
Chapter 9

The functional equation for the

Riemann zeta function

We will eventually deduce a functional equation, relating ζ(s) to ζ(1−s). There are

various methods to derive this functional equation, see E.C. Titchmarsh, The theory

of the Riemann zeta function. We give a proof based on a functional equation for

the Jacobi theta function θ(z) =
∑∞

m=−∞ e
−πm2z. We start with some preparations.

9.1 Poisson’s summation formula

We start with a simple result from Fourier analysis. Given a function f : [0, 1]→ C,

we define the Fourier coefficients of f by

cn(f) :=

∫ 1

0

f(t)e−2πintdt for n ∈ Z.

Theorem 9.1. Let f be a complex analytic function, defined on an open subset of

C containing the real interval [0, 1]. Then

lim
N→∞

N∑
n=−N

cn(f)e2πinx =

{
1
2

(
f(0) + f(1)

)
if x = 0 or x = 1,

f(x) if 0 < x < 1.

Remarks 1. The condition that f be analytic on an open subset containing [0, 1] is

much too strong, but it has been inserted first since it is sufficient for our purposes,
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and second since it considerably simplifies the proof. Dirichlet proved the above

theorem for functions f : [0, 1] → C that are differentiable and whose derivative is

piecewise continuous.

2. It may be that a doubly infinite series
∑∞

n=−∞ an = limM,N→∞
∑N

n=−M an di-

verges, while limN→∞
∑N

n=−N an converges. For instance, if a−n = −an for n ∈
Z \ {0}, then limN→∞

∑N
n=−N an = a0, while

∑∞
n=−∞ an may be horribly divergent.

Proof. We first assume that either 0 < x < 1, or that x ∈ {0, 1} and f(0) = f(1).

We use the so-called Dirichlet kernel

DN(x) =
N∑

n=−N

e2πinx = e−2πiNx
2N∑
n=0

e2πinx

= e−2πiNx · e
2πi(2N+1)x − 1

e2πix − 1

=
eπi(2N+1)x − e−πi(2N+1)x

eπix − e−πix
=

sin(2N + 1)πx

sinπx
.

Further, we use ∫ 1

0

e2πintdt =

{
1 if n = 0,

0 if n 6= 0.

Using these facts, we obtain

f(x)−
N∑

n=−N

cn(f)e2πinx = f(x)−
N∑

n=−N

(∫ 1

0

f(t)e−2πintdt

)
e2πinx

=
N∑

n=−N

(∫ 1

0

f(x)e−2πintdt

)
e2πinx −

N∑
n=−N

(∫ 1

0

f(t)e−2πintdt

)
e2πinx

(the first integral is f(x) if n = 0 and 0 if n 6= 0)

=
N∑

n=−N

∫ 1

0

(
f(x)− f(t)

)
· e−2πin(t−x)dt

=

∫ 1

0

(
f(x)− f(t)

)( N∑
n=−N

e−2πin(t−x)

)
dt

=

∫ 1

0

(f(x)− f(t)
)
·

sin
(
(2N + 1)π(t− x)

)
sin π(t− x)

· dt.
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Fix x and define

g(z) :=
f(x)− f(z)

sinπ(z − x)
.

We show that g is analytic on an open set containing [0, 1]. First, suppose that

0 < x < 1. By assumption, f is analytic on an open set U ⊂ C containing [0, 1]. By

shrinking U if needed, we may assume that U contains [0, 1] but not x + n for any

non-zero integer n. Then sinπ(z − x) has a simple zero at z = x but is otherwise

non-zero on U . This shows that g(z) is analytic on U \{x}. But g(z) is also analytic

at z = x, since the simple zero of sin π(z−x) is cancelled by the zero of f(x)−f(z).

In case that x ∈ {0, 1} and f(0) = f(1) one proceeds in the same manner.

