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Abtlract-ln this paper the dynamic analysis of a parallel
manipulator is studied in detail, The manipulator architecture
is a simplified planar version adopted from the structure ofLarge
Adaptive Reflector (LAR), the Canadian dcsign of next generation
giant radio telescopes, This structure uses a parallel redundant
manipulator actuated by cables. In this paper firet, the governing
dynamic equation of motion of such structure is derived using
the principle of virtual work. Next, the dynamic equations of the
system are uscd in simulations. In these simulations it is observed
that the limb inertial lbrces contributes only VolO of thc dynamical
forces required to gencrate a typical trajectory, and moreover, thc
total dynamical fDrccs contribute in only 7ol0 of experimentally
measured disturbance forces.

I .  INTRoDUCTIoN

An intemational consortium of radio astronomers and en-
gineers have agreed to investigate technologies to build the
Square Kilometer Array (SKA), a cm-to-m wave radio tele-

scope for the next generation of investigation into cosmic
phenomena [5]. A looming "sensitivity barrieC' will prevent

current telescopes from making much deeper inroads at these
wavelengths, particularly in studies of the early universe. The

Canadian proposal for the SKA design consists of an array of

30-50 individual antennas whose signals are combined to yield

the resolution of a much larger antenna. Each of these antennas
would use the Large Adaptive Reflector (LAR) concept put

forward by a group led by the National Research Council of
Canada and supponed by university and industry collaborators

il1. The LAR design is applicable to telescopes up to several
hundred meters in diameter. However, design and construction
of a 200-m LAR prototype is pursued by the National Research
Council of Canada. Figure I is an artist's concept of a complete
200-m diameter LAR installation, which consists of two central
components. The first is a 200 m diameter parabolic reflector
with a focal length of 500 m, composed of actuated panels

supported by the ground. The second component is the receiver
package which is supported by a tension structure consisting of
multiple long tethers and a helium filled aerostat. With funding

from the Canada Foundation for Innovation, a one-third scale
prototype of the multi-tethered aerostat subsystem [6] has been

designed and implemented in Penticton. [t should be noted that

even at l/3 scale, this system is very large, with a fbotprint of
roughly I square kilometer

The challenging problem in this system is the accurately
positioning of the t'eed (receiver) in the presence of distur-
bances, such as wind turbulence. For the positioning structure
of the receiver a redundantly actuated cable-driven parallel

manipulators is used [6]. In which, the receiver is moved to
various locations on a circular hemisphere and its positioning is

controlled by changing the lengths of eight tethers with ground

winches The cable driven macroredundant manipulator used

in this design, which is called the Large Cable Mechanism
(LCM), is in fact a 6DOF cable driven redundant manipulator

For sufticient coverage of the sky, LCM must be capable of

positioning the receiver for a wide range of zenith angles
(O < 0" < 60") and for the full range of azimuth angles
(0 < 0" < 360"). Since in the design of LCM a redundantly

actuated parallel manipulator is used for extreme positioning

acclrracy, this paper is intended to study the dynamic analysis

of such structures in detail. In the LCM structure, a parallel

manipulators with six degrees of freedom is used. In contrast

to the open-chain manipulator, the analysis of parallel manip-

ulators with such structures inhibits an inherent domplexity,

due to their closed loop and kinematic constraints. Theretbre,

in order to keep the analysis complexity at a managing level,

while preserving the important analysis elements, a simplified

version of the structure is considered in this paper as the

basis of the analysis. This structure is composed of a 4RPR

mechanisms actuated by cables. In this simplilied structure,

although a planar version of the mechanisms are considered,

the important feature of the original design namely the actuator

redundancy for each subsystem and the cable driven structure

of the original design are employed.

