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Abstract—In this paper the dynamic analysis of a parallel
manipulator is studied in detail. The manipulator architecture
is a simplified pianar version adopted from the structure of Large
Adaptive Reflector (LAR), the Canadian design of next generation
giant radio telescopes. This structure uses a parallel redundant
manipulator actuated by cables. In this paper first, the governing
dynamic equation of motion of such structure is derived using
the principle of virtual work. Next, the dynamic equations of the
system are used in simulations. In these simulations it is observed
that the limb inertial forces contributes only %10 of the dynamical
forces required to generate a typical trajectory, and moreover, the
total dynamical forces contribute in only %10 of experimentally
measured disturbance forces.

I. INTRODUCTION

An international consortium of radio astronomers and en-
gineers have agreed to investigate technologies to build the
Square Kilometer Array (SKA), a cm-to-m wave radio tele-
scope for the next generation of investigation into cosmic
phenomena [S]. A looming “sensitivity barrier” will prevent
current telescopes from making much deeper inroads at these
wavelengths, particularly in studies of the early universe. The
Canadian proposal for the SKA design consists of an array of
30-50 individual antennas whose signals are combined to yield
the resolution of a much larger antenna. Each of these antennas
would use the Large Adaptive Reflector (LAR) concept put
forward by a group led by the National Research Council of
Canada and supported by university and industry collaborators
[1]. The LAR design is applicable to telescopes up to several
hundred meters in diameter. However, design and construction
of a 200-m LAR prototype is pursued by the National Research
Council of Canada. Figure | is an artist’s concept of a complete
200-m diameter LAR installation, which consists of two central
components. The first is a 200 m diameter parabolic reflector
with a focal length of 500 m, composed of actuated panels
supported by the ground. The second component is the receiver
package which is supported by a tension structure consisting of
multiple long tethers and a helium filled aerostat. With funding
from the Canada Foundation for Innovation, a one-third scale
prototype of the multi-tethered aerostat subsystem [6] has been
designed and implemented in Penticton. It should be noted that
even at 1/3 scale, this system is very large, with a footprint of
roughly 1 square kilometer.

The challenging problem in this system is the accurately
positioning of the feed (receiver) in the presence of distur-
bances, such as wind turbulence. For the positioning structure
of the receiver a redundantly actuated cable-driven parailel
manipulators is used [6]. In which, the receiver is moved to
various locations on a circular hemisphere and its positioning is

controlled by changing the lengths of eight tethers with ground
winches. The cable driven macroredundant manipulator used
in this design, which is called the Large Cable Mechanism
(LCM), is in fact a 6DOF cable driven redundant manipulator.
For sufficient coverage of the sky, LCM must be capable of
positioning the receiver for a wide range of zenith angles
(0 < 4, < 60°) and for the full range of azimuth angles
(0 < 0. < 360°). Since in the design of LCM a redundantly
actuated parallel manipulator is used for extreme positioning
accuracy, this paper is intended to study the dynamic analysis
of such structures in detail. In the LCM structure, a parallel
manipulators with six degrees of freedom is used. In contrast
to the open-chain manipulator, the analysis of parallel manip-
ulators with such structures inhibits an inherent complexity,
due to their closed loop and kinematic constraints. Therefore,
in order to keep the analysis complexity at a managing level,
while preserving the important analysis elements, a simplified
version of the structure is considered in this paper as the
basis of the analysis. This structure is composed of a 4RPR

 mechanisms actuated by cables. In this simplified structure,

although a planar version of the mechanisms are considered,
the important feature of the original design namely the actuator
redundancy for each subsystem and the cable driven structure
of the original design are employed.

In contrast to the open-chain serial manipulators, the dy-
namic modeling of parallel manipulators presents an inherent
complexity due to their closed-loop structure and kinematic
constraints. Nevertheless, the dynamic modeling is quite im-
portant for their control, particularly because parallel manip-
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Fig. 1.  An artists concept of a complete 200-m diameter LAR
instailation.

