1) PACE is a parallelogram and m \angle PAC = 124. Complete the following. (Pearson CC Geometry)

e.
$$CP = 2(CR) = 2(6.6) = 132$$

mZCEP = MCPAC = 1240

g.
$$m\angle EPA = 360 - (124 \times 2) = 56^{\circ}$$
 GR AT Consec 2s
h. $m\angle ECA = m(EPA = 56^{\circ})$ 124=56°

i.
$$m\angle ACR = 7.7.7$$

Lecture 6.4: Prop of Rhombuses, Rectangles, and use properties of rhombuses, rectangles	\mathcal{N}
Rhombus a D w 4 = Sides	Eit.
Rectangle a 2 w/4 right Ls	
square a Dw/4 = sides and 4	tit is Eig
Special Paralle logroms	a sq 15 always a
Rhombus (Square Rectangle)	rectargle. a sq is always a
Square	a rhombus is sometimes a la selsometime a selsometime
HEOREM 6-13:	a 52/ sometimes a 1
A parallelogram is a rhombus if and only if its diagonals are $\triangle ABCD$ is a rhombus if and only if $\triangle C$	
ROVE IT! iven: ABCD is a rhombus rove: AC I BD Reashs AD = DC = CB = BA D def & rho	mbus B
Grom Bi, Di Sam Air	ers, I bisector Thm
equidistrut From Some on L bisector (3) Convertible of Bo; Bi, D are on L bisector (4) Thru of AC 1 BD	pts there is I line I to a given line.
HEOREM 6-14: A parallelogram is a rhombus if and only if each diagonal bisects a popposite angles. $\angle ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle A$ and $\angle A$ and A and A bisects A and A and A bisects A bisects A and A bisects A bisects A and A bisects A	pair of A

PROVE IT! (Proof of Theorem 6-14)

Given: ABCD is a rhombus

Prove: AC bisects LBAD and LBCD

Statements	Reasons
1. ABCD is a rhombus	(1) given
2. ABS ÃO S CB S CD	@ Del of rhombus
3. AC S AC	3 reflex Prop
4. DABC = DADC	9 SS S
5. L3=L4 L1=LZ	6 CPCTC
6. AC bisects LBAD: LBCD	(6) Det of bisector

EX 1: What are the measures of the numbered angles in rhombus ABCD? I diagonals; bisect oppes

 $ML1=90^{\circ}$ $ML2=ML3=58^{\circ}$ $ML4=180-90-58=32^{\circ}$

THEOREM 6-15:

A parallelogram is a rectangle if and only if its diagonals are _

 $\triangle ABCD$ is a rectangle if and only if $AC \cong BD$

PROVE IT!

Developing Proof Complete the flow proof of Theorem 6-15.

Given: ABCD is a rectangle.

Prove: $\overline{AC} \cong \overline{BD}$

ABCD is a □.

b. e. AB⊆DC

Opposite sides of a □ are ≅.

ABCD is a rectangle.

BC = BC c. Reflex. Prop F. AABC ADCB

AC ≅ BD h. CPCTC

 $\angle ABC$ and $\angle DCB$ \longrightarrow \bigcirc $\angle ABC \cong \angle DCB$ are right $\angle B$.

d. Det of

g. all rt Ls are ?

1. Classify the special quadrilateral. Explain your reasoning.

The quadrilateral has four congruent

One of the angles is not a _______, so the rhombus is not also a

quare__. By the definition of Rhombus, the quadrilateral is a _____ Rho mbus

- 2. You are building a frame for a painting. The measurements of the frame are shown at the right.
 - a. The frame must be a rectangle. Given the measurements in the diagram, can you assume that it is? Explain.

-16 in.

all we know is it is it

is a I because opp sides are ?

but we don't know all is one of is.

 ${f b}$. You measure the diagonals of the frame. The diagonals are about 25.6 inches. What can you conclude about the shape of the frame?

since the chagavals are = then it is since the chagavals are = then it is either a 52. It a rectangle. Since 4 sides are it is a rectangle.

c. Suppose the diagonals of the frame are not congruent. Could the frame still be a rectangle? Explain.