In contrast to the open-chain serial manipulators, the dy-

namic modeling of parallel manipulators presents an inherent

complexity due to their closed-loop structure and kinematic

constraints. Nevertheless, the dynamic modeling is quite im-

portant for their control, particularly because parallel manip-

Helium Aerostat

Fig. l. An artists concept of a complete 200-m diameter LAR

installation.
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ulators are preferred in applications where precise positioning
and good dynamic performance under high load are the prime
requirements. In recent years, there has been a great arnount
of research on the kinematics of parallel manipulators, but
works on the dynamics of parallel manipulators are relatively
few. Several approaches have been proposed for the dynamic
analysis of parallel manipulators. The traditional Newton-
Euler formulation is used fbr the dynamic analysis of general
parallel manipulators [4], and also for the Stewart platfbrrn,
which is the most celebrated parallel manipulator [3]. In this
formulation the equation of motion for each limb and the
moving platform must be derived, which inevitably leads to
a large number of equations and less computational etficiency.
On the other hand all the reaction forces can be computed,
which is very useful in the design of a parallel manipulator. The
Lagrangian formulation eliminates all the unwanted reaction
forces at the outsot, and it is more el'licicnt, [9] Howevcr,
because of the numerous constraints imposed by closed loops
of parallel manipulator, deriving explicit equations of motion
in terms of a set of independent generalized coordinates
becomes a prohibitive task, [7]. A third approach is to use
the principle of virtual work, in which the computation of
the constraint forces are bypassed, [[2]. In this method the
inenial forces and moments are computed using the linear
and angular accelerations of each of the bodies. Then, the
whole manipulator is considered to be in static equilibrium
and the principle of virtual work is applied to derive the input
force or torque il2] Since constraint forcas and moments
do not need to be computed, this approach leads to taster
computational algorithms, which is an important advantage tbr
the purposes of control of a manipulator [8]. Among the many
control topologies reponed in the literature, the dynamics and
control of redundantly actuated parallel manipulators has been
considered by fewer researchers [2].

Due to the potential attraction of cable driven redundant
manipulator structure in the LAR application, a thorough
analysis on the kinematics and dynamics of the described
redundant parallel manipulator has been developed and some
closed loop control topologies are proposed and simulated
for this system. In this paper the dynamic analysis of this
system is reported. The goveming dynamic equation of motion
of the redundant manipulator is derived using the principle

of virtual work. Furthermore, the dynamic equations of the
system is used in two sets oi simulations. First, the required
actuator torques required to general.e a predefined trajectory is
computed. It is shown that for a typical trajectory, the limb
inertial forces contributes only in 7ol0 of the total dynamical
forces. Finally, the total dynamical tbrces in presence of some
experimentally measured disturbance forces are simulated and
it is shown that they contribute in only 7ol0 of total extemal
forces.

I I .  MECHANISM DESCRIPTION

The a.rchitecture of the planar 4RPR parallel manipulator
considered for our studies is shown in figure 2. In this
manipulator the moving plattbrm is supported by four limbs
of identical kinematic structure. Each linrb connects the fixed
base to the manipulator moving platform by a revolute joint
(R) followed by a prismatic joint (P) and another revolute joint
(R). The kinematic structure of a prismatic joint is used to
model the elongation of each cable-driven limb. In order to
avoid singularities at the centra.l position of the manipulator at

Fig. 2. The schematics of 4RPR mechanism employed tbr the malysis
of [,CM structure.

each level, the cable-driven limbs are considered to be crossed.

Complete s ingulanty analysis of  the mechanism is analyzed

and presented in [0]. Angular positions of fixed base and

rnoving platform attachment points are given in table l. In this

presentation, Ar denote the fixed base points of the limbs.

B; denote point of connection of the limbs on the moving

platlbrm, l" denote the limb lengths, and .-ri denotes the limb

angles The position of the center of the moving platform

G, is  denoted by G :  Lrc,acl ,  and the or ientat ion of  the

manipulator moving platform is denoted by @ with respect to

the fixed coordinate frame.