54




Sth

1
ICEE Proceedings

Control /g

ulators are preferred in applications where precise positioning
and good dynamic performance under high load are the prime
requirements. In recent years, there has been a great amount
of research on the kinematics of parallel manipulators, but
works on the dynamics of parallel manipulators are relatively
few. Several approaches have been proposed for the dynamic
analysis of parallel manipulators. The traditional Newton—
Euler formulation is used for the dynamic analysis of general
parallel manipulators [4], and also for the Stewart platform,
which is the most celebrated parallel manipulator [3]. In this
formulation the equation of motion for each limb and the
moving platform must be derived, which inevitably leads to
a large number of equations and less computational etficiency.
On the other hand all the reaction forces can be computed,
which is very useful in the design of a parallel manipulator. The
Lagrangian formulation eliminates all the unwanted reaction
forces at the outset, and it is more eflicient, [9]. However,
because of the numerous constraints imposed by closed loops
of parallel manipulator, deriving explicit equations of motion
in terms of a set of independent generalized coordinates
becomes a prohibitive task, {7]. A third approach is to use
the principle of virtual work, in which the computation of
the constraint forces are bypassed, (12]. In this method the
inertial forces and moments are computed using the linear
and angular accelerations of each of the bodies. Then, the
whole manipulator is considered to be in static equilibrium
and the principle of virtual work is applied to derive the input
force or torque [12]. Since constraint forces and moments
do not need to be computed, this approach leads to faster
computational algorithms, which is an important advantage for
the purposes of control of a manipulator {8]. Among the many
control topologies reported in the literature, the dynamics and
control of redundantly actuated parallel manipulators has been
considered by fewer researchers [2].

Due to the potential attraction of cable driven redundant
manipulator structure in the LAR application, a thorough
analysis on the kinematics and dynamics of the described
redundant parallel manipulator has been developed and some
closed loop control topologies are proposed and simulated
for this system. In this paper the dynamic analysis of this
system is reported. The governing dynamic equation of motion
of the redundant manipulator is derived using the principle
of virtual work. Furthermore, the dynamic equations of the
system is used in two sets of simulations. First, the required
actuator torques required to generate a predefined trajectory is
computed. It is shown that for a typical trajectory, the limb
inertial forces contributes only in %10 of the total dynamical
forces. Finally, the total dynamical forces in presence of some
experimentally measured disturbance forces are simulated and
it is shown that they contribute in only %10 of total external
forces.

. MECHANISM DESCRIPTION

The architecture of the planar 4RPR parallel manipulator
considered for our studies is shown in figure 2. In this
manipulator the moving platform is supported by four limbs
of identical kinematic structure. Each limb connects the fixed
base to the manipulator moving platform by a revolute joint
(R) followed by a prismatic joint (P) and another revolute joint
(R). The kinematic structure of a prismatic joint is used to
model the elongation of each cable-driven limb. In order to
avoid singularities at the central position of the manipulator at

Fig. 2.
of LCM structure.

The schematics of 4RPR mechanism employed for the analysis

each level, the cable-driven limbs are considered to be crossed.
Complete singularity analysis of the mechanism is analyzed
and presented in [10]. Angular positions of fixed base and
moving platform attachment points are given in table 1. In this
presentation, A; denote the fixed base points of the limbs.
Bi denote point of connection of the limbs on the moving
platform, L, denote the limb lengths, and «v: denotes the limb
angles, The position of the center of the moving platform
G, is denoted by G = [zg,yc], and the orientation of the
manipulator moving platform is denoted by ¢ with respect to

the fixed coordinate frame.

The planar structure used in this analysis, is a simplified
version of LCM design. The control objective in the simplified
- mechanism is to track the position and orientation of the
moving platform as desired in presence of disturbance force,
such as wind turbulence. The geometric and inertial parameters
used in the simulations of the system is adopted from LCM
design and is given in Table I, in which M and I denote
the mass and the moment of inertia of the moving platform,
respectively, p denotes the limb density per length.

