment a muon-neutrino beam is produced at the Proton Accelerator Research 

Complex (J-PARC) in Tokai on the east coast of Japan and is detected 295 kilometres away by the 

gigantic Super-Kamiokande underground detector ("T2K" stands for "Tokai to Kamiokande"). The 

neutrino beam needs to be fully characterized immediately after production, that means before 

neutrinos start to oscillate. For this purpose, the ND280 detector was built and installed close to 

the neutrino departing point.  

Researchers from the University of Bern, together with colleagues from Geneva and ETH Zurich, 

and other international institutions, contributed to the design, realization and operation of ND280. 

The group of Bern, in particular, took care of the large magnet surrounding the detector and built 

and operated the so-called muon monitor, a device needed to measure the intensity and the 



energy spectrum of the muon particles produced together with neutrinos. The Bern group is 

currently very active in determining the probability of interaction of neutrinos with the ND280 

apparatus: an important ingredient to reach high-precision measurements such as the one 

reported here. [13]  

World's smallest neutrino detector observes elusive interactions of 

particles  
In 1974, a Fermilab physicist predicted a new way for ghostly particles called neutrinos to interact 

with matter. More than four decades later, a UChicago-led team of physicists built the world's 

smallest neutrino detector to observe the elusive interaction for the first time.  

Neutrinos are a challenge to study because their interactions with matter are so rare. Particularly 

elusive has been what's known as coherent elastic neutrino-nucleus scattering, which occurs when 

a neutrino bumps off the nucleus of an atom.  

The international COHERENT Collaboration, which includes physicists at UChicago, detected the 

scattering process by using a detector that's small and lightweight enough for a reseacher to carry. 

Their findings, which confirm the theory of Fermilab's Daniel Freedman, were reported Aug. 3 in 

the journal Science.  

"Why did it take 43 years to observe this interaction?" asked co-author Juan Collar, UChicago 

professor in physics. "What takes place is very subtle." Freedman did not see much of a chance for 

experimental confirmation, writing at the time: "Our suggestion may be an act of hubris, because 

the inevitable constraints of interaction rate, resolution and background pose grave experimental 

difficulties."  

When a neutrino bumps into the nucleus of an atom, it creates a tiny, barely measurable recoil. 

Making a detector out of heavy elements such as iodine, cesium or xenon dramatically increases 

the probability for this new mode of neutrino interaction, compared to other processes. But 

there's a trade-off, since the tiny nuclear recoils that result become more difficult to detect as the 

nucleus grows heavier.  

"Imagine your neutrinos are ping-pong balls striking a bowling ball. They are going to impart only a 

tiny extra momentum to this bowling ball," Collar said.  

To detect that bit of tiny recoil, Collar and colleagues figured out that a cesium iodide crystal doped 

with sodium was the perfect material. The discovery led the scientists to jettison the heavy, 

gigantic detectors common in neutrino research for one similar in size to a toaster.  

No gigantic lab  

The 4-inch-by-13-inch detector used to produce the Science results weighs only 32 pounds (14.5 

kilograms). In comparison, the world's most famous neutrino observatories are equipped with 

thousands of tons of detector material.  

"You don't have to build a gigantic laboratory around it," said UChicago doctoral student Bjorn 

Scholz, whose thesis will contain the result reported in the Science paper. "We can now think 



about building other small detectors that can then be used, for example to monitor the neutrino 

flux in nuclear power plants. You just put a nice little detector on the outside, and you can measure 

it in situ."  

Neutrino physicists, meanwhile, are interested in using the technology to better understand the 

properties of the mysterious particle.  

"Neutrinos are one of the most mysterious particles," Collar said. "We ignore many things about 

them. We know they have mass, but we don't know exactly how much."  

Through measuring coherent elastic neutrino-nucleus scattering, physicists hope to answer such 

questions. The COHERENT Collaboration's Science paper, for example, imposes limits on new types 

of neutrino-quark interactions that have been proposed.  

The results also have implications in the search for Weakly Interacting Massive Particles. WIMPs 

are candidate particles for dark matter, which is invisible material of unknown composition that 

accounts for 85 percent of the mass of the universe.  

"What we have observed with neutrinos is the same process expected to be at play in all the WIMP 

detectors we have been building," Collar said.  

Neutrino alley  

The COHERENT Collaboration, which involves 90 scientists at 18 institutions, has been conducting 

its search for coherent neutrino scattering at the Spallation Neutron Source at Oak Ridge National 

Laboratory in Tennessee. The researchers installed their detectors in a basement corridor that 

became known as "neutrino alley." This corridor is heavily shielded by iron and concrete from the 

highly radioactive neutron beam target area, only 20 meters (less than 25 yards) away.  

This neutrino alley solved a major problem for neutrino detection: It screens out almost all 

neutrons generated by the Spallation Neutron Source, but neutrinos can still reach the detectors. 

This allows researchers to more clearly see neutrino interactions in their data. Elsewhere they 

would be easily drowned out by the more prominent neutron detections.  

The Spallation Neutron Source generates the most intense pulsed neutron beams in the world for 

scientific research and industrial development. In the process of generating neutrons, the SNS also 

produces neutrinos, though in smaller quantities.  

"You could use a more sophisticated type of neutrino detector, but not the right kind of neutrino 

source, and you wouldn't see this process," Collar said. "It was the marriage of ideal source and 

ideal detector that made the experiment work."  

Two of Collar's former graduate students are co-authors of the Science paper: Phillip Barbeau, 

AB'01, SB'01, PhD'09, now an assistant professor of physics at Duke University; and Nicole Fields, 

PhD'15, now a health physicist with the U.S. Nuclear Regulatory Commission in Chicago.  

The development of a compact neutrino detector brings to fruition an idea that UChicago alumnus 

Leo Stodolsky, SM'58, PhD'64, proposed in 1984. Stodolsky and Andrzej Drukier, both of the Max 

Planck Institute for Physics and Astrophysics in Germany, noted that a coherent detector would be 



relatively small and compact, unlike the more common neutrino detectors containing thousands of 

gallons of water or liquid scintillator. In their work, they predicted the arrival of future neutrino 

technologies made possible by the miniaturization of the detectors.  

Scholz, the UChicago graduate student, saluted the scientists who have worked for decades to 

create the technology that culminated in the detection of coherent neutrino scattering.  

"I cannot fathom how they must feel now that it's finally been detected, and they've achieved one 

of their life goals," Scholz said. "I've come in at the end of the race. We definitely have to give 

credit to all the tremendous work that people have done before us." [12]  

In search of 'sterile' neutrinos  
Lately, neutrinos – the tiny, nearly massless particles that many scientists study to better 

understand the fundamental workings of the universe – have been posing a problem for physicists.  

They know that these particles are produced in immense numbers by nuclear reactions such as 

those taking place within our sun. They also know that neutrinos don't interact very often with 

matter; billions of them passed through your hand in the time it took you to read this sentence.  

But in a host of experiments around the world, researchers are finding a deficit in the number of 

neutrinos they see versus what they expect to see, based on theory. And this has nothing to do 

with the shifting back and forth between the three flavors of neutrino that physicists also already 

know about.  

One possible explanation is that there is a fourth kind of neutrino that hasn't been detected. It's 

referred to as a sterile neutrino. And NIST scientists will begin looking for it next year as part of the 

Precision Oscillation and Spectrum Experiment (PROSPECT), a collaboration involving 68 scientists 

and engineers from 10 universities and four national laboratories.  

"This is potentially a discovery experiment," says NIST's Pieter Mumm, who is a co-founder and 

cospokesperson for the project, along with Karsten Heeger at Yale University and Nathaniel 

Bowden at Lawrence Livermore National Laboratory. Discovering a new particle would be "super 

exciting," he continues, because a new type of neutrino is not part of the Standard Model of 

physics, the wellvetted explanation for the universe as we know it.  

To find the new particle or definitively disprove its existence, the PROSPECT collaboration is 

preparing to build a first-of-its-kind detector for short-range neutrino experiments, using a nuclear 

reactor as the neutrino source.  

The work could not only shed light on new physics, but it could also give researchers a new tool to 

monitor and safeguard nuclear reactors.  

PROSPECTing for Neutrinos  

Unlike other neutrino experiments, which typically look at the oscillations between the three 

known flavors over distances of kilometers or hundreds of kilometers, PROSPECT will look at 

neutrino oscillations over just a few meters, the space of a small room. The distance is too short to 



see oscillations between the known flavors. But it is exactly the right scale for the hypothesized 

sterile neutrino oscillations.  

This setup "gives you a signature that's absolutely iron-clad," Mumm says. "If you see that 

variation, that characteristic oscillation, there is only one explanation for it. It has to be sterile 

neutrinos."  

The detector itself will be about 4.5 meters cubed and will be composed of an 11-by-14 array of 

long skinny "cells" stacked on each other [see diagram], with an expected spatial resolution of 

about 10 cubic centimeters. As its source for neutrinos, PROSPECT will use the High Flux Isotope 

Reactor at Oak Ridge Laboratory in Tennessee. The experiment will be placed as close as possible 

to the reactor core itself – only 7 meters (about 20 feet) away.  

PROSPECT will not see the sterile neutrinos directly. Rather, it will detect a particular kind of 

neutrino that is regularly produced in nuclear reactors: the electron-type antineutrino.  