No. Dagovals of a rectangle are always

3. Determine the most precise name for each quadrilateral

opp sides 11
Hrt Ls
Hsides not =

HOMEWORK: p379 1-7all, 9-23 odd, and 47

Lecture 6.4: Prop of Rhombuses, Rectangles, and Squares Source: Pearson CC Geometry

SWBAT: To define, classify and use properties of rhombuses, rectangles, and squares.

VOCA DIU A DV	
VOCABULARY Rhombus	
Rectangle	
Square	
THEOREM 6-13:	$A \longrightarrow B$
A parallelogram is a rhombus if and only if its diagonals are	1 × 1
$\angle BCD$ is a rhombus if and only if \perp	$D \longrightarrow C$
PROVE IT!	
Given: ABCD is a rhombus Prove:	
riove.	
ΓHEOREM 6-14:	
A parallelogram is a rhombus if and only if each diagonal bisects a pair of	A _{IV} *** B
opposite angles.	
\angle ABCD is a rhombus if and only if \overline{AC} bisects \angle and \angle and	<i>†</i> / <i>†</i>
	$D \bowtie \mathcal{A}_{C}$
BD bisects \angle and \angle	

PROVE IT! (Proof of Theorem 6-14)

Given: ABCD is a rhombus

Prove:

Statements	Reasons
1.	
2.	
3.	
4.	
5.	
6.	

EX 1: What are the measures of the numbered angles in rhombus ABCD?

THEOREM 6-15:

A parallelogram is a rectangle if and only if its diagonals are _____.

∠ABCD is a rectangle if and only if _____ ≅ ____

PROVE IT!

Developing Proof Complete the flow proof of Theorem 6-15.

Given: *ABCD* is a rectangle.

Prove: $\overline{AC} \cong \overline{BD}$

b. _?_

e. <u>?</u>

Opposite sides of a \square are \cong .

ABCD is a rectangle.

BC ≈ *BC* c. .?

f. ? SAS

 $\overline{AC} \cong \overline{BD}$ h. ?

a. _?_

 $\angle ABC$ and $\angle DCB$ $\angle ABC \cong \angle DCB$ are right $\angle ABC \cong ABC \cong ABC$

d. ?

g. <u>?</u>

Ex 3: For any rhombus *RSTV*, decide whether the statement is *always or sometimes true*. Draw a sketch to help explain your reasoning.

a.
$$\angle S \cong \angle V$$

Solution

By definition, a rhombus is a parallelogram with four congruent ______.

We know by theorem that opposite angles of a parallelogram are ______. So, $\angle S \cong \angle V$.

The statement is _____ true.

b.
$$\angle T \cong \angle V$$

Solution

If rhombus RSTV is a_____, then all four angles are congruent right angles.

So $\angle T \cong \angle V$ if *RSTV* is a ______. Because not all rhombuses are also ______, the statement is ______ true.

PRACTICE:

1. If LN = 4x - 17 and MO = 2x + 13, what are the lengths of the diagonals of rectangle LMNO? What type of triangle is Δ PMN? Justify your answer.

- 2. For any square *CDEF*, is it always or sometimes true that $\overline{CD} \cong \overline{DE}$
- ? Explain your reasoning.
- 3. A quadrilateral has four congruent sides and four congruent angles. Classify the quadrilateral.

Ex 4: List the quadrilaterals that have the given property. Choose among parallelogram (PG), rhombus (Rh), rectangle (REC) and square (SQ)

All sides are \cong .

Opposite sides are \cong .

Opposite sides are ||.

Opposite ゟ are ≅.

All & are right &.

Consecutive \(\Delta \) are supplementary.

Diagonals bisect each other.

Diagonals are \cong .

Diagonals are ⊥.

Each diagonal bisects opposite 🕹.

PRACTICE:

1. Classify the special quadrilateral. Explain your reasoning.

The quadrilateral has four congruent	127
One of the angles is not a, so the rhombus is not also a	
By the definition of Rhombus, the quadrilateral is a	

- 2. You are building a frame for a painting. The measurements of the frame are shown at the right.
 - **a.** The frame must be a rectangle. Given the measurements in the diagram, can you assume that it is? *Explain*.

- **b.** You measure the diagonals of the frame. The diagonals are about 25.6 inches. What can you conclude about the shape of the frame?
- c. Suppose the diagonals of the frame are not congruent. Could the frame still be a rectangle? Explain.

3. Determine the most precise name for each quadrilateral

