- N

Implementing Reed-Solomon

Andrew Brown

Implementing Reed-Solomon —p. 1

Recall

- N

Reed-Solmon represents messages as polynomials
and over-samples them for redundancy.
® An (n,k,n—k+ 1) code has
s k digit messages
n digit codewords
n — k + 1 distance between codewords (at least)
(n — k) /2 errors before it cannot be decoded

® 2s=n—Kk

e o o

In this presentation, all messages and codewords are

over the finite field GF(28). This makes byte-oriented
Implementation easy

o |

Implementing Reed-Solomon —p. 2

Recall

f.’ Generator Polynomial:
s g(z) = (r—a)(z —a®)---(z—a"")
s «is a generator element in GF(2°)

Encoding Process:

s m Is the message encoded as a polynomial
28

s m =mx
s b=m' (mod g)
s m' = qg+ bfor some g
s c=m—b
Codewords are multiples of ¢, and are systematic

\erifying a codeword is valid is a matter of checking for

~ divisibilty by ¢ o

Implementing Reed-Solomon —p. 3

Decoding Procedure Overview

-

. Calculate Syndromes

2. Berlekamp-Massey Algorithm - calculates the Error Locator

Polynomials and Error Evaluator Polynomials

. Chien Search - Finds the error locations using the Error

Locator Polynomial

Forney’s Formula - Finds the error magnitudes using the
error evaluator polynomial

. Correct the Errors

|

Implementing Reed-Solomon —p. 4

Decoding (Defining Terms)
-

Error Polynomial

R(x) = C(x)+ E(x)

E(x) = Ey+Ex+-+ E, 12"

o Has at most s coefficients that are non-zero

Error Positions
s j1,J2, - js, €ach a value between 0 and n — 1

Error Locations

Xz' = Oéji
Error Magnitudes
Y = Ly,
Notice that there are 2s unknowns J

Implementing Reed-Solomon —p. 5

°

Decoding (Syndromes)

Step 1: Calculate the first 2s syndromes
Syndromes are defined for all /:

S
si= Y YiX]
i—1

For the first 2s, It reduces to:

S
s; = F(a!) = ZY}O/ﬁ 1 <1<2s
1=1

s; = R(a!') = E(a!) for the first 2s powers of a.
Equivalent to having 2s equations with 2s unknowns J

Implementing Reed-Solomon — p. 6

Decoding (Syndromes)

- N

Encode the syndromes in a generator polynomial:
OO .
s(z) = Z $i2'
1=1

This can be computed by finding each s; from the
received codeword for the first 2s values. That’s all we
need though.

o |

Implementing Reed-Solomon —p. 7

°

Berlekamp-Massey Algorithm
-

Input: Syndrome polynomial from the last slide

Output: Error Locator Polynomial o(z) and Error
Evaluator Polynomial w(z). Defined as:

S

o(z) = [](1-X;2)

1=1
S S
w(z) = o(z)+ Z 2 X;Y; H(l — X,z)
i—1 =1
Jj#i

Notice that the error locations are the inverse roots of
o(z). (Roots are 1/X1,1/X5,---1/X5)

|

Implementing Reed-Solomon —p. 8

B-M (The Key Equation)

Observe the following relation:

w(z) | i: 2 X;Y;

o(z) i 1 — X,z

1=1
— ...Intermediate steps omitted
= 1+ s(2)

Key equation thus states:

(mod_ZQS—l—l)

(1+5(2))o(z) = w(z)

o(z) and w(z) have degree at most s

Key Equation represents a set of 2s equations and 2s
unknowns J

Implementing Reed-Solomon —p. 9

B-M (procedure)
B -

B-M iterates 2s times
At each iteration, it produces a pair of polynomials:
(o) (2), way(2))

where the polynomials satisfy that iteration’s key
equation:

Implementing Reed-Solomon — p. 10

B-M (procedure)
B -

® Once we have
(o) (2), wp)(2))

for some [. If we're lucky, they already satisfy the next
key equation:

(I+s(z))op(z) = wp(?)
In which case we can set 0(;,1)(z) = o(;)(2) and similarly
for w(z)
However, usually we have an unwanted higher-order
term:

(mod z'*?)

- (L+sG)opz) =" Twp) + 80" -

Implementing Reed-Solomon — p. 11

°

B-M (procedure)
-

Ay is the non-zero coefficient of 2/ in (1 + s(2))o(;)(2)
Basic idea is to iteratively improve estimates of o and w

But since there may be a higher order term, we can’t
always just extend to [+ 1 from iteration |

A complex set of rules determines how to handle
different cases

The next 5 slides describe these cases and how to
handle them

|

Implementing Reed-Solomon — p. 12

B-M (Detalls)
-

Ay is the non-zero coefficient in (1 + s(z))o(2)

To find the next iteration’s polynomials, we introduce
two more polynomials 7;)(z) and ~;(z)

They must satisfy:

(mod z'™1)

(1 +s)mpz) "2) + 2

And we have the following rules to derive the next o and
w:

ocu+y(2) = oq(z) — Agzry ()

wiar)(2) = wp(2) —Apzye(2)

B-M (Detalls)
=

But how to compute 7;1)(z) and ~(4(2)7?

