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1. INTRODUCTION

Let π be a permutation in the symmetric group Sn. An ascent is an
occurrence of π(j) < π(j + 1) for 1 ≤ j ≤ n − 1. For example, the
permutation 24513 has 3 ascents. The Eulerian number

〈
n
k

〉
is defined

to be the number of permutations in Sn with exactly k ascents. (The
Eulerian numbers are not to be confused with the Euler numbers
En.) Some of the elementary facts about them [2, chapter 6.2] are the
recursion 〈

n

k

〉
= (k + 1)

〈
n − 1

k

〉
+ (n − k)

〈
n − 1

k − 1

〉
with boundary conditions〈

n

0

〉
= 1,

〈
n

n − 1

〉
= 1,

and the symmetry 〈
n

k

〉
=

〈
n

n − 1 − k

〉
.

We have an obvious identity∑
k

〈
n

k

〉
= n!.

The point of this paper is a surprising identity for alternating sums
of Eulerian numbers.

Theorem. Let ζ(s) be the Riemann zeta function defined by
∑∞

m=1 m−s

for Re(s) > 1, analytically continued to C\{1}. For integer n ≥ 1 we
have

ζ(−n) =

∑n
k=1(−1)k

〈
n

k

〉
2n+1(1 − 2n+1)

.
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Of course, ζ(−n) can be expressed in closed form in terms of the
Bernoulli numbers by

ζ(−n) = −Bn+1

n + 1
,

so the theorem is also an identity relating Eulerian numbers to Bernoulli
numbers. However, the proof is direct.

2. EULER OPERATOR

Let
{

n
k

}
denote the Stirling number of the second kind. It is the num-

ber of ways to partition a set of n elements into k nonempty subsets.
These, too are connected to Bernoulli numbers by the identity (6.99)
of [2] with k = 1

Bm =
∑
j≥0

{
m

j

}
j!(−1)j

j + 1
.

Let D be the derivative operator d
dz

and E be the Euler operator z d
dz

.
They are related by

(1) En =
∑

k

{
n

k

}
zkDk

which is proved by induction [2, Exercise 6.13].

Lemma. If we apply En to f(z) = 1/(1 + z) we get

(2) En 1

1 + z
=

∑
j(−1)j+1

〈
n

j

〉
zj+1

(1 + z)n+1

Proof. By (1) we have

En 1

1 + z
=
∑

k

{
n

k

}
zk (−1)kk!

(1 + z)k+1
.

Put every term over the common denominator (1 + z)n+1; then the
numerator is∑

k

{
n

k

}
zk(−1)kk!(1 + z)n−k

=
∑

k

{
n

k

}
(−1)kk!

∑
j

(
n − k

j

)
zn−j

=
∑

j

(−1)n−j

(∑
k

{
n

k

}
(−1)n−j−kk!

(
n − k

j

))
zn−j
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by [2, (6.40)] the term in parenthesis simplifies to give

=
∑

j

(−1)n−j

〈
n

j

〉
zn−j =

∑
j

(−1)n−j

〈
n

n − 1 − j

〉
zn−j

by the symmetry property. Change j to n−1−j to get the numerator
as ∑

j

(−1)j+1

〈
n

j

〉
zj+1.

�

Lemma. We have the identity

(3)
〈

n

j

〉
=

j∑
k=0

(
n + 1

k

)
(j + 1 − k)n(−1)k.

This is (6.38) in [2], without proof supplied.

Proof. Expand 1/(1+z) as a power series and apply En term by term.

1

1 + z
=

∞∑
m=0

(−1)mzm

En 1

1 + z
=

∞∑
m=0

(−1)mmnzm.