Using integration by parts, we obtain

f(x)−
N∑

n=−N

cn(f)e2πinx =

∫ 1

0

g(t) sin{(2N + 1)π(t− x)}dt

=
−1

(2N + 1)π

∫ 1

0

g(t)d cos{(2N + 1)π(t− x)}

=
−1

(2N + 1)π

{
g(1) cos{(2N + 1)π(1− x)} − g(0) cos{(2N + 1)πx}+

+

∫ 1

0

g′(t) cos{(2N + 1)π(t− x)}dt
}
.

The functions g(t), g′(t) are continuous, hence bounded on [0, 1] since g is analytic,

and also the cosine terms are bounded on [0, 1]. It follows that the above expression

converges to 0 as N →∞.

We are left with the case x ∈ {0, 1} and f(0) 6= f(1). Let

f̃(z) := f(z) + (f(0)− f(1))z.

Then f̃ is analytic on U and f̃(0) = f̃(1) = f(0). It is easy to check that the

function id : z 7→ z has Fourier coefficients c0(id) = 1
2
, cn(id) = −1/2πin for n 6= 0.

In particular, c−n(id) = −cn(id) for n 6= 0. Consequently,

lim
N→∞

N∑
n=−N

cn(f) = lim
N→∞

(
N∑

n=−N

cn(f̃) +
(
f(1)− f(0)

) N∑
n=−N

cn(id)

)
= f(0) + 1

2

(
f(1)− f(0)

)
= 1

2

(
f(0) + f(1)

)
.
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This completes our proof.

Theorem 9.2 (Poisson’s summation formula for finite sums). Let a, b be integers

with a < b and let f be a complex analytic function, defined on an open set containing

the interval [a, b]. Then

b∑
m=a

f(m) = 1
2

(
f(a) + f(b)

)
+ lim

N→∞

N∑
n=−N

∫ b

a

f(t)e−2πintdt

= 1
2

(
f(a) + f(b)

))
+

∫ b

a

f(t)dt+ 2
∞∑
n=1

∫ b

a

f(t) cos 2πnt · dt.

Proof. Pick m ∈ {a, . . . , b− 1}. Then by Theorem 9.1,

1
2

(
f(m) + f(m+ 1)

)
= lim

N→∞

N∑
n=−N

∫ m+1

m

f(t)e−2πintdt

=

∫ m+1

m

f(t)dt+ lim
N→∞

N∑
n=1

∫ m+1

m

f(t)
(
e2πint + e−2πint

)
dt

=

∫ m+1

m

f(t)dt+ 2
∞∑
n=1

∫ m+1

m

f(t) cos 2πnt · dt.

Now take the sum over m = a, a+ 1, . . . , b− 1.

We need a variation on Theorem 9.2, dealing with infinite sums
∑∞

m=−∞ f(m).

Theorem 9.3. Let f be a complex function such that:

(i) f(z) is analytic on U(δ) := {z ∈ C : |Im z| < δ} for some δ > 0;

(ii) there are C > 0, ε > 0 such that

|f(z)| 6 C · (|z|+ 1)−1−ε for z ∈ U(δ).

Then
∞∑

n=−∞

f(n) = lim
N→∞

N∑
n=−N

∫ ∞
−∞

f(t)e−2πintdt.

The idea is to apply Theorem 9.1 to the function F (z) :=
∑∞

m=−∞ f(z+m). We

first prove some properties of this function.
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Lemma 9.4. (i) F (0) = F (1) =
∑∞

m=−∞ f(m).

(ii) The function F (z) is analytic on an open set containing [0, 1].

(iii) For every n ∈ Z we have
∫ 1

0
F (t)e−2πintdt =

∫∞
−∞ f(t)e−2πintdt.

Proof. (i) Obvious.

(ii) Let U := {z ∈ C : −δ < Re z < 1 + δ, |Im z| < δ}. Assuming that

δ is sufficiently small, we have |f(z + m)| 6 C(|m| − δ)−1−ε =: Am for z ∈ U ,

m ∈ Z \ {0}. All summands f(z + m) are analytic on U ′, and the series
∑

m 6=0Am
converges. So by Corollary 2.26, the function F (z) is analytic on U .

