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Abstract

Mobile apps have to satisfy various privacy requirements.
App publishers are often obligated to provide a privacy pol-
icy and notify users of their apps’ privacy practices. But how
can we tell whether an app behaves as its policy promises? In
this study we introduce a scalable system to help analyze and
predict Android apps’ compliance with privacy requirements.
Our system is not only intended for regulators and privacy ac-
tivists, but also meant to assist app publishers and app store
owners in their internal assessments of privacy requirement
compliance.
Our analysis of 17,991 free apps shows the viability of com-
bining machine learning-based privacy policy analysis with
static code analysis of apps. Results suggest that 71% of apps
that lack a privacy policy should have one. Also, for 9,050
apps that have a policy, we find many instances of potential
inconsistencies between what the app policy seems to state
and what the code of the app appears to do. Our results sug-
gest that as many as 41% of these apps could be collecting lo-
cation information and 17% could be sharing such with third
parties without disclosing so in their policies. Overall, it ap-
pears that each app exhibits a mean of 1.83 inconsistencies.

1 Introduction

Snapchat does “not ask for, track, or access any location-
specific information.” This is what Snapchat’s privacy policy
used to state.1 However, in reality Snapchat’s Android app
transmitted Wi-Fi and cell-based location data from users’
devices to analytics service providers. These discrepancies
remained undetected until a researcher examined Snapchat’s
data deletion mechanism. His report was picked up by the
Electronic Privacy Information Center and brought to the
attention of the Federal Trade Commission (FTC), which
launched a formal investigation requiring Snapchat to im-
plement a comprehensive privacy program.2

∗Work mostly done while at Carnegie Mellon University.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In the Matter of Snapchat, Inc., FTC No. 132 3078 (December
31, 2014, Complaint).

2In the Matter of Snapchat, Inc., FTC No. 132 3078 (December
31, 2014, Decision and Order).

The case of Snapchat illustrates that mobile apps are often
non-compliant with privacy requirements. However, any in-
consistencies can have dire consequences as they may lead
to enforcement actions by the FTC and other regulators. This
is especially true if discrepancies continue to exist for many
years, which was the case for Yelp’s collection of childrens’
information.3 These findings not only demonstrate that reg-
ulators could benefit from a system that helps them identify-
ing potential inconsistencies, but also that it would be a use-
ful tool for companies in the software development process.
After all, researchers found that privacy violations often ap-
pear to be based on developers’ difficulties in understanding
privacy requirements (Balebako et al. 2014) rather than on
malicious intentions.

On various occasions, the FTC, which is responsi-
ble for regulating consumer privacy on the federal level,
voiced dissatisfaction with the current state of apps’ privacy
compliance. Three times it manually surveyed childrens’
apps (FTC 2012a; 2012b; 2015) and concluded that the “re-
sults of the survey are disappointing” (FTC 2012b). Devi-
ating from mandatory provisions, many publishers did not
disclose what types of data they collect, how they make use
of the data, and with whom the data is shared (FTC 2012b).
A similar examination of 121 shopping apps revealed that
many privacy policies are vague and fail to convey how apps
actually handle consumers’ data (FTC 2014b). Given that
the FTC limited its investigations to small samples of apps,
a presumably large number of discrepancies between apps
and their privacy policies remain undetected.

In this study we are presenting a system that checks data
practices of Android apps against privacy requirements de-
rived from their privacy policies and selected laws. Our work
enables app publishers to identify potential inconsistencies
before they become prevalent. Moreover, our work can also
aid governmental agencies, such as the FTC, to achieve a
systematic enforcement of privacy laws on a large scale. The
techniques presented in this paper have been customized and
packaged in the form of a tool piloted by the Office of the

3United States of America v. Yelp, Inc., FTC No. 132 3066
(September 17, 2014, Complaint for Permanent Injunction, Civil
Penalties, and other Relief).
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California Attorney General over the summer of 2016. App
store owners, researchers, and privacy advocates alike might
also derive value from our study. Our main contribution con-
sists of the novel combination of machine learning (ML) and
static analysis techniques to analyze apps’ potential non-
compliance with privacy requirements. However, we want
to emphasize that we do not claim to resolve challenges in
the individual techniques we leverage beyond what is nec-
essary for our purposes. This holds especially true for the
static analysis of mobile apps and its many unresolved prob-
lems, for example, in the analysis of obfuscated code. That
said, the details of our contribution are as follows:

1. For a set of 17,991 Android apps we check whether they
have a privacy policy. For the 9,295 apps that have one
we apply machine learning classifiers to analyze policy
content based on a human-annotated corpus of 115 poli-
cies. We show, for instance, that only 46% of the analyzed
policies describe a notification process for policy changes.
(§ 3).

2. Leveraging static analysis we investigate the actual data
practices occurring in the apps’ code. With a failure rate of
0.4%, a mean F-1 score of 0.96, and a mean analysis time
of 6.2 seconds per app our approach makes large-scale
app analyses for legally relevant data practices feasible
and reliable. (§ 4).

3. Mapping the policy to the app analysis results we iden-
tify and analyze potential inconsistencies between poli-
cies and apps. With each app exhibiting a mean of 1.83
potential inconsistencies we find their occurrence to be a
widespread phenomenon. (§ 5).

2 Related Work

Privacy policies disclose an organization’s data practices.
Despite efforts to make them machine-readable, e.g., via
P3P (Cranor et al. 2002), or formalize them, for instance, us-
ing EPAL (Ashley et al. 2003), natural language policies are
the de-facto standard for notifying web users of data prac-
tices. However, those policies are often long and difficult to
read. Few lay users ever read them and regulators lack the re-
sources to systematically review them. For instance, it took
26 data protection agencies one week, working together as
the Global Privacy Enforcement Network (GPEN), to ana-
lyze the policies of 1,211 apps (GPEN 2015). While various
works aim to make privacy policies more comprehensible,
e.g., Ghazinour et al. (2009) provide a model for visualiz-
ing different practices, there is a glaring absence of an auto-
mated system to accurately analyze policy content.

