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1. INTRODUCTION

Let 7 be a permutation in the symmetric group S,,. An ascent is an
occurrence of 7(j) < w(j + 1) for 1 < j < n — 1. For example, the
permutation 24513 has 3 ascents. The Eulerian number <Z> is defined
to be the number of permutations in S,, with exactly k ascents. (The
Eulerian numbers are not to be confused with the Euler numbers
E,.) Some of the elementary facts about them [2, chapter 6.2] are the

<Z> - (k+1)<n;1>+(n—k)<z:i>

with boundary conditions

and the symmetry

<Z> - <n—?—k>'

We have an obvious identity

£()-»

k
The point of this paper is a surprising identity for alternating sums
of Eulerian numbers.

Theorem. Let ((s) be the Riemann zeta function defined by > >, m™*
for Re(s) > 1, analytically continued to C\{1}. For integer n > 1 we

have
()

((=n) = on+1(] — on+1) :
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Of course, ((—n) can be expressed in closed form in terms of the
Bernoulli numbers by
Bn-‘rl
so the theorem is also an identity relating Eulerian numbers to Bernoulli
numbers. However, the proof is direct.

2. EULER OPERATOR

Let {}} denote the Stirling number of the second kind. It is the num-
ber of ways to partition a set of n elements into £ nonempty subsets.
These, too are connected to Bernoulli numbers by the identity (6.99)

of [2] with k = 1 |
_ N [
Bm_z{j} j+1

Jj=0

Let D be the derivative operator - and & be the Euler operator z-£.
They are related by

(1) =3 {Z}zkl)k

k
which is proved by induction [2, Exercise 6.13].

Lemma. If we apply £" to f(z) = 1/(1 + z) we get
(-1 j+1<7?> j+1
L mew(h)

@ &9 +z (14 z)ntt

Proof. By (1) we have
e (ZDR
1—|—z _Z{ } (1 + z)k+1”

Put every term over the common denominator (1 + z)"*!; then the
numerator is

3 {Z}zk(—l)’%!(l 4 )k

k

()

J

e (B fer ()
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by [2, (6.40)] the term in parenthesis simplifies to give
— 1) n—j _ 1) n—j
=20 <y>z -2 <n—1—j>z
J J
by the symmetry property. Change j to n—1—j to get the numerator

N S

J

Lemma. We have the identity

® (") - Z ("r o mreny

This is (6.38) in [2], without proof supplied.
Proof. Expand 1/(1+ %) asa power series and apply £" term by term.

M

m=0

Mg

1—|—z

m=0

Multiply both sides of (2) by (1 + z)"*! to get

2~ 1)m< ]>Z]“ =(1+2)"! 2(—1)%%7”
— Z (n;— 1> zk ;<_1)mmnzm

= Z (Z (n . 1) (=1 (- k)“) Z

Comparing coefficients of 271! gives

(—1)j+1<?> Zi; (n Z 1) (=G + 1= k)"
:i (n Z 1) (D)7 1= k)"
k=0
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3. ABEL SUMMATION

The connection to the Riemann zeta function is, of course, through
Abel summation. Let f(z) be a function, continuous at z = 1 and
with power series expansion

f(z) = Z an2"
n=0

absolutely convergent for |z| < 1. Then we define [3] the following
series to be convergent in the sense of Abel summation,
— A
> a, = f(1).
n=0
For example, we have ) (—1)"2" = 1/(1 + z) for |z| < 1, and the
right side is continuous at z = 1 so
()t =1-1+1-1+1-1...
n=0
This has nothing to do with limits of partial sums; it is a new defini-
tion. (It is probably worth mentioning also that some people use the
term ‘Abel summation’ to mean instead the discrete analog of inte-
gration by parts; i.e summation by parts.) It is easy to go astray here;
observe that

A

N | —

[e.e]

1 N 3n 3n+1
1—|—x+9(:2_1—x3_22(3j -z
n=0
so, for example,
1
1—1+0+1—1+0+1—1+0...é§.

Introducing zeros into the sum changes the value.
For Re(s) > 1 we have absolutely convergent series

o)=Y o ol =Y T

We have
¢(s) = (1 —27°)¢(s),
and the alternating series ¢(s) converges conditionally for 0 < s < 1.
Euler used Abel summation to compute values of ¢(s) and then
the Riemann zeta function at negative integers; surprisingly, it gives
the correct answer (see [5, §8.4].) That is, it agrees with the values
obtained by Riemann’s analytic continuation of ((s). In fact, Euler
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conjectured the functional equation for ((s) correctly, based on this
calculation.
Euler’s idea was that ¢(s) is summable, in the sense of Abel sum-

mation, for s = —n a negative integer. With f(z) = 1/(1 + z) we
have
p(—n) =Y (~1)"tm" £ =" (1),
m=1

C(=n) = (1 — 21 Lg(—n) & —(1 — 2"1)"Lem f(1).
By (2) we get that

- B

- 2n+1(1 _ 2n+1)'

4. RANDOM MATRIX THEORY

Euler certainly could have proved this theorem, although there is
no evidence he actually did. It provides a connection between the
combinatorics of the symmetric group (the Eulerian numbers (}))
and the trivial zeros of the Riemann zeta function at the negative
even integers —n = —27.

Conjecturally, there is an indirect connection between the statis-
tics of the nontrivial zeros p of ((s) satisfying 0 < Re(p) < 1, and the
combinatorics of the symmetric group, via random matrix theory.
Assume the Riemann hypothesis, that the zeros are on the critical
line p = 1/2 + i. The (suitably normalized) spacings of the gaps
between the zeros are conjectured to satisfy what is called the GUE
distribution, the probability distribution for the eigenvalues of ran-
dom unitary matrices. The numerical evidence for this is impressive
[4]. Meanwhile, for a permutation 7 of S,, and 1 <4y <--- <1, <,
we say that 7(iy), ..., 7 (i) is an increasing subsequence if

(i) < w(ig) < -+ < w(ig).

Let ¢, (m) be the length of the longest increasing subsequence, Rains
and Odlyzko proved (see [1] for an exposition) that

n!

1
P, <0)=— [ |TeM|**dM,
U,

where dM is Haar measure on the unitary group U,. And suitably
normalized and re-scaled, the length /,, of the longest increasing sub-
sequence of a random permutation behaves statistically like largest
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eigenvalue of a GUE matrix, according to a theorem of Baik, Deift,
and Johansson described in detail in [1].
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