
Tyler Derr
Sonam Gupta

A Parallel Distributed Genetic Algorithm
Application for Feature Selection in

Classification Problems

What is this long title about??

 What is feature selection?
 What is a genetic algorithm (GA)?
 Selection, Crossover, Mutation, Fitness
 Furthermore what is a distributed GA (DGA)?

 How do you classify given a data set? …Well, in
our case we use a Support Vector Machine,
specifically the program SVM light

 MPI as the message passing service…but why?
…and what implementation to use?

Problem to solve

 Goal:
 Create a program such that given a data set as input can

output a subset of the features which provides a better
accuracy during classification and reduces the data set size.

 Approach:
 Use MPI to parallelize a DGA which will search for a

solution to the subset problem across a network of machines
increasing accuracy of our solution as well as improved
running time.

 We have used 11 machines in the SunLab to run our
program in which they communicate with each other while
running in parallel

Feature Selection

 Definition: a process used in machine learning for
selecting a subset of the features that reduces number of
features while increasing the accuracy

 Why is it useful?
 Data reduction- saves resources collecting/storing data
 Improves prediction accuracy- by removing noise features
 Reduces training time and algorithm execution time
 Can provide insight to the problem

 Other approaches based on Greedy forward/backward
search, mutual information, simulated annealing, etc.

Message Passing Interface (MPI)

 We chose to use MPICH (Version 3.0)
 Superior performance than Open MPI [3]
 Updated to the MPI 3.0 standard which was introduced

in late 2012 (which Open MPI has not done yet)
 Exclusively used on 9 of the top 10 supercomputers

including the word’s fastest Tianhe-2 [1]

 Used to provide communication, a virtual topology,
and synchronization between a set of processes

 Basic operations: MPI_Send, MPI_Recv

Background for GAs

 Chromosome- encoding of a solution to the given
problem (i.e. a subset of features)

 Genes of a chromosome- encode whether or not we
include a feature from our data set in our classification
process
 Ex. If C1 has genes = [1, 1, 0, 0, 1] this means that out of 5

features for the given data set this chromosome will only use
features 1,2, and 5 for classification

 Fitness of a chromosome- the measure of how fit the
given chromosome is in relation to the problem
 Fitness = accuracy value returned by SVM light after running

the modified data set which corresponded to the
chromosome’s genes

Generic Scheme for a GA

1. Create a population P of chromosomes
2. Compute the fitness of each chromosome in P
3. WHILE(Stopping condition not met) DO

1. Select Parents P1 and P2 from P
2. Crossover: combine P1 and P2 to create 2 offspring O1

and O2
3. Mutation: Mutate O1 and O2
4. Replacement: Attempt to place O1 and O2 in P, while

keeping |P| fixed
ENDWHILE

4. Return the best chromosome in P

Referenced From:
Dr. Bui

COMP511

GA-Selection Roulette Wheel

We sum up the fitness
values then assign
each chromosome a
proportion of the
wheel based on their
individual fitness

GA- Crossover & Mutation

 Best explained in an example:

Selected parents P1 and P2

Offspring O1 and O2 after one-point crossover

Offspring O1 and O2 after mutation

GA- Replacement

 We want to possibly bring the offspring into our
population, but while keeping the overall size fixed

 One possible replacement is as follows:
 If an offspring is more fit than any of the chromosomes

in our current population, we replace them

Implementation – Coded in C

 Master/Worker relationship with 11 computers
 10 worker processes (islands) & 1 master process

 Use DGA such that each island runs a separate GA and
occasionally send chromosomes to each other to increase
diversity

 Bank Marketing Data Set from the UCI repository[4]
 Number of Instances: 45,211 Number of Features: 16
 Binary classification: Y/N whether a client will open a term

deposit (data taken from a Portuguese bank)
 How to determine fitness for chromosome C?
 Create a temporary data set which only contains the subset of

features that C represents
 Train a model based on the temporary data set using SVM light

and obtain a test accuracy
 C’s fitness = obtained accuracy value

Structure of our DGA

Results & Analysis

Running times and Results:
 10 migration rounds, 5 GA generations between

migration rounds, each island has population 50
 Full data set (≈45k): Estimated 4-5 days (currently running)
 Unknown results