To identify an electron antineutrino, the researchers will look for a particular signal in light. Each 

cell in the detector is filled with a scintillating material. That means that energy is converted to 

light, which is amplified and picked up by a pair of photomultiplier tubes on each cell.  

When a neutrino hits a proton in the liquid filling the cells, it creates new particles that deposit 

energy within the detector. These daughter particles form a signature that tells researchers that a 

neutrino was once there (see diagram above).  

"What we're actually sensing is the light emitted by the liquid scintillator," Mumm says. The signal 

that they are looking for is "something that looks like a positron, followed at the appropriate time 

[tens of microseconds, or millionths of a second] by something that looks like a neutron capture."  

Next Steps  

So far, the collaboration has created a series of prototypes, including a pair of cells built to scale, 

and is running simulations to validate the models they are using to separate the signal from the 

high backgrounds they expect. Thanks to grants from the U.S. Department of Energy and the 

HeisingSimons Foundation this summer, they have begun to physically build the detector.  

PROSPECT should answer the question of whether there are sterile neutrinos or not within three 

years, Mumm says. Meanwhile, the collaboration's work has some potentially game-changing 

spinoffs for reactor physics. For example, scientists could potentially use this technology to 

engineer a device to monitor reactor operations remotely.  

"You can imagine, at least it seems to me, that this could be a pretty powerful tool in the right 

circumstances," Mumm says. "You can't shield neutrinos. There's no way to spoof it." [11]  

As hunt for sterile neutrino continues, mystery deepens  
Physicists have hypothesized the existence of fundamental particles called sterile neutrinos for 

decades and a couple of experiments have even caught possible hints of them. However, according 

to new results from two major international consortia, the chances that these indications were 

right and that these particles actually exist are now much slimmer.  



In the 1990s, particle physicists at Los Alamos National Laboratory noticed something puzzling in 

one of their experiments. Their results disagreed with other experiments that discovered neutrino 

oscillations—the surprising ability of neutrinos to morph from one flavor to another—and 

ultimately led to last year's Nobel Prize for physics. An experiment at Fermi National Accelerator 

Laboratory (Fermilab) that was designed to confirm or refute the results from Los Alamos only 

added to the mystery by producing mixed results.  

To resolve the disagreement, theorists proposed the existence of an as-yet-undiscovered 

fundamental particle—a sterile neutrino. Physicists speculated that the hypothesized particles 

might hold a key to better understanding of the evolution of the universe and why it is mostly 

made of matter and not antimatter.  

Based on the Los Alamos and Fermilab results, scientists predicted a range of possible physical 

properties, such as mass, that sterile neutrinos could have.   

Several large research projects have been hunting for the elusive particles within that range.  

Now in this latest study, by combining results from a different experiment at Fermilab, called the  

Main Injector Neutrino Oscillation Search (MINOS), and another in China, called the Daya Bay 

Reactor Neutrino Experiment, scientists have ruled out a large portion of the range of possible 

properties the hypothesized particles were predicted to be hiding in.  

"So the plot thickens," says Karol Lang, a professor of physics at The University of Texas at Austin 

and co-spokesperson for the MINOS experiment. "But it's still possible that new experiments being 

developed at Fermilab might reveal some exciting new physics to explain these very different 

results."  

The results are being published this week as three separate letters in the journal Physical Review 

Letters (see links below).  

A team of researchers from UT Austin played many roles in producing the MINOS results, including 

graduate students Dung Phan, Simon De Rijck and Tom Carroll, and postdoctoral fellows Adam 

Schreckenberger, Will Flanagan and Paul Sail.  

"It is very exciting to work on one of the pioneering experiments and have such a big impact on the 

field," says De Rijck.  

Neither the MINOS nor Daya Bay results alone could be directly compared to the Los Alamos 

measurements, but combined, they could.  

"It's not common for two major neutrino experiments to work together this closely," says Adam 

Aurisano of the University of Cincinnati, one of the MINOS scientists.  

A resolution to the mystery of sterile neutrinos might come soon. Researchers in Fermilab's 

ShortBaseline Neutrino Program have already begun collecting data specifically targeting particles 

in the narrow mass range where sterile neutrinos might yet be hiding. Meanwhile, Lang and his 

colleagues in MINOS and Daya Bay have more data that they plan to analyze in the coming year, 

which might narrow the possible range of physical properties even further.  



"A sterile neutrino, if found, would be a game changer for particle physics," says Phan. [10]  

Weird quantum effects stretch across hundreds of miles  
In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors 

abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist 

simultaneously in two or more seemingly counterintuitive states. For example, according to the 

laws of quantum mechanics, electrons may spin both clockwise and counter-clockwise, or be both 

at rest and excited, at the same time.  

The physicist Erwin Schrödinger highlighted some strange consequences of the idea of 

superposition more than 80 years ago, with a thought experiment that posed that a cat trapped in 

a box with a radioactive source could be in a superposition state, considered both alive and dead, 

according to the laws of quantum mechanics. Since then, scientists have proven that particles can 

indeed be in superposition, at quantum, subatomic scales. But whether such weird phenomena can 

be observed in our larger, everyday world is an open, actively pursued question.  

Now, MIT physicists have found that subatomic particles called neutrinos can be in superposition, 

without individual identities, when traveling hundreds of miles. Their results, to be published later 

this month in Physical Review Letters, represent the longest distance over which quantum 

mechanics has been tested to date.  

A subatomic journey across state lines  

The team analyzed data on the oscillations of neutrinos—subatomic particles that interact 

extremely weakly with matter, passing through our bodies by the billions per second without any 

effect.  

Neutrinos can oscillate, or change between several distinct "flavors," as they travel through the 

universe at close to the speed of light.  

The researchers obtained data from Fermilab's Main Injector Neutrino Oscillation Search, or 

MINOS, an experiment in which neutrinos are produced from the scattering of other accelerated, 

highenergy particles in a facility near Chicago and beamed to a detector in Soudan, Minnesota, 735 

kilometers (456 miles) away. Although the neutrinos leave Illinois as one flavor, they may oscillate 

along their journey, arriving in Minnesota as a completely different flavor.  

The MIT team studied the distribution of neutrino flavors generated in Illinois, versus those 

detected in Minnesota, and found that these distributions can be explained most readily by 

quantum phenomena: As neutrinos sped between the reactor and detector, they were statistically 

most likely to be in a state of superposition, with no definite flavor or identity.  

What's more, the researchers found that the data was "in high tension" with more classical 

descriptions of how matter should behave. In particular, it was statistically unlikely that the data 

could be explained by any model of the sort that Einstein sought, in which objects would always 

embody definite properties rather than exist in superpositions.  



"What's fascinating is, many of us tend to think of quantum mechanics applying on small scales," 

says David Kaiser, the Germeshausen Professor of the History of Science and professor of physics 

at MIT. "But it turns out that we can't escape quantum mechanics, even when we describe 

processes that happen over large distances. We can't stop our quantum mechanical description 

even when these things leave one state and enter another, traveling hundreds of miles. I think 

that's breathtaking."  

Kaiser is a co-author on the paper, which includes MIT physics professor Joseph Formaggio, junior 

Talia Weiss, and former graduate student Mykola Murskyj.  

A flipped inequality  

The team analyzed the MINOS data by applying a slightly altered version of the Leggett-Garg 

inequality, a mathematical expression named after physicists Anthony Leggett and Anupam Garg, 

who derived the expression to test whether a system with two or more distinct states acts in a 

quantum or classical fashion.  

Leggett and Garg realized that the measurements of such a system, and the statistical correlations 

between those measurements, should be different if the system behaves according to classical 

versus quantum mechanical laws.  

"They realized you get different predictions for correlations of measurements of a single system 

over time, if you assume superposition versus realism," Kaiser explains, where "realism" refers to 

models of the Einstein type, in which particles should always exist in some definite state.  

Formaggio had the idea to flip the expression slightly, to apply not to repeated measurements over 

time but to measurements at a range of neutrino energies. In the MINOS experiment, huge 

numbers of neutrinos are created at various energies, where Kaiser says they then "careen through 

the Earth, through solid rock, and a tiny drizzle of them will be detected" 735 kilometers away.  

According to Formaggio's reworking of the Leggett-Garg inequality, the distribution of neutrino 

flavors—the type of neutrino that finally arrives at the detector—should depend on the energies at 

which the neutrinos were created. Furthermore, those flavor distributions should look very 

different if the neutrinos assumed a definite identity throughout their journey, versus if they were 

in superposition, with no distinct flavor.  

"The big world we live in"  

Applying their modified version of the Leggett-Garg expression to neutrino oscillations, the group 

predicted the distribution of neutrino flavors arriving at the detector, both if the neutrinos were 

behaving classically, according to an Einstein-like theory, and if they were acting in a quantum 

state, in superposition. When they compared both predicted distributions, they found there was 

virtually no overlap.  

More importantly, when they compared these predictions with the actual distribution of neutrino 

flavors observed from the MINOS experiment, they found that the data fit squarely within the 

predicted distribution for a quantum system, meaning that the neutrinos very likely did not have 

individual identities while traveling over hundreds of miles between detectors.  



But what if these particles truly embodied distinct flavors at each moment in time, rather than 

being some ghostly, neither-here-nor-there phantoms of quantum physics? What if these 

neutrinos behaved according to Einstein's realism-based view of the world? After all, there could 

be statistical flukes due to defects in instrumentation, that might still generate a distribution of 

neutrinos that the researchers observed. Kaiser says if that were the case and "the world truly 

obeyed Einstein's intuitions," the chances of such a model accounting for the observed data would 

be "something like one in a billion."  