It is our goal to automatically analyze natural language
privacy policies at scale (Sadeh et al. 2013). Analyzing
such policies presents a substantial challenge (Wilson et al.
2016a). As of now, Massey et al. (2013) provided the most
extensive evaluation of 2,061 policies, however, not focus-
ing on their legal analysis but rather their readability and
suitability for identifying privacy protections and vulnerabil-
ities from a requirements engineering perspective. In addi-
tion, Hoke et al. (2015) studied the compliance of 75 policies
with self-regulatory requirements, and Cranor et al. (2013)
analyzed structured privacy notice forms of financial institu-

tions identifying multiple instances of opt out practices that
appear to be in violation of financial industry laws.

Different from previous studies we analyze policies at
scale with a legal perspective and not limited to the fi-
nancial industry. We analyze whether policies are avail-
able as sometimes required by various laws and examine
their descriptions of data collection and sharing practices.
For our analysis we rely on the flexibility of ML classi-
fiers (Zimmeck and Bellovin 2014) and introduce a new
approach for privacy policy feature selection. Our work is
informed by the study of Costante et al., who presented
a completeness classifier to determine which data practice
categories are included in a privacy policy (2012) and pro-
posed rule-based techniques to extract data collection prac-
tices (2013). However, we go beyond these works in terms
of both breadth and depth. We analyze a much larger pol-
icy corpus, and we focus on legal questions that have not
yet been automatically analyzed. Different from many ex-
isting works that focus on pre-processing of policies, e.g.
by using topic modeling (Chundi and Subramaniam 2014;
Stamey and Rossi 2009) and sequence alignment (Liu et al.
2014; Ramanath et al. 2014) to identify similar policy sec-
tions and paragraphs, we are interested in analyzing policy
content.

Supervised ML techniques, as used in this study, require
ground-truth. To support the development of these tech-
niques crowdsourcing has been proposed as a viable ap-
proach for gathering rich annotations from unstructured pri-
vacy policies (Sadeh et al. 2013; Wilson et al. 2016c). While
crowdsourcing poses challenges due to the policies’ com-
plexity (Reidenberg et al. 2015), assigning annotation tasks
to experts (Zimmeck and Bellovin 2014) and setting strin-
gent agreement thresholds and evaluation criteria (Wilson
et al. 2016c) can in fact lead to reliable policy annotations.
However, as it is a recurring problem that privacy policy an-
notations grapple with low inter-annotator agreement (Rei-
denberg et al. 2015; Zimmeck and Bellovin 2014), we intro-
duce a measure for analyzing their reliability based on the
notion that high annotator disagreement does not principally
inhibit the use of the annotations for ML purposes as long as
the disagreement is not systematic.

The static analysis approach used in our system is in-
spired by TaintDroid (Enck et al. 2010) and the studies
of Slavin et al. (2016) and Yu et al. (2016). However,
we move beyond these contributions. First, our privacy re-
quirements cover privacy questions previously not exam-
ined. Notably, we address whether an app needs a pol-
icy and analyze the policy itself (i.e., whether it describes
how users are informed of policy changes and how they
can access, edit, and delete data). Different from Slavin et
al. we also analyze the collection and sharing of contact
information. Second, TaintDroid, is not intended to have
app store wide scale. Third, previous approaches do not
neatly match to legal categories. They do not distinguish
between first and third party practices (Enck et al. 2010;
Slavin et al. 2016), do not take into account negative pol-
icy statements (i.e., statements that an app does not collect
certain data, as, for example, in the Snapchat policy quoted
in § 1) (Slavin et al. 2016), and base their analysis on a di-

287



Privacy Policy

Privacy Notice and Choice

App

Notices
(2) NPC: Notice Policy Changes
(3) NAED: Notice Access, 
              Edit, and Delete

Collection    
(4) CID: Collection IDentifier*
(5) CL: Collection Location**
(6) CC: Collection Contact***
Sharing
(7) SID: Sharing IDentifier*
(8) SL: Sharing Location**
(9) SC: Sharing Contact***

Notices
(2) NPC: Notice Policy Changes
(3) NAED: Notice Access, 
             Edit, and Delete

Implementation 

Notices

Collection   
(4) CID: Collection IDentifier*
(5) CL: Collection Location**
(6) CC: Collection Contact***

* Android/Device ID, MAC, IMEI, 
   Google Advertising and Client IDs
** GPS, Cell Tower, Wi-Fi
*** E-Mail, Phone Number

Notices

Privacy Notice and ChoicePrivacy Requirements

Sharing
(7) SID: Sharing IDentifier*
(8) SL: Sharing Location**
(9) SC: Sharing Contact***

(1) Privacy Policy Requirement

Figure 1: Per our privacy requirements, apps that process
Personally Identifiable Information (PII) need to (1) have a
privacy policy, (2-3) include notices about policy changes
and access, edit, and deletion rights in their policy, (4-6) no-
tify users of data collection practices, and (7-9) disclose how
data is shared with third parties. The notice requirements for
policy changes and access, edit, and deletion are satisfied by
including the notices in the policies while the collection and
sharing practices must be also implemented in the apps.

chotomy of strong and weak violations (Slavin et al. 2016)
unknown to the law. Fourth, we introduce techniques that
achieve a mean accuracy of 0.94 and a failure rate of 0.4%,
which improve over the closest comparable results of 0.8
and 21% (Slavin et al. 2016), respectively.

3 Privacy Policy Analysis

In this section we present our automated large-scale ML
analysis of privacy policies. We discuss the law on privacy
notice and choice (§ 3.1), how many apps have a privacy
policy (§ 3.2), and the analysis of policy content (§ 3.3).

