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Abstract— Overlay routing has emerged as a promising ap-
proach to improving performance and reliability of Internet
paths. To fully realize the potential of overlay routing under the
constraints of deployment costs in terms of hardware, network
connectivity and human effort, it is critical to carefully place
infrastructure overlay nodes to balance the trade-off between
performance and resource constraints. In this paper, we inves-
tigate approaches to perform intelligent placement of overlay
nodes to facilitate (i) resilient routing and (ii) TCP performance
improvement. We formulate objective functions to accurately cap-
ture application behavior: reliability and TCP performance, and
develop several placement algorithms, which offer a wide range
of trade-offs in complexity and required knowledge of the client-
server location and traffic load. Using simulations on synthetic
and real Internet topologies, and PlanetLab experiments, we
demonstrate the effectiveness of the placement algorithms and
objective functions developed, respectively. We conclude that an
approach, hybrid of random and greedy approaches, provides
the best tradeoff between computational efficiency and accuracy.
We also uncover the fundamental challenge in simultaneously
optimizing for reliability and TCP performance, and propose a
simple unified algorithm to achieve the same.

|. INTRODUCTION

Overlay routing has recently emerged as a promising ap-
proach to improving efficiency and reliability of Internet paths.
In overlay routing, an end host has the flexibility in routing its
traffic to its destination through one or multiple intermediate
overlay nodes. By properly selecting the intermediate overlay
nodes, the end host can optimize a variety of objectives. For
example, overlay routing has been used to improve reliability
of Internet paths in Detour and RON [1], [2]. It has also been
used for improving TCP throughput [3], [4] by breaking the
end-to-end feedback loop between a source and a destination
into multiple pipelined sub-loops using overlay nodes. More-
over, it has been used to perform multipath routing to optimize
end-to-end performance [5]. While previous work has focused
on overlay routing given a set of overlay nodes, this paper
addresses the problem of choosing the set of overlay nodes to
maximize the gain due to overlay routing.

There are two broad types of overlay networks: peer-to-peer
networks and infrastructure overlay networks. A peer-to-peer
network (p2p) is a highly dynamic environment governed by
the churn of the peer nodes. Compared with highly dynamic
p2p, an infrastructure overlay has much better connectivity,
higher persistence and availability. Moreover, it is typically
managed by a single administrative entity. Therefore, infras-
tructure overlays are the most effective in fully realizing the

potential benefits of overlay routing.

While such a dedicated infrastructure overlay network de-
ployment provides the target applications or users the benefit
of optimizing overlay routing performance, it also comes
at a significant cost in terms of time, hardware, network
connectivity, and human effort in maintaining the system.
Thus, it is critical to carefully place infrastructure overlay
nodes to balance the trade-off between overlay application
performance and resource constraints.

This paper investigates approaches to perform intelligent
placement of infrastructure overlay nodes for a generic set of
overlay routing applications. The placement problem is stated
as: Given M possible locations for overlay nodes and a budget
of k possible nodes, how to place & overlay nodes to optimize
some application-specific performance metric.

As a concrete example, we focus on the problem of overlay
node placement in the context of the following two overlay
routing applications: (i) improving routing reliability using
SOSR [6] that employs a single overlay node in the overlay
path, and (ii) improving TCP throughput using SLOT [4] that
leverages multiple overlay hop paths. In this paper, we develop
and evaluate a set of heuristics to achieve improved application
performance. Besides performance, one of the primary focus
of our heuristics is to allow for incremental deployment,
as incremental deployability is indispensable under practical
constraints of budget and dynamic user traffic patterns.

We study the pros and cons of various placement heuristics
via simulations under a variety of topologies and network
conditions. We then conduct real experiments on the PlanetLab
testbed to observe how well the different heuristics, which
try to optimize objective functions designed based on stable
topological and network properties such as underlying routing
paths and path RTTs, perform in terms of more abstract
application layer performance metrics such as failure-recovery
(reliability) and TCP throughput gains that can not be easily
incorporated into objective functions.

Since an overlay is typically used for more than one
application, it is critical to simultaneously support diverse
applications using a common overlay infrastructure. Motivated
by this observation, we further explore how to place overlay
nodes to simultaneously improve the performance of multiple
applications, in particular, reliability and TCP performance.

We make the following contributions in this paper.

« We propose objective functions to accurately capture

application behavior, namely, reliability and TCP per-



Fig. 1. Example scenario explain-
ing the working of SOSR.

Fig. 2. Example scenario explain-
ing the working of SLOT.

formance. We formulate placement problems aiming to
optimize the proposed objective functions, and analyze
their complexity.

« We develop a series of heuristics that operate with varied
levels of topology and traffic information, and provide
different tradeoffs between complexity and performance.
We extensively evaluate the heuristics using simulations
based on real and synthetic network topologies. Our
results show that on average intelligent placement tech-
niques outperform random schemes by up to a margin
of 100% for reliability (SOSR) and 200% for TCP
performance (SLOT).

o We demonstrate the effectiveness of the objective func-
tions and heuristics in capturing and optimizing abstract
application performance metrics, namely, reliability and
TCP performance via PlanetLab experiments. The experi-
ments show that intelligent placement techniques recover
from 100% more number of failures with 80% probability
for SOSR, and achieve 50% more throughput gain for
40% of the cases for SLOT, as compared to random
schemes.

« We identify the fundamental challenge in simultaneously
optimizing for reliability and TCP performance, and
propose a simple unified algorithm to simultaneously
optimize both objectives.

