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Preface
What follows are my lecture notes for a first course in differential equations,

taught at the Hong Kong University of Science and Technology. Included in these
notes are links to short tutorial videos posted on YouTube.

Much of the material of Chapters 2-6 and 8 has been adapted from the widely
used textbook “Elementary differential equations and boundary value problems”
by Boyce & DiPrima (John Wiley & Sons, Inc., Seventh Edition, c○2001). Many of
the examples presented in these notes may be found in this book. The material of
Chapter 7 is adapted from the textbook “Nonlinear dynamics and chaos” by Steven
H. Strogatz (Perseus Publishing, c○1994).

All web surfers are welcome to download these notes, watch the YouTube videos,
and to use the notes and videos freely for teaching and learning. An associated free
review book with links to YouTube videos is also available from the ebook publisher
bookboon.com. I welcome any comments, suggestions or corrections sent by email
to jeffrey.chasnov@ust.hk. Links to my website, these lecture notes, my YouTube
page, and the free ebook from bookboon.com are given below.

Homepage:
http://www.math.ust.hk/~machas

YouTube:
https://www.youtube.com/user/jchasnov

Lecture notes:
http://www.math.ust.hk/~machas/differential-equations.pdf

Bookboon:
http://bookboon.com/en/differential-equations-with-youtube-examples-ebook
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Chapter 0

A short mathematical review
A basic understanding of calculus is required to undertake a study of differential

equations. This zero chapter presents a short review.

0.1 The trigonometric functions

The Pythagorean trigonometric identity is

sin2 x + cos2 x = 1,

and the addition theorems are

sin(x + y) = sin(x) cos(y) + cos(x) sin(y),
cos(x + y) = cos(x) cos(y)− sin(x) sin(y).

Also, the values of sin x in the first quadrant can be remembered by the rule of
quarters, with 0∘ = 0, 30∘ = π/6, 45∘ = π/4, 60∘ = π/3, 90∘ = π/2:

sin 0∘ =

√
0
4

, sin 30∘ =

√
1
4

, sin 45∘ =

√
2
4

,

sin 60∘ =

√
3
4

, sin 90∘ =

√
4
4

.

The following symmetry properties are also useful:

sin(π/2 − x) = cos x, cos(π/2 − x) = sin x;

and
sin(−x) = − sin(x), cos(−x) = cos(x).

0.2 The exponential function and the natural logarithm

The transcendental number e, approximately 2.71828, is defined as

e = lim
n→∞

(
1 +

1
n

)n
.

The exponential function exp (x) = ex and natural logarithm ln x are inverse func-
tions satisfying

eln x = x, ln ex = x.

The usual rules of exponents apply:

exey = ex+y, ex/ey = ex−y, (ex)p = epx.

The corresponding rules for the logarithmic function are

ln (xy) = ln x + ln y, ln (x/y) = ln x − ln y, ln xp = p ln x.

1



0.3. DEFINITION OF THE DERIVATIVE

0.3 Definition of the derivative

The derivative of the function y = f (x), denoted as f ′(x) or dy/dx, is defined as
the slope of the tangent line to the curve y = f (x) at the point (x, y). This slope is
obtained by a limit, and is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

. (1)

0.4 Differentiating a combination of functions

0.4.1 The sum or difference rule

The derivative of the sum of f (x) and g(x) is

( f + g)′ = f ′ + g′.

Similarly, the derivative of the difference is

( f − g)′ = f ′ − g′.

0.4.2 The product rule

The derivative of the product of f (x) and g(x) is

( f g)′ = f ′g + f g′,

and should be memorized as “the derivative of the first times the second plus the
first times the derivative of the second.”

0.4.3 The quotient rule

The derivative of the quotient of f (x) and g(x) is(
f
g

)′
=

f ′g − f g′

g2 ,

and should be memorized as “the derivative of the top times the bottom minus the
top times the derivative of the bottom over the bottom squared.”

0.4.4 The chain rule

The derivative of the composition of f (x) and g(x) is(
f (g(x))

)′
= f ′(g(x)) · g′(x),

and should be memorized as “the derivative of the outside times the derivative of
the inside.”

2 CHAPTER 0. A SHORT MATHEMATICAL REVIEW



0.5. DIFFERENTIATING ELEMENTARY FUNCTIONS

0.5 Differentiating elementary functions

0.5.1 The power rule
The derivative of a power of x is given by

d
dx

xp = pxp−1.

0.5.2 Trigonometric functions
The derivatives of sin x and cos x are

(sin x)′ = cos x, (cos x)′ = − sin x.

We thus say that “the derivative of sine is cosine,” and “the derivative of cosine is
minus sine.” Notice that the second derivatives satisfy

(sin x)′′ = − sin x, (cos x)′′ = − cos x.

0.5.3 Exponential and natural logarithm functions
The derivative of ex and ln x are

(ex)′ = ex, (ln x)′ =
1
x

.

0.6 Definition of the integral

The definite integral of a function f (x) > 0 from x = a to b (b > a) is defined
as the area bounded by the vertical lines x = a, x = b, the x-axis and the curve
y = f (x). This “area under the curve” is obtained by a limit. First, the area is
approximated by a sum of rectangle areas. Second, the integral is defined to be the
limit of the rectangle areas as the width of each individual rectangle goes to zero
and the number of rectangles goes to infinity. This resulting infinite sum is called a
Riemann Sum, and we define

∫ b

a
f (x)dx = lim

h→0

N

∑
n=1

f (a + (n − 1)h) · h, (2)

where N = (b − a)/h is the number of terms in the sum. The symbols on the left-
hand-side of (2) are read as “the integral from a to b of f of x dee x.” The Riemann
Sum definition is extended to all values of a and b and for all values of f (x) (positive
and negative). Accordingly,∫ a

b
f (x)dx = −

∫ b

a
f (x)dx and

∫ b

a
(− f (x))dx = −

∫ b

a
f (x)dx.

Also, ∫ c

a
f (x)dx =

∫ b

a
f (x)dx +

∫ c

b
f (x)dx,

which states when f (x) > 0 and a < b < c that the total area is equal to the sum of
its parts.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 3



0.7. THE FUNDAMENTAL THEOREM OF CALCULUS

0.7 The fundamental theorem of calculus

View tutorial on YouTube

Using the definition of the derivative, we differentiate the following integral:

d
dx

∫ x

a
f (s)ds = lim

h→0

∫ x+h
a f (s)ds −

∫ x
a f (s)ds

h

= lim
h→0

∫ x+h
x f (s)ds

h

= lim
h→0

h f (x)
h

= f (x).

This result is called the fundamental theorem of calculus, and provides a connection
between differentiation and integration.

The fundamental theorem teaches us how to integrate functions. Let F(x) be a
function such that F′(x) = f (x). We say that F(x) is an antiderivative of f (x). Then
from the fundamental theorem and the fact that the derivative of a constant equals
zero,

F(x) =
∫ x

a
f (s)ds + c.

Now, F(a) = c and F(b) =
∫ b

a f (s)ds + F(a). Therefore, the fundamental theorem
shows us how to integrate a function f (x) provided we can find its antiderivative:

∫ b

a
f (s)ds = F(b)− F(a). (3)

Unfortunately, finding antiderivatives is much harder than finding derivatives, and
indeed, most complicated functions cannot be integrated analytically.

We can also derive the very important result (3) directly from the definition of
the derivative (1) and the definite integral (2). We will see it is convenient to choose
the same h in both limits. With F′(x) = f (x), we have

∫ b

a
f (s)ds =

∫ b

a
F′(s)ds

= lim
h→0

N

∑
n=1

F′(a + (n − 1)h) · h

= lim
h→0

N

∑
n=1

F(a + nh)− F(a + (n − 1)h)
h

· h

= lim
h→0

N

∑
n=1

F(a + nh)− F(a + (n − 1)h).

The last expression has an interesting structure. All the values of F(x) evaluated
at the points lying between the endpoints a and b cancel each other in consecutive
terms. Only the value −F(a) survives when n = 1, and the value +F(b) when
n = N, yielding again (3).

4 CHAPTER 0. A SHORT MATHEMATICAL REVIEW
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0.8. DEFINITE AND INDEFINITE INTEGRALS

0.8 Definite and indefinite integrals

The Riemann sum definition of an integral is called a definite integral. It is convenient
to also define an indefinite integral by∫

f (x)dx = F(x),

where F(x) is the antiderivative of f (x).

0.9 Indefinite integrals of elementary functions

From our known derivatives of elementary functions, we can determine some sim-
ple indefinite integrals. The power rule gives us∫

xndx =
xn+1

n + 1
+ c, n ̸= −1.

When n = −1, and x is positive, we have∫ 1
x

dx = ln x + c.

If x is negative, using the chain rule we have

d
dx

ln (−x) =
1
x

.

Therefore, since

|x| =
{

−x if x < 0;
x if x > 0,

we can generalize our indefinite integral to strictly positive or strictly negative x:∫ 1
x

dx = ln |x|+ c.

Trigonometric functions can also be integrated:∫
cos xdx = sin x + c,

∫
sin xdx = − cos x + c.

Easily proved identities are an addition rule:∫
( f (x) + g(x))dx =

∫
f (x)dx +

∫
g(x)dx;

and multiplication by a constant:∫
A f (x)dx = A

∫
f (x)dx.

This permits integration of functions such as∫
(x2 + 7x + 2)dx =

x3

3
+

7x2

2
+ 2x + c,

and ∫
(5 cos x + sin x)dx = 5 sin x − cos x + c.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 5



0.10. SUBSTITUTION

0.10 Substitution

More complicated functions can be integrated using the chain rule. Since

d
dx

f (g(x)) = f ′(g(x)) · g′(x),

we have ∫
f ′(g(x)) · g′(x)dx = f (g(x)) + c.

This integration formula is usually implemented by letting y = g(x). Then one
writes dy = g′(x)dx to obtain∫

f ′(g(x))g′(x)dx =
∫

f ′(y)dy

= f (y) + c
= f (g(x)) + c.

0.11 Integration by parts

Another integration technique makes use of the product rule for differentiation.
Since

( f g)′ = f ′g + f g′,

we have
f ′g = ( f g)′ − f g′.

Therefore, ∫
f ′(x)g(x)dx = f (x)g(x)−

∫
f (x)g′(x)dx.

Commonly, the above integral is done by writing

u = g(x) dv = f ′(x)dx
du = g′(x)dx v = f (x).

Then, the formula to be memorized is∫
udv = uv −

∫
vdu.

0.12 Taylor series

A Taylor series of a function f (x) about a point x = a is a power series repre-
sentation of f (x) developed so that all the derivatives of f (x) at a match all the
derivatives of the power series. Without worrying about convergence here, we have

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)
3!

(x − a)3 + . . . .

Notice that the first term in the power series matches f (a), all other terms vanishing,
the second term matches f ′(a), all other terms vanishing, etc. Commonly, the Taylor

6 CHAPTER 0. A SHORT MATHEMATICAL REVIEW



0.13. FUNCTIONS OF SEVERAL VARIABLES

series is developed with a = 0. We will also make use of the Taylor series in a
slightly different form, with x = x* + ε and a = x*:

f (x* + ε) = f (x*) + f ′(x*)ε +
f ′′(x*)

2!
ε2 +

f ′′′(x*)
3!

ε3 + . . . .

Another way to view this series is that of g(ε) = f (x* + ε), expanded about ε = 0.
Taylor series that are commonly used include

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . ,

sin x = x − x3

3!
+

x5

5!
− . . . ,

cos x = 1 − x2

2!
+

x4

4!
− . . . ,

1
1 + x

= 1 − x + x2 − . . . , for |x| < 1,

ln (1 + x) = x − x2

2
+

x3

3
− . . . , for |x| < 1.

0.13 Functions of several variables

For simplicity, we consider a function f = f (x, y) of two variables, though the
results are easily generalized. The partial derivative of f with respect to x is defined
as

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

and similarly for the partial derivative of f with respect to y. To take the partial
derivative of f with respect to x, say, take the derivative of f with respect to x
holding y fixed. As an example, consider

f (x, y) = 2x3y2 + y3.

We have
∂ f
∂x

= 6x2y2,
∂ f
∂y

= 4x3y + 3y2.

Second derivatives are defined as the derivatives of the first derivatives, so we have

∂2 f
∂x2 = 12xy2,

∂2 f
∂y2 = 4x3 + 6y;

and the mixed second partial derivatives are

∂2 f
∂x∂y

= 12x2y,
∂2 f

∂y∂x
= 12x2y.

In general, mixed partial derivatives are independent of the order in which the
derivatives are taken.

Partial derivatives are necessary for applying the chain rule. Consider

d f = f (x + dx, y + dy)− f (x, y).

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 7



0.14. COMPLEX NUMBERS

We can write d f as

d f = [ f (x + dx, y + dy)− f (x, y + dy)] + [ f (x, y + dy)− f (x, y)]

=
∂ f
∂x

dx +
∂ f
∂y

dy.

If one has f = f (x(t), y(t)), say, then

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

.

And if one has f = f (x(r, θ), y(r, θ)), say, then

∂ f
∂r

=
∂ f
∂x

∂x
∂r

+
∂ f
∂y

∂y
∂r

,
∂ f
∂θ

=
∂ f
∂x

∂x
∂θ

+
∂ f
∂y

∂y
∂θ

.

A Taylor series of a function of several variables can also be developed. Here, all
partial derivatives of f (x, y) at (a, b) match all the partial derivatives of the power
series. With the notation

fx =
∂ f
∂x

, fy =
∂ f
∂y

, fxx =
∂2 f
∂x2 , fxy =

∂2 f
∂x∂y

, fyy =
∂2 f
∂y2 , etc.,

we have

f (x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

+
1
2!

(
fxx(a, b)(x − a)2 + 2 fxy(a, b)(x − a)(y − b) + fyy(a, b)(y − b)2

)
+ . . .

0.14 Complex numbers

View tutorial on YouTube: Complex Numbers
View tutorial on YouTube: Complex Exponential Function

We define the imaginary number i to be one of the two numbers that satisfies the
rule (i)2 = −1, the other number being −i. Formally, we write i =

√
−1. A complex

number z is written as
z = x + iy,

where x and y are real numbers. We call x the real part of z and y the imaginary
part and write

x = Re z, y = Im z.

Two complex numbers are equal if and only if their real and imaginary parts are
equal.

The complex conjugate of z = x + iy, denoted as z̄, is defined as

z̄ = x − iy.

Using z and z̄, we have

Re z =
1
2
(z + z̄) , Im z =

1
2i

(z − z̄) . (4)
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Furthermore,

zz̄ = (x + iy)(x − iy)

= x2 − i2y2

= x2 + y2;

and we define the absolute value of z, also called the modulus of z, by

|z| = (zz̄)1/2

=
√

x2 + y2.

We can add, subtract, multiply and divide complex numbers to get new complex
numbers. With z = x + iy and w = s + it, and x, y, s, t real numbers, we have

z + w = (x + s) + i(y + t); z − w = (x − s) + i(y − t);

zw = (x + iy)(s + it)
= (xs − yt) + i(xt + ys);

z
w

=
zw̄
ww̄

=
(x + iy)(s − it)

s2 + t2

=
(xs + yt)

s2 + t2 + i
(ys − xt)

s2 + t2 .

Furthermore,

|zw| =
√
(xs − yt)2 + (xt + ys)2

=
√
(x2 + y2)(s2 + t2)

= |z||w|;
and

zw = (xs − yt)− i(xt + ys)
= (x − iy)(s − it)
= z̄w̄.

Similarly ∣∣∣ z
w

∣∣∣ = |z|
|w| , (

z
w
) =

z̄
w̄

.

Also, z + w = z + w. However, |z + w| ≤ |z|+ |w|, a theorem known as the triangle
inequality.

It is especially interesting and useful to consider the exponential function of an
imaginary argument. Using the Taylor series expansion of an exponential function,
we have

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
. . .

=

(
1 − θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
+ . . .

)
= cos θ + i sin θ.
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Since we have determined that

cos θ = Re eiθ , sin θ = Im eiθ , (5)

we also have using (4) and (5), the frequently used expressions

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

The much celebrated Euler’s identity derives from eiθ = cos θ + i sin θ by setting
θ = π, and using cos π = −1 and sin π = 0:

eiπ + 1 = 0,

and this identity links the five fundamental numbers, 0, 1, i, e and π, using three
basic mathematical operations, addition, multiplication and exponentiation, only
once.

The complex number z can be represented in the complex plane with Re z as the
x-axis and Im z as the y-axis. This leads to the polar representation of z = x + iy:

z = reiθ ,

where r = |z| and tan θ = y/x. We define arg z = θ. Note that θ is not unique,
though it is conventional to choose the value such that −π < θ ≤ π, and θ = 0
when r = 0.

Useful trigonometric relations can be derived using eiθ and properties of the
exponential function. The addition law can be derived from

ei(x+y) = eixeiy.

We have

cos(x + y) + i sin(x + y) = (cos x + i sin x)(cos y + i sin y)
= (cos x cos y − sin x sin y) + i(sin x cos y + cos x sin y);

yielding

cos(x + y) = cos x cos y − sin x sin y, sin(x + y) = sin x cos y + cos x sin y.

De Moivre’s Theorem derives from einθ = (eiθ)n, yielding the identity

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n.

For example, if n = 2, we derive

cos 2θ + i sin 2θ = (cos θ + i sin θ)2

= (cos2 θ − sin2 θ) + 2i cos θ sin θ.

Therefore,
cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 cos θ sin θ.

With a little more manipulation using cos2 θ + sin2 θ = 1, we can derive

cos2 θ =
1 + cos 2θ

2
, sin2 θ =

1 − cos 2θ

2
,
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which are useful formulas for determining∫
cos2 θ dθ =

1
4
(2θ + sin 2θ) + c,

∫
sin2 θ dθ =

1
4
(2θ − sin 2θ) + c,

from which follows ∫ 2π

0
sin2 θ dθ =

∫ 2π

0
cos2 θ dθ = π.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 11
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Chapter 1

Introduction to odes
A differential equation is an equation for a function that relates the values of the

function to the values of its derivatives. An ordinary differential equation (ode) is a
differential equation for a function of a single variable, e.g., x(t), while a partial dif-
ferential equation (pde) is a differential equation for a function of several variables,
e.g., v(x, y, z, t). An ode contains ordinary derivatives and a pde contains partial
derivatives. Typically, pde’s are much harder to solve than ode’s.

1.1 The simplest type of differential equation

View tutorial on YouTube

The simplest ordinary differential equations can be integrated directly by finding
antiderivatives. These simplest odes have the form

dnx
dtn = G(t),

where the derivative of x = x(t) can be of any order, and the right-hand-side may
depend only on the independent variable t. As an example, consider a mass falling
under the influence of constant gravity, such as approximately found on the Earth’s
surface. Newton’s law, F = ma, results in the equation

m
d2x
dt2 = −mg,

where x is the height of the object above the ground, m is the mass of the object, and
g = 9.8 meter/sec2 is the constant gravitational acceleration. As Galileo suggested,
the mass cancels from the equation, and

d2x
dt2 = −g.

Here, the right-hand-side of the ode is a constant. The first integration, obtained by
antidifferentiation, yields

dx
dt

= A − gt,

with A the first constant of integration; and the second integration yields

x = B + At − 1
2

gt2,

with B the second constant of integration. The two constants of integration A and
B can then be determined from the initial conditions. If we know that the initial
height of the mass is x0, and the initial velocity is v0, then the initial conditions are

x(0) = x0,
dx
dt

(0) = v0.

13
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Substitution of these initial conditions into the equations for dx/dt and x allows us
to solve for A and B. The unique solution that satisfies both the ode and the initial
conditions is given by

x(t) = x0 + v0t − 1
2

gt2. (1.1)

For example, suppose we drop a ball off the top of a 50 meter building. How long
will it take the ball to hit the ground? This question requires solution of (1.1) for
the time T it takes for x(T) = 0, given x0 = 50 meter and v0 = 0. Solving for T,

T =

√
2x0

g

=

√
2 · 50
9.8

sec

≈ 3.2sec.
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Chapter 2

First-order differential
equations

Reference: Boyce and DiPrima, Chapter 2

The general first-order differential equation for the function y = y(x) is written as

dy
dx

= f (x, y), (2.1)

where f (x, y) can be any function of the independent variable x and the dependent
variable y. We first show how to determine a numerical solution of this equa-
tion, and then learn techniques for solving analytically some special forms of (2.1),
namely, separable and linear first-order equations.

2.1 The Euler method

View tutorial on YouTube

Although it is not always possible to find an analytical solution of (2.1) for y =
y(x), it is always possible to determine a unique numerical solution given an initial
value y(x0) = y0, and provided f (x, y) is a well-behaved function. The differential
equation (2.1) gives us the slope f (x0, y0) of the tangent line to the solution curve
y = y(x) at the point (x0, y0). With a small step size ∆x = x1 − x0, the initial
condition (x0, y0) can be marched forward to (x1, y1) along the tangent line using
Euler’s method (see Fig. 2.1)

y1 = y0 + ∆x f (x0, y0).

This solution (x1, y1) then becomes the new initial condition and is marched for-
ward to (x2, y2) along a newly determined tangent line with slope given by f (x1, y1).
For small enough ∆x, the numerical solution converges to the exact solution.

15
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x
0

x
1

y
0

y
1

y
1
 = y

0
+∆x f(x

0
,y

0
)

slope = f(x
0
,y

0
)

Figure 2.1: The differential equation dy/dx = f (x, y), y(x0) = y0, is integrated to x = x1
using the Euler method y1 = y0 + ∆x f (x0, y0), with ∆x = x1 − x0.

2.2 Separable equations

View tutorial on YouTube

A first-order ode is separable if it can be written in the form

g(y)
dy
dx

= f (x), y(x0) = y0, (2.2)

where the function g(y) is independent of x and f (x) is independent of y. Integra-
tion from x0 to x results in∫ x

x0

g(y(x))y′(x)dx =
∫ x

x0

f (x)dx.

The integral on the left can be transformed by substituting u = y(x), du = y′(x)dx,
and changing the lower and upper limits of integration to y(x0) = y0 and y(x) = y.
Therefore, ∫ y

y0

g(u)du =
∫ x

x0

f (x)dx,

and since u is a dummy variable of integration, we can write this in the equivalent
form ∫ y

y0

g(y)dy =
∫ x

x0

f (x)dx. (2.3)

A simpler procedure that also yields (2.3) is to treat dy/dx in (2.2) like a fraction.
Multiplying (2.2) by dx results in

g(y)dy = f (x)dx,

which is a separated equation with all the dependent variables on the left-side, and
all the independent variables on the right-side. Equation (2.3) then results directly
upon integration.
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Example: Solve dy
dx + 1

2 y = 3
2 , with y(0) = 2.

We first manipulate the differential equation to the form

dy
dx

=
1
2
(3 − y), (2.4)

and then treat dy/dx as if it was a fraction to separate variables:

dy
3 − y

=
1
2

dx.

We integrate the right-side from the initial condition x = 0 to x and the left-side
from the initial condition y(0) = 2 to y. Accordingly,∫ y

2

dy
3 − y

=
1
2

∫ x

0
dx. (2.5)

The integrals in (2.5) need to be done. Note that y(x) < 3 for finite x or the integral
on the left-side diverges. Therefore, 3 − y > 0 and integration yields

− ln (3 − y)]y2 =
1
2

x]x0 ,

ln (3 − y) = −1
2

x,

3 − y = e−
1
2 x,

y = 3 − e−
1
2 x.

Since this is our first nontrivial analytical solution, it is prudent to check our result.
We do this by differentiating our solution:

dy
dx

=
1
2

e−
1
2 x

=
1
2
(3 − y);

and checking the initial conditions, y(0) = 3 − e0 = 2. Therefore, our solution
satisfies both the original ode and the initial condition.

Example: Solve dy
dx + 1

2 y = 3
2 , with y(0) = 4.

This is the identical differential equation as before, but with different initial condi-
tions. We will jump directly to the integration step:∫ y

4

dy
3 − y

=
1
2

∫ x

0
dx.

Now y(x) > 3, so that y − 3 > 0 and integration yields

− ln (y − 3)]y4 =
1
2

x]x0 ,

ln (y − 3) = −1
2

x,

y − 3 = e−
1
2 x,

y = 3 + e−
1
2 x.
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dy/dx + y/2 = 3/2

Figure 2.2: Solution of the following ode: dy
dx + 1

2 y = 3
2 .

The solution curves for a range of initial conditions is presented in Fig. 2.2. All
solutions have a horizontal asymptote at y = 3 at which dy/dx = 0. For y(0) = y0,
the general solution can be shown to be y(x) = 3 + (y0 − 3) exp(−x/2).

Example: Solve dy
dx = 2 cos 2x

3+2y , with y(0) = −1. (i) For what values of x > 0 does
the solution exist? (ii) For what value of x > 0 is y(x) maximum?

Notice that the derivative of y diverges when y = −3/2, and that this may cause
some problems with a solution.

We solve the ode by separating variables and integrating from initial conditions:

(3 + 2y)dy = 2 cos 2x dx∫ y

−1
(3 + 2y)dy = 2

∫ x

0
cos 2x dx

3y + y2]
y
−1 = sin 2x]x0

y2 + 3y + 2 − sin 2x = 0

y± =
1
2
[−3 ±

√
1 + 4 sin 2x].

Solving the quadratic equation for y has introduced a spurious solution that does
not satisfy the initial conditions. We test:

y±(0) =
1
2
[−3 ± 1] =

{
-1;
-2.

Only the + root satisfies the initial condition, so that the unique solution to the ode
and initial condition is

y =
1
2
[−3 +

√
1 + 4 sin 2x]. (2.6)

To determine (i) the values of x > 0 for which the solution exists, we require

1 + 4 sin 2x ≥ 0,
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or
sin 2x ≥ −1

4
. (2.7)

Notice that at x = 0, we have sin 2x = 0; at x = π/4, we have sin 2x = 1; at
x = π/2, we have sin 2x = 0; and at x = 3π/4, we have sin 2x = −1 We therefore
need to determine the value of x such that sin 2x = −1/4, with x in the range
π/2 < x < 3π/4. The solution to the ode will then exist for all x between zero and
this value.

To solve sin 2x = −1/4 for x in the interval π/2 < x < 3π/4, one needs to
recall the definition of arcsin, or sin−1, as found on a typical scientific calculator.
The inverse of the function

f (x) = sin x, −π/2 ≤ x ≤ π/2

is denoted by arcsin. The first solution with x > 0 of the equation sin 2x = −1/4
places 2x in the interval (π, 3π/2), so to invert this equation using the arcsine
we need to apply the identity sin (π − x) = sin x, and rewrite sin 2x = −1/4 as
sin (π − 2x) = −1/4. The solution of this equation may then be found by taking
the arcsine, and is

π − 2x = arcsin (−1/4),

or

x =
1
2

(
π + arcsin

1
4

)
.

Therefore the solution exists for 0 ≤ x ≤ (π + arcsin (1/4)) /2 = 1.6971 . . . , where
we have used a calculator value (computing in radians) to find arcsin(0.25) =
0.2527 . . . . At the value (x, y) = (1.6971 . . . ,−3/2), the solution curve ends and
dy/dx becomes infinite.

To determine (ii) the value of x at which y = y(x) is maximum, we examine
(2.6) directly. The value of y will be maximum when sin 2x takes its maximum
value over the interval where the solution exists. This will be when 2x = π/2, or
x = π/4 = 0.7854 . . . .

The graph of y = y(x) is shown in Fig. 2.3.

2.3 Linear equations

View tutorial on YouTube

The first-order linear differential equation (linear in y and its derivative) can be
written in the form

dy
dx

+ p(x)y = g(x), (2.8)

with the initial condition y(x0) = y0. Linear first-order equations can be integrated
using an integrating factor µ(x). We multiply (2.8) by µ(x),

µ(x)
[

dy
dx

+ p(x)y
]
= µ(x)g(x), (2.9)

and try to determine µ(x) so that

µ(x)
[

dy
dx

+ p(x)y
]
=

d
dx

[µ(x)y]. (2.10)
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y

(3+2y) dy/dx = 2 cos 2x, y(0) = −1

Figure 2.3: Solution of the following ode: (3 + 2y)y′ = 2 cos 2x, y(0) = −1.

Equation (2.9) then becomes

d
dx

[µ(x)y] = µ(x)g(x). (2.11)

Equation (2.11) is easily integrated using µ(x0) = µ0 and y(x0) = y0:

µ(x)y − µ0y0 =
∫ x

x0

µ(x)g(x)dx,

or

y =
1

µ(x)

(
µ0y0 +

∫ x

x0

µ(x)g(x)dx
)

. (2.12)

It remains to determine µ(x) from (2.10). Differentiating and expanding (2.10)
yields

µ
dy
dx

+ pµy =
dµ

dx
y + µ

dy
dx

;

and upon simplifying,
dµ

dx
= pµ. (2.13)

Equation (2.13) is separable and can be integrated:∫ µ

µ0

dµ

µ
=
∫ x

x0

p(x)dx,

ln
µ

µ0
=
∫ x

x0

p(x)dx,

µ(x) = µ0 exp
(∫ x

x0

p(x)dx
)

.