3.1 Privacy Notice and Choice

The privacy requirements analyzed here are derived from se-
lected laws and apps’ privacy policies. Figure 1 provides an
overview of the law on notice and choice and the nine pri-
vacy requirements that our system analyzes (Privacy Policy
Requirement, NPC, NAED, CID, CL, CC, SID, SL, SC).
If a policy or app does not appear to adhere to a privacy
requirement, we define a potential privacy requirement in-
consistency to occur (which we also refer to as potential in-
consistency or non-compliance). In this regard, we caution
that a potential inconsistency does not necessarily mean that
a law is violated. First, not all privacy requirements might
be applicable to all apps and policies. Second, our system is
based on a particular interpretation of the law. While we be-
lieve that our interpretation is sound and in line with the en-
forcement actions of the FTC and other regulatory agencies,
reasonable minds may differ.4 Third, our system is based on

4We are focusing on the US legal system as we are most familiar
with it. However, in principle, our techniques are applicable to any

machine learning and static analysis and, thus, by its very
nature errors can occur.

As to the privacy policy requirement, there is no gen-
erally applicable federal statute demanding privacy poli-
cies for apps (?). However, California and Delaware en-
acted comprehensive online privacy legislation that effec-
tively serves as a national minimum privacy threshold given
that app publishers usually do not provide state-specific app
versions or exclude California or Delaware residents. In this
regard, the California Online Privacy Protection Act of 2003
(CalOPPA) requires online services that collect PII to post
a policy.5 The same is true according to Delaware’s On-
line Privacy and Protection Act (DOPPA).6 In addition, the
FTC’s Fair Information Practice Principles (FTC FIPPs) call
for consumers to be given notice of an entity’s information
practices before any PII is collected (FTC 1998). Further, the
Children’s Online Privacy Protection Act of 1998 (COPPA)
makes policies mandatory for apps directed to or known to
be used by children.7 Thus, we treat the existence of a pri-
vacy policy as a privacy requirement.

CalOPPA and DOPPA further demand that privacy poli-
cies describe the process by which users are notified of pol-
icy changes.8 COPPA also requires description of access,
edit, and deletion rights.9 Under the FTC FIPPs (FTC 1998)
as well as CalOPPA and DOPPA those rights are optional.10

We concentrate our analysis on a subset of data types that
are, depending on the context, legally protected: device IDs,
location data, and contact information. App publishers are
required to disclose the collection of device IDs (even when
hashed) and location data.11 Device IDs and location data
are also covered by CalOPPA12 and for childrens’ apps ac-
cording to COPPA.13 The sharing of these types of informa-
tion with third parties requires consent as well.14 Similarly,
contact information, such as e-mail addresses, may be pro-
tected, too.15

It should be noted that we interpret ad identifiers to be PII
since they can be used to track users over time and across
devices. We are also assuming that a user did not opt out
of ads (because otherwise no ad identifiers would be sent to
opted out ad networks). We further interpret location data
to refer to GPS, cell tower, or Wi-Fi location. We assume

country with a privacy notice and choice regime.
5Cal. Bus. & Prof. Code §22575(a).
6Del. Code Tit. 6 §1205C(a).
716 CFR §312.4(d).
8Cal. Bus. & Prof. Code §22575(b)(3), Del. Code Tit. 6

§1205C(b)(3).
916 CFR §312.4(d)(3).

10Cal. Bus. & Prof. Code §22575(b)(2), Del. Code Tit. 6
§1205C(a).

11In the Matter of Nomi Technologies, Inc., FTC No. 132 3251
(September 3, 2015, Complaint).

12Per the interpretation of Cal. Bus. & Prof. Code §22577(a)(6)
and (7) by the California Department of Justice (2014).

1316 CFR §312.2(7) and (9).
14In the Matter of Goldenshores Technologies, LLC, and Erik

M. Geidl, FTC No. 132 3087 (April 9, 2014, Complaint).
15In the Matter of Snapchat, Inc., FTC No. 132 3078 (December

31, 2014, Complaint).
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Figure 2: We analyze 17,991 free apps, of which 9,295
(52%) link to their privacy policy from the Play store (left).
Out of the remaining apps, 6,198 (71%) appear to lack a pol-
icy while engaging in at least one data practice (i.e., PII is
processed) that would require them to have one (right).

applicability of the discussed laws and perform our analysis
based on the guidance provided by the FTC (1998) and the
California Department of Justice (2014) in enforcement ac-
tions and recommendations for best practices. Specifically,
we interpret the FTC actions as disallowing the omission of
data practices in policies and assume that silence on a prac-
tice means that it does not occur.16 Also, we assume that all
apps in the Play store are subject to CalOPPA and DOPPA,17

which we believe to be reasonable as we are not aware of
any app in the Play store excluding California or Delaware
residents or of state-specific app versions for those states.

3.2 Privacy Policy Requirement

To assess whether apps fulfill the requirement of having a
privacy policy we crawled the Google Play store (Febru-
ary 2016) and downloaded a sample (n = 17, 991) of
free apps (full app set).18 We started our crawl with the
most popular apps and followed random links on their Play
store pages to other apps. We included all categories in our
crawl, however, excluded Google’s Designed for Families
program (as Google already requires apps in this program
to have a policy) and Android Wear (as we want to focus
on mobile apps). We assume that our sample is representa-
tive in terms of app categories, which we confirmed with a
two-sample Kolmogorov-Smirnov goodness of fit test (two-
tailed) against a sample of a million apps (Olmstead and
Atkinson 2015). We could not reject the null hypothesis that
both were drawn from the same distribution (i.e., p > 0.05).
However, while the Play store hosts a long tail of apps that
have fewer than 1K installs (56%) (Olmstead and Atkinson
2015), we focus on more popular apps as our sample in-
cludes only 3% of such apps.

