Tcl Extension Building With SWIG

David M. Beazley
Department of Computer Science
University of Chicago
Chicago, lllinois 60637

beazl ey@s. uchi cago. edu

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Tcl Extension Building

Interfacing Tcl and C/C++ is relatively easy

« Tcl provides a nice C API.
» Can add new commands, variables, objects, widgets, etc...
* Tcl was designed to be extended with compiled code (but you knew this).

However, there are downsides
« Tedious if you have a large library (do you write wrappers for hundreds of functions?)
» Working with structures and C++ classes is difficult.
» Compatibility (the Tcl C API has been known to change from time to time).
« Difficult to manage rapid change (since wrappers must be changed).
« Do you really want to write all of that extension code anyways?

There must be a better way...

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Extension Building Tools

A variety of tools have been developed

* SWIG

e jWrap

o ITcl++

* cpptcl

* Tclobj

e Embedded Tk (ET)

* Object Tcl

* TclObjCommand

* Modular Tcl

» Check the FAQ and contributed archive for more.

Two basic types of tools

* Interface compilers.
 Extensions to the Tcl C API.

All tools are different (try a few and use what you like)

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

¢ SWIG
http://ww. sw g.org

* JWrap
http://ww. fridu comlHmM/jWap. htm

o |Tcl++

http://ww9. i nformatik. uni-erlangen. de/ eng/ research/rendering/vision/itcl

« Embedded Tk (ET)

ftp://ftp.neosoft.com | anguages/tcl/sorted/ devel /et1_5.tar.gz

e cpptcl
http://ww. fas. harvard. edu/ ~dar | ey/ EvoXandCppt cl . ht m

e Tcloh

http://zeus.informatik.uni-frankfurt.de/~fp/Tcl/tclobj

¢ TclObjCommand

http://ftp.austintx.net/users/jatucker/Tcl Cbj ect Conmand/ defaul t. htm

¢ Modular Tcl

htt p: // ww. anat h. washi ngt on. edu/ ~l f/ sof t ware/ t cl ++

« Object Tcl
htt p: // waw. bbl i nk. cont usr/ skunk/ src/ Tool s/ Cbj ect Tcl - 1. 1/ docs/ cover . ht ni

Why Use an Extension Tool?

Simplicity
« Tools often simplify the construction of complex C/C++ extensions.
» May hide nasty underlying details.
» Automation works well for large packages.

Productivity

* Using a tool is usually faster than writing everything by hand.
* Focus on the problem at hand, not the creation of wrappers.

Better support for rapid change

* Tools are less sensitive to changes in an application.
« Easier to manage new versions of Tcl (e.g., Tcl 7.x to Tcl 8.x).

Allows Tcl to be used in new ways
* As a C/C++ software development tool.
* Testing/debugging.
« Extension tool for end-users (who may not know much about Tcl).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

SWIG

Simplified Wrapper and Interface Generator

« A compiler for the automatic creation of scripting language extensions.
 Supports ANSI C, C++, and Objective-C.

* Creates modules for Tcl 7.x, Tcl 8.x, Perl5, Perl4, Python, and Guile.

« Primary use is building scripting interfaces to existing C/C++ programs.

Availability
* http://www.swig.org
 Supports Unix, Windows-NT, and Macintosh.

Resources

« 340 page user manual (included in the distribution).
« Active mailing list with about 400 subscribers (swig@cs.utah.edu).

Reference

D.M. Beazley, “SWIG : An Easy to Use Tool for Integrating Scripting Languages
with C and C++", in 4th Tcl/Tk Workshop ‘96, Monterey, July 10-13,1996.
USENIX, p. 129-139.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Overview

Topics
* A tour of SWIG.
» Example : Building a Tcl interface to OpenGL
* Objects
* The SWIG Library
» Advanced features
« Limitations and resources.

Prerequisites
* You are an experienced ANSI C programmer.
* You have some familiarity with the Tcl C extension API.
* You have written some Tcl scripts.
» C++ (optional, but useful).

Many of the topics apply to other extension building tools

* SWIG is not the only approach.
 Primary goal is to illustrate the use of a Tcl extension building tool in action.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

SWIG Overview

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

An Introduction
SWIG (Simplified Wrapper and Interface Generator)
* SWIG is a compiler that turns ANSI C/C++ declarations into scripting extensions.
» Completely automated (produces a fully working Tcl extension module).
« Language neutral. SWIG can also target Perl, Python, Guile, MATLAB, and Java.
S D
T==: i T===
ANSI C
Declarations @
C SWIG)
! |
A 4 A 4 v A 4 v
Perl | Python | [Tcl | Guile Other
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 8

Notes

SWIG acceptsinput in the form of ANSI C/C++ declarations that would typically be found in a header file. Input generally
comes from three sources--C header files, C source files, and special SWIG “interface files” (which are usually given a.i suffix).
In most cases, a combination of different fileswill be used to build an interface.

ANSI C/C++ syntax was chosen because SWIG was designed to work with existing code. Theideaisthat you cangrabaC
header file, tweak it alittle bit, and produce aworking scripting interface with minimal effort. In other cases, one might create a
combined SWIG/C header file that defines everything about your C library (including the Tcl interface).

Compare to the interface specification approach used with CORBA IDL or COM.

A Simple SWIG Example

Some C code

/* exanple.c */
doubl e Foo = 7.5;
int fact(int n) {

if (n<=1) return 1;
el se return n*fact(n-1);

A SWIG interface file

/// exanpl e. i
Module Name P o%rodul e exanpl e
A
Header Files ——p #i ncl ude "headers. h"
%
C declarations ——p-int fact(int n);
doubl e Foo;
#define SPAM 42
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 9

Notes

The %module directive specifies the name of the Tcl extension module.

The %({, %} directiveisused to insert literal C code into the extension module created by SWIG. Thiscodeissimply copied
directly into the output file and is not interpreted by the SWIG compiler. Typically, thisis used to include header files and any
other supporting functions that might be used in the interface.

A Simple SWIG Example (cont...)

Building aTcl Interface (Linux)

%swig -tcl exanple.i

Generating wappers for Tcl

%cc -fpic -c exanple.c exanpl e_wap.c

% cc -shared exanpl e. o exanpl e_wap.o -0 exanpl e. so

* SWIG produces a file ‘exanpl e_wr ap. ¢’ that is compiled into a Tcl module.
» The name of the module and the shared library should match.

Using the module

> tclsh

% | oad ./exanple.so
% fact 4

24

% puts $Foo

7.5

% put s $SPAM

42

« Can also use packages (described in the SWIG Users Manual).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 10

Notes

Shared libraries

The process of compiling shared libraries varies on every machine. The above example assumes Linux. The following examples
show the procedure for Solaris and Irix. Consult the man pages for your C compiler and linker.
e Solaris

cc -c exanple.c wapper.c
Id -G exanple.o wapper.o -o exanpl e. so

e rix

cc -c exanple.c wapper.c
Id -shared exanple.o wapper.o -o exanple.so

Troubleshooting tips

« If you get the following error, it usually means that the name of your module and the name of the shared library don’t match.