I11. KINEMATIC ANALYSIS

A. Inverse Kinematics

For inverse kinematic analysis, it is assumed that the position

and orientation of the moving platform X = {z¢,yc, ¢

]T

is given and the problem is to find the joint variable of
the manipulator, L = [L1, L2, L3, La)7. For the purpose of
analysis and as it is illustrated in figure 3, a fixed frame
O : zy is attached to the fixed base at the point O, the

TABLE |

GEOMETRIC AND INERTIAL PARAMETERS OF THE SYSTEM

Descniption

Quantity

R .4: Rudius of the fixed points A;'s

Rp: Radius of the moving points B;’s
64, Angle of the fixed points A;’s

0p,: Angle of the moving points B,’s

M The moving platform mass

I: The moving platform moment of inertia
p: The limb density per length

900 m
10m

The
) 0
2500 Kg
35 x 10° Kg+m?
0.215 Kg/m

¥y
&
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Fig. 3. Kinematic configuration of the manipulator.

center of the base point circle which passes through A;s, and
another moving coordinate frame G : UV is attached to the
manipulator moving platform at point G. Furthermore, assume
that the point A; lie at the radial distance of R4 from point O,
and the point B; lie at the radial distance of Rg from point G
in the zy plane, when the manipulator is at central location.
In order to specify the geometry of the manipulator define
04:,0p. as the absolute angle of the points A; and B; at the
central configuration of the manipulator, with respect to the
fixed frame O. Let's define the instantaneous orientation angle

of Bi’s as:
¢i = ¢+ 0p;. ()
Therefore, for each limb, ¢ = 1,2,--- ,4, the position of the
base points, A; is given by,
Ai = [Racos(Bai), Ra sin(ﬁAi)]T 2)

From the geometry of the manipulator as illustrated in figure
3, the loop closure equation for each limb, i = 1,2,:-- 4,
can be written as,

AG=AB.+BG. 3)

Rewriting the vector loop closure component—wise,
e —2xai = Licos{as) — Rpcos(¢pi) 4)
Yo —yas = Lisin(os) — Rpsin(s:), (5)

in which o ’s are the absolute limb angles. To solve the inverse
kinematic problem it is required to eliminate as's from the
above equation and solve for L;’s. This can be accomplished
by reordering the above equation as,

L;cos(ei) = z¢ ~ za+ Rpcos(gi) 6)
Lisin{e:) = yc —yai + R sin(¢:), )]
By adding the square of both sides of equations 6 and 7 the

limb lengths are uniquely determined.

Li = [(#¢ — z4: + Rp cos(¢:))? + (yg — ya: + Rpsin(¢i))?
(8)
Furthermore the limb angles «.’s can be determined from the

following equation

a; = atan2 [(y¢ — ya. + Rpsin(i)), (¢ ~ £a: + Rp cos(d,))]

&)
Hence, corresponding to each given manipulator location X =
[zc,yc,¢]T, there is a unique solution for the limb length
L;’s, and limb angles a.’s. Due to the nature of cable-driven
actuators, the mechanism experiences no singularities at the
boundaries of the workspace, since the actuator lengths can be
extended without almost any limits.

]1/2

B. Jacobian Analysis

Jacobian analysis plays a vital role in the study of robotic
manipulators. Jacobian matrix not only reveals the relation
between the joint variable velocities L and the moving plat-
form velocities X, it construct the transformation needed
to find the actuator forces 7 from the forces acting on the
moving platform F'. On the contrary to the serial manipula-
tors, Jacobian matrix of a parallel manipulator is defined as
the transformation matrix that converts the moving platform
velocities to the joint variable velocities, i.e.,

L=Jy-X (10)
In which, L = [Ll,LQ,L:},L;l] is the 4 x 1 limb velocity
vector, and X = [i¢,¥c,d)] is the 3 x 1 moving platform
velocity vector, Therefore, the Jacobian matrix Js is a non-
square 4 X 3 matrix. In order to obtain the Jacobian matrix,
let us differentiate the vector loop equatif)n 3 wi_l}l respect to
time, considering the vector definitions Sy and E; illustrated
in figure 4. Hence. for1 =1,2, - ,4:
’UG+Q.5(RXEi)zL,S'i‘}'diLi(f{Xsi) (1)
In which, vg = [z, yc]T is the velocity of the moving
platform at point G, and K is the unit vector in Z direction of

fixed coordinate frame A. In order to eliminate cii, dot multiply
both sides of equation 11 by S,.