Out of all policies in the full app set we found that n =
9, 295 apps provided a link to their policy from the Play store
(full policy set) and n = 8, 696 apps lacked such. As shown

16In the Matter of Snapchat, Inc., FTC No. 132 3078 (December
31, 2014, Complaint).

17Cal. Bus. & Prof. Code §§22575–22579, Del. Code Tit. 6
§1205C.

18Whenever we refer to Google Play we mean its US store.

Practice |Ann| Agpol % Agpol Fleisspol/Krippol

NPC 395 86/115 75% 0.64
NAED 414 80/115 70% 0.59
CID 449 92/115 80% 0.72

CL 326 85/115 74% 0.64
CC 830 86/115 75% 0.5
SID 90 101/115 88% 0.76

SL 51 95/115 83% 0.48
SC 276 85/115 74% 0.58

Table 1: The table shows absolute numbers of annotations
(|Ann|) as well as various agreement measures, specifically,
absolute agreements (Agpol), percentage agreements (%
Agpol), Fleiss’ κ (Fleisspol), and Krippendorff’s α (Krippol).
All agreement measures are computed on the full corpus of
115 policies and on a per-policy basis (e.g., for 92 out of 115
policies the annotators agreed on whether the policy allows
collection of identifiers).

in Figure 2, our results suggest that 71% (6,198/8,696) apps
without a policy link are indeed not adhering to the policy
requirement. We used the Play store privacy policy links as
proxies for actual policies, which we find reasonable since
regulators requested app publishers to post such links (FTC
2013; California Department of Justice 2014) and app store
owners obligated themselves to provide the necessary func-
tionality (California Department of Justice 2012). The apps
in the full app set were offered by 10,989 publishers, and
their app store pages linked to 6,479 unique policies.

We arrive at 71% after making two adjustments. First,
if an app does not have a policy it is not necessarily non-
compliant with the policy requirement. After all, apps that
are not processing PII are not obligated to have a policy. In-
deed, since we found that 12% (1,020/8,696) of apps without
a policy link are not processing PII, we accounted for those
apps. Second, despite the regulators’ requests to post policy
links in the Play store, some app publishers may still de-
cide to post their policy elsewhere (e.g., inside their app). To
account for that possibility we randomly selected 40 apps
from our full app set that did not have a policy link in the
Play store but processed PII. We found that 83% (33/40) do
not seem to have a policy posted anywhere (with a Clopper-
Pearson confidence interval (CI) ranging from 67% to 93%
at the 95% level based on a two-tailed binomial test).19 Thus,
accounting for an additional 17% (1,478/8,696) of apps hav-
ing a policy elsewhere leaves us with 100%−12%−17% =
71% out of n = 8, 696 apps to be potentially non-compliant
with the policy requirement.

3.3 Privacy Policy Content

We now move from examining whether an app has a policy
to the analysis of policy content (i.e., privacy requirements
(2-9) in Figure 1). As a basis for our evaluation we use man-
ually created policy annotations.

19All CIs in this paper are based on a two-tailed binomial test
and the Clopper-Pearson interval at the 95% level.
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Figure 3: Analysis of disagreement among annotators for the
different data practices with binomial tests. Larger p values
mean fewer disagreements. If there are no disagreements,
we define p= 1. The numbers in parentheses are the average
absolute disagreements for the respective practices.

Inter-annotator Agreement For training and testing our
policy classifiers we leverage the OPP-115 corpus (Wilson
et al. 2016b)—a corpus of 115 privacy policies annotated
by ten law students that includes 2,831 annotations for the
practices discussed in this study. The annotations, which are
described in detail by Wilson et al. (2016b), serve as the
ground-truth for our classifiers. Each annotator annotated a
mean of 34.5 policies (median 35). We select annotations
according to majority agreement (i.e., two out of three an-
notators agreed on it). As it is irrelevant from a legal per-
spective how often a practice is described in a policy, we
measure whether annotators agree that a policy describes a
given practice at least once.

High inter-annotator agreement signals the reliability
of the ground-truth on which classifiers can be trained
and tested. As agreement measures we use Fleiss’ κ and
Krippendorff’s α, which indicate that agreement is good
above 0.8, fair between 0.67 and 0.8, and doubtful below
0.67 (Manning, Raghavan, and Schütze 2008). From our re-
sults in Table 1 it follows that the inter-annotator agreement
for collection and sharing of device IDs with respective val-
ues of 0.72 and 0.76 is fair. However, it is below 0.67 for the
remaining classes. While we would have hoped for stronger
agreement, the annotations with the observed agreement lev-
els can still provide reliable ground-truth as long as the clas-
sifiers are not misled by patterns of systematic disagreement,
which can be explored by analyzing the disagreeing annota-
tions (Reidsma and Carletta 2008).

To analyze whether disagreements contain systematic pat-
terns we evaluate the number of each annotator’s disagree-
ments with the other two annotators. If he or she is in a mi-
nority position for a statistically significant number of times,
there might be a misunderstanding of the annotation task or
other systematic reason for disagreement. However, if there
is no systematic disagreement, annotations are reliable de-
spite low agreement levels (Reidsma and Carletta 2008). As-
suming a uniform distribution each annotator should be in
the minority in 1/3 of all disagreements. We test this assump-
tion with the binomial test for goodness of fit. Specifically,
we use the binomial distribution to calculate the probability
of an annotator being x or more times in the minority by
adding up the probability of being exactly x times in the mi-
nority, being x+1 times in the minority, up to x+n (that is,

being always in the minority), and comparing the sum to the
expected probability of 1/3. We use a one-tailed test as we
are not interested in finding whether an annotator is fewer
times in the minority than in 1/3 of the disagreements.