"What gives people pause is, quantum mechanics is quantitatively precise and yet it comes with all 

this conceptual baggage," Kaiser says. "That's why I like tests like this: Let's let these things travel 

further than most people will drive on a family road trip, and watch them zoom through the big 

world we live in, not just the strange world of quantum mechanics, for hundreds of miles. And 

even then, we can't stop using quantum mechanics. We really see quantum effects persist across 

macroscopic distances." [9]  

Surprising neutrino decoherence inside supernovae  
Neutrinos are elementary particles known for displaying weak interactions. As a result, neutrinos 

passing each other in the same place hardly notice one another. Yet, neutrinos inside a supernova 

collectively behave differently because of their extremely high density. A new study reveals that 

neutrinos produced in the core of a supernova are highly localised compared to neutrinos from all 

other known sources. This result stems from a fresh estimate for an entity characterising these 

neutrinos, known as wave packets, which provide information on both their position and their 

momentum.  

These findings have just been published in EPJ C by Jörn Kersten from the University of Bergen,  

Norway, and his colleague Alexei Yu. Smirnov from the Max Planck Institute for Nuclear Physics in 

Heidelberg, Germany. The study suggests that the wave packet size is irrelevant in simpler cases.  

This means that the standard theory for explaining neutrino behaviour, which does not rely on 

wavepackets, now enjoys a more sound theoretical foundation.  

One of the laws governing particles at the quantum scale - called the uncertainty principle - tells us 

that we cannot simultaneously know a particle's position and momentum (which is the product of 

their mass times their velocity) with arbitrary precision. Particles like neutrinos are therefore 

described by a mathematical entity, called wave packets, the size of which determines the 

uncertainty in the neutrino's position and momentum.  

The authors find that neutrino wave packets in supernovae are unusually small in size. This implies 

that each individual neutrino displays decoherence. Kersten and Smirnov, however, show that this 

decoherence effect does not have any impact on the experimental measurement of the oscillation 

probability for each neutrino flavour; they only demonstrate this result in cases that are similar to, 

albeit simpler, than what happens in a supernova, where collective effects occur.  

In this study, the authors thus provide a theoretical motivation to the use of the standard 

description of supernova neutrinos, which does not rely on wave packets.   



Indeed, their findings suggest that collective effects are also unaffected by the neutrino wave 

packet size, a premise that has yet to be proven. [8]  

Neutrinos hint at why antimatter didn’t blow up the universe  
It could all have been so different. When matter first formed in the universe, our current theories 

suggest that it should have been accompanied by an equal amount of antimatter – a conclusion we 

know must be wrong, because we wouldn’t be here if it were true. Now the latest results from a 

pair of experiments designed to study the behaviour of neutrinos – particles that barely interact 

with the rest of the universe – could mean we’re starting to understand why.  

Neutrinos and their antimatter counterparts, antineutrinos, each come in three types, or flavours: 

electron, muon and tau. Several experiments have found that neutrinos can spontaneously switch 

between these flavours, a phenomenon called oscillating.  

The T2K experiment in Japan watches for these oscillations as neutrinos travel between the J-PARC 

accelerator in Tokai and the Super-Kamiokande neutrino detector in Kamioka, 295 kilometres 

away. It began operating in February 2010, but had to shut down for several years after Japan was 

rocked by a magnitude-9 earthquake in 2011.  

  

Puff of radiation  

In 2013, the team announced that 28 of the muon neutrinos that took off from J-PARC had become 

electron neutrinos by the time they reached Super-Kamiokande, the first true confirmation that 

the metamorphosis was happening.  

They then ran the experiment with muon antineutrinos, to see if there was a difference between 

how the ordinary particles and their antimatter counterparts oscillate.   

An idea called charge-parity (CP) symmetry holds that these rates should be the same.  

CP symmetry is the notion that physics would remain basically unchanged if you replaced all 

particles with their respective antiparticles. It appears to hold true for nearly all particle 

interactions, and implies that the universe should have produced the same amount of matter and 

antimatter in the big bang.Matter and antimatter destroy one another, so if CP symmetry holds, 

both should have mostly vanished in a puff of radiation early on in the universe’s history, well 

before matter was able to congeal into solid stuff. That’s clearly not what happened, but we don’t 

know why. Any deviation from CP symmetry we observe could help explain this discrepancy.  

“We know in order to create more matter than antimatter in the universe, you need a process that 

violates CP symmetry,” says Patricia Vahle, who works on NoVA, a similar experiment to T2K that 

sends neutrinos between Illinois and Minnesota. “So we’re going out and looking for any process 

that can violate this CP symmetry.”  

  



Flavour changers  

We already know of one: the interactions of different kinds of quarks, the constituents of protons 

and neutrons in atoms. But their difference is not great enough to explain why matter dominated 

so completely in the modern universe. Neutrino oscillations are another promising place to look for 

deviations.  

This morning at the Neutrino conference in London, UK, we got our first signs of such deviations. 

Hirohisa Tanaka of the University of Toronto, Canada, reported the latest results from T2K. They 

have now seen 32 muon neutrinos morphing into the electron flavour, compared to just 4 muon 

antineutrinos becoming the anti-electron variety.  

This is more matter and less antimatter than they expected to see, assuming CP symmetry holds.  

Although the number of detections in each experiment is small, the difference is enough to rule 

out CP symmetry holding at the 2 sigma level – in other words, there is only around a 5 per cent 

chance that T2K would see such differences if CP symmetry is preserved in this process.  

Particle physicists normally wait until things reach the 3 sigma level before getting excited, and 

won’t consider it a discovery until 5 sigma, so it’s early days for neutrinos breaking CP symmetry. 

But at the same conference, Vahle presented the latest results from NoVA that revealed the two 

experiments were in broad agreement about the possibility.  

The extent of CP violation rests on a key parameter called delta-CP, which ranges from 0 to 2π. 

Both teams found that their results were best explained by setting the value equal to 1.5π. “Their 

data really does prefer the same value that T2K does,” says Asher Kaboth, who works on T2K. “All 

of the preferences for the delta-CP stuff are pointing in the same direction.”  

NoVA plans to run its own antineutrino experiments next year, which will help firm up the results, 

and both teams are continuing to gather more data. It’s too soon to say definitively, but one of the 

mysteries of why we are here could be on the road to getting solved. [7]  

What the universe's most elusive particles can tell us about the 

universe's most energetic objects  
In 2012, a tiny flash of light was detected deep beneath the Antarctic ice. A burst of neutrinos was 

responsible, and the flash of light was their calling card.  

It might not sound momentous, but the flash could give us tantalising insights into one of the most 

energetic objects in the distant universe.  

The light was triggered by the universe's most elusive particles when they made contact with a 

remarkable detector, appropriately called IceCube, which was built for the very purpose of 

capturing rare events such as this.  

The team of international researchers now suspects the event may have originated from a quasar, 

which is the active nucleus of a galaxy billions of light-years away.  

The flash also potentially opens up a new era of neutrino astrophysics and may help unravel the 

mystery of neutrino production in the universe.  



The antisocial particle that came in from the cold  

Neutrinos are elementary particles and one of the smallest building blocks of the universe. Despite 

being one of the most abundant and energetic particles, neutrinos have a reputation of being 

notoriously hard to detect.  

This is because they very rarely interact with normal matter. In fact, billions of them pass through 

your body every minute without even causing a tickle.  

 What the universe's most elusive particles can tell us about the universe's most energetic objects 

There’s a lot more of the IceCube neutrino detector below the ice. Credit: Erik Beiser, IceCube/NSF 

So how do you find such an antisocial particle?  

It might not look it from the frosty surface of Antarctica, but Ice Cube is one of the world's largest 

telescopes, and the largest for detecting neutrinos.  

IceCube occupies a cubic kilometre of clear ice, which provides the best medium for thousands of 

sensors to capture that elusive burst of light created when a high energy neutrino collides with an 

ice particle.  

Although the probability of a collision is minuscule, there are so many neutrinos that pass through 

the detector that eventually some will interact with the ice.  

The trick then is to determine where the neutrinos originated. Neutrinos are produced by the 

nuclear reactions going on at the centre of stars and in other highly energetic cosmic processes.  

So when trying to find origin of the 2012 neutrino burst, Professor Sergei Gulyaev, the director of 

Auckland University of Technology's Institute for Radio Astronomy and Space Research told The 

Conversation that there was no shortage of candidates. The sky was literally the limit.  

"Out of millions of astronomical objects, which one was responsible?"  

Nucleus of a galaxy  

A network of New Zealand, Australian and African radio telescopes searched the skies for what 

might have triggered the 2012 flash.  

But one candidate stood out. Radio astronomers were able to create an image of a distant object 

that appeared to change dramatically after the neutrino burst was registered in South Pole.  
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The IceCube detector contains 5,160 individual sensors that go down to a depth of nearly 2.5 

kilometres beneath the ice. Credit: IceCube Collaboration  

From this, they decided that the most likely source of the neutrinos was a quasar, called PKS 

1424418, located 9.1 billion light years away – nearly at the edge of the visible universe.  

A quasar is the active nucleus of a primordial galaxy with a supermassive black hole at its core.  