S; ve+ oK (E:i x8,) =L (12)

Rewriting equation (2 in a matrix form:

1

(b

T = [ Six I Siy | EizSy — EiySiz |- vGy (13)
¢

Using equation 13 fori =1,2,- - , 4 the Jacobian matrix Ju

_is derived.

4

Iu ={ Siz | Siy | BuzSiy = EiySiz |,_,  (14)

note that the Jacobian matrix Jps is a non-square 3 x 4 matrix,
since the manipulator is a redundant manipulator. In order to
get an expression for ¢, cross multiply both side of 11 by S,:

Sixva+¢(E:i-S)K =L K (15)
Rewriting equation 15 in a matrix form:

VGx

[ =Siy | Siz | EicSuz + EiySiy ] | voy

.1
R T
(16)
Therefore, .J, is defined as the matrix relating the vector of
moving platform velocities, X = Ze,ya, (p] to the vector of
angular velocities of the limbs ¢ = [du, k2, és, cua] as:

G=Jo X (17
in which,
Ja = Ll [ =Siy | Sia | BieSis+ EuySuy 1°.,. (18)
C. Acceleration Analysis

Acceleration analysis of the limbs and the moving platform
is needed for the Dynamic formulation of a parallel manipula-
tor. In acceleration analysis it is intended to derive expressions
for the linear and angular accelerations of the limbs, namely L:
and ¢ as a function of the moving platform acceleration X =
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Fig. 4. Vectors definitions for Jacobian derivation of the manipulator.

[#c,dic, $I. In order to obtain such relation differentiate the
vector loop equatiqn 11 w_it’h respect to time, considering the
vector definitions S and E; illustrated in figure 4, and noting
that §; = di(I‘{ X .§',) and E; = (K x E;). Hence, for
i=1,2,--- ,4: :

ac—!-(z;(k X Ei) —ti)in = Llan, +
2Lici (K x 8)+éa Li(Kx8)—a2L.S: (19
In order to eliminate &; and get an expression for L., dot
multiply both side by S; and reorder into,
Li=ac-Si+¢K(E; x 8;)— ¢*(E; - Si)+a2L;  (20)

In order to eliminate L; and _get an expression for {, cross
multiply both side of 19 by S.:

Sixag+é(Ei-S) K~ (S x E;) = (2Li i + 6: Li) K.

n
This simplifies to,

aga
@; = L—l‘-[ -5y | Sia | E\2Siz + EiySiy ] agy | -
¢

'[}'; ((E‘Lysi:n — EinSiy))¢* + 2 L dl) p

Note that if this equation is written for all four limbs, the first
term constitutes J,. as defined in equation 18. In order to
complete the manipulator acceleration analysis it is necessary
to derive expressions for the linear accelerations of the center
of mass of each limb. Since in the LAR application, the
manipulator is cable driven, it is assumed that the center of
mass of each limb is located in the middle of the limbs. Denote
the velocity and acceleration of the center of mass of the limbs
as vc; and ac;, respectively. The velocity of the center of mass
is composed as the tangential and normal components as,

v, = —;— (Lis‘i + 6 Li (K x S,-)) (23)

In order to obtain the relation for acceleration of the center of
mass of each limb, differentiate 23 with respect to time.

&= = % ((hi - 62 L) $i + (& Li + 2 L a)(K x 81)) ©4)

Note that the velocity and acceleration of the center of mass
of the limbs v, and a; are functions of Li,cvi, L, and &,
whose relation to the manipulator velocity and acceleration X
and X are given in equations 13, 16, 20 and 22, respectively.

IV. DYNAMIC ANALYSIS

The most popular approach to derive the dynamics equation
of motion of a parallel manipulator is based on the principle of
virtual work. In this method the inertial forces and moments are
computed using the linear and angular accelerations of each
of the bodies. Then, the whole manipulator is considered to
be in static equilibrium and the principle of virtual work is
applied to derive the input force or torque [12]. Since constraint
forces and moments do not need to be computed, this approach
leads to faster computational algorithms, which is an important
advantage for the purposes of control of a manipulator.