Notice that since µ0 cancels out of (2.12), it is customary to assign µ0 = 1. The
solution to (2.8) satisfying the initial condition y(x0) = y0 is then commonly written
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as

y =
1

µ(x)

(
y0 +

∫ x

x0

µ(x)g(x)dx
)

,

with

µ(x) = exp
(∫ x

x0

p(x)dx
)

the integrating factor. This important result finds frequent use in applied mathe-
matics.

Example: Solve dy
dx + 2y = e−x, with y(0) = 3/4.

Note that this equation is not separable. With p(x) = 2 and g(x) = e−x, we have

µ(x) = exp
(∫ x

0
2dx

)
= e2x,

and

y = e−2x
(

3
4
+
∫ x

0
e2xe−xdx

)
= e−2x

(
3
4
+
∫ x

0
exdx

)
= e−2x

(
3
4
+ (ex − 1)

)
= e−2x

(
ex − 1

4

)
= e−x

(
1 − 1

4
e−x
)

.

Example: Solve dy
dx − 2xy = x, with y(0) = 0.

This equation is separable, and we solve it in two ways. First, using an integrating
factor with p(x) = −2x and g(x) = x:

µ(x) = exp
(
−2

∫ x

0
xdx

)
= e−x2

,

and
y = ex2

∫ x

0
xe−x2

dx.

The integral can be done by substitution with u = x2, du = 2xdx:

∫ x

0
xe−x2

dx =
1
2

∫ x2

0
e−udu

= −1
2

e−u]
x2

0

=
1
2

(
1 − e−x2

)
.
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Therefore,

y =
1
2

ex2
(

1 − e−x2
)

=
1
2

(
ex2 − 1

)
.

Second, we integrate by separating variables:

dy
dx

− 2xy = x,

dy
dx

= x(1 + 2y),∫ y

0

dy
1 + 2y

=
∫ x

0
xdx,

1
2

ln (1 + 2y) =
1
2

x2,

1 + 2y = ex2
,

y =
1
2

(
ex2 − 1

)
.

The results from the two different solution methods are the same, and the choice of
method is a personal preference.

2.4 Applications

2.4.1 Compound interest
View tutorial on YouTube

The equation for the growth of an investment with continuous compounding of
interest is a first-order differential equation. Let S(t) be the value of the investment
at time t, and let r be the annual interest rate compounded after every time interval
∆t. We can also include deposits (or withdrawals). Let k be the annual deposit
amount, and suppose that an installment is deposited after every time interval ∆t.
The value of the investment at the time t + ∆t is then given by

S(t + ∆t) = S(t) + (r∆t)S(t) + k∆t, (2.14)

where at the end of the time interval ∆t, r∆tS(t) is the amount of interest credited
and k∆t is the amount of money deposited (k > 0) or withdrawn (k < 0). As a
numerical example, if the account held $10,000 at time t, and r = 6% per year and
k = $12,000 per year, say, and the compounding and deposit period is ∆t = 1 month
= 1/12 year, then the interest awarded after one month is r∆tS = (0.06/12) ×
$10,000 = $50, and the amount deposited is k∆t = $1000.

Rearranging the terms of (2.14) to exhibit what will soon become a derivative,
we have

S(t + ∆t)− S(t)
∆t

= rS(t) + k.

The equation for continuous compounding of interest and continuous deposits is
obtained by taking the limit ∆t → 0. The resulting differential equation is

dS
dt

= rS + k, (2.15)
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which can solved with the initial condition S(0) = S0, where S0 is the initial capital.
We can solve either by separating variables or by using an integrating factor; I solve
here by separating variables. Integrating from t = 0 to a final time t,∫ S

S0

dS
rS + k

=
∫ t

0
dt,

1
r

ln
(

rS + k
rS0 + k

)
= t,

rS + k = (rS0 + k)ert,

S =
rS0ert + kert − k

r
,

S = S0ert +
k
r

ert (1 − e−rt) , (2.16)

where the first term on the right-hand side of (2.16) comes from the initial invested
capital, and the second term comes from the deposits (or withdrawals). Evidently,
compounding results in the exponential growth of an investment.

As a practical example, we can analyze a simple retirement plan. It is easiest to
assume that all amounts and returns are in real dollars (adjusted for inflation).
Suppose a 25 year-old plans to set aside a fixed amount every year of his/her
working life, invests at a real return of 6%, and retires at age 65. How much must
he/she invest each year to have $8,000,000 at retirement? We need to solve (2.16)
for k using t = 40 years, S(t) = $8,000,000, S0 = 0, and r = 0.06 per year. We have

k =
rS(t)

ert − 1
,

k =
0.06 × 8,000,000

e0.06×40 − 1
,

= $47,889 year−1.

To have saved approximately one million US$ at retirement, the worker would need
to save about HK$50,000 per year over his/her working life. Note that the amount
saved over the worker’s life is approximately 40 × $50,000 = $2,000,000, while the
amount earned on the investment (at the assumed 6% real return) is approximately
$8,000,000 − $2,000,000 = $6,000,000. The amount earned from the investment is
about 3× the amount saved, even with the modest real return of 6%. Sound invest-
ment planning is well worth the effort.

2.4.2 Chemical reactions

Suppose that two chemicals A and B react to form a product C, which we write as

A + B k→ C,

where k is called the rate constant of the reaction. For simplicity, we will use the
same symbol C, say, to refer to both the chemical C and its concentration. The law
of mass action says that dC/dt is proportional to the product of the concentrations
A and B, with proportionality constant k; that is,

dC
dt

= kAB. (2.17)
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Similarly, the law of mass action enables us to write equations for the time-derivatives
of the reactant concentrations A and B:

dA
dt

= −kAB,
dB
dt

= −kAB. (2.18)

The ode given by (2.17) can be solved analytically using conservation laws. We
assume that A0 and B0 are the initial concentrations of the reactants, and that no
product is initially present. From (2.17) and (2.18),

d
dt
(A + C) = 0 =⇒ A + C = A0,

d
dt
(B + C) = 0 =⇒ B + C = B0.

Using these conservation laws, (2.17) becomes

dC
dt

= k(A0 − C)(B0 − C), C(0) = 0,

which is a nonlinear equation that may be integrated by separating variables. Sep-
arating and integrating, we obtain∫ C

0

dC
(A0 − C)(B0 − C)

= k
∫ t

0
dt

= kt. (2.19)

The remaining integral can be done using the method of partial fractions. We write

1
(A0 − C)(B0 − C)

=
a

A0 − C
+

b
B0 − C

. (2.20)

The cover-up method is the simplest method to determine the unknown coefficients
a and b. To determine a, we multiply both sides of (2.20) by A0 − C and set C = A0
to find

a =
1

B0 − A0
.

Similarly, to determine b, we multiply both sides of (2.20) by B0 − C and set C = B0
to find

b =
1

A0 − B0
.

Therefore,
1

(A0 − C)(B0 − C)
=

1
B0 − A0

(
1

A0 − C
− 1

B0 − C

)
,

and the remaining integral of (2.19) becomes (using C < A0, B0)∫ C

0

dC
(A0 − C)(B0 − C)

=
1

B0 − A0

(∫ C

0

dC
A0 − C

−
∫ C

0

dC
B0 − C

)
=

1
B0 − A0

(
− ln

(
A0 − C

A0

)
+ ln

(
B0 − C

B0

))
=

1
B0 − A0

ln
(

A0(B0 − C)
B0(A0 − C)

)
.
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Using this integral in (2.19), multiplying by (B0 − A0) and exponentiating, we obtain

A0(B0 − C)
B0(A0 − C)

= e(B0−A0)kt.

Solving for C, we finally obtain

C(t) = A0B0
e(B0−A0)kt − 1

B0e(B0−A0)kt − A0
,

which appears to be a complicated expression, but has the simple limits

lim
t→∞

C(t) =

{
A0, if A0 < B0,
B0, if B0 < A0

= min(A0, B0).

As one would expect, the reaction stops after one of the reactants is depleted; and
the final concentration of product is equal to the initial concentration of the depleted
reactant.

2.4.3 Terminal velocity
View tutorial on YouTube

Using Newton’s law, we model a mass m free falling under gravity but with air
resistance. We assume that the force of air resistance is proportional to the speed
of the mass and opposes the direction of motion. We define the x-axis to point
in the upward direction, opposite the force of gravity. Near the surface of the
Earth, the force of gravity is approximately constant and is given by −mg, with
g = 9.8 m/s2 the usual gravitational acceleration. The force of air resistance is
modeled by −kv, where v is the vertical velocity of the mass and k is a positive
constant. When the mass is falling, v < 0 and the force of air resistance is positive,
pointing upward and opposing the motion. The total force on the mass is therefore
given by F = −mg − kv. With F = ma and a = dv/dt, we obtain the differential
equation

m
dv
dt

= −mg − kv. (2.21)

The terminal velocity v∞ of the mass is defined as the asymptotic velocity after air
resistance balances the gravitational force. When the mass is at terminal velocity,
dv/dt = 0 so that

v∞ = −mg
k

. (2.22)

The approach to the terminal velocity of a mass initially at rest is obtained by
solving (2.21) with initial condition v(0) = 0. The equation is both linear and
separable, and I solve by separating variables:

m
∫ v

0

dv
mg + kv

= −
∫ t

0
dt,

m
k

ln
(

mg + kv
mg

)
= −t,

1 +
kv
mg

= e−kt/m,

v = −mg
k

(
1 − e−kt/m

)
.
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Therefore, v = v∞

(
1 − e−kt/m

)
, and v approaches v∞ as the exponential term de-

cays to zero.
As an example, a skydiver of mass m = 100 kg with his parachute closed may

have a terminal velocity of 200 km/hr. With

g = (9.8 m/s2)(10−3 km/m)(60 s/min)2(60 min/hr)2 = 127, 008 km/hr2,

one obtains from (2.22), k = 63, 504 kg/hr. One-half of the terminal velocity for free-
fall (100 km/hr) is therefore attained when (1 − e−kt/m) = 1/2, or t = m ln 2/k ≈
4 sec. Approximately 95% of the terminal velocity (190 km/hr ) is attained after
17 sec.

2.4.4 Escape velocity
View tutorial on YouTube

An interesting physical problem is to find the smallest initial velocity for a mass
on the Earth’s surface to escape from the Earth’s gravitational field, the so-called
escape velocity. Newton’s law of universal gravitation asserts that the gravitational
force between two massive bodies is proportional to the product of the two masses
and inversely proportional to the square of the distance between them. For a mass
m a position x above the surface of the Earth, the force on the mass is given by

F = −G
Mm

(R + x)2 ,

where M and R are the mass and radius of the Earth and G is the gravitational
constant. The minus sign means the force on the mass m points in the direction
of decreasing x. The approximately constant acceleration g on the Earth’s surface
corresponds to the absolute value of F/m when x = 0:

g =
GM
R2 ,

and g ≈ 9.8 m/s2. Newton’s law F = ma for the mass m is thus given by

d2x
dt2 = − GM

(R + x)2

= − g
(1 + x/R)2 , (2.23)

where the radius of the Earth is known to be R ≈ 6350 km.
A useful trick allows us to solve this second-order differential equation as a

first-order equation. First, note that d2x/dt2 = dv/dt. If we write v(t) = v(x(t))—
considering the velocity of the mass m to be a function of its distance above the
Earth—we have using the chain rule

dv
dt

=
dv
dx

dx
dt

= v
dv
dx

,

where we have used v = dx/dt. Therefore, (2.23) becomes the first-order ode

v
dv
dx

= − g
(1 + x/R)2 ,
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which may be solved assuming an initial velocity v(x = 0) = v0 when the mass is
shot vertically from the Earth’s surface. Separating variables and integrating, we
obtain ∫ v

v0

vdv = −g
∫ x

0

dx
(1 + x/R)2 .

The left integral is 1
2 (v

2 − v2
0), and the right integral can be performed using the

substitution u = 1 + x/R, du = dx/R:∫ x

0

dx
(1 + x/R)2 = R

∫ 1+x/R

1

du
u2

= − R
u

]1+x/R

1

= R − R2

x + R

=
Rx

x + R
.

Therefore,
1
2
(v2 − v2

0) = − gRx
x + R

,

which when multiplied by m is an expression of the conservation of energy (the
change of the kinetic energy of the mass is equal to the change in the potential
energy). Solving for v2,

v2 = v2
0 −

2gRx
x + R

.

The escape velocity is defined as the minimum initial velocity v0 such that the
mass can escape to infinity. Therefore, v0 = vescape when v → 0 as x → ∞. Taking
this limit, we have

v2
escape = lim

x→∞

2gRx
x + R

= 2gR.

With R ≈ 6350 km and g = 127 008 km/hr2, we determine vescape =
√

2gR ≈ 40 000
km/hr. In comparison, the muzzle velocity of a modern high-performance rifle is
4300 km/hr, almost an order of magnitude too slow for a bullet, shot into the sky,
to escape the Earth’s gravity.

2.4.5 RC circuit

View tutorial on YouTube

Consider a resister R and a capacitor C connected in series as shown in Fig. 2.4.
A battery providing an electromotive force, or emf ℰ , connects to this circuit by a
switch. Initially, there is no charge on the capacitor. When the switch is thrown to
a, the battery connects and the capacitor charges. When the switch is thrown to b,
the battery disconnects and the capacitor discharges, with energy dissipated in the
resister. Here, we determine the voltage drop across the capacitor during charging
and discharging.
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Figure 2.4: RC circuit diagram.

The equations for the voltage drops across a capacitor and a resister are given
by

VC = q/C, VR = iR, (2.24)

where C is the capacitance and R is the resistance. The charge q and the current i
are related by

i =
dq
dt

. (2.25)

Kirchhoff’s voltage law states that the emf ℰ in any closed loop is equal to the
sum of the voltage drops in that loop. Applying Kirchhoff’s voltage law when the
switch is thrown to a results in

VR + VC = ℰ . (2.26)

Using (2.24) and (2.25), the voltage drop across the resister can be written in terms
of the voltage drop across the capacitor as

VR = RC
dVC
dt

,

and (2.26) can be rewritten to yield the first-order linear differential equation for VC
given by

dVC
dt

+ VC/RC = ℰ/RC, (2.27)

with initial condition VC(0) = 0.
The integrating factor for this equation is

µ(t) = et/RC,

and (2.27) integrates to

VC(t) = e−t/RC
∫ t

0
(ℰ/RC)et/RCdt,

with solution
VC(t) = ℰ

(
1 − e−t/RC

)
.
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The voltage starts at zero and rises exponentially to ℰ , with characteristic time scale
given by RC.

When the switch is thrown to b, application of Kirchhoff’s voltage law results in

VR + VC = 0,

with corresponding differential equation

dVC
dt

+ VC/RC = 0.

Here, we assume that the capacitance is initially fully charged so that VC(0) = ℰ .
The solution, then, during the discharge phase is given by

VC(t) = ℰ e−t/RC.

The voltage starts at ℰ and decays exponentially to zero, again with characteristic
time scale given by RC.

2.4.6 The logistic equation
View tutorial on YouTube

Let N(t) be the number of individuals in a population at time t, and let b and d be
the average per capita birth rate and death rate, respectively. In a short time ∆t, the
number of births in the population is b∆tN, and the number of deaths is d∆tN. An
equation for N at time t + ∆t is then determined to be

N(t + ∆t) = N(t) + b∆tN(t)− d∆tN(t),

which can be rearranged to

N(t + ∆t)− N(t)
∆t

= (b − d)N(t);

and as ∆t → 0, and with r = b − d, we have

dN
dt

= rN.

This is the Malthusian growth model (Thomas Malthus, 1766-1834), and is the same
equation as our compound interest model.

Under a Malthusian growth model, the population size grows exponentially like

N(t) = N0ert,

where N0 is the initial population size. However, when the population growth is
constrained by limited resources, a heuristic modification to the Malthusian growth
model results in the Verhulst equation,

dN
dt

= rN
(

1 − N
K

)
, (2.28)

where K is called the carrying capacity of the environment. Making (2.28) dimen-
sionless using τ = rt and x = N/K leads to the logistic equation,

dx
dτ

= x(1 − x),
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where we may assume the initial condition x(0) = x0 > 0. Separating variables and
integrating ∫ x

x0

dx
x(1 − x)

=
∫ τ

0
dτ.

The integral on the left-hand-side can be done using the method of partial fractions:

1
x(1 − x)

=
a
x
+

b
1 − x

,

and the cover-up method yields a = b = 1. Therefore,∫ x

x0

dx
x(1 − x)

=
∫ x

x0

dx
x

+
∫ x

x0

dx
(1 − x)

= ln
x
x0

− ln
1 − x
1 − x0

= ln
x(1 − x0)

x0(1 − x)
= τ.

Solving for x, we first exponentiate both sides and then isolate x:

x(1 − x0)

x0(1 − x)
= eτ ,

x(1 − x0) = x0eτ − xx0eτ ,
x(1 − x0 + x0eτ) = x0eτ ,

x =
x0

x0 + (1 − x0)e−τ
. (2.29)

We observe that for x0 > 0, we have limτ→∞ x(τ) = 1, corresponding to

lim
t→∞

N(t) = K.

The population, therefore, grows in size until it reaches the carrying capacity of its
environment.
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Chapter 3

Second-order linear differential
equations with constant
coefficients

Reference: Boyce and DiPrima, Chapter 3

The general second-order linear differential equation with independent variable t
and dependent variable x = x(t) is given by

ẍ + p(t)ẋ + q(t)x = g(t), (3.1)

where we have used the standard physics notation ẋ = dx/dt and ẍ = d2x/dt2.
A unique solution of (3.1) requires initial values x(t0) = x0 and ẋ(t0) = u0. The
equation with constant coefficients—on which we will devote considerable effort—
assumes that p(t) and q(t) are constants, independent of time. The second-order
linear ode is said to be homogeneous if g(t) = 0.

3.1 The Euler method

View tutorial on YouTube

In general, (3.1) cannot be solved analytically, and we begin by deriving an algo-
rithm for numerical solution. Consider the general second-order ode given by

ẍ = f (t, x, ẋ).

We can write this second-order ode as a pair of first-order odes by defining u = ẋ,
and writing the first-order system as

ẋ = u, (3.2)
u̇ = f (t, x, u). (3.3)

The first ode, (3.2), gives the slope of the tangent line to the curve x = x(t); the
second ode, (3.3), gives the slope of the tangent line to the curve u = u(t). Beginning
at the initial values (x, u) = (x0, u0) at the time t = t0, we move along the tangent
lines to determine x1 = x(t0 + ∆t) and u1 = u(t0 + ∆t):

x1 = x0 + ∆tu0,
u1 = u0 + ∆t f (t0, x0, u0).

The values x1 and u1 at the time t1 = t0 + ∆t are then used as new initial values
to march the solution forward to time t2 = t1 + ∆t. As long as f (t, x, u) is a well-
behaved function, the numerical solution converges to the unique solution of the
ode as ∆t → 0.
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3.2 The principle of superposition

View tutorial on YouTube

Consider the second-order linear homogeneous ode:

ẍ + p(t)ẋ + q(t)x = 0; (3.4)

and suppose that x = X1(t) and x = X2(t) are solutions to (3.4). We consider a
linear combination of X1 and X2 by letting

X(t) = c1X1(t) + c2X2(t), (3.5)

with c1 and c2 constants. The principle of superposition states that x = X(t) is also a
solution of (3.4). To prove this, we compute

Ẍ + pẊ + qX = c1Ẍ1 + c2Ẍ2 + p
(
c1Ẋ1 + c2Ẋ2

)
+ q (c1X1 + c2X2)

= c1
(
Ẍ1 + pẊ1 + qX1

)
+ c2

(
Ẍ2 + pẊ2 + qX2

)
= c1 × 0 + c2 × 0
= 0,

since X1 and X2 were assumed to be solutions of (3.4). We have therefore shown
that any linear combination of solutions to the second-order linear homogeneous
ode is also a solution.

3.3 The Wronskian

View tutorial on YouTube

Suppose that having determined that two solutions of (3.4) are x = X1(t) and
x = X2(t), we attempt to write the general solution to (3.4) as (3.5). We must then
ask whether this general solution will be able to satisfy the two initial conditions
given by

x(t0) = x0, ẋ(t0) = u0. (3.6)

Applying these initial conditions to (3.5), we obtain

c1X1(t0) + c2X2(t0) = x0,

c1Ẋ1(t0) + c2Ẋ2(t0) = u0, (3.7)

which is observed to be a system of two linear equations for the two unknowns c1
and c2. Solution of (3.7) by standard methods results in

c1 =
x0Ẋ2(t0)− u0X2(t0)

W
, c2 =

u0X1(t0)− x0Ẋ1(t0)

W
,

where W is called the Wronskian and is given by

W = X1(t0)Ẋ2(t0)− Ẋ1(t0)X2(t0). (3.8)

Evidently, the Wronskian must not be equal to zero (W ̸= 0) for a solution to exist.
For examples, the two solutions

X1(t) = A sin ωt, X2(t) = B sin ωt,
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have a zero Wronskian at t = t0, as can be shown by computing

W = (A sin ωt0) (Bω cos ωt0)− (Aω cos ωt0) (B sin ωt0)

= 0;

while the two solutions

X1(t) = sin ωt, X2(t) = cos ωt,

with ω ̸= 0, have a nonzero Wronskian at t = t0,

W = (sin ωt0) (−ω sin ωt0)− (ω cos ωt0) (cos ωt0)

= −ω.

When the Wronskian is not equal to zero, we say that the two solutions X1(t) and
X2(t) are linearly independent. The concept of linear independence is borrowed
from linear algebra, and indeed, the set of all functions that satisfy (3.4) can be
shown to form a two-dimensional vector space.

3.4 Second-order linear homogeneous ode with con-
stant coefficients

View tutorial on YouTube

We now study solutions of the homogeneous, constant coefficient ode, written as

aẍ + bẋ + cx = 0, (3.9)

with a, b, and c constants. Such an equation arises for the charge on a capacitor
in an unpowered RLC electrical circuit, or for the position of a freely-oscillating
frictional mass on a spring, or for a damped pendulum. Our solution method finds
two linearly independent solutions to (3.9), multiplies each of these solutions by a
constant, and adds them. The two free constants can then be used to satisfy two
given initial conditions.

Because of the differential properties of the exponential function, a natural
ansatz, or educated guess, for the form of the solution to (3.9) is x = ert, where
r is a constant to be determined. Successive differentiation results in ẋ = rert and
ẍ = r2ert, and substitution into (3.9) yields

ar2ert + brert + cert = 0. (3.10)

Our choice of exponential function is now rewarded by the explicit cancelation in
(3.10) of ert. The result is a quadratic equation for the unknown constant r:

ar2 + br + c = 0. (3.11)

Our ansatz has thus converted a differential equation into an algebraic equation.
Equation (3.11) is called the characteristic equation of (3.9). Using the quadratic for-
mula, the two solutions of the characteristic equation (3.11) are given by

r± =
1
2a

(
−b ±

√
b2 − 4ac

)
.

There are three cases to consider: (1) if b2 − 4ac > 0, then the two roots are distinct
and real; (2) if b2 − 4ac < 0, then the two roots are distinct and complex conjugates
of each other; (3) if b2 − 4ac = 0, then the two roots are degenerate and there is only
one real root. We will consider these three cases in turn.
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3.4.1 Real, distinct roots

When r+ ̸= r− are real roots, then the general solution to (3.9) can be written as a
linear superposition of the two solutions er+t and er−t; that is,

x(t) = c1er+t + c2er−t.

The unknown constants c1 and c2 can then be determined by the given initial con-
ditions x(t0) = x0 and ẋ(t0) = u0. We now present two examples.

Example 1: Solve ẍ + 5ẋ + 6x = 0 with x(0) = 2, ẋ(0) = 3, and find the maximum
value attained by x.

View tutorial on YouTube

We take as our ansatz x = ert and obtain the characteristic equation

r2 + 5r + 6 = 0,

which factors to
(r + 3)(r + 2) = 0.

The general solution to the ode is thus

x(t) = c1e−2t + c2e−3t.

The solution for ẋ obtained by differentiation is

ẋ(t) = −2c1e−2t − 3c2e−3t.

Use of the initial conditions then results in two equations for the two unknown
constant c1 and c2:

c1 + c2 = 2,
−2c1 − 3c2 = 3.

Adding three times the first equation to the second equation yields c1 = 9; and the
first equation then yields c2 = 2 − c1 = −7. Therefore, the unique solution that
satisfies both the ode and the initial conditions is

x(t) = 9e−2t − 7e−3t

= 9e−2t
(

1 − 7
9

e−t
)

.

Note that although both exponential terms decay in time, their sum increases ini-
tially since ẋ(0) > 0. The maximum value of x occurs at the time tm when ẋ = 0,
or

tm = ln (7/6) .

The maximum xm = x(tm) is then determined to be

xm = 108/49.
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Example 2: Solve ẍ − x = 0 with x(0) = x0, ẋ(0) = u0.

Again our ansatz is x = ert, and we obtain the characteristic equation

r2 − 1 = 0,

with solution r± = ±1. Therefore, the general solution for x is

x(t) = c1et + c2e−t,

and the derivative satisfies
ẋ(t) = c1et − c2e−t.

Initial conditions are satisfied when

c1 + c2 = x0,
c1 − c2 = u0.

Adding and subtracting these equations, we determine

c1 =
1
2
(x0 + u0) , c2 =

1
2
(x0 − u0) ,

so that after rearranging terms

x(t) = x0

(
et + e−t

2

)
+ u0

(
et − e−t

2

)
.

The terms in parentheses are the usual definitions of the hyperbolic cosine and sine
functions; that is,

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

Our solution can therefore be rewritten as

x(t) = x0 cosh t + u0 sinh t.

Note that the relationships between the trigonometric functions and the complex
exponentials were given by

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
,

so that
cosh t = cos it, sinh t = −i sin it.

Also note that the hyperbolic trigonometric functions satisfy the differential equa-
tions

d
dt

sinh t = cosh t,
d
dt

cosh t = sinh t,

which though similar to the differential equations satisfied by the more commonly
used trigonometric functions, is absent a minus sign.
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3.4.2 Complex conjugate, distinct roots
View tutorial on YouTube

We now consider a characteristic equation (3.11) with b2 − 4ac < 0, so the roots
occur as complex conjugate pairs. With

λ = − b
2a

, µ =
1
2a

√
4ac − b2,

the two roots of the characteristic equation are λ + iµ and λ − iµ. We have thus
found the following two complex exponential solutions to the differential equation:

Z1(t) = eλteiµt, Z2(t) = eλte−iµt.

Applying the principle of superposition, any linear combination of Z1 and Z2 is
also a solution to the second-order ode.

Recall that if z = x + iy, then Re z = (z + z̄)/2 and Im z = (z − z̄)/2i. We can
therefore form two different linear combinations of Z1(t) and Z2(t) that are real,
namely X1(t) = Re Z1(t) and X2(t) = Im Z1(t). We have

X1(t) = eλt cos µt, X2(t) = eλt sin µt.

Having found these two real solutions, X1(t) and X2(t), we can then apply the
principle of superposition a second time to determine the general solution for x(t):

x(t) = eλt (A cos µt + B sin µt) . (3.12)

It is best to memorize this result. The real part of the roots of the characteristic equa-
tion goes into the exponential function; the imaginary part goes into the argument
of cosine and sine.

Example 1: Solve ẍ + x = 0 with x(0) = x0 and ẋ(0) = u0.

View tutorial on YouTube

The characteristic equation is
r2 + 1 = 0,

with roots
r± = ±i.

The general solution of the ode is therefore

x(t) = A cos t + B sin t.

The derivative is
ẋ(t) = −A sin t + B cos t.

Applying the initial conditions:

x(0) = A = x0, ẋ(0) = B = u0;

so that the final solution is

x(t) = x0 cos t + u0 sin t.

Recall that we wrote the analogous solution to the ode ẍ − x = 0 as x(t) =
x0 cosh t + u0 sinh t.

36 CHAPTER 3. SECOND-ORDER ODES, CONSTANT COEFFICIENTS

http://www.youtube.com/watch?v=spN4FbUUHUk
http://www.youtube.com/watch?v=i9FJ-YlzVQM


3.4. HOMOGENEOUS ODES

Example 2: Solve ẍ + ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is
r2 + r + 1 = 0,

with roots

r± = −1
2
± i

√
3

2
.

The general solution of the ode is therefore

x(t) = e−
1
2 t

(
A cos

√
3

2
t + B sin

√
3

2
t

)
.

The derivative is

ẋ(t) = −1
2

e−
1
2 t

(
A cos

√
3

2
t + B sin

√
3

2
t

)

+

√
3

2
e−

1
2 t

(
−A sin

√
3

2
t + B cos

√
3

2
t

)
.

