
Graphite: A Parallel Distributed Simulator for Multicores

by

Harshad Kasture

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

MASSACHUSETTS INST E
OF TECHNOLOGY

FEB 2 3 2010

LIBRARIES

@ Massachusetts Instigute of Technology 2010. All rights reserved.

ARCHIVES

Author
Department of Electrical Engineering and Computer Science

January 29, 2010

Certified by
Anant Agarwal

Professor
Thesis Supervisor

Accepted by
Terry P. Orlando

Chair, Department Committee on Graduate Students

Graphite: A Parallel Distributed Simulator for Multicores

by

Harshad Kasture

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis describes Graphite, a parallel, distributed simulator for simulating large-scale multicore
architectures, and focuses particularly on the functional aspects of simulating a single, unmodified
multi-threaded application across multiple machines. Graphite allows fast simulation of multicore
architectures by leveraging computational resources from multiple machines and making efficient
use of the parallelism available in the host platforms. This thesis describes in detail the design and
implementation of the functional aspects of Graphite. Experiment results using benchmarks from
the SPLASH benchmark suite that demonstrate the speed and scalability of Graphite are presented.
Results from the simulation of an architecture containing 1024 cores are also included.

Thesis Supervisor: Anant Agarwal
Title: Professor

Acknowledgments

First and foremost, I would like to thank Anant for being a terrific advisor. His support and

guidance have been instrumental to this thesis, and I have thoroughly enjoyed working with him.

Thanks also to Charles Gruenwald, Geroge Kurian, Jason Miller and Nathan Beckmann, my team

mates on the Graphite project whose hard work has made a project of the magnitude of Graphite

possible. Much of this thesis was joint work with George Kurian, and a special note of thanks

to him for being an exceptionally reliable and hard-working team mate.Thanks also to all other

members of the Carbon group, whose support and friendship have helped me immensely during

the last two years. And last, but not the least, I would like to thank Aai, Baba, Hema and Ashwini

who have been a constant source of support and encouragement in everything I have undertaken.

Contents

1 Introduction

2 Graphite: A high level overview

2.1 Architecture Overview

2.1.1 Design Overview

2.2 The Anatomy of a Graphite Simulation

2.3 The case for distribution

3 Performance Modeling

3.1 Core Performance Model

3.2 Memory System

3.3 Network .

3.3.1 Transport Layer

3.4 Lax Synchronization Model

4 Distributed Simulation

4.1 Pin: A Dynamic Binary Instrumentation Tool

4.2 Address Space Management

4.2.1 Issues

4.2.2 Graphite Memory Manager

4.2.3 Redirecting memory references . . .

4.3 Consistent OS Interface .

4.3.1 Process Initialization and Address Space Management

4.4 Threading Infrastructure .

4.4.1 Routine replacement

5 Results

5.1 Experimental Setup

5.2 Simulator Scaling

5.2.1 Scaling across cores on a single machine

5.2.2 Scaling across machines

5.2.3 Scaling with Large Target Architectures .

5.2.4 Simulator Overhead

5.3 Lax synchronization

43

. 4 3

. 44

. 44

. 4 5

. 4 8

. 5 1

. 52

6 Related Work

7 Future Work

8 Conclusion

. 35

. 38

. 41

. 41

List of Figures

2-1 High-level Architecture . 14

2-2 Target Architecture in a Graphite Simulation . 15

2-3 System Architecture . 16

4-1 Segments within the application address space . 31

4-2 Redirecting application memory references . 35

4-3 Handling application system calls . 39

5-1 Single Machine Scaling . 45

5-2 Scaling Across Multiple Machines . 46

5-3 Run-times of matrix-multiply. 49

5-4 Performance scaling across machines of matrix-multiply for various prob-

lem sizes . 50

5-5 Progress of threads during simulation. 52

List of Tables

4.1 System Calls supported by Graphite . 40

5.1 Selected Target Architecture Parameters . 44

5.2 ocean-contiguous: simulation runtime(seconds) for different host configurations . . 47

5.3 lu-contiguous: simulation runtime(seconds) for different host configurations 47

5.4 water-spatial: simulation runtime(seconds) for different host configurations 47

5.5 barnes-hut: simulation runtime(seconds) for different host configurations 47

5.6 Multi-Machine Scaling Results . 51

5.7 Simulated run-times for multiple runs of f mm on different numbers of machines. . 53

5.8 Simulated run times for different host configurations 53

Chapter 1

Introduction

Simulation has always been a key research tool for hardware architects and software developers

alike. This has become especially true as computer systems have increased in complexity, so

that purely analytical modeling can rarely be relied on to predict all aspects of system behavior.

However, poor simulator performance often hinders the usefulness of simulation by leading to

excruciatingly long design turn around times. Typical simulation overheads for today's cycle ac-

curate simulations are in the range of 1000x to 10000x slowdown over native execution (0.01 to 1

million simulated instructions per second) [7] for single core simulations.

This has often limited researchers to using small application kernels or scaled-back benchmark

suites for simulation [16, 4]. However, researchers often want to simulate entire applications to

be able to get an accurate understanding of system performance. This typically requires approxi-

mately 10 MIPS per simulated core in order to achieve acceptable interactivity [9]; today's cycle

accurate simulators are many orders of magnitude slower than this.

The situation is aggravated further by the move to multicore architectures. Current trends in

industry and academia clearly point towards manycore architectures, with possibly 100s, or even

1000s of cores on a single chip. While this is a rich area of research, it requires fast simulation

frameworks. Multiplexing the computational resources of 100s or 1000s of cores on the relatively

much smaller number of cores available on today's machines would slow down simulation further.

Many of today's simulators are in fact sequential [2, 13, 25, 19, 3], and thus have to effectively

multiplex the simulation of 1000s of cores on a single core. Further, typical benchmarks used

for studying multiprocessor architectures often tend to be longer, due to the need to factor out the

effects of nondeterministic thread scheduling, the perturbation effects of 1/0 and the operating sys-

tem etcetera. The need to simulate large applications on relatively much slower hardware presents

an urgent need to develop fast simulation strategies for multicore architectures.

A similar requirement is imposed by the need to develop software for the future generation of

manycore processors. Software development typically lags hardware development, often by a gen-

eration or more. This is because in the absence of sufficiently fast simulation platforms, software

developers cannot start working on software until the hardware itself is available. With the rapid

shift to manycore architectures, it is clear that substantial development effort needs to be devoted

to developing new programming paradigms and software solutions (programming languages, op-

erating systems, runtime systems etc.) that can leverage the computational power offered by these

machines. It is also clear that such development effort cannot wait till the hardware is available,

adding further to the need for fast simulation.

Graphite is a parallel, distributed simulator for multicore architectures. Graphite achieves con-

siderable speedup over today's simulators via a variety of novel techniques, including direct exe-

cution, distribution and parallel execution with lax synchronization.

Graphite has the ability to fully utilize the computational capacity afforded by today's mul-

ticores to simulate manycore architectures of the future by allowing the simulation to execute in

parallel. Graphite in fact goes further, by distributing the simulation not only among the multiple

cores of a single multicore machine, but across multiple machines. This distribution is done seam-

lessly, and Graphite provides the functional machinery to maintain the illusion of a single process

across multiple machines, including a single, shared address space and a consistent OS interface.

The applications that drive a Graphite simulation are vanilla multithreaded application; the appli-

cation programmer need not be aware of the distribution and the application does not need to be

recompiled for different host configurations.

Graphite achieves significant speedup by relying on direct execution for the functional sim-

ulation of a large proportion of application instructions. A dynamic binary translator is used to

modify the application during execution to provide extra functionality (e.g. core-to-core message

passing) not present on the host machine, as well as to handle instructions and events that need

special handling (memory accesses, system calls, thread spawn requests etc.) [22].

Graphite's high performance is also due in large part to lax synchronization model. Threads

in the application are executed in parallel under the control of the host operating system, with

each thread maintaining its own local clock. These clocks are only synchronized at special syn-

chronization points (locks, receipt of messages etc.), thus allowing the threads to fall out of synch

with each other. Timestamps on communication messages are used for synchronization where

required [31]. Graphite does not impose a strict ordering on events in the target architecture; mes-

sages are often processed regardless of their timestamps (thus it is possible to process an event from

the future before an event from the past in certain cases). Latencies calculated by Graphite often

depend on the ordering of events in real time, rather than their true order on the target architecture

(Section 3.4. The lax synchronization model presents many interesting modeling challenges in

designing Graphite's performance models.

Graphite has a modular design, with each module having well defined interfaces to other mod-

ules. This makes it very easy to swap in a different implementation of a module to suit one's

needs. For example, one may replace the core model used with a more detailed one without having

to change any of the other modules. Further, Graphite maintains a separation between functional

and modeling aspects of the simulation; e.g. the fact that the host has out-of-order cores does not

imply that in-order cores cannot be modeled using Graphite.

Graphite was developed jointly by many members of the Carbon research group at CSAIL. My

specific contributions to the project include:

" Developing the mechanism to implement a single, coherent address space across multiple

host processes by redirecting application memory references using Pin

" Implementing the machinery to maintain a consistent OS interface across threads running in

multiple host processes

e Early exploratory work on the functionality and modeling of the network layer, including

the message passing API

" High level design of Graphite, done jointly with other team members

" Helping with the design of the lax synchronization scheme used in Graphite

The first two items are joint work with George Kurian (gkurian@csail.mit.edu).

To our knowledge, Graphite is the first simulator to enable distributed execution on an unmodi-

fied application with a single, coherent address space and a consistent view of the system. Graphite

also introduces the lax synchronization scheme which allows loose synchronization of application

threads so that they can run in parallel with small synchronization overheads. Experimental results

indicate that Graphite has low simulation overhead and good scalability across a wide range of

applications, including simulations involving 1024 simulated cores.