Following d'Alembert’s principle, the inertial force and
moment on a body are defined as the force and moment exerted
at the center of mass of the body and whose magnitude is given
respectively by the mass of the link times the acceleration of
the center of mass and the inertial tensor of the link times the
angular acceleration of the body. These forces and moments
are applied in a direction opposite to the direction of the linear
and angular accelerations. As it is well known, introducing
these virtual forces and moments in the system allows one to
consider it as if it were in static equilibrium. If at the static
equilibrium a virtual displacement d(-) is considered for the
system, by application of the principle of the virtual work,
one can obtain the input forces of the manipulator. In order to
illustrate the method consider the following conventions.

f.: Resulting external force exerted at the center of mass of
link %, exctuding the actuator force.

I Inernia force exerted at the center of mass of link 4.

f ' Resulting external force exerted at the center of mass of
moving platform G.

f¢ Inertia force exeried at the center of mass of moving
platform G.

n,: Resulting external moment exerted about the center of
mass of link i.

"n}: Inertia moment exerted about the center of mass of link
2

n¢: Resulting external moment exerted about the center of

(22)Mass of moving platform G.

ng: Inertia moment exerted about the center of mass of
moving platform G.
F.: [f,,ni]" the 3D wrench of link 4.
Fg: [fc,nc]T the 3D wrench of moving platform on point
G.
Xt [Te;, Ye;» )T the 3D screw of center of mass of link .
X:[re,ya, r/)]T the 3D screw of moving platform at point G.
4(-): virtual displacement of (- ).

Then the principle of virtual work for the manipulator can be
stated as the sum of all virtual works at limbs and the moving
platform should be zero.

4

LT +0XTFg+ ) 0X.Fi=0 (25)

i=1

In which Fc = F¢ + F§ is the total inertial and external
wrenches exerted on the moving platform center of mass G
and similarly F; = F; + F} is that for each limb. Note
that in equation 25 the actuator forces are isolated from other
applied forces and torques for convenience of their derivation.
Moreover, the virtual displacements in equation 25 must be
compatible with the kinematic constraints imposed by the
closed loop chains. Therefore, it is necessary to relate these vir-
tual displacements to a set of independent generalized virtual
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displacement, where in parallel manipulators the coordinate
of the moving platform X , can conveniently be chosen
as the generalized coordinate. This is because the virtual
displacement of limbs 4L is related to the virtual displacement
of the moving platform 4 X by the manipulator Jacobian Jas:

oL = JydX (26)

Furthermore, the virtual displacement of the center of mass
of limb ¢, 6.X;, can be related to §X by a similar Jacobian
matrix of each limb, denoted by J;:

80X, =JidX 27)

Substituting equations 26 and 27 into equation 25, results into;

4 '

sxT (J,\T,T +Fe+) .J,.,TE) =0 (28)
1=1

Since this is valid for any virtual displacement § X, it follows

that,

4
Jut+Fe+) JF, =0 (29)
i=1

In general, ¥ = JI,+ is the projection of the actuator forces
on the moving platform, and can be uniquely determined from
equation 29. Furthermore, if the manipulator has no redun-
dancy in actuation, the Jacobian matrix, Jas, is squared and
the actuator forces can be uniquely determined by T = J,* F,
provided that Jas is nonsingular. For redundant manipulators,
as in our application though, there are infinitely many solution
for T to be projected into F. The simplest solution would be
a minimum norm solution, which is found from the pseudo
inverse of Ji;, by 7 = J},;']:. Other optimization techniques
can be used to find the actuator forces projected from F which
can minimize a user defined cost function. The detail of such
redundancy resolution techniques are given in {11].