Il. BACKGROUND

In this section, we provide a brief background on the
two sample overlay routing applications considered for the
placement problem in this paper. The applications are chosen
so that the placement problem can be studied under two
different conditions: (1) a scenario where a single overlay node
is chosen in overlay routing (SOSR), and (2) a scenario where
multiple overlay hops are leveraged in overlay routing (SLOT).

A. SOSR

Failure recovery using overlay routing has been studied
in Detour [1] and RON [2]. Different from the previous
work, SOSR [6] proposes one-hop source routing approach
to mitigate Internet path failures. More specifically, upon path
failures the source node randomly chooses four nodes as relays
to re-route traffic. SOSR is shown to recover from 20-56%
failures. Figure 1 shows how a source node S uses overlay
paths S-O1-D, S-02-D, S-03-D, and S-O4-D to reroute traffic.

B. SLOT

Next we consider SLOT (Shortened Loop Overlay Trans-
port) [4], an infrastructure-based solution that aims to increase
the throughput of the standard TCP by exploiting the well-
known relationship between TCP throughput and round-trip-
time. SLOT leverages overlay routing to break up an end-
to-end TCP connection into multiple shortened TCP (sub-
)connections (with smaller RTTs) forming a multi-overlay-hop
path over which data bytes are pipelined to enable end-to-end
transport. Since the throughput of an end-to-end SLOT path is
constrained by that of the worst overlay hop, SLOT chooses a
multi-hop path that minimizes the maximum RTT of the sub-
connections. Figure 2 shows an example scenario: the direct
path between S and D with RTT 200 is split into a four-hop
path: S — O1 — O2 — O3 — D with an effective path RTT of
50.

I11. THE OVERLAY PLACEMENT PROBLEM (OPP)

In this section, we first define the generic overlay placement
problem. We then develop objective functions for two special
instances of OPP, namely, SOSR and SLOT. Note that the
design of the objective functions is completely governed by the
application it is designed to optimize. Finally, we formulate
the respective overlay placement problems, namely, SOSR-
Overlay Placement Problem (SOSR-OPP) and the SLOT-
overlay placement problem (SLOT-OPP). The problems are
similar in nature but differ in the way in which the objective
function is defined.

Definition 1: (Generic Overlay Placement Problem) We
state the overlay placement problem as a graph-theoretic
problem. Given a graph G = (V, E), where V is a set of
N nodes and F is a set of edges between these nodes that
denote the underlying routing edges, a set I C V of M nodes
that are potential nodes for intermediary placement, and a set
C CV x V of client-server pairs (c, s). The OPP problem is
to find a set K C I of k nodes such that it optimizes some
overlay routing objective function.

In this paper, we consider uncapacitated overlay node
placement problem that assumes unlimited capacity at each
overlay site. This is a reasonable assumption since it is much
easier and less costly to add a node at an existing site than
adding a node at a new site. Throughout the paper, we use
overlay sites and overlay nodes interchangeably.

A. SOSR

a) Design of an objective function to capture reliabil-
ity: In order to capture reliability characteristics of overlay
routes, we develop the objective function objss,. It assumes
information about underlying routing hops between nodes and
the traffic volume between the client-server pairs. Given this
information the objective function obj,,s, is defined as

Z(C,S)ECT[Cv S] * LOKC’ 5)’ H(Cv 5)]
Z(C,S)GCT[C7 S]

where T'[c, s] is the traffic flowing between a client ¢ and a
server s, H(c,s) C K, and LO|(c, s), H(c, s)] is the average
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pairwise overlap between a set of |H| + 1 paths, namely, one
direct path from ¢ to s, and |H| single-hop detoured paths
between the same two nodes. Overlap between two paths is
defined as the number of links (edges in the graph) that are
common between the two paths. The direct path between ¢
and s is the shortest hop path between the two nodes and the
detoured path via a hop m is a path consisting of a direct path
from ¢ to m followed by another direct path from m to s.

While an overlay path containing multiple intermediate hops
may provide more flexibility and less overlap with the direct
path, measurements in [6] have shown that one-hop detour
is sufficient to significantly reduce Internet routing failures.
Hence in this paper, we will use one intermediate hop for
overlay routing for reliability.

b) Significance of the LO factor: While it is important
to find alternative paths with minimum overlap with the direct
path, it is imperative that the alternative paths themselves have
as low pairwise overlap among themselves as possible. This
is captured by the LO factor in obj,.s-. By calculating the
pairwise overlap between all the paths, i.e., | H| detoured paths
and a direct path ((| |+ 1)-choose-2 pairs), it is ensured that
all the alternative paths have minimum failure correlation and
provide reliability under multiple failures. [7] shows that two
paths experiencing failures show a correlation that depends on
the pairwise path overlap.

The cardinality of the set H(c,s) is critical. It should be
not too small, otherwise, there would not be enough options
to choose from, and it should not be too large because it is
impractical and inefficient to detour data through such a large
number of alternative paths. A suitable choice for |H| is four,
as shown in [6] based on Internet experiments. As in SOSR, set
H(c,s) is randomly chosen from the set K for each client-
server pair. Thus, it is important to choose the set K in a
manner such that objs.s. i low irrespective of what set is
chosen as H(c, s).

c) SOSR Overlay Placement Problem (SOSR-OPP):
Given an objective function obj,,s,- to capture reliability of
overlay routing, we formally define the optimal placement
problem for SOSR.

Definition 2: (k-Overlay Placement Problem for SOSR (k-
SOSR-OPP))

INSTANCE: Same as the Generic OPP.
QUESTION: Is there a set K C I, such that objssr < B,
where objs.s- 1S given by (1) and B is a constant.