This thesis presents a detailed discussion of the design and implementation of Graphite, fo-

cussing particularly on the various functional features implemented by Graphite in order to facili-

tate distributed simulation. A thorough evaluation of Graphite's scalability and speed of simulation

is presented, including results showing performance gains as more cores are added to the simula-

tion, both within a machine and across a cluster. The results indicate that Graphite scales well,

with performance improving steadily till the number of physical cores equals the number of cores

being simulated. The mean slow down across several applications from the SPLASH benchmark

suite is 3250x, with the slowdown being as low as 77x for some applications. Further, the results

indicate that performance improves irrespective of whether the extra cores are on the same or dif-

ferent machines. The mean speed-up for simulations of SPLASH applications with 32 target cores

is 2.15 as the simulation is distributed over 4 machines instead of 1 (where each machine has 8

physical cores).

The thesis is structured as follows. Chapter 2 presents an overview of Graphite's architecture.

Chapter 3 describes how Graphite models various components of a multicore architecture. Chap-

ter 4 describes in detail how Graphite maintains program correctness in distributed simulations.

Chapter 5 evaluates Graphite's speed, scalability and accuracy. Chapter 6 discusses related work

and Chapter 7 present directions for future work. Finally, Chapter 8 summarizes our findings.

Chapter 2

Graphite: A high level overview

Graphite is an execution driven, application-level simulator for multicore architectures. Through-

out this thesis, the term target is used to refer to the architecture being simulated, while host refers

to the physical machine(s) on which the simulation executes. A simulation consists of executing

a multi-threaded application and modeling its behavior on a target multicore architecture defined

by the simulator's models and runtime configuration parameters. Graphite maps each thread in the

application to the processing core on a tile in the target architecture (Section 2.1). Each target core

can only execute a single application thread at a time, and the number of threads in the application

at any time cannot exceed the total number of cores in the architecture as specified in the runtime

configuration parameters. The simulation spans multiple host processes running on one or more

host machines (each target tile is assigned to one of the host processes), each potentially a multi-

core machine itself. The host processes communicate using TCP/IP sockets. Figure 2-1 illustrates

how the target architecture is mapped to the host machine. Graphite is fully parallel: each thread in

the application maps to a thread on one of the host platforms. Application threads are part of a host

process and are scheduled and executed under the control of the host OS. Dynamic binary transla-

tion is used to insert traps into the simulator at events of interest to maintain functional correctness

as well as to model the execution of the application on the target architecture.

Taraet Architecture

Host Host Host
Process Process Process

Figure 2-1: High-level Architecture

2.1 Architecture Overview

Figure 2-2 shows the components of a target architecture in a Graphite simulation in more detail.

As shown in Figure 2-2, each target architecture contains multiple tiles where each tile may contain

a computing core, a network switch and a memory subsystem (cache hierarchy and DRAM) [27].

Each application thread is mapped to a target core and executes on one of the host machines.

Tiles are connected together using the on-chip interconnection network(s), and may communicate

with each other using either message passing or shared memory. Both types of communication

eventually make use of the on-chip interconnection network(s), which in turn relies on Graphite's

physical transport API (built on top of TCP/IP sockets) for communicating data.

Figure 2-3 illustrates how the simulation maps to the host machines. The simulation of each

target tile maps to a host process. The simulation of each tile involves many interacting components

that together ensure correct functionality and modeling. The simulation is driven by the execution

of the user application, which may make use of the user-level message-passing API for explicit

message passing between cores. This comprises the simulation's User Layer. Events of interest

Figure 2-2: Target Architecture in a Graphite Simulation

in the simulation generate a trap into the Graphite core model, and may further make use of the

memory management unit (MMU) for correct functionality and modeling (the Core Modeling

Layer). All communications, including cache coherence traffic and explicit message passing, make

use of the communications API provided by the interconnection network models (the Network

Layer), which in turn use the Physical Transport Layer for the actual transfer of data. The physical

transport layer is build on top of TCP/IP sockets.

Additionally, each simulation has some additional threads that provide various functional fea-

tures required for simulation. In particular, the Master Control Program (MCP) is homed on a

host process and is responsible for creating a consistent view of the system among the multiple

host processes. It participates in thread spawning (Section 4.4) and in handling certain classes of

system calls (Section 4.3). Each host process also has a Local Control Program (LCP) which is

responsible for communication with the MCP to update and retrieve system state. The LCP also

plays a role in thread spawning.

2.1.1 Design Overview

Graphite has a modular design where each component is implemented as a swappable module that

has a well defined interface to other modules in the system. Each module can be configured through

run-time parameters. Alternatively, one may replace a particular implementation of a module with

a different implementation in order to study a different set of features or to study the same set of

Host Process Host Process Host Proces

Figure 2-3: System Architecture

features in greater or smaller detail; all that needs to be ensured is that interfaces to other modules

are correctly implemented.

Graphite uses a dynamic binary translator front-end to modify the application to insert sim-

ulator callbacks. In particular, Graphite rewrites parts of the application and inserts code to trap

into the simulator on events of interest, such as memory references and system calls, as well as to

generate a stream of instructions used for modeling. Many classes of instructions in the applica-

tion, such as arithmetic and logical operations do not need to be emulated and run natively on the

host machines, providing significant speedup. Currently, Graphite uses Pin [18] as the front end,

although Graphite's modular design means that another dynamic translation tool such as QEMU

[3] or DynamoRio [5] could easily be used instead.

Features implemented by Graphite's simulation back-end can broadly be divided into two cat-

egories: functional and modeling. Modeling features model various aspects of the target architec-

ture, while functional features ensure correct execution of the program.

Modeling Features

As shown in Figure 2-3, the Graphite back-end comprises many components that model various

parts of the target architecture. In particular, the core model is responsible for modeling the proces-

sor pipeline. The memory hierarchy is modeled by the memory model (Section 3.2),. The memory

.

model itself consists of models for various levels of caches as well as DRAM. The network model

(Section 3.3) handles the routing of network packets over the on-chip network and accounts for

various delays encountered due to contention, routing overheads, et cetera.

Note that these models interact with each other to determine the cost of each event in the

application. For instance, the memory model uses the round trip delay times from the network

model to compute the latency of memory operations, while the core model relies on latencies from

the memory model to determine the time taken to execute arithmetic and logical operations.

The chief modeling challenge is presented by Graphite's lax synchronization model (Sec-

tion 3.4), characterized by unsynchronized local clocks for each core as opposed to a single global

clock. Each tile maintains and updates its own clock according to operations it performs, and

these local clocks are allowed to go out of synch with the clocks of other cores. This leads to

many challenges in modeling certain aspects of system behavior, such as network contention and

DRAM access latencies. Section 3.4 talks in greater detail about these design challenges and how

we address them.

Functional Features

Graphite's ability to execute an unmodified multi-threaded application across multiple host ma-

chines is central to its scalability and ease of use. In order to achieve this, Graphite has to address

a number of functional challenges to ensure that the application runs correctly:

1. Single Address Space: Since threads from the application execute on different hosts and

hence in different address spaces, allowing application memory references to access the host

address space won't be functionally correct. Graphite provides the infrastructure to modify

these memory references and present a uniform view of the application address space to all

threads and maintain data coherence between them. Section 4.2 describes this in greater

detail.

2. Consistent OS Interface: Since application threads execute on different host processes,

Graphite implements a system interface layer that intercepts and handles all application sys-

tem calls in order to maintain the illusion of a single process. This is described in Section 4.3.

3. Threading Interface: Graphite implements a threading interface that intercepts thread cre-

ation requests from the application and seamlessly distributes these threads across multiple

hosts. The threading interface also implements certain thread management and synchroniza-

tion functions, while others e.g., mutexes, are handled automatically by virtue of the single,

coherent address space.

4. Message Passing: Graphite provides a message passing API for user applications and im-

plements the functionality for these function calls to trap into the simulator and transport

data between threads in the same as well as different processes.

2.2 The Anatomy of a Graphite Simulation

This section presents a high level overview of how a Graphite simulation proceeds. At the start of

a simulation, Graphite spawns all host processes that the simulation would be distributed across;

the host machine on which each process is spawned is specified in a configuration file. Auxil-

iary threads for the simulation, such as the MCP and the LCP are spawned and all configuration

parameters are read from configuration files. All processes begin executing the same statically

linked binary executable. After process initialization is done in all host processes (Section 4.2,

Section 4.3), only one process is allowed to execute mainO while the rest await thread spawning

requests. Periodic traps into the simulator are inserted into the application code by Graphite's dy-

namic binary translator front end that are used to simulate the behavior of the application on the

target architecture. Additionally, events such as memory accesses and system calls are intercepted

to ensure correct execution as described in Section 4.2 and Section 4.3, respectively. Additionally,

thread spawn requests in the application are intercepted and forwarded to the host processes where

the thread is supposed to execute, and the application thread is spawned in this process. Graphite's

shared memory system ensures that this new thread gets a view of application memory that is con-

sistent with other threads on all other host processes. Synchronization events, including file i/o,

barriers and thread join requests are handled centrally by Graphite to ensure functional correctness.

Threads run in parallel and synchronize periodically on synchronization events (waiting for locks,

receipt of network messages etc.). When the application finishes execution, Graphite shuts down

all the application threads as well as all the auxiliary threads spawned for the simulation.

2.3 The case for distribution

Distributing a simulation across multiple machines allows Graphite to utilize the resources avail-

able on multiple machines instead of being limited to a single machine, and opens up the possibility

of using as many computational resources as are available. The most important potential downside

to distributing across machines is the latency of communication: typical communication latencies

between machines (over TCP/IP) are much higher than communication costs between threads in a

single process (using shared memory), and could potentially slow the simulation down. However,

a number of factors offset this increased cost. Since there are more physical cores available on

which threads can be scheduled, a lot of the computation that would previously have been seri-

alized can now proceed in parallel. This also reduces the context switching costs, which can be

substantial. The cost of a context switch can also add to communication latencies in the event of

communication between threads - if one thread is waiting for a message from another, and they are

being multiplexed on a single core, the first thread has to wait till the second is scheduled (which

could involve multiple context switches, the least number of context switches required would be

two) before it can make progress. Distributing across multiple machines also allows the simulation

to use the aggregate of all resources available on all machines - the simulation thus has a much

bigger effective cache as well as much higher aggregate bandwidth to main memory. All of these

factors combine to offset the increased communication latencies. In fact, the results presented in

Chapter 5 indicate that the performance gain achieved by adding more cores to the simulation is

the same irrespective of whether the cores are on the same machines or on different machines.