In order to derive the equation of motion for the manipulator
by using the principle of virtual work as given in equation
29, the external and inertial generalized forces applied to the
moving platform, F'¢, and on each limbs £, is first obtained,
and then the Jacobian matrices of the limbs are determined
as following. The external and inertial wrench applied to the
moving platform is given as:

P fp, — Mic
Fo= [ Ta ] = | fo, - Mic (30)
L) ™—1I¢

The external and inertial wrench applied to the limb 7 is
determined by,

(2]

In which, I; is the moment of inertia of the limb i about its
center of mass can be determined from the shape of the cables
as:

_(/’Li)aﬂi — (/_)Ll)vﬂx
Ly — Lic

(€2))]

=23 fo= Pr2f
L 12L1 I; 4L'L7'

Writing equation 31 componentwise, in the following direc-

tions [Si,Nl,k]T, and using the velocity and acceleration

of the center of mass of the limbs found in equations 23 and

24, by some manipulation we reach to:

Liia = (LiCY,_)z + L?
L}é + 3LiLacy

L? ) "
—GL (Lia, + 3L1(!i)

(32)

(33)

Note that the gravity force is in —K direction and not
contributing in the external forces. The next step is to derive
the Jacobians. The manipulator Jacobian matrix Jas is derived
earlier and is given in equation 14. The limb Jacobians .J;'s
are derived from the linear and angular velocity of the center
of mass of the limbs, as 1:".- is found in equation 33:

) 153,
X;= [ - ] = | 1LiuN; (34)
Qi 3
23

Substituting relations 16 and 23 into 34, the limb jacobian J;
can be derived in the same [S;, N, K] coordinate frame as

Sim/z 5111/2 (Eimsiy - Eiysim)/2

_511//2 Sim/z (Ei-’nsim + EwSiy)/Q
—Siy/Li  Swz/L. (EizSiz + EySiy)/Ls
35

Ji =

By Substitution of equations 14, 30, 33 and 35 into equation
29, the governing equation of motion of the manipulator is
derived by some manipulation.
Jo. = M + i, {(4; = P)Sin + QuSu} = 0
fo, = Mijc + Z?zl {{ra, = Pi)Siy — Q:Siz} =0 (36)
™ —Ié+
T {(ra, = P)(BiaSyy = EuSix) — QB - 80} = 0

in which,
- P P 22 j2
P = 5 (L1L1 (L) +Ll) 37
Q: = g (L?d,; + 3L,-L‘-ai) . (38)

V. IMPLEMENTATION OF THE FORMULATIONS

Assume that the desired trajectory of the manipulator is
given, and the actuator forces required to generate such trajec-

‘tories, in presence of disturbance forces are to be determined.

Due to the implicit nature of dynamic equations, as it is
illustrated in figure 5, the dynamic formulation is implemented
in the following sequence.

The first step of dynamic equation implementation is to solve
the inverse kinematics of the manipulator and 1o find L(t) and
«(t), using equations 8, 9, respectively, Then the manipulator
Jacobian matrix Jys is calculated by the equation 14. By this
means L(t) and &(t), are calculated. Next the accelerations
are evaluated using the acceleration analysis equations 20
and 22. Finally, the inertial forces, namely, £; and Q. are

Inverse Kinematics +————» _
3
Lin.alr) ~ =
S s g
| Jacobian Analysis '—- i =5
TS | 8 |0
1 L{n), (1) o e E—
[ A
(3
Acceleration Analysis '—- = g
- =
1 = -
| Hn.am 3 g
(2]
Inertial Forces —
£.o

Fig. 5. Flowchart of inverse dynamics implementation sequence.
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Fig. 7. The cartesian forces of the manipulator, Fas; The total force
(solid), neglecting limbs inertia (dashed)

computed from equations 37 and 38, and is substituted in the
governing inverse dynamic equations of the manipulator. In
order to implement redundancy resolution block, let us denote
the resulting cartesian force applied to the moving platform
F, uas defined in equation 29. In this definition F is the
resulting cartesian forces applied to the manipulator, which
is calculated from the summation of all inertial, and external
forces excluding the actuator torques T4 in the dynamic
equations 36. Hence, F = Ji;7Ta is the projection of the
actuator forces on the moving platform, and can be uniquely
determined from the dynamic equations by excluding the
actuator forces from the dynamic equations. If the manipulator
has no redundancy in actuation, the Jacobian matrix, Jus, is
square and the actuator forces can be uniquely determined by
T A= JA}T]-‘. provided that Jus is nonsingular. For redundant
manipulators, however, there are infinity many solution for 7 4
to be projected into F. The simplest redundancy resolution
would be a minimum norm solution, which is found from
the pseudo inverse of Ji;, by T4 = Ji, F. This solution
is implemented in the simulations presented in this section,
Other optimization techniques are used to find the actuator
forces projected from F subject to more detailed manipulator
constraints, whose details are reported in [11].