% | oad ./exanple.so
couldn't find procedure Exanple_lnit

To fix this problem, make sure the name given with %module matches the name of the shared library.

« Thefollowing error usually means your forgot to link everything or thereis amissing library.

% | oad ./exanple.so
couldn't load file "./exanple.so": ./exanple.so: undefined synbol: fact

To fix this, check the link line to make sure all of the required files and libraries are being used. You need to link the SWIG
wrapper file and the original C code together when creating amodule. If the original application is packaged as alibrary, it
should be included on the link line when creating the Tcl extension module.

What SWIG Does

Basic C declarations
« C functions become Tcl procedures (or commands).
* C global variables become Tcl variables (if possible--see notes).
« C constants become Tcl variables.

Datatypes
« C built-in datatypes are mapped into the closest Tcl equivalent.
eint, long, short <--->Tclintegers.
«float, doubl e <--->Tcl float
echar, char * <--->Tcl strings.
e voi d <---> Empty string
*long I ong, |ong doubl e ---> Currently unsupported.
* Tcl Objects are used if the -t cl 8 option is given.

SWIG tries to create an interface that is a natural extension of the
underlying C code.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 11

Notes

Types of global variables

Global variables are implemented using the Tcl variable linking mechanism. This allowsthe Tcl interpreter to link to C
variables of typei nt , doubl e, andchar *. Asaresult, C variables of these types appear exactly like normal Tcl variables.
Unfortunately, the linking mechanism does not work with all C datatypes. For example,

short bar;

In this case, SWIG generates a pair of accessor functions

short bar_get() { return bar; }
short bar_set(short val) { bar = val; }

These functions would then be used in Tcl asfollows:

% puts [bar_get]
13
% bar _set 6772

More on constants

SWIG creates constants from #define, const, and enum declarations. However, #defineis also used to define preprocessor
macros. Therefore, SWIG only creates a constant from a#defineif the valueisfully defined. For example, the following
declarations create constants :

#define READ MODE 1
#define Pl 3. 14159
#define Pl4 Pl /4

The following declarations do not result in constants :

#define USE PROTOTYPES /1 No val ue given
#define _ANSI_ARGS(a) a /'l A macro
#define FOO BAR /1 BAR i s undefined

Pointers

Pointer support is critical!

e Arrays
* Objects
» Most C programs have tons of pointers floating around.

SWIG type-checked pointers
« C pointers are mapped to Tcl strings containing the pointer value and type

_1001fa80_Matrix_p
\

A
Value (hex) Type
* Type-signature is used to perform run-time checking.

« Type-violations result in a Tcl error.
* Pointers work exactly like in C except that they can’t be dereferenced in Tcl.

Similar to Tcl handles

« Pointer value is a "name" for an underlying C/C++ object.
» SWIG version is more flexible (although perhaps a little more dangerous).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 12

Notes

SWIG alows you to pass pointers to C objects around inside Tcl scripts, pass pointers to other C functions, and so forth. In
many cases this can be done without ever knowing the underlying structure of an object or having to convert C data structuresinto

Tcl data structures.

SWIG does not support pointersto C++ member functions. Thisis because such pointers can not be properly cast to a pointer of
type’'voi d *’ (the type that SWIG-generated extensions use internally).

The NULL pointer is represented by the string "NULL"

Run-time type-checking is essential for reliable operation because the dynamic nature of Tcl effectively bypasses all type-
checking that would have been performed by the C compiler.

Pointer Example

[%rodul e exanpl e

FI LE *fopen(char *filenane, char *node);

int fcl ose(FILE *f);

unsi gned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwite(void *ptr, unsigned size, unsigned nobj, FILE *);

/1 A menory allocation functions
voi d *mal | oc(unsi gned nbytes);

voi d free(void *);

.

[| oad ./exanple.so
proc filecopy {source target} {
set f1 [fopen $source r]
set f2 [fopen $target w
set buffer [malloc 8192]
set nbytes [fread $buffer 1 8192 $f1]
while {$nbytes > 0} {
fwite $buffer 1 $nbytes $f2
set nbytes [fread $buffer 1 8192 $f1]

}
fclose $f1
fclose $f2
free $buffer
N }
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 13

Notes

In the example, we didn’t need to know what aFl LE wasto useit (SWIG does not need to know anything about the data a pointer
actually pointsto).

More About Pointers

Type errors result in Tcl exceptions

% fcl ose $buffer
Type error in argunment 1 of fclose. Expected _FILE p, received _8062470_void_p

* Type-checking prevents most of the common errors.
» Has proven to be extremely reliable in practice.

Interesting features

« Definitions of objects are not required in interface files.
» Almost any C/C++ object can be manipulated with pointers.

Pitfall : Pointers in Tcl are just like pointers in C
» The same rules used in C apply to Tcl.
 Use of malloc/free or new/delete to create and destroy objects.
« Can have dangling pointers, memory leaks, and address violations.
* SWIG assumes you know what you are doing.
« Pointers in Tcl are no less safe than pointers in C.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

14

Array Handling

Arrays are pointers
« Same as in C (the "value" of an array is a pointer to the first element).
» Multidimensional arrays are supported.
* There is no difference between an ordinary pointer and an array in SWIG.
» SWIG does not perform bounds or size checking.

%rodul e exanpl e

doubl e *create_array(int size);
voi d foo(doubl e a[10][10][10]);

g

set d [create_array 1000]

puts $d
_100f 800_doubl e_p
foo() accepts foo $d
any "double *"
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 15

Notes

No checks are made to insure that arrays are of the proper size or even initialized properly (if not, you'll probably get a
segmentation fault).

It may be useful to re-read the section on arrays in your favorite C programming book---there are subtle differences between
arrays and pointers (unfortunately, they are easy to overlook or forget).

Effective use of arrays may require the use of accessor-functions to access individual members (thisis described later).

Objects

SWIG manipulates all objects by reference (i.e., pointers)

%vrodul e exanpl e

kL)

#i ncl ude "vector. h"

%

Vector *create_vector(double x, double y, double z);
doubl e dot_product (Vector *a, Vector *b);

1
Y 4

%1 oad ./exanple.so

% set v [create_vector 1.0 2.0 3.0]
% set w [create_vector 4.0 5.0 6.0]
% puts [dot_product $v $w

32.0

% puts $v

_1008f ea8_Vector_p

* Can use C/C++ objects without knowing their definition.
* However, can't peer inside objects to view their internal representation.
* SWIG does not complain about undefined datatypes (see note).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 16

Notes

Whenever SWIG encounters an unknown datatype, it assumes that it is a derived datatype and manipulatesit by reference.
Unlike the C compiler, SWIG will never generate an error about undefined datatypes. While this may sound strange, it makesit
possible for SWIG to build interfaces with aminimal amount of additional information. For example, if SWIG sees a datatype
"Matrix *’,it'sobviously apointer to something (from the syntax). From SWIG’s perspective, it doesn't really matter what the
pointer is actually pointing to. Asaresult, the definition of an object is not needed in the interface file.