Multiply both sides of (2) by (1 + z)n+1 to get∑
j

(−1)j+1

〈
n

j

〉
zj+1 =(1 + z)n+1

∞∑
m=0

(−1)mmnzm

=
∑

k

(
n + 1

k

)
zk

∞∑
m=0

(−1)mmnzm

=
∑

l

(
l∑

k=0

(
n + 1

k

)
(−1)l−k(l − k)n

)
zl

Comparing coefficients of zj+1 gives

(−1)j+1

〈
n

j

〉
=

j+1∑
k=0

(
n + 1

k

)
(−1)j+1−k(j + 1 − k)n

=

j∑
k=0

(
n + 1

k

)
(−1)j+1−k(j + 1 − k)n

�
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3. ABEL SUMMATION

The connection to the Riemann zeta function is, of course, through
Abel summation. Let f(z) be a function, continuous at z = 1 and
with power series expansion

f(z) =
∞∑

n=0

anz
n

absolutely convergent for |z| < 1. Then we define [3] the following
series to be convergent in the sense of Abel summation,

∞∑
n=0

an
A
= f(1).

For example, we have
∑

n(−1)nzn = 1/(1 + z) for |z| < 1, and the
right side is continuous at z = 1 so

∞∑
n=0

(−1)n = 1 − 1 + 1 − 1 + 1 − 1 . . .
A
=

1

2
.

This has nothing to do with limits of partial sums; it is a new defini-
tion. (It is probably worth mentioning also that some people use the
term ‘Abel summation’ to mean instead the discrete analog of inte-
gration by parts; i.e summation by parts.) It is easy to go astray here;
observe that

1

1 + x + x2
=

1 − x

1 − x3
=

∞∑
n=0

(x3n − x3n+1)

so, for example,

1 − 1 + 0 + 1 − 1 + 0 + 1 − 1 + 0 . . .
A
=

1

3
.

Introducing zeros into the sum changes the value.
For Re(s) > 1 we have absolutely convergent series

ζ(s) =
∞∑

m=1

1

ms
, φ(s) =

∞∑
m=1

(−1)m−1

ms
,

We have
φ(s) = (1 − 21−s)ζ(s),

and the alternating series φ(s) converges conditionally for 0 < s < 1.
Euler used Abel summation to compute values of φ(s) and then

the Riemann zeta function at negative integers; surprisingly, it gives
the correct answer (see [5, §8.4].) That is, it agrees with the values
obtained by Riemann’s analytic continuation of ζ(s). In fact, Euler
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conjectured the functional equation for ζ(s) correctly, based on this
calculation.

Euler’s idea was that φ(s) is summable, in the sense of Abel sum-
mation, for s = −n a negative integer. With f(z) = 1/(1 + z) we
have

φ(−n) =
∞∑

m=1

(−1)m−1mn A
= −Enf(1),

ζ(−n) = (1 − 2n+1)−1φ(−n)
A
= −(1 − 2n+1)−1Enf(1).

By (2) we get that

ζ(−n) =

∑
j(−1)j

〈
n

j

〉
2n+1(1 − 2n+1)

.

4. RANDOM MATRIX THEORY

Euler certainly could have proved this theorem, although there is
no evidence he actually did. It provides a connection between the
combinatorics of the symmetric group (the Eulerian numbers

〈
n
k

〉
)

and the trivial zeros of the Riemann zeta function at the negative
even integers −n = −2j.

Conjecturally, there is an indirect connection between the statis-
tics of the nontrivial zeros ρ of ζ(s) satisfying 0 < Re(ρ) < 1, and the
combinatorics of the symmetric group, via random matrix theory.
Assume the Riemann hypothesis, that the zeros are on the critical
line ρ = 1/2 + iγ. The (suitably normalized) spacings of the gaps
between the zeros are conjectured to satisfy what is called the GUE
distribution, the probability distribution for the eigenvalues of ran-
dom unitary matrices. The numerical evidence for this is impressive
[4]. Meanwhile, for a permutation π of Sn and 1 ≤ i1 ≤ · · · ≤ ik ≤ n,
we say that π(i1), . . . , π(ik) is an increasing subsequence if

π(i1) < π(i2) < · · · < π(ik).

Let `n(π) be the length of the longest increasing subsequence, Rains
and Odlyzko proved (see [1] for an exposition) that

P (`n ≤ `) =
1

n!

∫
U`

|TrM |2n dM,

where dM is Haar measure on the unitary group U`. And suitably
normalized and re-scaled, the length `n of the longest increasing sub-
sequence of a random permutation behaves statistically like largest



6 JEFFREY STOPPLE

eigenvalue of a GUE matrix, according to a theorem of Baik, Deift,
and Johansson described in detail in [1].
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