"We knew before that huge fluxes of very energetic particles came from space. We call them 'cosmic 

rays'. Neutrinos are part of them. But we had no idea which astronomical objects are responsible for 

this."  

Gulyaev emphasised that they had to be cautious before drawing any conclusions about the source 

of the neutrinos.  

"We were very careful, but combining radio astronomical and gamma-ray observations made by 

NASA's Fermi gamma-ray space telescope, we now know where or what it is. Given the huge 

increase in energy, shape change and activity, we are 95% sure that a quasar was responsible for 

the event registered by IceCube."  

Gulyaev added that this particular quasar was active while the universe was very young.  

"Quasars are like dinosaurs. They became extinct a long time ago," said Gulyaev. "But because 

astronomy is like a time machine, we were able to study this quasar."  

The study may also open a new window into the distant universe. Whereas most astronomy is 

conducted by studying electromagnetic radiation, such as light or radio waves, these can be 

obscured or distorted as they travel through space.  

But because neutrinos pass through most matter, and aren't influenced by magnetic fields, they 

can pass through vast stretches of the cosmos uninterrupted. If we can detect them reliably, we 

might be able to observe things we can't normally see.  

An exciting problem  

Professor Ron Ekers, an astrophysicist from CSIRO, said the study presents tantalising possibilities 

of an extragalatic origin of the high energy neutrino burst.  

However, the true test of time will be if the model can eventually predict future detections 

alongside more precise measurements of neutrino positions that would be possible in the future.  

Ekers said that although the model presents a possible origin, a crucial step would be to increase 

the level of accuracy in neutrino detection instruments to more precisely pinpoint and narrow 

down possible sources.  

"Current position errors for these neutrinos are quite large and there are many possible objects 

which could be the source."  

Ekers added that both IceCube and the Mediterranean Neutrino Array (KM3NeT) have future plans 

to greatly improve positional accuracy to fulfil that need.  

"Finding out where the high energy neutrinos come from is one of the most exciting problems in 

astrophysics today. Now we have a possible identification we desperately need to improve the 

directional accuracy of the neutrino detections. " [6]  



Neutrinos: Ghosts of the Universe  
Why, after millions of years of steadily lighting the cold darkness, does a supergiant star suddenly 

explode in a blinding blaze of glory brighter than 100 billion stars?   

What exotic objects in deep space are firing out particles at by far the highest energies in the 

universe? And perhaps most mind-bending, why does the universe contain any matter at all? These 

mysteries have vexed astrophysicists and particle physicists for decades. The key to solving all 

three deep conundrums is itself one of the greatest enigmas of physics: the neutrino.  

The universe is awash in these peculiar, nearly massless, subatomic particles. Created in tremendous 

numbers right after the Big Bang, and constantly churned out in stars and other places by radioactive 

decay and other reactions, trillions of these ghostly particles sail right through stars and planets, 

including our own.  

Carrying no electrical charge, neutrinos are attracted neither to protons nor electrons, so they 

don’t interact with electromagnetic fields. They also don’t feel a powerful force that operates on 

tiny scales, known simply as the strong force, which binds protons and neutrons together in an 

atom’s nucleus.  

Neutrinos are more aloof than supermodels, rarely interacting meaningfully with one another or 

with anything else in the universe. Paradoxically, it is their disengaged quality that earns them a 

crucial role both in the workings of the universe and in revealing some of its greatest secrets.   

Neutrino physics is entering a golden age. As part of one experiment, neutrinos have recently 

opened a new window on high-energy sources in deep space, such as black holes spewing out 

particles in beams trillions of miles long.  

Another astronomy experiment deep underground in a Japanese mine will use neutrinos to learn 

the average temperature and energy of ancient supernovae to better understand their typical 

behavior. And physicists are using computer modeling to close in on the neutrino’s critical role in 

triggering the kind of supernovae that distribute essential elements like oxygen and nitrogen.  

Beyond expanding the role of neutrinos in astronomy and uncovering their role in astrophysics, 

physicists are still trying to discover some of the neutrino’s basic properties. Some researchers, for 

instance, are trying to pin down the particle’s possible masses. That fundamental information 

would influence theories that explain the masses of other particles.  

By determining yet another elusive fundamental property of neutrinos, researchers also hope to 

answer one of theoretical physics’s great riddles: why all the matter and antimatter created by the 

Big Bang didn’t cancel each other out and leave nothing but energy. At the dawn of the universe, 

for every particle of matter, such as an electron, there was an anti-electron; for every quark (a 

fundamental constituent of matter), there was an antiquark, explains physicist Chang Kee Jung of 

Stony Brook University. When these opposites meet, they should annihilate each other, creating 

pure energy.  

So why is any matter left? The most plausible solution, leading physicists like Jung say, hinges on 

the theory that today’s neutrinos, which have barely any mass, once had superheavy partners. 

These neutrino cousins, 100 trillion times more massive than a proton, formed in the tremendous 



heat that existed right after the Big Bang. They had the special androgynous ability to decay into 

either matter or antimatter counterparts. One such overweight particle might have decayed into a 

neutrino plus some other particle — like an electron, for instance — while another superheavy 

neutrino might have decayed into an antineutrino and another particle.   

For this theory to explain why matter exists, those early superheavy neutrinos would have had to 

decay more frequently into particles than antiparticles. Physicists at neutrino detectors such as 

NOvA in Minnesota, in addition to trying to determine the masses of the neutrino, are studying 

whether today’s lighter neutrinos switch from one type (or “flavor”) to another at a different rate 

than antineutrinos. The same theory that could explain this behavior in today’s light neutrinos 

could also explain the inclinations of superheavy neutrinos at the dawn of time. If the superheavy 

neutrino theory is correct, then these primordial particles are the “supreme ancestor” from which 

every particle in the cosmos descended.   

Neutrino-related discoveries have already earned three Nobel prizes, and the path-breaking 

experiments underway could well earn more tickets to Stockholm. The seemingly superfluous 

neutrino couldn’t be more essential to our understanding of the cosmos, or less concerned with its 

profound importance.  

The Ice Telescope Cometh  

  

Computers at the IceCube Laboratory at the Amundsen-Scott South Pole Station collect raw data 

and analyze results from the underground neutrino detector.  

Scientists who want to detect neutrinos must build their detectors deep underground or 

underwater to filter out the cosmic rays that constantly bombard Earth.   

(Neutrinos travel through matter, regardless of how dense.) Francis Halzen, a physicist at the 

University of Wisconsin-Madison, realized decades ago that Antarctica was an ideal spot because 

the ice was thick enough to bury thousands of light sensors more than a mile deep.  

When a neutrino chances to slam into an atomic nucleus in the ice, an electron or muon (a heavier 

cousin of the electron) is created, releasing a trace of light. That trace of light can be picked up by 

IceCube, an underground telescope and particle detector at the South Pole. Halzen is one of nearly 

250 people involved with the project.   

In May 2012, IceCube physicists discovered the light footprints of two neutrinos with an incredible  

1,000 times more energy than any neutrino ever detected before on Earth. Christened Bert and 

Ernie after the Sesame Street characters, they spurred IceCube scientists to re-examine the data at 

that energy level. Sure enough, they found 26 more high-energy neutrinos. When the scientists 

looked at more recent data through May 2013, they found nine more high-energy neutrinos, one 

of which had the energy of Bert and Ernie combined. “It’s named Big Bird, of course,” says Halzen.   

Some neutrinos almost certainly hail from beyond our galaxy, and they could help solve a 

centuryold mystery on the source of incredibly high-energy cosmic rays.   



That source also is thought to produce high-energy neutrinos. Some possible scenarios: incredibly 

massive black holes erupting in jets of matter, galaxies colliding or star-producing factories known 

as starburst galaxies.  

“IceCube is finally opening a new window on the universe,” says physicist John Beacom of Ohio 

State University. “All these years we have been doing astronomy with light (not just visible light), 

we have been missing a big part of the action.”   

  

Neutrino Mysteries   

  

Shape-Shifting  

  

Neutrinos are notorious shape-shifters. Each one is born as one of three types, or flavors — 

electron, muon and tau — but they can change flavor in a few thousandths of a second as they 

travel, as if they can’t make up their mind what to be. Neutrinos, like other subatomic particles, 

sometimes behave like waves. But as the neutrino travels, the flavor waves combine in different 

ways. Sometimes the combination forms what is mostly an electron neutrino and sometimes 

mostly a muon neutrino.   

Because neutrinos are quantum particles, and by definition weird, they are not one single flavor at 

a time, but rather always a mixture of flavors. On the very, very rare occasion that a neutrino 

interacts with another particle, if the reaction appears to produce an electron, then the neutrino 

was an electron flavor in its final moments; if it produces a muon, the neutrino was muon-flavored. 

It’s as if the shy neutrino’s identity crisis can only be resolved when it finally interacts with another 

particle.   

  

Heavyweight Competition  

  

Physicists hope to use neutrinos’ strange shape-shifting behavior to unlock several mysteries.  

Scientists know the mass of every other fundamental particle, such as the electron, but the 

neutrino — at least a million times as light as the electron — is far more elusive because of its 

transformative ways.  

  

The discovery of neutrino masses would influence the fundamental theory of how particles and 

forces interact, the so-called standard model of particle physics.   

Physicists already know the theory is incomplete because it incorrectly predicts neutrinos have no 

mass. “It may help us to better understand the reasons behind the masses of all particles,” says 

William Louis of Los Alamos National Laboratory. “A jigsaw puzzle is much easier to put together 

once all of the pieces are available.”  