Passing Objects by Value

What if a program passes objects by value?

Cdouble dot _product (Vector a, Vector b);)

* SWIG converts pass-by-value arguments into pointers and creates a wrapper
equivalent to the following :

doubl e wrap_dot _product (Vector *a, Vector *b) {
return dot_product(*a, *b);

}

« Transforms all pass-by-value arguments into pass-by reference.

Is this safe?

» Works fine with C programs.
» Seems to work fine with C++ if you aren’t being too clever.

Caveat
» Make sure you tell SWIG about typedef declarations (see notes).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

SWIG converts all undefined typesinto pointers. Asaresult, it isimportant to use typedef correctly. For example,
voi d foo(Real a); /1 "Real’ is unknown. Use as a pointer

would get wrapped as follows:
void wap_foo(Real *a) {

foo(*a);

}
In constrast, the following declarations would be wrapped correctly :

typedef doubl e Real;
voi d foo(Real a); /!l "Real’ is just a 'double'.

Return by Value

Return by value is more difficult...

CVector cross_product (Vector a, Vector b) ;)

* What are we supposed to do with the return value?
« Can't generate a Tcl representation of it (well, not easily), can’t throw it away.

* SWIG is forced to perform a memory allocation and return a pointer.

Vector *wrap_cross_product (Vector *a, Vector *b) {
Vector *result = (Vector *) malloc(sizeof(Vector));
*result = cross_product(*a, *b);
return result;

Isn’t this a huge memory leak?

* Yes.
« It is the user’s responsibility to free the memory used by the result.
* Better to allow such a function (with a leak), than not at all.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

When SWIG is processing C++ libraries, it uses the default copy constructor instead. For example:

Vector *w ap_cross_product (Vector *a, Vector *b) {
Vector *result = new Vector(cross_product(*a,*b));
return result;

18

Helper Functions

Sometimes it is useful to write supporting functions

« Creation and destruction of objects.

* Providing access to arrays.

 Accessing internal pieces of data structures.

 Can use the % nl i ne directive to add new C functions to an interface.

/ /] These functions become part of our Tcl interface
% nline %
doubl e *new darray(int size) {
return (double *) malloc(size*sizeof (double));
}

doubl e darray_get (double *a, int index) {
return a[index];

voi d darray_set (doubl e *a, int index, double value) {
a[i ndex] = val ue;

voi d del ete_darray(double *a) {
free(a);

}
%

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Thefollowing Tcl functions show how the above C functions might be used:

Turn a Tcl list into a C double array
proc createfromist {I} {
set len [Ilength $I]
set d [new darray $len]
for {set i 0} { $i <S$len} { incr i 11} {
darray_set $d $i [lindex $l $i]

return $d

}

Print out sone elenments of an array
proc printelenents {a first last} {
for {set i $first} {$i < $last} {incr i 11} {
puts [darray_get $a $i]
}

19

Preprocessing

SWIG has a C preprocessor

» The SW Gsymbol is defined whenever SWIG is being run.
 Can be used to make mixed SWIG/C header files or for customization

/ /* header.h
A m xed SWGE C header file */
#ifdef SWG
%rodul e exanpl e
0,
#i ncl ude "header. h"
%
#endi f

#define EXTERN extern

#i f def CAN_PROTOTYPE

#define _ANSI _ARGS(a) a

#el se

#define _ANSI_ARGS(a) ()

#endi f

/* C declarations */

EXTERN int foo _ANSI _ARGS((int, double));

#i f ndef SWG
/* Don’t wap these declarations. */
#endi f

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

SWIGL1.1 had a partial implementation of a preprocessor that allowed conditional compilation.

SWIGL.2 hasafull implementation of a preprocessor that allows conditional compilation and macro expansion.

Preprocessing symbols can be specified on the SWIG command line using the -D option. For example,

sw g - DDEBUG f 0o0. i

20

File Inclusion

The %include directive

* Includes a file into the current interface file.
* Allows a large interface to be built out of smaller pieces.
« Allows for interface libraries and reuse.

/%mdul e opengl . i

% nclude gl .i

% ncl ude glu.i

% ncl ude aux. i

% ncl ude "vis.h"
% ncl ude hel per.i

.

* File inclusion in SWIG is really like an "import." Files can only be included once and
include guards are not required (unlike C header files).

Note : SWIG ighores #include statements

* Blindly following all include statements is probably not the behavior you want.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Like the C compiler, SWIG library directories can be specified using the -1 option. For example :

%swig -tcl -1/home/ beazley/ SWGE lib exanple.i

21

Renaming and Restricting

Renaming Declarations

» The %name directive can be used to change the name of the Tcl command
Y%mame(out put) void print();
« Usually used to resolve namespace conflicts between C and Tcl.

Creating read-only variables

* %readonly and %readwrite directives

doubl e foo; /1 dobal variable (read/wite)
% eadonl y

doubl e bar; /1 dobal variable (read-only)
doubl e spam /1 (read-only)

o% eadwrite

» Read-only mode stays in effect until it is explicitly disabled.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

22

Miscellaneous Features

Tcl8.0 wrappers

» SWIG will generate wrappers for Tcl objects.
* Run SWIG with the - t cl 8 option.
* Results in better performance.

Namespaces

« Can install all of the wrappers in a Tcl8 namespace.
SW g - hamespace
« Namespace name is the same as the module name.
* A C function "bar" in a module "foo" will be wrapped as "foo::bar"

Prefixes

 Can attach a package prefix to functions
swig -prefix foo

* Not really needed with namespace support.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 23

Notes

Unsupported Features

SWIG is not a full C/C++ parser

« Pointers to functions and arrays are not fully supported.

void foo(int (*a)(int, double)); /1 Error
void bar(int (*b)[50][60]); [l Error

« Variable length arguments not supported
int fprintf(FILE *f, char *fnmt, ...);

« Some declarations aren’t parsed correctly (a problem in early versions of SWIG)
const char *const a;

Goal of SWIG is not to parse raw header files!

* ANSI C/C++ syntax used because it is easy to remember and use.

» SWIG interfaces are usually a mix of ANSI C and special SWIG directives.
* Build interfaces by tweaking header files.

* There are workarounds to most parsing problems.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Quick Summary

You know almost everything you need to know

« C declarations are transformed into Tcl equivalents.

« C datatypes are mapped to an appropriate Tcl representation.

* Pointers can be manipulated and are type-checked.

 Objects are managed by reference.

* SWIG provides special directives for renaming, including files, etc...
* SWIG is not a full C/C++ parser.

This forms the foundation for discussing the rest of SWIG.

« Handling of structures, unions, and classes.
* Using the SWIG library.
 Customization.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

25

A SWIG Example : OpenGL

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

26

Building aTcl Interface to OpenGL

OpenGL

A widely available library for 3D graphics.
* Consists of more than 300 functions and about 500 constants.
* Available on most machines (Mesa is a public domain version).

Why OpenGL?
« It's real package that does something more than “hello world”
« It's available everywhere.
* An early SWIG user wrapped it in only 10 minutes as his first use of SWIG.