B. SLOT

a) Design of an objective function to capture TCP per-
formance: Similar to SOSR, we develop objs,: to capture
TCP performance of overlay routes. It also assumes that the
information about the RTTs between client and server pairs
and the corresponding traffic volume are known. Given this
information the objective function objg, is defined as

RTT|c,s
> (esyecTle, s] ORTT{C,S],k]

Z(c,s)ECT[C? S]

)
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where RTT|[c,s] is the RTT of the direct path between
c and s, ORTT|c,s,l] is the best overlay RTT possible
between nodes ¢ and s after I nodes have been chosen
from K. The matrix ORTT|c,s,l] is calculated in an
incremental manner. Assuming that at any given time
we have chosen i intermediaries, and we choose the
(i + 1)-th intermediate node a, then ORTT]c,s,i + 1] =
min(ORTT[e, s,i], max(ORTT[c, a,i], ORTT[a, s,1])).

Note that unlike SOSR, for SLOT each client-server pair
(¢, s) is allowed to route via multiple intermediate hops.

b) SLOT Overlay Placement Problem (SLOT-OPP):
Given an objective function objg,; to capture TCP perfor-
mance of overlay routing, we formally define the optimal
placement problem for SLOT.

Definition 3: (k-Overlay Placement Problem for SLOT (k-
SLOT-OPP))
INSTANCE: Same as the Generic OPP.
QUESTION: Is there a set K C I, such that objs: > B,
where objs ¢ IS given by (2) and B is a constant.

1V. COMPLEXITY ANALYSIS

In this section, we first prove that OPP is NP-hard for SOSR
when one intermediate hop per pair is used in the overlay
path. We then prove OPP is NP-hard for SLOT where multiple
intermediate hops are allowed in the overlay path.

A. SOSR-OPP is NP-hard

We prove that SOSR-OPP is NP-hard by first reducing it to
a decision problem k-SOSR-OPP. We then translate it to derive
the k-SOSR-OPP-modified problem. Finally, we show that k-
SOSR-OPP-modified problem is the same as the k-median
problem [8]. This sequence of steps prove that k-SOSR-OPP
is NP-complete and hence SOSR-OPP is NP-hard.

Definition 4: (The k-median problem (k-MP))
INSTANCE: Given a weighted graph G’ = (V’, E’), with
edge-weights w(e). Given I' C V', and C" C V.
QUESTION: Is there a set of nodes K’ where K’ C I’ and
|K'| = k, such that the objective function >° ., w(e.) < B,
where w(e.) > 0 and is the weight of the lowest-weighted
edge from ¢ to any node k' € K'?

Definition 5: (Modified k-Overlay Placement Problem for
SOSR (k-SOSR-OPP-modified)) We modify k-SOSR-OPP
problem to a different version. From a graph G = (V, E),
in k-OPP-SOSR, we construct another graph G = (V, E).
INSTANCE: A graph G = (V,E) is constructed, where
V =TuUU, where I and U are disjoint sets and I = I . Each
u € U corresponds to a pair (c,s) € C. The edges e € E are
such that e = (i, w), i.e., the endpoints of such edges contain
one node from I and one from U. The edge-weights of edge e
is given by ew(e) = ew(i,u) = ew(i, (¢, s)) = LO|(c, s), H],
where H is a singleton set such that H = w.

QUESTION: Is there a set K C I, such that ) ., w(e,) <
B, where w(e,) = min(ew(j,u)), Vj € K.

Theorem 1: The k-SOSR-OPP problem is NP-complete.
The detailed proof is omitted due to space limit and can be
found in [9].



B. SLOT-OPP is NP-hard

SLOT-OPP is different from SOSR-OPP in two ways. First,
SLOT-OPP tries to maximize its objective function while
SOSR-OPP tries to minimize its objective function. Second,
multiple intermediate hops are allowed in SLOT-OPP while
SOSR-OPP uses only a single overlay hop. Therefore we
cannot directly use the proof for Theorem 1. Instead, we first
obtain a decision version of the SLOT-OPP problem, called k-
SLOT-OPP. We then prove that k-SLOT-OPP is NP-complete
by reducing an instance of k-MP to an instance of k-SLOT-
OPP. This proves that SLOT-OPP is NP-hard. The details of
these steps can be found in [9].

V. INCREMENTAL PLACEMENT ALGORITHMS

In this section, we present a number of heuristic algorithms
for the overlay placement problem. The algorithms are the
same for both SOSR-OPP and SLOT-OPP, and differ in the
objective functions used. In general, all such heuristics help
us choose K intermediary nodes out of N nodes.

All the heuristics described below are designed in a way
so that they are incremental in nature. We only consider
incremental algorithms since they make infrastructure overlay
administration practical, i.e., it is impractical to change the
entire deployment every time a new node is to be added. Below
we classify the heuristics into three main categories.

A. Uninformed Heuristics

Heuristics in this category are completely unaware of the
network conditions and topology information such as the path
latencies, the traffic between clients and servers, and the un-
derlying routing layer topology. Thus, the placement decision
is completely random. We would call such an heuristic as
Random. The Random heuristic serves as a lower bound of
the performance for the rest of the heuristics.

B. Partially-informed Heuristics

Such heuristics have only partial information about the net-
work. Heuristics in this category are unaware of the relatively
dynamic network conditions such as the path latencies and the
traffic between clients and servers. They make their decisions
based on network topology properties which are relatively
stable.

a) Node Degree Based (NDB): The NDB algorithm
greedily chooses nodes with large numbers of edges attached
to it. Intuitively, for SLOT, a high-degree node can split a TCP
connection into small RTT segments as it can be reached from
a client or a server in a few number of hops. However, for
SOSR, it is counter-intuitive to choose high-degree nodes as
such nodes are more likely to be traversed by different paths
between different pair of nodes, leading to more likelihood
of overlap between such paths. On the contrary, such nodes
may also yield low path overlap as such nodes can be reached
using few hops, thus, reducing the scope of overlap. Thus, the
behavior of the NDB heuristic is not obvious and hence, worth
exploring. Note that this algorithm uses the degree based on
the routing edges at the underlying routing layer.

