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Chapter 5  

Putting It All Together 

 In this chapter we acquire the last piece of quantum machinery needed to explain, 

albeit in general terms, the spin-half and the double slit experiments we considered in the 

first chapter. 

5.1 Tensor Product 

There are various ways of multiplying a matrix by another.  Up to now, we have 

considered the Cayley product. Now we need to introduce a new type of product, the 

tensor, or Kronecker, product.  Let  
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and B be any other 

  

p ´q  matrix.  Then the tensor product of A and B is 
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For example, let  
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Then,  
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If A and B have the same dimensions, then their tensor product is distributive with respect 

to matrix addition, that is,  

  

A Ä B + C( )= A Ä B( ) + A Ä C( ), 

and          (5.1.5) 

  

B + C( ) Ä A = B Ä A( ) + C Ä A( ). 

Moreover, 

  

A Ä B( ) C Ä D( )= AC Ä BD .       (5.1.6) 

Since vectors and operators can be represented by matrices, they can be 

multiplied tensorially.  Hence, given two vectors 

  

A  and 

  

B , we can construct a new 

vector 

  

A Ä B , at times symbolized by 

  

AB .  By extension, vector spaces can be 

multiplied tensorially as well.  So, if 

  

V  and 

  

W  are vector spaces, then 

  

Z =V Ä W  is the 

vector space whose vector elements are the tensor products of the basis vectors 

  

v1 ,..., vn  of 

  

V  with the basis vectors 

  

w1 ,..., wm  of W and the linear combinations 

thereof.  It turns out that 

  

v1 Ä w1 , v1 Ä w2 ..., vn Ä wm{ } is a basis for W. 1  

5.2 Systems of Many Particle and Particles of Many Properties  

Consider two particles 1 and 2.  Particle 1 is described by 

  

Y1  in state space 

  

H1 

and particle 2 by 

  

Y2  in state space 

  

H2 .  To describe the composite system made up of 1 

and 2, we need to construct a new state space H, which is the tensor product of 

  

H1 and 

  

H2  so that 

  

H = H1 Ä H2 .  If 

  

e1 ,..., en{ } is a basis for 

  

H1, and 

  

d1 ,..., dm{ } a basis for 

  

H2 , then the set of vectors 

  

e1 Ä d1 , e1 Ä d2 ..., en Ä dm{ } is a basis for H.  Hence, 

                                                 
1 In other words, the collection of the tensor products of the basis vectors of the two 

spaces is a basis of the new space  
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any vector in H can be expressed as a linear combination of members of that basis.  

Clearly, the state space H has dimensions 

  

n ´ m . 

Suppose now that 

  

O1 is an observable for 1 represented in 

  

H1 by the operator 

  

ˆ O 1, 

and 

  

O2  an observable for 2 represented in 

  

H2  by the operator 

  

ˆ O 2 .  Then, in state space H, 

  

O1 is represented by 

  

ˆ O 1 Ä I2 , the extension of 

  

ˆ O 1, where I is the identity operator in 

  

H2 ; 

similarly, 

  

O2  is represented by 

  

I1 Ä ˆ O 2 , the extension of 

  

ˆ O 2 , where I is the identity 

operator in 

  

H1.  Note that since 

  

ˆ O 1 and 

  

ˆ O 2  belong to different state spaces, they commute.  

It turns out that 

  

ˆ O 1 Ä I2  and 

  

I1 Ä ˆ O 2  are Hermitian and commute as well.  In addition, 

extending an operator does not change its spectrum: 

  

ˆ O 1 and 

  

ˆ O 1 Ä I2  have the same 

eigenvalues, and so do 

  

ˆ O 2  and

  

I1 Ä ˆ O 2 .2  It is customary, if slightly confusing, to represent 

an operator and its extension with the same symbol, so that, for example, “

  

ˆ O 1” stands for 

either 

  

ˆ O 1 Ä I2  or 

  

ˆ O 1. 

To fix our ideas, let us look at a system of two spin-half particles.  Let 

  

S1( )
2

 

and

  

Sz
1 be the square of the spin magnitude and the spin z-component of particle (1) in 

state space 

  

H1.  As we know, their operators commute, and the eigenvectors 

  

­z
1  and 

  

z̄
1  

                                                 
2 It is also worth noting that given that in state space

  

H1 the generic eigenvalue equation 

for 

  

ˆ O 1 is 

  

ˆ O 1 yn = an yn  and that for 

  

ˆ O 2  in 

  

H2  is mmmO cbc =2
ˆ , the generic 

eigenvalue equation for 

  

ˆ O 1 + ˆ O 2  in H is 

  

ˆ O 1 + ˆ O 2( )yn Ä cm = (an + bm ) yn Ä cm . 