Use one of the following rules:

(A) Ta+1)(2) = 27y (%)
Y41y (2) = 2y (2)
B o) (2)
_ W (2)
,Y(l—l—l)(z) — A(l)

Impl

ementing Reed-Solomon — p. 14

°

© o o o o o

B-M (Detalls)
-

One of (A) or (B) is chosen each iteration to minimize
the degrees of 7;1)(2) and ~(41)(2)

To choose, define a single value D ;) for each iteration

Choose rule (A) iIf Ay =00r Dy > HTl

Choose rule (B) if Ag # 0 and Dy < HTl
With rule (A) set D1y = D
With rule (B) set D(; 1) =1+ 1 — D

These rules and conditions ensure 0 < D) <1 +1

and the degrees of 0(;,1) and w;, 1) are upper-bounded

by D;;1) and degrees of 7,1y and vy are
upper-bounded by [— D, o

Implementing Reed-Solomon — p. 15

°

°

© o o o ©

B-M (Detalils)

But what about when Ay # 0 and Dy = 51?2

-

Either rule works, but to do even better, define one last

va
W

ue, a binary value B, for each iteration

nen B = 0 use rule (A)

W

nen B = 1 use rule (B)

With rule (A) set B41) = B
With rule (B) set B;,1) = 1 — By

This keeps the degree inequalities satisfied:

degree w(l)(z) < D(l) _ B(l)
degreeyy(z) < 1= Dgy— (1= By)

|

Implementing Reed-Solomon — p. 16

-

o (0)(2)
w(0)(2)
T(O)(Z)
7(0)(2)

Do)

Bo)

Last piece: the initial conditions:

B-M (Detalils)

All those rules ensure the degrees of o and w do not
grow too large. Each step they satisfy:

degreeoy < (I+1)/2
degreewqy < /2

o O O = =

-

|

Implementing Reed-Solomon — p. 17

Decoding: Next Steps

- N

Now we have the Error Locator Polynomial o(z) and the
Error Evaluator Polynomial w(z)

Chien’s Search takes o(z) and outputs the error
locations/positions (.X; and j;)

o Forney’s Formula takes w(z) and the array X; of error
locations outputs the error magnitudes (Y;)

o |

Implementing Reed-Solomon — p. 18

Chien’s Procedure

- N

Recall the definition of o(2):

S

o(z) = | [(1 - X;2)

1=1

Now that we have o(z), finding the array of X; values is
simply a matter of solving for the roots

The Easy Way: since we’re working over a small field,
just test every value
1. Let « be a generator
2. Initialize {X;} to the empty set
3. Fori=1,2,...

\— |f a(ozl) —0: add o' to {X:} J

Implementing Reed-Solomon — p. 19

Chien’s Procedure

- N

But we can do better than evaluating it 255 times!
If we have computed the «'th evaluation, we get:

o(a!) =1+ 010! + 090 + 0303 + - -+ + 050
® Then, computing o(a!*1) is an O(s) operation:

O_(al—i—l) — 1+ O_lal—i—l 4 0'2042l+2 4 0'3043l+3 bt USCVSZ+S

The ith termin o(a'*1) can be computed from the ith
term in o(a!) by multiplying that term by «°

o |

Implementing Reed-Solomon — p. 20

Forney’s Formula

-

Using the Error Evaluator Polynomial w(z) and the error
locations { X}, the error magnitudes {Y;} can be computed

—|—ZZXYH1—XZ

J#z

-

Evaluate at X, '

Implementing Reed-Solomon — p. 21

Forney’s Formula

- N

S S
WX =X Y XY - XX
i=1 j=1
JFi
Then simplifies to:

S

=Y H(l — Xsz_l)
j=1
J#l

since o(X; 1) =0

Implementi mon — p. 22

Forney’s Formula

- N

S

W(Xl_l) =Y H(l - Xle_l)

.

j#l
Can then be solved for Y;:
—1
Vi — w(X;)
H(l _ Xsz_l)
j=1
j#l

And that can be directly computed. We know all the values
on the right hand side!

o |

Implementing Reed-Solomon — p. 23

Putting it all together
-

o We know:
s {X;} The error locations
s {Y;} The error magnitudes

Put them together to build the Error Polynomial E(x)
Then subtract to get the codeword!