C. Fully informed Heuristics

The heuristics in this category assume complete information
about the traffic and latencies for SLOT, and traffic and
physical route information for SOSR, between the client-
server pairs, and thus can make more informed decisions
at the cost of higher computational complexity. Since the
heuristics are incremental, such information can be easily
collected by logging the traffic from the current deployment of
the infrastructure overlay. We note that such information may
change over time and consequently the quality of placement
generated by such heuristics may change accordingly.

a) Traffic Aware Greedy (TAG): The TAG algorithm
works as follows. At each step of the algorithm, one new
intermediary is selected. The choice of such an intermediary
is based on adding which node gives the best value of the
objective function. The steps of the algorithm are as follows.
If there are a total of M nodes from which the intermediaries
can be chosen and m nodes have already been selected as
intermediaries (denoted as set S), to select the (m+1)-th node,
we iterate over the remaining M —m candidate nodes. At each
iteration, we add one node to the set S and re-calculate the
objective function for the new set S. The node that gives the
best value of the objective function is chosen as the (m+1)-th
node. Note that this is the optimal incremental algorithm when
a single node is added at each step. Given that incremental
deployment is of prime importance, this algorithm serves as
the upper bound of performance among all placement algo-
rithms as it is the optimal among all incremental algorithms.
The complexity for this algorithm is O(k(M + W)2M) for
SLOT, where W is the number of nodes that are either a client
or a server, and the complexity for SOSR is O(k|C|Md),
where |C| is the cardinality of the set C' of client-server pairs.
A detailed derivation of the time complexities can be found
in [9].

D. Hybrid Heuristics

Hybrid heuristics are a hybrid of traffic-aware heuristics and
Random heuristic. Such heuristics tradeoff performance with
computational complexity.

a) Traffic Aware Greedy-p (TAG-p): The TAG-p algo-
rithm chooses the set of intermediaries randomly but incre-
mentally as follows. It generally follows TAG and differs in
the number of candidate nodes that are screened at each step.
In particular, when choosing the (m + 1)-th node, it iterates
over a set of min(p, M —m) nodes randomly chosen from the
set of M —m remaining candidate nodes. Out of the p nodes,
it chooses the node that gives the best objective function as
the (m+1)-th node. Thus, the complexity of TAG-p is smaller
than TAG by a factor of %. Note that TAG-p where p is equal
to M becomes equivalent to TAG.

V1. SIMULATIONS

In addition to the factors captured in the objective functions,
the ultimate performance of various applications is affected
by additional factors, for example, the TCP window size and
Internet congestion in the case of SLOT. Hence, it is imperative



to study the performance of various heuristics in a real testbed.
Nevertheless, to understand the strengths and weaknesses
of the various placement strategies and their comparative
behavior under varying topologies and network conditions, it
is worthwhile to conduct experiments under a controlled setup.
For this purpose, we first perform a comprehensive simulation
study in this section. We then present the Internet experiments
in the next section.

A. Methodology

To evaluate the performance of various algorithms and to
understand the importance of placement of nodes, we use
simulations on a variety of network topologies and workloads.
We use two fundamentally different types of graph topologies,
namely, random graphs and hierarchical graphs. For random
graphs, we use the GTITM [10] topology generator. We
use two different models of random graphs: pure-random
model and waxman model. Results for GTITM-waxman are
similar to the pure-random model, hence, we do not show the
corresponding results in this paper for the sake of brevity. The
results can be found in [9]. For hierarchical graphs we use the
Inet [11] topology generator. GTITM also generates hierarchi-
cal graphs using a transit-stub model, but the Inet generated
graphs reflect the Internet structure more closely [11]. Hence,
for the sake of brevity we only show results for Inet-generated
hierarchical graphs. With GTITM, we use a network topology
of 1000 (N = 1000) nodes. For Inet, we generate 3037-
node topologies (N = 3037). We run simulations on several
different topology instances generated by each topology model
and present the average behavior over all the instances. For
the simulations, we consider all the nodes in the network as
potential intermediaries (M = N). For each simulation run,
we incrementally choose 30 nodes (k = 30) as intermediaries.

For client-server traffic, we use real web proxy traces pro-
vided by ww. i r cache. net for 10 proxies, geographically
distributed across the US. Each proxy has a per-day trace
for the week of 20th October, 2005. Each of these traces are
parsed to extract client to server request patterns. Since the set
of IP addresses of the client-server pairs in the web log is much
larger than the number of nodes in the network, we cluster
the clients and servers using IP-address-based aggregation and
map them to the nodes in the network. To reduce the running
time of the simulations, we prune the number of clients and
servers by choosing the top 200 clients and server nodes
(after clustering) that correspond to the most traffic-generating
client-server pairs. The rest of the nodes are assumed not to
generate any traffic.

We also conducted simulations on real Internet traces to
compare the different heuristics. For SOSR, we used the same
trace as used in [12] which consists of BGP routing data from
seven geographically dispersed BGP peers. Each BGP table
entry consists of a sequence of ASes called the AS paths.
We created a topology based on these AS paths. Thus in this
topology the edges are the links between ASes in the AS paths,
as opposed to edges between routers. The intuition here is

that diversifying the ASes in the paths traversed increases the
resilience when one AS is down.

