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Abstract. A new parallel algorithm for simultaneous untangling and smoothing of 
tetrahedral meshes is proposed in this paper. We provide a detailed analysis of its 
performance on shared-memory many-core computer architectures. This perfor-
mance analysis includes the evaluation of execution time, parallel scalability, load 
balancing, and parallelism bottlenecks. Additionally, we compare the impact of 
three previously published graph coloring procedures on the performance of our 
parallel algorithm. We use six benchmark meshes with a wide range of sizes. Us-
ing these experimental data sets, we describe the behavior of the parallel algorithm 
for different data sizes. We demonstrate that this algorithm is highly scalable 
when it runs on two different high-performance many-core computers with up to 
128 processors. However, some parallel deterioration is observed. Here, we ana-
lyze the main causes of this parallel deterioration. 

1 Introduction 

It is well known that the mesh and its quality can greatly impact the accuracy of 
simulations, as well as solver efficiency [1]. Frequently, the automatic mesh gen-
eration tools produce meshes with inverted or poorly shaped elements. To obtain 
high-quality meshes, often scientists must untangle and improve the quality of 
meshes before or during the numerical analysis [23]. We proposed a mesh optimi-
zation method that simultaneous untangle and smooth tetrahedral meshes [12,13]. 

When this method is applied using conventional non-parallel programs to large 
and/or tangled meshes, the wall-clock time may be extremely high. Our optimiza-
tion method can be applied if higher performance could be achieved such as  
scientific and engineering applications that use 3D discretization methods to  
numerically solve partial differential equations [15,16]. 
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In this paper, we propose a new parallel algorithm for simultaneously untan-
gling and smoothing tetrahedral meshes. Its goal is to reduce execution time effi-
ciently. In addition, a performance evaluation of the proposed parallel algorithm 
on many-core computers is described. It includes the analysis of the scalability, 
parallel efficiency, load balancing, performance bottlenecks, and influence of 
graph coloring algorithms on the performance of our new parallel algorithm. 

Given that meshes, which are used for PDE simulations, are becoming larger 
all of the time, it is becoming necessary to have parallel algorithms for mesh gen-
eration and optimization. To the author’s knowledge, there are currently no paral-
lel mesh untangling algorithms or parallel simultaneous mesh untangling and 
smoothing techniques in the literature. Previous studies on parallel algorithms for 
mesh smoothing problems include the work of Jiao and Alexander [21] that is 
applied to triangulated surfaces. Their algorithm was implemented on distributed-
memory computers with up to 128 processors and it was shown 43% of maximum 
parallel efficiency. Yeo et al [34] also proposed an algorithm for smoothing quad 
meshes that fits well into parallel streams and was mapped to a GPU. They  
applied their algorithm to real-time processing of surface models and showed a 
performance comparison with other GPU algorithms. Freitag et al [15] relied on 
theoretical shared-memory models without a real implementation on shared-
memory multi-core systems, although they presented results on distributed-
memory computers. Shontz and Nistor have published another similar study [32], 
which provides performance results for mesh simplification algorithms on GPUs. 
However, they do not mention if a graph coloring algorithm was used to find mesh 
vertices that have not computational dependency. Several mesh optimization algo-
rithms are implemented in parallel routines of the petascale meshing software 
tools provided by the ITAPS project [19]. These tools are used in distributed-
memory computers.  

The rest of the paper is organized as follows. Section 2 summarizes the mathe-
matical foundation of the 3D simultaneous untangling and smoothing algorithm. 
Section 3 describes the new parallel algorithm of this optimization method. The 
experimental methodology that we used to evaluate the performance of the paral-
lel algorithm is explained in Section 4. Section 5 analyzes the performance  
scalability. Section 6 describes the influence of three previously published graph 
coloring algorithms on the parallel performance. Load unbalancing and other per-
formance bottlenecks are studied in Section 7 and 8, respectively. Finally, the 
main conclusions and future work are discussed in Section 9. 

2 Our Approach for Simultaneous Untangling and 
Smoothing of Tetrahedral Meshes 

Let us consider M to be a tetrahedral mesh. Usual techniques to improve the qual-
ity of a valid mesh, that is, one that does not contain inverted tetrahedra, are based 
upon local smoothing [10]. In short, these techniques consist of finding the new 
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position ࢞௩ that each inner mesh node v must hold, in such a way that they opti-
mize an objective function (boundary vertices are fixed during all the mesh  
optimization process). Such a function is based on a certain measurement of the 
quality of the local submesh Nv ⊂M that is formed by the set of tetrahedra  
connected to the free node v. As it is a local optimization process, we cannot guar-
antee that the final mesh is globally optimal. Nevertheless, after repeating this 
process several times for all the nodes of the mesh M, quite satisfactory results 
can be achieved. 