We only found few cases with systematic disagreement.
More specifically, for 7% (11/160) of an annotator’s dis-
agreements we found statistical significance (p ≤ 0.05)
for rejecting the null hypothesis that the disagreements are
equally distributed. An annotator can be in the minority
when omitting an annotation that the two other annota-
tors made or adding an extra annotation. Figure 3 shows
the former. However, excluding affected annotations from
the training set for our classifiers had only little notice-
able effect. Thus, we believe that our annotations are suf-
ficiently reliable to serve as ground-truth for our classifiers.
As other works have already explored, low levels of agree-
ment in policy annotations are common and do not nec-
essarily reflect their unreliability (Reidenberg et al. 2015;
Zimmeck and Bellovin 2014). In fact, different from our ap-
proach here, it could be argued that an annotator’s addition
or omission of an annotation is not a disagreement with the
others’ annotations to begin with.

1 def location_feature_extraction(policy):
2

3 data_type_keywords = [’geo’, ’gps’]
4 action_keywords = [’share’, ’partner’]
5 relevant_sentences = ’’
6 feature_vector = ’’
7

8 for sentence in policy:
9 for keyword in data_type_keywords:

10 if (keyword in sentence):
11 relevant_sentences += sentence
12

13 words = tokenize(relevant_sentences)
14 bigrams = ngrams(words,2)
15

16 for bigram in bigrams:
17 for keyword in action_keywords:
18 if (keyword in bigram):
19 feature_vector += bigram, bigram[0],

bigram[1]
20

21 return feature_vector

Listing 1: Pseudocode for the location sharing practice.

Feature Selection One of the most important tasks for
correctly classifying data practices described in privacy poli-
cies is appropriate feature selection. Using information gain
and tf-idf we identified the most meaningful keywords for
each practice and created sets of keywords. One set of key-
words refers to the data type of the practices (e.g., keywords
for the SL practice are “geo” and “gps”) and is used to ex-
tract all sentences from a policy that contain at least one
of the keywords. On these extracted sentences we are us-
ing a second set of keywords that refers to the actions of
a data practice (e.g., for the SL practice “share” and “part-
ner”) to create unigram and bigram feature vectors (Zim-
meck and Bellovin 2014). Listing 1 shows a simplified use
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Practice Classifier Parameters Base
n=40

Accpol
n=40

95% CI
n=40

Precneg

n=40
Recneg

n=40
F-1neg

n=40
F-1pos

n=40
Pos

n=9,050
NPC SVM RBF kernel, weight 0.7 0.9 0.76–0.97 0.79 0.92 0.85 0.93 46%

NAED SVM linear kernel 0.58 0.75 0.59–0.87 0.71 0.71 0.71 0.78 36%

CID Log. Reg. LIBLINEAR solver 0.65 0.83 0.67–0.93 0.77 0.71 0.74 0.87 46%
CL SVM linear kernel 0.53 0.88 0.73–0.96 0.83 0.95 0.89 0.86 34%
CC Log. Reg. LIBLINEAR, L2, weight 0.8 0.88 0.73–0.96 0.71 0.63 0.67 0.92 56%
SID Log. Reg. LBFGS solver, L2 0.88 0.88 0.73–0.96 0.94 0.91 0.93 0.55 10%

SL SVM linear kernel, weight 0.95 0.93 0.8–0.98 0.97 0.95 0.96 - 12%

SC SVM poly kernel (4 degrees) 0.73 0.78 0.62–0.89 0.79 0.93 0.86 0.47 6%

Table 2: Classifiers, parameters, and classification results for the policy test set (n=40) and the occurrence of positive classifi-
cations (Pos) in a set of n=9,050 policies (full app/policy set). We obtained the best results by always setting the regularization
constant to C = 1 and for NPC, CC, and SL adjusting weights inversely proportional to class frequencies with scikit-learn’s
class_weight (weight). Except for the SL practice, all classifiers’ accuracies (Accpol) reached or exceeded the baseline
(Base) of always selecting the most often occurring class in the training set. Precneg , Recneg , and F-1neg are the scores for the
negative classes (e.g., data is not collected or shared) while F-1pos is the F-1 score for positive classes.

of our algorithm for the SL practice. Thus, for example, if
the keyword “share” is encountered, the bigrams “not share”
or “will share” would be extracted if the words before the
keyword are “not” and “will,” respectively. The feature vec-
tors created from bigrams (and unigrams) are then used to
classify the practices. If no keywords are extracted, the clas-
sifier will select the negative class. We applied the Porter
stemmer to all processed text.

For finding the most meaningful features as well as for
the subsequent classifier tuning we performed nested cross-
validation with 75 policies separated into ten folds in the
inner loop and 40 randomly selected policies as held out test
set (policy test set). We used the inner cross-validation to se-
lect the optimal parameters during the classifier tuning phase
and the held out policy test set for the final measure of classi-
fication performance. We stratified the inner cross-validation
to avoid misclassifications due to skewed classes. After eval-
uating the performance of our classifiers with the policy test
set we added the test data to the training data for the final
classifiers to be used in our large-scale analysis.

Classification During the tuning phase we prototyped var-
ious classifiers with scikit-learn (Pedregosa et al. 2011), a
Python library. Support vector machines and logistic regres-
sion had the best performance. We selected classification pa-
rameters individually for each data practice. The classifica-
tion results for our policy test set, shown in Table 2, suggest
that the ML analysis of privacy policies is generally feasible.
For the negative classifications our classifiers achieve F-1neg
scores between 0.67 and 0.96. These scores are the most im-
portant measures for our task because the identification of a
potential inconsistency demands that a practice occurring in
an app is not covered by its policy. Consequently, it is less
problematic that the sharing practices, which are skewed to-
wards the negative classes, have relatively low F-1pos scores
of 0.55 (SID) and 0.47 (SC) or could not be calculated (SL)
due to a lack of true positives in the policy test set.