Chapter 3

Performance Modeling

This chapter describes how Graphite models the behavior of an application on a target architecture.

As mentioned in Chapter 2, Graphite's modeling back-end consists of multiple modules, each

modeling a part of the system under study. The static as well as dynamic information required

by these models is provided by the Graphite front end through dynamic binary instrumentation.

These models often interact with each other to model certain aspects of system behavior. In order to

model the execution time of an application on a target architecture, Graphite uses a novel modeling

technique we call lax synchronization. The following sections discuss Graphite's performance

models for each part of the system. Finally, Section 3.4 discusses Graphite's lax synchronization

model in detail.

3.1 Core Performance Model

The core performance model is a purely modeled component of the system in that it does not

influence the functionality of program execution. The core performance model updates the local

simulated core clock in response to events in the target architecture. The core model follows a

producer-consumer design: as instructions are retired by the functional component of Graphite,

information about these instructions is fed to the core model which is then used to model their

execution on the target architecture. Most of these instructions are produced by Graphite's binary

translator front end. Additionally, "special" instructions are produced by other parts of the system

to model unusual events. For instance, the network model produces a "message-receive special

instruction" on the receipt of a message as a result of a network messaging API call (Section 3.3)

from the application, and a "spawn special instruction" is produced when a thread is spawned on

the core. This allows special events to be handled appropriately and allow the addition of instruc-

tions to the target ISA that are not present in the host ISA (network send/receive, for instance).

Correctly modeling an instruction requires, in addition to static information, some information

that is only available at execution time, e.g. data access latencies for memory operations and paths

for branches etc. This instruction is produced either by other components of the simulator back-

end (e.g. for memory operations) or by the dynamic binary translator (e.g. for branches) and is

consumed by the core performance model via a separate interface.

Since the core performance model has no impact on functionality, it can fall out of synch with

the functional part of the simulator. This isolation between functional and modeling aspects of

Graphite's execution allows a lot of flexibility in implementing the modeling components to closely

match the target architecture even if it differs considerably from the simulator's functionality. For

instance, although the simulator is functionally in-order with a sequentially consistent memory

model, it is entirely valid to have a core model that models an out-of-order core with a more

relaxed memory model. Further, since all other parts of the system ultimately use the core clock,

the effect of the core model will be reflected in all other parts of the system, e.g. network utilization

numbers will reflect an out-of-order architecture since network time stamps use core clocks.

Graphite currently supports an in-order core model with an out-of-order memory system. Com-

ponents of the core and the memory system such as store buffers and branch predictors are config-

urable through run time parameters.

3.2 Memory System

The memory system is composed of several modules such as instruction- and data-caches, and

DRAM controllers, each associated to one of the simulated tiles and connected using the network

layer. The memory system is responsible for simulating the cache hierarchies, memory controllers

and cache coherence engines of the target architecture under study. For this purpose, the various

modules of the memory system interact with each other using additional messages that simulate

various aspects of the target memory subsystem such as the cache coherence scheme.

The memory system in Graphite also has a functional role, namely to maintain a single address

space between application threads, many of which may be executing on different host machines

and hence in different host address spaces. Graphite redirects memory references in all application

threads to access data resident in the target address space rather than in their respective host address

spaces. The memory reference redirection is achieved using dynamic binary translation, either by

rewriting the memory references in place or, in a small number of special cases, emulating them in

software. It is the responsibility of the memory system to service these redirected memory accesses

and efficiently manage the application's data. It accomplishes this by statically partitioning the

application's address space among the different machines participating in simulation; the data

corresponding to that portion of the address space is "homed" on that machine. However, such a

naive strategy of managing data could prove detrimental to the performance of simulation, as the

different memory modules would have to frequently send messages over the network to service

the memory requests of their local threads. To overcome this limitation, data frequently accessed

by an application thread is cached at its local memory module and all such cached data is kept

consistent using a cache coherency protocol.

If the modeling and functional aspects of the memory system behavior were kept completely

independent, it could lead to inefficiencies since each application memory request may result in

two sets of network messages, one for ensuring the functional correctness of simulation (actually

retrieving the data) and the other for modeling the performance of the target memory architecture.

Graphite addresses this problem by modifying the software data structures used for ensuring func-

tional correctness to operate similar to the memory architecture of the target machine. In addition

to improving the performance of simulation, this strategy automatically helps verify the correctness

of complex hierarchies and protocols used to implement the target machine's memory architecture,

as their correct operation is essential for the completion of simulation. Performance modeling is

done by appending simulated time-stamps to messages sent between the different memory modules

and is explained in great detail in Section 3.4.

Currently, the memory system is Graphite simulates a target memory architecture with LiD,

LII and L2 caches. Cache coherence is maintained using a directory-based MSI protocol in which

the directory is uniformly distributed across all the tiles.

3.3 Network

The network component provides high-level messaging services between cores built on top of the

lower-level transport layer (subsection 3.3.1).

The network component contributes both to functionality and modeling. Functionally, it pro-

vides a message-passing API directly to the application, as well as serving other components of the

simulator back end, such as the memory system (Section 3.2) and system call handler (Section 4.3).

All network messages are eventually transported over the transport layer.

The network component consists of one or more network models that are responsible for mod-

eling events over the network. The network provides common functionality, such as bundling of

packets, multiplexing of messages, a high-level interface to the rest of the system, as well as a com-

mon interface to the transport layer. The various network models perform tasks such as routing

packets, modeling contention and updating the time-stamps on messages to account for network

delays. This separation between functionality and modeling is not absolute, however, since the

route of the packet computed by the network model affects traffic through the transport layer.

Functionally, the packets are transported to their respective destinations regardless of their times-

tamps -thus packets may arrive at the destination "earlier" in simulated time than they are meant

to. Also, the network only preserves order among packets in real time, not in simulated time. This

leads to many interesting modeling challenges, discussed in greater detail in Section 3.4.

Graphite currently implements several distinct network models. The network model to be used

for a message is determined by the message type. For instance, all system messages unrelated to

application behavior (e.g. updating utilization statistics for the network) use a separate network

model from the application messages and thus not interfere in modeling the behavior of the appli-

cation. Further, Graphite by default uses separate models for application and memory traffic, as is

common in modern multicore chips [27, 29].

Each network model shares a common interface. Network model implementations are thus

swappable, and each network model is configured independently. This allows exploration of var-

ious network topologies and parameters for particular subcomponents of the system. Graphite

currently implements a "magic" (zero delay) network model for special system messages, a mesh

model that determines network latency simply by counting the number of hops (no contention

modeling), and a more complicated mesh model that accounts for contention using an analytical

queuing model.

3.3.1 Transport Layer

The transport layer provides an abstraction for generic communication between cores. All inter-

core communication as well as inter-process communication required for distributed support goes

through this communication channel. The current transport layer uses TCP/IP sockets for data

transport, however this could be replaced with another messaging back end such as MPI.

3.4 Lax Synchronization Model

In order to achieve good performance and scalability, and make effective use of the parallelism

available in the application, Graphite allows target cores to run independently with minimal syn-

chronization. This is necessary for performance reasons, since synchronizing across multiple host

machines after every simulated clock cycle would impose too great an overhead on the simulation.

However, this relaxed approach to synchronizing cores means that the cores' local clocks do not al-

ways agree, and events may be seen and processed out-of-order in simulated time, leading to many

modeling challenges as described in the following paragraphs. We term this relaxed approach to

synchronization the "lax synchronization model".

In Graphite's modeling framework, each core's local clock is updated by the core performance

model. A majority of the events that lead to the updating of the clock are local in nature, in that

the modeled time for the event is independent of the rest of the system (Section 3.1). However, the

modeling of some operations, such as memory accesses (Section 3.2), message send/receive via

the application message-passing API, thread spawn/join etc. depends on interaction with the rest of

the system. This interaction happens exclusively through network messages, each of which carries

a time-stamp that is initially set to the clock of the sender. In the case of the memory operations,

the latency of the operation depends on the round trip delay of the relevant network message and

therefore leads to synchronization with the rest of the system (as explained later). Other operations,

such as message receive (via the application message-passing API), thread spawn/join and explicit

synchronization operations in the application (locks, barriers etc.) lead to explicit synchronization.

In these cases, the clock of the core is advanced to the time when the event completes. If the core

has the largest cycle count of all participating cores in such an event, its core clock is not updated.

Graphite's strategy to handle out-of-order events is to process them as they are received irre-

spective of the simulated time when they occurred. An alternative would be to preserve the order of

events in simulated time, either by buffering and re-ordering events, or by rolling back if ever a vi-

olation of the simulated time order of events is discovered (a strategy implemented in BigSim [31],

among others). The former strategy is difficult to implement since Graphite does not have a notion

of a global clock, can have very large overheads and is difficult to implement in a deadlock-free

manner. The latter strategy also has many problems, most significantly to maintain large amounts

of history and the need for frequent rollback in the case of frequent communication, as happens

in the case of memory operations, thus leading to large overheads. Empirical results indicate that

Graphite's strategy, while not completely accurate, yields correct performance trends.

This complicates modeling, however, particularly of system behavior that depends on inter-

action between events, since it is not straightforward to figure out which events have an overlap

in simulation time. One example is modeling contention at network switches and queuing delays

in memory controllers. If the simulated-time order of events were maintained, a queue could be

easily implemented by buffering incoming packets, and dequeuing the packet at the head of the

queue every time a new packet can be processed. Since packets in a Graphite simulation arrive out

of order, computing queuing delays is not straightforward.

Queuing delays are instead modeled by maintaining a separate "queue clock", that measures

the time until which the queue is busy i.e., the time at which the tail of the queue will be processed.

For an incoming packet, the delay experienced by it is the difference between the queue clock and

the "global clock". Each incoming packet also advances the queue clock by the amount of time

required to process the packet.

The "global clock" used in this computation is itself estimated from the various packet time

stamps. Packet time stamps may differ significantly for a variety of reasons. One example is pack-

ets originating at cores that are not running an active thread, which implies that their local clocks

are not advanced. Such cores still participate in the simulation via the associated network switches

and memory controllers. The "global clock" is therefore estimated by averaging the time stamps

of a window of most recently seen packets. To minimize the effect of outliers, these windows

need to be reasonably large, typically a few hundred packets. Since messages are generated quite

frequently (e.g. on each cache miss), even a large window gives a fairly up-to-date representation

of global progress.