For SLOT, we used a topology trace used in [13]. The
topology consists of 89 Traceroute Gateways that serve as the
set of potential intermediaries, and a set of 3130 IP addresses
that serve as clients and servers. These nodes make up a
“virtual network”. The traceroute gateways measure RTTS
among themselves. For the path between a client and a server,
the RTT is approximated as the sum of the RTTs of the client
to the closest traceroute gateway and of the server to the closest
traceroute gateway and the RTT between the two gateways,
similarly as in [13]. We used separate Internet traces for SOSR
and SLOT as they had no information about RTTs and routing
layer topologies, respectively.

B. Results - SOSR

In all simulations and experiments with SOSR, we used
LO|(c, s), H(c, s)] such that H (¢, s) is a set of 4 nodes chosen
randomly from among all potential intermediaries for each pair
(¢, s). For each heuristic, we plot the objective function as
presented by (1).

a) Inet: Figure 3 shows that careful placement of the
nodes clearly benefits the reliability performance of the sys-
tem. TAG gives almost 70% less overlap than the Random
strategy. As expected TAG-p achieves progressively better
performance as p is increased and gives a good tradeoff
between cost and performance. Specifically, TAG-5 and TAG-
20 outperform Random by 50%, 60%, respectively. Also, the
NDB heuristic performs as poorly as Random.

b) GTITM: Figures 4 asserts the results obtained for
Inet topologies and the relative qualitative performance of the
heuristics are retained. For GTITM-pure-random, TAG out-
performs Random by 200%, and TAG-5, TAG-20 outperform
Random by around 100% and 150%, respectively.

There are two major differences between the results of
GTITM and Inet topologies. The first point of difference lies in
the actual values of the overlap. GTITM gives lower values of
overlap than Inet because of Inet’s hierarchical tree structure.
Intuitively, Inet topology can be thought of as a set of trees, as
shown in Figure 5, containing nodes with high degrees serving
as the roots of those trees, depicted by nodes A, B, and C. A
low degree node has to traverse the root of the respective tree
it belongs to in order to reach another node. For example, the
direct path from E'1 to E2 passes through A and B (the roots
of trees F1 and E2 reside in). Thus, irrespective of which
node is chosen as an intermediary to detour through, there
is a significant overlap between the direct and the detoured
path. For example, for the endpoint pair £1 — E2, no
matter which node is chosen as an intermediary, there will
be always overlaps at links {1, [2, I3 and [4. This leads to
a higher value of average overlap for the Inet topologies.
The second difference is that the performance gap between
Random and TAG is smaller for Inet. It is also due to the
hierarchical structure mentioned before. Since the overlap is
high irrespective of the heuristic used, the scope of percentage
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improvement is less, and hence the performance gap between
TAG and Random is smaller.

One of the interesting observations was that none of the
curves are monotonically decreasing, i.e., increasing the num-
ber of intermediaries picked does not change the overall
performance of any of the heuristic significantly. The fact that
we minimize the pairwise overlap while randomly choosing
4 overlay nodes per pair explains that. Moreover, for TAG
the curve tends to go up as more nodes are selected because
TAG chooses the best 4 nodes as the first 4 nodes. This
behavior is due to the fact that as more nodes are added, the
random-4 technique causes nodes other than the best 4 nodes
to be chosen, and hence the average path overlap increases.
Thus, if the best-4 nodes were chosen instead of the random-
4, the gap between TAG and Random strategies would have
been larger, and the results show the lower bound on the
performance gap between the two heuristics. Moreover, this
observation does not imply that choosing a small number
of intermediaries is sufficient because a larger number of
intermediaries provides more redundancy, and hence more
resilience to multiple concurrent path failures.

c) Real Trace: Figure 6 shows the relative performance
of SOSR under a scenario constructed based on the Internet
trace. A difference of about 50% can be observed between
TAG and Random schemes. TAG-5 and TAG-20 also outper-
form Random by around 30% to 40%.

C. Results - SLOT

In all simulations and experiments with SLOT, for each
heuristic we plot the objective function as presented by (2).
a) Inet: Figure 7 shows that proper placement of the
intermediaries is critical to the good performance of SLOT,
under Inet topologies. The TAG heuristic is easily the best and
outperforms the Random placement significantly with about

100% improvement. Another point worth noting is that TAG-p
performs reasonably well as p is increased. TAG-5 and TAG-
20 outperform Random by around 50%. Finally, as the number
of intermediaries increases, the gain due to using SLOT also
increases and so does the performance gap between the TAG
and Random heuristics. This indicates that placement becomes
more critical as the number of intermediaries chosen increases
as long as the number of intermediaries chosen, k, is much
less the number of potential intermediaries M.

Interestingly, NDB outperforms TAG-20. Again, such a
behavior can be explained on the basis of the hierarchical
structure of the Inet topology. Choosing high-degree nodes as
intermediaries allows connections to be broken into segments
with small RTTs because a high-degree node can be reached
from a client or a server in a few number of hops. For example,
consider Figure 5. For simplification, we assume that all links
have the same RTT R. Thus, in order to split a connection
between FE1 and E2, choosing A or B or C' is more efficient
than choosing I or J. This is so because in the former case the
total path RTT is reduced from 5R to 3R, whereas in the latter
case the improvement is zero. Random selection selects a large
number of end nodes such as I and J, but NDB automatically
chooses high-degree nodes such as A, B and C.