The planar structure used in this analysis, is a simplified

version of LCM design. The control objective in the simplified
.mechanism is to t rack the posi t ion and or ientat ion of  the

moving platform as desired in presence of disturbance force,

such as wind turbulence. The geometric and inertial parameters

used in the sirnulations of the system is adopted from LCM

design and is given in Table I, in which .V1 and 1 denote

the mass and the moment of inertia of the moving platfbrm,

respectively, p denotes the limb density per length

I I I ,  KINEMATIC ANALYSIS

A. Inverse Kinematics

For inverse kinematic analysis, it is assumed that the position

and or ientat ion of  the moving plat form X :  bc,yc,6l r
is given and the problem is to find the joint variable of

t he  man ipu la to r ,  L :  l L t , L " , L t , Lo lT .  Fo r  t he  pu rpose  o f

analysis and as it is illustrated in figure 3, a fixed frame

O : ry is attached to the fixed base at the point O, the

TABLE I
GEoMETRIc AND INERTIAL PARAMETERS OF THE SYSTEM

m

Rs: Radius of the moving points B;'s

f/4 : Angle of the fixed poinL\ Ar's

0s,: Angle of the moving points D"s

M: The moving platfom mass
1: The moving plattbrm moment of inertia
p: The limb density per length

l O n
l-3r -81 P! ?L\
t  4 ,  _ . 1 ' ^ 4 ' 4 r

I  v  J f i  J r  r l

l -  4 1 -  4 , - 4 - t  4 J
25OO Ks

3 5 x 1 0 5  K g  - . '
0.215 K s/nt
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Fig. 3. Kinematic configuration of the manipularor.

center of the base point circle which passes through ,Ais, and
another moving coordinate frame G : UV is attached to the
manipulator moving platform at point G. Funhermore, assume
that the point A; lie at the radial distance of Re from poini O,
and the point .Bi lie at the radial distance of fis from point G
in the rg plane, when the manipulator is at central location.

In order to specify the geometry of the manipulator define
0t;,0e" as the absolute angle of the points A; and Br at the
central configuration of the manipulator, with respect to the
fixed frame O. Let's define the instantaneous orientation ansle
of  Bi 's  as:

4 t t :  6  - l  0e i .

Therefore, for each limb, i : 1,2, . ,4, the position of the
base points, A; is given by,

4n :  lBecos(d; , ; ) ,  f ie  s in(0ar) ] r  (2)

From the geometry of the manipulator as illustrated in figure
3,  the loop c losure equat ion tbr  each l imb, i  :  1,2,  . '  ,4,
can be written as,

A;d: AE+E;d.
Rewriting the vector loop closure component-wise,

L; cos(cu) - /lo cos(d;)

Lr  s in(a;)  *  Rs s in(@i) ,

in which cr,'s are the absolute limb angles. To solve the inverse
kinematic problem it is required to eliminate oi's from the
above equation and solve for Lr's. This can be accomplished
by reordering the above equotion as,

.L; cos(cl) Tc - rA" * rt5r cos(/;) (6)

f , i  s in(ai )  Ac -  AAi  + .Rr s in(@;),  (7)

B Jacobinn Analysis

Jacobian analysis plays a vital role in the study of robotic
manipulators Jacobian matrix not only reveals the relation
between the joint variable velocities i and the moving plat-
fbrm velocities X, it construct the transformation needed
to find the actuator forces r from the forces acting on the
moving plattbrm .F. On the contrary to the serial manipula-
tors, Jacobian matdx of a parallel manipulator is defined as
the transfbnnation matrix that convens the moving platform
veloci t ies to the jo int  var iable veloci t ies,  i .e. ,

L :  t *  . *  ( l o )

I n  wh i ch ,  L  . :  [ L t , L2 ,L r , L4 l  i s  t he  4  x  1  l imb  ve loc i r y
vector ,  and X :  l ic ,Ac,rb)  is  the 3 x 1 moving plat form
velocity vecror Therefore, the Jacobian matrix J,v is a non-
square 4 x 3 matrix. In order to obtain the Jacobian matrix,

let us differentiate the vector loop equation 3 with respect to

timc, considcring the vector delinitions ,5,i and Ei illustrated
in f igure 4.  Hence. fbr  i  :  1,2,  .  ,4:

u c * 6 ( k  x  E . t )  :  L " S n + a r L t . ( k  x  S )  ( l l )