The difficulty in pinning down neutrino masses lies in the Heisenberg uncertainty principle, a 

cornerstone of quantum physics. It states that certain properties of subatomic particles are linked 

such that the more precisely you know one, the less precisely you can know the other. For 

instance, if you know exactly where a particle is, then you can’t know its momentum. And once 

you’ve pinned down the particle’s momentum, you can’t absolutely know its location. A neutrino’s 

flavor and mass are linked in a similar way, says Indiana University physicist Mark Messier. You 

can’t know both at the same time. For that reason, he says, “We always measure some 

combination of masses. … It does not even make sense to ask what the mass is for a single flavor of 

neutrino.”  

As far as scientists can tell, each neutrino is a combination of three masses, but they can’t learn 

that combination without taking a measurement. Two of those masses are likely to identify as 

electron neutrinos a significant portion of the time, and one mass only infrequently comes up as 

electron neutrino, says Messier. Physicists are not sure if the greatest, or heaviest, of the three 

masses is most likely to be an electron neutrino or least likely to be an electron neutrino.   

  

When Lefties Turn Right  

  

All matter has a mirror image, called antimatter. For an electron, which has a negative charge, the 

antimatter twin — the positron — is identical except that it has a positive charge. If matter meets 

antimatter, they destroy each other in a burst of energy.  

For each of the three flavors of neutrino, there is also a corresponding antineutrino called, sensibly 

enough, electron antineutrino, muon antineutrino and tau antineutrino.  

Because neutrinos are neutral, their antiparticles cannot have opposite charges. Instead, their 

“spin” is reversed. (Neutrinos are too small to really spin like a planet; the term spin refers to a 

property that is in some ways equivalent to spin.) Neutrinos are “left-handed” — they always spin 

to the left, relative to their direction of motion. Antineutrinos are “right-handed.” The eccentric 

Sicilian theorist Ettore Marjorana suggested that since neutrinos are neutral, they may be their 

own antiparticle — meaning that under certain circumstances, a neutrino could act like an 

antineutrino. If that were true, it would satisfy one necessary condition for the supreme ancestor 

neutrino theory that explains why we and all matter in the universe exist.   

  

Cracked Mirror?  

  

If you apply the laws of physics to antimatter, everything works out the same, just reversed. A 

magnetic field would push on an electron and a positron with exactly the same force: For example, 

if the electron were pushed right, the positron would be pushed left. Physicists hope that neutrinos 

don’t necessarily follow this mirror effect, and that they may once again be the oddballs that lead 

to a new understanding of nature.  



In experiments in the U.S. and Japan, researchers are trying to determine if the metamorphosis of 

neutrinos into different flavors happens at a different rate than the antineutrino transformations. 

So rather than, say, a 10 percent chance of an electron neutrino turning into a muon neutrino, for 

example, physicists wonder if the odds are lower that an electron antineutrino turns into a muon 

antineutrino. They’ve seen precedents for such “asymmetrical” behavior in a few other particles, 

and certain theories predict that behavior in neutrinos.  

If neutrinos do indeed transform into other flavors at a different rate from antineutrinos, it’s likely 

that this matter/antimatter difference in neutrinos was present in their superheavy ancestors at 

the dawn of time, too.  

  

Seeing Stars  

Astrophysicist Hans-Thomas Janka and his team use a bank of supercomputers to create 3-D 

models of the heat that builds in a neutrino-driven explosion of a star.   

Leonhard Scheck and H.-Thomas Janka (Max Planck Institute for Astrophysics)  

Somewhere in the universe, at least once a second, a massive star goes supernova, blowing to 

smithereens with the intensity of an entire galaxy’s worth of shining stars. After 50 years of 

investigation, no one knows exactly why supernovae occur. But to astrophysicist Hans-Thomas 

Janka, it’s clear the neutrino is a major culprit in this mystery.   

Working from the Max Planck Institute for Astrophysics in Munich, Janka has enlisted dozens of the 

world’s most powerful computers on a decades-long quest to understand the incredibly complex 

mechanism of a supernova. Advances in computing power and physics have helped him build 

sophisticated models, spun from hundreds of thousands of lines of computer code, that capture 

the nuances of the stars’ shape while taking into account everything from stars’ rotation and 

nuclear reactions to Einstein’s theory of gravity. Now, for the first time, Janka’s latest models fully 

describe the behavior of neutrinos under the hellish conditions of a star’s demise.  

In 1982, James Wilson of Lawrence Livermore National Laboratory first showed how neutrinos 

might trigger the explosion. Wilson knew that when a massive star burns up the last of its fuel after 

some 10 million years, its core rapidly implodes, pulling all of the star’s matter inward. The 

implosion begins to turn into an explosion, and a shock wave forms. But within a few thousandths 

of a second, it stops cold. Then something causes the shock wave to “revive” and trigger the 

explosion, leaving behind a dense neutron star.  

Through rudimentary computer modeling, Wilson discovered that that something was neutrinos, 

generated in copious amounts — on the order of 1 followed by 58 zeroes — when the electrons 

and protons in the core turn into neutrons. Because those neutrons are packed so tightly — a 

teaspoon would weigh 100 million tons — the neutrinos would get trapped there, bouncing off and 

interacting with the other particles (mostly neutrons, but some protons and electrons) trillions of 

times.   

The neutrinos would be delayed in the core only for a second, but Wilson suspected that enough 

heat would be generated to trigger the supernova explosion.   



Limited by the era’s computers and understanding of physics, Wilson’s model relied on 

simplifications — such as the star being a perfect sphere — and incorrect assumptions about the 

behavior of very dense matter and how neutrinos move from the core’s interior to the crucial 

outer parts where the heating of the shock wave occurs. The model did not work. Janka learned 

about Wilson’s model four years later, as a graduate student at Technical University Munich. He 

thought the theory sounded plausible and developed a new way to describe neutrino physics in 

supernovae, working on newly available $25 million supercomputers at the Max Planck Institute, 

one of the few places in Europe where the computers were available for unclassified research. 

Janka seemed to work nonstop, his ferocious drive coexisting with a persistent fear: Because he 

was one of only a handful working in what was then a limited field of study, Janka worried that by 

the time he completed his doctorate, he’d be a 30-something with few job prospects.   

But the heavens intervened. In 1987, the first supernova visible to the naked eye since 1604 

appeared in the Large Magellanic Cloud, our closest neighboring galaxy. Of the trillions of neutrinos 

the blast emitted, detectors on Earth captured 24, suddenly inaugurating a new field of particle 

astrophysics. “It was an initial boost that affected all my career,” says Janka. “That was the reason 

that a big neutrino astrophysics research program was started in Munich and that I got a 

permanent job there in 1995.”   

That 1987 supernova confirmed the basic picture of a collapsed core of a massive star spewing an 

enormous blast of neutrinos. Janka eagerly started building computer models, but like Wilson, he 

had to assume the star was spherical, an oversimplification dictated by the high costs of computing 

power. When Janka ran the models, the star did not explode. Over the next decade, he 

collaborated with Ewald Mueller of the Max Planck Institute for Astrophysics to create more 

complex models. They fleshed out how neutrinos interact and how they leak out of the core of a 

collapsed star. “He built up his expertise very systematically as he attacked different pieces of the 

puzzle,” says physicist Thomas Baumgarte of Bowdoin College, who has known Janka for about 20 

years.   

By 2005, Janka had developed more sophisticated code for a model that more accurately 

represented the shape of the star, though it was still an approximation. In this model, called a 

twodimensional type, Janka refined the physics of how neutrinos moved in connection with the 

flow of the other matter in the star. But he lacked computer power to test the model.   

Then in 2006, fortune struck again. The managing director of the Max Planck Institute asked Janka 

if he could do anything with 700,000 euros, at the time equal to $875,000. Janka bought 96 

1.282gigahertz processors, the fastest available. “The computers worked on the problem 

continuously for the next three years to get one second of evolution — from supernova core 

collapse to 750 milliseconds after the neutron star at the center begins to form,” Janka says. This 

work led to the first sophisticated 2-D model of a giant star in extremis — and this time, the model 

star exploded.  

Janka’s group had worked out highly complex physical equations to describe neutrino interactions 

and how the gas of the star flows and bubbles, turning Wilson’s theoretical vision into a far more 

detailed and sophisticated simulation.  



Since Janka simplified the star’s shape, his model didn’t completely solve the mystery. His group is 

now incorporating what’s been learned about neutrino interactions into new, state-of-the-art 

models that don’t idealize a star’s shape. At Janka’s disposal is a fair share of the processors of two 

huge supercomputers, one in Paris and one in Munich, with the power of 32,000 workstations: 

Together, they can calculate more than 100 trillion operations per second. But Janka finds himself 

once again at the outer limit of computing power. These 3-D models, he says, are in their infancy 

and don’t yet explode. Janka’s group recently won a five-year, $4 million grant to give the 3-D 

model higher resolution and to push the simulation “backward in time, and also forward, linking 

the model to observed supernova remnants,” he says.  

Janka “is doing the leading work” in this highly competitive field, says supernova pioneer Stanford  

Woosley of the University of California, Santa Cruz. Groups at Princeton University and Oak Ridge 

National Laboratory, he says, are also within reach. “Victory will go to the one who gets the 3-D 

model of a 15-solar-mass star [the size of 15 suns] to explode with the right energy,” says Woosley, 

since that’s the size of star that can synthesize elements important for life.  