Combining these techniques yields a queueing model that works within the framework of lax

synchronization. Error is introduced because packets are modeled out-of-order in simulated time,

but the aggregate queueing delay is correct. Other models in the system face similar challenges

and solutions. Results indicate that local core clocks do not get too far out-of-synch (Section 5.3),

and thus the error introduced by processing events out-of-order is not expected to be too great.

Chapter 4

Distributed Simulation

Distributed execution of a single multi-threaded binary is central to Graphite's ability to deliver

good simulation performance for large parallel simulations and its ease of use. In order to correctly

executed a single program across a cluster of workstations, Graphite needs to address a number of

challenges. The functional features implemented by the Graphite back-end were briefly outlined

in Section 2.1.1. This chapter discusses the implementation of these functional features in greater

detail.

The choice of solutions to these problems, as well as many of the implementation details de-

pend on the specific functionality provided by Pin [18], the dynamic binary translation front end

used by Graphite. The chapter therefore begins with an introduction to Pin and the features it

provides. This is followed by sections discussing each of the functional features.

4.1 Pin: A Dynamic Binary Instrumentation Tool

Pin is a free tool for dynamic instrumentation of program binaries provided by Intel. Code running

under Pin can be dynamically instrumented to insert arbitrary C/C++ code in arbitrary places. The

instrumented code is cached and reused, so that one only has to pay the cost of instrumenting the

code once. Pin defines many logical entities within a binary:

" Image: E.g. the main program image, various libraries loaded and used by the main program

etc.

" Trace: A trace is a sequence of instruction with a single entry point that ends with an uncon-

ditional branch. There may be multiple potential points (e.g. conditional branches) where

control may exit the trace between the start and the end

" Basic Block: A basic block is a sequence of instructions characterized by a single entry

point and a single exit point (conditional or unconditional branch)

" Routine: A routine within the binary

" Instruction: A single instruction

Pin allows the code to be instrumented at various granularity levels, e.g. one may insert in-

strumentation code for each instruction, or for each basic block. Additionally, one may specify

whether the inserted code executes before or after the corresponding application code. Multiple

blocks of code may be inserted corresponding to the same chunk of application code; Pin provides

limited facility to specify ordering among these dynamically inserted blocks of code.

The code to be inserted into the instrumented application, as well as the places where it should

be inserted, is specified in a Pintool. The Pintool registers instrumentation routines with Pin that

are called whenever Pin generates new code. The instrumentation routines inspect the new code

and decide where to inject calls to analysis routines, also defined in the Pintool, that are called at

run time. Various static and dynamic information, such as the thread id of the thread executing the

instruction, the values of various registers, various properties of the code block being instrumented

(e.g. the addresses of memory references for a memory access instruction) etc. may be passed to

the analysis routine.

Pin as well as the Pintool reside in the application's address space.

All of Graphite's back end, including the various models as well as the functional features,

reside in a Pintool. Graphite uses Pin for two purposes:

1. To collect static and dynamic information about program execution Graphite uses Pin

analysis routines to feed dynamic information about the program execution to its various

models. In particular, analysis routines inserted at the granularity of basic blocks are used to

generate an instruction trace that drives the core models.

2. Change program behavior Graphite uses Pin to control and change the execution of the

program. Program behavior may be changed using Pin by modifying program context, e.g.

contents of registers and memory, by inserting jumps at arbitrary points in the program,

and by deleting program instructions. Graphite instruments each memory reference in the

application code to redirect all memory accesses to the shared address space. Additionally,

all message passing functions within the application are also instrumented to provide both

functionality and modeling for user level messaging. Additionally, callback functions may

be registered with Pin that are called at specific events of interest, e.g. start of program

execution, the start of a new thread, a system call etc. Graphite uses some of these callback

functions to provide a consistent address space, as discussed in detail in this section as well

as in Section 4.3

The following sections provide an in-depth discussion of the implementation of the various

functional features in the Graphite back end.

4.2 Address Space Management

As mentioned earlier, Graphite has to maintain a single "simulated" address space across all the

threads participating in a simulation, which may be executing in different "host" address spaces

i.e. they are part of different host processes. This presents two problems that Graphite needs to

solve:

4.2.1 Issues

There are four main issues in maintaining a single address space across multiple host processes:

1. Data coherence: All application threads running across all host processes should have a

coherent view of data

2. Ambiguity: A single address in the simulated address space should not refer to two or more

separate data items in the program

3. Validity: All memory accesses that would have been valid on the target architecture should

be valid in the simulation, i.e. they should not cause exceptions

4. Sandboxing: Data accesses from the application and the simulator should not interfere with

each other

The data coherence requirement implies that memory writes performed by one thread should

be visible to all others, and all memory reads from an address by all thread between subsequent

writes to that address should yield the same value.

The problem of ambiguity does not arise for static data items in a program. This is because

all host processes participating in the simulation run exactly the same statically linked binary and

thus have exactly the same address corresponding to a given static data item. However, requests

for dynamic memory may present a problem - since each host process has its own address space,

requests for dynamic memory from threads in different host processes (which eventually result in a

brk,mmap or mmap2 system call on the host system) may return the memory blocks with the same

or overlapping address ranges. Since these two memory requests may correspond to completely

different data items in the program, this will lead to ambiguity regarding the data value associated

in the simulated address space with a given memory address

Similarly, the problems of validity and sandboxing are relevant in the context of dynamically

allocated data: a range of addresses, dynamically allocated in one host process may not be part

of the valid set of addresses in another host process, or may correspond to a set of addresses

being used by the simulator (since Pin and the Pintool execute in the same address space as the

application). If a thread in a process other than the one in which the data was allocated attempts to

Cod Sttic ProramAllocated Reserved
egment Data eap

Segment pac

Figure 4-1: Segments within the application address space

access that memory address, it may lead to an exception, or may corrupt simulator data. Similarly,

memory accesses within the simulator may corrupt application data.

Graphite solves the problem of ambiguity by implementing its own memory manager that

centrally and unambiguously handles requests for allocation and deallocation of dynamic memory.

The problems of validity, sandboxing and coherence are solved via Graphite's shared memory

system, that maintains coherent copies of each piece of data (Section 3.2). Graphite intercepts

every memory reference in the application and modifies it to access the correct data stored in the

shared memory system.

4.2.2 Graphite Memory Manager

The Graphite memory manager divides up the application address space as depicted in Figure 4-1.

It is responsible for servicing all application requests for dynamic memory. It also reserves a part

of the address space for thread stack, as explained below.

The first two segments - the code segment and the static data segment are determined entirely

by the program binary that Graphite is executing.

The program heap and the dynamic data segment are used to allocate dynamic data for the

application. Dynamic memory requests are intercepted by trapping on the brk, mmap and mmap2

system calls as explained in Section 4.3. These requests are then forwarded to the MCP, which

serves as the simulations dynamic memory server. Here, Graphite services these requests via

its own memory manager.The program heap is a range of the address space that is used by the

memory manager to service the brk system calls by extending the end of the data segment into

this space (the data segment only extends as far as the end of the static data segment at the start of

the program). The dynamic data segment is used to allocate data chunks in response to mmap and

mmap2 system calls. Since all dynamic memory requests are eventually serviced by the MCP, all

application threads get a consistent view of the application address space.

Thread stacks present a special case of the problems of validity and sandboxing of addresses

discussed above. Parts of the Pin functionality used by Graphite, e.g. routine replacement, dis-

cussed in subsection 4.4.1, access the addresses on the thread stack in the host address space. Un-

like the application memory accesses (subsection 4.2.3), Graphite cannot redirect these memory

accesses to the simulated address space. This can lead to two problems - it can cause an exception

if an address is invalid, or it can cause useful data to be corrupted. For this reason, Graphite needs

to treat stacks specially. In particular, addresses corresponding to thread stacks need to be valid

in all host address spaces, and should not be used for any other purpose. Graphite thus reserves a

part of the address space for thread stacks (Figure 4-1). The size of the stack for each thread may

be specified as a configuration parameter. This part of the address space is also reserved in each

process' host address space via an mmap call before execution begins. This ensures that the entire

range of stack addresses is valid in all host address spaces and does not contain any other useful

information that may be overwritten. Of course, since the host address space does not contain the

correct data values, the information read by Pin from the host address space is incorrect and will

lead to correctness issues. Subsection 4.4.1 discusses how Graphite addresses this problem.

4.2.3 Redirecting memory references

Graphite redirects each memory access in the application inn order to make sure that memory ac-

cesses retrieve data from the simulated address space, stored in Graphite's coherent shared memory

system, and not the host address space. For rewriting most memory accesses, Graphite uses the

following Pin API function:

INSRewriteMemoryAddressingToBaseRegisterOnly (INS ins, MEMORY-TYPE

mtype, REG newBase)

This function rewrites the specified memory reference to use only a base register instead of the

fully array of components used in specifying the address, namely displacement, base, index and

scale factor.

Additionally, Graphite inserts an analysis routine that is called during execution before the

memory reference executes. This routine is passed the address being accessed and the number of

bytes of data being read/written. If the access is a read access, Graphite reads the corresponding

data from the shared memory system and places it in a scratch memory area. The address to the

start of this data is then placed in the base register for the memory access. Write accesses are also

redirected to a scratch memory area in a similar manner, and another analysis routine is inserted in

the code to execute after the write access has completed that writes the data written in the scratch

area back to the shared memory system. An ia32 instruction may contain up to three separate

memory references: two reads and a write. Each of these memory references needs to be rewritten

in this manner.

Many instructions that have memory accesses may also have a LOCK prefix: this means that

the instruction should be executed atomically. However, the process described above for redirect-

ing memory accesses is not atomic by itself. For such instructions, Graphite ensures atomicity of

operations by 'locking' the private Ll cache of the core executing the LOCKed instruction. A

locked cache defers processing cache coherence messages until after the instruction has finished

executing.