In other words, the eigenvalues of the sum of the operators are the sum of the eigenvalues 

of the operators. 
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can be used as a basis in 

  

H1.  Similarly, let 

  

S 2( )
2

 and

  

Sz
2 be the square of the spin 

magnitude and the spin z-component of particle (2) in state space 

  

H2 .  As before, these 

operators commute, and the eigenvectors 

  

­z
2  and 

  

z̄
2  can be used as a basis in 

  

H2 .  The 

state space of the system is 

  

H = H1 Ä H2 , and its basis is composed by four vectors: 

  

­z
1 Ä ­z

2 , abbreviated as 

  

­z
1­z

2 ,      (5.2.1) 

  

­z
1 Ä z̄

2 , abbreviated as 

  

­z
1

z̄
2 ,      (5.2.2) 

  

z̄
1 Ä ­z

2 , abbreviated as 

  

z̄
1­z

2 ,      (5.2.3) 

  

z̄
1 Ä z̄

2 , abbreviated as 

  

z̄
1

z̄
2 ,      (5.2.4) 

so that every state vector of the system can be expressed in the general form 

  

Y = c1 ­z
1­z

2 + c2 ­z
1

z̄
2 + c3 z̄

1­z
2 + c4 z̄

1
z̄
2 .     (5.2.5) 

Since 

  

S1 and 

  

S2 belong to different state spaces, they commute, and therefore their 

extensions to 

  

H = H1 Ä H2  commute as well.  By the same token, every component of 

  

S1 

(that is, 1
zS , and so on) commutes with every component of

  

S2, and the same is true of 

their extensions.3  We are now in a position to determine some measurement results, and 

so let us look at some examples.   

EXAMPLE  5.2.1 

By simple inspection of 

  

Y  in (5.2.5), we can see that if we simultaneously 

measure 

  

Sz
1 and

  

Sz
2 we shall get   

  

Sz
1 = h /2  and   

  

Sz
2 = h /2  with probability 

  

c1

2
,   

  

Sz
1 = h /2  

and   

  

Sz
2 = -h /2 with probability 

  

c2

2
, and so on. 

                                                 
3 Of course, as before, the spin of a particle is incompatible with its components, and the 

components themselves are incompatible with each other. 
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EXAMPLE  5.2.2 

Now, let us simultaneously measure 

  

Sx
1  and

  

Sz
2.  What is the probability that we 

obtain   

  

h /2 in both cases?  The eigenvector in 

  

H1 corresponding to   

  

h /2 for 

  

Sx
1  is 

  

­x
1 ; 

that in 

  

H2 corresponding to   

  

h /2 for 

  

Sz
2 is 

  

­z
2 .  Hence, the eigenvector in H 

corresponding to   

  

h /2 for both

  

Sx
1 and 

  

Sz
2 is 

  

­x
1 Ä ­z

2 , the tensor product of 

  

­x
1  and 

  

­z
2 .  

Now,  

[ ]111

2

1
zzx ¯+­=­ ,         (5.2.6) 

and therefore 

  

­x
1 Ä ­z

2 =
1

2
­z

1 + z̄
1[ ]Ä ­z

2 .      (5.2.7) 

Distributing, we obtain 

  

­x
1 Ä ­z

2 =
1

2
­z

1 Ä ­z
2 + z̄

1 Ä ­z
2[ ].     (5.2.8) 

Remembering that 

  

cn

2
= yn Y

2
, we have 

  

  

Pr Sx
1 = Sz

2 =
h

2

æ 

è 
ç 

ö 

ø 
÷ =

1

2
­z

1­z
2 + z̄

1­z
2( )Y

2

.     (5.2.9) 

Distributing, we get 

  

  

Pr Sx
1 = Sz

2 =
h

2

æ 

è 
ç 

ö 

ø 
÷ =

1

2
­z

1­z
2 Y + z̄

1­z
2 Y[ ]

2

=
c1 + c3

2

2
.   (5.2.10)  

The collapse postulate can be easily extended to many particle systems.  To fix 

our ideas, let us consider the state vector given by (5.2.5).  Suppose we measure 

  

Sz
1 and 

obtain   

  

h /2.  To determine the state vector onto which 

  

Y  collapses, we throw out all the 
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terms not containing

  

Sz
1’s eigenvectors for  

  

h /2, and then we normalize the resulting 

vector.  This is the vector onto which 

  

Y  collapses.  So, in our example we obtain 

  

¢ Y = a ­z
1­z

2 + b ­z
1

z̄
2 ,       (5.2.11) 

which we suppose normalized. 