Applying the initial conditions x(0) = 1 and ẋ(0) = 0:

A = 1,

−1
2

A +

√
3

2
B = 0;

or

A = 1, B =

√
3

3
.

Therefore,

x(t) = e−
1
2 t

(
cos

√
3

2
t +

√
3

3
sin

√
3

2
t

)
.

3.4.3 Repeated roots
View tutorial on YouTube

Finally, we consider the characteristic equation,

ar2 + br + c = 0,

with b2 − 4ac = 0. The degenerate root is then given by

r = − b
2a

,

yielding only a single solution to the ode:

x1(t) = exp
(
− bt

2a

)
. (3.13)

To satisfy two initial conditions, a second independent solution must be found with
nonzero Wronskian, and apparently this second solution is not of the form of our
ansatz x = exp (rt).
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One method to determine this missing second solution is to try the ansatz

x(t) = y(t)x1(t), (3.14)

where y(t) is an unknown function that satisfies the differential equation obtained
by substituting (3.14) into (3.9). This standard technique is called the reduction of
order method and enables one to find a second solution of a homogeneous linear
differential equation if one solution is known. If the original differential equation is
of order n, the differential equation for y = y(t) reduces to an order one lower, that
is, n − 1.

Here, however, we will determine this missing second solution through a lim-
iting process. We start with the solution obtained for complex roots of the charac-
teristic equation, and then arrive at the solution obtained for degenerate roots by
taking the limit µ → 0.

Now, the general solution for complex roots was given by (3.12), and to properly
limit this solution as µ → 0 requires first satisfying the specific initial conditions
x(0) = x0 and ẋ(0) = u0. Solving for A and B, the general solution given by (3.12)
becomes the specific solution

x(t; µ) = eλt
(

x0 cos µt +
u0 − λx0

µ
sin µt

)
.

Here, we have written x = x(t; µ) to show explicitly that x depends on µ.
Taking the limit as µ → 0, and using limµ→0 µ−1 sin µt = t, we have

lim
µ→0

x(t; µ) = eλt(x0 + (u0 − λx0)t
)
.

The second solution is observed to be a constant, u0 − λx0, times t times the first
solution, eλt. Our general solution to the ode (3.9) when b2 − 4ac = 0 can therefore
be written in the form

x(t) = (c1 + c2t)ert,

where r is the repeated root of the characteristic equation. The main result to be
remembered is that for the case of repeated roots, the second solution is t times the
first solution.

Example: Solve ẍ + 2ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is

r2 + 2r + 1 = (r + 1)2

= 0,

which has a repeated root given by r = −1. Therefore, the general solution to the
ode is

x(t) = c1e−t + c2te−t,

with derivative
ẋ(t) = −c1e−t + c2e−t − c2te−t.

Applying the initial conditions, we have

c1 = 1,
−c1 + c2 = 0,

so that c1 = c2 = 1. Therefore, the solution is

x(t) = (1 + t)e−t.
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3.5 Second-order linear inhomogeneous ode

We now consider the general second-order linear inhomogeneous ode (3.1):

ẍ + p(t)ẋ + q(t)x = g(t), (3.15)

with initial conditions x(t0) = x0 and ẋ(t0) = u0. There is a three-step solution
method when the inhomogeneous term g(t) ̸= 0. (i) Find the general solution of
the homogeneous equation

ẍ + p(t)ẋ + q(t)x = 0. (3.16)

Let us denote the homogeneous solution by

xh(t) = c1X1(t) + c2X2(t),

where X1 and X2 are linearly independent solutions of (3.16), and c1 and c2 are as
yet undetermined constants. (ii) Find any particular solution xp of the inhomoge-
neous equation (3.15). A particular solution is readily found when p(t) and q(t) are
constants, and when g(t) is a combination of polynomials, exponentials, sines and
cosines. (iii) Write the general solution of (3.15) as the sum of the homogeneous
and particular solutions,

x(t) = xh(t) + xp(t), (3.17)

and apply the initial conditions to determine the constants c1 and c2. Note that
because of the linearity of (3.15),

ẍ + pẋ + qx =
d2

dt2 (xh + xp) + p
d
dt
(xh + xp) + q(xh + xp)

= (ẍh + pẋh + qxh) + (ẍp + pẋp + qxp)

= 0 + g
= g,

so that (3.17) solves (3.15), and the two free constants in xh can be used to satisfy
the initial conditions.

We will consider here only the constant coefficient case. We now illustrate the
solution method by an example.

Example: Solve ẍ − 3ẋ − 4x = 3e2t with x(0) = 1 and ẋ(0) = 0.

View tutorial on YouTube

First, we solve the homogeneous equation. The characteristic equation is

r2 − 3r − 4 = (r − 4)(r + 1)
= 0,

so that
xh(t) = c1e4t + c2e−t.

Second, we find a particular solution of the inhomogeneous equation. The form of
the particular solution is chosen such that the exponential will cancel out of both
sides of the ode. The ansatz we choose is

x(t) = Ae2t, (3.18)
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where A is a yet undetermined coefficient. Upon substituting x into the ode, differ-
entiating using the chain rule, and canceling the exponential, we obtain

4A − 6A − 4A = 3,

from which we determine A = −1/2. Obtaining a solution for A independent of t
justifies the ansatz (3.18). Third, we write the general solution to the ode as the sum
of the homogeneous and particular solutions, and determine c1 and c2 that satisfy
the initial conditions. We have

x(t) = c1e4t + c2e−t − 1
2

e2t;

and taking the derivative,

ẋ(t) = 4c1e4t − c2e−t − e2t.

Applying the initial conditions,

c1 + c2 −
1
2
= 1,

4c1 − c2 − 1 = 0;

or

c1 + c2 =
3
2

,

4c1 − c2 = 1.

This system of linear equations can be solved for c1 by adding the equations to
obtain c1 = 1/2, after which c2 = 1 can be determined from the first equation.
Therefore, the solution for x(t) that satisfies both the ode and the initial conditions
is given by

x(t) =
1
2

e4t − 1
2

e2t + e−t

=
1
2

e4t
(

1 − e−2t + 2e−5t
)

,

where we have grouped the terms in the solution to better display the asymptotic
behavior for large t.

We now find particular solutions for some relatively simple inhomogeneous
terms using this method of undetermined coefficients.

Example: Find a particular solution of ẍ − 3ẋ − 4x = 2 sin t.

View tutorial on YouTube

We show two methods for finding a particular solution. The first more direct
method tries the ansatz

x(t) = A cos t + B sin t,

where the argument of cosine and sine must agree with the argument of sine in the
inhomogeneous term. The cosine term is required because the derivative of sine is
cosine. Upon substitution into the differential equation, we obtain

(−A cos t − B sin t)− 3 (−A sin t + B cos t)− 4 (A cos t + B sin t) = 2 sin t,
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or regrouping terms,

− (5A + 3B) cos t + (3A − 5B) sin t = 2 sin t.

This equation is valid for all t, and in particular for t = 0 and π/2, for which the
sine and cosine functions vanish. For these two values of t, we find

5A + 3B = 0, 3A − 5B = 2;

and solving for A and B, we obtain

A =
3
17

, B = − 5
17

.

The particular solution is therefore given by

xp =
1
17

(3 cos t − 5 sin t) .

The second solution method makes use of the relation eit = cos t + i sin t to
convert the sine inhomogeneous term to an exponential function. We introduce the
complex function z(t) by letting

z(t) = x(t) + iy(t),

and rewrite the differential equation in complex form. We can rewrite the equa-
tion in one of two ways. On the one hand, if we use sin t = Re{−ieit}, then the
differential equation is written as

z̈ − 3ż − 4z = −2ieit; (3.19)

and by equating the real and imaginary parts, this equation becomes the two real
differential equations

ẍ − 3ẋ − 4x = 2 sin t, ÿ − 3ẏ − 4y = −2 cos t.

The solution we are looking for, then, is xp(t) = Re{zp(t)}.
On the other hand, if we write sin t = Im{eit}, then the complex differential

equation becomes
z̈ − 3ż − 4z = 2eit, (3.20)

which becomes the two real differential equations

ẍ − 3ẋ − 4x = 2 cos t, ÿ − 3ẏ − 4y = 2 sin t.

Here, the solution we are looking for is xp(t) = Im{zp(t)}.
We will proceed here by solving (3.20). As we now have an exponential function

as the inhomogeneous term, we can make the ansatz

z(t) = Ceit,

where we now expect C to be a complex constant. Upon substitution into the ode
(3.20) and using i2 = −1:

−C − 3iC − 4C = 2;
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or solving for C:

C =
−2

5 + 3i

=
−2(5 − 3i)

(5 + 3i)(5 − 3i)

=
−10 + 6i

34

=
−5 + 3i

17
.

Therefore,

xp = Im{zp}

= Im
{

1
17

(−5 + 3i)(cos t + i sin t)
}

=
1
17

(3 cos t − 5 sin t).

Example: Find a particular solution of ẍ + ẋ − 2x = t2.

View tutorial on YouTube

The correct ansatz here is the polynomial

x(t) = At2 + Bt + C.

Upon substitution into the ode, we have

2A + 2At + B − 2At2 − 2Bt − 2C = t2,

or
−2At2 + 2(A − B)t + (2A + B − 2C)t0 = t2.

Equating powers of t,

−2A = 1, 2(A − B) = 0, 2A + B − 2C = 0;

and solving,

A = −1
2

, B = −1
2

, C = −3
4

.

The particular solution is therefore

xp(t) = −1
2

t2 − 1
2

t − 3
4

.

3.6 First-order linear inhomogeneous odes revisited

The first-order linear ode can be solved by use of an integrating factor. Here I show
that odes having constant coefficients can be solved by our newly learned solution
method.
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Example: Solve ẋ + 2x = e−t with x(0) = 3/4.

Rather than using an integrating factor, we follow the three-step approach: (i) find
the general homogeneous solution; (ii) find a particular solution; (iii) add them
and satisfy initial conditions. Accordingly, we try the ansatz xh(t) = ert for the
homogeneous ode ẋ + 2x = 0 and find

r + 2 = 0, or r = −2.

To find a particular solution, we try the ansatz xp(t) = Ae−t, and upon substitution

−A + 2A = 1, or A = 1.

Therefore, the general solution to the ode is

x(t) = ce−2t + e−t.

The single initial condition determines the unknown constant c:

x(0) =
3
4
= c + 1,

so that c = −1/4. Hence,

x(t) = e−t − 1
4

e−2t

= e−t
(

1 − 1
4

e−t
)

.

3.7 Resonance

View tutorial on YouTube

Resonance occurs when the frequency of the inhomogeneous term matches the
frequency of the homogeneous solution. To illustrate resonance in its simplest em-
bodiment, we consider the second-order linear inhomogeneous ode

ẍ + ω2
0x = f cos ωt, x(0) = x0, ẋ(0) = u0. (3.21)

Our main goal is to determine what happens to the solution in the limit ω → ω0.
The homogeneous equation has characteristic equation

r2 + ω2
0 = 0,

so that r± = ±iω0. Therefore,

xh(t) = c1 cos ω0t + c2 sin ω0t. (3.22)

To find a particular solution, we note the absence of a first-derivative term, and
simply try

x(t) = A cos ωt.

Upon substitution into the ode, we obtain

−ω2 A + ω2
0 A = f ,
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or
A =

f
ω2

0 − ω2
.

Therefore,

xp(t) =
f

ω2
0 − ω2

cos ωt.

Our general solution is thus

x(t) = c1 cos ω0t + c2 sin ω0t +
f

ω2
0 − ω2

cos ωt,

with derivative

ẋ(t) = ω0(c2 cos ω0t − c1 sin ω0t)− f ω

ω2
0 − ω2

sin ωt.

Initial conditions are satisfied when

x0 = c1 +
f

ω2
0 − ω2

,

u0 = c2ω0,

so that
c1 = x0 −

f
ω2

0 − ω2
, c2 =

u0

ω0
.

Therefore, the solution to the ode that satisfies the initial conditions is

x(t) =

(
x0 −

f
ω2

0 − ω2

)
cos ω0t +

u0

ω0
sin ω0t +

f
ω2

0 − ω2
cos ωt

= x0 cos ω0t +
u0

ω0
sin ω0t +

f (cos ωt − cos ω0t)
ω2

0 − ω2
,

where we have grouped together terms proportional to the forcing amplitude f .
Resonance occurs in the limit ω → ω0; that is, the frequency of the inhomoge-

neous term (the external force) matches the frequency of the homogeneous solution
(the free oscillation). By L’Hospital’s rule, the limit of the term proportional to f is
found by differentiating with respect to ω:

lim
ω→ω0

f (cos ωt − cos ω0t)
ω2

0 − ω2
= lim

ω→ω0

− f t sin ωt
−2ω

=
f t sin ω0t

2ω0
.

(3.23)

At resonance, the term proportional to the amplitude f of the inhomogeneous term
increases linearly with t, resulting in larger-and-larger amplitudes of oscillation for
x(t). In general, if the inhomogeneous term in the differential equation is a solution
of the corresponding homogeneous differential equation, then the correct ansatz for
the particular solution is a constant times the inhomogeneous term times t.

To illustrate this same example further, we return to the original ode, now as-
sumed to be exactly at resonance,

ẍ + ω2
0x = f cos ω0t,

44 CHAPTER 3. SECOND-ORDER ODES, CONSTANT COEFFICIENTS



3.7. RESONANCE

and find a particular solution directly. The particular solution is the real part of the
particular solution of

z̈ + ω2
0z = f eiω0t.

If we try zp = Ceiω0t, we obtain 0 = f , showing that the particular solution is not
of this form. Because the inhomogeneous term is a solution of the homogeneous
equation, we should take as our ansatz

zp = Ateiω0t.

We have
żp = Aeiω0t (1 + iω0t) , z̈p = Aeiω0t

(
2iω0 − ω2

0t
)

;

and upon substitution into the ode

z̈p + ω2
0zp = Aeiω0t

(
2iω0 − ω2

0t
)
+ ω2

0 Ateiω0t

= 2iω0 Aeiω0t

= f eiω0t.

Therefore,

A =
f

2iω0
,

and

xp = Re{ f t
2iω0

eiω0t}

=
f t sin ω0t

2ω0
,

the same result as (3.23).

Example: Find a particular solution of ẍ − 3ẋ − 4x = 5e−t .

View tutorial on YouTube

If we naively try the ansatz
x = Ae−t,

and substitute this into the inhomogeneous differential equation, we obtain

A + 3A − 4A = 5,

or 0 = 5, which is clearly nonsense. Our ansatz therefore fails to find a solution. The
cause of this failure is that the corresponding homogeneous equation has solution

xh = c1e4t + c2e−t,

so that the inhomogeneous term 5e−t is one of the solutions of the homogeneous
equation. To find a particular solution, we should therefore take as our ansatz

x = Ate−t,

with first- and second-derivatives given by

ẋ = Ae−t(1 − t), ẍ = Ae−t(−2 + t).
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Substitution into the differential equation yields

Ae−t(−2 + t)− 3Ae−t(1 − t)− 4Ate−t = 5e−t.

The terms containing t cancel out of this equation, resulting in −5A = 5, or A = −1.
Therefore, the particular solution is

xp = −te−t.

3.8 Damped resonance

View tutorial on YouTube

A more realistic study of resonance assumes an additional damping term. The
forced, damped harmonic oscillator equation may be written as

mẍ + γẋ + kx = F cos ωt, (3.24)

where m > 0 is the oscillator’s mass, γ > 0 is the damping coefficient, k > 0 is the
spring constant, and F is the amplitude of the external force. The homogeneous
equation has characteristic equation

mr2 + γr + k = 0,

so that
r± = − γ

2m
± 1

2m

√
γ2 − 4mk.

When γ2 − 4mk < 0, the motion of the unforced oscillator is said to be under-
damped; when γ2 − 4mk > 0, overdamped; and when γ2 − 4mk = 0, critically
damped. For all three types of damping, the roots of the characteristic equation
satisfy Re(r±) < 0. Therefore, both linearly independent homogeneous solutions
decay exponentially to zero, and the long-time asymptotic solution of (3.24) reduces
to the non-decaying particular solution. Since the initial conditions are satisfied by
the free constants multiplying the decaying homogeneous solutions, the long-time
asymptotic solution is independent of the initial conditions.

If we are only interested in the long-time asymptotic solution of (3.24), we can
proceed directly to the determination of a particular solution. As before, we con-
sider the complex ode

mz̈ + γż + kz = Feiωt,

with xp = Re(zp). With the ansatz zp = Aeiωt, we have

−mω2 A + iγωA + kA = F,

or
A =

F
(k − mω2) + iγω

.

To simplify, we define ω0 =
√

k/m, which corresponds to the natural frequency of
the undamped oscillator, and define Γ = γω/m and f = F/m. Therefore,

A =
f

(ω2
0 − ω2) + iΓ

=

(
f

(ω2
0 − ω2)2 + Γ2

)(
(ω2

0 − ω2)− iΓ
)

.
(3.25)
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To determine xp, we utilize the polar form of a complex number. The complex
number z = x + iy can be written in polar form as z = reiφ, where x = r cos φ,
y = r sin φ, and r =

√
x2 + y2, tan φ = y/x. We therefore write

(ω2
0 − ω2)− iΓ = reiφ,

with
r =

√
(ω2

0 − ω2)2 + Γ2, tan φ =
Γ

(ω2 − ω2
0)

.

Using the polar form, A in (3.25) becomes

A =

 f√
(ω2

0 − ω2)2 + Γ2

 eiφ,

and xp = Re(Aeiωt) becomes

xp =

 f√
(ω2

0 − ω2)2 + Γ2

Re
(

ei(ωt+φ)
)

=

 f√
(ω2

0 − ω2)2 + Γ2

 cos (ωt + φ).

(3.26)

The particular solution given by (3.26), with ω2
0 = k/m, Γ = γω/m, f = F/m,

and tan φ = γω/m(ω2 − ω2
0), is the long-time asymptotic solution of the forced,

damped, harmonic oscillator equation (3.24).
We conclude with a couple of observations about (3.26). First, if the forcing

frequency ω is equal to the natural frequency ω0 of the undamped oscillator, then
A = −iF/γω0, and xp = (F/γω0) sin ω0t. The oscillator position is observed to
be π/2 out of phase with the external force, or in other words, the velocity of the
oscillator, not the position, is in phase with the force. Second, the value of the
forcing frequency ωm that maximizes the amplitude of oscillation is the value of ω
that minimizes the denominator of (3.26). To determine ωm we thus minimize the
function g(ω2) with respect to ω2, where

g(ω2) = (ω2
0 − ω2)2 +

γ2ω2

m2 .

Taking the derivative of g with respect to ω2 and setting this to zero to determine
ωm yields

2(ω2
m − ω2

0) +
γ2

m2 = 0,

or

ω2
m = ω2

0 −
γ2

2m2 .

We can interpret this result by saying that damping lowers the “resonance” fre-
quency of the undamped oscillator.
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Chapter 4

The Laplace transform
Reference: Boyce and DiPrima, Chapter 6

The Laplace transform is most useful for solving linear, constant-coefficient
ode’s when the inhomogeneous term or its derivative is discontinuous. Although
ode’s with discontinuous inhomogeneous terms can also be solved by adopting al-
ready learned methods, we will see that the Laplace transform technique provides
a simpler, more elegant solution.

4.1 Definitions and properties of the forward and in-
verse Laplace transforms

View tutorial on YouTube

The main idea is to Laplace transform the constant-coefficient differential equation
for x(t) into a simpler algebraic equation for the Laplace-transformed function X(s),
solve this algebraic equation, and then transform X(s) back into x(t). The correct
definition of the Laplace transform and the properties that this transform satisfies
makes this solution method possible.

An exponential ansatz is used in solving homogeneous constant-coefficient odes,
and the exponential function correspondingly plays a key role in defining the Laplace
transform. The Laplace transform of f (t), denoted by F(s) = ℒ{ f (t)}, is defined
by the integral transform

F(s) =
∫ ∞

0
e−st f (t)dt. (4.1)

The improper integral given by (4.1) diverges if f (t) grows faster than est for large
t. Accordingly, some restriction on the range of s may be required to guarantee
convergence of (4.1), and we will assume without further elaboration that these
restrictions are always satisfied.

The Laplace transform is a linear transformation. We have

ℒ{c1 f1(t) + c2 f2(t)} =
∫ ∞

0
e−st(c1 f1(t) + c2 f2(t)

)
dt

= c1

∫ ∞

0
e−st f1(t)dt + c2

∫ ∞

0
e−st f2(t)dt

= c1ℒ{ f1(t)}+ c2ℒ{ f2(t)}.

There is also a one-to-one correspondence between functions and their Laplace
transforms. A table of Laplace transforms can therefore be constructed and used to
find both Laplace and inverse Laplace transforms of commonly occurring functions.
Such a table is shown in Table 4.1 (and this table will be distributed with the exams).
In Table 4.1, n is a positive integer. Also, the cryptic entries for uc(t) and δ(t − c)
will be explained later in §4.3.
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f (t) = ℒ−1{F(s)} F(s) = ℒ{ f (t)}

1. eat f (t) F(s − a)

2. 1
1
s

3. eat 1
s − a

4. tn n!
sn+1

5. tneat n!
(s − a)n+1

6. sin bt
b

s2 + b2

7. cos bt
s

s2 + b2

8. eat sin bt
b

(s − a)2 + b2

9. eat cos bt
s − a

(s − a)2 + b2

10. t sin bt
2bs

(s2 + b2)2

11. t cos bt
s2 − b2

(s2 + b2)2

12. uc(t)
e−cs

s

13. uc(t) f (t − c) e−csF(s)

14. δ(t − c) e−cs

15. ẋ(t) sX(s)− x(0)

16. ẍ(t) s2X(s)− sx(0)− ẋ(0)

Table 4.1: Table of Laplace Transforms
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The rows of Table 4.1 can be determined by a combination of direct integration
and some tricks. We first compute directly the Laplace transform of eat f (t) (line 1):

ℒ{eat f (t)} =
∫ ∞

0
e−steat f (t)dt

=
∫ ∞

0
e−(s−a)t f (t)dt

= F(s − a).

We also compute directly the Laplace transform of 1 (line 2):

ℒ{1} =
∫ ∞

0
e−stdt

= −1
s

e−st
]∞

0

=
1
s

.

Now, the Laplace transform of eat (line 3) may be found using these two results:

ℒ{eat} = ℒ{eat · 1}

=
1

s − a
.

(4.2)

The transform of tn (line 4) can be found by successive integration by parts. A more
interesting method uses Taylor series expansions for eat and 1/(s − a). We have

ℒ{eat} = ℒ
{

∞

∑
n=0

(at)n

n!

}

=
∞

∑
n=0

an

n!
ℒ{tn}.

(4.3)

Also, with s > a,

1
s − a

=
1

s(1 − a
s )

=
1
s

∞

∑
n=0

( a
s

)n

=
∞

∑
n=0

an

sn+1 .

(4.4)

Using (4.2), and equating the coefficients of powers of a in (4.3) and (4.4), results in
line 4:

ℒ{tn} =
n!

sn+1 .

The Laplace transform of tneat (line 5) can be found from line 1 and line 4:

ℒ{tneat} =
n!

(s − a)n+1 .
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The Laplace transform of sin bt (line 6) may be found from the Laplace transform
of eat (line 3) using a = ib:

ℒ{sin bt} = Im
{
ℒ{eibt}

}
= Im

{
1

s − ib

}
= Im

{
s + ib

s2 + b2

}
=

b
s2 + b2 .

Similarly, the Laplace transform of cos bt (line 7) is

ℒ{cos bt} = Re
{
ℒ{eibt}

}
=

s
s2 + b2 .

The transform of eat sin bt (line 8) can be found from the transform of sin bt (line 6)
and line 1:

ℒ{eat sin bt} =
b

(s − a)2 + b2 ;

and similarly for the transform of eat cos bt:

ℒ{eat cos bt} =
s − a

(s − a)2 + b2 .

The Laplace transform of t sin bt (line 10) can be found from the Laplace transform
of teat (line 5 with n = 1) using a = ib:

ℒ{t sin bt} = Im
{
ℒ{teibt}

}
= Im

{
1

(s − ib)2

}
= Im

{
(s + ib)2

(s2 + b2)2

}
=

2bs
(s2 + b2)2 .

Similarly, the Laplace transform of t cos bt (line 11) is

ℒ{t cos bt} = Re
{
ℒ{teibt}

}
= Re

{
(s + ib)2

(s2 + b2)2

}
=

s2 − b2

(s2 + b2)2 .

We now transform the inhomogeneous constant-coefficient, second-order, linear
inhomogeneous ode for x = x(t),

aẍ + bẋ + cx = g(t),
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making use of the linearity of the Laplace transform:

aℒ{ẍ}+ bℒ{ẋ}+ cℒ{x} = ℒ{g}.

To determine the Laplace transform of ẋ(t) (line 15) in terms of the Laplace trans-
form of x(t) and the initial conditions x(0) and ẋ(0), we define X(s) = ℒ{x(t)},
and integrate ∫ ∞

0
e−st ẋdt

by parts. We let

u = e−st dv = ẋdt

du = −se−stdt v = x.

Therefore, ∫ ∞

0
e−st ẋdt = xe−st]∞

0 + s
∫ ∞

0
e−stxdt

= sX(s)− x(0),

where assumed convergence of the Laplace transform requires

lim
t→∞

x(t)e−st = 0.

Similarly, the Laplace transform of ẍ(t) (line 16) is determined by integrating∫ ∞

0
e−st ẍdt

by parts and using the just derived result for the first derivative. We let

u = e−st dv = ẍdt

du = −se−stdt v = ẋ,

so that ∫ ∞

0
e−st ẍdt = ẋe−st]∞

0 + s
∫ ∞

0
e−st ẋdt

= −ẋ(0) + s
(
sX(s)− x(0)

)
= s2X(s)− sx(0)− ẋ(0),

where similarly we assume limt→∞ ẋ(t)e−st = 0.

4.2 Solution of initial value problems

We begin with a simple homogeneous ode and show that the Laplace transform
method yields an identical result to our previously learned method. We then apply
the Laplace transform method to solve an inhomogeneous equation.
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Example: Solve ẍ − ẋ − 2x = 0 with x(0) = 1 and ẋ(0) = 0 by two different
methods.

View tutorial on YouTube

The characteristic equation of the ode is determined from the ansatz x = ert and is

r2 − r − 2 = (r − 2)(r + 1) = 0.

The general solution of the ode is therefore

x(t) = c1e2t + c2e−t.

To satisfy the initial conditions, we must have 1 = c1 + c2 and 0 = 2c1 − c2, requiring
c1 = 1

3 and c2 = 2
3 . Therefore, the solution to the ode that satisfies the initial

conditions is given by

x(t) =
1
3

e2t +
2
3

e−t. (4.5)

We now solve this example using the Laplace transform. Taking the Laplace
transform of both sides of the ode, using the linearity of the transform, and applying
our result for the transform of the first and second derivatives, we find

[s2X(s)− sx(0)− ẋ(0)]− [sX(s)− x(0)]− [2X(s)] = 0,

or

X(s) =
(s − 1)x(0) + ẋ(0)

s2 − s − 2
.

Note that the denominator of the right-hand-side is just the quadratic from the
characteristic equation of the homogeneous ode, and that this factor arises from the
derivatives of the exponential term in the Laplace transform integral.

Applying the initial conditions, we find

X(s) =
s − 1

(s − 2)(s + 1)
. (4.6)

We have thus determined the Laplace transformed solution X(s) = ℒ{x(t)}. We
now need to compute the inverse Laplace transform x(t) = ℒ−1{X(s)}.

However, direct inversion of (4.6) by searching Table 4.1 is not possible, but a
partial fraction expansion may be useful. In particular, we write

s − 1
(s − 2)(s + 1)

=
a

s − 2
+

b
s + 1

. (4.7)

The cover-up method can be used to solve for a and b. We multiply both sides of
(4.7) by s − 2 and put s = 2 to isolate a:

a =
s − 1
s + 1

]
s=2

=
1
3

.

Similarly, we multiply both sides of (4.7) by s + 1 and put s = −1 to isolate b:

b =
s − 1
s − 2

]
s=−1

=
2
3

.
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Therefore,

X(s) =
1
3
· 1

s − 2
+

2
3
· 1

s + 1
,

and line 3 of Table 4.1 gives us the inverse transforms of each term separately to
yield

x(t) =
1
3

e2t +
2
3

e−t,

identical to (4.5).

Example: Solve ẍ + x = sin 2t with x(0) = 2 and ẋ(0) = 1 by Laplace transform
methods.

Taking the Laplace transform of both sides of the ode, we find

s2X(s)− sx(0)− ẋ(0) + X(s) = ℒ{sin 2t}

=
2

s2 + 4
,

where the Laplace transform of sin 2t made use of line 6 of Table 4.1. Substituting
for x(0) and ẋ(0) and solving for X(s), we obtain

X(s) =
2s + 1
s2 + 1

+
2

(s2 + 1)(s2 + 4)
.