We applied our classifiers to the policies in the full ap-
p/policy set with n = 9, 050 policies. We obtained this set
by adjusting our full policy set (n = 9, 295) to account for
the fact that not every policy link might actually lead to a

policy: for 40 randomly selected apps from our full policy
set we checked whether the policy link in fact lead to a pol-
icy, which was the case for 97.5% (39/40) of links (with a
CI of 0.87 to 1 at the 95% level). As the other 2.5%, that is,
one link, lead to some other page and would not contain any
data practice descriptions, we randomly excluded from the
full policy set 2.5% = 245 of policies without any data prac-
tice descriptions leaving us with n = 9, 295− 245 = 9, 050
policies in the full app/policy set. We emphasize that this
technique does not allow us to determine whether the 245
documents actually did not contain a policy or had a policy
that did not describe any practices. However, in any case the
adjustment increases the occurrence of positive data practice
instances in the full app/policy set and keeps discrepancies
between apps and policies at a conservative level as some
apps for which the analysis did not find any data practice
descriptions are now excluded.20

It appears that many privacy policies fail to satisfy pri-
vacy requirements. Most notably, per Table 2, only 46% de-
scribe the notification process for policy changes, a manda-
tory requirement for apps that do not exclude California and
Delaware residents. Similarly, only 36% of policies contain
a statement on user access, edit, and deletion rights, which
COPPA requires for childrens’ apps, that is, apps intended
for children or known to be used by children. For the sharing
practices we expected more policies to engage in the SID,
SL, and SC practices. The respective 10%, 12%, and 6% are
rather small percentages for a presumably widely occurring
practice, especially, given that we focus on policies of free
apps that often rely on targeted advertising.

4 Mobile App Analysis

In order to compare our policy analysis results to what apps
actually do according to their code we now turn to our app

20We also checked the random sample of 40 apps for policies
dynamically loaded via JavaScript because for such policies the
feature extraction would fail. We had observed such dynamic load-
ing before. However, as neither of the policies in the sample was
loaded dynamically, we do not make an adjustment in this regard.
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3rd Party Library
Crashlytics/Fabric
Crittercism/Aptel.
Flurry Analytics
Google Analytics
Umeng
AdMob*
InMobi*
MoPub*
MillennialMedia*
StartApp*

Table 3: Analytics
and ad* libraries.

Pract Base
n=40

Accapp
n=40

95% CI
n=40

Precpos
n=40

Recpos
n=40

F-1pos

n=40
F-1neg

n=40
Posw/ pol

n=9,295
Posw/o pol

n=8,696
CID 0.8 0.9 0.76–0.97 0.89 1 0.94 0.67 95% 87%
CL 0.55 0.8 0.64–0.91 0.73 1 0.85 0.71 66% 49%
CC 0.78 1 0.91–1 1 1 1 1 25% 12%
SID 0.68 0.95 0.83–0.99 1 0.93 0.96 0.93 71% 62%

SL 0.93 1 0.91–1 1 1 1 1 20% 16%
SC 0.98 1 0.91–1 1 1 1 1 2% 0%

Table 4: App analysis results for the app test set (n=40) and the percentages of practices’ occurrences
in the full app set (n=17,991). More specifically, Pos w/ pol and Pos w/o pol are showing what
percentage of apps engage in a given practice for the subset of apps in the full app set with a policy
(n=9,295) and without a policy (n=8,696), respectively. We measure precision, recall, and F-1 scores
with the pos and neg subscripts referring to the scores for the positive and negative classes.

analysis approach. We first discuss our system design (§ 4.1)
and follow up with our analysis results (§ 4.2).

4.1 App Analysis System Design

Our app analysis system is based on Androguard (2012),
an open source static analysis tool written in Python that
provides extensible analytical functionality. Apart from the
manual intervention in the construction and testing phase
our system’s analysis is fully automated. A brief example
for sharing of device IDs will convey the basic program flow
of our data-driven static analysis. For each app our system
builds an API invocation map, which is utilized as a par-
tial call graph. To illustrate, for sharing of device IDs all
calls to the TelephonyManager.getDevice.Id API are
included in the call graph because the caller can use it to re-
quest a device ID. All calls to this and other APIs that can
be used to request a device ID are included in the call graph
and passed to the identification routine, which checks the
package names of the callers against the package names of
selected third party libraries that we want to analyze, listed
in Table 3. In order to make use of the getDeviceId API a
library needs the READ_PHONE_STATE permission. Only if
the analysis detects that the library has the required permis-
sion, the app is classified as sharing device IDs with third
parties.21 We identified relevant Android API calls for the
types of information we are interested in and the permission
each call requires by using PScout (Au et al. 2012).

Our static analysis is informed by a manual evaluation of
Android and third party APIs. Because sharing of data most
often occurs through third party libraries (Enck et al. 2011),
we can leverage the insight that the observation of data shar-
ing for a given library allows extension of that result to all
apps using the same library (Gibler et al. 2012). As the top
libraries have the farthest reach (Gibler et al. 2012) we focus
on those. We used AppBrain (2015) to identify the ten most
popular libraries by app count that process device ID, loca-
tion, or contact data. To the extent we were able to obtain
them we also analyzed previous library versions dating back
to 2011. After all, apps sometimes continue to use older li-
brary versions even after the library has been updated. For

21Android’s permission model as of Android 6.0 does not dis-
tinguish between permissions for an app and permissions for the
app’s libraries, which, thus, can request all permissions of the app.

each library we opened a developer account, created a sam-
ple app, and observed the data flows from the developer per-
spective. For these apps as well as for a sample of Google
Play store apps that implement the selected libraries we ad-
ditionally observed their behavior from the outside by cap-
turing and decrypting packets via a man-in-the-middle at-
tack and a fake certificate (Progress Software Corporation
2016). We also analyzed library documentations. These ex-
ercises allowed us to see or deduce which data types were
sent out to which third parties.