In which,  u6 :  lx '6,Ui lT is  the veloci ty  of  the moving
platform at point G, and K is the unit vector in Z direction of

fixcd coordinate frame A. In order to eliminate cir, dot multiply

both sides of equation I I by S"

S ; u c l $ K ( E , x S , ) : L i

Rewriting equation 12 in a matrix tbrm:

(12')
( t )

7n: | 5,, | 5.t,, I E*5,,, - E*15" f

Using equat ion 13 tbr  i  :  1,2,  .  .  ,4 the Jacobian matr ix  Jw

is derived.
/ 1 \\J' 

J, : I s,," I s", I E,.s,o - E",,sn, lo_, (14)

note that the Jacobian matrix Jlr is a non-square 3 x 4 matrix,
(4) since the manipulator is a redundant manipulator. In order to

(5) get an expression for or, cross multiply both side of I I by .S,:

S , x r " + 6 ( E ;  S n ) k :  d , L , k

Rewri t ing equat ion l5 in a matr ix  form:

(  l 5 )

f ' " '  l
E,,S,, f  |  ,g, I

L a l
(  t 6 )

.,: ;;1 
-sn, I s",, | 8",s"", +

|  " " ' f
|  "e" |  (13)
L 0 l

Ac 
- 

AAi

By adding the square of both sides of equations 6 and 7 the 
Therefore' J-o is detined as the matrix relating the vector of

limb lengths are uniquely determined. 
moving platform velocities, X :lic,ilc"bl,to the vector of

-  .^angular  veloci t ies of  the l imbs a :  [ r t r ,  crz,  ae,  aa]  as:
t 4 : l ( 1 6 - r e r . *  r Q 6 c o s ( { ; ) ) 2  * ( t t c - u e ; * R e s i n ( @ , ) ) z ]  

' / '  

& : . 1 , . X  ( 1 7 )

in which,

,  - l . t  c  r c  
l E h s , , + E , , l s , , l f 4 _ r .  ( 1 8 )

" " - L ,  t  " x . ! l " r a

Furthermore the limb angles ar's can be determined from the
following equation

ai : atan2l(uc - ue, + Rs sin(@i)), (rc - ,ao * re6 cos(r/"))]
(9)

Hence, corresponding to each given manipulator location X : C' Acceleration Analysis

lr",A",@]?, there is a unique solution for the limb length Acceleration analysis of the limbs and the moving platform
tr;'s, and limb angles q.'s. Due to the nature of cable-driven is needed for the Dynanric formulation of a parallel manipula-
actuators, the mechanism experiences no singularities at the tor. In acceleration analysis it is intended to derive expressions
boundaries of the workspace, since the actuator lengths can be for the linear and angular accelerations of the limbs, namely L;
extended without almost any limits. and <ir as a function of the moving platfbrm acceleration X :
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Fig. 4. Vectors delinirions for Jacobian dcrivation of the manipulator.

Itc,ijc,dl'. In order to obtain such relation differentiate the
vector loop equation I I with respect to time, considering the

vector delinitions ,S; and Ei illustrated in tigure 4, and noting

t h a t . 9 , ; :  a n ( k  x  S ; )  a n d  E r : 6 @  x  E ; ) .  H e n c e ,  l o r
i :  r , 2 , . . '  , 4 :

oc + 6(k x E.t) - Q'En : L, S, +
2 l , dn (k  t  So )  +  d r  L r ( k  x  S ' )  -  d?  L .S t  (19 )

In order to eliminate cir and get an expression for .L", dot
multiply both side by ,5; and reorder into,

L r : o c . s o +  A k ( r . r ,  S n ) -  d 2 ( E o . s t ) + a ?  h  ( 2 0 )