To determine the inverse Laplace transform from Table 4.1, we perform a partial
fraction expansion of the second term:

2
(s2 + 1)(s2 + 4)

=
as + b
s2 + 1

+
cs + d
s2 + 4

. (4.8)

By inspection, we can observe that a = c = 0 and that d = −b. A quick calculation
shows that 3b = 2, or b = 2/3. Therefore,

X(s) =
2s + 1
s2 + 1

+
2/3

s2 + 1
− 2/3

(s2 + 4)

=
2s

s2 + 1
+

5/3
s2 + 1

− 2/3
(s2 + 4)

.

From lines 6 and 7 of Table 4.1, we obtain the solution by taking inverse Laplace
transforms of the three terms separately, where b = 1 in the first two terms, and
b = 2 in the third term:

x(t) = 2 cos t +
5
3

sin t − 1
3

sin 2t.

4.3 Heaviside and Dirac delta functions

The Laplace transform technique becomes truly useful when solving odes with
discontinuous or impulsive inhomogeneous terms, these terms commonly modeled
using Heaviside or Dirac delta functions. We will discuss these functions in turn,
as well as their Laplace transforms.
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4.3.1 Heaviside function

View tutorial on YouTube

The Heaviside or unit step function, denoted here by uc(t), is zero for t < c and is
one for t ≥ c; that is,

uc(t) =
{

0, t < c;
1, t ≥ c. (4.9)

The precise value of uc(t) at the single point t = c shouldn’t matter.
The Heaviside function can be viewed as the step-up function. The step-down

function—one for t < c and zero for t ≥ c—is defined as

1 − uc(t) =
{

1, t < c;
0, t ≥ c. (4.10)

The step-up, step-down function—zero for t < a, one for a ≤ t < b, and zero for
t ≥ b—is defined as

ua(t)− ub(t) =

 0, t < a;
1, a ≤ t < b;
0, t ≥ b.

(4.11)

The Laplace transform of the Heaviside function is determined by integration:

ℒ{uc(t)} =
∫ ∞

0
e−stuc(t)dt

=
∫ ∞

c
e−stdt

=
e−cs

s
,

and is given in line 12 of Table 4.1.
The Heaviside function can be used to represent a translation of a function f (t)

a distance c in the positive t direction. We have

uc(t) f (t − c) =
{

0, t < c;
f(t-c), t ≥ c.

The Laplace transform is

ℒ{uc(t) f (t − c)} =
∫ ∞

0
e−stuc(t) f (t − c)dt

=
∫ ∞

c
e−st f (t − c)dt

=
∫ ∞

0
e−s(t′+c) f (t′)dt′

= e−cs
∫ ∞

0
e−st′ f (t′)dt′

= e−csF(s),

where we have changed variables to t′ = t− c. The translation of f (t) a distance c in
the positive t direction corresponds to the multiplication of F(s) by the exponential
e−cs. This result is shown in line 13 of Table 4.1.
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0 1 2

t

0

1

x
x=f(t)

Figure 4.1: A linearly increasing function which turns into a constant function.

Piecewise-defined inhomogeneous terms can be modeled using Heaviside func-
tions. For example, consider the general case of a piecewise function defined on
two intervals:

f (t) =
{

f1(t), if t < t*;
f2(t), if t ≥ t*.

Using the Heaviside function ut* , the function f (t) can be written in a single line as

f (t) = f1(t) +
(

f2(t)− f1(t)
)
ut*(t).

This example can be generalized to piecewise functions defined on multiple inter-
vals.

As a concrete example, suppose the inhomogeneous term is represented by a
linearly increasing function, which then turns into a constant function, as sketched
in Fig. 4.1. Explicitly,

f (t) =
{

t, if t < 1;
1, if t ≥ 1.

We can rewrite f (t) using the Heaviside function u1(t):

f (t) = t − u1(t) (t − 1) ;

and we can take the Laplace transform of the function f (t) by writing

F(s) = ℒ{t} − ℒ{u1(t) (t − 1)}.

The Laplace transform of the first term is found from line 4 of the table, and the
Laplace transform of the second term is found from a combination of line 13 and
line 4. We have

F(s) =
1
s2 − e−s

s2 .
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c-ǫ c+ǫ

1/2ǫ

Figure 4.2: The Dirac delta function constructed using the step-up, step-down function.

4.3.2 Dirac delta function
View tutorial on YouTube

The Dirac delta function, denoted as δ(t), is defined by requiring that for any func-
tion f (t), ∫ ∞

−∞
f (t)δ(t)dt = f (0).

The usual view of the shifted Dirac delta function δ(t − c) is that it is zero every-
where except at t = c, where it is infinite, and the integral over the Dirac delta
function is one. The Dirac delta function is technically not a function, but is what
mathematicians call a distribution. Nevertheless, in most cases of practical interest,
it can be treated like a function, where physical results are obtained following a
final integration.

There are many ways to represent the Dirac delta function as a limit of a well-
defined function. For our purposes, the most useful representation makes use of
the step-up, step-down function of (4.11) (see Fig. 4.2):

δ(t − c) = lim
ε→0

1
2ε

(uc−ε(t)− uc+ε(t)).

Before taking the limit, the well-defined step-up, step-down function is zero except
over a small interval of width 2ε centered at t = c, over which it takes the large
value 1/2ε. The integral of this function is one, independent of the value of ε.

The Laplace transform of the Dirac delta function is easily found by integration
using the definition of the delta function:

ℒ{δ(t − c)} =
∫ ∞

0
e−stδ(t − c)dt

= e−cs.

This result is shown in line 14 of Table 4.1.
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4.4 Discontinuous or impulsive inhomogeneous terms

We now solve some more challenging ode’s with discontinuous or impulsive inho-
mogeneous terms.

Example: Solve 2ẍ + ẋ + 2x = u5(t)− u20(t), with x(0) = ẋ(0) = 0

The inhomogeneous term here is a step-up, step-down function that is unity over
the interval (5, 20) and zero elsewhere. Taking the Laplace transform of the ode
using Table 4.1,

2
(

s2X(s)− sx(0)− ẋ(0)
)
+ sX(s)− x(0) + 2X(s) =

e−5s

s
− e−20s

s
.

Using the initial values and solving for X(s), we find

X(s) =
e−5s − e−20s

s(2s2 + s + 2)
.

To determine the solution for x(t) we now need to find the inverse Laplace
transform. The exponential functions can be dealt with using line 13 of Table 4.1.
We write

X(s) = (e−5s − e−20s)H(s),

where
H(s) =

1
s(2s2 + s + 2)

.

Then using line 13, we have

x(t) = u5(t)h(t − 5)− u20(t)h(t − 20), (4.12)

where h(t) = ℒ−1{H(s)}.
To determine h(t) we need the partial fraction expansion of H(s). Since the

discriminant of 2s2 + s + 2 is negative, we have

1
s(2s2 + s + 2)

=
a
s
+

bs + c
2s2 + s + 2

,

yielding the equation
1 = a(2s2 + s + 2) + (bs + c)s;

or after equating powers of s,

2a + b = 0, a + c = 0, 2a = 1,

yielding a = 1
2 , b = −1, and c = − 1

2 . Therefore,

H(s) =
1/2

s
−

s + 1
2

2s2 + s + 2

=
1
2

(
1
s
−

s + 1
2

s2 + 1
2 s + 1

)
.

Inspecting Table 4.1, the first term can be transformed using line 2, and the second
term can be transformed using lines 8 and 9, provided we complete the square of
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the denominator and then massage the numerator. That is, first we complete the
square:

s2 +
1
2

s + 1 =

(
s +

1
4

)2
+

15
16

;

and next we write

s + 1
2

s2 + 1
2 s + 1

=

(
s + 1

4

)
+ 1√

15

√
15
16(

s + 1
4

)2
+ 15

16

.

Therefore, the function H(s) can be written as

H(s) =
1
2

1
s
−

(
s + 1

4

)
(s + 1

4 )
2 + 15

16
−
(

1√
15

) √
15
16

(s + 1
4 )

2 + 15
16

 .

The first term is transformed using line 2, the second term using line 9 and the third
term using line 8. We finally obtain

h(t) =
1
2

(
1 − e−t/4

(
cos (

√
15t/4) +

1√
15

sin (
√

15t/4)
))

, (4.13)

which when combined with (4.12) yields the rather complicated solution for x(t).
We briefly comment that it is also possible to solve this example without using

the Laplace transform. The key idea is that both x and ẋ are continuous functions
of t. Clearly from the form of the inhomogeneous term and the initial conditions,
x(t) = 0 for 0 ≤ t ≤ 5. We then solve the ode between 5 ≤ t ≤ 20 with the
inhomogeneous term equal to unity and initial conditions x(5) = ẋ(5) = 0. This
requires first finding the general homogeneous solution, next finding a particular
solution, and then adding the homogeneous and particular solutions and solving
for the two unknown constants. To simplify the algebra, note that the best ansatz
to use to find the homogeneous solution is x(t) = er(t−5), and not x(t) = ert.
Finally, we solve the homogeneous ode for t ≥ 20 using as boundary conditions
the previously determined values x(20) and ẋ(20), where we have made use of the
continuity of x and ẋ. Here, the best ansatz to use is x(t) = er(t−20). The student
may benefit by trying this as an exercise and attempting to obtain a final solution
that agrees with the form given by (4.12) and (4.13).

Example: Solve 2ẍ + ẋ + 2x = δ(t − 5) with x(0) = ẋ(0) = 0

Here the inhomogeneous term is an impulse at time t = 5. Taking the Laplace
transform of the ode using Table 4.1, and applying the initial conditions,

(2s2 + s + 2)X(s) = e−5s,

so that

X(s) =
1
2

e−5s

(
1

s2 + 1
2 s + 1

)

=
1
2

e−5s

(
1

(s + 1
4 )

2 + 15
16

)

=
1
2

√
16
15

e−5s


√

15
16

(s + 1
4 )

2 + 15
16

 .

60 CHAPTER 4. THE LAPLACE TRANSFORM



4.4. DISCONTINUOUS OR IMPULSIVE TERMS

The inverse Laplace transform may now be computed using lines 8 and 13 of Table
4.1:

x(t) =
2√
15

u5(t)e−(t−5)/4 sin
(√

15(t − 5)/4
)
. (4.14)

It is interesting to solve this example without using a Laplace transform. Clearly,
x(t) = 0 up to the time of impulse at t = 5. Furthermore, after the impulse the ode
is homogeneous and can be solved with standard methods. The only difficulty is
determining the initial conditions of the homogeneous ode at t = 5+.

When the inhomogeneous term is proportional to a delta-function, the solution
x(t) is continuous across the delta-function singularity, but the derivative of the
solution ẋ(t) is discontinuous. If we integrate the second-order ode across the
singularity at t = 5 and consider ε → 0, only the second derivative term of the
left-hand-side survives, and

2
∫ 5+ε

5−ε
ẍdt =

∫ 5+ε

5−ε
δ(t − 5)dt

= 1.

And as ε → 0, we have ẋ(5+) − ẋ(5−) = 1/2. Since ẋ(5−) = 0, the appropriate
initial conditions immediately after the impulse force are x(5+) = 0 and ẋ(5+) =
1/2. This result can be confirmed using (4.14).
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Chapter 5

Series solutions of second-order
linear homogeneous differential
equations

Reference: Boyce and DiPrima, Chapter 5

We consider the second-order linear homogeneous differential equation for y =
y(x):

P(x)y′′ + Q(x)y′ + R(x)y = 0, (5.1)

where P(x), Q(x) and R(x) are polynomials or convergent power series around
x = x0, with no common polynomial factors that could be divided out. The value
x = x0 is called an ordinary point of (5.1) if P(x0) ̸= 0, and is called a singular point
if P(x0) = 0. Singular points will later be further classified as regular singular points
and irregular singular points. Our goal is to find two independent solutions of (5.1).

5.1 Ordinary points

If x0 is an ordinary point of (5.1), then it is possible to determine two power series
(i.e., Taylor series) solutions for y = y(x) centered at x = x0. We illustrate the
method of solution by solving two examples, with x0 = 0.

Example: Find the general solution of y′′ + y = 0.

View tutorial on YouTube

By now, you should know that the general solution is y(x) = a0 cos x + a1 sin x,
with a0 and a1 constants. To find a power series solution about the point x0 = 0, we
write

y(x) =
∞

∑
n=0

anxn;

and upon differentiating term-by-term

y′(x) =
∞

∑
n=1

nanxn−1,

and

y′′(x) =
∞

∑
n=2

n(n − 1)anxn−2.

Substituting the power series for y and its derivatives into the differential equation
to be solved, we obtain

∞

∑
n=2

n(n − 1)anxn−2 +
∞

∑
n=0

anxn = 0. (5.2)
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The power-series solution method requires combining the two sums on the left-
hand-side of (5.2) into a single power series in x. To shift the exponent of xn−2 in
the first sum upward by two to obtain xn, we need to shift the summation index
downward by two; that is,

∞

∑
n=2

n(n − 1)anxn−2 =
∞

∑
n=0

(n + 2)(n + 1)an+2xn.

We can then combine the two sums in (5.2) to obtain

∞

∑
n=0

(
(n + 2)(n + 1)an+2 + an

)
xn = 0. (5.3)

For (5.3) to be satisfied, the coefficient of each power of x must vanish separately.
(This can be proved by setting x = 0 after successive differentiation.) We therefore
obtain the recurrence relation

an+2 = − an

(n + 2)(n + 1)
, n = 0, 1, 2, . . . .

We observe that even and odd coefficients decouple. We thus obtain two indepen-
dent sequences starting with first term a0 or a1. Developing these sequences, we
have for the sequence beginning with a0:

a0,

a2 = −1
2

a0,

a4 = − 1
4 · 3

a2 =
1

4 · 3 · 2
a0,

a6 = − 1
6 · 5

a4 = − 1
6!

a0;

and the general coefficient in this sequence for n = 0, 1, 2, . . . is

a2n =
(−1)n

(2n)!
a0.

Also, for the sequence beginning with a1:

a1,

a3 = − 1
3 · 2

a1,

a5 = − 1
5 · 4

a3 =
1

5 · 4 · 3 · 2
a1,

a7 = − 1
7 · 6

a5 = − 1
7!

a1;

and the general coefficient in this sequence for n = 0, 1, 2, . . . is

a2n+1 =
(−1)n

(2n + 1)!
a1.
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Using the principle of superposition, the general solution is therefore

y(x) = a0

∞

∑
n=0

(−1)n

(2n)!
x2n + a1

∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1

= a0

(
1 − x2

2!
+

x4

4!
− . . .

)
+ a1

(
x − x3

3!
+

x5

5!
− . . .

)
= a0 cos x + a1 sin x,

as expected.
In our next example, we will solve the Airy’s Equation. This differential equation

arises in the study of optics, fluid mechanics, and quantum mechanics.

Example: Find the general solution of y′′ − xy = 0.

View tutorial on YouTube

With

y(x) =
∞

∑
n=0

anxn,

the differential equation becomes

∞

∑
n=2

n(n − 1)anxn−2 −
∞

∑
n=0

anxn+1 = 0. (5.4)

We shift the first sum to xn+1 by shifting the exponent up by three, i.e.,

∞

∑
n=2

n(n − 1)anxn−2 =
∞

∑
n=−1

(n + 3)(n + 2)an+3xn+1.

When combining the two sums in (5.4), we separate out the extra n = −1 term in
the first sum given by 2a2. Therefore, (5.4) becomes

2a2 +
∞

∑
n=0

(
(n + 3)(n + 2)an+3 − an

)
xn+1 = 0. (5.5)

Setting coefficients of powers of x to zero, we first find a2 = 0, and then obtain the
recursion relation

an+3 =
1

(n + 3)(n + 2)
an. (5.6)

Three sequences of coefficients—those starting with either a0, a1 or a2—decouple.
In particular the three sequences are

a0, a3, a6, a9, . . . ;
a1, a4, a7, a10, . . . ;
a2, a5, a8, a11 . . . .

Since a2 = 0, we find immediately for the last sequence

a2 = a5 = a8 = a11 = · · · = 0.
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We compute the first four nonzero terms in the power series with coefficients cor-
responding to the first two sequences. Starting with a0, we have

a0,

a3 =
1

3 · 2
a0,

a6 =
1

6 · 5 · 3 · 2
a0,

a9 =
1

9 · 8 · 6 · 5 · 3 · 2
a0;

and starting with a1,

a1,

a4 =
1

4 · 3
a1,

a7 =
1

7 · 6 · 4 · 3
a1,

a10 =
1

10 · 9 · 7 · 6 · 4 · 3
a1.

The general solution for y = y(x), can therefore be written as

y(x) = a0

(
1 +

x3

6
+

x6

180
+

x9

12960
+ . . .

)
+ a1

(
x +

x4

12
+

x7

504
+

x10

45360
+ . . .

)
= a0y0(x) + a1y1(x).

Suppose we would like to graph the solutions y = y0(x) and y = y1(x) versus x
by solving the differential equation y′′− xy = 0 numerically. What initial conditions
should we use? Clearly, y = y0(x) solves the ode with initial values y(0) = 1 and
y′(0) = 0, while y = y1(x) solves the ode with initial values y(0) = 0 and y′(0) = 1.

The numerical solutions, obtained using MATLAB, are shown in Fig. 5.1. Note
that the solutions oscillate for negative x and grow exponentially for positive x.
This can be understood by recalling that y′′ + y = 0 has oscillatory sine and cosine
solutions and y′′ − y = 0 has exponential hyperbolic sine and cosine solutions.

5.2 Regular singular points: Cauchy-Euler equations

View tutorial on YouTube

The value x = x0 is called a regular singular point of the ode

(x − x0)
2y′′ + p(x)(x − x0)y′ + q(x)y = 0, (5.7)

if p(x) and q(x) have convergent Taylor series about x = x0, i.e., p(x) and q(x) can
be written as a power-series in (x − x0):

p(x) = p0 + p1(x − x0) + p2(x − x0)
2 + . . . ,

q(x) = q0 + q1(x − x0) + q2(x − x0)
2 + . . . ,

66 CHAPTER 5. SERIES SOLUTIONS

http://youtu.be/EWfq-OEuZGg


5.2. REGULAR SINGULAR POINTS: CAUCHY-EULER EQUATIONS

−10 −8 −6 −4 −2 0 2
−2

−1

0

1

2
y 0

Airy’s functions

−10 −8 −6 −4 −2 0 2
−2

−1

0

1

2

x

y 1

Figure 5.1: Numerical solution of Airy’s equation.

with pn and qn constants, and q0 ̸= 0 so that (x − x0) is not a common factor
of the coefficients. Any point x = x0 that is not an ordinary point or a regular
singular point is called an irregular singular point. Many important differential
equations of physical interest have regular singular points, and their solutions go
by the generic name of special functions, with specific names associated with now
famous mathematicians like Bessel, Legendre, Hermite, Laguerre and Chebyshev.

Here, we will only consider the simplest ode with a regular singular point at
x = 0. This ode is called a Cauchy-Euler equation, and has the form

x2y′′ + αxy′ + βy = 0, (5.8)

with α and β constants. Note that (5.7) reduces to a Cauchy-Euler equation (about
x = x0) when one considers only the leading-order term in the Taylor series expan-
sion of the functions p(x) and q(x). In fact, taking p(x) = p0 and q(x) = q0 and
solving the associated Cauchy-Euler equation results in at least one of the leading-
order solutions to the more general ode (5.7). Often, this is sufficient to obtain initial
conditions for numerical solution of the full ode. Students wishing to learn how to
find the general solution of (5.7) can consult Boyce & DiPrima.

An appropriate ansatz for (5.8) is y = xr, when x > 0 and y = (−x)r when
x < 0, (or more generally, y = |x|r for all x), with r constant. After substitution into
(5.8), we obtain for both positive and negative x

r(r − 1)|x|r + αr|x|r + β|x|r = 0,

and we observe that our ansatz is rewarded by cancelation of |x|r. We thus obtain
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the following quadratic equation for r:

r2 + (α − 1)r + β = 0, (5.9)

which can be solved using the quadratic formula. Three cases immediately appear:
(i) real distinct roots, (ii) complex conjugate roots, (iii) repeated roots. Students may
recall being in a similar situation when solving the second-order linear homoge-
neous ode with constant coefficients. Indeed, it is possible to directly transform
the Cauchy-Euler equation into an equation with constant coefficients so that our
previous results can be used.

The idea is to change variables so that the power law ansatz y = xr becomes an
exponential ansatz. For x > 0, if we let x = eξ and y(x) = Y(ξ), then the ansatz
y(x) = xr becomes the ansatz Y(ξ) = erξ , appropriate if Y(ξ) satisfies a constant
coefficient ode. If x < 0, then the appropriate transformation is x = −eξ , since
eξ > 0. We need only consider x > 0 here and subsequently generalize our result
by replacing x everywhere by its absolute value.

We thus transform the differential equation (5.8) for y = y(x) into a differential
equation for Y = Y(ξ), using x = eξ , or equivalently, ξ = ln x. By the chain rule,

dy
dx

=
dY
dξ

dξ

dx

=
1
x

dY
dξ

= e−ξ dY
dξ

,

so that symbolically,
d

dx
= e−ξ d

dξ
.

The second derivative transforms as

d2y
dx2 = e−ξ d

dξ

(
e−ξ dY

dξ

)
= e−2ξ

(
d2Y
dξ2 − dY

dξ

)
.

Upon substitution of the derivatives of y into (5.8), and using x = eξ , we obtain

e2ξ
(

e−2ξ
(
Y′′ − Y′))+ αeξ

(
e−ξY′

)
+ βY = Y′′ + (α − 1)Y′ + βY

= 0.

As expected, the ode for Y = Y(ξ) has constant coefficients, and with Y = erξ , the
characteristic equation for r is given by (5.9). We now directly transfer previous
results obtained for the constant coefficient second-order linear homogeneous ode.

5.2.1 Real, distinct roots

This simplest case needs no transformation. If (α − 1)2 − 4β > 0, then with r± the
real roots of (5.9), the general solution is

y(x) = c1|x|r+ + c2|x|r− .
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5.2.2 Complex conjugate roots

If (α − 1)2 − 4β < 0, we can write the complex roots of (5.9) as r± = λ ± iµ. Recall
the general solution for Y = Y(ξ) is given by

Y(ξ) = eλξ (A cos µξ + B sin µξ) ;

and upon transformation, and replacing x by |x|,

y(x) = |x|λ
(

A cos (µ ln |x|) + B sin (µ ln |x|)
)
.

5.2.3 Repeated roots

If (α − 1)2 − 4β = 0, there is one real root r of (5.9). The general solution for Y is

Y(ξ) = erξ (c1 + c2ξ) ,

yielding
y(x) = |x|r (c1 + c2 ln |x|) .

We now give examples illustrating these three cases.

Example: Solve 2x2y′′ + 3xy′ − y = 0 for 0 ≤ x ≤ 1 with two-point boundary
condition y(0) = 0 and y(1) = 1.

Since x > 0, we try y = xr and obtain the characteristic equation

0 = 2r(r − 1) + 3r − 1

= 2r2 + r − 1
= (2r − 1)(r + 1).

Since the characteristic equation has two real roots, the general solution is given by

y(x) = c1x
1
2 + c2x−1.

We now encounter for the first time two-point boundary conditions, which can be
used to determine the coefficients c1 and c2. Since y(0)=0, we must have c2 = 0.
Applying the remaining condition y(1) = 1, we obtain the unique solution

y(x) =
√

x.

Note that x = 0 is called a singular point of the ode since the general solution is
singular at x = 0 when c2 ̸= 0. Our boundary condition imposes that y(x) is
finite at x = 0 removing the singular solution. Nevertheless, y′ remains singular at
x = 0. Indeed, this is why we imposed a two-point boundary condition rather than
specifying the value of y′(0) (which is infinite).

Example: Solve x2y′′+ xy′+π2y = 0 with two-point boundary condition y(1) = 1
and y(

√
e) = 1.

With the ansatz y = xr, we obtain

0 = r(r − 1) + r + π2

= r2 + π2,
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so that r = ±iπ. Therefore, with ξ = ln x, we have Y(ξ) = A cos πξ + B sin πξ, and
the general solution for y(x) is

y(x) = A cos (π ln x) + B sin (π ln x).

The first boundary condition y(1) = 1 yields A = 1. The second boundary condi-
tion y(

√
e) = 1 yields B = 1.

Example: Solve x2y′′ + 5xy′ + 4y = 0 with two-point boundary condition y(1) = 0
and y(e) = 1.

With the ansatz y = xr, we obtain

0 = r(r − 1) + 5r + 4

= r2 + 4r + 4

= (r + 2)2,

so that there is a repeated root r = −2. With ξ = ln x, we have Y(ξ) = (c1 +
c2ξ)e−2ξ , so that the general solution is

y(x) =
c1 + c2 ln x

x2 .

The first boundary condition y(1) = 0 yields c1 = 0. The second boundary condi-
tion y(e) = 1 yields c2 = e2. The solution is therefore

y(x) =
e2 ln x

x2 .
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Chapter 6

Systems of first-order linear
equations

Reference: Boyce and DiPrima, Chapter 7

Systems of coupled linear differential equations can result, for example, from linear
stability analyses of nonlinear equations, and from normal mode analyses of cou-
pled oscillators. We will first consider the simplest case of a system of two coupled
first-order, linear, homogeneous equations with constant coefficients. These two
first-order equations are in fact equivalent to a single second-order equation, and
the methods of Chapter 3 could be used for solution. Nevertheless, viewing the
problem as a system of first-order equations introduces the important concept of
the phase space, and can easily be generalized to higher-order linear systems. We
will then discuss the physical problem of two coupled oscillators.

6.1 Matrices, determinants and the eigenvalue prob-
lem

View a lecture on matrix addition and multiplication on YouTube
View a lecture on determinants on YouTube

We begin by reviewing some basic matrix algebra. A matrix with n rows and m
columns is called an n-by-m matrix. Here, we need only consider the simple case
of two-by-two matrices.

A two-by-two matrix A, with two rows and two columns, can be written as

A =

(
a b
c d

)
.

The first row has elements a and b, the second row has elements c and d. The first
column has elements a and c; the second column has elements b and d.

Matrices can be added and multiplied. Matrices can be added if they have the
same dimension, and addition proceeds element by element, following(

a b
c d

)
+

(
e f
g h

)
=

(
a + e b + f
c + g d + h

)
.

Matrices can be multiplied if the number of columns of the left matrix equals the
number of rows of the right matrix. A particular element in the resulting product
matrix, say in row k and column l, is obtained by multiplying and summing the
elements in row k of the left matrix with the elements in column l of the right
matrix. For example, a two-by-two matrix can multiply a two-by-one column vector
as follows (

a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.
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The first row of the left matrix is multiplied against and summed with the first (and
only) column of the right matrix to obtain the element in the first row and first
column of the product matrix, and so on for the element in the second row and first
column. The product of two two-by-two matrices is given by(

a b
c d

)(
e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
.

A system of linear algebraic equations is easily represented in matrix form. For
instance, with aij and bi given numbers, and xi unknowns, the (two-by-two) system
of equations given by

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2,

can be written in matrix form as
Ax = b, (6.1)

where

A =

(
a11 a12
a21 a22

)
, x =

(
x1
x2

)
, b =

(
b1
b2

)
. (6.2)

When b = 0, we say that the system of equations given by (6.1) is homogeneous.
We now ask the following question: When does there exist a nontrivial (not identi-
cally zero) solution for x when the linear system is homogeneous? For the simplest
case of a two-by-two matrix, we can try and solve directly the homogeneous linear
system of equations given by

ax1 + bx2 = 0,
cx1 + dx2 = 0.

(6.3)

Multiplying the first equation by d and the second by b, and subtracting the second
equation from the first, results in

(ad − bc)x1 = 0.

Similarly, multiplying the first equation by c and the second by a, and subtracting
the first equation from the second, results in

(ad − bc)x2 = 0.

Therefore, a nontrivial solution of (6.3) for a two-by-two matrix exists only if ad −
bc = 0. If we define the determinant of the 2 × 2 matrix

A =

(
a b
c d

)
(6.4)

to be det A = ad − bc, then we say that a nontrivial solution to (6.3) exists provided
det A = 0.

The same calculation may be repeated for a 3 × 3 matrix. If

A =

a b c
d e f
g h i

 , x =

x1
x2
x3

 ,
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then there exists a nontrivial solution to Ax = 0 provided det A = 0, where det A =
a(ei− f h)− b(di− f g)+ c(dh− eg). The definition of the determinant can be further
generalized to any n × n matrix, and is typically taught in a first course on linear
algebra.