(iii) Since |f(t + m)e−2πint| 6 Am for t ∈ [0, 1], m ∈ Z \ {0}, and
∑

m 6=0Am
converges, the series

∑∞
m=∞ f(t+m)e−2πint converges uniformly on [0, 1]. Therefore,

we may interchange the integral and the infinite sum, and obtain∫ 1

0

F (t)e−2πintdt =

∫ 1

0

( ∞∑
m=−∞

f(t+m)
)
e−2πintdt =

∞∑
m=−∞

∫ 1

0

f(t+m)e−2πintdt

=
∞∑

m=−∞

f(t+m)e−2πin(t+m)dt =
∞∑

m=−∞

∫ m+1

m

f(t)e−2πintdt

=

∫ ∞
−∞

f(t)e−2πintdt.

In the last step we have used that the integral
∫∞
−∞ f(t)e−2πintdt converges, due to

our assumption |f(z)| 6 C(|z|+ 1)−1−ε for z ∈ U(δ).

Proof of Theorem 9.3. By combining Theorem 9.1 with Lemma 9.4 we obtain

∞∑
m=−∞

f(m) = 1
2

(
F (0) + F (1)

)
= lim

N→∞

N∑
n=−N

∫ 1

0

F (t)e−2πintdt

= lim
N→∞

N∑
n=−N

∫ ∞
−∞

f(t)e−2πintdt.
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9.2 A functional equation for the theta function

The Jacobi theta function is given by

θ(z) :=
∞∑

m=−∞

e−πm
2z (z ∈ C, Re z > 0).

Verify yourself that θ(z) converges and is analytic on {z ∈ C : Re z > 0}.

Theorem 9.5. θ(z−1) =
√
z · θ(z) for z ∈ C, Re z > 0, where

√
z is chosen such

that | arg
√
z| < π

4
.

Remark. Let A := {z ∈ C : Re z > 0}. We may choose the argument of z ∈ A
such that | arg z| < π

2
. Then indeed, we may choose

√
z such that | arg

√
z| < π

4
.

Proof. Both θ(z−1) and
√
zθ(z) are analytic on A. Hence it suffices to prove the

identity in Theorem 9.5 on a subset of A having a limit point in A. For this subset

we take R>0. Thus, it suffices to prove that

∞∑
m=−∞

e−πm
2/x =

√
x ·

∞∑
m=−∞

e−πm
2x for x > 0.

We apply Theorem 9.3 to f(z) := e−πz
2/x with x > 0 fixed. Verify that f satisfies

all conditions of that Theorem. Thus, for any x > 0,

∞∑
m=−∞

e−πm
2/x = lim

N→∞

N∑
n=−N

∫ ∞
−∞

e−(πt
2/x)−2πintdt.

We compute the integrals by substituting u = t
√
x. Thus,∫ ∞

−∞
e−(πt

2/x)−2πintdt =
√
x ·
∫ ∞
−∞

e−πu
2−2πin

√
x·udu

=
√
x ·
∫ ∞
−∞

e−π(u+in
√
x)2−πn2xdu

=
√
xe−πn

2x

∫ ∞
−∞

e−π(u+in
√
x)2du.

130



In the lemma below we prove that the last integral is equal to 1. Then it follows

that
∞∑

m=−∞

e−πm
2/x = lim

N→∞

N∑
n=−N

√
xe−πn

2x =
√
x

∞∑
n=−∞

e−πn
2x,

since the last series converges. This proves our Theorem.

Lemma 9.6. Let z ∈ C. Then
∫∞
−∞ e

−π(u+z)2du = 1.

Proof. The following proof was suggested to me by Michiel Kosters. Let

F (z) :=

∫ ∞
∞

e−π(u+z)
2

du.