This approach, however, cannot be used for two classes of memory references: memory ref-

erences with implicit memory operands and some types of string instructions. These need to be

handled differently as described below. memory operands and some classes of string instructions.

'This strategy assumes that Li caches are private, and that the data being operated upon is always present in Li
caches; Li caches have to be write-allocate, for example. If either of these is not true, this strategy won't work. One
can still ensure correctness by using a coarser grained lock, e.g. locking the entire memory system for the duration of
execution of the instruction, but this strategy would obviously be slower.

Memory accesses requiring special treatment

Instructions such as the stack operations contain implicit memory references, e.g. a POP instruction

reads reads data from the top of the stack (pointed to by the ESP register), and places the value in

a register/memory. Pin cannot rewrite these instructions in the manner described above, e.g. the

POP instruction can not be rewritten to access data from a location other than the one pointed to be

ESP. Graphite handles these by deleting the original instruction, and inserting an analysis routine

in its place that emulates the instruction in software. Instructions that need to be handled in this

way include PUSH, POP, CALL, RET, LEAVE, PUSHF, POPF, PUSHA and POPA.

Some string instructions such as CMPSD and SCASD present a different problem. When

these instructions are preceded by a REP prefix, the number of times the instruction is repeated

depends on values in memory. For example, the instruction SCASD compares the value in EAX

with the value stored in the memory location specified by ES:EDI, updates EFLAGS accordingly

and either increments or decrements EDI according to the setting of the DF flag in EFLAGS.

When preceded by a REP prefix, this operation is performed repeatedly until either the ZF flag

is set, or the operation has been repeated N number of times, where N is the value specified in

the ECX register. The number of times the instruction is repeated thus depends on the values

present in memory during execution. When these instructions are rewritten using the Pin API

function described above, Pin determines the number of times the instruction should be repeated

by accessing memory. Since Graphite cannot intercept Pin memory accesses, these accesses go

to the host address space directly and thus give wrong results. Graphite avoids this problem by

deleting these instructions and emulating them in software. String instructions that require special

handling include CMPS[B/W/D/Q] and SCAS[B/W/D/Q].

Figure 4-2 summarizes how Graphite redirects memory references in the application.

System Initialization

At process startup, before control is passed to the user application,the host system writes data in

the process address space that is essential for the correct execution of the program. This data

Yes

Yes

No

Figure 4-2: Redirecting application memory references

includes command line arguments, environment variables etc, as well as pointers to these values,

all of which is placed above the program stack. All this data is in the host address space. Graphite

registers a callback function with Pin that is invoked before control passes to the application. This

function copies all these values to the simulated address space before transferring control to the

application.

4.3 Consistent OS Interface

System calls in an application running under Graphite need special handling for many reasons.

The first is the need to maintain the illusion of a single simulated process executing an application

across multiple host processes. This becomes an issue with system calls that may be used to

communicate or synchronize among different threads in the application; since the threads execute

in different host processes which are not aware of each other, simply allowing the system calls to

execute on the hosts would yield incorrect results.

Another set of system calls that needs special handling are the ones that pass pointers to data

in memory to the kernel. Since Pin can not modify memory accesses in kernel space, the kernel

would try to access the data in the host address space, and will thus either get incorrect data or may

even cause an exception.

Lastly, system calls that deal with allocation and deallocation of dynamic memory need to be

intercepted and forwarded to the Graphite Memory Manger, as discussed in Section 4.2.

To get around these problems, Graphite implements a system interface that intercepts and han-

dles system calls in the target application. The system interface handles each system call from the

application in one of three ways: centrally, locally or fall-through.

Examples of system calls that may be used for inter-thread communication include system

calls used for file 1/0, such as open, c1o s e, r e a d and w r it e. For example, in a multi-threaded

application, threads might communicate via files, with one thread opening a file (using the open

system call), writing to it (using the wr it e system call) and passing the file descriptor to another

thread which then reads the data using the read system call. In a Graphite simulation, these

threads might be in different host processes, and thus a file descriptor in one process may either

point to a different file or be invalid in another process. Thus, simply executing the system calls on

the respective host systems will not yield correct results. Instead, these system calls are handled

centrally by Graphite's system call server running on the MCP. Graphite intercepts all instances

of these system calls in the application, forwards the arguments to the system call server, which

executes the system calls on its local host. The results are then sent back to the application. Since

all system calls execute on the single host process (the one that hosts the MCP), all threads in the

simulation get a consistent view of the system. For example, the file descriptor returned from an

open system call may be used by any of the threads to read from or write to the file; since the

resulting read or write system call will eventually be executed on the same host process that

executed the open system call, the program behaves as expected. Other such system calls, such

as f s t at 6 4 and a c ce s s are handled in a similar manner.

Similarly, system calls such as fut ex are used to achieve synchronization between threads.

For example, fut ex may be used to implement a simple mutex lock, so that the threads execute

the FUTEXWAIT call to atomically check the value of an integer and enter the critical section

if no other thread is accessing it, or are put on a wait queue by the kernel to be woken up when

the thread that currently holds the lock executes a FUTEXWAKE. Clearly, this system call cannot

simply be executed locally in a Graphite simulation. Instead, Graphite intercepts all f ut e x system

calls in the application and forwards the arguments to the system call server, which implements the

functionality for the f ut ex system call normally provided by the kernel.

To intercept the system calls and update the results, Graphite registers callback functions with

Pin that are called immediately before and after a system call. The system call entry callback

function reads the system call arguments, bundles them up and send them over the network layer

to the MCP, where the correct system call is executed by the system call server and the results are

shipped back. It also changes the local execution context to turn the system call into one that won't

affect the functionality of the program, such as getpid. The system call exit callback function

receives the results returned by the system call server and updates the current execution context.

This includes updating the system call return value (located in the EAX register) and also updating

memory buffers where appropriate (e.g., for a re ad system call).

The system calls related to allocation and deallocation of dynamic memory, such as brk,

mmap, mmap2 and munmap are handled in a similar manner.

Many system calls such as uname and clone pass as arguments to the kernel pointers to

chunks of data in the memory. These arguments may be read or written. Since Pin cannot modify

kernel memory references, the kernel would try to access data in the host address space, which

would be functionally incorrect. To avoid this problem, Graphite intercepts all system calls that

pass arguments in memory and modifies their arguments before allowing them to execute locally

i.e. on the host machine. Thus, if an argument in memory is passed as input to the kernel (the

kernel reads this value), Graphite retrieves the data from the simulated address space, places it in

a scratch memory area, and modifies the corresponding system call argument to point to this data.

Output arguments that update memory are similarly modified to point to scratch memory areas.

After the system call has finished executing, any updated values are written back to the simulated

address space. This modification of system call arguments and updating of memory values after

system call execution is accomplished using callback functions that are called before and after

every system call.

Finally, some system calls such as exit do not need any special handling and are allowed to

fall through, i.e. execute on the host system without modification.

Since the total number of system calls in Linux is very large, Graphite does not support all of

them. Instead, system calls are supported on an as needed basis. Currently, Graphite supports all

system calls required to run the entire SPLASH benchmark suite compiled using gcc version 4.3.2

with libc version 2.3.6 running on a Debian system (kernel version 2.6.26). Table ?? lists all the

system calls currently supported by Graphite, as well as how they are handled (centrally, locally or

allowed to fall through).

Figure 4-3 summarizes how Graphite handles system calls in the application.

4.3.1 Process Initialization and Address Space Management

As mentioned in Section 4.2, Graphite copies over data written to the host address space by the

system into the simulated address space before transferred is controlled to the application. How-

ever, other aspects of process initialization, such as the setting up of thread local storage (TLS),

require special handling as well. Each participating host process in a Graphite simulation needs

to be properly initialized, even though only one of them eventually executes mainO. In order to

achieve this, Graphite let's process initialization routines (routines executed before control is trans-

ferred to mainO) execute in each host process. This is done sequentially i.e., the first process runs

the routines while others wait, then the next and so on. This is necessary since all the initializa-

tion routines are modifying data in the same address space and since the routines are not normally

executed in parallel and thus may not be thread-safe, allowing all the threads to execute them in

parallel may be incorrect. Once all processes have finished initialization, one process executes

mainO while the others wait for thread spawn requests from other processes (either the process

running mainO or any of the other processes that have already spawned threads).

* O *Yes

INo

Yes

INo

Yes

INo

Figure 4-3: Handling application system calls

t6
Synch

Manager
MCP)
Ir,

by -1
operands in

place

System Call Name [System Call Number [Handling

open
read
write
close
access
getpid
readahead
pipe
brk
mmap
mmap2
munmap
futex
mprotect
set-tid-address
rt-sigprocmask
rt-sigsuspend
rt-sigaction
nanosleep
uname
ugetrlimit
set-thread-area
clone
time
gettimeofday
fstat64
set-robust-list
exit
exit-group
sigreturn
geteuid32
getuid32
getegid32
getgid32
gettid
kill

5
3
4
6
33
20
225
42
45
90
192
91
240
125
258
126
179
67
162
122
191
243
120
13
78
197
311
1
252
119
201
199
202
200
224
37

Table 4.1: System Calls supported by Graphite

central
central
central
central
central
central
central
central
central
central
central
central
central
central
local
local
local
local
local
local
local
local
local
local
local
local
local
fall through
fall through
fall through
fall through
fall through
fall through
fall through
fall through
fall through

4.4 Threading Infrastructure

Unlike other parallel programming models like MPI, Graphite does not require the application

programmer to be aware of the distribution of computation across multiple hosts and manage it

explicitly. Instead, Graphite seamlessly distributes the execution of an unmodified multi-threaded

application across multiple hosts. From the application programmer's perspective,the application

is a simple multi-threaded application, executing in a single process with a single address space;

parallelism is expressed via the POSIX threading API (pthreads). The only limitation is that the

number of active threads in the application should not exceed the total number of cores for the

simulation specified at run time.