We now consider the eigenvalue problem. For A an n × n matrix and v an n × 1
column vector, the eigenvalue problem solves the equation

Av = λv (6.5)

for eigenvalues λi and corresponding eigenvectors vi. We rewrite the eigenvalue
equation (6.5) as

(A − λI)v = 0, (6.6)

where I is the n × n identity matrix, that is, the matrix with ones on the diagonal
and zeros everywhere else. A nontrivial solution of (6.6) exists provided

det (A − λI) = 0. (6.7)

Equation (6.7) is an n-th order polynomial equation in λ, and is called the charac-
teristic equation of A. The characteristic equation can be solved for the eigenvalues,
and for each eigenvalue, a corresponding eigenvector can be determined directly
from (6.5).

We can demonstrate how to find the eigenvalues and eigenvectors of the 2 × 2
matrix given by (6.4). We have

0 = det (A − λI)

=

∣∣∣∣a − λ b
c d − λ

∣∣∣∣
= (a − λ)(d − λ)− bc

= λ2 − (a + d)λ + (ad − bc).

This characteristic equation can be more generally written as

λ2 − Tr A λ + det A = 0, (6.8)

where Tr A is the trace, or sum of the diagonal elements, of the matrix A. If λ is an
eigenvalue of A, then the corresponding eigenvector v may be found by solving(

a − λ b
c d − λ

)(
v1
v2

)
= 0,

where the equation of the second row will always be a multiple of the equation of
the first row. The eigenvector v has arbitrary normalization, and we may always
choose for convenience v1 = 1. The equation from the first row is

(a − λ)v1 + bv2 = 0,

and with v1 = 1, we find v2 = (λ − a)/b.
In the next section, we will see several examples of an eigenvector analysis.
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6.2 Two coupled first-order linear homogeneous differ-
ential equations

We now consider the general system of differential equations given by

ẋ1 = ax1 + bx2, ẋ2 = cx1 + dx2, (6.9)

which can be written using vector notation as

ẋ = Ax. (6.10)

Before solving this system of odes using matrix techniques, I first want to show
that we could actually solve these equations by converting the system into a single
second-order equation. We take the derivative of the first equation and use both
equations to write

ẍ1 = aẋ1 + bẋ2

= aẋ1 + b(cx1 + dx2)

= aẋ1 + bcx1 + d(ẋ1 − ax1)

= (a + d)ẋ1 − (ad − bc)x1.

The system of two first-order equations therefore becomes the following second-
order equation:

ẍ1 − (a + d)ẋ1 + (ad − bc)x1 = 0.

If we had taken the derivative of the second equation instead, we would have ob-
tained the identical equation for x2:

ẍ2 − (a + d)ẋ2 + (ad − bc)x2 = 0.

In general, a system of n first-order linear homogeneous equations can be converted
into an equivalent n-th order linear homogeneous equation. Numerical methods
usually require the conversion in reverse; that is, a conversion of an n-th order
equation into a system of n first-order equations.

With the ansatz x1 = eλt or x2 = eλt, the second-order odes have the character-
istic equation

λ2 − (a + d)λ + (ad − bc) = 0.

This is identical to the characteristic equation obtained for the matrix A from an
eigenvalue analysis.

We will see that (6.9) can in fact be solved by considering the eigenvalues and
eigenvectors of the matrix A. We will demonstrate the solution for three sepa-
rate cases: (i) eigenvalues of A are real and there are two linearly independent
eigenvectors; (ii) eigenvalues of A are complex conjugates, and; (iii) A has only
one linearly independent eigenvector. These three cases are analogous to the cases
considered previously when solving the second-order, linear, constant-coefficient,
homogeneous equation.

6.2.1 Two distinct real eigenvalues

We illustrate the solution method by example.

74 CHAPTER 6. SYSTEMS OF EQUATIONS



6.2. COUPLED FIRST-ORDER EQUATIONS

Example: Find the general solution of ẋ1 = x1 + x2, ẋ2 = 4x1 + x2.

View tutorial on YouTube

The equation to be solved may be rewritten in matrix form as

d
dt

(
x1
x2

)
=

(
1 1
4 1

)(
x1
x2

)
,

or using vector notation, written as (6.10). We take as our ansatz x(t) = veλt, where
v and λ are independent of t. Upon substitution into (6.10), we obtain

λveλt = Aveλt;

and upon cancelation of the exponential, we obtain the eigenvalue problem

Av = λv. (6.11)

Finding the characteristic equation using (6.8), we have

0 = det (A − λI)

= λ2 − 2λ − 3
= (λ − 3)(λ + 1).

Therefore, the two eigenvalues are λ1 = 3 and λ2 = −1.
To determine the corresponding eigenvectors, we substitute the eigenvalues suc-

cessively into
(A − λI)v = 0. (6.12)

We will write the corresponding eigenvectors v1 and v2 using the matrix notation

(
v1 v2

)
=

(
v11 v12
v21 v22

)
,

where the components of v1 and v2 are written with subscripts corresponding to
the first and second columns of a 2 × 2 matrix.

For λ1 = 3, and unknown eigenvector v1, we have from (6.12)

−2v11 + v21 = 0,
4v11 − 2v21 = 0.

Clearly, the second equation is just the first equation multiplied by −2, so only one
equation is linearly independent. This will always be true, so for the 2 × 2 case
we need only consider the first row of the matrix. The first eigenvector therefore
satisfies v21 = 2v11. Recall that an eigenvector is only unique up to multiplication
by a constant: we may therefore take v11 = 1 for convenience.

For λ2 = −1, and eigenvector v2 = (v12, v22)
T , we have from (6.12)

2v12 + v22 = 0,

so that v22 = −2v12. Here, we take v12 = 1.
Therefore, our eigenvalues and eigenvectors are given by

λ1 = 3, v1 =

(
1
2

)
; λ2 = −1, v2 =

(
1
−2

)
.
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Figure 6.1: Phase space diagram for example with two real eigenvalues of opposite sign.

Using the principle of superposition, the general solution to the ode is therefore

x(t) = c1v1eλ1t + c2v2eλ2t,

or explicitly writing out the components,

x1(t) = c1e3t + c2e−t,

x2(t) = 2c1e3t − 2c2e−t.

We can obtain a new perspective on the solution by drawing a phase-space dia-
gram, shown in Fig. 6.1, with “x-axis” x1 and “y-axis” x2. Each curve corresponds
to a different initial condition, and represents the trajectory of a particle with ve-
locity given by the differential equation. The dark lines represent trajectories along
the direction of the eigenvectors. If c2 = 0, the motion is along the eigenvector
v1 with x2 = 2x1 and the motion with increasing time is away from the origin
(arrows pointing out) since the eigenvalue λ1 = 3 > 0. If c1 = 0, the motion is
along the eigenvector v2 with x2 = −2x1 and motion is towards the origin (arrows
pointing in) since the eigenvalue λ2 = −1 < 0. When the eigenvalues are real and
of opposite signs, the origin is called a saddle point. Almost all trajectories (with
the exception of those with initial conditions exactly satisfying x2(0) = −2x1(0))
eventually move away from the origin as t increases.

Example: Find the general solution of ẋ1 = −3x1 +
√

2x2, ẋ2 =
√

2x1 − 2x2.

The equations in matrix form are

d
dt

(
x1
x2

)
=

(
−3

√
2√

2 −2

)(
x1
x2

)
.
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Figure 6.2: Phase space diagram for example with two real eigenvalues of same sign.

The ansatz x = veλt leads to the eigenvalue problem Av = λv, with A the matrix
above. The eigenvalues are determined from

0 = det (A − λI)

= λ2 + 5λ + 4
= (λ + 4)(λ + 1).

Therefore, the eigenvalues of A are λ1 = −4, λ2 = −1. Proceeding to determine
the associated eigenvectors, for λ1 = −4,

v11 +
√

2v21 = 0;

and for λ2 = −1,
−2v12 +

√
2v22 = 0.

Taking the normalization v11 = 1 and v12 = 1, we obtain for the eigenvalues and
associated eigenvectors

λ1 = −4, v1 =

(
1

−
√

2/2

)
; λ2 = −1, v2 =

(
1√
2

)
.

The general solution to the ode is therefore(
x1
x2

)
= c1

(
1

−
√

2/2

)
e−4t + c2

(
1√
2

)
e−t.

We show the phase space plot in Fig. 6.2. If c2 = 0, the motion is along the
eigenvector v1 with x2 = −(

√
2/2)x1 with eigenvalue λ1 = −4 < 0. If c1 = 0, the

motion is along the eigenvector v2 with x2 =
√

2x1 with eigenvalue λ2 = −1 < 0.
When the eigenvalues are real and have the same sign, the origin is called a node.
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A node may be attracting or repelling depending on whether the eigenvalues are
both negative (as is the case here) or positive. Observe that the trajectories collapse
onto the v2 eigenvector since λ1 < λ2 < 0 and decay is more rapid along the v1
direction.

6.2.2 Complex conjugate eigenvalues

Example: Find the general solution of ẋ1 = − 1
2 x1 + x2, ẋ2 = −x1 − 1

2 x2.

View tutorial on YouTube

The equations in matrix form are

d
dt

(
x1
x2

)
=

(
− 1

2 1
−1 − 1

2

)(
x1
x2

)
.

The ansatz x = veλt leads to the equation

0 = det (A − λI)

= λ2 + λ +
5
4

.

Therefore, λ = −1/2 ± i; and we observe that the eigenvalues occur as a complex
conjugate pair. We will denote the two eigenvalues as

λ = −1
2
+ i and λ̄ = −1

2
− i.

Now, for A a real matrix, if Av = λv, then Av̄ = λ̄v̄. Therefore, the eigen-
vectors also occur as a complex conjugate pair. The eigenvector v associated with
eigenvalue λ satisfies −iv1 + v2 = 0, and normalizing with v1 = 1, we have

v =

(
1
i

)
.

We have therefore determined two independent complex solutions to the ode, that
is,

veλt and v̄eλ̄t,
and we can form a linear combination of these two complex solutions to construct
two independent real solutions. Namely, if the complex functions z(t) and z̄(t) are
written as

z(t) = Re{z(t)}+ iIm{z(t)}, z̄(t) = Re{z(t)} − iIm{z(t)},

then two real functions can be constructed from the following linear combinations
of z and z̄:

z + z̄
2

= Re{z(t)} and
z − z̄

2i
= Im{z(t)}.

Thus the two real vector functions that can be constructed from our two complex
vector functions are

Re{veλt} = Re
{(

1
i

)
e(−

1
2+i)t

}
= e−

1
2 tRe

{(
1
i

)
(cos t + i sin t)

}
= e−

1
2 t
(

cos t
− sin t

)
;
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Figure 6.3: Phase space diagram for example with complex conjugate eigenvalues.

and

Im{veλt} = e−
1
2 tIm

{(
1
i

)
(cos t + i sin t)

}
= e−

1
2 t
(

sin t
cos t

)
.

Taking a linear superposition of these two real solutions yields the general solution
to the ode, given by

x = e−
1
2 t
(

A
(

cos t
− sin t

)
+ B

(
sin t
cos t

))
.

The corresponding phase space diagram is shown in Fig. 6.3. We say the origin
is a spiral point. If the real part of the complex eigenvalue is negative, as is the
case here, then solutions spiral into the origin. If the real part of the eigenvalue is
positive, then solutions spiral out of the origin.

The direction of the spiral—here, it is clockwise—can be determined easily. If
we examine the ode with x1 = 0 and x2 = 1, we see that ẋ1 = 1 and ẋ2 = −1/2.
The trajectory at the point (0, 1) is moving to the right and downward, and this
is possible only if the spiral is clockwise. A counterclockwise trajectory would be
moving to the left and downward.

6.2.3 Repeated eigenvalues with one eigenvector

Example: Find the general solution of ẋ1 = x1 − x2, ẋ2 = x1 + 3x2.

View tutorial on YouTube
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The equations in matrix form are

d
dt

(
x1
x2

)
=

(
1 −1
1 3

)(
x1
x2

)
. (6.13)

The ansatz x = veλt leads to the characteristic equation

0 = det (A − λI)

= λ2 − 4λ + 4

= (λ − 2)2.

Therefore, λ = 2 is a repeated eigenvalue. The associated eigenvector is found from
−v1 − v2 = 0, or v2 = −v1; and normalizing with v1 = 1, we have

λ = 2, v =

(
1

−1

)
.

We have thus found a single solution to the ode, given by

x1(t) = c1

(
1

−1

)
e2t,

and we need to find the missing second solution to be able to satisfy the initial
conditions. An ansatz of t times the first solution is tempting, but will fail. Here, we
will cheat and find the missing second solution by solving the equivalent second-
order, homogeneous, constant-coefficient differential equation.

We already know that this second-order differential equation for x1(t) has a
characteristic equation with a degenerate eigenvalue given by λ = 2. Therefore, the
general solution for x1 is given by

x1(t) = (c1 + tc2)e2t.

Since from the first differential equation, x2 = x1 − ẋ1, we compute

ẋ1 =
(
2c1 + (1 + 2t)c2

)
e2t,

so that

x2 = x1 − ẋ1

= (c1 + tc2)e2t −
(
2c1 + (1 + 2t)c2

)
e2t

= −c1e2t + c2(−1 − t)e2t.

Combining our results for x1 and x2, we have therefore found(
x1
x2

)
= c1

(
1

−1

)
e2t + c2

[(
0

−1

)
+

(
1

−1

)
t
]

e2t.

Our missing linearly independent solution is thus determined to be

x(t) = c2

[(
0

−1

)
+

(
1

−1

)
t
]

e2t. (6.14)
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Figure 6.4: Phase space diagram for example with only one eigenvector.

The second term of (6.14) is just t times the first solution; however, this is not
sufficient. Indeed, the correct ansatz to find the second solution directly is given by

x = (w + tv) eλt, (6.15)

where λ and v is the eigenvalue and eigenvector of the first solution, and w is an
unknown vector to be determined. To illustrate this direct method, we substitute
(6.15) into ẋ = Ax, assuming Av = λv . Canceling the exponential, we obtain

v + λ (w + tv) = Aw + λtv.

Further canceling the common term λtv and rewriting yields

(A − λI)w = v. (6.16)

If A has only a single linearly independent eigenvector v, then (6.16) can be solved
for w (otherwise, it cannot). Using A, λ and v of our present example, (6.16) is the
system of equations given by(

−1 −1
1 1

)(
w1
w2

)
=

(
1

−1

)
.

The first and second equation are the same, so that w2 = −(w1 + 1). Therefore,

w =

(
w1

−(w1 + 1)

)
= w1

(
1

−1

)
+

(
0

−1

)
.

Notice that the first term repeats the first found solution, i.e., a constant times the
eigenvector, and the second term is new. We therefore take w1 = 0 and obtain

w =

(
0

−1

)
,
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as before.
The phase space diagram for this ode is shown in Fig. 6.4. The dark line is the

single eigenvector v of the matrix A. When there is only a single eigenvector, the
origin is called an improper node.

6.3 Normal modes

View tutorials on YouTube: Part 1 Part 2

We now consider an application of the eigenvector analysis to the coupled mass-
spring system shown in Fig. 6.5. The position variables x1 and x2 are measured
from the equilibrium positions of the masses. Hooke’s law states that the spring
force is linearly proportional to the extension length of the spring, measured from
equilibrium. By considering the extension of the spring and the sign of the force,
we write Newton’s law F = ma separately for each mass:

mẍ1 = −kx1 − K(x1 − x2),
mẍ2 = −kx2 − K(x2 − x1).

Further rewriting by collecting terms proportional to x1 and x2 yields

mẍ1 = −(k + K)x1 + Kx2,
mẍ2 = Kx1 − (k + K)x2.

The equations for the coupled mass-spring system form a system of two second-
order linear homogeneous odes. In matrix form, mẍ = Ax, or explicitly,

m
d2

dt2

(
x1
x2

)
=

(
−(k + K) K

K −(k + K)

)(
x1
x2

)
. (6.17)

In analogy to a system of first-order equations, we try the ansatz x = vert, and upon
substitution into (6.17) we obtain the eigenvalue problem Av = λv, with λ = mr2.
The eigenvalues are determined by solving the characteristic equation

0 = det (A − λI)

=

∣∣∣∣−(k + K)− λ K
K −(k + K)− λ

∣∣∣∣
= (λ + k + K)2 − K2.

The solution for λ is
λ = −k − K ± K,

and the two eigenvalues are

λ1 = −k, λ2 = −(k + 2K).

The corresponding values of r in our ansatz x = vert, with r = ±
√

λ/m, are

r1 = i
√

k/m, r̄1, r2 = i
√
(k + 2K)/m, r̄2.

Since the values of r are pure imaginary, we know that x1(t) and x2(t) will oscillate
with angular frequencies ω1 = Im{r1} and ω2 = Im{r2}, that is,

ω1 =
√

k/m, ω2 =
√
(k + 2K)/m.
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m m

k kK

x1 x2
Figure 6.5: Coupled harmonic oscillators.

The positions of the oscillating masses in general contain time dependencies of the
form sin ω1t, cos ω1t, and sin ω2t, cos ω2t.

It is of further interest to determine the eigenvectors, or so-called normal modes
of oscillation, associated with the two distinct angular frequencies. With specific
initial conditions proportional to an eigenvector, the mass will oscillate with a single
frequency. The eigenvector with eigenvalue λ1 satisfies

−Kv11 + Kv12 = 0,

so that v11 = v12. The normal mode with frequency ω1 =
√

k/m thus follows a
motion where x1 = x2. Referring to Fig. 6.5, during this motion the center spring
length does not change, which is why the frequency of oscillation is independent
of K.

Next, we determine the eigenvector with eigenvalue λ2:

Kv21 + Kv22 = 0,

so that v21 = −v22. The normal mode with frequency ω2 =
√
(k + 2K)/m thus

follows a motion where x1 = −x2. Again referring to Fig. 6.5, during this motion
the two equal masses symmetrically push or pull against each side of the middle
spring.

A general solution for x(t) can be constructed from the eigenvalues and eigen-
vectors. Our ansatz was x = vert, and for each of two eigenvectors v, we have a
pair of complex conjugate values for r. Accordingly, we first apply the principle of
superposition to obtain four real solutions, and then apply the principle again to
obtain the general solution. With ω1 =

√
k/m and ω2 =

√
(k + 2K)/m, the general

solution is given by(
x1
x2

)
=

(
1
1

)
(A cos ω1t + B sin ω1t) +

(
1

−1

)
(C cos ω2t + D sin ω2t) ,

where the now real constants A, B, C, and D can be determined from the four
independent initial conditions, x1(0), x2(0), ẋ1(0), and ẋ2(0).
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Chapter 7

Nonlinear differential
equations and bifurcation
theory

Reference: Strogatz, Sections 2.2, 2.4, 3.1, 3.2, 3.4, 6.3, 6.4, 8.2

We now turn our attention to nonlinear differential equations. In particular, we
study how small changes in the parameters of a system can result in qualitative
changes in the dynamics. These qualitative changes in the dynamics are called
bifurcations. To understand bifurcations, we first need to understand the concepts
of fixed points and stability.

7.1 Fixed points and stability

7.1.1 One dimension

View tutorial on YouTube

Consider the one-dimensional differential equation for x = x(t) given by

ẋ = f (x). (7.1)

We say that x* is a fixed point, or equilibrium point, of (7.1) if f (x*) = 0. At the fixed
point, ẋ = 0. The terminology fixed point is used since the solution to (7.1) with
initial condition x(0) = x* is x(t) = x* for all time t.

A fixed point, however, can be stable or unstable. A fixed point is said to be
stable if a small perturbation of the solution from the fixed point decays in time; it is
said to be unstable if a small perturbation grows in time. We can determine stability
by a linear analysis. Let x = x* + ε(t), where ε represents a small perturbation of
the solution from the fixed point x*. Because x* is a constant, ẋ = ε̇; and because
x* is a fixed point, f (x*) = 0. Taylor series expanding about ε = 0, we have

ε̇ = f (x* + ε)

= f (x*) + ε f ′(x*) + . . .

= ε f ′(x*) + . . . .

The omitted terms in the Taylor series expansion are proportional to ε2, and can be
made negligible over a short time interval with respect to the kept term, propor-
tional to ε, by taking ε(0) sufficiently small. Therefore, at least over short times,
the differential equation to be considered, ε̇ = f ′(x*)ε, is linear and has by now the
familiar solution

ε(t) = ε(0)e f ′(x*)t.
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The perturbation of the fixed point solution x(t) = x* thus decays exponentially
if f ′(x*) < 0, and we say the fixed point is stable. If f ′(x*) > 0, the perturbation
grows exponentially and we say the fixed point is unstable. If f ′(x*) = 0, we say
the fixed point is marginally stable, and the next higher-order term in the Taylor
series expansion must be considered.

Example: Find all the fixed points of the logistic equation ẋ = x(1 − x) and
determine their stability.

There are two fixed points at which ẋ = 0, given by x* = 0 and x* = 1. Stability
of these equilibrium points may be determined by considering the derivative of
f (x) = x(1 − x). We have f ′(x) = 1 − 2x. Therefore, f ′(0) = 1 > 0 so that x* = 0 is
an unstable fixed point, and f ′(1) = −1 < 0 so that x* = 1 is a stable fixed point.
Indeed, we have previously found that all solutions approach the stable fixed point
asymptotically.

7.1.2 Two dimensions
View tutorial on YouTube

The idea of fixed points and stability can be extended to higher-order systems of
odes. Here, we consider a two-dimensional system and will need to make use of
the two-dimensional Taylor series expansion of a function F(x, y) about the origin.
In general, the Taylor series of F(x, y) is given by

F(x, y) = F + x
∂F
∂x

+ y
∂F
∂y

+
1
2

(
x2 ∂2F

∂x2 + 2xy
∂2F

∂x∂y
+ y2 ∂2F

∂y2

)
+ . . . ,

where the function F and all of its partial derivatives on the right-hand-side are
evaluated at the origin. Note that the Taylor series is constructed so that all partial
derivatives of the left-hand-side match those of the right-hand-side at the origin.

We now consider the two-dimensional system given by

ẋ = f (x, y), ẏ = g(x, y). (7.2)

The point (x*, y*) is said to be a fixed point of (7.2) if f (x*, y*) = 0 and g(x*, y*) = 0.
Again, the local stability of a fixed point can be determined by a linear analysis.
We let x(t) = x* + ε(t) and y(t) = y* + δ(t), where ε and δ are small independent
perturbations from the fixed point. Making use of the two dimensional Taylor series
of f (x, y) and g(x, y) about the fixed point, or equivalently about (ε, δ) = (0, 0), we
have

ε̇ = f (x* + ε, y* + δ)

= f + ε
∂ f
∂x

+ δ
∂ f
∂y

+ . . .

= ε
∂ f
∂x

+ δ
∂ f
∂y

+ . . . .

δ̇ = g(x* + ε, y* + δ)

= g + ε
∂g
∂x

+ δ
∂g
∂y

+ . . .

= ε
∂g
∂x

+ δ
∂g
∂y

+ . . . ,
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Figure 7.1: Phase space plot for two-dimensional nonlinear system.

where in the Taylor series f , g and all their partial derivatives are evaluated at the
fixed point (x*, y*). Neglecting higher-order terms in the Taylor series, we thus
have a system of odes for the perturbation, given in matrix form as

d
dt

(
ε
δ

)
=

( ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)(
ε
δ

)
. (7.3)

The two-by-two matrix in (7.3) is called the Jacobian matrix at the fixed point. An
eigenvalue analysis of the Jacobian matrix will typically yield two eigenvalues λ1
and λ2. These eigenvalues may be real and distinct, complex conjugate pairs, or
repeated. The fixed point is stable (all perturbations decay exponentially) if both
eigenvalues have negative real parts. The fixed point is unstable (some perturba-
tions grow exponentially) if at least one of the eigenvalues has a positive real part.
Fixed points can be further classified as stable or unstable nodes, unstable saddle
points, stable or unstable spiral points, or stable or unstable improper nodes.

Example: Find all the fixed points of the nonlinear system ẋ = x(3 − x − 2y),
ẏ = y(2 − x − y), and determine their stability.

View tutorial on YouTube

The fixed points are determined by solving

f (x, y) = x(3 − x − 2y) = 0, g(x, y) = y(2 − x − y) = 0.

Evidently, (x, y) = (0, 0) is a fixed point. On the one hand, if only x = 0, then
the equation g(x, y) = 0 yields y = 2. On the other hand, if only y = 0, then the
equation f (x, y) = 0 yields x = 3. If both x and y are nonzero, then we must solve
the linear system

x + 2y = 3, x + y = 2,
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and the solution is easily found to be (x, y) = (1, 1). Hence, we have determined
the four fixed points (x*, y*) = (0, 0), (0, 2), (3, 0), (1, 1). The Jacobian matrix is
given by ( ∂ f

∂x
∂ f
∂y

∂g
∂x

∂g
∂y

)
=

(
3 − 2x − 2y −2x

−y 2 − x − 2y

)
.

Stability of the fixed points may be considered in turn. With J* the Jacobian matrix
evaluated at the fixed point, we have

(x*, y*) = (0, 0) : J* =
(

3 0
0 2

)
.

The eigenvalues of J* are λ = 3, 2 so that the fixed point (0, 0) is an unstable node.
Next,

(x*, y*) = (0, 2) : J* =
(

−1 0
−2 −2

)
.

The eigenvalues of J* are λ = −1,−2 so that the fixed point (0, 2) is a stable node.
Next,

(x*, y*) = (3, 0) : J* =
(

−3 −6
0 −1

)
.

The eigenvalues of J* are λ = −3,−1 so that the fixed point (3, 0) is also a stable
node. Finally,

(x*, y*) = (1, 1) : J* =
(

−1 −2
−1 −1

)
.

The characteristic equation of J* is given by (−1−λ)2 − 2 = 0, so that λ = −1±
√

2.
Since one eigenvalue is negative and the other positive the fixed point (1, 1) is an
unstable saddle point. From our analysis of the fixed points, one can expect that all
solutions will asymptote to one of the stable fixed points (0, 2) or (3, 0), depending
on the initial conditions.

It is of interest to sketch the phase space diagram for this nonlinear system. The
eigenvectors associated with the unstable saddle point (1, 1) determine the direc-
tions of the flow into and away from this fixed point. The eigenvector associated
with the positive eigenvalue λ1 = −1 +

√
2 can be determined from the first equa-

tion of (J* − λ1I)v1 = 0, or

−
√

2v11 − 2v12 = 0,

so that v12 = −(
√

2/2)v11. The eigenvector associated with the negative eigenvalue
λ1 = −1 −

√
2 satisfies v22 = (

√
2/2)v21. The eigenvectors give the slope of the

lines with origin at the fixed point for incoming (negative eigenvalue) and outgo-
ing (positive eigenvalue) trajectories. The outgoing trajectories have negative slope
−
√

2/2 and the incoming trajectories have positive slope
√

2/2. A rough sketch of
the phase space diagram can be made by hand (as demonstrated in class). Here,
a computer generated plot obtained from numerical solution of the nonlinear cou-
pled odes is presented in Fig. 7.1. The curve starting from the origin and at infinity,
and terminating at the unstable saddle point is called the separatrix. This curve
separates the phase space into two regions: initial conditions for which the solution
asymptotes to the fixed point (0, 2), and initial conditions for which the solution
asymptotes to the fixed point (3, 0).
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Figure 7.2: Saddlenode bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

7.2 One-dimensional bifurcations

A bifurcation occurs in a nonlinear differential equation when a small change in
a parameter results in a qualitative change in the long-time solution. Examples of
bifurcations are when fixed points are created or destroyed, or change their stability.

We now consider four classic bifurcations of one-dimensional nonlinear differen-
tial equations: saddle-node bifurcation, transcritical bifurcation, supercritical pitch-
fork bifurcation, and subcritical pitchfork bifurcation. The corresponding differen-
tial equation will be written as

ẋ = fr(x),

where the subscript r represents a parameter that results in a bifurcation when
varied across zero. The simplest differential equations that exhibit these bifurcations
are called the normal forms, and correspond to a local analysis (i.e., Taylor series
expansion) of more general differential equations around the fixed point, together
with a possible rescaling of x.

7.2.1 Saddle-node bifurcation
View tutorial on YouTube

The saddle-node bifurcation results in fixed points being created or destroyed. The
normal form for a saddle-node bifurcation is given by

ẋ = r + x2.

The fixed points are x* = ±
√
−r. Clearly, two real fixed points exist when r < 0

and no real fixed points exist when r > 0. The stability of the fixed points when
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Figure 7.3: Transcritical bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

r < 0 are determined by the derivative of f (x) = r + x2, given by f ′(x) = 2x.
Therefore, the negative fixed point is stable and the positive fixed point is unstable.

Graphically, we can illustrate this bifurcation in two ways. First, in Fig. 7.2(a),
we plot ẋ versus x for the three parameter values corresponding to r < 0, r = 0 and
r > 0. The values at which ẋ = 0 correspond to the fixed points, and arrows are
drawn indicating how the solution x(t) evolves (to the right if ẋ > 0 and to the left
if ẋ < 0). The stable fixed point is indicated by a filled circle and the unstable fixed
point by an open circle. Note that when r = 0, solutions converge to the origin from
the left, but diverge from the origin on the right. Second, in Fig. 7.2(b), we plot a
bifurcation diagram illustrating the fixed point x* versus the bifurcation parameter
r. The stable fixed point is denoted by a solid line and the unstable fixed point by
a dashed line. Note that the two fixed points collide and annihilate at r = 0, and
there are no fixed points for r > 0.