For this example, we’ll use

* SWIG1.2al on Windows-NT 4.0

* Microsoft Visual C++ 5.0

 Microsoft's implementation of OpenGL
*Tcl 8.0

See notes for Unix information.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

A Unix version of this example can be built using the Mesa library available at

http://ww. ssec. w sc. edu/ ~bri anp/ Mesa. ht ni

Any number of commercial OpenGL implementations should also work.

27

Interface Building Strategy

Locate the OpenGL header files

<@./gl.h> /1 Main OpenGL header file
<@/ gl u. h> /1 Uility functions
<d /gl aux. h> /1 Some useful utility functions
The plan:
» Write a separate SWIG interface file for each header.
gl .i
glu.i
gl aux. i

» Combine everything using an interface file similar to this

/1 SWGinterface to QpenG
%odul e opengl

% nclude gl .i

% ncl ude gl u.i

% ncl ude gl aux. i

» Write a few supporting functions to make the interface work a little better.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Preparing the Files

opengl.i

/'l OpenGL Interface

%odul e opengl

% ncl ude gl .i

% nclude glu.i — |

% ncl ude gl aux. i

Note :

T

gl.i

%

#i ncl ude <@/ gl . h>
%

% nclude “gl.h”

glu.i

AR

#i ncl ude <A&U gl u. h>
%

% ncl ude “glu. h”

glaux.i

A
#i ncl ude <@/ gl aux. h>
%

% ncl ude “gl aux. h”

This is only going to be afirst attempt.

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

29

Creating a Project

Extensions are compiled as DLLs
New ﬂﬂ

Files Piojects | ‘“wiorkspaces I QOther Documents I

&7 ATL COM Apphizard Project name:
81 Custom Appwizard |DpenGLI
[D evStudio Addin Wizard

B8 |54P Extension Wizard Logation:
g M akefile D:hDevel\OpenGL J

i MFC Activex Contiof/izard

8] MFC Appiwizard (dl)

ISR MFC Appiwizard (ese) & Create new workspace

(3] /in32 Application) Al b et wirkspace

[win32 Console Application I=| Bependency of:

Win32 Dypnamic-Link Libran

Wind2 Static Libran I |

Platfarms:
Iwmsz

Cancel |

« Simply select a Win32 DLL when creating a new project.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

On Unix, ashared library will be created using a Makefile similar to the following (will vary on every machine)

Makefile for OpenG (linux)

| NTERFACE = opengl .i

WRAPFI LE = $(I NTERFACE: . i =_wr ap. ¢)

WRAPOBJ = $(I NTERFACE: . i =_wr ap. 0)

TARGET = opengl.so # Use this kind of target for dynam c | oadi ng
cC = gcc

CFLAGS =

I NCLUDE = -1/usr/local/src/Msa-2.5

LI BS = -L/usr/local/src/Mesa-2.5/1ib -1 Mesaaux -|Mesatk -1 MesaG.U -1 Mesa@ -1 Xext
aBJS =

SWG Options

SWG = swigl.2

SW GOPT = -tcl

Shared libraries

CCSHARED = -fpic

BU LD = gcc -shared

Tcl installation (where is Tcl/Tk | ocated)

-1/ usr/include
-L/usr/local/lib

TCL_I NCLUDE
TCL_LIB

all: $(TARGET)
Create opengl _wap.o from opengl _wap.c
$(WRAPCBJ) : $(WRAPFI LE)
$(CO) -c $(CCSHARED) $(CFLAGS) $(WRAPFILE) $(I NCLUDE) $(TCL_I NCLUDE)
Create the opengl _wap.c froman interface file
$(WRAPFI LE) : $(| NTERFACE)
$(SWG $(SWGOPT) -0 $(WRAPFILE) $(SW GLI B) $(| NTERFACE)
Create the shared library
$(TARGET) : $(WRAPOBJ) $(OBIS)
$(BU LD) $(WRAPCBJ) $(0OBJS) $(LIBS) -0 $(TARGET)

Setting up the Files

The module consists of the following two files
« opengl.i (SWIG input)
e opengl_wrap.c (SWIG output)

Add both files to the project and customize opengl.i as follows

Project Settings HE
Settings Far; I\,\,-'in32 Debug j General Custom Build |
E‘" DpenG . Irput file: opengli
. Description: lm
Build command(z): EI N S

d:/zwigl. 2/swig.exe -tcl -0 $(ProDil${lnputhl ame)_wrap <+«— SWIG command line

Dlutput file[=): EI N S
$[PraiDin) ${l nputh ame]_wrap.c <+— SWIG Output f||e

[irectom * Eiles = | Dependencies... |

Cancel |

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 31

Notes

To customize the opengl.i, simply select the “ project->settings’ menu in Visual C++.
The full SWIG command line might look like the following:

d:\swigl. 2\swig.exe -tcl -o $(ProjDir)\$(InputNane)_wr ap.c
-17d:\ Program Fi | es\ DevSt udi o\ Vc\i ncl ude\ G." $(| nput Pat h)

The output files should look like this :
$(Proj Dir)/$(I nput Name) _wrap. c

Note, thefile“opengl_wrap.c” should be added to the project even though it does not exist yet (Visual C++ will notice that thefile
doesn’t exist, but will ask you if its okay to proceed anyways).

Project Settings

opengli
opengl_wiap.c

General Debug ‘ C/C++

Link. | F\esourc([Tv]
Beset |

Categary:

Preprocessondefinitions:
|WIN32,,DEB§G,,WINDDWS

Undefined symipols: ™ Undefine all symbols

Additional include directories:
d\develuchinclude

™ Ignore standard include paths

Project Options:

Arologo AMTd A3 AGm AR AZA0d A -
"dhdeveltchinclude’ /D WIN32" /D Y _DEBUG" /D
" WINDOWS" /FR"Debug LI

Cancel

Include Files and Libraries

Don’t forget the Tcl include directory and libraries

C/T++ Link | Hesourc(D]
Reset

Categors |General

Output file name:
|Debug/OpenGL di X
Obiject/library modules:

Id ‘develtclibitclB0ve. lib opengl32.lib glavs lib ghu32. b

¥ Generate debuginfo [lanore all default ibraries

¥ Link jncrementally ™ Generate mapfile

™ Enable profiling I lgnore expart libran

Project Options:
kemel32 ib user32 lib gdi32 lib winspool lib comdlg32.lib &

advapid2.lib shell32.lib ole32.lib olzaut32. lib uwid lib
odbc32lib odbcop3Z b ddevelstcibAtclB0ve. it ;I

Cancel |

* Whew. Almost ready to give it a try.