The algebraic quality metrics proposed by Knupp [24] provide us an appropri-
ate framework to define objective functions. Specifically, the one used in this 
paper has the generic form, 

௩ሻ࢞ሺܭ = ൬෍ ሾߟ௜ሺ࢞௩ሻሿ௣௡௜ୀଵ ൰ଵ௣
 (1) 

where n is the number of elements in Nv, p is usually chosen as 1 or 2 and ηi = 1 / 
qi is the distortion of the i-th tetrahedron of Nv and qi is the chosen corresponding 
algebraic element quality measure. In particular, we have implemented the mean 
ratio quality measure of a tetrahedron given by q = 3 σ2/3 / |S|2, where |S| is the 
Frobenius norm of matrix S associated to the affine map from the ideal element 
(usually an equilateral tetrahedron) to the physical one, and σ = det(S). Specifical-
ly, the weighted Jacobian matrix S is defined as S =AW 

-1, being A = (x1-x0, x2-x0, 
x3-x0) the Jacobian matrix and xk, k = 0,1,2,3 the coordinates of the vertices of the 
tetrahedron. The constant matrix W is derived from the ideal element (see [12]). 

Objective functions like (1) are appropriate to improve the quality of a valid 
mesh and avoid a valid mesh to be inverted, but they do not work properly when 
there are inverted elements (σ < 0). This is because they present singularities (bar-
riers) when any tetrahedron of Nv changes the sign of its Jacobian matrix. In [12] 
we proposed a suitable modification of the objective function such that it is regu-
lar all over R3. It consists of substituting the term σ in the quality metrics by the 

positive and increasing function hሺσሻ = ଵଶ ൫σ + √σଶ + 4δଶ൯. When a feasible re-

gion exists (subset of R3 where v could be placed, being Nv a valid submesh), the 
minima of the original and modified objective functions are very close and, when 
this region does not exist, the minimum of the modified objective function is lo-
cated in such a way that it tends to untangle Nv. In this way, we can use any 
standard and efficient unconstrained optimization method to find the minimum of 
the modified objective function [2]. In this paper, we have used the Newton un-
constrained optimization method that is implemented with UNCMIN++ library 
[9,33]. 

3 A Novel Parallel Algorithm 

In Algorithm 1, a sequential algorithm called SUS for our simultaneous untangling 
and smoothing of tetrahedral meshes can be seen. The inputs of the sequential 
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algorithm are the followings: M is a tangled tetrahedral mesh, maxIter is the 
maximum number of untangling and smoothing iterations, Nv is the set of 
tetrahedra connected to the free node v, ࢞௩ is the initial position of the free node, ࢞ෝ௩ is its position after optimization, which is implemented with the procedure 
OptimizeNode, Q measures the lowest quality of a tetrahedron of M when the 
above mentioned q tetrahedron quality function is used, and quality is a func-
tion that provides the minimum quality of mesh M (it is 0 if any tetrahedral is 
tangled). 

The output of the algorithm is an untangled and smoothed mesh M, whose 
minimum quality must be larger than a user-specified threshold λ. This algorithm 
iterates over all the mesh vertices in some order and adjusts at each step the coor-
dinates ࢞ෝ௩ of the free node v. A code for this algorithm can be downloaded at [13]. 

In Algorithm 2, a novel parallel algorithm for our mathematical method for 
simultaneous untangling and smoothing of tetrahedral meshes is shown. The main 
procedure is called pSUS. Its inputs M, maxIter, Nv, ࢞௩, OptimizeNode, ࢞ෝ௩, 
Q, λ, quality have the same meanings as described for Algorithm 1. 

Algorithm 1. Sequential algorithm (SUS) for the simultaneous untangling and smoothing 
of a tetrahedral mesh M. 