7.2.2 Transcritical bifurcation

View tutorial on YouTube

A transcritical bifurcation occurs when there is an exchange of stabilities between
two fixed points. The normal form for a transcritical bifurcation is given by

ẋ = rx − x2.

The fixed points are x* = 0 and x* = r. The derivative of the right-hand-side is
f ′(x) = r − 2x, so that f ′(0) = r and f ′(r) = −r. Therefore, for r < 0, x* = 0
is stable and x* = r is unstable, while for r > 0, x* = r is stable and x* = 0 is
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→ ←

r<0

dx/dt
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→ ←

r=0

←→ ← →

r>0

x
*

r

(b)

Figure 7.4: Supercritical pitchfork bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

unstable. The two fixed points thus exchange stability as r passes through zero.
The transcritical bifurcation is illustrated in Fig. 7.3.

7.2.3 Supercritical pitchfork bifurcation

View tutorial on YouTube

The pitchfork bifurcations occur in physical models where fixed points appear and
disappear in pairs due to some intrinsic symmetry of the problem. Pitchfork bi-
furcations can come in one of two types. In the supercritical bifurcation, a pair of
stable fixed points are created at the bifurcation (or critical) point and exist after
(super) the bifurcation. In the subcritical bifurcation, a pair of unstable fixed points
are created at the bifurcation point and exist before (sub) the bifurcation.

The normal form for the supercritical pitchfork bifurcation is given by

ẋ = rx − x3.

Note that the linear term results in exponential growth when r > 0 and the non-
linear term stabilizes this growth. The fixed points are x* = 0 and x* = ±

√
r, the

latter fixed points existing only when r > 0. The derivative of f is f ′(x) = r − 3x2

so that f ′(0) = r and f ′(±
√

r) = −2r. Therefore, the fixed point x* = 0 is stable for
r < 0 and unstable for r > 0 while the fixed points x = ±

√
r exist and are stable for

r > 0. Notice that the fixed point x* = 0 becomes unstable as r crosses zero and two
new stable fixed points x* = ±

√
r are born. The supercritical pitchfork bifurcation

is illustrated in Fig. 7.4.
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x
*

r

Figure 7.5: Subcritical pitchfork bifurcation.

7.2.4 Subcritical pitchfork bifurcation
View tutorial on YouTube

In the subcritical case, the cubic term is destabilizing. The normal form (to order
x3) is

ẋ = rx + x3.

The fixed points are x* = 0 and x* = ±
√
−r, the latter fixed points existing only

when r ≤ 0. The derivative of the right-hand-side is f ′(x) = r+ 3x2 so that f ′(0) = r
and f ′(±

√
−r) = −2r. Therefore, the fixed point x* = 0 is stable for r < 0 and

unstable for r > 0 while the fixed points x = ±
√
−r exist and are unstable for

r < 0. There are no stable fixed points when r > 0.
The absence of stable fixed points for r > 0 indicates that the neglect of terms of

higher-order in x than x3 in the normal form may be unwarranted. Keeping to the
intrinsic symmetry of the equations (only odd powers of x) we can add a stabilizing
nonlinear term proportional to x5. The extended normal form (to order x5) is

ẋ = rx + x3 − x5,

and is somewhat more difficult to analyze. The fixed points are solutions of

x(r + x2 − x4) = 0.

The fixed point x* = 0 exists for all r, and four additional fixed points can be found
from the solutions of the quadratic equation in x2:

x* = ±
√

1
2
(1 ±

√
1 + 4r).

These fixed points exist only if x* is real. Clearly, for the inner square-root to be
real, r ≥ −1/4. Also observe that 1 −

√
1 + 4r becomes negative for r > 0. We thus

have three intervals in r to consider, and these regions and their fixed points are

r < −1
4

: x* = 0 (one fixed point);

−1
4
< r < 0 : x* = 0, x* = ±

√
1
2
(1 ±

√
1 + 4r) (five fixed points);

r > 0 : x* = 0, x* = ±
√

1
2
(1 +

√
1 + 4r) (three fixed points).
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Stability is determined from f ′(x) = r + 3x2 − 5x4. Now, f ′(0) = r so x* = 0 is
stable for r < 0 and unstable for r > 0. The calculation for the other four roots can
be simplified by noting that x* satisfies r + x2

* − x4
* = 0, or x4

* = r + x2
*. Therefore,

f ′(x*) = r + 3x2
* − 5x4

*

= r + 3x2
* − 5(r + x2

*)

= −4r − 2x2
*

= −2(2r + x2
*).

With x2
* =

1
2 (1 ±

√
1 + 4r), we have

f ′(x*) = −2
(

2r +
1
2
(1 ±

√
1 + 4r)

)
= −

(
(1 + 4r)±

√
1 + 4r

)
= −

√
1 + 4r

(√
1 + 4r ± 1

)
.

Clearly, the plus root is always stable since f ′(x*) < 0. The minus root exists only
for − 1

4 < r < 0 and is unstable since f ′(x*) > 0. We summarize the stability of the
various fixed points:

r < −1
4

: x* = 0 (stable);

−1
4
< r < 0 : x* = 0, (stable)

x* = ±
√

1
2
(1 +

√
1 + 4r) (stable);

x* = ±
√

1
2
(1 −

√
1 + 4r) (unstable);

r > 0 : x* = 0 (unstable)

x* = ±
√

1
2
(1 +

√
1 + 4r) (stable).

The bifurcation diagram is shown in Fig. 7.5, and consists of a subcritical pitch-
fork bifurcation at r = 0 and two saddle-node bifurcations at r = −1/4. We can
imagine what happens to x as r increases from negative values, supposing there is
some small noise in the system so that x = x(t) will diverge from unstable fixed
points. For r < −1/4, the equilibrium value of x is x* = 0. As r increases into
the range −1/4 < r < 0, x will remain at x* = 0. However, a catastrophe occurs
as soon as r > 0. The x* = 0 fixed point becomes unstable and the solution will
jump up (or down) to the only remaining stable fixed point. Such behavior is called
a jump bifurcation. A similar catastrophe can happen as r decreases from positive
values. In this case, the jump occurs as soon as r < −1/4.

Since the stable equilibrium value of x depends on whether we are increasing or
decreasing r, we say that the system exhibits hysteresis. The existence of a subcriti-
cal pitchfork bifurcation can be very dangerous in engineering applications since a
small change in a problem’s parameters can result in a large change in the equilib-
rium state. Physically, this can correspond to a collapse of a structure, or the failure
of a component.
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7.2.5 Application: a mathematical model of a fishery
View tutorial on YouTube

We illustrate the utility of bifurcation theory by analyzing a simple model of a fish-
ery. We utilize the logistic equation (see §2.4.6) to model a fish population in the
absence of fishing. To model fishing, we assume that the government has estab-
lished fishing quotas so that at most a total of C fish per year may be caught. We
assume that when the fish population is at the carrying capacity of the environ-
ment, fisherman can catch nearly their full quota. When the fish population drops
to lower values, fish may be harder to find and the catch rate may fall below C,
eventually going to zero as the fish population diminishes. Combining the logistic
equation together with a simple model of fishing, we propose the mathematical
model

dN
dt

= rN
(

1 − N
K

)
− CN

A + N
, (7.4)

where N is the fish population size, t is time, r is the maximum potential growth
rate of the fish population, K is the carrying capacity of the environment, C is the
maximum rate at which fish can be caught, and A is a constant satisfying A < K
that is used to model the idea that fish become harder to catch when scarce.

We nondimensionalize (7.4) using x = N/K, τ = rt, c = C/rK, α = A/K:

dx
dτ

= x(1 − x)− cx
α + x

. (7.5)

Note that 0 ≤ x ≤ 1, c > 0 and 0 < α < 1. We wish to qualitatively describe the
equilibrium solutions of (7.5) and the bifurcations that may occur as the nondimen-
sional catch rate c increases from zero. Practically, a government would like to issue
each year as large a catch quota as possible without adversely affecting the number
of fish that may be caught in subsequent years.

The fixed points of (7.5) are x* = 0, valid for all c, and the solutions to x2 − (1 −
α)x + (c − α) = 0, or

x* =
1
2

[
(1 − α)±

√
(1 + α)2 − 4c

]
. (7.6)

The fixed points given by (7.6) are real only if c < 1
4 (1 + α)2. Furthermore, the

minus root is greater than zero only if c > α. We therefore need to consider three
intervals over which the following fixed points exist:

0 ≤ c ≤ α : x* = 0, x* =
1
2

[
(1 − α) +

√
(1 + α)2 − 4c

]
;

α < c <
1
4
(1 + α)2 : x* = 0, x* =

1
2

[
(1 − α)±

√
(1 + α)2 − 4c

]
;

c >
1
4
(1 + α)2 : x* = 0.

The stability of the fixed points can be determined with rigor analytically or graph-
ically. Here, we simply apply biological intuition together with knowledge of the
types of one dimensional bifurcations. An intuitive argument is made simpler if we
consider c decreasing from large values. When c is large, that is c > 1

4 (1 + α)2, too
many fish are being caught and our intuition suggests that the fish population goes
extinct. Therefore, in this interval, the single fixed point x* = 0 must be stable. As

94 CHAPTER 7. NONLINEAR DIFFERENTIAL EQUATIONS

http://youtu.be/TpqorRY45n0


7.3. TWO-DIMENSIONAL BIFURCATIONS

x
*

c

1

0
α (1+α)2/4

Figure 7.6: Fishery bifurcation diagram.

c decreases, a bifurcation occurs at c = 1
4 (1 + α)2 introducing two additional fixed

points at x* = (1 − α)/2. The type of one dimensional bifurcation in which two
fixed points are created as a square root becomes real is a saddlenode bifurcation,
and one of the fixed points will be stable and the other unstable. Following these
fixed points as c → 0, we observe that the plus root goes to one, which is the appro-
priate stable fixed point when there is no fishing. We therefore conclude that the
plus root is stable and the minus root is unstable. As c decreases further from this
bifurcation, the minus root collides with the fixed point x* = 0 at c = α. This ap-
pears to be a transcritical bifurcation and assuming an exchange of stability occurs,
we must have the fixed point x* = 0 becoming unstable for c < α. The resulting
bifurcation diagram is shown in Fig. 7.6.

The purpose of simple mathematical models applied to complex ecological prob-
lems is to offer some insight. Here, we have learned that overfishing (in the model
c > 1

4 (1 + α)2) during one year can potentially result in a sudden collapse of the
fish catch in subsequent years, so that governments need to be particularly cautious
when contemplating increases in fishing quotas.

7.3 Two-dimensional bifurcations

All the one-dimensional bifurcations can also occur in two-dimensions along one
of the directions. In addition, a new type of bifurcation can also occur in two-
dimensions. Suppose there is some control parameter µ. Furthermore, suppose
that for µ < 0, a two-dimensional system approaches a fixed point by exponentially-
damped oscillations. We know that the Jacobian matrix at the fixed point with µ < 0
will have complex conjugate eigenvalues with negative real parts. Now suppose
that when µ > 0 the real parts of the eigenvalues become positive so that the
fixed point becomes unstable. This change in stability of the fixed point is called
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a Hopf bifurcation. The Hopf bifurcation comes in two types: supercritical Hopf
bifurcation and subcritical Hopf bifurcation. For the supercritical Hopf bifurcation,
as µ increases slightly above zero, the resulting oscillation around the now unstable
fixed point is quickly stabilized at small amplitude. This stable orbit is called a limit
cycle. For the subcritical Hopf bifurcation, as µ increases slightly above zero, the
limit cycle immediately jumps to large amplitude.

7.3.1 Supercritical Hopf bifurcation

A simple example of a supercritical Hopf bifurcation can be given in polar coordi-
nates:

ṙ = µr − r3,

θ̇ = ω + br2,

where x = r cos θ and y = r sin θ. The parameter µ controls the stability of the fixed
point at the origin, the parameter ω is the frequency of oscillation near the origin,
and the parameter b determines the dependence of the oscillation frequency at
larger amplitude oscillations. Although we include b for generality, our qualitative
analysis of these equations will be independent of b.

The equation for the radius is of the form of the supercritical pitchfork bifurca-
tion. The fixed points are r* = 0 and r* =

√
µ (note that r > 0), and the former

fixed point is stable for µ < 0 and the latter is stable for µ > 0. The transition
of the eigenvalues of the Jacobian from negative real part to positive real part can
be seen if we transform these equations to cartesian coordinates. We have using
r2 = x2 + y2,

ẋ = ṙ cos θ − θ̇r sin θ

= (µr − r3) cos θ − (ω + br2)r sin θ

= µx − (x2 + y2)x − ωy − b(x2 + y2)y

= µx − ωy − (x2 + y2)(x + by);

ẏ = ṙ sin θ + θ̇r cos θ

= (µr − r3) sin θ + (ω + br2)r cos θ

= µy − (x2 + y2)y + ωx + b(x2 + y2)x

= ωx + µy − (x2 + y2)(y − bx).

The stability of the origin is determined by the Jacobian matrix evaluated at the
origin. The nonlinear terms in the equation vanish and the Jacobian matrix at the
origin is given by

J =
(

µ −ω
ω µ

)
.

The eigenvalues are the solutions of (µ − λ)2 + ω2 = 0, or λ = µ ± iω. As µ in-
creases from negative to positive values, exponentially damped oscillations change
into exponentially growing oscillations. The nonlinear terms in the equations stabi-
lize the growing oscillations into a limit cycle.
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7.3.2 Subcritical Hopf bifurcation
The analogous example of a subcritical Hopf bifurcation is given by

ṙ = µr + r3 − r5,

θ̇ = ω + br2.

Here, the equation for the radius is of the form of the subcritical pitchfork bifurca-
tion. As µ increases from negative to positive values, the origin becomes unstable
and exponentially growing oscillations increase until the radius reaches a stable
fixed point far away from the origin. In practice, it may be difficult to tell ana-
lytically if a Hopf bifurcation is supercritical or subcritical from the equations of
motion. Computational solution, however, can quickly distinguish between the two
types.
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Chapter 8

Partial differential equations
Reference: Boyce and DiPrima, Chapter 10

Differential equations containing partial derivatives with two or more independent
variables are called partial differential equations (pdes). These equations are of
fundamental scientific interest but are substantially more difficult to solve, both
analytically and computationally, than odes.

In this chapter, we begin by deriving two fundamental pdes: the diffusion equa-
tion and the wave equation, and show how to solve them with prescribed boundary
conditions using the technique of separation of variables. We then discuss solutions
of the two-dimensional Laplace equation in cartesian and polar coordinates, and
finish with a lengthy discussion of the Schrödinger equation, a partial differential
equation fundamental to both physics and chemistry.

8.1 Derivation of the diffusion equation

To derive the diffusion equation in one spacial dimension, we imagine a still liquid
in a long pipe of constant cross sectional area. A small quantity of dye is placed in
a cross section of the pipe and allowed to diffuse up and down the pipe. The dye
diffuses from regions of higher concentration to regions of lower concentration.

We define u(x, t) to be the concentration of the dye at position x along the
pipe, and we wish to find the pde satisfied by u. It is useful to keep track of
the units of the various quantities involved in the derivation and we introduce the
bracket notation [X] to mean the units of X. Relevant dimensional units used in the
derivation of the diffusion equation are mass m, length l, and time t. Assuming that
the dye concentration is uniform in every cross section of the pipe, the dimensions
of concentration used here are [u] = m/l.

The mass of dye in the infinitesimal pipe volume located between position x1
and position x2 at time t, with x1 < x < x2, is given to order ∆x = x2 − x1 by

M = u(x, t)∆x.

The mass of dye in this infinitesimal pipe volume changes by diffusion into and out
of the cross sectional ends situated at position x1 and x2 (Figure 8.1). We assume
the rate of diffusion is proportional to the concentration gradient, a relationship
known as Fick’s law of diffusion. Fick’s law of diffusion assumes the mass flux J,
with units [J] = m/t across a cross section of the pipe is given by

J = −Dux, (8.1)

where the diffusion constant D > 0 has units [D] = l2/t, and we have used the
notation ux = ∂u/∂x. The mass flux is opposite in sign to the gradient of concen-
tration so that the flux is from high concentration to low concentration. The time
rate of change in the mass of dye between x1 and x2 is given by the difference be-
tween the mass flux into and the mass flux out of the infinitesimal cross sectional
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J (x2)
J (x1)

X1 X2

Figure 8.1: Derivation of the diffusion equation.

volume. A positive mass flux signifies diffusion from left to right. Therefore, the
time rate of change of the dye mass is given by

dM
dt

= J(x1, t)− J(x2, t),

or rewriting in terms of u(x, t):

ut(x, t)∆x = D (ux(x2, t)− ux(x1, t)) .

Dividing by ∆x and taking the limit ∆x → 0 results in the diffusion equation:

ut = Duxx.

We note that the diffusion equation is identical to the heat conduction equation,
where u is temperature, and the constant D (commonly written as κ) is the thermal
conductivity.

8.2 Derivation of the wave equation

To derive the wave equation in one spacial dimension, we imagine an elastic string
that undergoes small amplitude transverse vibrations. We define u(x, t) to be the
vertical displacement of the string from the x-axis at position x and time t, and we
wish to find the pde satisfied by u. We define ρ to be the constant mass density of
the string, T the tension of the string, and θ the angle between the string and the
horizonal line. We consider an infinitesimal string element located between x1 and
x2, with ∆x = x2 − x1, as shown in Fig. 8.2. The governing equations are New-
ton’s law of motion for the horizontal and vertical acceleration of our infinitesimal
string element, and we assume that the string element only accelerates vertically.
Therefore, the horizontal forces must balance and we have

T2 cos θ2 = T1 cos θ1.

The vertical forces result in a vertical acceleration, and with utt the vertical accel-
eration of the string element and ρ

√
∆x2 + ∆u2 = ρ∆x

√
1 + u2

x its mass, where we
have used ux = ∆u/∆x, exact as ∆x → 0, we have

ρ∆x
√

1 + u2
xutt = T2 sin θ2 − T1 sin θ1.
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Figure 8.2: Derivation of the wave equation.

We now make the assumption of small vibrations, that is ∆u ≪ ∆x, or equivalently
ux ≪ 1. Note that [u] = l so that ux is dimensionless. With this approximation, to
leading-order in ux we have

cos θ2 = cos θ1 = 1,

sin θ2 = ux(x2, t), sin θ1 = ux(x1, t),

and √
1 + u2

x = 1.

Therefore, to leading order T1 = T2 = T, (i.e., the tension in the string is approxi-
mately constant), and

ρ∆xutt = T (ux(x2, t)− ux(x1, t)) .

Dividing by ∆x and taking the limit ∆x → 0 results in the wave equation

utt = c2uxx,

where c2 = T/ρ. Since [T] = ml/t2 and [ρ] = m/l, we have [c2] = l2/t2 so that c
has units of velocity.

8.3 Fourier series

View tutorial on YouTube

Our solution of the diffusion and wave equations will require use of a Fourier series.
A periodic function f (x) with period 2L, can be represented as a Fourier series in
the form

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
. (8.2)
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Determination of the coefficients a0, a1, a2, . . . and b1, b2, b3, . . . makes use of or-
thogonality relations for sine and cosine. We first define the widely used Kronecker
delta δnm as

δnm =

{
1 if n = m;
0 otherwise.

The orthogonality relations for n and m positive integers are then given with com-
pact notation as the integration formulas∫ L

−L
cos

(mπx
L

)
cos

(nπx
L

)
dx = Lδnm, (8.3)∫ L

−L
sin
(mπx

L

)
sin
(nπx

L

)
dx = Lδnm, (8.4)∫ L

−L
cos

(mπx
L

)
sin
(nπx

L

)
dx = 0. (8.5)

To illustrate the integration technique used to obtain these results, we derive (8.4)
assuming that n and m are positive integers with n ̸= m. Changing variables to
ξ = πx/L, we obtain∫ L

−L
sin
(mπx

L

)
sin
(nπx

L

)
dx

=
L
π

∫ π

−π
sin (mξ) sin (nξ)dξ

=
L

2π

∫ π

−π

[
cos

(
(m − n)ξ

)
− cos

(
(m + n)ξ

)]
dξ

=
L

2π

[
1

m − n
sin
(
(m − n)ξ

)
− 1

m + n
sin
(
(m + n)ξ

)]π

−π

= 0.

For m = n, however,∫ L

−L
sin2

(nπx
L

)
dx =

L
π

∫ π

−π
sin2 (nξ)dξ

=
L

2π

∫ π

−π

(
1 − cos (2nξ)

)
dξ

=
L

2π

[
ξ − 1

2n
sin 2nξ

]π

−π

= L.

Integration formulas given by (8.3) and (8.5) can be similarly derived.
To determine the coefficient an, we multiply both sides of (8.2) by cos (nπx/L)

with n a nonnegative integer, and change the dummy summation variable from n
to m. Integrating over x from −L to L and assuming that the integration can be
done term by term in the infinite sum, we obtain

∫ L

−L
f (x) cos

nπx
L

dx =
a0

2

∫ L

−L
cos

nπx
L

dx

+
∞

∑
m=1

{
am

∫ L

−L
cos

nπx
L

cos
mπx

L
dx + bm

∫ L

−L
cos

nπx
L

sin
mπx

L
dx
}

.
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If n = 0, then the second and third integrals on the right-hand-side are zero and the
first integral is 2L so that the right-hand-side becomes La0. If n is a positive integer,
then the first and third integrals on the right-hand-side are zero, and the second
integral is Lδnm. For this case, we have∫ L

−L
f (x) cos

nπx
L

dx =
∞

∑
m=1

Lamδnm

= Lan,

where all the terms in the summation except m = n are zero by virtue of the
Kronecker delta. We therefore obtain for n = 0, 1, 2, . . .

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx. (8.6)

To determine the coefficients b1, b2, b3, . . . , we multiply both sides of (8.2) by sin (nπx/L),
with n a positive integer, and again change the dummy summation variable from n
to m. Integrating, we obtain

∫ L

−L
f (x) sin

nπx
L

dx =
a0

2

∫ L

−L
sin

nπx
L

dx

+
∞

∑
m=1

{
am

∫ L

−L
sin

nπx
L

cos
mπx

L
dx + bm

∫ L

−L
sin

nπx
L

sin
mπx

L
dx
}

.

Here, the first and second integrals on the right-hand-side are zero, and the third
integral is Lδnm so that ∫ L

−L
f (x) sin

nπx
L

dx =
∞

∑
m=1

Lbmδnm

= Lbn.

Hence, for n = 1, 2, 3, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx. (8.7)

Our results for the Fourier series of a function f (x) with period 2L are thus given
by (8.2), (8.6) and (8.7).

8.4 Fourier cosine and sine series

View tutorial on YouTube

The Fourier series simplifies if f (x) is an even function such that f (−x) = f (x), or
an odd function such that f (−x) = − f (x). Use will be made of the following facts.
The function cos (nπx/L) is an even function and sin (nπx/L) is an odd function.
The product of two even functions is an even function. The product of two odd
functions is an even function. The product of an even and an odd function is an
odd function. And if g(x) is an even function, then∫ L

−L
g(x)dx = 2

∫ L

0
g(x)dx;

CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS 103

http://www.youtube.com/watch?v=ar1ouZ9DrNk


8.4. FOURIER COSINE AND SINE SERIES

and if g(x) is an odd function, then∫ L

−L
g(x)dx = 0.

We examine in turn the Fourier series for an even or an odd function. First, if
f (x) is even, then from (8.6) and (8.7) and our facts about even and odd functions,

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx,

bn = 0.
(8.8)

The Fourier series for an even function with period 2L is thus given by the Fourier
cosine series

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
, f (x) even. (8.9)

Second, if f (x) is odd, then

an = 0,

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx;
(8.10)

and the Fourier series for an odd function with period 2L is given by the Fourier
sine series

f (x) =
∞

∑
n=1

bn sin
nπx

L
, f (x) odd. (8.11)

Examples of Fourier series computed numerically can be obtained using the
Java applet found at http://www.falstad.com/fourier. Here, we demonstrate an
analytical example.

Example: Determine the Fourier cosine series of the even triangle function rep-
resented by Fig. 8.3.

View tutorial on YouTube

The triangle function depicted in Fig. 8.3 is an even function of x with period 2π
(i.e., L = π). Its definition on 0 < x < π is given by

f (x) = 1 − 2x
π

.

Because f (x) is even, it can be represented by the Fourier cosine series given by
(8.8) and (8.9). The coefficient a0 is

a0 =
2
π

∫ π

0
f (x)dx

=
2
π

∫ π

0

(
1 − 2x

π

)
dx

=
2
π

[
x − x2

π

]π

0

= 0.
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0
−1

0

1

−2π −π π 2π

Figure 8.3: The even triangle function.

Note that a0/2 is the average value of f (x) over one period, and it is obvious from
Fig. 8.3 that this value is zero. The coefficients for n > 0 are

an =
2
π

∫ π

0
f (x) cos (nx)dx

=
2
π

∫ π

0

(
1 − 2x

π

)
cos (nx)dx

=
2
π

∫ π

0
cos (nx)dx − 4

π2

∫ π

0
x cos (nx)dx

=
2

nπ
sin(nx)

]π

0 − 4
π2

{[ x
n

sin (nx)
]π

0
− 1

n

∫ π

0
sin (nx)dx

}
=

4
nπ2

∫ π

0
sin (nx)dx

= − 4
n2π2 cos (nx)

]π

0

=
4

n2π2

(
1 − cos (nπ)

)
.

Since

cos (nπ) =

{
−1, if n odd;

1, if n even;

we have

an =

{
8/(n2π2), if n odd;
0, if n even.
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The Fourier cosine series for the triangle function is therefore given by

f (x) =
8

π2

(
cos x +

cos 3x
32 +

cos 5x
52 + . . .

)
.

Convergence of this series is rapid. As an interesting aside, evaluation of this series
at x = 0, using f (0) = 1, yields an infinite series for π2/8:

π2

8
= 1 +

1
32 +

1
52 + . . . .

With Fourier series now included in our applied mathematics toolbox, we are ready
to solve the diffusion and wave equations in bounded domains.

8.5 Solution of the diffusion equation

8.5.1 Homogeneous boundary conditions
We consider one dimensional diffusion in a pipe of length L, and solve the diffusion
equation for the concentration u(x, t),

ut = Duxx, 0 ≤ x ≤ L, t > 0. (8.12)

Both initial and boundary conditions are required for a unique solution. That is, we
assume the initial concentration distribution in the pipe is given by

u(x, 0) = f (x), 0 ≤ x ≤ L. (8.13)

Furthermore, we assume that boundary conditions are given at the ends of the
pipes. When the concentration value is specified at the boundaries, the boundary
conditions are called Dirichlet boundary conditions. As the simplest example, we as-
sume here homogeneous Dirichlet boundary conditions, that is zero concentration
of dye at the ends of the pipe, which could occur if the ends of the pipe open up
into large reservoirs of clear solution,

u(0, t) = 0, u(L, t) = 0, t > 0. (8.14)

We will later also discuss inhomogeneous Dirichlet boundary conditions and homo-
geneous Neumann boundary conditions, for which the derivative of the concentration
is specified to be zero at the boundaries. Note that if f (x) is identically zero, then
the trivial solution u(x, t) = 0 satisfies the differential equation and the initial and
boundary conditions and is therefore the unique solution of the problem. In what
follows, we will assume that f (x) is not identically zero so that we need to find a
solution different than the trivial solution.

The solution method we use is called separation of variables. We assume that
u(x, t) can be written as a product of two other functions, one dependent only on
position x and the other dependent only on time t. That is, we make the ansatz

u(x, t) = X(x)T(t). (8.15)

Whether this ansatz will succeed depends on whether the solution indeed has this
form. Substituting (8.15) into (8.12), we obtain

XT′ = DX′′T,
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which we rewrite by separating the x and t dependence to opposite sides of the
equation:

X′′

X
=

1
D

T′

T
.

The left hand side of this equation is independent of t and the right hand side is
independent of x. Both sides of this equation are therefore independent of both x
and t and equal to a constant. Introducing −λ as the separation constant, we have

X′′

X
=

1
D

T′

T
= −λ,

and we obtain the two ordinary differential equations

X′′ + λX = 0, T′ + λDT = 0. (8.16)

Because of the boundary conditions, we must first consider the equation for X(x).
To solve, we need to determine the boundary conditions at x = 0 and x = L. Now,
from (8.14) and (8.15),

u(0, t) = X(0)T(t) = 0, t > 0.