We show that this defines an analytic function on C. To this end, we prove that F is

analytic on D(0, R) := {z ∈ C : |z| < R} for every R > 0. We apply Theorem 2.29.

First, (u, z) 7→ e−π(u+z)
2

is continuous, hence measurable, on R×D(0, R). Second,

for every fixed u ∈ R, z 7→ e−π(u+z)
2

is analytic on D(0, R). Third,

|e−π(u+z)2 | = e−Reπ(u+z)2 = e−(πu
2+2πuRe z+πRe z2)

6 e−πu
2+2πRu+πR2

= e−π(u−R)2+2πR2

,

and
∫∞
−∞ e

−π(u−R)2+2πR2
du converges. So by Theorem 2.29, F is analytic on D(0, R).

Knowing that F is analytic on C, in order to prove that F (z) = 1 for z ∈ C it

is sufficient to prove, for any set S ⊂ C with a limit point in C, that F (z) = 1 for

z ∈ S. For the set S we take R. For z ∈ R we obtain, by substituting v = u+ z,

F (z) =

∫ ∞
−∞

e−π(u+z)
2

du =

∫ ∞
−∞

e−πv
2

dv = 2

∫ ∞
0

e−πv
2

dv.

Now a second substitution t = πv2 yields

F (z) = π−1/2
∫ ∞
0

e−tt−1/2dt = π−1/2Γ(1
2
) = 1.
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9.3 The functional equation for the Riemann zeta

function

Put

ξ(s) := 1
2
s(s− 1)π−s/2Γ(1

2
s)ζ(s) = (s− 1)π−s/2Γ(1

2
s+ 1)ζ(s),

where we have used the identity 1
2
sΓ(1

2
s) = Γ(1

2
s+ 1).

Theorem 9.7. The function ξ has an analytic continuation to C.

For this continuation we have ξ(1− s) = ξ(s) for s ∈ C.

Before proving this, we deduce some consequences.

Corollary 9.8. The function ζ has an analytic continuation to C\{1} with a simple

pole with residue 1 at s = 1.

For this continuation we have

ζ(1− s) = 21−sπ−s cos(1
2
πs)Γ(s) · ζ(s) for s ∈ C \ {0, 1}.

Proof. We define the analytic continuation of ζ by

ζ(s) =
ξ(s)πs/2 · 1/Γ(1

2
s+ 1)

s− 1
.

By Corollary 8.5, 1/Γ is analytic on C, and the other functions in the numerator

are also analytic on C. Hence ζ is analytic on C \ {1}. The analytic continuation

of ζ defined here coincides with the one defined in Theorem 5.2 on {s ∈ C : Re s >

0} \ {1} since analytic continuations to connected sets are uniquely determined.

Hence ζ(s) has a simple pole with residue 1 at s = 1.

We derive the functional equation. By Theorem 9.7 we have, for s ∈ C \ {0, 1},

ζ(1− s) =
ξ(1− s)

1
2
(1− s)(−s)π−(1−s)/2Γ(1

2
(1− s))

=
ξ(s)

1
2
s(s− 1)π−(1−s)/2Γ(1

2
(1− s))

=
1
2
s(s− 1)π−s/2Γ(1

2
s)

1
2
s(s− 1)π−(1−s)/2Γ(1

2
(1− s))

· ζ(s) = F (s)ζ(s),
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say. Now we have

F (s) = π(1/2)−s ·
Γ(1

2
s)Γ(1

2
s+ 1

2
)

Γ(1
2
− 1

2
s)Γ(1

2
+ 1

2
s)

= π(1/2)−s 21−s√πΓ(s)

π/ sin(π(1
2
− 1

2
s))

(by Corollary 8.12, Theorem 8.3)

= π−s21−s cos(1
2
πs)Γ(s).

This implies Corollary 9.8.

Corollary 9.9. ζ has simple zeros at s = −2,−4,−6, . . ..