1: function OptimizeNode(࢞௩,Nv)    
2:    Optimize objective function ܭ(࢞௩) 
3: end function 
4: procedure SUS 
5:    Q ← 0 
6:    k ← 0 
7:    while Q < λ and k < maxIter do 
8:       for each vertex v ∈ M do 
 (௩,Nv࢞)ෝ௩ ← OptimizeNode࢞             :9
10:       end do 
11:       Q ← quality(M) 
12:       k ← k+1 
13:    end do 
14: end procedure 

 
The parallel algorithm has to prevent two adjacent vertices from being simulta-

neously untangled and smoothed on different processors. On the contrary, new 
inverted mesh elements may be created [15]. Thus, when the sequential Algorithm 
1 is parallelized, a computational dependency appears between adjacent vertices 
because one vertex needs to be optimized after the other. This justifies the use in 
our parallel algorithm of a graph coloring algorithm to find vertices of a tetrahe-
dral mesh M that have not computational dependency. 

Graph coloring is implemented with procedure Coloring, which is expressed 
as follows. Let G=(V,E) be the graph associated to the tetrahedral mesh M, where 
V is the set of vertices of the mesh (without information of vertex spatial coordi-
nates) and E is the set of their edges, then Coloring is a procedure that is used 
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to color the graph G such that two adjacent vertices do not have the same color. 
Then, an independent set, or color, Ii is a set of non-adjacent vertices (i.e., they do 
not share a common edge). That is, v ∈ Ii  => v ∉ adj(Ii,G=(V,E)), where  

adj(Ii,G=(V,E)) is the set of vertices that are adjacent to all vertex j ∈ Ii being j≠v. 
In this way the graph G of a tetrahedral mesh M is colored and partitioned in a 
disjoint sequence of independent sets, I={I1,I2,…}. 

We implemented three different and previously published graph coloring meth-
ods called “C1”, “C2”, and “C3”. C1 is a vertex coloring method that has been used 
for parallel mesh smoothing by Freitag et al [15]. It requires the use of the asyn-
chronous coloring heuristic proposed by Jones and Plassmann [22]. In particular, 
we used its serial version for C1. This heuristic is based on Luby’s Monte Carlo 
algorithm for determining the maximal independent set [26]. C2 is a parallel ver-
sion of C1 that was also proposed in [22] for distributed-memory computers. We 
additionally adapted C2 to multithread/multicore computers. C3 is an iterative par-
allel greedy coloring algorithm that was proposed by Bozdag et al [3]. Section 6 
compares the impact of these graph coloring algorithms on the performance of our 
parallel optimization method. 

Algorithm 2. Parallel algorithm (pSUS) for the simultaneous untangling and smoothing of 
a tetrahedral mesh M. 

1: procedure Coloring(G=(V,E)) 
2: G=(V,E) is partitioned in a disjoint sequence of 

independent sets I={I1,I2,…} using C1, C2 or C3 
coloring algorithm 

3: end procedure 
4: function OptimizeNode(࢞௩,Nv)    
5:    Optimize objective function K(࢞௩) 
6: end function 
7: procedure pSUS 
8:    I ← Coloring(G=(V,E))           
9:    k ← 0 
10:    Q ← 0 
11:    while Q < λ and k < maxIter do 
12:      for each independent set Ii ∈ I do 
13:        for each vertex v ∈ Ii in parallel do 
 (௩,Nv࢞)ෝ௩ ← OptimizeNode࢞           :14
15:        end do 
16:      end do 
17:      Q ← quality(M) 
18:      k ← k+1 
19:    end do 
20:  end procedure 

 
Our simultaneous untangling and smoothing algorithm optimizes in parallel the 

vertices of an independent set. The vertex set with the same color (Ii) is partitioned 
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among the available processors. Each processor optimizes its assigned set of verti-
ces in a sequential fashion. At each sequential step, a processor applies the 
OptimizeNode function to a single vertex v. This optimization function imple-
ments the method described above in Section 2 to adjust the new position ࢞ෝ௩ of 
each free vertex v in its own submesh Nv. The new vertex spatial position is avail-
able to other processors by writing to shared memory.  

Each subsequent parallel phase optimizes another independent set of vertices. 
There are as many parallel phases as number of independent sets. As in the serial 
algorithm, after all vertices have been optimized, the mesh quality Q is measured. 
The mesh is successively untangled and smoothed until the mesh is completely 
untangled and successive iterations increase the minimum mesh quality less than 
5%. The algorithm also stops when the number of untangling and smoothing itera-
tions is larger than maxIter. Finally, if the mesh optimization procedure stops 
before maxIter is reached, the output of our parallel algorithm is a tetrahedral 
mesh M with a minimum quality greater than λ. 