 What was said about many particle systems applies also to single particles with 

more than one degree of freedom.  If n independent physical properties are needed fully 

to describe the state of a system S, then S has n degrees of freedom.  For example, a 

particle moving along the x-axis has one degree of freedom; one moving on a two-

dimensional surface has two; an electron orbiting the nucleus has five: one for each 

dimension of space, one for orbital angular momentum, and one for spin.  Since the 

properties required to describe S are independent, they are represented in different vector 

spaces, and therefore commute.  Their treatment is analogous to that of multiple particle 

systems.  One constructs the tensor product of the vector spaces, the operator extensions, 

and so on.   

5.3 Accounting for the Spin-half and the Double-Slit Examples 

We can now use quantum mechanics to account for the bizarre results of the spin-

half and the double-slit experiments discussed in chapter one.  Let us start with the spin-

half example.  An electron emerges from the SGX device in a state of superposition 

  

1

2
­x Ä A + x̄ Ä B( ).       (5.3.1) 

Any position or 

  

Sx  measurement will cause the state vector to collapse either on 

  

­x Ä A  or on

  

x̄ Ä B , each with probability 1/2.  Hence, if we place a position 

detector on path A, for example, there is a 50% chance of detecting an electron, in which 
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case the electron is now in state 

  

­x Ä A , and a 50% chance of not detecting the 

electron, in which case the electron is now in state 

  

x̄ Ä B .  Similarly, if we measure 

  

Sx  on an electron moving along paths A or B, we shall get 
  

  

h

2
 50% of the times and 

  

  

-
h

2
 

50% of the times.  Upon either measurement, the state vector collapses.  By contrast, if 

we perform no measurement, since 

  

­x Ä A  would evolve into 

  

­x Ä C  and 

  

x̄ Ä B  

into 

  

x̄ Ä C , the linearity of the evolution operator (equation (4.6.2)) tells us that the 

state vector will eventually evolve into 

  

1

2
­x Ä C + x̄ Ä C( )= ­z Ä C ,     (5.3.2) 

and therefore, upon measuring 

  

Sz , we shall get 
  

  

h

2
 all the times. 

The (simplified) account of the double-slit experiment is analogous.  Leaving spin 

aside, let us represent with 

  

YA  the state of an electron going through slit A and with 

  

YB  that of an electron going through slit B.  Suppose now that slit B is closed, so that 

the state vector of the electron is 

  

YA .  As 

  

YA  is a wave function, the position 

probability density is given by 

  

YA

2
 and its plot by curve (a) in chapter 1, figure 2, which 

explains the distribution of hits on the screen.  If we close slit A, we obtain an analogous 

situation with 

  

YB

2
 represented by curve (b) in chapter 1, figure 2.   

If both slits are open, the state of the electron at the slits is 

  

Y = c1 YA + c2 YB ,        (5.3.3) 

a superposition of the two vectors. If no observation is made, the electron arrives at the 

screen still in a state of superposition, and the probability density is 

 

  

c1YA + c2YB

2
,         (5.3.4) 
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represented by curve (c) in chapter 1, figure 2.  If a position observation is carried out at 

either slit, the state vector collapses onto 

  

YA  with probability 

  

c1

2
 or onto 

  

YB  with 

probability 

  

c2

2
, and the probability density is  

  

YA

2
+ YB

2
,         (5.3.5) 

represented by curve (c) in chapter 1, figure 1.  Crucially, (5.3.4) and (5.3.5) are different 

in that the former involves interference while the latter does not. 4 

5.4 The Orthodox Interpretation 

  Up to now we have considered quantum mechanics as an algorithm (a piece of 

mathematical machinery) that allowed us to predict the statistical frequencies of the 

returns of measurements performed on ensembles or the probabilities of the returns of 

measurements performed on individual systems. One might be happy to leave it at that, as 

indeed many physicists are.  The machinery works wonderfully not only at the atomic but 

also at the nuclear level.  However, many of the physicists who contributed directly or 

indirectly to its birth were prepared to go further, and by the 1930’s, on the aftermath of 