ζ has no other zeros outside the critical strip {s ∈ C : 0 < Re s < 1}.

Proof. We first show that ξ(s) 6= 0 if Re s > 1 or Re s 6 0. We use the second

expression for ξ(s). By Corollary 5.4 and Theorem 4.5, we know that ζ(s) 6= 0 for

s ∈ C with Re s > 1, s 6= 1. Further, lims→1(s− 1)ζ(s) = 1, hence (s− 1)ζ(s) 6= 0 if

Re s > 1. By Corollary 8.5, we know that Γ(1
2
s+ 1) 6= 0 if Re s > 1. hence ξ(s) 6= 0

if Re s > 1. But then by Theorem 9.7, ξ(s) 6= 0 if Re s 6 0.

We consider ζ(s) for Re s 6 0. For s 6= −2,−4,−6, . . ., the function Γ(1
2
s+ 1) is

analytic. Further, for these values of s, we have ξ(s) 6= 0, hence ζ(s) must be 6= 0

as well. The function Γ(1
2
s) has simple poles at s = −2,−4,−6, . . .. To make ξ(s)

analytic and non-zero for these values of s, the function ζ must have simple zeros

at s = −2,−4,−6, . . ..

Proof of Theorem 9.7 (Riemann). Let for the moment, s ∈ C, Re s > 1. Recall that

Γ(1
2
s) =

∫ ∞
0

e−tt(s/2)−1dt.

Substituting t = πn2u gives

Γ(1
2
s) =

∫ ∞
0

e−πn
2u(πn2u)(s/2)−1d(πn2u) = πs/2ns

∫ ∞
0

e−πn
2uu(s/2)−1du.

Hence

π−s/2Γ(1
2
s)n−s =

∫ ∞
0

e−πn
2uu(s/2)−1du,

and so, by summing over n,

π−s/2Γ(1
2
s)ζ(s) =

∞∑
n=1

∫ ∞
0

e−πn
2u · u(s/2)−1du.
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We justify that the infinite integral and infinite sum can be interchanged. We use

the following special case of the Fubini-Tonelli theorem: if {fn : (0,∞) → C}∞n=1

is a sequence of measurable functions such that
∑∞

n=1

∫∞
0
|fn(u)|du converges, then

all integrals
∫∞
0
fn(u)du (n > 1) converge, the series

∑∞
n=1 fn(u) converges almost

everywhere on (0,∞) and moreover,

∞∑
n=1

∫ ∞
0

fn(u)du,

∫ ∞
0

(
∞∑
n=1

fn(u)

)
du

converge and are equal. In our situation we have that indeed (putting σ := Re s)

∞∑
n=1

∫ ∞
0

|e−πn2u · u(s/2)−1|du =
∞∑
n=1

∫ ∞
0

e−πn
2uu(s/2)−1du

=
∞∑
n=1

π−σ/2Γ(1
2
σ)n−σ (reversing the above argument)

= π−σ/2Γ(1
2
σ)ζ(σ)

converges. Thus, we conclude that for s ∈ C with Re s > 1,

(9.1) π−s/2Γ(1
2
s)ζ(s) =

∫ ∞
0

ω(u) · u(s/2)−1du, where ω(u) =
∞∑
n=1

e−πn
2u.

Recall that θ(u) =
∑∞

n=−∞ e
−πn2u = 1 + 2ω(u).

We want to replace the right-hand side of (9.1) by something that converges for

every s ∈ C. Obviously, for s ∈ C with Re s < 0 there are problems if u ↓ 0. To

overcome these, we split the integral
∫∞
0

into
∫∞
1

+
∫ 1

0
and then transform

∫ 1

0
into

an integral
∫∞
1

by means of a substitution v = u−1. After this substitution, the

integral contains a term ω(v−1). By Theorem 9.5, we have

ω(v−1) = 1
2
(θ(v−1)− 1) = 1

2
v1/2θ(v)− 1

2

= 1
2
v1/2

(
2ω(v) + 1)− 1

2
= v1/2ω(v) + 1

2
v1/2 − 1

2
.