4 Experimental Methodology 

Our experiments were conducted on two different many-core high-performance 
computers. One of them is a HP Integrity Superdome node that contains 128 Itani-
um2 Montvale cores with 1.6 GHz clock speed, multithreading disabled, and 1024 
GB NUMA (Non-Uniform Memory Access) shared memory. It is a node of the 
Finis Terrae supercomputer [14]. The other parallel computer is called Manycore 
Testing Lab, which has been set up by Intel to work with 40 Westmere 2.27 GHz 
cores and 252 GB NUMA shared memory [18]. Both computers use Linux sys-
tems with kernels 2.6.16.53-0.8-smp and 2.6.18-194.11.4.el5-smp respectively. 

The sequential and parallel versions of our 3D untangling and smoothing meth-
od were applied on six different tangled benchmark meshes. Their descriptions 
can be seen in Table 1. The minimum mesh quality of all meshes is 0 because at 
least one tetrahedron is inverted. The average mesh quality is obtained by sum-
ming the quality of all valid tetrahedra and dividing the sum by the number of 
valid and inverted tetrahedra. All these tetrahedral meshes were constructed with a 
tool that applies an automatic strategy for adaptive tetrahedral mesh generation 
based on the meccano method [6,7,28,29]. Some of them were generated using, as 
input data, the surface triangulations obtained from different Internet repositories 
[30]. Note that as the meccano method uses Kossaczky’s algorithm [25], the max-
imum vertex degree (node valence) coincides in all the benchmark meshes. 

To compile our programs, we used the same Intel C++ compiler version 11.1 
on both parallel computers, but targeted to the respective processor architecture. 
This compiler generates more efficient programs for our algorithms than GNU 
GCC compiler, which is usually included in Linux distributions. 
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Table 1. Description of the tangled benchmark tetrahedral meshes. The quality of inverted 
elements is considered zero. So, the minimum quality is zero for all meshes. 

Name Number 
of verti-
ces (m) 

Number of 
tetrahedra 

Average 
mesh 
quality 

Number of 
inverted  
tetrahedra 

Maximum 
vertex  
degree 

Object 

“m=6358” 6358 26446 0.2618 2215 26 Bunny 
“m=9176” 9176 35920 0.1707 13706 26 Tube 
“m=11525” 11525 47824 0.2660 1924 26 Bone 
“m=39617” 39617 168834 0.1302 83417 26 Screwdriver 
“m=201530” 201530 840800 0.2409 322255 26 Toroid 
“m=520128” 520128 2201104 0.0657 1147390 26 HR toroid 

 
 
The source code of the parallel version of our new algorithm includes OpenMP 

directives, which were disabled when the sequential version was compiled. After 
some test runs, we decided to use the dynamic OpenMP thread scheduling method 
[8] because it provides the best performance results for our parallel algorithm. In 
all cases, the compiler optimization flag “-O3” was enforced. All versions were 
run with additional software optimization based on hardware binding: processor 
and memory. For each benchmark mesh we run the parallel version multiple times 
using a given maximum number of active threads between 1 and 128 when the 
Itanium2-based computer is used and between 1 and 40 when the Westmere-based 
computer is used. Since our algorithms are CPU-bound, there is little sense in 
using more threads than available cores. Thus, we activate the same number of 
cores as the number of threads. No operating system code was executed during our 
experiments and the processors were not shared among other user level workloads.  

The sequential and parallel versions of our source code were profiled with the 
Performance Application Programming Interface API [5], which uses performance 
counter hardware of processors. The information provided from these performance 
counters was used to calculate the following quantitative performance metrics: 
wall-clock time, parallel overhead time, true speed-up, parallel efficiency, and 
load balancing. Each metric is averaged over more than 30 independent runs.  

Each run is divided into two phases. The first of them completely untangles a 
mesh. This phase loops over all the mesh vertices repetitively. During this phase, 
untangled tetrahedra are smoothed too. The number of untangling iterations  
depends on the mesh. The second phase is focused on smoothing the mesh  
until successive smoothing iterations increase the minimum mesh quality less than 
5%.  

Each run is characterized by the number of untangling and smoothing itera-
tions, which is represented by “U&S”. The results of the experimental setup,  
described in this section, are discussed in the following four sections. 
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5 Performance Scalability 

The qualitative metric called performance scalability informs about the improve-
ment of an algorithm when the amount of processors increases. It is usually based 
on the quantitative metric SNc called speed-up, which is defined as the ratio of the 
sequential execution time tS to the parallel execution time tNc when Nc processors 
are used: SNc = tS / tNc. 