In order to eliminate tr and get an expression for c!i, cross
multiply both side of 19 by ^9":

s ;  x  a6  + , i@r .Sn )  k -  d2 (So  x  E i )  :  ( 2  L i d i  +  c l r  L . i )  k .
(2r)

This simplities to,

ii' : * [ -so, | .9n, I E,,sn, r E*,s*,
aC,,

ac !

a
* (ta,,,s,, - E;,s,,,)g2 +2Ln

Note that if this equation is written tbr all four limbs, the first

term constitutes Jo. as defined in equation 18. In order to
complete the manipulator acceleration analysis it is necessary

to derive expressions for the linear accelerations of the center
of mass of each limb. Since in the LAR application, the
manipulator is cable driven, it is assumed that the center of

mass of each limb is located in the middle of the limbs. Denote
the velocity and acceleration of the center of mass of the limbs
as uc and ac, , respectively. The velocity of the center of mass

is composed as the tangential and normal components as,

(23)

In order to obtain the relation for acceleration of the center of
mass of each limb, differentiate 23 with respect to time.

- 6z L)Sr + (ci" L, *2 L;d")(x x S"1) tz+y

Note that the velocity and acceleration of the center of mass
of the limbs o., and o., are functions of -Lr, ar,L, md d,,
whose. relation to the manipulator velocity and acceleration *
and X are given in equations 13, 16,20 and 22, respectively

n6: Resulting extemal moment exened about the center of

/?r.'mirss of moving plattbrm G.
'--'n): 

lnenia moment exerted about the center of mass of

rnoving platform G.

Fi :  l l ; , " r0]T t j te 3D wrench of  l ink i .

F6:  l f  6,n61'  the 3D wrench of  moving plat form on point

X; .  l r " r ,a" , ,o; l '  the 3D screw of  center  of  mass of  l ink i .

X:  l r6,yc,{ ]7 the 3D screw of  moving plat tbrm at  point  G

d( ) :  v i r tual  d isplacement of  ( . ) .

Then the principle of virtual work for the manipulator can be

stated as the sum of all virtual works at limbs and the moving

plattbrm should be zero.

s

l LT . r  l -  6x r i r c  + f  axn rn :  o

In which Fc : Fc + F| is the total inertial and extemal

wrenches exerted on the moving platform center of mass G

and sirnilarly frn : Ft. + Fl is that for each limb. Note

that in equation 25 the actuator forces are isolated from other

applied tbrces and torques fbr convenience of their derivation.

Moreover, the virtual displacements in equation 25 must be

compatible with the kinematic constraints imposed by the

closed loop chains. Therefore, it is necessary to relate these vir-

tual displacements to a set of independent generalized vinual

IV.  Dvlre l r rc ANALYStS

The most popular approach to derive the dynamics equation
of motion of a parallel manipulator is based on the principle of
virtual work. In this method the inertial forces and moments are

computed using the linear and angular accelerations of each

of the bodies. Then, the whole manipulator is considered to

be in static equilibrium and the principle of virtual work is
applied to derive the input force or torque [12]. Since constraint

forces and moments do not need to be computed, this approach
Ieads to faster computational algorithms, which is an important
advantage for the purposes of control of a manipulator.

Following d'Alembert's principle, the inertial fbrce and

moment on a body are delined as the force and moment exerted

at the center of mass of the body and whose magnitude is given

respectively by the mass of the link times the acceleration of

the center of mass and the inertial tensor of the link times the

angular acceleration of the body These tbrces and moments

are applied in a direction opposite to the direction of the linear

and angular accelerations. As it is well known, introducing

these virlual tbrces and moments in the system allows one to

consider it as if it were in static equilibrium. If at the static

equi l ibr ium a v inual  d isplacement d( . )  is  considered for  the

system, by application of the principle of the virtual work,

one can obtain the input forces of the manipulator. In order to

illustrate the method consider the following conventions.

f,: Resulting external force exerted at the center of mass of

link i, excluding the actuator force.