We work out in detail the approach sketched above. We keep for the moment our
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assumption Re s > 1. Thus,

π−
1
2
sΓ(1

2
s)ζ(s) =

∫ ∞
1

ω(u)u(s/2)−1du−
∫ ∞
1

ω(v−1)v1−s/2dv−1

=

∫ ∞
1

ω(u)u(s/2)−1du+

∫ ∞
1

(
v1/2ω(v) + 1

2
v1/2 − 1

2

)
v1−s/2v−2dv

=

∫ ∞
1

1
2

(
v−(s+1)/2 − v−(s/2)−1

)
dv +

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv

where we have combined the terms without ω into one integral, and the terms

involving ω into another integral. Since we are still assuming Re s > 1, the first

integral is equal to

1
2

[
− 2

s− 1
v−(s−1)/2 +

2

s
v−s/2

]∞
1

=
1

s− 1
− 1

s
=

1

s(s− 1)
.

Hence

π−s/2Γ(1
2
s)ζ(s) =

1

s(s− 1)
+

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv.

For our function ξ(s) = 1
2
s(s− 1)π−s/2Γ(1

2
s)ζ(s) this gives

(9.2) ξ(s) = 1
2

+ 1
2
s(s− 1)

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv if Re s > 1.

Assume for the moment that F (s) :=
∫∞
1
ω(v)

(
v(s/2)−1 + v−(s+1)/2

)
dv defines an

analytic function on C. Then we can use the right-hand side of (9.2) to define the

analytic continuation of ξ(s) to C. By substituting 1−s for s in the right-hand side,

we see that ξ(1− s) = ξ(s).

It remains to prove that F (s) defines an analytic function on C. To this end,

it suffices to prove that F (s) is analytic on UA := {s ∈ C : |Re s| < A} for every

A > 0.

We apply as usual Theorem 2.29. We check that f(v, s) = ω(v)
(
v(s/2)−1 +

v−(s+1)/2
)

satisfies the conditions of that theorem.

a) f(v, s) is measurable on (1,∞)× UA. For ω(v) =
∑∞

n=1 e
−πn2v is measurable,

being a pointwise convergent series of continuous, hence measurable functions, and

also v(s/2)−1 + v−(s+1)/2 is measurable, since it is continuous.
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b) s 7→ ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
is analytic on UA for every fixed v. This is

obvious.

c) There is a measurable function M(v) on (1,∞) such that |f(v, s)| 6M(v) for

s ∈ UA and
∫∞
1
M(v)dv <∞. Indeed, we first have for v ∈ (1,∞)

0 6 ω(v) 6 e−πv
(
1 + e−3πv + e−8πv

)
6 2e−πv

and second, for v ∈ (1,∞), s ∈ UA

|v(s/2)−1 + v−(s+1)/2| 6 v(A/2)−1 + v(−(A+1)/2 6 2v(A/2)−1.

Hence

|f(v, s)| 6 4e−πvv(A/2)−1 =: M(v).

Further, ∫ ∞
1

M(v)dv 6 4

∫ ∞
0

e−vv(A/2)−1)dv 6 4 · Γ(1
2
A) <∞.

So f(v, s) satisfies all conditions of Theorem 2.29, and it follows that F (s) =∫∞
1
f(v, s)dv is analytic on UA.

9.4 The functional equations for L-functions

Let q be an integer > 2 and χ a Dirichlet character modulo q with χ 6= χ
(q)
0 . We

give, without proof, a functional equation for L(s, χ) in the case that χ is primitive,

i.e., that it is not induced by a character modulo d for any proper divisor d of q.

Notice that for any character χ modulo q we have χ(−1)2 = χ(1) = 1, hence

χ(−1) ∈ {−1, 1}. A character χ is called even if χ(−1) = 1, and odd if χ(−1) = −1.