To accomplish this, all thread spawning requests in the application are replaced by traps into

the Graphite back-end. The arguments to the function and are then forwarded to the MCP. Here,

the Graphite distribution engine maps the to-be-spawned thread to an available core and forwards

the request in turn to the LCP of the machine to which the core is mapped. The mapping of the

threads to cores may be designed so as to achieve good load balancing, Graphite's current strategy

is to distribute thread spawn request among host processes in a round robin manner. Similarly, all

thread join requests (calls to the API function pthread-joino) in the application are replaced and

the requests forwarded to the MCP, where the synchronization is implemented by the distribution

engine. Many other API functions, such as pthread-mutexilock() and pthread-mutex-unlocko, do

not need special handling; they can be allowed to execute unmodified in the application and yield

the correct results by virtue of the single, coherent simulated address space provided by Graphite.

4.4.1 Routine replacement

The threading infrastructure, as well as some other functional aspects a Graphite simulation such as

message passing depend on the ability to replace calls to specific functions within the application

with traps into the simulator. The Pin API function

RTNReplaceSignature (RTN replacedRtn, AFUNPTR replacementFunc, ...)

could normally be used for this, but the fact that an application running under Graphite runs in

a simulated address space presents a problem. When this function is invoked, Pin replaces calls to

the original application function with calls to a replacement function, to which arguments meant

for the original function can be passed. These arguments are, however, read from the stack in the

host address space, which would lead to functional problems. Instead, Graphite uses a different

strategy to "trampoline over" the function to be replaced. This is done by inserting an analysis

function to be called before the routine is called. This analysis function reads the function argument

from the stack in the simulated address space and passes them to the replacement function. After

the replacement function has finished executing, the execution context is modified to update the

return value from the function, update the simulated memory to reflect any values changed by

the replacement routine, and start executing at the instruction immediately following the replaced

routine.

Chapter 5

Results

This chapter presents empirical results from experiments that test Graphite's speed, scalability and

accuracy. The results indicate that simulations of large target architectures can be sped up by

running the simulation on more physical cores, and that the speed up is achieved irrespective of

whether the simulation is done on a given number of cores on a single machine or across multiple

machines. The results also demonstrate that distributing the simulation across multiple machines

does not impact simulation results. Finally, the chapter presents empirical evidence to show why

lax synchronization makes sense. Section 5.1 describes the experimental methodology and con-

figurations used in subsequent sections. Section 5.2 presents scaling results on a single machine

as well as across a cluster of machines, including results for a 1024-core simulation. Section 5.3

shows that distributing the simulation across machines has minimal impact on simulation results.

Finally, section 5.3 discusses the impact of the lax synchronization model (Section 3.4) on simula-

tion results and demonstrates their consistency.

5.1 Experimental Setup

All experimental results provided in this section, with the exception of the single machine scaling

results, were obtained on a homogenous cluster of machines. Each machine within the cluster is

a dual quad core Intel(r) Xeon(r) CPU with each core running at 3.16 GHz. Each machine has 8

GB of DRAM and is running Linux with kernel version 2.6.18. Applications were compiled with

g cc version 4.1.2 using g1 ibc version 2.3.6. The machines within the cluster are connected via a

Gigabit ethernet controller. This hardware is representative of current commodity server hardware.

The single machine scaling results were obtained on quad quad core Intel(r) Xeon(r) CPU

machine. Each of the 16 cores on the machine runs at 3.0 GHz. Each machine has 16 GB of

DRAM and runs Debian Linux with kernel version 2.6.25.20. Applications were compiled with

gc c version 4.1.2 using glibc version 2.3.6.

In Table 5.1 summarizes the configuration for the target architecture used for each of the exper-

iments discussed in this section unless otherwise noted. These parameters were chosen to match

modern commodity machines.

Architectural Feature Value

Clock frequency 1 GHz
Ll Caches 4 Kb (per core), 64 bytes per line, 64 sets, 8-way associativity, LRU replacement
L2 Cache 3 Mb (per core), 64 bytes per line, 48 sets, 24-way associativity, LRU replacement

Cache Coherence Full map directory based
DRAM Bandwidth 5.3 GB/s

On Chip Interconnect Mesh Network

Table 5.1: Selected Target Architecture Parameters

5.2 Simulator Scaling

Graphite is designed to simulate large, multicore architectures and therefore simulation speed and

scalability of performance are first order design objectives. As the results below demonstrate,

Graphite gives good simulation speed for a large and diverse set of applications, and scales well as

more hardware resources are devoted to the simulation.

5.2.1 Scaling across cores on a single machine

Since Graphite is designed to allow multiple application threads in a simulation to run in parallel,

it naturally parallelizes well on multicore host machines. Figure 5-1 demonstrates the speed ups

14

12

0U 10.

0

S 6

4

0 2

waterspatial lu_contig ocean_contig barnes

No. Host Cores

Figure 5-1: Single Machine Scaling

achieved by Graphite as more cores on a multicore machines are devoted to the simulation. These

results were obtained on the 16-core machine described in Section 5.1. Figure 5-1 plots the scaling

numbers for four applications from the SPLASH benchmark suite. In each case, the application

has 16 target cores. All application parameters are identical for the various runs, the only thing

that changes from one run to the next is the number of host cores devoted to the simulation. For

comparison purposes, the run-times of each application are normalized to a single-core.

As can be seen from the results, all four applications exhibit significant simulation speed-ups

as more cores are added to the simulation, with water-spatial exhibiting near-linear speedup (1.85x

for 2 cores, 3.65x for 4 cores, 7.16x for 8 cores and 13.82x for 16 cores). Even in the worst

case (lu-contiguous), the simulation speed when using 16 host cores is 8.81x compared to the 1

core case. These numbers demonstrates that a Graphite simulation is able to efficiently use the

parallelism available in the host platform for many different applications.

5.2.2 Scaling across machines

Figure 5-2 shows similar scaling results for simulations distributed across a cluster of machines.

Each machine in the cluster is the 8-core machine as described in Section 5.1, with each core

running at 3.16 GHz and the total DRAM being 8 GB. The same set of applications as in sub-

..................................

.E3

CU

L ,12 6 B 1 2 4 6 B 1 2 4- 6 B 1 2 4 6B
water-spatial lu-contig ocean_contig barnes

No. Machines

Figure 5-2: Scaling Across Multiple Machines

section 5.2.1 are used, except that each simulation has 32 threads in the application. Performance

numbers are given for 1, 2, 4, 6 and 8 machines, which corresponds to 8, 16, 32, 48 and 64 physical

cores, respectively.

As can be seen from Figure 5-2, adding more machines to the simulation results in significant

performance gains for all applications. For example, performance scaling for barnes-hut is nearly

linear (2.03x for 2 machines, 3.80x for 4 machines). Event in the worst case (ocean-contiguous),

simulation speeds up by 1.44x when using 4 machines instead of 1.

The results demonstrate that performance improves as more cores are added till the total num-

ber of cores becomes 32, beyond which performance levels off or even degrades slightly. Since

the application has 32 threads, this is expected: as more hardware resources are employed, perfor-

mance improves until all the parallelism present in the application is utilized. Beyond that, adding

more cores does not provide any additional benefit, while the added communication costs (since

the cores and data are distributed across more machines) may cause the performance to degrade.

These results suggest that since the maximum speedup is achieved when the ratio of target to

host cores become 1, performance scaling would continue to a larger number of cores with a larger

simulation, as demonstrated in subsection 5.2.3.

The most significant hurdle in scaling across machines is the increased communication costs.

..........

Number of machines 1 physical core 2 physical cores 4 physical cores 8 physical cores
1 3904.13 2121.81 1186.67 914.32
2 - 2209.53 1193.43 921.89
4 - - 1221.44 962.62
8 - -- 980.01

Table 5.2: ocean-contiguous: simulation runtime(seconds) for different host configurations

Table 5.3: lu-contiguous: simulation runtime(seconds) for different host configurations

Number of machines 1 physical core 2 physical cores 4 physical cores 8 physical cores
1 3852.24 2060.02 1005.81 536.52
2 - 2089.83 1043.17 574.28
4 - - 1024.28 593.38
8 - -- 604.39

Table 5.4: water-spatial: simulation runtime(seconds) for different host configurations

Table 5.5: barnes-hut: simulation runtime(seconds) for different host configurations

Threads in a Graphite simulation can communicate very often (memory references, user level

messages etc.), and the increased communication costs between machines can become a serious

bottleneck for the simulation. To evaluate the costs and benefits associated with distributing the

simulation across multiple machines, the following experiment was conducted: simulation runtime

for four benchmarks from the SPLASH benchmark suite were measured on different numbers

of physical cores, where the cores could be on the same machine or could be distributed across

multiple machines. For example, a simulation could be run on 2 physical cores located on the

same machine or on two different machines. Each of the applications had 32 threads. Table 5.2,

Table 5.3, Table 5.4 and Table 5.5 summarize the results.

These results demonstrate that the simulation run times are minimally affected by the distribu-

tion of the cores, the total number of cores is all that matters. This is a little surprising, since one

would expect simulation to be slower when the cores are distributed across multiple machines due

to higher communication costs. It is likely that the communication latencies were largely hidden

by the fact that other threads running on a core could make progress while one was waiting for a

message. Also, running a simulation across multiple machines might offer other advantages such

as larger aggregate cache sizes and greater aggregate bandwidth to memory.

To summarize, Graphite displays good simulation speed and scalability. Experimental re-

sults indicate that simulations of many-core architectures with large numbers of cores will ben-

efit greatly from distributed execution, with simulation speeds scaling significantly up to a large

number of physical cores.

5.2.3 Scaling with Large Target Architectures

This section presents performance results for a large target architecture containing 1024 cores and

explores the scaling of such simulations. Figure 5-3 shows the run-time in seconds of a 1024-

core matrix-multiply kernel across different numbers of machines (each machine is a dual

quad-core Xeon, as described in Section 5.1). The run-time in each case is split into two com-

ponents: initialization and application. The former is a one-time simulation overhead due to the

2000

1500

1000 Initialization

Application500
0.

1 2 4 6 8 10

Machines

Figure 5-3: Run-times of mat rix-mult iply kernel with 1024 threads mapped onto 1024 target
cores across different no. of machines.

initialization of the single global address space, thread stacks, et cetera (Section 4.2). Shutdown

cost is negligible and not shown in the figure. Application time accounts for the full run-time of the

the application - both sequential and parallel regions. The mat r ix-mult iply kernel was run

with large matrices (102,400 elements) so that most of the time was spent in the parallel region,

even with 1024 worker threads. matrix-multiply was chosen because it scales well to large

numbers of threads, while still having frequent synchronization via messages with neighbors.