When the execution time of the main mesh optimization procedure alone is pro-
filed in both versions of our algorithms, line 9 of serial Algorithm 1 vs. line 14 of 
parallel Algorithm 2, we obtain values for speed-up as illustrated in Fig. 1(b) 
(black bars labeled INSIDE). Each bar represents to speed-up for a given number 
of available threads/cores. The results shown in Fig. 1(c) were obtained when the 
“m=39617” mesh was optimized with our sequential and parallel algorithms using 
C3 coloring algorithm and the parallel computer with 128 Itanium2 processors. 
Due to paper limitations, we can present detailed performance results for only one 
benchmark mesh and one graph coloring algorithm.  

As it can be seen in Fig. 1(b), the speed-up of the inside part of the mesh opti-
mization procedure linearly increases as the number of cores increases. In order to 
measure how well this linear increase of speed-up encompasses the increase of 
cores, the quantitative performance metric called parallel efficiency (ENc) is used: 
ENc =100% × SNc / NC, where NC is the number of cores. If speed-up (SNc) is not 
superlinear, maximum value of ENc is 100% [8]. The utilization of the processors 
and speed-up scalability will be better as long as parallel efficiency is higher. 

Figures 1(b) and 1(e) also show the parallel efficiency of the main mesh opti-
mization procedure of Algorithm 2 (dotted line labeled INSIDE). Note that up to 
NC = 128 cores, the parallel efficiency is always above 76% when up to 128 pro-
cessors are used. These results indicate that the main computation of our parallel 
algorithm is highly scalable. This scalability is caused by the parallel processing 
of an independent set of vertices in the main loop of the Algorithm 2 (lines 13-15). 

When the execution times of the complete sequential (procedure SUS of Algo-
rithm 1) and parallel (procedure pSUS of Algorithm 2) algorithms are profiled, we 
obtained values for speed-up as illustrated in Fig. 1(b) and 1(e) (grey bars labeled 
OUTSIDE). Note that in this case, the speed-up of the complete algorithm does 
not increase linearly as when the main mesh optimization procedures of algo-
rithms are profiled, and the parallel efficiency is above 50% when up to 128  
processors are used. 

We observe that as the number of threads/cores is larger, the OpenMP loop-
scheduling overhead increases the number of executed instructions to synchronize 
and manage parallel threads. These additional instructions are not involved in the 
main computation of our parallel algorithm. As Amdahl’s law describes [4], 
speed-up and parallel efficiency deteriorate as the number of threads increases 
because they tend to be dominated by this parallel overhead. 
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This scalability deterioration of our parallel algorithm is mainly due to the par-
allel loop-scheduling overhead that is incurred when the threads are scheduled and 
launched during runtime. After some experiments, we observed that the best 
OpenMP directive for line 13 of Algorithm 2 uses dynamic thread scheduling with 
one mesh vertex per chunk:  #pragma omp parallel for schedule 
(dynamic, 1). The small chunk size that achieves the best load balancing is 
justified by the fact that the time to optimize each vertex varies significantly.  

Using data collected from some of the hardware counters of processors during 
runtime, we observe that as the number of threads/cores is larger, the above men-
tioned OpenMP directive makes the number of executed instructions to schedule 
and launch parallel threads to be larger. These additional instructions are not in-
volved in the main computation of our parallel algorithm. As Amdahl’s law de-
scribes [4], speed-up and parallel efficiency deteriorate as the number of threads 
increases because they tend to be dominated by this parallel overhead. Thus, the 
main performance overhead is due to the implementation tool that is used in de-
veloping our parallel programs. 

Computer performance comparisons are frequently done using wall-clock time 
metric. Thus, Fig. 1(c) and 1(f) show the runtime of our parallel algorithm when 
the “m=39617” and “m=520128” meshes are respectively used. For the both cas-
es, C3 coloring algorithm and two many-core computers are used. First of all, note 
that when the number of cores is smaller than 32, the differences in runtime be-
tween the inner loop of the parallel algorithm (data labeled INSIDE) and the com-
plete parallel algorithm (data labeled OUTSIDE) are inappreciable. As the number 
of cores is larger, the runtime performance of the complete parallel algorithm 
decreases, but not as much as the runtime of the inner loop. However, the larger 
the number of vertices, the lower the parallel overhead tends to be. These conclu-
sions are valid for the two computers used in the experiments. 