/i: Inenia tbrce exerted at the center of mass of link i.

/": Resulting external force exerted at the center 6f mass of

moving platfbrm G.

/!: Inertia force exened at the center of mass of moving

platform G.
n,: Resulting extemal moment exerted about the center of

rnass of link i.

nl: Inenia moment exened about the center of mass of link

1,

(2s)

t-rl
L

a " l

" " ,  
: ; ( i ,s ,  +  a,  r ,  1r  x  sn; )

.", : r, 
(ti,
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displacement, where in parallel manipulators the coordinate
of the moving platform X , can conveniently be chosen
as the generalized coordinate. This is because the virtual
displacement of limbs 6.t is related to the viftual displacernent
of the moving plaffbrm rtX by the manipulator Jacobian J,vr:

6r , :  JM6X (26)

Furthermore, the virtual displacement of the center of mass
of limb i, dXr, can be related to dX by a similar Jacobian
matrix of each limb, denoted by J":

6.X; :  J ;6X (27)

Substituting equations 26 au:rd27 into equation 25, results into:

/ 4 \

dx r  I LTnr  *Fc+) -  . , t f r "  l : o  (28 )
\H /

Since this is valid for any virtual displacement dX, it follows
that ,  

4

J i l r+ i ;c+f" t f r " :o  (zs)

In general, F : Jfir is the projection of the actuator forces
on the moving platform, and can be uniquely determined from
equation 29. Furthermore, if the manipulator has no redun-
dancy in actuation, the Jacobian matrix, J,ra, is squared and
the actuator forces can be uniquely determined by r : J *r T,
provided that JM is nonsingular For redundant manipulators,
as in our application though, there are iufinitely many solution
for r to be projected into f. The simplest solution would be
a minimum norm solution, which is tbund fionr the pseudo

inverse of  . f fu,Ay t :  t { r t f  .  Other opt imizat ion rectrnrques
can be used to find the act&ltor forces plojected frorn F which
can minimize a user defined cost function. The detail of such
redundancy resolution techniques are given in I l].

In order to derive the equation of motion tbr the rnanipulator
by using the principle of virtual work as given in equation
29, the external and inertial generalized fbrces applied to the
moving platform, .fr'c, and on each limbs F" ir nt.r obtained,
and then the Jacobian matrices of the limbs are determined
as following. The external and inenial wrench applied ro the
moving platform is given as:

^  r  t  I  I  f " " - l v l l , c l
F " : l t ^ c  l : l  I o , , - t v t u c  |  ( 3 0 )

Lnc t  L  i " _ ro  l
The external and inertial wrcnch applied to the limb i is

Note that the gravity fbrce is in -k direcrion and not
contributing in the external fbrces. The next step is to derive
the Jacobians. The manipulator Jacobian rnatrix ./,y is derived
ear l ier  and is  g iven in equat ion 14.  The l imb Jacobians,4 's
are derived from the linear and angular velocity of the center
of mass of the limbs, as -Fr is fbund in equation 33:

.  f  , , n  r  [  +1 , s , - l
x , : l  " ! '  l :  |  ; i ,a" ,^r ,  |  (34)

L a i J  L "  a ,  I

Substituting relations l6 and 23 into 34, the limb jacobian J;
can be derived in the same [Si, Nn, -k]T coordinate frame as

I s,,/z s,r/2 (Ei"s,y - E,,,sn,)/2 1
.1,: | 

-5,,12 5,"/2 (Ei,S;, + E"yS;")12 |
L -S;"lLr S,,lL, (Er,Sr, + EuSn)/L, )

(3s)
By Substitution of equations 14, 30, 33 and 35 into equation
29, the governing equation of motion of the manipulator is
derived by some manipulation.

f  o , .  -  Mic + I1=,  { ( ro,  -  &)sr '  + Q's"u}  :  o

Jo, - Mi)c + I:: '  {( 'o, - P,)s,u - 8;S"'} :0 (36)