 Small data set (≈4.5k): ~8-10 hours
 Produces a few different subsets with same accuracy ≈ 91%

 3 migration rounds, 2 GA generations between
migration rounds, each island has population 25
 Very small data set (50): < 10 minutes
 You will see in the upcoming demo

MPI Program Structure

Our Struct and Initializing MPI

MPI Derived Data Type

Basic Communication

Executing the Above Example

 How to compile MPI programs:
 mpicc example.c –o example

 How to execute MPI programs:
 mpiexec –f machinefile –n 2 ./example
 -f indicates we have a machine file
Machine file: Contains the IPs for each of the available

machines we can connect to. In our case the names of the
SunLab computers (i.e. Grace, Pascal, Galois, etc.)

 -n is used to define how many processes to start

DEMONSTRATION

Problems We Faced

 For SVMlight we used C system(command) function
 this printed unnecessary statements to the terminal and made it convoluted to

obtain the accuracy
 Fix: Use of popen(command, “r”) to read and parse the output of SVMlight

 All islands were generating the same chromosomes!!
 Fix: we seeded the rand() function with

srand((island_ID + 1) * time(null)) as they have unique ids
 mpiexec command needing ssh login password for every machine being

used on execution:
 Fix: using ssh keygen we created a public key so that we can connect to any

machine in the lab without a password
 MPI trying to use ports blocked in the Sun Lab

 Fix: Set Environment Variable
 MPIEXEC_PORT_RANGE = 6000:7000

Future thoughts…

 To create a GUI: Enable users to select a dataset file
and choose input parameters such as: number of
generations between migration, number of islands,
mutation rate, etc.

 Using GPUs…
 New research is being done to use MPI for communication

between nodes, but also using CUDA or OpenACC to create
MPI + OpenACC, CUDA-aware MPI, and MVAPICH2
systems
 Increase performance by processing on several cores of a GPU

rather than few of a CPU

 Implement failure handling through backup logs
 MPI cannot handle machine failures or for you to add new

machines during runtime

How OS Class Helped?

 Master/worker architecture (Client/Server)
 The examples from class with pipes in C
 Blocking/non-blocking send, receive, and broadcast
 Concurrency is handled using MPI and the use of

MPI_Barrier allows for synchronization points
 Resource sharing- We use a shared folder for all

processes
 Shared data set: used in read mode (allows concurrency)
 All process specific files append unique ID

 Scalability– no code changes needed…
 MPI –n command to specify number of machines
 TCP sockets only created when needed

Thank you Dr. Null 

If Time Travel Existed…

 SVM is a superior classifier…however very slow
 Instead use a faster, less accurate classifier (e.g. Naïve Bayes)

 Choosing another data set for proof of concept
Our banking data set seems to be already refined
 All features appear to be relevant after our investigation

 Instead choose a more recent data set with more
features that hasn’t been refined by researchers

Conclusion

 Implementation of a parallel DGA to solve the
feature selection problem encountered in machine
learning classification problems

 Uses of MPICH: message passing, synchronization,
resource sharing, and scalability
 Allowed us to get a feel for distributed parallel

computing and made it easier

 Learned that decision of data set is crucial

References

1. http://www.mpich.org/
2. http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
3. McClements E., (2006). Performance Comparison of Open Source MPI Implementations. The-

University of Edinburgh, Edinburgh.
https://www.epcc.ed.ac.uk/sites/default/files/Dissertations/2005-2006/2688821-9h-
dissertation1.1.pdf

Image/Figure sources:
 http://www.buzzle.com/img/articleImages/423054-57523-37.jpg
 http://www.genetic-programming.com/evolveV2DF2003621.GIF
 http://cdn.medicalxpress.com/newman/gfx/news/hires/2012/6-stanfordrese.jpg
 http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/
 http://www.island6.org/blog/wp-content/uploads/island-ONLINE-CLIPART-290x290.jpg
 http://thumbs.dreamstime.com/x/man-facing-problems-stress-8769191.jpg
 http://us.123rf.com/400wm/400/400/artelis/artelis1002/artelis100200014/6424845-

3d-white-man-surrounded-by-urgent-requests.jpg
 https://computing.llnl.gov/tutorials/mpi/#Abstract