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

32

SW G

Maki ng wrappers for Tcl
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
defined (2nd definition i
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
defined (2nd definition i
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
defined (2nd definition i
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
defined (2nd definition i
d: \ Program Fi | es\ DevSt udi
d: \ Program Fi | es\ DevSt udi
defined (2nd definition i
d: \ Program Fi | es\ DevSt udi

First Attempt

o\VQ\i ncl ude\ &/ gl .
o\ VQ\i ncl ude\ G/ gl .
o\VQ\i ncl ude\Q@/ gl .

gnored) .

o\ VQ\i ncl ude\ G/ gl .
o\VQ\i ncl ude\ @/ gl .

gnored) .

o\ VQ\i ncl ude\ G/ gl .
o\ VQ\i ncl ude\ G/ gl .

gnored) .

o\VQ\i ncl ude\ @&/ gl .
o\VQ\i nclude\ G/ gl .

gnored) .

o\VQ\i ncl ude\ &/ gl .
o\ VQ\i ncl ude\ &/ gl .

gnored) .

o\VQ\i ncl ude\ @&/ gl .

Confused by earlier errors. Bailing out

j e

>

Hmmm. This isn’t too encouraging.

jm e e

Li
Li
Li

Li
Li

Li
Li

Li
Li

Li
Li

Li

ne
ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne

1135.
1136.
1137.

1137.
1138.

1138.
1139.

1139.
1140.

1140.
1141.

1141.

Building our module now results in the following :

Syntax error in input.
Syntax error in input.
Variable WNGDI APl nul tiply

Syntax error in input.
Variable WNGDI APl nul tiply

Syntax error in input.
Vari abl e WNGDI APl nul tiply

Syntax error in input.
Variable WNGD APl nul tiply

Syntax error in input.
Variable WNGD APl nul tiply

Syntax error in input.

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

33

Fixing Parsing Problems
Raw C header files are often problematic. For example:

W NGDI APl voi d API ENTRY gl Accum(GLenum op, G.float val);

* SWIG has no idea what to do with macros or extensions to ANSI C.

Can use the SWIG preprocessor to fix many of these problems

/'l OpenCGL Interface

%odul e opengl

/1l Define nmacros as enpty (not needed for SWGQ
#defi ne W NGDI API

#defi ne API ENTRY

#def i ne CALLBACK

% nclude gl .i
% ncl ude gl u.i
% ncl ude gl aux. i

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

34

Second Attempt

Getting much closer, only 3 errors this time

glu.h : Line 231. Error. Function pointer not allowed.
glu.h : Line 271. Error. Function pointer not allowed.
glu.h : Line 354. Error. Function pointer not all owed.

Problem : SWIG parser doesn’t currently allow function pointers

To fix:

* Copy contents of gl u. hto gl u. i
« Edit out offending declarations

A

#i ncl ude <@&./ gl u. h>
%

/'l Insert glu.h here

/1 void APIENTRY gl uQuadricCal | back (
/1 GL.Uguadric *qobj ,

/1 GLenum whi ch,
/1 voi d (CALLBACK *fn)();
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 35

Notes

Function pointers are not correctly parsed by SWIG1.1. SWIG1.2 will eventually eliminate these problems.
Pointers to functions can sometimes be handled using typedef. For example, the declaration

void foo(void (*pfcn)(int,int));
can be rewritten as

typedef void (*PFl)(int,int);
voi d foo(PFl pfcn);

Pointers to function may be awkward or difficult to use from aTcl interface. While pointersto C functions can be passed around
inTcl, it is not possible to implement callback functionsin Tcl or use Tcl proceduresin place of C functions (well, not without a
little work).

Third Attempt

The module now compiles

 Only had to make a few minor changes to headers

But the module still doesn’t seem to work quite right...

% | oad ./opengl.dlI
% aux| ni t Di spl ayMode [expr {$AUX_SI NGLE | $AUX _RGBA |
$AUX_DEPTH}]
% auxl nitPosition 0 0 500 500
% aux!| ni t Wndow “Lit-Torus”
anbi guous command nane “Auxl nit Wndow': auxl ni t WndowA
aux! ni t W ndoww

Header files and libraries sometimes play tricks

#i f def UNI CODE

#def i ne auxl ni t Wndow aux! ni t W ndowwW
#el se

#def i ne auxl ni t Wndow aux! ni t W ndowA
#end

GLenum API ENTRY aux! ni t W ndowA(LPCSTR) ;
GLenum API ENTRY auxl| ni t W ndowW LPCWSTR) ;

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Wrapping araw header file might not result in ausable Tcl extension module.

SWIG does not create wrappers for C macros as shown above.

36

Wrapping Macros

To wrap macros, simply supply a C prototype (with type information)

/1 glaux.i

A

#i ncl ude <G/ gl aux. h>
%

/'l Clear the nmacro definition

#undef auxl ni t W ndow

/Il Gve SWG a C prototype for the macro
GLenum auxl ni t Wndow char *title);

May need to look at interface files to identify other macros

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

37

Type Problems

SWIG only really understands a few basic datatypes

eint,long,short, fl oat, doubl e, char, voi d
* Everything else is assumed to be a pointer

Missing typedef’s are sometimes a problem
GLenum API ENTRY aux! ni t W ndowA(LPCSTR) ;

* SWIG assumes LPCSTR is a complex object and creates a wrapper like this

GLenum wr ap_auxl| ni t W ndowA(LPCSTR *a) {
aux!| ni t WndowA(*a) ;
}

* However, buried deep in Windows header files we find that LPCSTR is really a string
#define CONST const
typedef char CHAR
t ypedef CONST CHAR * LPCSTR;
To fix, put atypedef in the interface file

typedef const char *LPCSTR;

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 38

Notes

Helper Functions

Some functions may be difficult to use from Tcl

void gl Material fv(GLenum face, G.enum pnarne,
const G.float *parans);

«‘par ans’ is supposed to be an array.
* How do we manufacture these arrays in Tcl and use them?

Write helper functions

% nline %
G.float *newfv4(C.float a, Gfloat b, Gfloat ¢, Gfloat d) {
Gfloat *f = (G.float *) malloc(4*sizeof (G.float));

f[0] = a
f[1] = b;
f[2] = c;
f[3] =d;
return f;
}
%

/Il Create a destructor ‘delfv’ that is really just ‘free’
Ymane(del fv) void free(void *);

« Tcl lists can also be used as arrays (see section on customization).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 39

Notes

Tcl OpenGL Example

/“Toad ./opengl.dll N

Open up a display w ndow

aux! ni t Di spl ayMbde [expr {$AUX_SINGLE | $AUX_RGBA |
$AUX_DEPTH }]

aux! nitPosition 0 0 500 500

aux! ni t Wndow "Lit- Torus"

Set up the material properties

set mat_specular [newfv4 1.0 1.0 1.0 1.0]
set mat_shininess [newfv4 50.0 0 0 O]

set light_position [newfv4 1.0 1.0 1.0 0.0]

gl Material fv $GL_FRONT $G._SPECULAR $nat _specul ar

gl Material fv $G._FRONT $G._SHI NI NESS $mat _shi ni ness
gl Lightfv $G._LI GHTO $G._POSI TI ON $l i ght _posi tion
gl Enabl e $GL_LI GHTI NG

gl Enabl e $G._LI GHTO

gl Dept hFunc $GL_LEQUAL

gl Enabl e $GL_DEPTH_TEST

Set up view

glCearColor 0 000

gl Color3f 1.0 1.0 1.0

gl Matri xMbde $GL_PROQIECTI ON
gl Loadl dentity

glotho -11-11-11

gl Matri xMode $GL_MODELVI EW
gl Loadl dentity

gl d ear $G._COLOR BUFFER BI T

gl G ear $G._DEPTH BUFFER BI T
auxSol i dTorus 0.10 0.50

ﬁ

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

40

Putting it All Together

Interface building is often an iterative process
« Start with header files
* Fix parsing problems and make slight edits (as necessary).
« Refine the interface to make it more usable.