' o - I d +

Dl=,  { t "u.  
-  P,) (Et ,s , , )  -  E ' , .s , " )  -  Q,@, S' ) }  :  o

in  which,

Pi n= ( 4t, - (r,"a")'? + z,?) ei)-  2 \  ' /

e; !  (r?a, + 3LtL&t).  (38)

V. IMPLEMENTATIoN oF THE FoRMULATIoNS

Assume that the desired trajectory of the manipulator is
given, and the actuator tbrces required to generate such trajec-

tories. in presence of disturbance forces are to be determined
Due to the impl ic i t  nature of  dynamic equat ions,  as i t  is

illustrated in figure 5, the dynamic formulation is implemented
in the following sequence

The first step of dynamic equation implementation is to solve
the inverse kinematics ol'the manipulator and to find .L(t) and
o(f), using equations 8, 9, respectively Then the manipulator

Jacobian matrix J,vr is calculated by the equation 14. By this
means -t(t) and o(i), are calculated. Next the accelerations

are evaluated using the acceleration analysis equations 20

and 22. Finally, the inertial forces, namely, P, and Q" are

X uU)

Invgse

@

o

E

3

Jacobim Analysis
9 v ( l ) r.,(t)

t.(t).a(t ')

Arceleration Analysis

I.U).cr(t)

Inenial Forces

1 . 0 ,

Fig. 5 Flowchan of inverse dynamics implementation sequence.

determined by,

n  _ l  j , , l  _ f  _ ( p L ; ) a " , _ b L , ) r . .
. ?  -  

|  ^  |  
-  

|

L a ' J  L  - I ; i l u  - I ; a ,

In which, .l'l is rhe momenr of inertia of the limb

(3  1 )

about its
the cablescanter of mass can be determined from the shaoe of

t r  :  
; L a
L Z

i , :  eot t ,  e2)
Writing equation 3l componentwise, in the fbllowing direc-
t ions [ .3; , ry, , i t ] t ,  and using the veloci ty  and accelerat ion
of the center of mass of the limbs found in equations 23 and
24, by some manipulation we reach to:

F": -*l
"L I ,,,,t n L , - 1 b a r f + L l

t?a, +n,L,u,

# (t,rr,+ 3r"c!t)
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Fig. 6. The trajectory of the redundant manipulator

Cadesian Forces F

The dynarnics of the manipulator is simulated for two
cases. In first set of simuladon results, the inverse dy-
namic solution is comDuted in absence of disturbance forces
I  o[J o, .  ,  fL,  , ro l '  :  0.  The s imulat ion resul ts are i l lustrated
in figures 7 and 8. A typical third order polynomial trajectories
for  the manipulator  is  considered in these s imulat ion,  which is
depicted in figure 6. The cartesian folces at moving platfornr,

FM : lFx,7y,F6fT, are illustrated in soli<J line in figule
7 As it is seen in this figure. the cartesian forces have similar
pattem to the desired trajectory accelerations, which are linear
for the cubic trajectories. In order to compare the contribution
of the moving platform inertia compared to that of the limb
inertial terms, the moving platform inertia forces are depicted
in dashcd line in {igurc 7. As it is sscn in this figure the cftbct
of the limb inertia forces are about Voll of the total for such

trajectories Similarly, the actuator forces for the manipulator
with the indication of moving platform inertia contributions are
illustrated in figure 8. It is observed that since the manipulator
moves in positive r and g directions, the actuator tbrces of
first and third limbs arc dominant