Since T(t) is not identically zero for all t (which would result in the trivial solution
for u), we must have X(0) = 0. Similarly, the boundary condition at x = L requires
X(L) = 0. We therefore consider the two-point boundary value problem

X′′ + λX = 0, X(0) = X(L) = 0. (8.17)

The equation given by (8.17) is called an ode eigenvalue problem. Clearly, the
trivial solution X(x) = 0 is a solution. Nontrivial solutions exist only for discrete
values of λ. These discrete values of λ and the corresponding functions X(x) are
called the eigenvalues and eigenfunctions of the differential equation.

Since the form of the general solution of the ode depends on the sign of λ, we
consider in turn the cases λ > 0, λ < 0 and λ = 0. For λ > 0, we write λ = µ2 and
determine the general solution of

X′′ + µ2X = 0

to be
X(x) = A cos µx + B sin µx.

Applying the boundary condition at x = 0, we find A = 0. The boundary condition
at x = L then yields

B sin µL = 0.

The solution B = 0 results in the trivial solution for u and can be ruled out. There-
fore, we must have

sin µL = 0,

which is an equation for µ. The solutions are

µ = nπ/L,

where n is an integer. We have thus determined the eigenvalues λ = µ2 > 0 to be

λn = (nπ/L)2 , n = 1, 2, 3, . . . , (8.18)

CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS 107



8.5. SOLUTION OF THE DIFFUSION EQUATION

with corresponding eigenfunctions

Xn = sin (nπx/L). (8.19)

For λ < 0, we write λ = −µ2 and determine the general solution of

X′′ − µ2X = 0

to be
X(x) = A cosh µx + B sinh µx,

where we have previously introduced the hyperbolic sine and cosine functions in
§3.4.1. Applying the boundary condition at x = 0, we find A = 0. The boundary
condition at x = L then yields

B sinh µL = 0,

which for µ ̸= 0 has only the solution B = 0. Therefore, there is no nontrivial
solution for u with λ < 0. Finally, for λ = 0, we have

X′′ = 0,

with general solution
X(x) = A + Bx.

The boundary condition at x = 0 and x = L yields A = B = 0 so again there is no
nontrivial solution for u with λ = 0.

We now turn to the equation for T(t). The equation corresponding to the eigen-
value λn, using (8.18), is given by

T′ +
(

n2π2D/L2
)

T = 0,

which has solution proportional to

Tn = e−n2π2Dt/L2
. (8.20)

Therefore, multiplying the solutions given by (8.19) and (8.20), we conclude that the
functions

un(x, t) = sin (nπx/L)e−n2π2Dt/L2
(8.21)

satisfy the pde given by (8.12) and the boundary conditions given by (8.14) for every
positive integer n.

The principle of linear superposition for homogeneous linear differential equa-
tions then states that the general solution to (8.12) and (8.14) is given by

u(x, t) =
∞

∑
n=1

bnun(x, t)

=
∞

∑
n=1

bn sin (nπx/L)e−n2π2Dt/L2
.

(8.22)

The final solution step is to satisfy the initial conditions given by (8.13). At t = 0,
we have

f (x) =
∞

∑
n=1

bn sin (nπx/L). (8.23)
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We immediately recognize (8.23) as a Fourier sine series (8.11) for an odd function
f (x) with period 2L. Equation (8.23) is a periodic extension of our original f (x)
defined on 0 ≤ x ≤ L, and is an odd function because of the boundary condition
f (0) = 0. From our solution for the coefficients of a Fourier sine series (8.10), we
determine

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (8.24)

Thus the solution to the diffusion equation with homogeneous Dirichlet boundary
conditions defined by (8.12), (8.13) and (8.14) is given by (8.22) with the bn coeffi-
cients computed from (8.24).

Example: Determine the concentration of a dye in a pipe of length L, where the
dye has total initial mass M0 and is initially concentrated at the center of the
pipe, and the ends of the pipe are held at zero concentration.

The governing equation for concentration is the diffusion equation. We model the
initial concentration of the dye by a delta-function centered at x = L/2, that is,
u(x, 0) = f (x) = M0δ(x − L/2). Therefore, from (8.24),

bn =
2
L

∫ L

0
M0δ(x − L

2
) sin

nπx
L

dx

=
2M0

L
sin (nπ/2)

=

 2M0/L if n = 1, 5, 9, . . . ;
−2M0/L if n = 3, 7, 11, . . . ;
0 if n = 2, 4, 6, . . . .

With bn determined, the solution for u(x, t) given by (8.22) can be written as

u(x, t) =
2M0

L

∞

∑
n=0

(−1)n sin
(
(2n + 1)πx

L

)
e−(2n+1)2π2Dt/L2

.

When t ≫ L2/D, the leading-order term in the series is a good approximation and
is given by

u(x, t) ≈ 2M0

L
sin (πx/L)e−π2Dt/L2

.

The mass of the dye in the pipe is decreasing in time, diffusing into the reservoirs
located at both ends. The total mass in the pipe at time t can be found from

M(t) =
∫ L

0
u(x, t)dx,

and since ∫ L

0
sin (πx/L)dx =

2L
π

,

we have for large times

M(t) =
4M0

π
e−π2Dt/L2

.
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8.5.2 Inhomogeneous boundary conditions
Consider a diffusion problem where one end of the pipe has dye of concentration
held constant at C1 and the other held constant at C2, which could occur if the ends
of the pipe had large reservoirs of fluid with different concentrations of dye. With
u(x, t) the concentration of dye, the boundary conditions are given by

u(0, t) = C1, u(L, t) = C2, t > 0.

The concentration u(x, t) satisfies the diffusion equation with diffusivity D:

ut = Duxx.

If we try to solve this problem directly using separation of variables, we will run
into trouble. Applying the inhomogeneous boundary condition at x = 0 directly to
the ansatz u(x, t) = X(x)T(t) results in

u(0, t) = X(0)T(t) = C1;

so that
X(0) = C1/T(t).

However, our separation of variables ansatz assumes X(x) to be independent of t!
We therefore say that inhomogeneous boundary conditions are not separable.

The proper way to solve a problem with inhomogeneous boundary conditions
is to transform it into another problem with homogeneous boundary conditions.
As t → ∞, we assume that a stationary concentration distribution v(x) will attain,
independent of t. Since v(x) must satisfy the diffusion equation, we have

v′′(x) = 0, 0 ≤ x ≤ L,

with general solution
v(x) = A + Bx.

Since v(x) must satisfy the same boundary conditions of u(x, t), we have v(0) = C1
and v(L) = C2, and we determine A = C1 and B = (C2 − C1)/L.

We now express u(x, t) as the sum of the known asymptotic stationary con-
centration distribution v(x) and an unknown transient concentration distribution
w(x, t):

u(x, t) = v(x) + w(x, t).
Substituting into the diffusion equation, we obtain

∂

∂t
(v(x) + w(x, t)) = D

∂2

∂x2 (v(x) + w(x, t))

or
wt = Dwxx,

since vt = 0 and vxx = 0. The boundary conditions satisfied by w are

w(0, t) = u(0, t)− v(0) = 0,
w(L, t) = u(L, t)− v(L) = 0,

so that w is observed to satisfy homogeneous boundary conditions. If the initial
conditions are given by u(x, 0) = f (x), then the initial conditions for w are

w(x, 0) = u(x, 0)− v(x)
= f (x)− v(x).

The resulting equations may then be solved for w(x, t) using the technique for ho-
mogeneous boundary conditions, and u(x, t) subsequently determined.

110 CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS



8.5. SOLUTION OF THE DIFFUSION EQUATION

8.5.3 Pipe with closed ends
There is no diffusion of dye through the ends of a sealed pipe. Accordingly, the
mass flux of dye through the pipe ends, given by (8.1), is zero so that the boundary
conditions on the dye concentration u(x, t) becomes

ux(0, t) = 0, ux(L, t) = 0, t > 0, (8.25)

which are known as homogeneous Neumann boundary conditions. Again, we ap-
ply the method of separation of variables and as before, we obtain the two ordinary
differential equations given by (8.16). Considering first the equation for X(x), the
appropriate boundary conditions are now on the first derivative of X(x), and we
must solve

X′′ + λX = 0, X′(0) = X′(L) = 0. (8.26)

Again, we consider in turn the cases λ > 0, λ < 0 and λ = 0. For λ > 0, we write
λ = µ2 and determine the general solution of (8.26) to be

X(x) = A cos µx + B sin µx,

so that taking the derivative

X′(x) = −µA sin µx + µB cos µx.

Applying the boundary condition X′(0) = 0, we find B = 0. The boundary condi-
tion at x = L then yields

−µA sin µL = 0.

The solution A = 0 results in the trivial solution for u and can be ruled out. There-
fore, we must have

sin µL = 0,

with solutions
µ = nπ/L,

where n is an integer. We have thus determined the eigenvalues λ = µ2 > 0 to be

λn = (nπ/L)2 , n = 1, 2, 3, . . . , (8.27)

with corresponding eigenfunctions

Xn = cos (nπx/L). (8.28)

For λ < 0, we write λ = −µ2 and determine the general solution of (8.26) to be

X(x) = A cosh µx + B sinh µx,

so that taking the derivative

X′(x) = µA sinh µx + µB cosh µx.

Applying the boundary condition X′(0) = 0 yields B = 0. The boundary condition
X′(L) = 0 then yields

µA sinh µL = 0,

which for µ ̸= 0 has only the solution A = 0. Therefore, there is no nontrivial
solution for u with λ < 0. Finally, for λ = 0, the general solution of (8.26) is

X(x) = A + Bx,
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so that taking the derivative
X′(x) = B.

The boundary condition X′(0) = 0 yields B = 0; X′(L) = 0 is then trivially satisfied.
Therefore, we have an additional eigenvalue and eigenfunction given by

λ0 = 0, X0(x) = 1,

which can be seen as extending the formula obtained for eigenvalues and eigenvec-
tors for positive λ given by (8.27) and (8.28) to n = 0.

We now turn to the equation for T(t). The equation corresponding to eigenvalue
λn, using (8.27), is given by

T′ +
(

n2π2D/L2
)

T = 0,

which has solution proportional to

Tn = e−n2π2Dt/L2
, (8.29)

valid for n = 0, 1, 2, . . . . Therefore, multiplying the solutions given by (8.28) and
(8.29), we conclude that the functions

un(x, t) = cos (nπx/L)e−n2π2Dt/L2
(8.30)

satisfy the pde given by (8.12) and the boundary conditions given by (8.25) for every
nonnegative integer n.

The principle of linear superposition then yields the general solution as

u(x, t) =
∞

∑
n=0

cnun(x, t)

=
a0

2
+

∞

∑
n=1

an cos (nπx/L)e−n2π2Dt/L2
,

(8.31)

where we have redefined the constants so that c0 = a0/2 and cn = an, n = 1, 2, 3, . . . .
The final solution step is to satisfy the initial conditions given by (8.13). At t = 0,
we have

f (x) =
a0

2
+

∞

∑
n=1

an cos (nπx/L), (8.32)

which we recognize as a Fourier cosine series (8.9) for an even function f (x) with
period 2L. We have obtained a cosine series for the periodic extension of f (x)
because of the boundary condition f ′(0) = 0, which is satisfied by an even function
with continuous first derivative. From our solution (8.8) for the coefficients of a
Fourier cosine series, we determine

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. (8.33)

Thus the solution to the diffusion equation with homogenous Neumann boundary
conditions defined by (8.12), (8.13) and (8.25) is given by (8.31) with the coefficients
computed from (8.33).
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Example: Determine the concentration of a dye in a pipe of length L, where the
dye has total initial mass M0 and is initially concentrated at the center of the
pipe, and the ends of the pipe are sealed

Again we model the initial concentration of the dye by a delta-function centered at
x = L/2. From (8.33),

an =
2
L

∫ L

0
M0δ(x − L

2
) cos

nπx
L

dx

=
2M0

L
cos (nπ/2)

=

 2M0/L if n = 0, 4, 8, . . . ;
−2M0/L if n = 2, 6, 10, . . . ;
0 if n = 1, 3, 5, . . . .

The first two terms in the series for u(x, t) are given by

u(x, t) =
M0

L

[
1 − 2 cos (2πx/L)e−4π2Dt/L2

+ . . .
]

.

Notice that as t → ∞, u(x, t) → M0/L: the dye mass is conserved in the pipe (since
the pipe ends are sealed) and eventually diffused uniformly throughout the pipe of
length L.

8.6 Solution of the wave equation

8.6.1 Plucked string
We assume an elastic string with fixed ends is plucked like a guitar string. The gov-
erning equation for u(x, t), the position of the string from its equilibrium position,
is the wave equation

utt = c2uxx, (8.34)

with c2 = T/ρ and with boundary conditions at the string ends located at x = 0
and L given by

u(0, t) = 0, u(L, t) = 0. (8.35)

Since the wave equation is second-order in time, initial conditions are required for
both the displacement of the string due to the plucking and the initial velocity of
the displacement. We assume

u(x, 0) = f (x), ut(x, 0) = 0, 0 ≤ x ≤ L. (8.36)

Again we use the method of separation of variables and try the ansatz

u(x, t) = X(x)T(t). (8.37)

Substitution of our ansatz (8.37) into the wave equation (8.34) and separating vari-
ables results in

X′′

X
=

1
c2

T′′

T
= −λ,

yielding the two ordinary differential equations

X′′ + λX = 0, T′′ + λc2T = 0. (8.38)
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We solve first the equation for X(x). The appropriate boundary conditions for X
are given by

X(0) = 0, X(L) = 0, (8.39)

and we have solved this equation for X(x) previously in §8.5.1 (see (8.17)). A non-
trivial solution exists only when λ > 0, and our previously determined solution
was

λn = (nπ/L)2 , n = 1, 2, 3, . . . , (8.40)

with corresponding eigenfunctions

Xn = sin (nπx/L). (8.41)

With λn specified, the T equation then becomes

T′′
n +

n2π2c2

L2 Tn = 0,

with general solution given by

Tn(t) = A cos
nπct

L
+ B sin

nπct
L

. (8.42)

The second of the initial conditions given by (8.36) implies

ut(x, 0) = X(x)T′(0) = 0,

which can be satisfied only if T′(0) = 0. Applying this boundary condition to
(8.42), we find B = 0. Combining our solution for Xn(x), (8.41), and Tn(t), we have
determined that

un(x, t) = sin
nπx

L
cos

nπct
L

, n = 1, 2, 3, . . .

satisfies the wave equation, the boundary conditions at the string ends, and the
assumption of zero initial string velocity. Linear superposition of these solutions
results in the general solution for u(x, t) of the form

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
cos

nπct
L

. (8.43)

The remaining condition to satisfy is the initial displacement of the string, the first
equation of (8.36). We have

f (x) =
∞

∑
n=1

bn sin (nπx/L),

which is observed to be a Fourier sine series (8.11) for an odd function with period
2L. Therefore, the coefficients bn are given by (8.10),

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx, n = 1, 2, 3, . . . . (8.44)

Our solution to the wave equation with plucked string is thus given by (8.43) and
(8.44). Notice that the solution is time periodic with period 2L/c. The correspond-
ing fundamental frequency is the reciprocal of the period and is given by f = c/2L.
From our derivation of the wave equation in §8.2, the velocity c is related to the
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density of the string ρ and tension of the string T by c2 = T/ρ. Therefore, the
fundamental frequency (pitch) of our “guitar string” increases (is raised) with in-
creasing tension, decreasing string density, and decreasing string length. Indeed,
these are exactly the parameters used to construct, tune and play a guitar.

The wave nature of our solution and the physical significance of the velocity c
can be made more transparent if we make use of the trigonometric identity

sin x cos y =
1
2
(
sin (x + y) + sin (x − y)

)
.

With this identity, our solution (8.43) can be rewritten as

u(x, t) =
1
2

∞

∑
n=1

bn

(
sin

nπ(x + ct)
L

+ sin
nπ(x − ct)

L

)
. (8.45)

The first and second sine functions can be interpreted as a traveling wave moving
to the left or the right with velocity c. This can be seen by incrementing time,
t → t + δ, and observing that the value of the first sine function is unchanged
provided the position is shifted by x → x − cδ, and the second sine function is
unchanged provided x → x + cδ. Two waves travelling in opposite directions with
equal amplitude results in a standing wave.

8.6.2 Hammered string

In contrast to a guitar string that is plucked, a piano string is hammered. The
appropriate initial conditions for a piano string would be

u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ L. (8.46)

Our solution proceeds as previously, except that now the homogeneous initial con-
dition on T(t) is T(0) = 0, so that A = 0 in (8.42). The wave equation solution is
therefore

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
sin

nπct
L

. (8.47)

Imposition of initial conditions then yields

g(x) =
πc
L

∞

∑
n=1

nbn sin
nπx

L
.

The coefficient of the Fourier sine series for g(x) is seen to be nπcbn/L, and we have

nπcbn

L
=

2
L

∫ L

0
g(x) sin

nπx
L

dx,

or

bn =
2

nπc

∫ L

0
g(x) sin

nπx
L

dx.

8.6.3 General initial conditions

If the initial conditions on u(x, t) are generalized to

u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (8.48)
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0 a
0

b

x

y
u = 0

u = 0

u = 0 u = f(y)

Figure 8.4: Dirichlet problem for the Laplace equation in a rectangle.

then the solution to the wave equation can be determined using the principle of
linear superposition. Suppose v(x, t) is the solution to the wave equation with
initial condition (8.36) and w(x, t) is the solution to the wave equation with initial
conditions (8.46). Then we have

u(x, t) = v(x, t) + w(x, t),

since u(x, t) satisfies the wave equation, the boundary conditions, and the initial
conditions given by (8.48).

8.7 The Laplace equation

The diffusion equation in two spatial dimensions is

ut = D(uxx + uyy).

The steady-state solution, approached asymptotically in time, has ut = 0 so that the
steady-state solution u = u(x, y) satisfies the two-dimensional Laplace equation

uxx + uyy = 0. (8.49)

We will consider the mathematical problem of solving the two dimensional Laplace
equation inside a rectangular or a circular boundary. The value of u(x, y) will be
specified on the boundaries, defining this problem to be of Dirichlet type.

8.7.1 Dirichlet problem for a rectangle
We consider the Laplace equation (8.49) for the interior of a rectangle 0 < x < a,
0 < y < b, (see Fig. 8.4), with boundary conditions

u(x, 0) = 0, u(x, b) = 0, 0 < x < a;
u(0, y) = 0, u(a, y) = f (y), 0 ≤ y ≤ b.
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More general boundary conditions can be solved by linear superposition of solu-
tions.

We take our usual ansatz

u(x, y) = X(x)Y(y),

and find after substitution into (8.49),

X′′

X
= −Y′′

Y
= λ,

with λ the separation constant. We thus obtain the two ordinary differential equa-
tions

X′′ − λX = 0, Y′′ + λY = 0.

The homogeneous boundary conditions are X(0) = 0, Y(0) = 0 and Y(b) = 0.
We have already solved the equation for Y(y) in §8.5.1, and the solution yields the
eigenvalues

λn =
(nπ

b

)2
, n = 1, 2, 3, . . . ,

with corresponding eigenfunctions

Yn(y) = sin
nπy

b
.

The remaining X equation and homogeneous boundary condition is therefore

X′′ − n2π2

b2 X = 0, X(0) = 0,

and the solution is the hyperbolic sine function

Xn(x) = sinh
nπx

b
,

times a constant. Writing un = XnYn, multiplying by a constant and summing over
n, yields the general solution

u(x, y) =
∞

∑
n=0

cn sinh
nπx

b
sin

nπy
b

.

The remaining inhomogeneous boundary condition u(a, y) = f (y) results in

f (y) =
∞

∑
n=0

cn sinh
nπa

b
sin

nπy
b

,

which we recognize as a Fourier sine series for an odd function with period 2b, and
coefficient cn sinh (nπa/b). The solution for the coefficient is given by

cn =
2

b sinh nπa
b

∫ b

0
f (y) sin

nπy
b

dy.
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8.7.2 Dirichlet problem for a circle
The Laplace equation is commonly written symbolically as

∇2u = 0, (8.50)

where ∇2 is called the Laplacian, sometimes denoted as ∆. The Laplacian can be
written in various coordinate systems, and the choice of coordinate systems usually
depends on the geometry of the boundaries. Indeed, the Laplace equation is known
to be separable in 13 different coordinate systems! We have solved the Laplace
equation in two dimensions, with boundary conditions specified on a rectangle,
using

∇2 =
∂2

∂x2 +
∂2

∂y2 .

Here we consider boundary conditions specified on a circle, and write the Lapla-
cian in polar coordinates by changing variables from cartesian coordinates. Polar
coordinates is defined by the transformation (r, θ) → (x, y):

x = r cos θ, y = r sin θ; (8.51)

and the chain rule gives for the partial derivatives

∂u
∂r

=
∂u
∂x

∂x
∂r

+
∂u
∂y

∂y
∂r

,
∂u
∂θ

=
∂u
∂x

∂x
∂θ

+
∂u
∂y

∂y
∂θ

. (8.52)

After taking the partial derivatives of x and y using (8.51), we can write the trans-
formation (8.52) in matrix form as(

∂u/∂r
∂u/∂θ

)
=

(
cos θ sin θ

−r sin θ r cos θ

)(
∂u/∂x
∂u/∂y

)
. (8.53)

Inversion of (8.53) can be determined from the following result, commonly proved
in a linear algebra class. If

A =

(
a b
c d

)
, det A ̸= 0,

then

A−1 =
1

det A

(
d −b

−c a

)
.

Therefore, since the determinant of the 2 × 2 matrix in (8.53) is r, we have(
∂u/∂x
∂u/∂y

)
=

(
cos θ − sin θ/r
sin θ cos θ/r

)(
∂u/∂r
∂u/∂θ

)
. (8.54)

Rewriting (8.54) in operator form, we have

∂

∂x
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r
∂

∂θ
. (8.55)

To find the Laplacian in polar coordinates with minimum algebra, we combine
(8.55) using complex variables as

∂

∂x
+ i

∂

∂y
= eiθ

(
∂

∂r
+

i
r

∂

∂θ

)
, (8.56)
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so that the Laplacian may be found by multiplying both sides of (8.56) by its com-
plex conjugate, taking care with the computation of the derivatives on the right-
hand-side:

∂2

∂x2 +
∂2

∂y2 = eiθ
(

∂

∂r
+

i
r

∂

∂θ

)
e−iθ

(
∂

∂r
− i

r
∂

∂θ

)
=

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 .

We have therefore determined that the Laplacian in polar coordinates is given by

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 , (8.57)

which is sometimes written as

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2 .

We now consider the solution of the Laplace equation in a circle with radius
r < a subject to the boundary condition

u(a, θ) = f (θ), 0 ≤ θ ≤ 2π. (8.58)

An additional boundary condition due to the use of polar coordinates is that u(r, θ)
is periodic in θ with period 2π. Furthermore, we will also assume that u(r, θ) is
finite within the circle.

The method of separation of variables takes as our ansatz

u(r, θ) = R(r)Θ(θ),

and substitution into the Laplace equation (8.50) using (8.57) yields

R′′Θ +
1
r

R′Θ +
1
r2 RΘ′′ = 0,

or

r2 R′′

R
+ r

R′

R
= −Θ′′

Θ
= λ,

where λ is the separation constant. We thus obtain the two ordinary differential
equations

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0.

The Θ equation is solved assuming periodic boundary conditions with period 2π.
If λ < 0, then no periodic solution exists. If λ = 0, then Θ can be constant. If
λ = µ2 > 0, then

Θ(θ) = A cos µθ + B sin µθ,

and the requirement that Θ is periodic with period 2π forces µ to be an integer.
Therefore,

λn = n2, n = 0, 1, 2, . . . ,

with corresponding eigenfunctions

Θn(θ) = An cos nθ + Bn sin nθ.
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The R equation for each eigenvalue λn then becomes

r2R′′ + rR′ − n2R = 0, (8.59)

which is an Euler equation. With the ansatz R = rs, (8.59) reduces to the algebraic
equation s(s − 1) + s − n2 = 0, or s2 = n2. Therefore, s = ±n, and there are two
real solutions when n > 0 and degenerate solutions when n = 0. When n > 0, the
solution for R(r) is

Rn(r) = Arn + Br−n.

The requirement that u(r, θ) is finite in the circle forces B = 0 since r−n becomes
unbounded as r → 0. When n = 0, the solution for R(r) is

Rn(r) = A + B ln r,

and again finite u in the circle forces B = 0. Therefore, the solution for n = 0, 1, 2, . . .
is Rn = rn. Thus the general solution for u(r, θ) may be written as

u(r, θ) =
A0

2
+

∞

∑
n=1

rn(An cos nθ + Bn sin nθ), (8.60)

where we have separated out the n = 0 solution to write our solution in a form
similar to the standard Fourier series given by (8.2). The remaining boundary con-
dition (8.58) specifies the values of u on the circle of radius a, and imposition of this
boundary condition results in

f (θ) =
A0

2
+

∞

∑
n=1

an(An cos nθ + Bn sin nθ). (8.61)

Equation (8.61) is a Fourier series for the periodic function f (θ) with period 2π, i.e.,
L = π in (8.2). The Fourier coefficients an An and anBn are therefore given by (8.6)
and (8.7) to be

an An =
1
π

∫ 2π

0
f (φ) cos nφdφ, n = 0, 1, 2, . . . ;

anBn =
1
π

∫ 2π

0
f (φ) sin nφdφ, n = 1, 2, 3, . . . , (8.62)

where we have used φ for the dummy variable of integration.
A remarkable fact is that the infinite series solution for u(r, θ) can be summed

explicitly. Substituting (8.62) into (8.60), we obtain

u(r, θ) =
1

2π

∫ 2π

0
dφ f (φ)

[
1 + 2

∞

∑
n=1

( r
a

)n
(cos nθ cos nφ + sin nθ sin nφ)

]

=
1

2π

∫ 2π

0
dφ f (φ)

[
1 + 2

∞

∑
n=1

( r
a

)n
cos n(θ − φ)

]
.

We can sum the infinite series by writing 2 cos n(θ − φ) = ein(θ−φ) + e−in(θ−φ), and
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using the sum of the geometric series ∑∞
n=1 zn = z/(1 − z) to obtain

1 + 2
∞

∑
n=1

( r
a

)n
cos n(θ − φ) = 1 +

∞

∑
n=1

(
rei(θ−φ)

a

)n

+
∞

∑
n=1

(
re−i(θ−φ)

a

)n

= 1 +

(
rei(θ−φ)

a − rei(θ−φ)
+ c.c.

)

=
a2 − r2

a2 − 2ar cos (θ − φ) + r2 .

Therefore,

u(r, θ) =
a2 − r2

2π

∫ 2π

0

f (φ)
a2 − 2ar cos (θ − φ) + r2 dφ,

an integral result for u(r, θ) known as Poisson’s formula. As a trivial example,
consider the solution for u(r, θ) if f (θ) = F, a constant. Clearly, u(r, θ) = F satisfies
both the Laplace equation and the boundary conditions so must be the solution.
You can verify that u(r, θ) = F is indeed the solution by showing that

∫ 2π

0

dφ

a2 − 2ar cos (θ − φ) + r2 =
2π

a2 − r2 .

8.8 The Schrödinger equation

The Schrödinger equation is the equation of motion for nonrelativistic quantum
mechanics. This equation is a linear partial differential equation and in simple
situations can be solved using the technique of separation of variables. Luckily, one
of the cases that can be solved analytically is the hydrogen atom. It can be argued
that the greatest success of classical mechanics was the solution of the Earth-Sun
system. Similarly, it can be argued that the greatest success of quantum mechanics
was the solution of the electron-proton system. The mathematical solutions of these
classical and quantum two-body problems rank among the highest achievements of
mankind.

8.8.1 Heuristic derivation of the Schrödinger equation

Nature consists of waves and particles. Early in the twentieth century, light was
discovered to act as both a wave and a particle, and quantum mechanics assumes
that matter can also act in both ways.

In general, waves are described by their wavelength λ and frequency ν, or equiv-
alently their wavenumber k = 2π/λ and their angular frequency ω = 2πν. The
Planck-Einstein relations for light postulated that the energy E and momentum p
of a light particle, called a photon, is proportional to the angular frequency ω and
wavenumber k of the light wave. The proportionality constant is called “h bar”,
denoted as h̄, and is related to the original Planck’s constant h by h̄ = h/2π. The
Planck-Einstein relations are given by

E = h̄ω, p = h̄k.

De Broglie in 1924 postulated that matter also follows these relations.

CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS 121



8.8. THE SCHRÖDINGER EQUATION

A heuristic derivation of the Schrödinger equation for a particle of mass m and
momentum p constrained to move in one dimension begins with the classical equa-
tion

p2

2m
+ V(x, t) = E, (8.63)

where p2/2m is the kinetic energy of the mass, V(x, t) is the potential energy, and
E is the total energy.

In search of a wave equation, we consider how to write a free wave in one
dimension. Using a real function, we could write

Ψ = A cos (kx − ωt + φ), (8.64)

where A is the amplitude and φ is the phase. Or using a complex function, we
could write

Ψ = Cei(kx−ωt), (8.65)

where C is a complex number containing both amplitude and phase.
We now rewrite the classical energy equation (8.63) using the Planck-Einstein

relations. After multiplying by a wavefunction, we have

h̄2

2m
k2Ψ(x, t) + V(x, t)Ψ(x, t) = h̄ωΨ(x, t).