Can be a very rapid process. Yerodul & openg!
For OpenGL:
. /| Define problematic macros
» Had to define 3 macros. #define APl ENTRY
. . . #def i ne W NGDAPI
« Edit out some function pointers. #defi ne CALLBACK
* Supply a few typedefs. /'l Provide a typedef
« Write a few helper functions. typedef const char *LPCSTR
. . % ncl ude gl . i
Some things to think about %ncl ude glu. i
% ncl ude gl aux. i
» Raw headers might create an % ncl ude hel p. i
unusable interface.
/] Create a macro w apper
* It is rarely necessary to wrap #undef auxl ni t Wndow
everything. GLenum aux! ni t Wndow(char *title);
* Nothing was Tcl specific! o

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 41

Notes

In this example, aTcl interface to OpenGL was built, but no Tcl specific code was written. Asaresult, it is easy to retarget our
interface for other languages. For example:

swi g -python opengl . i # Build a Python interface to QpenG
swig -perl5 opengl.i # Build a Perl5 interface to Qpend

Objects

Tcl Extension Building With SWIG

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

42

Manipulating Objects

The SWIG pointer model (reprise)

* SWIG manages all structures, unions, and classes by reference (i.e. pointers)
» Most C/C++ programs pass objects around as pointers.

* In many cases, writing wrappers and passing opaque pointers is enough.

» However, in some cases you might want more than this.

Issues

* How do you create and destroy C/C++ objects in Tcl?
* How do you access the internals of C/C++ objects in Tcl?
* How do you invoke C++ member functions from Tcl?

Concerns
« Don’t want to have to write a full C++ compiler to make it work (a nightmare).
e Don’t want to turn Tcl into C++.
» Don’t want to turn C++ into Tcl.
* Keep it simple.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Creating and Destroying Objects

Objects can be created and destroyed by writing helper functions :

typedef struct {
doubl e Xx,vy, z;

} Vector;
' M
SWIG Interface file ~
7 %nline %
Vector *new_Vector(double x, double y, double z) {
Vector *v = (Vector *) malloc(sizeof (Vector));
V->X = X; V->y = y; Vv->Z = z;
return v;
}
voi d del ete_Vector(Vector *v) {
free(v);
}
%
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 44

Notes

Using these functionsin Tcl is straightforward:

% set v [new Vector 1 -3 10]
% set w [new Vector 0 -2.5 3]
% puts $v

_1100ef 00_Vect or _p

% puts $w

_1100ef 20_Vect or _p

% puts [dot _product $v $w

37.5
% set a [cross_product $v $w
% puts $a

_1100ef 80_Vector_p
% del ete_Vector $v
% del ete_Vector $w
% del ete_Vector $a

SWIG requires all objectsto be explicitly created and destroyed. While it may be sensible to apply areference counting schemeto
C/C++ objects, this proves to be problematic in practice. There are several factors:

« We often don't know how a*“ pointer” was manufactured. Unlessit was created by mal | oc() or new; it would probably be a
bad idea to automatically invoke a destructor on it.

e C/C++ programs may use objectsinternally. 1t would be abad ideafor Tcl to destroy an object that was till being used inside
aC program. Unfortunately, there is no way for Tcl to know this.

e A C/C++ program may be performing its own management (reference counting, smart pointers, etc...). Tcl wouldn't know
about this.

Accessing the Internals of an Object

This is accomplished using “accessor” functions

%nline % ™\
doubl e Vector_x_get (Vector *v) {
return v->x;

}

voi d Vector_x_set(Vector *v, double val) {
v->x = val;

}

%

J

2

>>> v = new_Vector(1,-3,10)
>>> print Vector_x_get(v)
1.0

>>> \ector _x_set (v, 7.5)

>>> print Vector_x_get(v)

>>>

» Minimally, you only need to provide access to the “interesting” parts of an object.
» Admittedly crude, but conceptually simple.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Invoking C++ Member Functions

You guessed it

class Stack {
public:
St ack();
~Stack();
voi d push(Qbj ect *);

Obj ect *pop();

% nline %

voi d Stack_push(Stack *s, Object *0) {
s->push(o0);

}

oj ect *Stack_pop(Stack *s) {
return s->pop();
}

%

« Basically, we are just creating ANSI C wrappers around C++ methods.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

46

union or class definitions.

ﬁ/amadul e stack

class Stack {
public:
Stack();
~St ack();
voi d push(bj ect *);
Qoj ect *pop();
int depth;

SWIG

Automatic Creation of Accessor Functions

SWIG automatically generates accessor functions if given structure,

/St ack *new Stack() { \

return new Stack;

voi d del ete_Stack(Stack *s) {
delete s;

void St ack_push(Stack *s, bject *o) {
s->push(o0);

}

Obj ect *Stack_pop(Stack *s) {
return s->pop();

int St ack_dept h_get (Stack *s) {
return s->depth;

}

voi d Stack_depth_set(Stack *s, int d) {
s->depth = d;

}

ﬁ

* Avoids the tedium of writing the accessor functions yourself.

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

The creation of accessor functionsis so straightforward, it makes sense for SWIG to automate the process.

47

Parsing Support for Objects

SWIG provides parsing support for the following

* Basic structure and union definitions.
« Constructors/destructors.

* Member functions.

« Static member functions.

« Static data.

* Enumerations.

e C++ inheritance.

Not currently supported (mostly related to C++)

» Template classes (what is a template in Tcl?)
 Operator overloading.
* Nested classes.

However, SWIG can work with incomplete definitions

« Just provide the pieces that you want to access.
* SWIG is only concerned with access to objects, not the representation of objects.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 48

Notes

It isimportant to remember that SWIG only turns object definitions into accessor functions. This transformation can be easily
performed with incomplete or partial information about the real C/C++ object. Again, SWIG is avoiding the problem of object
data representation and using a scheme that relies upon references.

Compare with CORBA, COM, and other systems.

C++ Inheritance and Pointers

SWIG is aware of C++ inheritance hierarchies

/cl ass Shape { \ /% set ¢ [new Crcle 7] \
public: % set s [new_Square 10]
virtual double area() = 0; % puts [Square_area $s]
h 100. 0
% puts [Shape_area $s]
class Grcle : public Shape { 100.0
public: % puts [Shape_area $c]
Circl e(doubl e radi us); 153. 938040046
~CGircle(); puts [Square_area $c]
doubl e area(); Type error in argument 1 of Square_area.
b Expected _Square_p.
%
class Square : public Shape {
Squar e(doubl e wi dt h);
~Square();
doubl e area();
b

N — Y

* The run-time type checker knows the inheritance hierarchy.
* Type errors will be generated when violations are detected.
« C++ pointers are properly cast when necessary.