Additionally, we observe in most of cases that for the complete parallel Algo-
rithm 2, the Westmere-based computer provides higher performance than Itani-
um2-based computer although more Itanium2 cores are used than Westmere cores: 
128 vs. 40, respectively. This is mainly due to three causes: the low parallel effi-
ciency of Algorithm 2 when Itanium2 processors are used, the lower clock speed 
of Itanium2 processors, and the inefficiency of compiler in exploiting the instruc-
tion level parallelism of the very-long-instruction-word of Itanium2 instructions. 

However, when the inner loop of the parallel algorithm is studied, the Itani-
um2-based computer provides lower execution time than the other parallel com-
puter. This is due to the high parallel efficiency of the main computation of our 
algorithm that efficiently reduces the runtime as the number of cores increases. In 
Fig. 1(b) and 1(e), it is shown that the parallel efficiency of the main computation 
of our parallel algorithm for the “m=39617” mesh is 76% when 128 Itanium2 
cores are used. Thus, the lower clock speed of Itanium2 processors is balanced by 
a larger number of cores. 
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6 Influence of Graph Coloring Algorithms on Parallel 
Performance 

As described in Section 3, three different graph coloring algorithms were used by 
our parallel algorithm as software methods to identify independent sets of vertices. 
The main coloring routine is represented in Algorithm 2 by lines 1-3, 8. Many 
papers evaluate the performance of graph coloring algorithms on parallel comput-
ers [3,15,22], but their impacts on the performance of mesh optimization algo-
rithms are rarely reported. 

First of all, we confirmed the performance results published in previous papers 
for C1, C2, and C3 coloring algorithms. Then, we investigated their influence on 
the performance of our parallel untangling and smoothing algorithm. Since the 
goal of graph coloring is discovering parallelism, the execution time involved in 
graph coloring is only considered when our parallel algorithm is run and not when 
the serial version is run. 

The main conclusion of this part of our investigation is that the execution time 
of graph coloring algorithms has relatively low impact on the whole execution 
time of our parallel algorithm. When up to 128 Itanium2 processors and the six 
benchmark meshes are considered, the percentage of total runtime that is required 
by C1, C2, and C3 coloring routines ranges respectively from 0.8% to 3.4%, from 
2.4% to 12.9%, and from 0.1% to 1.9% (see Fig. 2). This means that the computa-
tional load required by our parallel algorithm is much heavier than required by 
graph coloring algorithms. Note that the lowest impact on total execution time is 
achieved by C3 coloring algorithm. 

However, the speed-up of our parallel algorithm depends on the selected color-
ing algorithm. Figure 3 shows the speed-ups achieved by our parallel algorithm 
for the mesh “m=39617” when all three coloring algorithms are used for different 
numbers of available threads/cores. In addition to these results, Figure 4 shows the 
speed-up for all six benchmark meshes when all 128 Itanium2 processors are 
working in parallel.  

It can be also observed in Fig. 4 that low speed-up is obtained with smaller 
meshes. This means that parallelism is more difficult to exploit in smaller meshes 
than larger meshes. For a given number of threads, as the number of mesh vertices 
decreases, each thread tends to optimize fewer vertices. Thus, the loop-scheduling 
overhead is less balanced with optimization time in smaller meshes than larger 
ones. Note in Fig. 4 that our parallel algorithm achieves the best speed-up when C3 
coloring algorithm is used. This is due to that C3 coloring algorithm clusters the 
vertices of a mesh using a less number of colors than C1 and C2 coloring algo-
rithms. A lower number of vertex clusters allows a larger number of vertices to be 
processed in parallel. 
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um2 128 C2 18 39 0.1104 0.6474 
um2 128 C1 31 11 0.1698 0.7329 
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untangling and smoothing iterations of a mesh, and the best graph coloring algo-
rithm has been that for which the number of iterations is minimum.  

On the other hand, most of the times C2 coloring algorithm provides the lowest 
running time when the complete algorithm is monitored (see Table 3). This is due 
to the same reasons as previously mentioned for the best coloring algorithm of the 
inner loop of the parallel algorithm.  

Table 3 Best runtime for the complete parallel algorithm (procedure pSUS, Algorithm 2) 

Name of 
tetrahedral 
mesh 

Best 
runtime 
(sec.) 