4.2 App Analysis Results

Table 4 shows our results for the app analysis, specifically,
the occurrence of practices in the full app set and the per-
formance for a set of 40 apps (app test set), which we se-
lected randomly from the publishers in the policy test set
to obtain corresponding app/policy test pairs (for our later
performance analysis of potential inconsistencies in § 5). To
check whether the data practices in the test apps were cor-
rectly analyzed by our system we dynamically observed and
decrypted the data flows from the test apps to first and third
parties, performed a manual static analysis for each test app
with Androguard (2012), and studied the documentations of
third party libraries. Thus, for example, we were able to infer
from the proper implementation of a given library that data
is shared as explained in the library’s documentation. We did
not measure performance based on micro-benchmarks, such
as DroidBench (Arzt et al. 2014), as those do not fully cover
the data practices we are investigating.

In the context of potential inconsistencies correctly identi-
fying positive instances of apps’ collection and sharing prac-
tices is more relevant than identifying negative instances be-
cause only practices that are occurring in an app need to be
covered in a policy. Thus, the results for the data practices
with rarely occurring positive test cases are especially note-
worthy: CC, SL, and SC all reached F-1pos = 1 indicating
that our static analysis is able to identify positive practices
even if they rarely occur. Further, the F-1pos scores, aver-
aging to a mean of 0.96, show the overall reliability of our
approach. For all practices the accuracy is also above the
baseline of always selecting the test set class that occurs the
most for a given practice.

For all six data practices we find a mean of 2.79 occur-
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Pract Acc
n=40

Accpol· Accapp
n=40

95% CI
n=40

Precpos
n=40

Recpos
n=40

F-1pos

n=40
F-1neg

n=40
MCC
n=40

TP, FP, TN, FN
n=40

Inconsistency
n=9,050

CID 0.95 0.74 0.83–0.99 0.75 1 0.86 0.97 0.84 6, 2, 32, 0 50%

CL 0.83 0.7 0.67–0.93 0.54 1 0.7 0.88 0.65 8, 7, 25, 0 41%

CC 1 0.88 0.91–1 - - - 1 - 0, 0, 40, 0 9%

SID 0.85 0.84 0.7–0.94 0.93 0.74 0.82 0.87 0.71 14, 1, 20, 5 63%

SL 1 0.93 0.91–1 1 1 1 1 1 3, 0, 37, 0 17%

SC 1 0.78 0.91–1 1 1 1 1 1 1, 0, 39, 0 2%

Table 5: Results for identifying potential inconsistencies in the app/policy test set (n=40) and the percentage of potential
inconsistencies for all 9,050 app/policy pairs (Inconsistency). Assuming independence of policy and app accuracies, Accpol·
Accapp, that is, the product of policy analysis accuracy (Table 2) and app analysis accuracy (Table 4), indicates worse results
than the directly measured accuracy. However, the Matthews correlation coefficient (MCC), a measure that is particularly
insightful for evaluating classifier performance in skewed classes, indicates a positive correlation between the observed and
predicted classes.

ring practices per app for apps with policies and 2.27 occur-
rences for apps without policies. As all practices need to be
described in a policy per our privacy requirements (§ 3.1), it
is already clear that there are substantial amounts of poten-
tial inconsistencies between apps and policies simply due
to missing policies. For example, the SID practice was de-
tected in 62% of apps that did not have a policy (Table 4),
which, consequently, are potentially non-compliant with pri-
vacy requirements. Furthermore, for apps that had a policy
only 10% disclosed the SID practice (Table 2) while it oc-
curred in 71% of apps (Table 4). Thus, 61% of those apps
are potentially non-compliant in this regard. The only prac-
tices for which we cannot immediately infer the existence of
potential inconsistencies are the CC and SC practices with
policy disclosures of 56% and 6% and occurrences in apps
of 25% and 2%, respectively.

We want to point out various limitations of our static anal-
ysis. At the outset our approach is generally subject to the
same limitations that all static analysis techniques for An-
droid are facing, most notably, the difficulties of analyzing
native code, obfuscated code, and indirect techniques (e.g.,
reflection). It is a further limitation that the identification of
data practices occurs from the outside (e.g., server-side code
is not considered). While this limitation is not a problem for
companies’ analysis of their own apps, which we see as a
major application of our approach, it can become prevalent
for regulators, for instance. Also, our results for the sharing
practices only refer to the ten third parties listed in Table 3.
The percentages for sharing of contacts, device IDs, or lo-
cations would almost certainly be higher if we would con-
sider additional libraries. In addition, our definition of shar-
ing data with a third party only encompasses sharing data
with ad networks and analytics libraries.

5 Identifying Potential Inconsistencies

In this section we marry our policy (§ 3) and app (§ 4)
analyses. We explore to which extent apps are potentially
non-compliant with privacy requirements. We emphasize
that app developers were found to lack an understanding of
privacy-best practices (Balebako et al. 2014), and it could
be that many of the potential inconsistencies that we found
are a result of this phenomenon. Especially, many devel-

opers struggle to understand what type of data third par-
ties receive, and with limited time and resources even self-
described privacy advocates and security experts grapple
with implementing privacy and security protection (Bale-
bako et al. 2014). In this regard, our analysis can provide de-
velopers with a valuable indicator for instances of potential
non-compliance. For identifying those instances only posi-
tive app classes and negative policy classes are relevant. In
other words, if a data practice does not occur in an app, it
does not need policy coverage because there can be no po-
tential inconsistency to begin with. Similarly, if a user is no-
tified about a data practice in a policy, it is irrelevant whether
the practice is implemented in the app or not. Either way, the
app is covered by the policy. Based on these insights we an-
alyze the performance of our approach. Table 5 shows our
results.