b) GTITM: Figures 8 shows similar relative performance
results as Figure 7 and confirm the findings with Inet topology.
Specifically, TAG, TAG-5, TAG-20 outperform Random by
around 100%, 50% and 60%, respectively. As in SOSR, one of
the differences is the value of the Weighted Average PathRTT
Reduction metric between the results obtained for GTITM and
Inet topologies. The reason for this is that Inet captures the
node degree skew better than the random graphs generated by
GTITM. The skew makes routing for Inet more constrained
(the shortest paths between any two nodes pass through the
few high-degree nodes), and hence the gains due to using
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SLOT is less. Nevertheless, this difference manifests itself in
all the heuristics and the relative performance gap between
TAG and Random remains close to 100%, similar to what
was observed for the Inet topologies. Another difference is
the relative performance of NDB heuristics for the graphs
generated by Inet and GTITM. Unlike with Inet graphs, NDB
performs as poorly as Random for GTITM graphs because the
node-degrees in the GTITM is uniformly random.

¢) Real Trace: Figure 9 shows the relative performance
of SLOT under a scenario constructed based on the Internet
trace described in (§VI-A). A difference of about 30% can be
observed between the TAG and Random schemes. Note that
this difference is much smaller compared to the synthetic sce-
narios generated using GTITM and Inet because the number
of potential intermediaries is 89 in this case as compared to
3037 and 1000 for Inet and GTITM, respectively, which in turn
reduces the scope for improvement. Again, TAG-20 performs
as well as TAG because of the small number of intermediaries.
We do not show the results for NDB as we could not obtain
the degree information for each node.

D. Implications

We have observed that relative performance of the heuristics
are different depending on the type of topology, namely, ran-
dom or hierarchical. Thus, depending upon the topology, ap-
plication and computational resource constraints, appropriate
heuristics should be chosen. For example, under hierarchical
topologies, NDB can be used for SLOT. For both SOSR and
SLOT, under all topologies, TAG-p can be used for a good
tradeoff between the complexity and performance.

Under cases where the topology is very large, intermediaries
can be chosen in two steps. In the first step, an initial set of
nodes can be chosen using NDB (e.g. SLOT under hierarchical
topology) or TAG-p (with a small p value), and then the final
set can be selected from the nodes chosen in the first step using
TAG or TAG-p (where p is large). For the NDB heuristic, the
AS-level topology (obtained from BGP routing data) can be
used to estimate node-degrees, and nodes residing in ASes
with high-degrees can be selected.

E. Robustness to traffic changes

The above results hold true assuming perfect knowledge
about the traffic generated by each node. In practice, perfect
knowledge is not possible and only estimates can be obtained.

CDF of traffic weights across all the
flows in the network showing a heavily skewed
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In this section, we study the robustness of the proposed
heuristic placement algorithms with respect to such imperfect
knowledge of traffic demands.

Our approach is to salt the input traffic information with
random noise, similar to the methodology used in [12]. In
particular, we perturb the volume of the traffic from an initial
value of d to a random value between 0 and 2d. We feed the
salted input traffic to the placement algorithms and compute
the list of intermediaries. Using the set of intermediaries
thus generated, we calculate the objective functions using the
accurate traffic values. We compare the objective functions
thus obtained, with the case where intermediaries were chosen
with perfect knowledge.

Table | shows the average and the standard deviation of the
percentage differences in the objective function between the
cases with imperfect and perfect input. The numbers are of the
form average, standard deviation. It can be observed that
the differences are in the range of 0 to 4% for SOSR and 0
to 2% for SLOT. The respective standard deviations are also
very close to zero. Thus the robustness results confirm that
the heuristics are resilient to traffic fluctuations. The results
only present the behavior of the TAG heuristic. The TAG-p
heuristics behave similarly, and we do not show those results
for brevity. Note that we show results for only traffic-aware
heuristics as NDB and Random heuristics will choose the same
set of intermediaries irrespective of what the traffic values are.

The observation that the heuristics that take traffic into
account actually are robust to large traffic variations seems
contradictory. This can be explained as follows. The traffic
values have a skewed Zipf distribution, i.e., a few flows have
a high traffic weight, while a large number of flows have small
traffic weights, as shown in Figure 10. Traffic-aware heuristics
tend to choose intermediaries such that high-traffic flows are
benefited the most. Due to the high skew in the traffic, on



average, high-traffic flows remain high-traffic and low-traffic
remain low-traffic even if traffic values are perturbed by a
factor of 100%. Previously, it was shown in [12] that input
data about traffic is relatively stable, and that future can be
predicted using past behavior.

VII. INTERNET EXPERIMENTS

The simulation study provides insight on the pros and cons
of the different placement strategies that try to optimize the
two objective functions. To understand how the gains seen
in simulation results translate into application performance in
practice, we conducted experiments on a real testbed: Planet-
Lab. The PlanetLab experiments reflect how well the objective
functions based merely on stable topological properties such
as path overlap and path RTT, capture more abstract and fickle
application level performance metrics such as failure-recovery
(reliability) and TCP throughput gain, respectively.

For each of the two applications, SOSR and SLOT, we
assume a client and server population and traffic from clients
to servers. We also assume a set of possible overlay locations
(M). Out of these M nodes, we run our heuristics to pick
k overlay nodes for the given setup. We then deploy the
offline generated placement and rerun the overlay applications
to measure their gain in performance. To the best of our
knowledge, we are the first to show the impact of informed
placement algorithms on application performance using real-
time experiments using an Internet-wide infrastructure, i.e.,
PlanetLab.