Best  
parallel 
computer 

Best 
number 
of cores

Best  
coloring 
algo-
rithm 

Number 
of col-
ors 

Number 
of itera-
tions 
(U&S) 

Mini-
mum 
mesh 
quality 

Average 
mesh 
quality 

m=6358 0.39 Westmere 40 C3 11 24 0.1289 0.6564 
m=9176 0.66 Westmere 40 C2 18 25 0.2629 0.6821 
m=11525 0.78 Westmere 40 C3 10 48 0.1106 0.6474 
m=39617 1.00 Westmere 40 C2 19 11 0.1586 0.7329 
m=201530 25.92 Westmere 40 C2 21 120 0.2275 0.6687 
m=520128 24.31 Westmere 40 C2 21 35 0.2234 0.6749 

 
However, note that for a given mesh, the best graph coloring algorithm for the 

complete untangling and smoothing procedure does not coincide with the best one 
for the inner loop. Thus, the best coloring algorithm for a determined benchmark 
mesh depends on the part of algorithm that is analyzed. 

Furthermore, note that the parallel computer that provides the highest perfor-
mance (i.e. lowest runtime) for the inner loop is different from the parallel com-
puter that provides the highest performance for the complete algorithm (see Tables 
2 and 3). This is mainly due to the hardware architecture and the performance 
overhead of the thread scheduling technique used by compiler. Itanium2-based 
computer has larger number of cores than the Westmere-based computer: 128 vs. 
40. Thus, the larger number of available processors benefits the scalable perfor-
mance of the main loop of our parallel algorithm, although the clock speed of 
Itanium2 processors is lower than Westmere processors. However, Westmere-
based computer provides lower running times than Itanium2-based computer for 
the complete parallel algorithm because the compiler for Itanium2 processor pro-
vides less efficient parallel code for our algorithm than the compiler for Westmere 
processor, incurring in more loop-scheduling overhead.  

As different coloring strategies would lead to different ordering of vertex pro-
cessing, it is clear that the quality of resulting meshes could depend on the color-
ing algorithm. We have found that in exceptional cases a benchmark mesh could 
not be untangled by using a specific coloring algorithm. Therefore, the conver-
gence of our algorithm may depend on the ordering of vertices. This aspect has 
been analyzed in 2D problems in [31]. At present, there is no criterion to deter-
mine the optimal vertex ordering for a given mesh. 
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7 Load Imbalance 

In parallel computing, load unbalancing between computing nodes also causes 
performance deterioration. As it is described in the previous section, the parallel 
performance of our parallel algorithm is affected by the mesh size in addition  
to the number of available parallel threads. So, we have quantitatively analyzed 
the load unbalancing caused by our parallel algorithm when the mesh size and  
the number of parallel threads vary. We focus on the experimental results  
obtained with the Itanium2-based computer because it has the largest number of 
processors. 

In order to measure load unbalancing, we monitor the execution time of each 
parallel thread with the native hardware counter of Itanium2 called 
CPU_OP_CYCLES_ALL [17]. These threads are monitored when they execute 
the main optimizing procedure of Algorithm 2 (lines 12-16). Then, load imbalance 
(LNc) of Nc parallel working threads is obtained as follows:  

 (2)

where tmax, tmin, tavg are respectively the maximum, minimum and average execu-
tion times of the parallel working threads, supposing that tmax ≥ tavg ≥ tmin > 0. As 
LNc gets smaller, the difference between maximum and minimum thread execution 
time is comparatively smaller than the average execution time of threads. In these 
cases, threads tend to be stalled less time because load is more balanced among 
processors, and so, parallel performance is better. 

Before doing the experiments described in this paper, we analyzed the impact 
of the OpenMP thread scheduling alternatives (static, dynamic, guided) on the 
performance of our parallel algorithm for each one of the above mentioned color-
ing algorithms and benchmark meshes. We observed that the dynamic thread 
scheduling with chunk size of one vertex per thread shows better performance for 
all cases. This means that the thread scheduler distributes to each thread the job of 
optimizing only one vertex. In this way, parallel performance is better because the 
load unbalancing caused by the OpenMP programming methodology is  
minimized.  

Figure 5 shows the load unbalancing (LNc) of our parallel algorithm for the six 
benchmark meshes when the C3 coloring algorithm and up to 128 shared-memory 
Itanium2 processors are used. Note that for each one of the benchmark meshes, 
the number of active threads causes the main impact on load unbalancing. The 
higher the number of active threads, the higher the load unbalancing. This means 
that as the loop-scheduling overhead instructions increase, the main computation 
of threads is more unbalanced. We tested our parallel algorithm on other x86 par-
allel computers, and the same effect on load unbalancing was observed.  
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Fig. 5 Load imbalance when
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each free node is used and updated by only one processor, and the part of the 
cache memory that stores the submesh is not updated or invalidated by other pro-
cessors. So, during the parallel processing of a color, there is no dependency be-
tween processors or memory cache invalidations. 