That’s ultimately the allure of these fiery enigmas. “The oxygen we breathe, the iron in our blood, 

the carbon in plants, the silicon in the sand — all the matter that makes up you and the Earth is 

made and distributed by supernovae,” Janka says. We are all star descendants, forged from matter 

created hundreds to thousands of light-years away in a titanic explosion where a reticent ghost 

particle finally, violently, made its presence felt.  

  

Double Trouble  

  

Several major experiments around the world are designed to catch the elusive neutrino in the act 

of not showing up. In a radioactive metamorphosis called single beta decay, a neutron (a neutral 

particle) in the nucleus of an unstable atom spontaneously turns into a proton (a positive particle) 

and emits an electron and an antineutrino — the antimatter twin of a neutrino.  

In double beta decay, the interaction is doubled: Two neutrons simultaneously decay into two 

protons. However, instead of producing two electrons and two antineutrinos, as one might expect, 

physicists such as Giorgio Gratta of Stanford University suspect that in some instances, no 

antineutrinos are emitted. That can happen only if neutrinos are their own antiparticle, in which 

case an antineutrino would be emitted by a neutron and then — presto! — absorbed as a neutrino 

by a neutron.  

The discovery of the neutrino’s double anti-identity, although expected by many physicists, would 

contradict the standard model of particle physics, the current mainstream understanding of the 

way particles and fundamental forces behave, necessitating a paradigm-shifting extension. If the 

decay of an unstable atom produces two electrons but no antineutrinos, physicists will have found 

decisive evidence for this elusive, eccentric behavior.   



Experiments in the United States, such as the Enriched Xenon Observatory 200 (EXO-200) in New 

Mexico, as well as ones in Japan and Europe, are trying to catch a glimpse of this fantastically rare 

interaction.  

“People have been trying to find this critical decay for a long time,” says Gratta, the lead scientist at 

EXO.   

The Super-K's detector houses 13,000 photomultipliers that help detect the smallest trace of light 

from neutrino interactions.  

Built in a zinc mine near Hida, Japan, the Super-Kamiokande (Super-K) experiment has been 

searching for telltale flashes of light in a 50,000-ton tank of the purest water on Earth since 1996.  

When a low-energy neutrino or antineutrino from a supernova collides with a water molecule in 

the tank, the resulting light signal is recorded by about 100 of 13,000 photomultipliers, 

ultrasensitive light-detecting devices that turn a tiny flash of light into a larger recordable burst of 

electricity. But sometimes, false positives occur: Radioactive decays in the detector also create 

light, as do neutrinos produced in the atmosphere when they collide with the water.  

Now, Super-K scientists plan to silence the false positives using a method suggested by physicists 

John Beacom and Mark Vagins that focuses on the antineutrinos that supernovae produce. They’ll 

add 50 tons of the rare earth metal gadolinium to the water in Super-K, allowing them to tell the 

difference between encounters with antineutrinos and other light-emitting pretenders.   

When an antineutrino knocks into a proton in the Super-K water, that proton turns into a neutron 

and instantly emits a positively charged particle that gives off blue light as it rapidly moves through 

the water. The gadolinium would capture the neutron about 20 microseconds after it’s created, 

taking it into its own nucleus and leading to the immediate burst of gamma rays. The 

photomultipliers capture the whole sequence. No other particle interaction would lead to that 

onetwo “heartbeat.” The light in each beat reveals two things: The first flash indicates the energy 

of the antineutrino; the second confirms that the particle was an antineutrino.  

“Currently, Super-Kamiokande can detect neutrinos from supernova explosions anywhere in our 

own Milky Way galaxy,” says Vagins, of the Kavli Institute for the Physics and Mathematics of the 

Universe. “Adding gadolinium will make the detector vastly more sensitive, which will enable 

SuperK to begin collecting antineutrinos from supernova explosions anywhere within half the 

known universe.” That would include lower-energy, harder-to-detect antineutrinos created by 

massive stars that exploded billions of years ago. Adding gadolinium would “allow us to determine 

the total  

energy and temperature of an average supernova, two key inputs in all kinds of cosmological and 

stellar evolution models,” says Vagins.   

Called GADZOOKS! — for Gadolinium Antineutrino Detector Zealously Outperforming Old 

Kamiokande, Super! — the enriched detector, expected to go online in 2017, will also have a better 

chance of catching the birth of a black hole in the remnants of an exploding star. Neutrinos can’t 

escape from black holes, and the supersensitive Super-K will be able to detect a telltale stream of 

neutrinos that suddenly shuts down. “Super-K would be able to see a black hole form minutes or 



even hours after the initial core collapse. … Without gadolinium, it will be limited to 10 seconds or 

so,” says Vagins.   

  

Flying High  

  

The balloon-borne experiment ANITA (Antarctic Impulsive Transient Antenna) heads to the 

heavens at the end of this year. It will try to detect the sources of the highest-energy neutrinos in 

the universe. These neutrinos are thought to result from ultrahigh-energy cosmic rays crashing into 

the low-energy invisible photons left over from the Big Bang that still suffuse all of space.   

What sort of phenomenon creates and launches the cosmic ray sources of these neutrinos? 

Perhaps a hypernova — a “supernova on steroids” — or a rapidly spinning black hole or, more 

likely yet, a supermassive black hole, says physicist Peter Gorham of the University of Hawaii, the 

project’s lead investigator.  

The NASA-funded balloon will be 35,000 meters over the Antarctic ice cap. Circling the South Pole, 

ANITA’s antennas will scan a million cubic kilometers of ice at a time, looking for the telltale radio 

waves emitted when an ultrahigh-energy neutrino hits a nucleus in ice. It will be ANITA’s third 

voyage.  

Last year, physicists began shooting 150 trillion neutrinos per second from the Fermi National 

Accelerator Laboratory, west of Chicago, to a detector in Minnesota — a 503-mile underground 

trip that will take them just 2.7 milliseconds.   

Called the NuMI Off-axis Electron Neutrino Appearance experiment, or NOvA, the project relies on 

a 15,400-ton detector containing 3 million gallons of a liquid solution with a material known as a 

scintillator. Scintillators absorb the energy of incoming particles and emit that energy in the form 

of light. Of the torrent of particles Fermilab sends, only about 10 neutrinos interact with the 

scintillator each week. But the result will be a light signature that reveals the neutrino’s flavor and 

energy.   

More than 200 scientists, engineers and technicians helped design and build Fermilab’s flagship 

experiment over the past 12 years. Physicist Mark Messier of Indiana University, one of the 

experiment’s co-leads, says NOvA “has the best shot at taking the next big step in uncovering new 

properties of neutrinos.”  

One of NOvA’s goals, Messier says, is to help figure out which of the three mixes of neutrino flavors 

is heaviest and which is lightest — their so-called mass ordering. Mass is a fundamental but 

mysterious property of neutrinos that affects many physics theories because the origin of neutrino 

masses is still unknown.   

The NOvA neutrinos will start off as muon flavor, but then do their typical transforming act into 

electron neutrinos. Electron-flavor neutrinos are special because they can interact with the Earth: 

They alone can meaningfully interact with electrons in atoms. The key for NOvA is that the greater 

the mass of the electron neutrino flavor, the more likely the beam of neutrinos will interact with 



the hundreds of miles of matter they cross on the way to the detector. “Because the electrons in 

the Earth ‘drag’ on the electron neutrinos, that effectively gives the electron neutrinos some 

additional mass,” says Messier.   

That effect determines the neutrino’s transformation rate. If electron neutrinos tend to have the 

lightest mix of masses, the added heaviness from its earthly interactions would make it change to 

muon neutrinos at a higher rate because it would “mix” or “overlap more” with the muon masses, 

as Messier puts it, referring to the wavelike behavior of these particles. On the other hand, if the 

electron neutrinos contain the heaviest masses, then the additional Earth-induced mass would 

make them mix less with those of the other two neutrino flavors.   

NOvA is also doing the experiment with antineutrinos, which offer a valuable comparison, Messier 

says. And it might give a hint of whether neutrinos and antineutrinos morph at different rates, yet 

another unusual neutrino property that would not be totally unexpected.  

  

Neutrino Gold  

  

1988: Leon Lederman, Melvin Schwartz and Jack Steinberger win the Nobel Prize in Physics for 

developing a way to generate beams of neutrinos in a particle collider and for discovering the 

muon neutrino.  

1995: Frederick Reines wins a Nobel for detecting neutrinos for the first time in a 1953 experiment 

dubbed Project Poltergeist. Clyde Cowan, his collaborator, had died 21 years earlier.  

2002: Ray Davis earns the prize for detecting neutrinos from the sun using 600 tons of dry-cleaning 

fluid in a giant underground tank in South Dakota. Davis shared the Nobel with Masatoshi Koshiba, 

who used the gigantic Kamiokande detector in Japan to confirm Davis’ results and to capture 

neutrinos from a supernova that exploded in a neighboring galaxy. [5]  



Possible new particle hints that universe may not be left-handed  

  

Mirroring the universe (Image: Claudia Marcelloni/CERN)  

Like your hands, some fundamental particles are different from their mirror images, and so have an 

intrinsic handedness or “chirality”. But some particles only seem to come in one of the two 

handedness options, leading to what’s called “left-right symmetry breaking”.  