 Multiple inheritance is also supported.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

49

6I ass Stack {
public:
St ack();
~Stack();
voi d push(char *);
char *pop();
int depth;
b

o

~

J

9

« Class is manipulated like a widget
» Data members accessed and modified using cget and configure

The Object Interface

SWIG can also create object-like Tcl interfaces

/% Stack s
% s push Dave
% s push John
% s push Mchelle
% s pop
Mchel l e
% puts [s cget -depth]
2
% puts [s cget -this]
_1008f e8_St ack_p
% renane s ““

.

; # CGreate

Delete

‘g

~

* Interface is somewhat similar to [incr Tcl].
« Object interface is built using low-level accessor functions.
« Many more details in the SWIG manual.

Note : SWIG is not an object-oriented extension to Tcl.

« For instance, you can’t inherit from a SWIG object.

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

50

Extending Structures and Classes

Object extension : A cool trick for building Tcl interfaces

« You can provide additional “methods” for use only in Tcl
« Useful for debugging

e)

%rodul e exanpl e
struct Vector {

doubl e x,vy, z;
h

/1 Attach some new nethods to Vector
%ddnet hods Vector {

Vect or (doubl e x, double y, double z) { # Create a vector
Vector *v = new Vector; Vector v 1.0 2.0 -3.5
V->X = X _
v->y = y; # Qutput its value
V->Z = Z; Vv out put
return v;

}

void output() {
printf(“[%, %, %]\n",
sel f->x, sel f->y, sel f->z);

}s

ﬁ

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 51

Notes

The object extension mechanism works with both C and C++. Furthermore, it does not rely upon any C++ magic nor does it
affect the underlying objectsin any way.

A C structure

\
struct | mage {
int wdth;
int height;
H y

Some C functions

Image *ingcreate(int w, int h);

void ingclear(lmage *im int color);

void ingplot(lmage *imint x,int vy,
int color);

N

)

Can radically alter the Tcl
interface to existing C
programs.

Turning C Structures into Tcl Objects

/%mdul e i mage

struct | mage {
int wdth;
int height;

h
%ddnet hods | nage {
Image(int w, int h) {
return ingcreate(w, h);

void clear(int color) {
return ingclear(self,color);

void plot(int x, int y, int color) {
return inmgplot(self,x,y,color);
}

}
SWIG)
v

Tcl

Create an image
I mage ing 500 500

Manipul ate it
img clear $BLACK
ing plot 200 200 $WH TE

Tcl Extension Building With SWIG

Notes

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

52

Objects and Pointers

The object-interface is built using pointers and accessor functions

« However, objects and pointers are generally not interchangable.
* An “object” is simply a name---pointer value is hidden away in clientData.

Extracting the pointer value from an object
set ptr [obj cget -this]

« Extracts the pointer value from an object named ‘obj ’

Converting a pointer value into an object
bj ect obj -this $ptr

« Creates an object named ‘obj ' from the pointer value $ptr.

More details in the SWIG manual

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 53

Notes

The SWIG Library

Tcl Extension Building With SWIG

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

54

The SWIG Library

SWIG is packaged with a standard “library”

« Think of it as the SWIG equivalent of the C library.
* It's an essential part of using SWIG.

Contents of the library :
« Interface definitions to common C libraries.
« Utility functions (array creation, pointer manipulation, timers, etc...)
* SWIG extensions and customization files.
* Support files (Makefiles, Tcl scripts, etc...)

Using the library is easy--just use the %include directive.

%vodul e exanpl e

% ncl ude mal |l oc. i
% ncl ude pointer.i
% nclude tiners.i

» Code from the library files is simply inserted into your interface.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Rebuilding tclsh and wish

An alternative to dynamic loading

%vodul e \

A

#i ncl ude “header.h” unix > swig -tcl exanple.i

% uni x > gcc exanpl e.c exanple_wap.c \

-l/usr/local/include -ltcl -Im\
E> -0 nytclsh

% ncl ude tclsh.i

/1 Use % nclude wish.i for w sh

« Just run SWIG, compile, and link.
* No need to write Tcl _Appl nit () ormain().

Can also specify libraries on the SWIG command line

swig -tcl -Iwish.i example.i

» Makes it easier to write makefiles that use either dynamic or static linking.

etclsh.i andwi sh.i are SWIG library files for rebuilding the Tcl interpreter.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

56

The SWIG Pointer Library

%include pointer.i

« Provides high level creation, manipulation, and destruction of common C types
« Can create arrays, dereference values, etc...
* The cool part : uses the SWIG type-checker to automatically infer types.

%vrodul e exanpl e
% ncl ude pointer.i

voi d add(doubl e *a, double *b, double *result);

2

/set a [ptrcreate double 3.5]
set b [ptrcreate double 7.0]
set ¢ [ptrcreate double 0.0]

add $a $b $c
puts [ptrval ue $c]
10.5

ptrset $a -2.0
puts [ptrval ue $a]
-2.0

ptrfree $a
ptrfree $b
ptrfree $c

.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 57

Notes

The SWIG pointer library can also perform type-casting, pointer arithmetic, and the equivalent of arun-time ‘typedef’. One of the
more useful features of the library is its dynamic deferencing operations. For example, pt r val ue will return the value of any
pointer that is one of the built-in C datatypes (int, long, short, char, float, double, etc...). The type-determination is made
dynamically (since al pointers are already encoded with that information).

Typemap Library

The typemap library customizes SWIG (described shortly)

 Can be used to handle input and output arguments.

%rodul e exanpl e
% ncl ude typemaps. i

voi d add(doubl e *I NPUT, doubl e *I NPUT, doubl e *QUTPUT);

%1 oad ./exanple.so
%set r [add 3.0 4.5]
% puts $r

7.5

%

* The behavior of “doubl e *1 NPUT” and “doubl e * QUTPUT” have been modified.
« Use of the C function has been completely changed (no longer requires pointers).

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 58

Notes

Support Files

Need a Tcl Makefile in a hurry?

%swig -tcl -co Makefile
Makefil e checked out fromthe SWG library
%

« Copies a preconfigured Tcl Makefile from the library into the current directory.
« Edit it and you're off and running.

/ # Cenerated automatically from Makefile.in by configure.

$Header: $
SWG Tcl / Tk Makefile

This file can be used to build various Tcl extensions with SWG
By default this file is set up for dynanic |oading, but it can

be easily custom zed for static extensions by nodifying various
portions of the file.

B T S S

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 59

Advanced SWIG Features

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

60

Exception Handling

The %except directive
« Allows you to define an application specific exception handler.
* Can catch C errors or C++ exceptions.
« Fully configurable (you can define exception handlers as you wish).

/O/except(tcl){

try {
$function /* This gets replaced by the real function call */

}

catch(RangeError) {
interp->result = “Array index out-of-bounds.”;
return TCL_ERROR,

}
-

« Exception handling code gets inserted into all of the wrapper functions.