In the second set of simulations. the eff'ect of disturbance

forces acting on the system is analyzed. A set of experimental
disturbance forces are considered in this study to be present

in the simulations. The disturbance forces, which are due
to the wind turbulence. are measured in the one-third scale
prototype of the multi-tethered aerostat subsystem [6], which
is implemented in Penticton. The horizontal measured forces
are scaled-up by a tactor of27 and are applied on the dynamic
simulations, in order to replicate the behavior of thb full size
systern. The exerted disturbance forces on the manipulator are
given in dotted line in figure 9. The cartesian and actuator
forces of the manipulator in presence of such disturbance is

depicted in figures 9, and 10. respectively. As it is seen in these

figures the contribution of the disturbance force into the total

cartesian forces on the manipulator is domrnant. Comparing
the values of forces in figures 7 and 9, it is observed that the

total inertial tbrces contribute about 7ol0 of the total forces,
for such typical disturbances. Noting that the limb dynamics

contributes only in 7ol0 of inertial forces, it can be neglected

in the full simulation of the system in presence of extemal
disturbances.
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Fig. 7 The cutesian forces of the manipularor, Fu:The total tbrce
(solid), neglecting limbs inenia (dashed)

computed from equations 37 and 38, and is substituted in the
governing inverse dynamic equations of the manipulator. In
order to implement redundancy resolution block, let us denote
the resulting carresian tbrce applied to the moving platlbrm
f, as detined in equation 29. In this definition .F is the
resulting cartesian forces applied to the manipulator, which
is calculated from the summation of all inertial. and extemal
forcei exclucling the actuator torques rA in the dynamic
equations 36. Hence, f : ,Ifire is the projection of the
actuator forces on the moving platform, and can be uniquely
determined from the dynamic equations by excluding the
acuator forces from the dynarnic equations. If the manipulator
has no redundancy in actuation, the Jacobian matrix, J,vr, is
square and the actuator forces can be uniquely determined by
, a : J f T, provided that Ju is nonsingular. For redunclant
manipulators, however, there are infinity many solution for za
to be projected into -F. The simplest redundancy resolution
would be a minimum nonn solution, which is found from
the pseudo inverse of  Jf i ,  Ay r  a :  , f [ r '  f  .This solur ion
is implemented in the simulations presented in this section.
Other opdmization techniques are used to find the acruator
forces projected from f subject to rnore detailed manipulator
constraints, whose details are reported in Il].

Fig. 8 The actuator forces of the manipulator, 14; The total force
(solid), neglecting l imbs inertia (dashed)

-ro.
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dynamic analysis of this system is presented. It is shown

that unique closed form solution to the inverse kinenratic

problem of such structure exists. Moreover, The jacobian and

acceleration analysis tbr the manipulator is reported. Next, the

dynamic equation of motion of the redundanr manipulator is

derived using the principle of virtual work. Then, the dynamic

equations of the system is used in two sets of simulations.

First, the required actuator torques required to generate a

predefined trajectory is computed. It is shown that for a

typical trajectory, the l imb inertial forces contributes only in

Vol\ of the dynamical forces. Moreover the actuator forces

are simulated in the presence of experimentally measured

disturbance forces. It is shown that in this case the total inertial

forces contribute in only VolD of the external forces.
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Fig 9. The cartesian tbrces of the manipulator -Fy, in presence of
empirical disturbance Fa.

Fig 10. The rctuator forces of the manipulator rA, in presence of
empirical disturbance Fa.

V I .  CoNcLUs IoNs

In this paper the kinernatic and dynamic analysis of a
redundantly actuated parallel manipulator is studied in detail.

The analyzed manipulator is a planar version adopted from

the structure of Large Adaptive Reflector (LAR), the Canadian

design of next generation giant radio telescopes. In the LAR

design the teleicope receiver package is supported by a tension
structure consist ing of  mul t ip le long tethers and a hel ium

filled aerostal ln the positioning stluctule of the rcceiver

a redundantly actuated cable-driven parallel manipulators is
used which experiences a 6DOF motion in the space. The
planar structure used in this paper. is a simplified version of

LAR design, in which tho two important ibature of the main
mechanism, namely the actuator redundancy, and cable driven
actuation are preserved in a planar structure. This structure is

composed of a 3DOF parallel redundant manipulator actuated
by cables. A thorough analysis on the kinematics and dynamics
of the described parallel manipulator has been developed
and some closed loop control topologies are proposed and
simulated for this system. In this paper the kinematic and
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