However, the latency of the Level 3 cache memory does affect the performance 
of the optimization procedure. The shared Level 3 cache memory is distributed 
among all multicore chips. As the number of cores/threads increases, it is more 
probably that a free vertex, updated in the Level 3 cache memory of one multicore 
chip, is needed by a core of another chip. This causes higher performance degra-
dation due to a larger number of Level 3 cache misses.  

Additionally, the performance of the optimization procedure is not affected by 
the size of the data cache. The working-set of this procedure mainly depends on 
the number of submesh vertices, which is bounded by the maximum vertex de-
gree. Note in Table 1 that the maximum vertex degree is 26, which is established 
by the meccano mesh generation method [6,7,28,29]. Thus, the maximum data 
cache size that is needed by a processor during the optimization of a free node is 
3.4 KB approximately, which is about 10% of the available Level 1 data cache 
memory. All the above mentioned cache memory issues are not affected by the 
vertex ordering provided by the coloring algorithm. 

Using the Itanium2 performance counter called NOPS_RETIRED [17], another 
performance bottleneck was identified in the machine code that is generated for 
our serial and parallel algorithms by the Intel compiler for Itanium2 processors. 
On average, 40% of executed instructions are no-operation instructions. This is 
caused by the Itanium2 instruction-set, which determines that up to three explicit 
instructions should be included in a very long instruction word instruction 
(VLIW). When the compiler analyzes dependencies of our OpenMP programs and 
it cannot schedule a bundle of at least three explicit instructions, no-operation 
instructions are automatically generated to fill some instruction slots of the respec-
tive VLIW instruction. 

9 Conclusions and Future Work 

We have proposed a new parallel algorithm for simultaneous untangling and 
smoothing of tetrahedral meshes. It is based on a successive set of mesh optimiza-
tion iterations. In each of them, all the vertex coordinates are recalculated in  
parallel. The performance evaluation of this algorithm on two many-core shared-
memory computers using six benchmark meshes with a wide range of sizes shows 
that it is a scalable and efficient parallel algorithm. For most of the processed 
meshes, we have observed that the parallelization of the body of the inner loop of 
our mesh optimization algorithm allows a reduction of about 1/100 of runtime 
related to the sequential implementation with 128 cores. 

We additionally have analyzed the causes of parallel performance deterioration 
when OpenMP is used to implement the optimization loop of our algorithm. Using 
real data collected with some performance counters, we can conclude that the 
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performance overhead of our parallel algorithm is mainly due to loop-scheduling 
overhead of the OpenMP programming methodology. Moreover, the results indi-
cate that mesh size positively influences on parallel performance, but the number 
of optimization iterations deteriorates performance more severely. 

We also investigated the influence of three graph coloring algorithms on the 
performance of our parallel untangling and smoothing algorithm. They have low 
impact on the total execution time. However, the total execution time of our paral-
lel algorithm depends on the selected coloring algorithm. In this paper, we have 
shown that there is not a unique coloring algorithm for our parallel algorithm that 
achieves the highest parallel performance.  

When parallel load balancing is analyzed, we observed that load unbalancing is 
mainly caused by OpenMP loop-scheduling overhead. Thus, its negative impact 
increases for larger numbers of available parallel threads. When analyzing hard-
ware usage, we observe that our parallel algorithm is processor-bound because it 
uses CPU and cache memory during 99% of runtime. 

Our parallel algorithm is CPU bound and its demonstrated scalability potential 
for many-core architectures encourages us to extend our work to achieve higher 
performance improvements from GPUs. The main problem will be to reduce the 
negative impact of global memory random accesses when a same streaming mul-
tiprocessor optimizes non-consecutive mesh vertices. 

Many parallel finite-element applications use a domain decomposition ap-
proach on distributed-memory computers. Our parallel algorithm needs to be 
adapted for a partitioned mesh on this type of computers. A distributed-memory 
strategy may sweep the partitioned mesh in three successive steps. First of all, the 
inner nodes of each subdomain can be sent to the same computing node. In this 
case, the boundary nodes of each subdomain should be also sent to its computing 
node. In a second step, each multi-core computing node colors and optimizes the 
inner vertices of its subdomain. Finally, subdomain boundary vertices and their 
current submeshes can be sent to a single multi-core computing node to optimize 
the subdomain boundary vertices. 
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