This graph shows steady performance improvement up to ten machines. Application perfor-

mance improves by a factor of 4.23 with ten machines compared to a single machine. Speed-up

is consistent as machines are added, closely matching a linear curve. Adding machines introduces

initialization overhead, however, as initialization must be done sequentially for each process. So

although application time scales well, it is countered by increasing simulation overhead. However,

for a large, compute-intensive application, the initialization overhead would be negligible.

We expect scaling to continue as more host cores are added despite increased overhead, since

SPLASH showed optimal scaling when the number of target cores matched the number of host

cores (subsection 5.2.2). It is unlikely that the optimal performance for matrix-multiply

would lie at 1024 host cores, however, since the number of machines required would introduce

high initialization cost. But since the maximum number of host cores in this study is 80 and there

are 1024 target cores, we expect performance to improve well beyond 10 machines.

Figure 5-4: Performance scaling across machines of matrix-multiply for various problem
sizes

Since communication latencies are likely to be a major cost when distributing the simulation

across multiple machines, applications with a large computation to communication ratio are likely

to scale better. This is confirmed by the results presented in Figure 5-4, which plots simulation

speeds for the matrix-multiply application for various problem sizes (matrices with 4096,

65536 and 131072 elements, respectively). The computation to communication ratio is higher

for larger problem sizes, as each step in the algorithm involves the threads working on a larger

submatrix. Run times for each configuration are normalized to the run time on a single machine

for purposes of comparison. The results demonstrate that simulation speeds up for each problem

size as more machines are added to the simulation. As expected, scaling trends get better for

larger problem sizes (which correspond to better computation to communication ratios). For the

smallest problem size, the rate of performance improvement is small and flattens out beyond 4 ma-

chines (with a maximum speed up of 1.38x over the 1 machine case). For the largest problem size

(131072 elements), performance jumps significantly as more machines are added to the simulation,

and does not show any flattening. Thus for applications for very little communications between

threads, performance is likely to keep increasing as more host cores are devoted to the simulation.

Performance gains for applications with significant inter-thread communication, on the other hand,

3.5

3

2.5

2

1.5

1

0.5

0

- 4096 elements

-'--65536 elements

131072 elements

1 mc 2 mcs 4 mcs 6 mcs 8 mcs

are likely to be bound by communication costs.

5.2.4 Simulator Overhead

Application Native (s) I Machine (s) 4 Machines (s) Slowdown (1 machine) Slowdown (4 machine) Speed-up
barnes 1.38 8866 2331 6424 1689 3.80

cholesky 13.96 26834 2172 1922 155 12.4
fft 0.1 88 55 880 550 1.60
fmm 1.213 415 94 342 77.5 4.41

lu-contiguous 0.151 4139 1961 27410 12986 2.11
lu-non-contiguous 0.159 1139 610 7163 3836 1.87

ocean-contig 0.32 2163 1498 6759 4681 1.44
ocean-non-contiguous 0.378 2004 781 5301 2066 2.57

water-spatial 0.121 992 476 8198 3933 2.08
radix 0.1 568 253 5680 2530 2.25
Mean - - - 7008 3250 2.15

Table 5.6: Multi-Machine Scaling Results

Table 5.6 shows simulator performance for several benchmarks from the SPLASH-2 suite.

The target architecture is as described in Table 5.1. The simulations employ default problem sizes

for each application as described in [30]. The host machines configuration is as described in

Section 5.1. The number of target cores and worker threads is set to 32 for each experiment.

The first column, labeled "Native", represents the native execution time of each application on

a single host machine. The next two columns, labeled "1 Machine" and "4 Machines", represent

the overall simulation runtime in seconds for each application distributed across 1 and 4 machines,

respectively. The next two columns represent the slowdown factor from running the application

in Graphite vs. native (simulated runtime / native runtime). The last column shows the speed-up

going from 1 to 4 machines.

The two columns labeled "1 Machine (s)" and "4 Machines (s)" show the effect of distributing

a simulation across a cluster. From this data as well as Figure ??, it is clear that there is substan-

tial gain from parallelizing the simulation across a cluster. The speed-up is heavily application

dependent, particularly on the algorithmic scalability of the application and how much it saturates

shared resources like off-chip memory bandwidth. Some applications, such as cholesky, show

scaling much greater than linear; others, such as f f t, lu-contig and oceancontig, show

2.0 x 10' 2.0 x 10-

1.5 x10 1.5 x10

1.0 X 10 1.0 x 10

2 5.0 x 106
50x10

6

0'
0 100 200 300 400 0 50 100 150 200 250

Run-time (secs) Run-time (secs)

(a) One machine (b) Two machines

2.0 x 10 2.0 x 10:

1.5 x 10 1.5 x 10-

1.0x10 1.0 x 10/

5..0 X 106 5.0 X 106

0 . _ . , , , . OF

0 20 40 60 80 100 120 140 0 50 100 150

Run-time (secs) Run-time (secs)

(c) Four machines (d) Six machines

Figure 5-5: Progress of threads during a single simulation of f mm across different machines, shown
as simulated cycles vs. real time (seconds).

poor scaling. The mean speed-up for four machines is 2.15, after which benefits of scaling these

problem sizes diminishes.

In addition to scalability, it is important for Graphite to achieve high enough performance that

larger applications complete in a reasonable amount of time. For the applications studied, the

slowdown lies between a few 100 and a few 1000x. For most applications the slowdown is less

than 4000x, but it can be as low as 77x or as high as 13,000x. Therefore for most applications,

Graphite allows realistic problem sizes to be run in a useful amount of time.

5.3 Lax synchronization

Although Graphite is not cycle-accurate, Figure 5-5 shows that application threads remain rea-

sonably synchronized throughout the simulation. Different colors represent different application

threads. Simulated cycle time of each thread is plotted on the y-axis, and real-time is plotted on the

x-axis. The application is f mm, a member of the SPLASH benchmark suite. The plot is discon-

tinuous as threads synchronize with each other and their clocks are forwarded, as discussed earlier

No. machines One Two Four Six Mean
Mean 1.96. 1.98 -0 7 1.98 -0. 2.02. 1.99.10
Standard deviation 7.72. 104(0.4%) 2.29 - 10'(1.1%) 1.50 - 105(0.8%) 4.43 -105(2.2%) 3.27. 107(1.7%)

Table 5.7: Simulated run-times for multiple runs of f mm on different numbers of machines.

Number of machines ocean lu water
1 6.43. 109 5.41. 108 6.42- 107
2 6.78 - 10' 5.74 -108 6.42. 107

4 6.92. 109 5.43. 108 6.42. 107
8 6.87 -109 4.77. 108 6.43. 107

Table 5.8: Simulated run times for different host configurations

(Section 3.4).

First, note that the shapes of the graphs are qualitatively similar. There is a start-up phase

and four subsequent worker phases. During these worker phases, application threads show some

deviation in their local clocks before synchronization at the beginning of the next phase. As the

number of machines increases, the deviation amongst clocks increases as well. This has negligible

impact on simulation results, as each run finishes at nearly identical simulated clock values.

f mm was run 5 times for each number of machines, and the simulation results were compared

for consistency, as shown in Table 5.7. The means are consistent, showing difference of 3% going

from 1 to 6 machines. Standard deviation tends to increase with more machines, as expected.

The standard deviation for each set of runs is small - on average, less than 2% of total run-time.

In fact, because f mm is a multithreaded application with non-deterministic run-time, this standard

deviation is somewhat less than what is observed for fmm running natively. In that case, on average

it takes 7.33 seconds with a standard deviation of 0.31 seconds (4.2%).

Table 5.8 summarizes the simulated run times for 3 applications from the SPLASH benchmark

suite running on different numbers of machines. As can be seen, the results are very consistent and

distributing the simulation across multiple host machines does not introduce any systematic error

to the simulation results.

Chapter 6

Related Work

Because simulation is such an important tool for computer architects, a wide variety of differ-

ent simulators and emulators exists. Conventional sequential simulators/emulators include Sim-

pleScalar [2], RSIM [13], SimOS [25], Simics [19], and QEMU [3]. Some of these are capable of

simulating parallel target architectures but all of them execute sequentially on the host machine.

FaCSim[17] solves the opposite problem, simulating a sequential target on a parallel host. How-

ever, the parallelism is very limited and consists of breaking the target processor's pipeline into

two pieces.

The projects most closely related to Graphite are parallel simulators of parallel target architec-

tures including: SimFlex [28], GEMS [20], BigSim [31], FastMP [15], Wisconsin Wind Tunnel

(WWT) [24], Wisconsin Wind Tunnel II (WWT II) [22], and those described by Chidester and

George [6], and Penry et al. [23].

SimFlex and GEMS both use an off-the-shelf sequential emulator (Simics) for functional mod-

eling plus their own models for memory systems and core interactions. Because Simics is a closed-

source commercial product it is difficult to experiment with different core architectures. GEMS

uses their timing model to drive Simics one instruction at a time which results in much lower

performance than Graphite. SimFlex avoids this problem by using statistical sampling of the ap-

plication but therefore does not observe its entire behavior. Chidester and George take a similar

approach by joining together several copies of SimpleScalar using MPI. They do not report abso-

lute performance numbers but SimpleScalar is typically slower than the direct execution used by

Graphite.

BigSim and FastMP assume distributed memory in their target architectures and do not provide

coherent shared memory between the parallel portions of their simulators. Graphite permits study

of the much wider and more interesting class of applications that assume a shared memory model.

WWT is one of the earliest parallel simulators but requires applications to use an explicit inter-

face for shared memory and only runs on CM-5 machines, making it impractical for modem us-

age. Graphite has several similarities with WWT II. Both use direct execution, and provide shared

memory across a cluster of machines. However, WWT II does not model anything other than the

target memory system and requires applications to be modified to explicitly allocate shared mem-

ory blocks. Graphite also models compute cores and communication networks and implements

a transparent shared memory system. In addition, WWT II uses a very different quantum-based

synchronization scheme rather than using loosely synchronized local clocks.