A. SOSR

1) Experiment Setup: Our client set consists of the 10 web
proxies from www. i r cache. net at 10 different locations,
each corresponding to a node in PlanetLab. The proxy traces
serve as the traffic pattern between the clients and the servers
around the world. To keep the real experiments tractable,
we chose the top 20 servers for each client that served the
most number of requests as our sample traffic pattern. We
picked 162 nodes from the PlanetLab testbed served as the M
possible overlay locations. To run our placement heuristics,
we collected topology information for the above setup by
performing traceroute. This topology was then input to the
heuristics to generate k& = 10 overlay nodes as output.

To validate the gain from the placement, we instrument
reliability measurements from each client to their respective
servers via the chosen placement and compare the reliability
performance across placements. The reliability measurements
are done as follows: Each client pinged the 20 servers peri-
odically until it detected a loss, after which it went to a fail
mode. In this mode, it pinged the server at a higher rate and
also pinged server via all the intermediaries. In case it did
not get back a reply from the intermediary it concluded that
the path through that intermediary also failed. Out of all the
failures the transient failures and server failures were filtered
out. This way of measurement is similar to the procedure used
in [6]. Such a trace is collected for a period of 6 days.

The failure recovery trace was used to calculate the per-
formance of each heuristic. For each heuristic, we calculate
the probability that failures are recovered by using the in-
termediaries generated by that heuristic as follows. First, the
set of intermediate nodes chosen by the heuristic, denoted as
A, was obtained. Then the subset of intermediate nodes that
could actually recover from the failure if used for overlay
routing, denoted as B, was obtained based on the reliability
measurement. The probability was then calculated as %. Note
that |A| = k& = 10.

Over all client-server pairs, we registered 20269 loss inci-
dences out of which 1648 were inferred as long term failures.
287 long term failures were concluded to be server failures,
leaving 1361 recoverable failures. For the probability calcu-
lation we considered only recoverable failures in determining
the relative performance of each placement scheme.

2) Results: Figure 11 shows the CDF of the probability
with which a certain percentage of failures were recovered
using the different sets of intermediaries chosen by the differ-
ent heuristics. It can be observed that TAG recovers from the
failures with a higher probability than Random and TAG-20.
Also, TAG-20 gives a good tradeoff between performance and
complexity as observed in our simulation studies. In particular,
Random is not able to recover for about 15% of the cases,
whereas TAG and TAG-20 fail to recover only for 5% of
the cases. TAG can recover from 40% of the failures with
a probability 80% or higher. TAG-20 can recover 30% of
failures with a probability of 80% or higher, whereas Random
can recover from only 20% of failures with a probability
of 80% or higher. In summary, the above results show that
informed placement using the objective function developed
indeed provides better reliability than a random placement
scheme in Internet experiments.

B. SLOT

1) Experiment Setup: The traffic and the topology setup for
SLOT is similar to SOSR except that the top 50 servers were
chosen for each client instead of 20. This choice was largely
due to the long-term nature of SOSR experiments which limits
its scale. Also, for the traffic from each client to a server,
only those URLSs that were responsive and of size 1IMB-1GB
were chosen because small files do not gain from using SLOT.
To run our placement heuristics, we then collected latency
information for the above setup by measuring RTTs between
the different nodes (clients, servers and intermediaries. TCP
ACK/RST was used to measure RTTS.

To compare SLOT performance across different placements,
we ran the SLOT system with the placement generated overlay
set. Each client downloaded the URLs using wget from the
servers in its traffic trace using SLOT and directly, and
computed the gain as {Z4SLOL

2) Results: Figure 12 shows the CDF of the per client-
server pair throughput gain for each of the heuristics. It can
be observed that using intermediaries selected by TAG offers
higher gains than using intermediaries selected by Random.
In particular, TAG and TAG-20 achieve a gain of 1.8 or more
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for 40% of the pairs as opposed to a gain of only 1.2 or more
for Random for the same number of pairs. TAG-20 achieves
performance as good as TAG, which asserts the observations
made in the simulation studies that TAG-20 achieves a good
tradeoff between performance and complexity. In summary,
the results show that informed placement indeed provides
better performance in terms of TCP throughput than a random
scheme in Internet experiments.

VIIl. GENERALIZATION TO MULTIPLE APPLICATIONS

In this section, we formulate a unified overlay place-
ment problem that simultaneously optimizes multiple objective
functions for overlay routing, and we show that the unified
OPP can be easily handled by heuristic placement algorithms
proposed in this paper.

a) Unified Overlay Placement Problem: We consider the
scenario where overlay routing is used to improve multiple
performance metrics, for example, by the same ISP operator.
In this case, it is administratively efficient to deploy a single in-
frastructure overlay, for example, for both resilience and TCP
performance improvement, and possibly other performance
metrics, than having a separate overlay for each performance
metric. In the following, we consider the specific case of
unified overlay placement problem for SOSR and SLOT. In
our study, we choose an objective function defined as

Objslot (3)

ObjSOST‘

Objsosr_slot =

where 0bjsos- and objs,: are defined in (1) and (2), re-
spectively. We now formally define the unified SOSR/SLOT
optimal placement problem.

Definition 6: (k-Overlay Placement Problem for SOSR and
SLOT)
INSTANCE: Same as the Generic OPP.
QUESTION: Is there a set K C I, such that 0bjsosr_sior < B,
where 0bjsosr_si0¢ 1S given by (3) and B is a constant.

b) Extended Heuristics: The greedy TAG heuristic pre-
sented in (§V-C) can be easily extended to solve the unified
optimal placement problem as follows. As before, the heuristic
incrementally adds one overlay node at a time. At each step,
it picks the new node as the node that in conjunction with
the already selected nodes results in the largest increase in the
new objective function.

c) Performance Results: We compared the unified objec-
tive function obtained under different ways of choosing nodes.
The first was to simply use TAG with the objective function
objsosrsior 10 incrementally select 30 nodes, denoted as 30-
uni fied. The second method employed was to incrementally
select 30 nodes using TAG with objs.s-, denoted as 30-
SOSR. The third method employed was to incrementally
select 30 nodes using TAG with obj ., denoted as 30-SLOT.
Finally, the fourth method chooses 15 nodes using TAG while
optimizing objs.s- and 15 nodes using TAG while optimizing
objsior- This gave us a set of 30 nodes. The 30 nodes are
ordered by alternating between the nodes selected by TAG
using objses and objso¢. This set is denoted as 15-15.