In particular, W bosons, which carry the weak nuclear force, are supposed to come only in 

lefthanded varieties. The debris from smashing protons at the LHC has revealed evidence of 

unexpected right-handed bosons.  

After finding the Higgs boson in 2012, the collider shut down for upgrades, allowing collisions to 

resume at higher energies earlier this year. At two of the LHC’s experiments, the latest results 

appear to contain four novel signals. Together, they could hint at a W-boson-like particle, the W’, 

with a mass of about 2 teraelectronvolts. If confirmed, it would be the first boson discovered since 

the Higgs.  

The find could reveal how to extend the successful but frustratingly incomplete standard model of 

particle physics, in ways that could explain the nature of dark matter and why there is so little 

antimatter in the universe.  

The strongest signal is an excess of particles seen by the ATLAS experiment  

(arxiv.org/abs/1506.00962), at a statistical significance of 3.4 sigma. This falls short of the 5 sigma 

regarded as proof of existence (see “Particle-spotting at the LHC“), but physicists are intrigued 

because three other unexpected signals at the independent CMS experiment could point to the 

same thing.  



“The big question is whether there might be some connection between these,” says Bogdan  

Dobrescu at Fermilab in Chicago. In a paper posted online last month, Dobrescu and Zhen Liu, also 

at Fermilab, showed how the signals could fit naturally into modified versions of left-right 

symmetric models (arxiv.org/abs/1507.01923). They restore left-right symmetry by introducing a 

suite of exotic particles, of which this possible W’ particle is one.  

Another way to fit the right-handed W’ into a bigger theory was proposed last week by Bhupal Dev 

at the University of Manchester, UK, and Rabindra Mohapatra at the University of Maryland. They 

invoke just a few novel particles, then restore left-right symmetry by giving just one of them special 

properties (arxiv.org/abs/1508.02277).  

Some theorists have proposed that these exotic particles instead hint that the Higgs boson is not 

fundamental particle. Instead, it could be a composite, and some of its constituents would account 

for the observed signals.  

“In my opinion, the most plausible explanation is in the context of composite Higgs models,” says 

Adam Falkowski at CERN. “If this scenario is true, that would mean there are new symmetries and 

new forces just around the corner.”  

“If the Higgs is really a composite particle, that would mean new forces just around the corner”  

The next step is for the existence of the right-handed W’ boson to be confirmed or ruled out. 

Dobrescu says that should be possible by October this year. But testing the broader theories could 

take a couple of years.  

Other LHC anomalies have disappeared once more data became available. That could happen 

again, but Raymond Volkas at the University of Melbourne, Australia, says this one is more 

interesting.  

“The fact that the data hint at a very sensible and well-motivated standard model extension that 

has been studied for decades perhaps is reason to take this one a bit more seriously,” he says. [4]  

Asymmetry in the interference occurrences of oscillators  
The asymmetrical configurations are stable objects of the real physical world, because they cannot 

annihilate. One of the most obvious asymmetry is the proton – electron mass rate Mp = 1840 Me 

while they have equal charge. We explain this fact by the strong interaction of the proton, but how 

remember it his strong interaction ability for example in the H – atom where are only 

electromagnetic interactions among proton and electron.   

This gives us the idea to origin the mass of proton from the electromagnetic interactions by the 

way interference occurrences of oscillators. The uncertainty relation of Heisenberg makes sure that 

the particles are oscillating.   

The resultant intensity due to n equally spaced oscillators, all of equal amplitude but different from 

one another in phase, either because they are driven differently in phase or because we are 

looking at them an angle such that there is a difference in time delay:  



(1) I = I0 sin2 n φ/2 / sin2 φ/2  

If φ is infinitesimal so that sinφ = φ  than  

(2) ι =  n2 ι0     

This gives us the idea of  

(3) Mp = n2 Me  

  
Figure 1.) A linear array of n equal oscillators  

There is an important feature about formula (1) which is that if the angle φ is increased by the 

multiple  of 2π it makes no difference to the formula.  

So   

(4) d sin θ = m λ and we get m-order beam if λ less than d. [6]  

If d less than λ we get only zero-order one centered at θ = 0. Of course, there is also a beam in the 

opposite direction. The right chooses of d and λ we can ensure the conservation of charge.  

For example  

(5) 2 (m+1) = n  

Where 2(m+1) = Np number of protons and n = Ne number of electrons.  



In this way we can see the H2 molecules so that 2n electrons of n radiate to 4(m+1) protons, 

because de > λe for electrons, while the two protons of one H2 molecule radiate to two electrons of 

them, because of de < λe for this two protons.  

To support this idea we can turn to the Planck distribution law, that is equal with the Bose – 

Einstein statistics.  

  

Spontaneously broken symmetry in the Planck distribution law  
The Planck distribution law is temperature dependent and it should be true locally and globally. I 

think that Einstein's energy-matter equivalence means some kind of existence of electromagnetic 

oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, 

crystals, dark matter and energy.  

Max Planck found for the black body radiation  

As a function of wavelength (λ), Planck's law is written as:  

  
  

   



 
  

Figure 2. The distribution law for different T temperatures  

We see there are two different λ1 and λ2 for each T and intensity, so we can find between them a d 

so that λ1 < d < λ2.  

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator 

configurations for any T temperature with equal exchange of intensity by radiation. All of these 

configurations can exist together. At the λmax is the annihilation point where the configurations are 

symmetrical. The λmax is changing by the Wien's displacement law in many textbooks.  

(7)    

where λmax is the peak wavelength, T is the absolute temperature of the black body, and b 

is a constant of proportionality called Wien's displacement constant, equal to 

2.8977685(51)×10−3 m·K (2002 CODATA recommended value).  



By the changing of T the asymmetrical configurations are changing too.  

  

The structure of the proton  
We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to 

d<10-13 cm. If an electron with λe < d move across the proton then by (5)   2 (m+1) = n with m = 0 

we get n = 2 so we need two particles with negative and two particles with positive charges. If the 

proton can fraction to three parts, two with positive and one with negative charges, then the 

reflection of oscillators are right. Because this very strange reflection where one part of the proton 

with the electron together on the same side of the reflection, the all parts of the proton must be 

quasi lepton so d > λq. One way dividing the proton to three parts is, dividing his oscillation by the 

three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to 

one plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane 

oscillation and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the 

three directions of coordinates and the proton is colorless. The flavors of quarks are the possible 

oscillations differently by energy and if they are plane or linear oscillations. We know there is no 

possible reflecting two oscillations to each other which are completely orthogonal, so the quarks 

never can be free, however there is an asymptotic freedom while their energy are increasing to 

turn them to the orthogonally.  If they will be completely orthogonal then they lose this reflection 

and take new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations 

are keeping all the conservation laws, like charge, number of baryons and leptons. The all features 

of gluons are coming from this model. The mathematics of reflecting oscillators show Fermi 

statistics.  

Important to mention that in the Deuteron there are 3 quarks of +2/3 and -1/3 charge, that is three 

u and d quarks making the complete symmetry and because this its high stability.  

The Pauli Exclusion Principle says that the diffraction points are exclusive!  

   

The Weak Interaction  
The weak interaction transforms an electric charge in the diffraction pattern from one side to the 

other side, causing an electric dipole momentum change, which violates the CP and time reversal 

symmetry.  

Another important issue of the quark model is when one quark changes its flavor such that a linear 

oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. 

This kind of change in the oscillation mode requires not only parity change, but also charge and 

time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.  

The right handed anti-neutrino and the left handed neutrino exist only because changing back the 

quark flavor could happen only in reverse order, because they are different geometrical 

constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and 

negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved.  



   

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for 

example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction 

changes the entropy since more or less particles will give more or less freedom of movement. The 

entropy change is a result of temperature change and breaks the equality of oscillator diffraction 

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure 

and  

 makes possible a different time dilation as of the special relativity. 

The limit of the velocity of particles as the speed of light appropriate only for electrical charged 

particles, since the accelerated charges are self maintaining locally the accelerating electric force. 

The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that 

is the time coordinate not works as in the electromagnetic interactions, consequently the speed of  

 neutrinos is not limited by the speed of light. 

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of 

thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes 

the  

  weak interaction, for example the Hydrogen fusion. 

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional 

oscillation by changing d to u quark and creating anti neutrino going back in time relative to the 

proton and electron created from the neutron, it seems that the anti neutrino fastest then the 

velocity of the photons created also in this weak interaction?  

   

A quark flavor changing shows that it is a reflection changes movement and the CP- and T- 

symmetry breaking. This flavor changing oscillation could prove that it could be also on higher level 

such as atoms, molecules, probably big biological significant molecules and responsible on the 

aging of the life.  

  

Important to mention that the weak interaction is always contains particles and antiparticles, 

where the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s 

interpretation that these particles present the backward time and probably because this they seem 

to move faster than the speed of light in the reference frame of the other side.  

  

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by 

the velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of 

light.  

  

The General Weak Interaction  
The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of 

Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes 

for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows 

the increasing entropy and decreasing information by the Weak Interaction, changing the 



temperature dependent diffraction patterns. A good example of this is the neutron decay, creating 

more particles with less known information about them.   

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change 

and it is possible to any other temperature dependent entropy and information changing 

diffraction pattern of atoms, molecules and even complicated biological living structures.  