Implementing Reed-Solomon — p. 24

Reed-Solomon Implementation

-

The rest of the presentation is about my implementation

-

Done in Python with no external libraries or
dependencies

» Implemented a Finite Field class for GF(2°)

Implemented a Polynomial Class for manipulating
polynomials

Implemented the RS algorithms as described

o |

Implementing Reed-Solomon — p. 25

°

Finite Fields
-

Created a Python class that subclasses int

Instances are integers, which represent the
corresponding finite field element when translated to a
polynomial

51 = 00110011 = 2° + 22 + 2z + 1

Overwrote addition, subtraction, multiplication, division,
and exponentiation for finite field arithmetic

Multiplication defined using an exponentiation table and
a logarithm table, pre-generated

|

Implementing Reed-Solomon — p. 26

Finite Fields (multiplication)

-

exptable = (1, 3, 5, 15, 17, 51, ... 246, 1) T

This table holds all powers of 3
® exptable[l] = 3
® exptable[255] =1

| ogtable = (None, O, 25, 1, 50, 2, ... 112, 7)
This table holds all logarithms in base 3

® |ogtable[3] =1

® |ogtable[l1l7] = 4
(since 3* = 17)

| ogt abl e[O]
L IS an error J

Implementing Reed-Solomon — p. 27

Finite Fields (multiplication)

F__exptable = (1, 3, 5, 15, 17, 51, ... 246, 1)_T
| ogt able = (None, 0O, 25, 1, 50, 2, ... 112, 7)

These tables together define multiplication like this:

def rrultlply(a 0) :
X = | ogt abl e[a]
y = | ogt abl e[b]
Zz = (x +Yy) %255

return exptabl e[z]

o |

Implementing Reed-Solomon — p. 28

Finite Fields (more)

-

exptable = (1, 3, 5, 15,
| ogt abl e = (None, 0, 25,

246, 1) .

112, 7)

17, 51,
1, 50, 2,

EXxponentiation and multiplicative inverses also use

these tables:

def power(a, b):
X = | ogt abl e[a]
Z = (X * b) % 255
return exptabl e[z]

def I nverse(a):
e = | ogtabl e[a]

return exptabl e[255 -

o

€]

|

Implementing Reed-Solomon — p. 29

°

Polynomial Class
Stores numbers from high degree to low degree T

All coefficient math is done using regular Python
operators

Compatible with both integers and field elements as
coefficients

Supports long division and remainders (essential for RS
coding)

|

Implementing Reed-Solomon — p. 30

Reed Solomon Encoding
5

Since the polynomial class abstracts polynomial math away,
encoding boils down to basically:

def encode(m:
nprime = m=+* Xxshift
b = nmprine %g
C =nprine - b
return c

-

Implementing Reed-Solomon — p. 31

Reed Solomon Decoding
L -

Decoding is also fairly simple:

def decode(r):
Sz = syndrones(r)
si gnma, onega = berl ekanp _nassey(sz)
X,] = chien_search(sigm)
Y = forney(onega, X

There I1s a loop to build E here

return r - E

o |

Implementing Reed-Solomon — p. 32

Reed Solomon Decoding

- N

My implementation of those functions are straight up
Implementations of the math. Nothing surprising.

def syndromes(r):
s = [GF256i nt (0)]
for I 1nrange(l, n-k+1l):
s. append(r. eval uate(G-2561i nt (3) *=*1))

My Chien Search isn’t actually Chien’s search though, it
just evaluates the polynomial 255 times:

p = G2561 nt (3)
for | 1 n range(l1, 256):
| f signa.evaluate(p*xl) ==
X. append(px*(-1))
] . append(255 - |)

o |

Implementing Reed-Solomon — p. 33

Implementation Notes

- N

Message to Polynomial translations

1. “hello”
2. 104, 101, 108, 108, 111
3. 104z* + 10123 + 10822 + 10821 + 111

#® Messages are effectively left-padded with null bytes

o |

Implementing Reed-Solomon — p. 34

Example

-

°

RS(20,13) code: 13 message bytes and 7 parity bytes.
Can correct 3 errors.

Message: “Hello, world!”
Codeword: “Hello, world![8d][13][f4][f9][43][10][e5]”
R: “[00][00][00]lo, world![8d][13][f4][f9][43][10][e5]"
Decoded: “Hello, world!”

e o o o

And, to prove this isn’t faked...

o |

Implementing Reed-Solomon — p. 35

fAs an example, | have written a program that encodes

Demo!

-

codewords as rows in an image

o o

Uses RS(255,223)
Encodes each symbol as a pixel in a grayscale image
Each row is a codeword

Decodes to:

ALl CE' S ADVENTURES | N WONDERLAND
Allce was beginning to get very tired of
sitting by her sister on the ... J

Implementing Reed-Solomon — p. 36

Demo!

-

-

Since each row is a RS(255,223) codeword, it can
handle up to 16 pixel errors per row.

Drawing 5 px stripes, each of the following still decodes:

Implementing Reed-Solomon — p. 37

	Recall
	Recall
	Decoding Procedure Overview
	Decoding (Defining Terms)
	Decoding (Syndromes)
	Decoding (Syndromes)
	Berlekamp-Massey Algorithm
	B-M (The Key Equation)
	B-M (procedure)
	B-M (procedure)
	B-M (procedure)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	Decoding: Next Steps
	Chien's Procedure
	Chien's Procedure
	Forney's Formula
	Forney's Formula
	Forney's Formula
	Putting it all together
	Reed-Solomon Implementation
	Finite Fields
	Finite Fields (multiplication)
	Finite Fields (multiplication)
	Finite Fields (more)
	Polynomial Class
	Reed Solomon Encoding
	Reed Solomon Decoding
	Reed Solomon Decoding
	Implementation Notes
	Example
	Demo!
	Demo!