Penry et al. provide a much more detailed, low-level simulation and are targeting hardware

designers. Their simulator, while fast for a cycle-accurate hardware model, does not provide the

performance necessary for rapid exploration of different ideas or software development.

The problem of accelerating slow simulations has been addressed in a number of different ways

other than large-scale parallelization. ProtoFlex [9], FAST [7], and HASim [11] all use FPGAs to

implement timing models for cycle-accurate simulations. ProtoFlex and FAST implement their

functional models in software while HASim implements functional models in the FPGA as well.

These approaches require the user to buy expensive special-purpose hardware while Graphite runs

on commodity Linux machines. In addition, it is far more difficult to implement a new model in

an FPGA than in software, making it harder to quickly experiment with different designs.

Other simulators improve performance by modeling only a portion of the total execution.

FastMP [15] estimates performance for parallel workloads with no memory sharing (such as

SPECrate) by carefully simulating only some of the independent processes and using those re-

sults to model the others. Finally, simulators such as SimFlex [28] use statistical sampling by

carefully modeling short segments of the overall program run and assuming that the rest of the run

is similar. Although Graphite does make some approximations, it differs from these projects in

that it observes and models the behavior of the entire application execution.

The idea of maintaining independent local clocks and using timestamps on messages to syn-

chronize them during interactions was pioneered by the Time Warp system [14] and used in the

Georgia Tech Time Warp [10] and BigSim [31]. However, all of these systems assume that perfect

ordering must be maintained and rollback when the timestamps indicate out-of-order events. To

our knowledge, our lax synchronization technique has not been previously used.

Separating functional models from timing models is a well-established technique used in many

simulators including: FastSim [26], TimingFirst [21], GEMS [20], tsim [8], Asim [12], HASim [11],

FAST [7], and ProtoFlex [9].

TreadMarks [1] implements a generic distributed shared memory system across a cluster of

machines. However, it requires the programmer to explicitly allocate blocks of memory that will

be kept consistent across the machines. This requires applications that assume a single shared

address space (e.g., pthread applications) to'be rewritten to use the TreadMarks interface. Graphite

operates transparently, providing a single shared address space to off-the-shelf applications.

Chapter 7

Future Work

As described in the preceding chapters, Graphite presents a novel way to improve simulation

speeds for simulation of many-core architectures with a large number of cores. It also opens

up opportunities for future work on the simulator itself, many of which would add significantly

to Graphite's capabilities. Many other directions of future research described here are more open-

ended, and are closely related to research questions in future many-core systems.

As mentioned in Chapter 3, Graphite's lax synchronization model presents many interesting

challenges in modeling the cost of events in target architectures. Most of the challenges stem from

the fact that order of events as seen in real time may not be the same as the order of events as

seen in simulated time. This presents problems particularly in modeling contention, such as in

the network or in the memory controller. For example, network packets that would contend at

a switch in simulated time may not be seen at the same wall-clock time. Graphite implements

simple queuing models to model contention in such cases, where history over a moving window

in simulated time is used to approximate the state of the system at any given time. However,

these contention models can prove very fragile. Designing novel schemes for modeling contention

presents an interesting direction of future research.

A related issue is that of trading performance for accuracy. At the moment, application threads

only synchronize at a small number of specific events in the application. One could design a

scheme where threads additionally synchronize after a certain number of cycles, thus ensuring

more accuracy at the cost of simulation speed. The major challenge in implementing such a scheme

is preventing deadlocks, e.g. when a thread is not making any forward progress because it is waiting

for communication from another thread that is waiting to synchronize with the first thread.

Another extension that would provide more opportunities to trade off accuracy for performance

is support for hot-swappable modules. At the moment, performance models to be used in a simu-

lation are specified once, at the start of the simulation. Adding support for hot-swappable module

would allow a user to use a simpler, less accurate performance models during phases of program

execution that are less interesting, thus speeding up the simulation.

Graphite currently only supports 32-bit applications. This can be a serious limitation for sim-

ulating target architectures with a very large number of cores, since one is limited to a 32-bit

address space. Implementing support for 64-bit applications in Graphite would allow Graphite to

simulate much larger target architectures than is currently possible. While this would involve min-

imal changes in Graphite's performance models, it would require changes to many of Graphite's

functional aspects, e.g. handling of system calls and function calls, and redirection of memory

references.

Finally, Graphite also presents some open-ended research questions that are of broader signif-

icance, e.g. the placement and live migration of application thread for load balancing, as well as

the optimal distribution of addresses among the various DRAM directories.

Chapter 8

Conclusion

In conclusion, Graphite enables fast simulation of multicore architectures with a large number

of cores by leveraging the parallelism offered by today's multicore machines and distributing the

simulation over multiple hosts. Experimental results indicate that Graphite scales well, both across

cores in a single machine as well as across multiple machines. Furthermore, results indicate that for

large target applications, performance scaling continues to a very large number of physical cores.

Graphite presents a very low simulation overhead (mean slowdown is 3250x across applications

in the SPLASH benchmark suite). Furthermore, simulation results are unaffected by the host

configuration. It's speed makes it a useful tool for rapid high-level architectural exploration as

well as software development for future multicore systems.

Bibliography

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
Marks: Shared memory computing on networks of workstations. IEEE Computer, 29(2):18-28, Feb
1996.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system modeling.
IEEE Computer, 35(2):59-67, 2002.

[3] F. Bellard. QEMU, a fast and portable dynamic translator. In ATEC'05: Proceedings of the USENIX
Annual Technical Conference 2005 on USENIX Annual Technical Conference, Berkeley, CA, USA,
2005.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization and ar-
chitectural implications. In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques (PACT), October 2008.

[5] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optimization. In
International Symposium on Code Generation and Optimization, San Francisco, Mar 2003.

[6] M. Chidester and A. George. Parallel simulation of chip-multiprocessor architectures. ACM Trans.
Model. Comput. Simul., 12(3):176-200, 2002.

[7] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe, and H. Angepat.
FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-System, Cycle-Accurate Simulators.
In MICRO '07: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 249-261, 2007.

[8] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Moeng. TPTS: A Novel Frame-
work for Very Fast Manycore Processor Architecture Simulation. In ICPP'08: The 37th International
Conference on Parallel Processing, pages 446-453, Sept 2008.

[9] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and B. Falsafi. ProtoFlex: To-
wards Scalable, Full-System Multiprocessor Simulations Using FPGAs. ACM Trans. Reconfigurable
Technol. Syst., 2(2):1-32, 2009.

[10] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. GTW: A Time Warp System for Shared
Memory Multiprocessors. In WSC '94: Proceedings of the 26th conference on Winter simulation,
pages 1332-1339, 1994.

[11] N. Dave, M. Pellauer, and J. Emer. Implementing a functional/timing partitioned microprocessor
simulator with an FPGA. In 2nd Workshop on Architecture Research using FPGA Platforms (WARFP
2006), Feb 2006.

[12] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil, S. Wallace,
N. Binkert, R. Espasa, and T. Juan. Asim: A performance model framework. Computer, 35(2):68-76,
2002.

[13] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: Simulating shared-memory multipro-
cessors with ilp processors. Computer, 35(2):40-49, 2002.

[14] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404-
425, July 1985.

[15] S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter. FastMP: A multi-core simulation method-
ology. In MOBS 2006: Workshop on Modeling, Benchmarking and Simulation, June 2006.

[16] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-based
computer architecture research. Computer Architecture Letters, 1, June 2002.

[17] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han. FaCSim: A fast and cycle-accurate
architecture simulator for embedded systems. In LCTES '08: Proceedings of the 2008 ACM SIGPLAN-
SIGBED conference on Languages, Compilers, and Tools for Embedded Systems, pages 89-100, 2008.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building customized program analysis tools with dynamic instrumentation. In PLDI '05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implemen-
tation, pages 190-200, June 2005.

[19] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system simulation platform. IEEE Computer, 35(2):50-58,
Feb 2002.

[20] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, and D. A. Wood. Multifacet's general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33(4):92-99, November 2005.

[21] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system timing-first simulation. In SIGMETRICS '02:
Proceedings of the 2002 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 108-116, 2002.

[22] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill, D. A. Wood, S. Huss-Lederman,
and J. R. Larus. Wisconsin Wind Tunnel II: A fast, portable parallel architecture simulator. IEEE
Concurrency, 8(4):12-20, Oct-Dec 2000.

[23] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D. Connors. Exploiting par-
allelism and structure to accelerate the simulation of chip multi-processors. In HPCA'06: The Twelfth
International Symposium on High-Performance Computer Architecture, pages 29-40, Feb 2006.

[24] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood. The wisconsin
wind tunnel: virtual prototyping of parallel computers. In SIGMETRICS '93: Proceedings of the 1993
ACM SIGMETRICS conference on Measurement and modeling of computer systems, pages 48-60,
1993.

[25] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer system simulation: The
SimOS approach. IEEE Parallel & Distributed Technology: Systems & Applications, 3(4):34-43,
Winter 1995.

[26] E. Schnarr and J. R. Larus. Fast out-of-order processor simulation using memoization. In ASPLOS-
VIII: Proceedings of the eighth international conference on Architectural support for programming
languages and operating systems, pages 283-294, 1998.

[27] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffman, P. Johnson, J. Kim,
J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation
of the Raw microprocessor: An exposed-wire-delay architecture for ILP and streams. In Proceedings
of the International Symposium on Computer Architecture, pages 2-13, June 2004.

[28] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe. SimFlex:
Statistical sampling of computer system simulation. IEEE Micro, 26(4):18-31, July-Aug 2006.

[29] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao, J. F.
Brown, and A. Agarwal. On-chip interconnection architecture of the Tile processor. IEEE Micro,
27(5):15-31, Sept-Oct 2007.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: characteriza-
tion and methodological considerations. In ISCA '95: Proceedings of the 22nd annual international
symposium on Computer architecture, pages 24-36, June 1995.

[31] G. Zheng, G. Kakulapati, and L. V. Kald. BigSim: A parallel simulator for performance prediction of
extremely large parallel machines. In 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS), page 78, Apr 2004.