For each set of 30 nodes chosen, we incrementally calculate
two scalar values, namely obj.s and objs,; to obtain the
corresponding 0bjsosr_sior USiNg (3). We conducted the above
simulations only on GTITM-pure-random due to space limi-
tation. Figure 13 shows that the unified approach outperforms
the three alternative ways of selecting the set of 30 intermedi-
aries and hence is effective in optimizing the unified objective
function.

d) Designing the unified objective function: The idea
of having a unified objective function is to enable us to
choose a set of intermediaries, while optimizing a single
objective function (0bjsosr_siot), that would lead to both (i)
best reliability, and (ii) best TCP performance. However, we
observed a conflicting nature of the two overlay routing prob-
lems addressed, namely, SOSR and SLOT: optimizing objs;o¢
tends to select intermediaries close to the direct path, while
optimizing objs.s- tends to pick nodes that are far away from
the direct path in order to minimize overlap. Thus, designing
a unified objective function that would improve both 0bj o
and obj¢ Simultaneously, is challenging. We observed that in
practice, 15-15 appears to be a good generic unified algorithm
for selecting intermediaries that benefit applications requiring
SLOT as well as SOSR. Details are omitted due to lack of
space and can be found in [9].

IX. RELATED WORK

The node placement problem has been studied under various
contexts [14], [15], [16], [12], [13], [17], [18], [19], [20], [21]
such as Web server/cache placement. For example, in [21]
the authors propose a dynamic programming based solution
to proxy placement assuming the Internet as a tree topology.
In [12], the authors study a Web server replica placement
problem to minimize the cost for clients to access data. It
develops a greedy placement algorithm, which is shown to
yield close-to-optimal performance. It also shows that incor-
porating client location and workload information is critical to
good performance. In [13], [18], the authors consider a variant
of the mirror placement problem where mirrors can be placed
only at a restricted set of hosts. They study this problem from
the point of view of minimizing the maximum, average, and
95th percentile of the client-server latencies. They propose
and study different placement They show that there is a rapid
diminishing return to placing more mirrors in terms of both



client latency and server load balance. In [15], the authors
study the cache location problem. In particular, they study the
model of a network that aims to minimize the average access
delay for a single web-server. They experimentally study the
effects of their algorithms using real web data transfer and
find remarkable consistency over time in the relative amount
of web traffic from the server along a path. In [16], the
authors study the problem of replica placement to remove the
requirement of knowing traffic and client locations. In [22],
the placement problem was studied in the context of placing
proxies for multicast function with proxy servers with the
objective of minimization of delay time, minimization of band-
width consumption, or both. In [14], the authors study a similar
problem as ours with the goal of optimizing routing latency
and reliability. However, their problem formulation is different
from ours. They take an engineering approach, and look at
which ASes, at how many Ases and where within the ASes
nodes should be placed by analyzing topology dumps. They
do not have definite metrics that they optimize. In comparison,
we take an algorithmic approach, formally define the metrics
for reliability and latency, prove the NP-completeness of the
problems, and develop practical placement algorithms for a
variety of networks varying in size and topology.

Overlay node placement is fundamentally different from
Web servers/cache placement. In the latter, the goal is to
push the servers/caches as close to the clients as possible
to minimize the clients” access cost. In comparison, overlay
nodes are intermediate nodes connecting the servers and the
clients. Proximity towards clients alone is insufficient. Instead,
the goal is to optimize the efficiency of the path from the server
to the client through one or more given overlay nodes.

X. CONCLUSION

As overlay networks play an increasingly important role
in the Internet, it becomes critical that they should be well
designed to satisfy the application requirements. In this paper,
we focus on one important aspect of overlay network design
— strategically placing overlay nodes to satisfy the target
applications. We investigate the placement problem in the
context of two overlay applications: improving reliability of
routing and improving TCP performance. We develop objec-
tive functions to accurately capture application behavior in
terms of reliability and TCP performance. We then develop
incremental placement algorithms for both applications, and
demonstrate their effectiveness using simulation and Plan-
etLab experiments. We observed that intelligent placement
algorithms significantly outperform a random heuristic. A
hybrid approach combining a greedy and a random approach
gives a good tradeoff between performance and computational
complexity. To this end, we propose TAG-p heuristics which
perform similarly to TAG. We also observe that the heuristics
are resilient to traffic fluctuations.

Recognizing the need to support diverse applications using
a common overlay infrastructure, we present a general frame-
work of placing overlay nodes using a unified objective. We
apply it to the two overlay applications and our results show
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that the two applications in consideration are contradictory
in nature. We find that an approach based on selecting half
the nodes with each objective function independently pro-
vides a simple, natural and efficient unified heuristic. In our
ongoing work, we are studying generalizing our placement
algorithms to handle more applications, capacitated overlay
node placement, and topology changes. We are also inter-
ested in identifying a few general metrics that reflect the
optimization objectives of overlay applications so that overlay
node placement is effective for both today and future overlay
applications.
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