To check the performance of our system for correctly
identifying potential inconsistencies we use a test set with
corresponding app/policy pairs (app/policy test set). The set
contains the 40 apps from our app test set (§ 4.2) and their
associated policies from our policy test set (§ 3.3). We as-
sociate an app and a policy if the app or its Play store page
links to the policy or if the policy explicitly declares itself
applicable to mobile apps. As only 23 policies satisfy this
requirement we associated some policies with multiple apps
to which the respective policies are applicable. Making 240
classifications in the app/policy test set—that is, classifying
six practices for each of the 40 app/policy pairs—our system
correctly identified 32 potential inconsistencies (TP). It also
returned five false negatives (FN), 10 false positives (FP),
and 193 true negatives (TN). As shown in Table 5, accuracy
results range between 0.83 and 1 with a mean of 0.94. Al-
though not fully comparable, AsDroid achieved an accuracy
of 0.79 for detecting stealthy behavior (Huang et al. 2014)
and Slavin et al. (2016) report an accuracy of 0.8 for detect-
ing discrepancies between app behavior and policy descrip-
tions.

The F-1pos scores for our analysis, ranging from 0.7 to
1, indicate the overall reliable identification of potential in-
consistencies. While we think that these results are gener-
ally promising, we obtain a relatively low precision value
of Precpos = 0.54 for the CL practice. This result illus-
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Figure 4: For the full app/policy set (n = 9,050) we found
that 2,455 apps have one potential inconsistency, 2,460 have
two, and only 1,461 adhere completely to their policy. Each
app exhibits a mean of 1.83 (16,536/9,050) potential incon-
sistencies (with the following means per data practice: CID:
0.5, CL: 0.41, CC: 0.09, SID: 0.63, SL: 0.17, SC: 0.02).

trates a broader point that is applicable beyond location col-
lection. False positives seem to occur because our analysis
takes into account too many Android system APIs that are
only occasionally used for purposes of the data practice in
question. Despite our believe that it is better to err on the
side of false positives, which is especially true for an au-
diting system (Gibler et al. 2012), in hindsight we probably
would have left out some APIs. The opposite problem seems
to occur in the SID practice. We included too few relevant
APIs. In this regard, we acknowledge the challenge of iden-
tifying a set of APIs that captures the bulk of cases for a
given practice without being over-inclusive.

As indicated by the high percentages, potential inconsis-
tencies seem to be a widespread phenomenon. Specifically,
collection of device IDs and locations as well as sharing of
device IDs are practices that appear to be inconsistent for
50%, 41%, and 63% of apps, respectively. It is further note-
worthy that for SL and SC nearly every detection of the prac-
tice goes hand in hand with a potential inconsistency. For
the apps that share location information (20%, per Table 4)
nearly all (17%, per Table 5) do not properly disclose such
sharing. Similarly, for the 2% of apps that share contact data
only a handful provide sufficient disclosure. For the major-
ity of those cases it is not even necessary to perform a policy
analysis to detect potential inconsistencies.

From a big picture view, the average number of 1.83 po-
tential inconsistencies per app is high compared to the clos-
est previous averages with 0.62 (113/182) cases of stealthy
behavior (Huang et al. 2014) and potential privacy violations
of 1.2 (24/20) (Enck et al. 2010) and 0.71 (341/477) (Slavin
et al. 2016). Figure 4 shows the details. It should also be
noted that for apps without a policy essentially every data
collection or sharing practice causes a potential inconsis-
tency. For example, all 62% apps without a policy that share
device IDs (Table 4) are potentially inconsistent. Thus, over-
all our results suggest a broad level of potential inconsisten-
cies between apps and policies.

6 Future Directions

The law of notice and choice is intended to enable enforce-
ment of data practices in mobile apps and other online ser-
vices. However, verifying whether an app actually behaves

according to the law and its privacy policy is decisively
hard. To alleviate this problem we propose the use of an
automated analysis system based on machine learning and
static analysis. Our system advances app privacy in three
main thrusts: it increases transparency for otherwise largely
opaque data practices, offers the scalability necessary for
potentially making an impact on the app eco-system as a
whole, and provides a first step towards the automation of
privacy requirement checks.22

Our results suggest that potential privacy requirements
inconsistencies are quite common in mobile apps. Results
from our analysis could be used to prioritize further man-
ual analysis of apps for compliance with relevant regula-
tions. While we focused on the Android platform, our ap-
proach is, in principle, adaptable to other mobile platforms,
for example, for iOS using previous works (Deng et al. 2015;
Kurtz et al. 2014). Our approach can also be made workable
for analyzing website practices, e.g., leveraging the work of
Sen et al. (2014), for which first and third party cookies and
other tracking mechanisms can be observed to evaluate col-
lection and sharing of data. The Internet of Things and sen-
sor data represent other rich use cases. Fitness trackers with
APIs for monitoring the heart rate and other body sensor
data could be a first step towards exploring these areas.

We believe that it is necessary to develop public policy
and law alongside the privacy requirement analysis system
we propose. In our opinion, regulators are moving in the
right direction by pushing for app store standardization (Cal-
ifornia Department of Justice 2012) and early enforcement
of potentially invasive privacy practices (FTC 2014a). Ap-
proaches like the one proposed here can relieve regulators
through automation and allow them to focus their limited re-
sources to move from a purely reactionary approach towards
more systematic oversight. As we also think that many soft-
ware publishers do not intend non-compliance with privacy
requirements, but rather lose track of their obligations or are
unaware of them, we also advocate for implementation of a
privacy law check in software development tools and as part
of the app vetting process in app stores. Given their broad
access to app code, app stores are in a unique position to
leverage the approach described in this paper.
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