Dirac’s, The Principles of Quantum Mechanics and von Neumann’s Mathematical 

Foundations of Quantum Mechanics, a broad interpretive agreement seems to have 

formed around a set of principles constituting what is customarily called “the orthodox” 

or “the standard” interpretation.  Many aspects of the tenets of the orthodox interpretation 

                                                 
4 In the example, the plots are correct if we assume that 

  

c1 = c2 = 1/2 .  If the values are 

different (for example, if the electron gun is not equidistant from the two slits), the 

distribution pattern of electron hits on the screen changes.  
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have already been introduced (somewhat surreptitiously) in this and previous chapters.  

They are as follows: 

1 The quantum state of a system is completely represented by its state vector in Hilbert 

space; there is nothing in the quantum state that is not expressed in the state vector.  

In this respect, quantum mechanics is complete (State Completeness Principle).  

2 Every observable is represented by its Hermitian operator in Hilbert space.   

3 The physical information contained in the state vector is given by Born’s statistical 

interpretation.   

4 A system’s observable has a certain value if and only if the system is in the 

corresponding eigenstate, that is, is represented by the corresponding eigenvector.  

This is the eigenstate-eignevalue link, (EE).5   

5 In the absence of measurement, the (linear) temporal evolution of a quantum system 

is governed by TDSE.   

6 Upon measurement, the system jumps non-linearly and instantaneously to an 

eigenstate of the measured observable (Collapse, or Projection, Principle). 

The orthodox interpretation is appealing because its principles not only fit the 

mathematical machinery but are also correlated.  For example, (1)-(3) warrant (4), and (4) 

plus the fact that quickly repeated measurements do return the same value provides good 

                                                 
5 Principle (4) is at times modified as saying that upon measurement a system’s 

observable returns a certain value if and only if the system is in the corresponding 

eigenstate.  This provides a more restrictive interpretation because now quantum 

mechanics is only about measurement returns.  However, if we assume that measurement 

returns give a faithful quantitative representation of the observable, we obtain (4) again. 
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evidence for (6).  Indeed, as the orthodox interpretation can be found, often implicitly, in 

standard quantum mechanical texts, it has become part and parcel of the quantum 

mechanics one typically learns.  For this reason, often we shall refer to the quantum 

mathematical machinery plus the orthodox interpretation as “standard quantum 

mechanics.” 
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Exercises 

Exercise 5.1 

What is the probability of obtaining   

  

-h /2  if we measure just 

  

Sx
2 on (5.2.5)?  [Hint: 

Notice that there are two eigenvectors in H for 

  

Sx
2 corresponding to the eigenvalue   

  

-h /2 .  

When there are n eigenvectors corresponding to the same eigenvalue, the system is n-fold 

degenerate.  So, the system is two-fold degenerate with respect to   

  

Sx
2 = -h /2.  Then, keep 

in mind that the overall probability that   

  

Sx
2 = -h /2 is the sum of the probabilities of all 

the different ways in which   

  

Sx
2 = -h /2.] 
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Answers to the Exercises 

Exercise 5.1  

First, let us remember that the eigenvector in 

  

H2 corresponding to   

  

-h /2  for 

  

Sx
2 is  

  

x̄
2 =

1

2
­z

2 - z̄
2( ).  With respect to   

  

Sx
2 = -h /2, the system is two-fold degenerate since 

there are two eigenvectors in H  for 

  

Sx
2 corresponding to the eigenvalue   

  

-h /2 , namely 

  

­z
1

x̄
2 =

1

2
­z

1­z
2 - ­z

1
z̄
2( ), and 

  

z̄
1

x̄
2 =

1

2
z̄
1­z

2 - z̄
1

z̄
2( ).  Hence, the probability we are 

seeking is  

  

1

2
­z

1­z
2 - ­z

1
z̄
2( )Y

2

+
1

2
z̄
1­z

2 - z̄
1

z̄
2( )Y

2

=

  

c1 - c2

2

2
+

c3 - c4

2

2
. 
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