We can generalize the weak interaction on all of the decaying matter constructions, even on the 

biological too. This gives the limited lifetime for the biological constructions also by the arrow of 

time. There should be a new research space of the Quantum Information Science the 'general 

neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change. 

There is also connection between statistical physics and evolutionary biology, since the arrow of 

time is working in the biological evolution also.   

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction 

opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is 

growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two 

directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite 

direction.  

   

Fermions and Bosons  
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the 

same thing.  

The Higgs boson or Higgs particle is a proposed elementary particle in the Standard Model of 

particle physics. The Higgs boson's existence would have profound importance in particle physics 

because it would prove the existence of the hypothetical Higgs field - the simplest of several 

proposed explanations for the origin of the symmetry-breaking mechanism by which elementary 

particles gain mass. [3]  

  

The fermions' spin  
The moving charges are accelerating, since only this way can self maintain the electric field causing 

their acceleration. The electric charge is not point like! This constant acceleration possible if there 

is a rotating movement changing the direction of the velocity. This way it can accelerate forever 

without increasing the absolute value of the velocity in the dimension of the time and not reaching  

  the velocity of the light.  

The Heisenberg uncertainty relation says that the minimum uncertainty is the value of the spin: 1/2 

h = d x d p or 1/2 h = d t d E, that is the value of the basic energy status.  

What are the consequences of this in the weak interaction and how possible that the neutrinos' 

velocity greater than the speed of light?  

The neutrino is the one and only particle doesn’t participate in the electromagnetic interactions so   

we cannot expect that the velocity of the electromagnetic wave will give it any kind of limit. 



The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for 

example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction 

changes the entropy since more or less particles will give more or less freedom of movement. The 

entropy change is a result of temperature change and breaks the equality of oscillator diffraction 

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and  

makes possible a different time dilation as of the special relativity. 

The source of the Maxwell equations  
The electrons are accelerating also in a static electric current because of the electric force, caused 

by the potential difference. The magnetic field is the result of this acceleration, as you can see in 

[2].  

The mysterious property of the matter that the electric potential difference is self maintained by 

the accelerating electrons in the electric current gives a clear explanation to the basic sentence of 

the relativity that is the velocity of the light is the maximum velocity of the matter. If the charge 

could move faster than the electromagnetic field than this self maintaining electromagnetic 

property of the electric current would be failed.   

Also an interesting question, how the changing magnetic field creates a negative electric field?  The 

answer also the accelerating electrons will give. When the magnetic field is increasing in time by 

increasing the electric current, then the acceleration of the electrons will increase, decreasing the 

charge density and creating a negative electric force. Decreasing the magnetic field by decreasing 

the electric current will decrease the acceleration of the electrons in the electric current and 

increases the charge density, creating an electric force also working against the change.  In this way 

we have explanation to all interactions between the electric and magnetic forces described in the 

Maxwell equations.   

The second mystery of the matter is the mass. We have seen that the acceleration change of the 

electrons in the flowing current causing a negative electrostatic force. This is the cause of the 

relativistic effect - built-in in the Maxwell equations - that is the mass of the electron growing  

with its acceleration and its velocity never can reach the velocity of light, because of this growing 

negative electrostatic force. The velocity of light is depending only on 2 parameters: the 

magnetic permeability and the electric permittivity.   

There is a possibility of the polarization effect created by electromagnetic forces creates the 

negative and positive charges. In case of equal mass as in the electron-positron pair it is simply, but 

on higher energies can be asymmetric as the electron-proton pair of neutron decay by week 

interaction and can be understood by the Feynman graphs.   

Anyway the mass can be electromagnetic energy exceptionally and since the inertial and 

gravitational mass are equals, the gravitational force is electromagnetic force and since only the 

magnetic force is attractive between the same charges, is very important for understanding the 

gravitational force.  

The Uncertainty Relations of Heisenberg gives the answer, since only this way can be sure that the 

particles are oscillating in some way by the electromagnetic field with constant energies in the 

atom indefinitely. Also not by chance that the uncertainty measure is equal to the fermions spin, 

which is one of the most important feature of the particles. There are no singularities, because the 

moving electron in the atom accelerating in the electric field of the proton, causing a charge 



distribution on delta x position difference and with a delta p momentum difference such a way that 

they product is about the half Planck reduced constant. For the proton this delta x much less in the 

nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the 

greatest proton mass.  

  

The Special Relativity  
  

The mysterious property of the matter that the electric potential difference is self maintained by 

the accelerating electrons in the electric current gives a clear explanation to the basic sentence of 

the relativity that is the velocity of the light is the maximum velocity of the matter. If the charge 

could move faster than the electromagnetic field than this self maintaining electromagnetic 

property of the electric current would be failed.  

The Heisenberg Uncertainty Principle  
Moving faster needs stronger acceleration reducing the dx and raising the dp. It means also mass 

increasing since the negative effect of the magnetic induction, also a relativistic effect!  

The Uncertainty Principle also explains the proton – electron mass rate since the dx is much less 

requiring bigger dp in the case of the proton, which is partly the result of a bigger mass mp because 

of the higher electromagnetic induction of the bigger frequency (impulse).  

  

The Gravitational force  
The changing magnetic field of the changing current causes electromagnetic mass change by the 

negative electric field caused by the changing acceleration of the electric charge.   

The gravitational attractive force is basically a magnetic force.  

The same electric charges can attract one another by the magnetic force if they are moving parallel 

in the same direction. Since the electrically neutral matter is composed of negative and positive 

charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang 

caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.  

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.  

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual 

mass for gravity.  

The mass as seen before a result of the diffraction, for example the proton – electron mass rate Mp 

= 1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to 

intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction  

 maximum, means its intensity or mass. [1] 



The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and 

attracting forces between the parallel moving electric currents. This is the gravitational force 

experienced by the matter, and also the mass is result of the electromagnetic forces between the 

charged particles.  The positive and negative charged currents attracts each other or by the 

magnetic forces or by the much stronger electrostatic forces!?  

  

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.   

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.  

   

The Graviton  
In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation 

in the framework of quantum field theory. If it exists, the graviton is expected to be massless 

(because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The 

spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank 

tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a 

first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a 

force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact 

with) the stress-energy tensor in the same way that the gravitational field does. This result 

suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only 

experimental verification needed for the graviton may simply be the discovery of a massless spin-2 

particle. [3]  

  

What is the Spin?  
  

So we know already that the new particle has spin zero or spin two and we could tell which one if 

we could detect the polarizations of the photons produced. Unfortunately this is difficult and 

neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm 

that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest 

frame of the centre of mass. A spin zero particles like the Higgs carries no directional information 

away from the original collision so the distribution will be even in all directions. This test will be 

possible when a much larger number of events have been observed. In the mean time we can 

settle for less certain  



 indirect indicators. 

The Casimir effect  
  

The Casimir effect is related to the Zero-point energy, which is fundamentally related to the 

Heisenberg uncertainty relation. The Heisenberg uncertainty relation says that the minimum 

uncertainty is the value of the spin: 1/2 h = dx dp or 1/2 h = dt dE, that is the value of the basic  

 energy status.  

The moving charges are accelerating, since only this way can self maintain the electric field causing  

their acceleration. The electric charge is not point like! This constant acceleration possible if there 

is a rotating movement changing the direction of the velocity. This way it can accelerate forever 

without increasing the absolute value of the velocity in the dimension of the time and not reaching 

the velocity of the light. In the atomic scale the Heisenberg uncertainty relation gives the same 

result, since the moving electron in the atom accelerating in the electric field of the proton, causing 

a charge distribution on delta x position difference and with a delta p momentum difference such a 

way that they product is about the half Planck reduced constant. For the proton this delta x much 

less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher 

because of the greater proton mass. This means that the electron is not a point like particle, but 

has a real  

 charge distribution.  

Electric charge and electromagnetic waves are two sides of the same thing; the electric charge is 

the   diffraction center of the electromagnetic waves, quantified by the Planck constant h.  

The Fine structure constant  
  

The Planck constant was first described as the proportionality constant between the energy (E) of a 

photon and the frequency (ν) of its associated electromagnetic wave. This relation between the 

energy and frequency is called the Planck relation or the Planck–Einstein equation:  

  

  

Since the frequency , wavelength λ, and speed of light c are related by λν = c, the Planck relation 

can also be expressed as  

  

Since this is the source of Planck constant, the e electric charge countable from the Fine structure 

constant. This also related to the Heisenberg uncertainty relation, saying that the mass of the 

proton should be bigger than the electron mass because of the difference between their 

wavelengths.  



The expression of the fine-structure constant becomes the abbreviated  

  

This is a dimensionless constant expression, 1/137 commonly appearing in physics literature.  

This means that the electric charge is a result of the electromagnetic waves diffractions, 

consequently the proton – electron mass rate is the result of the equal intensity of the 

corresponding electromagnetic frequencies in the Planck distribution law, described in my 

diffraction theory.  

Conclusions  
There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. We can generalize the weak interaction on all of the 

decaying matter constructions, even on the biological too. This gives the limited lifetime for the 

biological constructions also by the arrow of time. The Fluctuation Theorem says that there is a 

probability that entropy will flow in a direction opposite to that dictated by the Second Law of 

Thermodynamics. In this case the Information is growing that is the matter formulas are emerging 

from the chaos. So the Weak Interaction has two directions, samples for one direction is the 

Neutron decay, and Hydrogen fusion is the opposite direction.  
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