We would like to replace k and ω, which refer to the wave characteristics of the
particle, by differential operators acting on the wavefunction Ψ(x, t). If we consider
V(x, t) = 0 and the free particle wavefunctions given by (8.64) and (8.65), it is easy
to see that to replace both k2 and ω by derivatives we need to use the complex form
of the wavefunction and explicitly introduce the imaginary unit i, that is

k2 → − ∂2

∂x2 , ω → i
∂

∂t
.

Doing this, we obtain the intrinsically complex equation

− h̄2

2m
∂2Ψ
∂x2 + V(x, t)Ψ = ih̄

∂Ψ
∂t

,

which is the one-dimensional Schrödinger equation for a particle of mass m in a
potential V = V(x, t). This equation is easily generalized to three dimensions and
takes the form

− h̄2

2m
∇2Ψ(x, t) + V(x, t)Ψ(x, t) = ih̄

∂Ψ(x, t)
∂t

, (8.66)

where in Cartesian coordinates the Laplacian ∇2 is written as

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

The Born interpretation of the wavefunction states that |Ψ(x, t)|2 is the probabil-
ity density function of the particle’s location. That is, the spatial integral of |Ψ(x, t)|2
over a volume V gives the probability of finding the particle in V at time t. Since
the particle must be somewhere, the wavefunction for a bound particle is usually
normalized so that ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ(x, y, z; t)|2dx dy dz = 1.
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The simple requirements that the wavefunction be normalizable as well as single
valued admits an analytical solution of the Schrödinger equation for the hydrogen
atom.

8.8.2 The time-independent Schrödinger equation

The space and time variables of the time-dependent Schrödinger equation (8.66)
can be separated provided the potential function V(x, t) = V(x) is independent of
time. We try Ψ(x, t) = ψ(x) f (t) and obtain

− h̄2

2m
f∇2ψ + V(x)ψ f = ih̄ψ f ′.

Dividing by ψ f , the equation separates as

− h̄2

2m
∇2ψ

ψ
+ V(x) = ih̄

f ′

f
.

The left-hand side is independent of t, the right-hand side is independent of x, so
both the left- and right-hand sides must be independent of x and t and equal to a
constant. We call this separation constant E, thereby reintroducing the total energy
into the equation. We now have the two differential equations

f ′ = − iE
h̄

f , − h̄2

2m
∇2ψ + V(x)ψ = Eψ.

The second equation is called the time-independent Schrödinger equation. The first
equation can be easily integrated to obtain

f (t) = e−iEt/h̄,

which can be multiplied by a arbitrary constant.

8.8.3 Particle in a one-dimensional box

We assume that a particle of mass m is able to move freely in only one dimension
and is confined to the region defined by 0 < x < L. This is perhaps the sim-
plest quantum mechanical problem with quantized energy levels. We take as the
potential energy function

V(x) =

{
0, 0 < x < L,
∞, otherwise,

where we may assume that the particle is forbidden from the region with infinite
potential energy. We will simply take as the boundary conditions on the wavefunc-
tion

ψ(0) = ψ(L) = 0. (8.67)

For this potential, the time-independent Schrödinger equation for 0 < x < L
reduces to

− h̄2

2m
d2ψ

dx2 = Eψ,
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which we write in a familiar form as

d2ψ

dx2 +

(
2mE

h̄2

)
ψ = 0. (8.68)

Equation (8.68) together with the boundary conditions (8.67) form an ode eigen-
value problem, which is in fact identical to the problem we solved for the diffusion
equation in subsection 8.5.1.

The general solution to this second-order differential equation is given by

ψ(x) = A cos

√
2mEx

h̄
+ B sin

√
2mEx

h̄
.

The first boundary condition ψ(0) = 0 yields A = 0. The second boundary condi-
tion ψ(L) = 0 yields √

2mEL
h̄

= nπ, n = 1, 2, 3, . . . .

The energy levels of the particle are therefore quantized, and the allowed values are
given by

En =
n2π2h̄2

2mL2 .

The corresponding wavefunction is given by ψn = B sin (nπx/L). We can normalize
each wavefunction so that ∫ L

0
|ψn(x)|2dx = 1,

obtaining B =
√

2/L. We have therefore obtained

ψn(x) =

{√
2
L sin nπx

L , 0 < x < L;

0, otherwise.

8.8.4 The simple harmonic oscillator

Hooke’s law for a mass on a spring is given by

F = −Kx,

where K is the spring constant. The potential energy V(x) in classical mechanics
satisfies

F = −∂V/∂x,

so that the potential energy of the spring is given by

V(x) =
1
2

Kx2.

Recall that the differential equation for a classical mass on a spring is given from
Newton’s law by

mẍ = −Kx,

which can be rewritten as
ẍ + ω2x = 0,
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where ω2 = K/m. Following standard notation, we will therefore write the poten-
tial energy as

V(x) =
1
2

mω2x2.

The time-independent Schrödinger equation for the one-dimensional simple har-
monic oscillator then becomes

− h̄2

2m
d2ψ

dx2 +
1
2

mω2x2ψ = Eψ. (8.69)

The relevant boundary conditions are ψ → 0 as x → ±∞ so that the wavefunction
is normalizable.

The Schrödinger equation given by (8.69) can be made neater by nondimension-
alization. We rewrite (8.69) as

d2ψ

dx2 +

(
2mE

h̄2 − m2ω2x2

h̄2

)
ψ = 0, (8.70)

and observe that the dimension [h̄2/m2ω2] = l4, where l is a unit of length. We
therefore let

x =

√
h̄

mω
y, ψ(x) = u(y),

and (8.70) becomes
d2u
dy2 + (ℰ − y2)u = 0, (8.71)

with the dimensionless energy given by

ℰ = 2E/h̄ω, (8.72)

and boundary conditions
lim

y→±∞
u(y) = 0. (8.73)

The dimensionless Schrödinger equation given by (8.71) together with the bound-
ary conditions (8.73) forms another ode eigenvalue problem. A nontrivial solution
for u = u(y) exists only for discrete values of ℰ , resulting in the quantization of the
energy levels. Since the second-order ode given by (8.71) has a nonconstant coeffi-
cient, we can use the techniques of Chapter 5 to find a convergent series solution
for u = u(y) that depends on ℰ . However, we will then be faced with the diffi-
cult problem of determining the values of ℰ for which u(y) satisfies the boundary
conditions (8.73).

A path to an analytical solution can be discovered if we first consider the behav-
ior of u for large values of y. With y2 >> ℰ , (8.71) reduces to

d2u
dy2 − y2u = 0. (8.74)

To determine the behavior of u for large y, we try the ansatz

u(y) = eay2
.

We have
u′(y) = 2ayeay2

,
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u′′(y) = eay2
(

2a + 4a2y2
)
≈ 4a2y2eay2

,

and substitution into (8.74) results in

(4a2 − 1)y2 = 0,

yielding a = ±1/2. Therefore at large y, u(y) either grows like ey2/2 or decays like
e−y2/2. Here, we have neglected a possible polynomial factor in front of the ex-
ponential functions. Clearly, the boundary conditions forbid the growing behavior
and only allow the decaying behavior.

We proceed further by letting

u(y) = H(y)e−y2/2,

and determining the differential equation for H(y). After some simple calculation,
we have

u′(y) = (H′ − yH)e−y2/2, u′′(y) =
(

H′′ − 2yH′ + (y2 − 1)H
)

e−y2/2.

Substitution of the second derivative and the function into (8.71) results in the dif-
ferential equation

H′′ − 2yH′ + (ℰ − 1)H = 0. (8.75)

We now solve (8.75) by a power-series ansatz. We try

H(y) =
∞

∑
k=0

akyk.

Substitution into (8.75) and shifting indices as detailed in Chapter 5 results in

∞

∑
k=0

(
(k + 2)(k + 1)ak+2 + (ℰ − 1 − 2k)ak

)
yk = 0.

We have thus obtained the recursion relation

ak+2 =
(1 + 2k)− ℰ
(k + 2)(k + 1)

ak, k = 0, 1, 2, . . . . (8.76)

Now recall that apart from a possible multiplicative polynomial factor, u(y) ∼ ey2/2

or e−y2/2. Therefore, H(y) either goes like a polynomial times ey2
or a polynomial.

The function H(y) will be a polynomial only if ℰ takes on specific values which
truncate the infinite power series.

Before we jump to this conclusion, I want to show that if the power series does
not truncate, then H(y) does indeed grow like ey2

for large y. We first write the
Taylor series for ey2

:

ey2
= 1 + y2 +

y4

2!
+

y6

3!
+ . . .

=
∞

∑
k=0

bkyk,

where

bk =

{
1

(k/2)! , n even;

0, k odd.
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For large values of y, the later terms of the power series dominate the earlier terms
and the behavior of the function is determined by the large k coefficients. Provided
k is even, we have

bk+2
bk

=
(k/2)!

((k + 2)/2)!

=
1

(k/2) + 1

∼ 2
k

.

The ratio of the coefficients would have been the same even if we had multiplied
ey2

by a polynomial.
The behavior of the coefficients for large k of our solution to the Schrödinger

equation is given by the recursion relation (8.76, and is

ak+2
ak

=
(1 + 2k)− ℰ
(k + 2)(k + 1)

∼ 2k
k2

=
2
k

,

the same behavior as the Taylor series for ey2
. For large y, then, the infinite power

series for H(y) will grow as ey2
times a polynomial. Since this does not satisfy the

boundary conditions for u(y) at infinity, we must force the power series to truncate,
which it does if we set ℰ = ℰn, where

ℰn = 1 + 2n, n = 0, 1, 2, . . . ,

resulting in quantization of the energy. The dimensional result is

En = h̄ω(n +
1
2
),

with the ground state energy level given by E0 = h̄ω/2. The wavefunctions asso-
ciated with each En can be determined from the power series and are the so-called
Hermite polynomials times the decaying exponential factor. The constant coefficient
can be determined by requiring the wavefunctions to integrate to one.

For illustration, the first two energy eigenfunctions, corresponding to the ground
state and the first excited state, are given by

ψ0(x) =
(mω

πh̄

)1/4
e−mωx2/2h̄, ψ1(x) =

(mω

πh̄

)1/4
√

2mω

h̄
xe−mωx2/2h̄.

8.8.5 Particle in a three-dimensional box
To warm up to the analytical solution of the hydrogen atom, we solve what may be
the simplest three-dimensional problem: a particle of mass m able to move freely
inside a cube. Here, with three spatial dimensions, the potential is given by

V(x, y, z) =

{
0, 0 < x, y, z < L,
∞, otherwise.
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We may simply impose the boundary conditions

ψ(0, y, z) = ψ(L, y, z) = ψ(x, 0, z) = ψ(x, L, z) = ψ(x, y, 0) = ψ(x, y, L) = 0.

The Schrödinger equation for the particle inside the cube is given by

− h̄2

2m

(
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2

)
= Eψ.

We separate this equation by writing

ψ(x, y, z) = X(x)Y(y)Z(z),

and obtain

− h̄2

2m
(
X′′YZ + XY′′Z + XYZ′′) = EXYZ.

Dividing by XYZ and isolating the x-dependence first, we obtain

− h̄2

2m
X′′

X
=

h̄2

2m

(
Y′′

Y
+

Z′′

Z

)
+ E.

The left-hand side is independent of y and z and the right-hand side is independent
of x so that both sides must be a constant, which we call Ex. Next isolating the
y-dependence, we obtain

− h̄2

2m

(
Y′′

Y

)
=

h̄2

2m

(
Z′′

Z

)
+ E − Ex.

The left-hand side is independent of x and z and the right-hand side is independent
of x and y so that both sides must be a constant, which we call Ey. Finally, we define
Ez = E − Ex − Ey. The resulting three differential equations are given by

X′′ +
2mEx

h̄2 X = 0, Y′′ +
2mEy

h̄2 Y = 0, Z′′ +
2mEz

h̄2 Z = 0.

These are just three independent one-dimensional box equations so that the energy
eigenvalue is given by

Enxnynz =
(n2

x + n2
y + n2

z)π
2h̄2

2mL2 .

and the associated wavefunction is given by

ψnxnynz =

{( 2
L
)3/2

sin nπx
L sin nπy

L sin nπz
L , 0 < x, y, z < L;

0, otherwise.

8.8.6 The hydrogen atom

Hydrogen-like atoms, made up of a single electron and a nucleus, are the atomic
two-body problems. As is also true for the classical two-body problem, consisting
of say a planet and the Sun, the atomic two-body problem can be reduced to a
one-body problem by transforming to center-of-mass coordinates and defining a
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Figure 8.5: The spherical coordinate system, with radial distance r, polar angle θ and
azimuthal angle φ. (Public domain from Wikipedia.)

reduced mass µ. We will not go into these details here, but will just take as the
relevant Schrödinger equation

− h̄2

2µ
∇2ψ + V(r)ψ = Eψ, (8.77)

where the potential energy V = V(r) is a function only of the distance r of the
reduced mass to the center-of-mass. The explicit form of the potential energy from
the electrostatic force between an electron of charge −e and a nucleus of charge
+Ze is given by

V(r) = − Ze2

4πε0r
. (8.78)

With V = V(r), the Schrödinger equation (8.77) is separable in spherical coordi-
nates. With reference to Fig. 8.5, the radial distance r, polar angle θ and azimuthal
angle φ are related to the usual cartesian coordinates by

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ;

and by a change-of-coordinates calculation, the Laplacian can be shown to take the
form

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2 . (8.79)

The volume differential dτ in spherical coordinates is given by

dτ = r2 sin θdrdθdφ. (8.80)

A complete solution to the hydrogen atom is somewhat involved, but neverthe-
less is such and important and fundamental problem that I will pursue it here. Our
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final result will lead us to obtain the three well-known quantum numbers of the
hydrogen atom, namely the principle quantum number n, the azimuthal quantum
number l, and the magnetic quantum number m.

With ψ = ψ(r, θ, φ), we first separate out the angular dependence of the Schrödinger
equation by writing

ψ(r, θ, φ) = R(r)Y(θ, φ). (8.81)

Substitution of (8.81) into (8.77) and using the spherical coordinate form for the
Laplacian (8.79) results in

− h̄2

2µ

[
Y
r2

d
dr

(
r2 dR

dr

)
+

R
r2 sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

R
r2 sin2 θ

∂2Y
∂φ2

]
+ V(r)RY = ERY.

To finish the separation step, we multiply by −2µr2/h̄2RY and isolate the r-dependence
on the left-hand side:

1
R

[
d
dr

(
r2 dR

dr

)]
+

2µr2

h̄2 (E − V(r)) = − 1
Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2

]
.

The left-hand side is independent of θ and φ and the right-hand side is independent
of r, so that both sides equal a constant, which we will call λ1. The R equation is
then obtained after multiplication by R/r2:

1
r2

d
dr

(
r2 dR

dr

)
+

{
2µ

h̄2 [E − V(r)]− λ1

r2

}
R = 0. (8.82)

The Y equation is obtained after multiplication by Y:

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂φ2 + λ1Y = 0. (8.83)

To further separate the Y equation, we write

Y(θ, φ) = Θ(θ)Φ(φ). (8.84)

Substitution of (8.84) into (8.83) results in

Φ
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

Θ
sin2 θ

d2Φ
dφ2 + λ1ΘΦ = 0.

To finish this separation, we multiply by sin2 θ/ΘΦ and isolate the θ-dependence
on the left-hand side to obtain

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ1 sin2 θ = − 1

Φ
d2Φ
dφ2 .

The left-hand side is independent of φ and the right-hand side is independent of
θ so that both sides equal a constant, which we will call λ2. The Θ equation is
obtained after multiplication by Θ/ sin2 θ:

1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

(
λ1 −

λ2

sin2 θ

)
Θ = 0. (8.85)
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The Φ equation is obtained after multiplication by Φ:

d2Φ
dφ2 + λ2Φ = 0. (8.86)

The three eigenvalue ode equations for R(r), Θ(θ) and Φ(φ) are thus given by
(8.82), (8.85) and (8.86), with eigenvalues E, λ1 and λ2.

Boundary conditions on the wavefunction determine the allowed values for the
eigenvalues. We first solve (8.86). The relevant boundary condition on Φ = Φ(φ) is
its single valuedness, and since the azimuthal angle is a periodic variable, we have

Φ(φ + 2π) = Φ(φ). (8.87)

Periodic solutions for Φ(φ) are possible only if λ2 ≥ 0. We therefore obtain using
the complex form the general solutions of (8.86):

Φ(φ) =

{
Aei

√
λ2φ + Be−i

√
λ2φ, λ2 > 0,

C + Dφ, λ2 = 0.

The periodic boundary conditions given by (8.87) requires that
√

λ2 is an integer
and D = 0. We therefore define λ2 = m2, where m is any integer, and take as our
eigenfunction

Φm(φ) =
1√
2π

eimφ,

where we have nomalized Φm so that∫ 2π

0
|Φm(φ)|2dφ = 1.

The quantum number m is commonly called the magnetic quantum number be-
cause when the atom is placed in an external magnetic field, its energy levels be-
come dependent on m.

To solve the Θ equation (8.85), we let

w = cos θ, P(w) = Θ(θ).

Then
sin2 θ = 1 − w2

and
dΘ
dθ

=
dP
dw

dw
dθ

= − sin θ
dP
dw

,

allowing us the replacement
d
dθ

= − sin θ
d

dw
.

With these substitutions and λ2 = m2, (8.85) becomes

d
dw

[
(1 − w2)

dP
dw

]
+

(
λ1 −

m2

1 − w2

)
P = 0. (8.88)

To solve (8.88), we first consider the case m = 0. Expanding the derivative, (8.88)
then becomes

(1 − w2)
d2P
dw

− 2w
dP
dw

+ λ1P = 0. (8.89)
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Since this is an ode with nonconstant coefficients, we try a power series ansatz of
the usual form

P(w) =
∞

∑
k=0

akwk. (8.90)

Substitution of (8.90) into (8.89) yields

∞

∑
k=2

k(k − 1)akwk−2 −
∞

∑
k=0

k(k − 1)akwk −
∞

∑
k=0

2kakwk +
∞

∑
k=0

λ1akwk = 0.

Shifting the index in the first expression and combining terms results in

∞

∑
k=0

{
(k + 2)(k + 1)ak+2 −

[
(k(k + 1)− λ1

]
ak

}
wk = 0.

Finally, setting the coefficients of the power series equal to zero results in the recur-
sion relation

ak+2 =
k(k + 1)− λ1

(k + 2)(k + 1)
ak.

Even and odd coefficients decouple, and the even solution is of the form

Peven(w) =
∞

∑
n=0

a2nw2n,

and the odd solution is of the form

Podd(w) =
∞

∑
n=0

a2n+1w2n+1.

An application of Gauss’s test for series convergence can show that both the even
and the odd solutions diverge when |w| = 1 unless the series terminates. Since the
wavefunction must be everywhere finite, the series must terminate and we obtain
the discrete eigenvalues

λ1 = l(l + 1), for l = 0, 1, 2, . . . . (8.91)

The quantum number l is commonly called the azimuthal quantum number de-
spite having arisen from the polar angle equation. The resulting eigenfunctions
Pl(w) are called the Legendre polynomials. These polynomials are usually normal-
ized such that Pl(1) = 1, and the first four Legendre polynomials are given by

P0(w) = 1, P1(w) = w,

P2(w) =
1
2
(3w2 − 1), P3(w) =

1
2
(5w3 − 3w).

With λ1 = l(l + 1), we now reconsider (8.88). Expanding the derivative gives

(1 − w2)
d2P
dw2 − 2w

dP
dw

+

(
l(l + 1)− m2

1 − w2

)
P = 0. (8.92)

Equation 8.92) is called the associated Legendre equation. The associated Legendre
equation with m = 0,

(1 − w2)
d2P
dw2 − 2w

dP
dw

+ l(l + 1)P = 0. (8.93)
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is called the Legendre equation. We now know that the Legendre equation has
eigenfunctions given by the Legendre polynomials, Pl(w). Amazingly, the eigen-
functions of the associated Legendre equation can be obtained directly from the
Legendre polynomials. For ease of notation, we will assume that m > 0. To include
the cases m < 0, we need only replace m everywhere by |m|.

To see how to obtain the eigenfunctions of the associated Legendre equation, we
will first show how to derive the associated Legendre equation from the Legendre
equation. We will need to differentiate the Legendre equation (8.93) m times and to
do this we will make use of Leibnitz’s formula for the mth derivative of a product:

dm

dxm [ f (x)g(x)] =
m

∑
j=0

(
m
j

)
dj f
dxj

dm−jg
dxm−j ,

where the binomial coefficients are given by(
m
j

)
=

m!
j!(m − j)!

.

We first compute

dm

dwm

[
(1 − w2)

d2P
dw2

]
=

m

∑
j=0

(
m
j

) [
dj

dwj (1 − w2)

] [
dm−j

dwm−j
d2P
dw2

]
.

Only the terms j = 0, 1 and 2 contribute, and using(
m
0

)
= 1,

(
m
1

)
= m,

(
m
2

)
=

m(m − 1)
2

,

and the more compact notation

dnP
dwn = P(n)(w),

we find

dm

dwm

[
(1 − w2)P(2)

]
= (1 − w2)P(m+2) − 2mwP(m+1) − m(m − 1)P(m). (8.94)

We next compute

dm

dwm

[
2w

dP
dw

]
=

m

∑
j=0

(
m
j

) [
dj

dwj 2w
] [

dm−j

dwm−j
dP
dw

]
.

Here, only the terms j = 0 and 1 contribute, and we find

dm

dwm

[
2wP(1)

]
= 2wP(m+1) + 2mP(m). (8.95)

Differentiating the Legendre equation (8.93) m times, using (8.94) and (8.95), and
defining

p(w) = P(m)(w)

results in

(1 − w2)
d2 p
dw2 − 2(1 + m)w

dp
dw

+ [l(l + 1)− m(m + 1)] p = 0. (8.96)
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Finally, we define
q(w) = (1 − w2)m/2 p(w). (8.97)

Then using
dp
dw

= (1 − w2)−m/2
(

dq
dw

+
mwq

1 − w2

)
(8.98)

and

d2 p
dw2 = (1 − w2)−m/2

{
d2q
dw2 +

2mw
1 − w2

dq
dw

+

[
m(m + 2)w2

(1 − w2)2 +
m

1 − w2

]
q
}

, (8.99)

we substitute (8.98) and (8.99) into (8.96) and cancel the common factor of (1 −
w2)−m/2 to obtain

(1 − w2)
d2q
dw2 − 2w

dq
dw

+

[
l(l + 1)− m2

1 − w2

]
q = 0,

which is just the associated Legendre equation (8.92) for q = q(w). We may call
the eigenfunctions of the associated Legendre equation Plm(w), and with q(w) =
Plm(w), we have determined the following relationship between the eigenfunctions
of the associated Legendre equation and the Legendre polynomials:

Plm(w) = (1 − w2)|m|/2 d|m|

dw|m| Pl(w), (8.100)

where we have now replaced m by its absolute value to include the possibility of
negative integers. Since Pl(w) is a polynomial of order l, the expression given by
(8.100) is nonzero only when |m| ≤ l. Sometimes the magnetic quantum number m
is written as ml to signify that its range of allowed values depends on the value of
l.

At last, we need to solve the eigenvalue ode for R = R(r) given by (8.82), with
V(r) given by (8.78) and λ1 given by (8.91). The radial equation is now

1
r2

d
dr

(
r2 dR

dr

)
+

{
2µ

h̄2

[
E +

Ze2

4πε0r

]
− l(l + 1)

r2

}
R = 0. (8.101)

Note that each term in this equation has units of one over length squared times R
and that E < 0 for a bound state solution.

It is customary to nondimensionalize the length scale so that 2µE/h̄2 = −1/4 in
dimensionless units. Furthermore, multiplication of R(r) by r can also simplify the
derivative term. To these ends, we change variables to

ρ =

√
8µ|E|
h̄

r, u(ρ) = rR(r),

and obtain after multiplication of the entire equation by ρ the simplified equation

d2u
dρ2 +

{
α

ρ
− 1

4
− l(l + 1)

ρ2

}
u = 0, (8.102)

where α now plays the role of a dimensionless eigenvalue, and is given by

α =
Ze2

4πε0h̄

√
µ

2|E| . (8.103)
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As we saw for the problem of the simple harmonic oscillator, it may be helpful
to consider the behavior of u = u(ρ) for large ρ. For large ρ, (8.102) simplifies to

d2u
dρ2 − 1

4
u = 0,

with two independent solutions

u(ρ) =

{
eρ/2,
e−ρ/2.

Since the relevant boundary condition here must be limρ→∞ u(ρ) = 0, only the
second decaying exponential solution can be allowed.

We can also consider the behavior of (8.102) for small ρ. Multiplying by ρ2,
and neglecting terms proportional to ρ and ρ2 that are not balanced by derivatives,
results in the Cauchy-Euler equation

ρ2 d2u
dρ2 − l(l + 1)u = 0,

which can be solved by the ansatz u = ρs. After canceling ρs, we obtain

s(s − 1)− l(l + 1) = 0,

which has the two solutions

s =

{
l + 1,
−l.

If R = R(r) is finite at r = 0, the relevant boundary condition here must be
limρ→0 u(ρ) = 0 so that only the first solution u(ρ) ∼ ρl+1 can be allowed.

Combining these asymptotic results for large and small ρ, we now try to substi-
tute

u(ρ) = ρl+1e−ρ/2F(ρ) (8.104)

into (8.102). After some algebra, the resulting differential equation for F = F(ρ) is
found to be

d2F
dρ2 +

(
2(l + 1)

ρ
− 1
)

dF
dρ

+
α − (l + 1)

ρ
F = 0.

We are now in a position to try a power-series ansatz of the form

F(ρ) =
∞

∑
k=0

akρk

to obtain

∞

∑
k=2

k(k − 1)akρk−2 +
∞

∑
k=1

2(l + 1)kakρk−2 −
∞

∑
k=1

kakρk−1 +
∞

∑
k=0

[α − (l + 1)] akρk−1 = 0.

Shifting indices, bringing the lower summations down to zero by including zero
terms, and finally combining terms, we obtain

∞

∑
k=0

{[
(k + 1)

(
k + 2(l + 1)

)]
ak+1 − (1 + l + k − α) ak

}
ρk−1 = 0.
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Setting the coefficients of this power series equal to zero gives us the recursion
relation

ak+1 =
1 + l + k − α

(k + 1)
(
k + 2(l + 1)

) ak.

For large k, we have ak+1/ak → 1/k, which has the same behavior as the power
series for eρ, resulting in a solution for u = u(ρ) that behaves as u(ρ) = eρ/2 for
large ρ. To exclude this solution, we must require the power series to terminate,
and we obtain the discrete eigenvalues

α = 1 + l + n′, n′ = 0, 1, 2, . . . .

The function F = F(ρ) is then a polynomial of degree n′ and is known as an asso-
ciated Laguerre polynomial.

The energy levels of the hydrogen-like atoms are determined from the allowed
α eigenvalues. Using (8.103), and defining

n = 1 + l + n′,

for the nonnegative integer values of n′ and l, we have

En = − µZ2e4

2(4πε0)2h̄2n2
, n = 1, 2, 3, . . . .

If we consider a specific energy level En, then the allowed values of the quantum
number l are nonnegative and satisfy l = n − n′ − 1. For fixed n then, the quantum
number l can range from 0 (when n′ = n − 1) to n − 1 (when n′ = 0).

To summarize, there are three integer quantum numbers n, l, and m, with

n = 1, 2, 3, . . . ,
l = 0, 1, . . . , n − 1,

m = −l, . . . , l,

and for each choice of quantum numbers (n, l, m) there is a corresponding energy
eigenvalue En, which depends only on n, and a corresponding energy eigenfunction
ψ = ψnlm(r, θ, φ), which depends on all three quantum numbers.

For illustration, we exhibit the wavefunctions of the ground state and the first
excited states of hydrogen-like atoms. Making use of the volume differential (8.80),
normalization is such that∫ ∞

0

∫ π

0

∫ 2π

0
|ψnlm(r, θ, φ)|2r2 sin θ dr dθ dφ = 1.

Using the definition of the Bohr radius as

a0 =
4πε0h̄2

µe2 ,

the ground state wavefunction is given by

ψ100 =
1√
π

(
Z
a0

)3/2
e−Zr/a0 ,

and the three degenerate first excited states are given by

ψ200 =
1

4
√

2π

(
Z
a0

)3/2 (
2 − Zr

a0

)
e−Zr/2a0 ,
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ψ210 =
1

4
√

2π

(
Z
a0

)3/2 Zr
a0

e−Zr/2a0 cos θ,

ψ21±1 =
1

8
√

π

(
Z
a0

)3/2 Zr
a0

e−Zr/2a0 sin θe±iφ.
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