» $f unct i on token is replaced by the real C/C++ function call.

Note:

« Exception handling is different in Tcl 7.x and Tcl 8.x

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 61

Notes

SWIG includes alibrary of exception handlers that are implemented in a portable manner. To use the library, you would simply
write the following :

% ncl ude exceptions.i
%except {

try {
$f uncti on

}
cat ch(RangeError) {

SW G_excepti on(SW G_I ndexError,”i ndex out-of -bounds”);
}

}
In this case, the macro SWIG_exception() is translated into the appropriate Tcl code needed to indicate an error.

Typemaps

Typemaps allow you to change the processing of any datatype
« Handling of input/output values.
« Converting Tcl objects into C/C++ equivalents.
* Telling SWIG to use new Tcl types.

Very flexible, very powerful
* You can do almost anything with typemaps.
* You can even blow your whole leg off (not to mention your foot).
« Often a hot topic of discussion on the SWIG mailing list

Caveats
» Requires knowledge of Tcl's C API to use effectively.
* It's possible to break SWIG in bizarre ways.
« Impossible to cover in full detail here.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

62

Typemap Example

What is atypemap?

« A special processing rule applied to a particular (datatype,name) pair.
doubl e spam(int a, int);

(doubl e, "spanf) (int,”a”) (int,”")
« Can define rules for specific (datatype,name) pairs
 For example

% ypemap(tcl,in) int a {
if (Tcl _GetInt(interp, $source, $target)==TCL_ERROR)
return TCL_ERROR;
printf(“a = %\n", $target);

* This C code gets inserted into the wrapper functions created by SWIG.
« $sour ce and $t ar get are tokens that get replaced with C variables.
* The “in” typemap is used to convert arguments from Tcl to C.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

63

How Typemaps Work

% ypemap(tcl,in) int a {
see previous slide ...
}

doubl e span(int a, int);

<

[static int _wap_spanm(CientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
double _result;
int _argO;
int _argl;

clientData = clientData; argv = argyv;

if ((argc < 3) || (argc > 3)) {
Tcl _SetResult(interp, "Wong # args. spama { int } ", TCL_STATIO);
return TCL_ERROR;

if (Tcl _Getlnt(interp,argv[1], _arg0)==TCL_ERROR)

typema — return TCL_ERROR
yp P printf("a = %\n", _arg0);
_argl = (int) atol (argv[2]);
_result = (double)span{_arg0, _argl);
Tcl _PrintDoubl e(interp, (double) _result, interp->result);
return TCL_OK;
Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 64

Notes

Typemap Methods

Typemaps can be defined for a variety of purposes

« Function input values (“in”)

« Function output (“out”)

* Default arguments

* Ignored arguments

* Returned arguments.

» Exceptions.

« Constraints.

« Setting/getting of structure members
» Parameter initialization.

The SWIG Users Manual has all the gory details.

The bottom line

» Typemaps are very powerful and very useful.
» Can customize SWIG in a variety of ways.
* But you have to know what you're doing.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

Limitations

Tcl Extension Building With SWIG

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

66

SWIG Limitations

Not a full C/C++ parser

« C++ function overloading.

» C++ operator overloading.

* Namespaces.

» Templates.

« Variable length arguments.

* Pointers to functions and pointers to arrays.

« Pointers to member functions.

* Problems with const.

» Can sometimes be difficult to track down parsing and code generation bugs.
» May be very hard to use with very complex header files.

May experience trouble with very large packages

» C++ systems with hundreds of header files.
* May generate an excessive amount of code (tens to hundreds of thousands of lines)

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998 67

Notes

SWIG Limitations (cont...)

Integration with Tcl

» SWIG tries to keep a strict separation between C/C++ and Tcl.
* Appropriate for many applications.

* However, you might want more flexibility or control.

» SWIG typemaps can sometimes be used.

« Other Tcl extension building tools may work better--especially with object-oriented
systems.

» SWIG can be used with other extension tools if you know what you are doing.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

68

Application Troubles

Not all C/C++ applications work well in a scripted environment
» May crash.
» May operate in an unreliable manner.
* Very complex C++ systems may be very problematic (compilation, linking, etc...)
< An API may be poorly suited to scripting (i.e., difficult to use).
« Memory management woes.

Applications can also do bad things
* Example :
char *strcpy(char *s, const char *ct);
« Using this function from Tcl (as is) will likely corrupt the Tcl interpreter and crash. (Left
as an exercise to the reader to figure out why).
Namespace clashes

» C/C++ functions may clash with Tcl commands.
» May clash with the C/C++ implementation of Tcl or other extensions.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

An excellent overview of building C++ Tcl extensionsis available at

http://zeus.informatik.uni-frankfurt.de/~fp/Tcl

Things to Keep in Mind

Extension building tools don’t necessarily result in a good interface

« Trying to wrap a raw header file is not guaranteed to work.
« Wrapping every function in a package is rarely necessary.
« A little planning and design go a long way.

SWIG may be inappropriate for very large projects

« Designed to be relatively informal and easy to use.
« Informality may be the exact opposite of what you want on a large project.

Shop around

» We are fortunate that Tcl is so easy to extend and that there are many tools.

There is no silver bullet

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

Notes

70

Summary

Tcl Extension Building With SWIG

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

71

An Approach That Works

« Simplify construction of large scripting interfaces.

* Improve productivity.

* Result in better applications.

Extension building tools are being used in a variety of projects

A sampling of SWIG applications (from a user survey, 2/98)

Animation

Astrophysics

Automotive R&D

CAD Tools

CASE Tools

COM

CORBA

Chemical information systems
Climate modeling
Computational chemistry
Computational steering
Database

Defibrillation modeling
Document management
Drawing

Economics

Education

Electronic Design Automation
Electronic Commerce

Financial

Fortran

Games

Groupware

Hardware control/monitoring
Image processing

Integrated Development Environ.

Java

Lotus Notes

Materials Modeling
Medical Imaging
Meteorological imaging
Microprocessor design
Military visualization
Molecular dynamics
Natural language processing
Network management
Neural nets

Oil exploration

Palm Pilot

Parallel computing

Partial differential equation solvers
Polarization microscopy
Protein sequence analysis
PythonWin

Raytracing

Realtime automation
Robotics

Software testing
Spectrographic analysis
Speech recognition

Testing of telecom software
Virtual reality

Vision

Visual simulation

Weather forecasting

X-ray astrophysics analysis

Tcl Extension Building With SWIG

6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

72

SWIG Resources

Web-page
http://vww. sw g.org
Includes links to other extension building tools and general resources.
FTP-server
ftp://ftp.swig.org
Mailing list
Swi g@s. ut ah. edu

Documentation

SWIG comes with about 350 pages of tutorial style documentation (it also
supports Perl and Python so don't let the size scare you).

A variety of papers, tutorials, and other resources are also available.

To subscribe, send a message ‘subscribe swig’to maj or dono@s. ut ah. edu.

Tcl Extension Building With SWIG 6th Annual USENIX Tcl/Tk Conference, Sept. 15, 1998

73