The dynamics of the manipulator is simulated for two
cases. In first set of simulation results, the inverse dy-
namic solution is computed in absence of disturbance forces
Folfp,, fo,, 7p]7 = 0. The simulation results are illustrated
in figures 7 and 8. A typical third order polynomial trajectlories
for the manipulator is considered in these simulation, which is
depicted in figure 6. The cartesian forces at moving platform,
Fu = [Fx,Fr,Fy]7, are illusirated in solid line in figure
7. As it is seen in this figure. the cartesian forces have similar
pattern to the desired trajectory accelerations, which are linear
for the cubic trajectories. In order to compare the contribution
of the moving platform inertia compared to that of the limb
inertial terms, the moving platform inertia forces are depicted
in dashed line in figure 7. As it is seen in this figure the effect
of the limb inertia forces are about %10 of the total for such
trajectories. Similarly, the actuator forces for the manipulator
with the indication of moving platform inertia contributions are
illustrated in figure 8. It is observed that since the manipulator
moves in positive z and y directions, the actuator forces of
first and third limbs arc dominant.

In the second set of simulations, the effect of disturbance
forces acting on the system is analyzed. A set of experimental
disturbance forces are considered in this study to be present
in the simulations. The disturbance forces, which are due
to the wind turbulence, are measured in the one-third scale
prototype of the multi-tethered aerostat subsystem [6], which
is implemented in Penticton. The horizontal measured forces
are scaled—up by a factor of 27 and are applied on the dynamic
simulations, in order to replicate the behavior of the full size
system. The exerted disturbance forces on the manipulator are
given in dotted line in figure 9. The cartesian and actuator
forces of the manipulator in presence of such disturbance is
depicted in figures 9, and 10. respectively. As it is seen in these
figures the contribution of the disturbance force into the total
‘cartesian forces on the manipulator is dominant. Comparing
the values of forces in figures 7 and 9, it is observed that the
total inertial forces contribute about %10 of the total forces,
for such typical disturbances. Noting that the limb dynamics
contributes only in %10 of inertial forces, it can be neglected
in the full simulation of the system in presence of external
disturbances.
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VI. CONCLUSIONS

In this paper the kinematic and dynamic analysis of a
redundantly actuated paratlel manipulator is studied in detail.
The analyzed manipulator is a planar version adopted from
the structure of Large Adaptive Reflector (LAR), the Canadian
design of next generation giant radio telescopes. In the LAR
design the telescope receiver package is supported by a tension
structure consisting of muitiple long tethers and a helium
filled aerostat. In the positioning structure of the receiver
a redundantly actuated cable-driven parallel manipulators is
used which experiences a 6DOF motion in the space. The
planar structure used in this paper, is a simplified version of
LAR design, in which the two important feature of the main
mechanism, namely the actuator redundancy, and cable driven
actuation are preserved in a planar structure. This structure is
composed of a 3DOF parallel redundant manipulator actuated
by cables. A thorough analysis on the kinematics and dynamics
of the described parallel manipulator has been developed
and some closed loop control topologies are proposed and
simulated for this system. In this paper the kinematic and

dynamic analysis of this system is presented. It is shown
that unique closed form solution to the inverse kinematic
problem of such structure exists. Moreover, The jacobian and
acceleration analysis for the manipulator is reported. Next, the
dynamic equation of motion of the redundant manipulator is
derived using the principle of virtual work. Then, the dynamic
equations of the system is used in two sets of simulations.
First, the required actuator torques required to generate a
predefined trajectory is computed. It is shown that for a
typical trajectory, the limb inertial forces contributes only in
%10 of the dynamical forces. Moreover the actuator forces
are simulated in the presence of experimentally measured
disturbance forces. It is shown that in this case the total inertial
forces contribute in only %10 of the external forces.
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