There will be different functional equations for even and odd characters.

In Chapter 4 we defined the Gauss sum related to a character χ mod q by

τ(1, χ) =

q−1∑
a=0

χ(a)e2πia/q.

According to Theorem 4.17, if χ is primitive then |τ(1, χ)| = √q.

By χ we denote the complex conjugate of a character χ.
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Theorem 9.10. Let q be an integer with q > 2, and χ a primitive character mod q.

Put

ξ(s, χ) :=
( q
π

)s/2
Γ(1

2
s)L(s, χ), c(χ) :=

√
q

τ(1, χ)
if χ is even,

ξ(s, χ) :=
( q
π

)(s+1)/2

Γ
(
1
2
(s+ 1)

)
L(s, χ), c(χ) :=

i
√
q

τ(1, χ)
if χ is odd.

Then ξ(s, χ) has an analytic continuation to C, and

ξ(1− s, χ) = c(χ)ξ(s, χ) for s ∈ C.

Remark. We know that |c(χ)| = 1. In general, it is a difficult problem to compute

c(χ).

The proof of Theorem 9.10 is similar to that of that of the functional equation

for L(s, χ), but with some additional technicalities, see H. Davenport, Multiplicative

Number Theory, Chapter 9.

We deduce some consequences.

Corollary 9.11. Let q be an integer > 2 and χ a character mod q with χ 6= χ
(q)
0 .

Then L(s, χ) has an analytic continuation to C.

Proof. First assume that χ is primitive and χ is even. Then

L(s, χ) = ξ(s, χ)(π/q)s/2/Γ(1
2
s).

The functions ξ(s, χ) and (π/q)s/2 are both analytic on C, and according to Corollary

7.5, 1/Γ(1
2
s) is analytic on C as well. Hence L(s, χ) is analytic on C.

In a completely similar manner one shows that L(s, χ) is analytic on C if χ is

primitive and odd.

Now suppose that χ is not primitive. Let q′ be the conductor of χ. By Corollary

4.13, χ is induced by a character χ′ mod q′. Verify yourself that χ′ is primitive. We

have q′ > 1, since otherwise, χ would be equal to χ
(q)
0 .

For s ∈ C with Re s > 1 we have, noting that χ(p) = χ′(p) if p is a prime not
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dividing q and χ(p) = 0 if p is a prime dividing q,

L(s, χ) =
∏
p

1

1− χ(p)p−s
=
∏
p-q

1

1− χ′(p)p−s

=
∏
p

1

1− χ′(p)p−s
·
∏
p|q

(
1− χ′(p)p−s

)
= L(s, χ′) ·

∏
p|q

(
1− χ′(p)p−s

)
.

Now clearly, we can extend L(s, χ) analytically to C by defining

(9.3) L(s, χ) = L(s, χ′) ·
∏
p|q

(
1− χ′(p)p−s

)
for s ∈ C.

We consider the zeros of L-functions. Notice that (9.3) implies that if χ is induced

by a primitive character χ′, then L(s, χ) has the same set of zeros as L(s, χ), except

for possible zeros of
∏

p|q
(
1− χ′(p)p−s

)
, which all lie on the line Re s = 0.

We consider henceforth only the zeros of L(s, χ) for primitive characters χ. We

have proved in Chapter 5 that L(s, χ) 6= 0 if Re s > 1. The next corollary considers

the zeros s with Re s 6 0.

Corollary 9.12. Let q be an integer > 2 and χ a primitive character mod q.

(i) If χ is even, then L(s, χ) has simple zeros at s = 0,−2,−4, . . . and L(s, χ) 6= 0

if Re s 6 0, s 6∈ {0,−2,−4, . . .}.
(ii) If χ is odd, then L(s, χ) has simple zeros at s = −1,−3,−5, . . . and L(s, χ) 6= 0

if Re s 6 0, s 6∈ {−1,−3,−5, . . .}.

Proof. Exercise.
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